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Abstract

The -primary goal of this project is to develop a compiler frontend that can serve as a common
module in SISAL compilers for a range of target machines. The target architectures might in-
clude dataflow, multithreaded architectures, vector processors, systolic arrays and even sequential
machines.

SISAL (Streams and Iteration in a Single Assignment Language) is a general purpose, single
assignment, applicative language designed for efficient execution on a variety of parallel machines.
The single assignment property along with strict functional behaviour makes SISAL highly suit-
able for parallel programming.

The compiler frontend comprises the lexical analyzer, parser, semantic analysis phase and
IF1 graph generator. IF1 (Intermediate Form 1) is a hierarchical graph language based on acyclic
graphs. IF1 cleanly decouples the frontend of the compiler from the architecture specific backend

(code generator). Therefore, the IF1 graph generator can be used in SISAL compilers targetted

to different machines.
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Chapter 1

Introduction

1.1 Introduction

Recent years have seen the advent of many high speed computing systems. These highly parallel
machines are a difficult proposition for programmers and compiler writers alike. Programming
these systems efficiently is an onerous task. The crux of the problem is in the detection of
inherent parallelism in programs.

The job of a programmer is to transform an abstract problem specification into a concrete im-
plementation. Unfortunately, in conventional programming languages, the problem specification
and its implementation are inextricably intertwined that it is extremely difficult for the program-
mer to make a design decision about one without disturbing the other. This problem is even
more difficult in a parallel programming environment as the coordination of parallel processes is
a very tedious job.

Conventional languages offer little assistance to the programmer in dealing with concurrency.
Nor do they help the compiler in the detection of parallelism. In a program, one might encounter
many instances where it appears as though two pieces of code are independent; but one cannot
be absolutely certain. In all of these cases, the code must be sequenced in order to ensure
correctness. In short, the traditional languages are oriented toward sequential processing and are
not well-tuned for parallel computing.

An alternative approach for programming parallel machines is to use concurrent versions
of conventional languages. These languages provide special constructs by means of which the
programmer can explicitly tell the compiler which parts of a program can safely execute in

parallel. But the parallelism is possible only among the various indepeﬁdent modules; within




those modules, code has to be sequenced. Smart compilers may be able to search and find some
of the unspecified parallelism, but the amount of parallelism they can detect is limited. Moreover,
such compilers are not so widely available.

Programming in conventional languages or parallel versions of the same has stifled many
opportunities for parallel execution—what we need is a language with no (or perhaps, few)
sequential connotations. Ideally, a parallel programming language must have the following prop-

erties:

e It must shield the programmer from such details of the machine as the number and the

speed of the processors, the topology of the communication network etc.
o Parallelism must be implicit in its semantics.

o It must automatically ensure determinancy.

A single-assignment, applicative language such as SISAL (Streams and Iteration in a Single
Assignment Language) [McG85] seems to be a good choice as a parallel programming language.
The following points support this view. :

Firstly, because of the single-assignment property, the language lends itself naturally to par-
allel execution, except where sequencing is enforced by data dependencies. The parallelism is
implicit in SISAL programs and need not be explicitly specified by the programmer. The single-
assignment rule states that once an identifier is assigned a value in an environment (scope of
access), it cannot be altered within that environment. This ensures that once an identifier has
a value, that value can be sent to all operations requiring the value of that identifier. Identifiers
just provide a notational convenience for naming values and therefore every use c;')f a name in an
environment refer to the same value.

Secondly, SISAL does not place artificial constraints on the evaluation order. The functional
behaviour automatically guarantees determinate results regardless of the execution order (this
is known as the Church-Rosser property). There is no need for the programmer to ensure
determinancy using special synchronization ﬁrimitives.

Thirdly, it simplifies a great deal of the work done by the compiler. This does not mean

that it immediately solves all the translation issues, in fact, it does not even address all of them.




But, because of the single-assignment rule and the prohibition of aliasing and side effects in
functions, it does simplify the global data flow analysis needed for most of the code optimization
techniques. Imperative languages have a memory-based model of computation. In other words,
the programs are made up of instructions that modify the variables in memory. In general,
the variables are widely accessible to many parts of a computation. Therefore, it is difficult
for an automatic analysis software to discover which p'rogram segments can be safely executed
“in parallel. The SISAL definition takes care of this problem by insisting on a more disciplined
approach to programming. ,
And fourthly, SISAL is strongly oriented toward scientific computing, and this is the area
where parallel machines are employed most. Unlike most functional languages, SISAL uses infix
notation for the usual arithmetic operations. It supports iteration and has a rich set of in-built

functions for manipulating arrays.

1.2 Goal of this Project

The primary goal of this project is to develop a compiler frontend that can serve as a cammon
module in SISAL compilers for a range of target architectures. The target machines might include
data flow architectures, multithreaded architectures, vector processors, systolic arrays and even
sequential computers.

