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Abstract

Assuming the generalized Riemann hypothesis, we prove the following
complexity bounds: The order of the Galois group of an arbitrary polyno-

mial f(x) ∈ Z[x] can be computed in P#P. Furthermore, the order can
be approximated by a randomized polynomial-time algorithm with access
to an NP oracle. For polynomials f with solvable Galois group we show
that the order can be computed exactly by a randomized polynomial-time
algorithm with access to an NP oracle. For all polynomials f with abelian
Galois group we show that a generator set for the Galois group can be
computed in randomized polynomial time.

1 Introduction

A fundamental problem in computational algebraic number theory is to deter-
mine the Galois group of a polynomial f(x) ∈ Q[x]. Formally, in this paper we
study the computational complexity of the following problem:

Problem 1.1. Given a nonzero polynomial f(x) over the rationals Q,

(a) determine the Galois group of f over Q.

(b) determine the order of the Galois group of f over Q.

An extension of a field K is a field L that contains K (written L/K). If L/K
is a field extension then L is a vector space over K and its dimension, denoted
by [L : K] is called its degree. If [L : K] is finite then L/K is a finite extension.
If L/M and M/K are finite extensions then [L : K] = [L : M ].[M : K].

Let K[x] denotes the ring of polynomials with indeterminate x and coeffi-
cients from the field K. A polynomial f(x) ∈ K[x] is irreducible if it has no
nontrivial factor over K. The splitting field Kf of a polynomial f(x) ∈ K[x]
is the smallest extension L of K such that f factorizes into linear factors in L.
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An extension L/K is normal if for any irreducible polynomial f(x) ∈ K[x], f
either splits in L or has no root in L. An extension L/K is separable if for all
irreducible polynomials f(x) ∈ K[x] there are no multiple roots in L. A normal
and separable finite extension L/K is called a Galois extension.

An automorphism of a field L is a field isomorphism σ : L → L. The
Galois group Gal (L/K) of a field extension L/K is the subgroup of the group
of automorphisms of L that leaves K fixed: i.e. for every σ ∈ Gal (L/K),
σ(a) = a for all a ∈ K. By the Galois group of a polynomial f ∈ K[x] we mean
Gal (Kf/K).

Roots of polynomials over Q are algebraic numbers. The minimal polynomial
T ∈ Q[x] of an algebraic number α is the unique monic polynomial of least degree
with α as a root. Algebraic integers are roots of monic polynomials in Z[x]. A
number field is a finite extension of Q. For an algebraic number α, Q(α) denotes
the smallest number field that contains α. If f(x) is the minimal polynomial of
α then Q(α) can be identified with the quotient Q[x]/(f(x)Q[x]). Every number
field K has an element α such that K = Q(α) (see [7, Theorem 4.6 Chap.V]).
Such elements are called primitive elements of the field K.

Let f ∈ Q[x] with roots α1, α2, . . . , αn ∈ Qf . A well known lemma [14]
states that Qf has a primitive element of the form

∑n
i=1 ciαi for integers ci.

The proof actually yields a probabilistic version which states that
∑n

i=1 ciαi is
primitive for most ci.

Lemma 1.2. Let f ∈ Q[x] be a degree n polynomial with roots α1, α2, . . . , αn.
For a random choice of integers c1, c2, . . . , cn such that size(ci) ≤ n2 the alge-
braic integer θ =

∑n
i=1 ciαi is such that L = Q(θ) with probability 1− 1

2O(n2) .

A polynomial f(x) ∈ Q[x] is said to be solvable by radicals if the roots of f
can be expressed, starting with the coefficients of f , using only field operations
and taking rth roots for integer r. Galois showed that a polynomial is solvable
by radicals if and only if its Galois group is solvable.

Let L be a number field and OL be the ring of algebraic integers in L. We
can write OL as OL = {

∑N
i=1 aiωi | ai ∈ Z} where ω1, ω2, . . . , ωN is its Z-

basis. The discriminant dL of the field L is defined as the determinant of the
matrix (Tr(ωiωj))i,j where Tr : L → Q is the trace map. The discriminant
dL is always a nonzero integer. Let T be any polynomial of degree N . Then
the discriminant d(T ) of the polynomial T is defined as d(T ) =

∏
i 6=j(θi − θj),

where θ1, θ2, . . . , θN are the N distinct roots of T (i.e. all the conjugates of θ).
The following is important property that relates d(T ) and dL ([2, Proposition
4.4.4]).