Essentially, the frontend consists of a lexical analyzer which breaks the source program into a
stream of tokens, a parser which checks if the source program is syntactically correct, a semantic
analyzer which checks if the program is semantically valid, and an IF1 graph genei'ator which
generates an IF1 graph representation [Ske85a) of the program. The actual implementation has
all of these phases working together—side by side.

IF1 (Intermediate Form 1) is a hierarchical graph language that decouples the frontend of
the compiler from the architecture specific backend (code generator). Both SISAL and IF1 were
developed by researchers at Lawrence Livermore National Laboratory (LLNL), Digital Equipment
Corporation (DEC), Colorado State University (CSU) and the University of Manchester (UM).



SISAL Program

IF1 Code Generator

1 IF1

IF1 Optimizer

|
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A
Target Machine Code

Figure 1.1: Structure of a SISAL compiler

1.3 Basic Structure of a SISAL Compiler

Figure 1.1 shows the basic structure of a SISAL compiler. The lexical analysis and parsing phases
are not shown in the figure.

Essentially, the compiler consists of a language specific frontend and a machine specific back-
end or code generator. In this project, the first module i.e., the translator from SISAL to IF1
has been implemented. The IF1 generator takes a SISAL compilation unit (see next chapter) and
translates it into a set of IF1 graphs, one for each SISAL function in the unit. The output of out
tra,nslator‘ is a text file composed of a sequence of lines, each line representing an “IF1 entity”
(see Chapter 3).

The second phase is an optimizer for IF1 graphs; most of the classical code optimization
techniques can be easily applied to IF1. This part of the compiler could be implemented as an
immediate continuation of this project or it could wait till the code generator is also written.
Since IF1 cleanly decouples the frontend from the backend, the optimizer module can be easily
plugged into the compiler at a later time. In fact, this module may viewed as a part of the

frontend and can be used as a common block in SISAL compilers for different machines.




The IF1 optimizer module is followed by a machine specific optimizer. The output of this
optimizer—shown as IF2 in the figure—may be machine dependent. The last phase viz. the code

generator is the real heart of the compiler.

1.4 Organization of this thesis

The remainder of this thesis is organized into four chapters. The next chapter gives an overview

of the SISAL language. It touches upon only the most relevant features of the language and is

therefore not a substitute for the language manual [McG85].

In the third chapter, we present an overview of the IF1 language. More details about IF1 may
be found in [Ske85a].

We describe the main content of this project in the fourth chapter. We take each SISAL
programming construct and set about describing how it is translated into its equivalent IF1

representation. The chapter winds up by addressing the issue of testing the translator.

In the concluding chapter, we look at the various possible continuations of this project. First
we consider some simple tools that could be developed to aid the IF1 user. These include an :
IF1 interpreter and a program for generating the pictorial form of IF1 graphs. We then assess |

the quality of the code generated by our translator and see how it can be improved. Finally, we '

i
conclude this thesis with a summary of what we have done so far and what could be done to :

improve it.

There are four appendices. Appendix A and B give the syntax rules for SISAL and IF1

respectively, in an extended BNF notation. Appendix C contains a sample SISAL program and |

its corresponding IF1 representation. Appendix D is the User’s Manual for our IF1 generator.



Chapter 2

An Overview of SISAL

SISAL is a general purpose, single assignment, applicative language designed for the efficient

execution of programs on a range of parallel computers. Essentially, SISAL is an offspring of

1

Ackermann and Dennis’ dataflow language VAL [McG82]. In this chapter, we survey the most

germane features of SISAL. It is not our intention to give a complete description of the language

here, rather we will concentrate on the interesting and noteworthy aspects of SISAL. In particular,
we will lay emphasis on the unusual aspects about data types, concepts like value orientation
and single assignment rule, prohibition of side effects and aliasing in functions, iterative and
parallel versions of loops, handling of I/O without side effects and error handling. The reader |
will find a detailed description of the language elsewhere [McG85). The syntax of SISAL is given

in Appendix A. The description below is fairly informal with most of the ideas expressed through

examples.