Proposition 1.3. Let L be a number field and T be the minimal polynomial of
a primitive element θ of L. Then dL | d(T ). More precisely, d(T ) = dL · t2, for
an integer t.

Let size(a) denote the length of the binary encoding of an integer a. For
a rational r = p/q such that gcd(p, q) = 1, let size(r) = size(p) + size(q). A
polynomial is encoded as a list of its coefficients. For a polynomial f(x) =
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∑
aix

i ∈ Q[x] we define size(f) =
∑

size(ai). Thus, for an algorithm taking a
polynomial f as input, the input size is size(f).

For any polynomial g(x) = a0 + a1x + . . . + anxn in Z[x], let |g|2 =
√∑

a2
i .

Applying an inequality [4] which bounds every root η of g by |g|2, we obtain the
following.

Theorem 1.4. Let f(x) ∈ Z[x] be a monic polynomial of degree n with split-
ting field L. Let α1, α2, . . . , αn be the roots of f . Consider an element of the
form θ =

∑
ciαi, ci ∈ Z, and let T be the minimal polynomial of θ. Then

|d(T )| ≤ (2c|f |2)N2
, where c = max{|ci| : 1 ≤ i ≤ n}. As a consequence,

dL ≤ (2n2 |f |2)n!2 and log dL ≤ (n + 1)!2.size(f).

The Galois group of a polynomial f(x) ∈ K[x] is completely determined by
its action on the roots of f in Kf . We assume w.l.o.g throughout this paper that
f is square-free. Otherwise, we can replace f by f/gcd(f.f ′) which is square-free
with the same Galois group. Thus, if we label the n distinct zeroes of f , we
can consider the Galois group as a subgroup of the symmetric group Sn. Notice
that this subgroup is determined only up to conjugacy (as the labeling of the
zeroes of f is arbitrary). Since every subgroup of Sn has a generator set of size
n − 1 (c.f. [12] and [9]), we can specify the Galois group in size polynomial in
n. By computing the Galois group of a polynomial f we mean finding a small
generator set (polynomial in n) for it as a subgroup of Sn.

We now state Landau’s result on computing the Galois group of a polynomial
f . Its worst case running time is exponential in size(f).

Theorem 1.5 ([5]). Given a polynomial f ∈ F [x], where the number field F is
given as a vector space over Q, the Galois group G of f over F can be computed
in time polynomial in |G| and size(f).

The extended abstract is organized as follows: In Sect. 2 we explain the
Chebotarev density theorem in a form that is useful to us. In Sect. 3 we give a
polynomial time algorithm making a single query to #P to compute the order
of the Galois group of a polynomial f(x) ∈ Q. In Sect. 4 we show that if the
polynomial is solvable by radicals the order of its Galois group can be computed
by a randomized algorithm with an NP oracle. Finally in Sect. 5 we show that
if the Galois group of f is abelian then it can be computed by a randomized
polynomial time algorithm. For the definitions of various complexity classes the
reader can consult any complexity theory text like [1].

2 Chebotarev Density theorem

The main tool in the proofs of our complexity results is the Chebotarev density
theorem. In this section we explain the theorem statement and also state it in
a form that is suitable for our applications.

Let L be a Galois number field and OL be the ring of algebraic integers in L.
Let n = [L : Q] be the degree of L. For any prime p ∈ Q consider the principal
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ideal pOL generated by p (which we denote by p). The ideal p factorizes in
OL as p = pe

1p
e
2 . . . pe

g for some positive integer e. For each i, OL/pi is a finite
field extension of Fp with pf elements for some positive integer f . Furthermore
efg = n.

The prime p is said to be ramified in L if e > 1 and unramified otherwise.
It is a basic fact about number fields that a prime p is ramified in L if and only
if p divides the discriminant of L (see [11, Theorem 1, pg. 238]).

Let p be an unramified prime with factorization p = p1p2 . . . pg in OL. Cor-
responding to the Frobenius automorphism of the finite field OL/pi, there is an

element denoted
(

L/Q
pi

)
in the Galois group G = Gal (L/Q) known as the

Frobenius element of pi, for i = 1, 2, . . . , g. Furthermore, it is known that the
set [

L/Q
p

]
=

{(
L/Q

p

)
: p|p

}
is a conjugacy class in the Galois group G. For any conjugacy class C of G let

πC(x) be the number of unramified primes less that x such that
[

L/Q
p

]
= C.

We have the following theorem:

Theorem 2.1 (Chebotarev’s density theorem). Let L/Q be a Galois extension
and G = Gal (L/Q) be its Galois group. Then for every conjugacy class C of
G, πC(x) converges to |C|

|G| .
x

ln x as x →∞.