2.1 Some Basic Features

Before we set about describing the more interesting features, let us look at a few aspects which

though not unique to SISAL are noteworthy.

o SISAL supports separate compilation. A SISAL program is made up of modules that can be
compiled separately. Each such moduie is called a compilation unit. Each compilation unit
is a collection of SISAL functions. A compilation unit may contain invocations of functions
defined in other units. However, since SISAL advocates strong type checking, the type of

the function should be known to the compiler when its invocation is encountered. This is




fype int_vector = array[integer];
type real_matriz = array[array|real];
type stud_rec = record[
name : array|[character];
roll_no, age : integer
I;
type bool_stream = stream([boolean);
type binarytree = union|
not_empty : tree_node;
empty : null
l;
type tree.node = record[
leftehild, rightchild : binary tree;

data : character

5

Figure 2.1: Ezamples of Structured Types in SISAL

done by declaring the prototypes of all external -functions using the global clauses. Not
all functions defined in a compilation unit are available to other units. An “exportable”

function is identified using the define clause.

o SISAL programs are block-structured. Function definitions may be nested within other
functions. The scope rules for nested functions are similar to PASCAL. Some expressions

like let and for permit block structuring within the function body.

e SISAL allows recursion. In SISAL, apart from for expressions, recursion allows repetitive
execution of the same code. It may be mentioned here that VAL, the ancestor of SISAL
does not support recursion. SISAL also supports mutually recursive functions with the help

of forward declaration of fur}ction headers. A forward declared function must be defined

before the end of its scope.




2.2 Data Types

SISAL is a strongly typed language. The elementary (scalar) data types in SISAL are similar to
those found in most conventional languages. The scalar types are boolean, character, integer,
real, double_real and null. Of these only null seems to be unfamiliar. It is used in conjuntion
with the discriminated union data structure. The constructed (structured) data types in SISAL
include array, stream, record and the discriminated union. See Figure 2.1 for examples of
structured data types. There is a rich set of operations predefined on each of these types.

The principal difference bctyveen SISAL types and types in other languages are in the definition
and use of constructed types, in type-checking rules and in the existence of error values within

every type.
2.2.1 Arrays

SISAL arrays are unusual because the array bounds (or sizes) are not part of the type definition.
Only the component type of the array is specified in the definition. Most of the array operations
in SISAL are defined in such a way that the possibilities for concurrency are enhanced. For
example, in an array constructor (also called array generator), all elements of an array can be
specified simultaneously, thus allowing all of the evaluations of array elements to proceed in

parallel. Some example array operations are shown in Figure 2.2.

2.2.2 Streams and their use in I/O

A stream is an ordered sequence of values of the same type. Streams are like arrays in that
they can grow arbitrarily large at run time. That is, the size of a stream is not a part of its
definition. Unlike arrays, a stream does not permit random selection of its components; only the
first element can be selected. A stream is more like a queue allowing addition of elements to take
place at one end and their removal from the other end. We digress lere for a moment to point
out a restriction that the SISAL definition imposes on all operations: No operation is allowed to
modify its inputs. When we talk of an operation that removes an element from a stream, what
we mean is that the operation creates a new stream with its front element removed, the input

stream remaining intact. This is in fact a consequence of the functional behaviour exhibited by




In the examples, vector is a type-name denoting array[ real |; A, B and C are

arrays of type vector; I and J are values of type integer; P and Q are values of

type real.

array ut'('lor[] creates an empty array of type vector.

array vector(] : P, Q] creates an array of type vector with two elements P
and Q. The index of P is I. Q immediately follows at index /] + 1. Let us

call this array A for reference in the examples below.
array.size(A) is 2, since A contains two elements.
array liml(A) returns I, the lower limit of A.
array.limh(A) returns I + 1, the higher limit of A.

array.addl(A, 3.14) results in a new array with three elements, 3.14, P, Q.
A new element is added at the lower index. The lower limit is still I. Call

this array B, for future reference.
The selection operation B[I] returns 3.14 and the operation +i[/] returns P.

B|| A combines B and A producing an array with the five elements
3.14, P,Q, P and Q. Let this array be called by the name C.

C[I+ 3 :5.22,6.78] produces a new array with the two elements of C at
indexes J +3 and I + 4 replaced with 5.22 and 6.78 respectively. This array
will contain 3.14, P,Q,5.22 and 6.78

See the manual for a precise semantics of these operations.

Figure 2.2: Eramples of Array Oj)emtions
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In the examples below, list is a type-name denoting stream[ integer |. G and H

are streams of type list. I and J are integer values.

e stream list [ ] creates an empty stream.

e stream list [ 22,32,14,65 ] creates a stream with four elements: 22,32, 14
and 65. Call this stream G.

o stream first(G) returns 22.

e stream.rest(G) returns a stream with three elements: 32,14 and 65. That

is, a stream containing all the elements of G except the first. Call this

stream H.
o streamsize(H) returns the size of H, 3.
e stream_empty(H) returns false because H is not empty.

e G||H combines G and H to yield a new stream containing the seven ele-

ments, 22,32, 14,65, 32, 14 and 65.
Figure 2.3: Ezamples of Stream Operations

SISAL operations. This property of SISAL operations will be elaborated in a later section on
value orientation.