In order to apply the above theorem in a complexity-theoretic context, we
need the following effective version due to Lagarias and Odlyzko [3] proved
assuming the GRH.

Theorem 2.2. Let L/Q be a Galois extension and G = Gal (L/Q) be its Galois
group. If the GRH is true then there is an absolute constant x0 such that for
all x > x0: ∣∣∣∣πC(x)− |C|

|G|
x

lnx

∣∣∣∣ ≤ |C|
|G|

x1/2 ln dL + x1/2 lnx.|G|.

An unramified prime p such that
[

L/Q
p

]
= {1} is called a split prime. By

definition, π1(x) denotes the number of split primes p ≤ x.

Corollary 2.3. Let G = Gal (L/Q) for a Galois extension L/Q. If the GRH
is true then there is an absolute constant x0 such that for all x > x0:∣∣∣∣π1(x)− 1

|G|
x

lnx

∣∣∣∣ ≤ 1
|G|

x1/2 ln dL + x1/2 lnx.|G|.
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3 Computing the order of Galois Groups

Let f(x) ∈ Z[x] be a monic polynomial of degree n without multiple roots and
let L denote the splitting field of f . Suppose {α1, α2, . . . , αn} is the set of roots
of f .

As mentioned before, the Galois group G = Gal (L/Q) can be seen as a
subgroup of Sn. Each σ ∈ G, when considered as a permutation in Sn, can
be expressed as a product of disjoint cycles. Looking at the lengths of these
cycles we get the cycle pattern 〈m1,m2, . . . ,mn〉 of σ, where mi is the number
of cycles of length i, 1 ≤ i ≤ n. We have n =

∑n
i=1 mi.

If p is a prime such that p - d(f), we can factorize f = g1g2 . . . gs into its
distinct irreducible factors gi over Fp. Looking at the degrees of these irreducible
factors we get the decomposition pattern 〈m1,m2, . . . ,mn〉 of f(mod p), where
mi is the number of irreducible factors of degree i.

We now state an interesting fact from Galois theory (see [14, page 198] and
[7, Theorem 2.9, Chap. VII]).

Theorem 3.1. Let f(x) ∈ Z[x] be a monic polynomial of degree n such that
d(f) 6= 0, and let L denote its splitting field. Let G = Gal (L/Q). Let p be a
prime such that p - d(f). Then there is a conjugacy class C of G such that for
each σ ∈ C the cycle pattern of σ is the same as the decomposition pattern of
f factorized over Fp. Furthermore, if {α1, α2, . . . , αn} are the n roots of f in
its splitting field and if Fpm is the extension of Fp where f (mod p) splits then
there is an ordering of the roots {α′

1, α
′
2, . . . , α

′
n} of f in Fpm such that for all

indices k and l, σ(αk) = αl if and only if the Frobenius automorphism x 7→ xp

of Fpm maps α′
k to α′

l.

For any prime p that divides the order of the Galois group there is an element
whose order is divisible by p. This can happen only if there is a prime q such
that the decomposition pattern of f (mod q) contains only the integers p and
1 (using Theorem 3.1). Furthermore using the effective Chebotarev density
theorem (Theorem 2.2) we can show that there is a q with size size(f)O(1)

satisfying the above property. So to check whether p divides the order of the
Galois group we guess such a q. This leads to the following theorem.

Theorem 3.2. Assuming GRH, the following problem is in NP: Given a prime
p ≤ n, and a monic polynomial f ∈ Z[x] with d(f) 6= 0 as input, test if p divides
the order of the Galois group of f . As a consequence, the set of prime factors
of |Gal (Qf/Q) | can be computed in PNP.

Now for the main result of this section.

Theorem 3.3. Assuming GRH, the order of the Galois group of a monic poly-
nomial f ∈ Z[x] can be computed in P#P.

The algorithm first count the number of split primes (with a certain expo-
nentially small error) less than a suitably large x (size(x) = size(f)O(1)) using a
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single #P query. The order of the Galois group is the nearest integer to 1
π1(x)

x
ln x

which can be computed in polynomial time.
To the best of our knowledge, this is the first polynomial-space bounded

algorithm for the problem. Next we consider the approximate counting problem.

Definition 3.4. A randomized algorithm A is an r-approximation algorithm
for a #P function f with error probability δ < 1

2 if for all x ∈ {0, 1}∗:

Proby

[
|1− A(x, y)

f(x)
| ≤ r(|x|)

]
≥ 1− δ,

where y is a uniformly chosen random string used by the algorithm A on input
x.

Stockmeyer [13] showed that for any #P function there is a n−O(1)-approximation
BPPNP algorithm. We can use Stockmeyer’s result to approximate π1(x) within
an inverse polynomial error and use this approximation instead. This yields the
algorithm in the following theorem.

Theorem 3.5. Let f(x) ∈ Z[x] be a degree n polynomial, G be its Galois group,
and s denote size(f). For any constant c > 0 there is a BPPNP algorithm that
computes an approximation A of |G| such that(

1− 1
sc

)
A ≤ |G| ≤

(
1 +

1
sc

)
A.

with probability greater than 2
3 .

We now derive a useful lemma as an immediate consequence of the above
result.

Lemma 3.6. Let f and g be monic polynomials in Z[x] with nonzero discrim-
inant. Suppose the splitting field Qg of g is contained in Qf of f and [Qf : Qg]
is a prime power pl. There is a BPPNP algorithm that computes [Qf : Qg]
exactly, assuming that |Gal (Qg/Q) | is already computed.

4 Computing the order of solvable Galois Groups

In this section we show that if the Galois group G of f ∈ Z[x] is solvable then
|G| can be computed exactly in BPPNP, assuming GRH. In fact, we show that
for solvable Galois groups, finding |G| is polynomial-time reducible to approxi-
mating |G|.

To begin with we need a test for solvability by radicals. A naive application
of Galois’ theorem gives an exponential time algorithm (using Theorem. 1.5).
An important breakthrough was achieved by Landau and Miller when they
gave a deterministic polynomial time algorithm to check whether a polynomial
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is solvable by radicals without actually computing the Galois group (see. [6]).
We make use of results from [6]. We begin by recalling some definitions.

A group G is said to be solvable if there is a composition series of G, G =
G0 B G1 B . . . B Gt = 1 such that Gi/Gi+1 is a cyclic group of prime order.
Throughout this section by composition series we mean such a composition
series.

A Galois extension K/F is said to be solvable if Gal (K/F ) is a solvable
group. Let G = G0 B G1 B . . . B Gt = 1 be a composition series of G. There
is a corresponding tower of fields F = E0 ⊆ E1 ⊆ . . . ⊆ Et = K such that
Gal (K/Ei) = Gi. Moreover if K/F is Galois then by the fundamental theorem
of Galois, since Gi B Gi+1, the extension Ei+1/Ei is Galois.

At this point we recall some permutation group theory (c.f. [15]): Let G be
a subgroup of Sn acting on a set Ω = {1, 2, . . . , n} of n elements. G is said to
be transitive if for every pair of distinct elements i, j ∈ Ω, there is a σ ∈ G such
that σ maps i to j, written as iσ = j. A block is a subset B ⊆ Ω such that
for every σ ∈ G either Bσ = B or Bσ ∩ B = ∅. If G is transitive then under
G-action blocks are mapped to blocks, so that starting with a block B1 ⊆ Ω we
get a complete block system {B1, B2, . . . , Bs} which is a partition of Ω. Notice
that singleton sets and Ω are blocks for any permutation group. These are the
trivial blocks. A transitive group G is primitive if it has only trivial blocks.
Otherwise it is called imprimitive. A minimal block of an imprimitive group
is a nontrivial block of least cardinality. The corresponding block system is a
minimal block system.

The following result about solvable primitive permutation groups [10] has
been used to show polynomial time bounds for several permutation group algo-
rithms [9].

Theorem 4.1 (Pálfy’s bound). [10] If G < Sn is a solvable primitive group
then |G| ≤ n3.25.

Let f(x) ∈ Z[x] be a monic irreducible polynomial and let G be the Galois
group Gal (Qf/Q) which acts transitively on the set of roots Ω = {α1, α2, . . . , αn}
of f . Let {B1, B2, . . . , Bs} be the minimal block system of Ω under the action
of G and H be the subgroup of G that setwise stabilizes all the blocks: i.e. ele-
ments of H map Bi to Bi for each i. Let B1 = {α1, α2, . . . , αk}, where k = n/s.
Consider the polynomial p(x) =

∏k
i=1(x− αi) =

∑k
i=0 δix

i.
In [6] it is shown that p(x) ∈ Q(α1)[x] and there is a polynomial time

deterministic algorithm to find p(x): the algorithm computes each coefficient
δi as a polynomial pi(α1) with rational coefficients. In polynomial time we
can compute a primitive element β1 of Q(δ0, δ1, . . . , δk) [6] so that Q(β1) =
Q(δ0, δ1, . . . , δk). Let g(x) ∈ Z[x] be the minimal polynomial of β1. In the
following theorem we recall some results from [6], suitably rephrased.

Theorem 4.2.

1. The degree of g(x) is s.

2. H = Gal (Qf/Qg) and Gal (Qg/Q) = G/H.
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3. The Galois group Gal (Q(B1)/Q(β1)) acts primitively on B1.

Let Gal (Q(B1)/Q(β)) = GB1 = G0 B G1 B . . . B Gt = 1 be a composition
series of the solvable group GB1 and let Q(β1) = K0 ⊆ K1 ⊆ . . . ⊆ Kt =
Q(B1) be the corresponding tower of subfields of the extension Q(B1)/Q(β1).
Since Ki+1/Ki is an extension of prime degree for each i we have the following
proposition.

Proposition 4.3. For all 0 ≤ i < t if K ′ be any field such that Ki ⊆ K ′ ⊆ Ki+1

then either K ′ = Ki or K ′ = Ki+1.

For each field Kj in the above tower, let θj be a primitive element, 0 ≤ j ≤ t.
I.e. Q(θj) = Kj for each j. Let hj(x) ∈ Kj−1[x] be the minimal polynomial
of θj over Kj−1. We can consider hj(x) as hj(x, θj−1), a polynomial over Q in
the indeterminate x and the algebraic number θj−1 as parameter. As before let
G = ∪s

i=1Hσi. For each field Kj let Kij be the conjugate field under the action
of σi. More precisely, let Kij = Kσi

j and θij = θσi
j . We have the following

proposition which follows from the fact that σi is a field isomorphism which
maps the extension Q(B1)/Q(β1) to Q(Bi)/Q(βi), for each i.

Proposition 4.4.

1. Ki0 ⊆ Ki1 ⊆ . . . ⊆ Kit forms a tower of fields of the extension Q(Bi)/Q(βi)
corresponding to the composition series of Gal (Q(Bi)/Q(βi)).

2. Gal (Kit/Kij) = σ−1
i Gjσi.

3. Kij = Q(θij), where θij = θσi
j .

4. The minimal polynomial of θij over the field Kij−1 is hij(x) = hj(x, θij−1).

For each i, let hi(x) denote the minimal polynomial of θi over Q and let ni

be its degree. We have the following lemma:

Lemma 4.5. Let ni = deg(hi) then n0 = [Q(β1) : Q] and ni = pini−1, where
[Ki : Ki−1] = pi for each i.

Let Ei = Qhi
, 0 ≤ i ≤ t. Notice that Qf = Et and Qg = E0. We have the

following theorem:

Theorem 4.6. Let pi be the order of Gi/Gi−1. For every i there is a li such
that Gal (Ei/Ei−1) is an abelian group of order pli

i . Furthermore Gal (Ei/Ei−1)
is an elementary abelian pi-group.

Suppose we know [Qg : Q]. Using Lemma 3.6 we can compute [Qf : Q] by
finding [Ei : Q] for each 1 ≤ i ≤ t starting from i = 1. We will find [Qg : Q]
recursively. It is also easy to generalize this algorithm for reducible polynomials
f(x) ∈ Q[x]. This gives the following theorem:

Theorem 4.7. Assuming the GRH, there is a BPPNP procedure that takes
as input a monic polynomial f ∈ Z[x] such that d(f) 6= 0, and computes
|Gal (Qf/Q) | exactly when Gal (Qf/Q) is solvable.

8



5 Finding the Galois group of an abelian exten-
sion

Let f be a polynomial over Z[x] such that Gal (Qf/Q) is abelian. In this
section we give a polynomial-time randomized algorithm that computes the
Galois group (as a set of generators) with constant success probability.

Suppose f ∈ Z[x] is irreducible of degree n with Galois group G. Since
G is a transitive subgroup of Sn, if G is abelian then |G| = n. Thus, given
an irreducible f ∈ Z[x], the algorithm of Theorem 1.5 gives a (size(f))O(1)

algorithm for testing if its Galois group is abelian, and if so, finding the group
explicitly. On the other hand, when f is reducible with abelian Galois group,
no polynomial time algorithm is known for computing the Galois group (c.f.
Lenstra [8]). However, for any polynomial f testing if its Galois group is abelian
can be done in polynomial time: we only need to test if the Galois group of each
irreducible factors of f is abelian.

Let f be a polynomial over Z[x] such that Gal (Qf/Q) is abelian. Let
f = f1f2 . . . ft be its factorization into irreducible factors fi. Notice that if
Gal (Qf/Q) is abelian then Gal (Qfi

/Q) is abelian for each i. Consequently, each
fi is a primitive polynomial. Let G = Gal (Qf/Q) and let Gi = Gal (Qfi

/Q)
for each i. Notice that G ≤ G1 ×G2 × . . . Gt.

Let ni be the degree of fi. Since each fi is a primitive polynomial, |Gi| = ni.
Let θi be any root of fi, 1 ≤ i ≤ t. Then, Qfi = Q(θi) for each i. Factorizing
fi in Q(θi), we can express the other roots of fi as Aij(θi), where Aij(x) are
all polynomials of degree at most ni, 1 ≤ j ≤ ni. We can efficiently find
these polynomials Aij(x) for 1 ≤ i ≤ t, 1 ≤ j ≤ ni. Thus we can write
fi(x) =

∏ni

j=1 (x−Aij(θi)), where θi is one of the roots of fi. We have the
following lemma:

Lemma 5.1. Let θ be any root of fi and let Aij be polynomials of degree less
than deg(fi) such that fi(x) =

∏ni

j=1(x − Aij(θ)). Then for 1 ≤ j < deg(fi),
we have Aij(Aik(θ)) = Aik(Aij(θ)). Furthermore, for every σ ∈ Gi there is an
index k, 1 ≤ k ≤ ni such that for any root η of fi(x) we have σ(η) = Aik(η).

From the above lemma it also follows that for each i, 1 ≤ i ≤ t, the polyno-
mials Aij , 1 ≤ j ≤ ni are independent of the choice of the root θ of fi because
the Galois group is abelian.

Now, let σij denote the unique automorphism of Qfi that maps θ to Aij(θ)
for every root θ of fi. Since G ≤ G1 × G2 × . . . × Gt, any element σ ∈ G is
a t-tuple σ = 〈σ1j1 , σ2j2 , . . . , σtjt

〉, for indices j1, j2, . . . , jt. We will apply the
Chebotarev density theorem to determine a generator set for G.

Let q be a prime such that q - d(f) and Fqm be the extension of Fq where f
splits. Observe that since G is abelian every conjugacy class of G is a singleton
set. Let πg(x) denote the number of primes p ≤ x whose Frobenius corresponds
to g. By Theorem 2.1 πg(x) converges to x

(ln x)|G| . Furthermore using Theo-
rem 2.2 we can show that for a random prime p ≤ x, the probability that the
Frobenius corresponding to p is g lies in the range

(
1
|G| − ε, 1

|G| + ε
)
, ε = 1

xO(1) .
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Next, fix i and let {α1, α2, . . . , αni
} be the roots of fi. By Theorem 3.1,

there is an ordering {α1, α2, . . . , αni
} of the roots of fi in Fqm such that the

Frobenius automorphism x 7→ xq maps αk to αl if and only if the element g
(the unique Frobenius element corresponding to q) maps αk to αl. If the element
g = 〈σ1j1 , σ2j2 , . . . , σtjt〉 we can determine σiji as follows: find the splitting field
Fqk of fi. Since fi is a primitive polynomial, k ≤ ni, thus Fqk can be found
efficiently.1 Now, factorize fi in Fqk . Pick any root θ ∈ Fqk of fi. Then
θ

q
= Aij(θ) for exactly one polynomial Aiji

, which can be found by trying all of
them. This gives us σiji

. Thus, we can determine g as a t-tuple in polynomial
time, in a manner independent of the choice of the root θ of fi in Fqk .

We have the following almost uniform polynomial-time sampling algorithm
from the Galois group G: Pick primes p - d(f) less that a suitably large
x and recover corresponding Frobenius. It can be shown that if we choose
x ≥ (n!)10.size(f)2, the algorithm samples g ∈ G with probability in the range(

1
|G| −

1
x1/4 , 1

|G| + 1
x1/4

)
. We require the following lemma to complete the proof

Lemma 5.2. Suppose we have a (almost) uniform sampling procedure A from
a subgroup G of Sn. Then for every constant c > 0, there is a polynomial-time
randomized algorithm with A as subroutine that outputs a generator set for G
with error probability bounded by 2−nc

.

The above lemma implies the the following theorem.

Theorem 5.3. There is a randomized polynomial time algorithm for computing
a generator set for the Galois group of a polynomial f ∈ Z[x] if it is abelian.
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