An important use of streams is in the handling of I/O. Input and output pose a serious
problem in functional languages because read and write operations normally violate the functional
behaviour. A read operation not only returns the required values, it also produces the side effect
of updating a global state so that later reads will pick up the next set of data in the input.
Writes have the same problem. If two SISAL functions need to write, they must have some
form of synchronization to ensure deterministic results. SISAL adopts the concept of streams for
handling I/O without side effects.

The primary operations defined on a stream are adding and removing elements from an end.
In certain ways, the stream is similar to the Unix pipe. The key thing about streams is in the
way they are built and used. In all the other SISAL types, an object must be completely built
before any function can access any portion of the object. For example, all elements of an array
must have values before any function can begin to access elements. Streams are more flexible;

if a function F' produces a stream to be used by function G, SISAL allows F to start giving the
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type my-rec = record |
name : array [ character | ;

roll_no : integer ;

];

¢ record my._rec [ name : ”Riyaz”; roll_no : 9111123 ] creates a record of

type my._rec. Call this record R.
¢ R.roll_no yields 9111123.

e R replace [ roll.no : 3211119 ] creates a new record with the name field

same as that of R, but roll_no changed to 3211119.

Figure 2.4: Ezamples of Record Operations

front end of the stream to G while F’ continues to build the remainder. In effect, a stream defines
a natural form of pipelined communication from the producing function to the consuming one.

This notion of streams allows programs to represent basic forms of input and output in a safe
manner without requiring explicit synchronization. Input and output can be achieved by passing
streams into and out of the main function. Input streams correspond to values received by the
program in response to read requests; output streams correspond to write actions.

Figure 2.3 gives some examples of stream operations.
2.2.3 Records

Record construction is patterned after array construction to improve concurrency. All the field
values of a record can be computed concurrently. The operations on records include selecting a
component by field-name and altering the value of a field!. Examples of operations on records

are shown in Figure 2.4.
2.2.4 Unions

The last type constructor is the union. This permits the construction of discriminated union
types—values of this type appear to be of different types at different points of execution. A

union consists of a number of tag-names just as a record contains field-names. Each tag-name

!Once again, the reader is reminded that the input record remains intact; a new record with the specified field

value is constructed.
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type aunion = union |
int : integer ;
bool : boolean ;
nothing : null ;

];

e union aunion [ int : 7641 ] creates a union with tag int and element value

7641. Call this union U.
e is bool U yields false because the tag of U is int, and not bool.

e union aunion [ nothing ] creates a union with tag nothing. Since the tag
is of type null, no component value is specified—it is nil by default.
See Figure 2.8 for an example of tagcase expression.

Figure 2.5: Ezamples of Union Operations

has a type associated with it. To comstruct a union type, we select one tag-name and tie it
to an expression which has the same type as that of the tag-name. The union data object so
constructed has the the value of the specified expression. The tagcase expression which allows
conditional execution depending on the tag of a union object will be discussed later. Another

operation defined on union is the testing of its tag. Examples of some union operations are given

in Figure 2.5.

2.2.5 Type Checking in SISAL

SISAL imposes strong structural type checking. In SISAL two types are equivalent if they represent
identical structures; the names bound to the types have no influence on the type analysis. This
method of type checking has an advantage. It eliminates the need for exporting and importing
type definitions from one compilation unit to others. Automatic type conversions are never made

by the compiler. The following rules govern the type conformance checking algorithm.
1. T'wo basic types conform if they are the same.

2. Two array (stream) types conform if their base types conform.
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3. Two record (union) types conform if the number of components is the same and, the names
of corresponding components are the same and their types conform. The order in which

the components appear must also be the same.

4. A user type conforms with the right hand side of its definition.

As seen in the example of Figure 2.1, SISAL allows mutually recursive types (binarytree is
defined in terms of tree_node and vice-versa). The type checking algorithm based on the above
rules is described in Chapter 4. We shall see that this algorithm is capable of handling cyclic
types like the binary_tree of our example. '

As a note, it is not mandatory to declare the types of value-names (value-names are SISAL’s
answer to variables in traditional languages, see next section). The compiler can deduce the
types of value-names from the types of expressions assigned to them. As another implementation

note, all type checking in SISAL can be done at compile time.

2.3 The Value Oriented Philosophy

SISAL follows a value oriented style as opposed to the variable orientation of traditional languages.
Conventional languages have a memory based model of computation. These languages rely on
concepts like variables and memory updating. A variable denotes a memory location rather than
the value it contains. Data objects are modifiable or mutable by program statements as the
computation proceeds. This highly unrestricted style of programming encouraged by traditional
von Neumann type languages leads to the automatic detection of parallelism extremely difficult.

In SISAL the above concepts are replaced by a value system in which every object is im-
mutable. Data objects in SISAL are therefore mathematical values in the strictest sense. At first
glance this restriction may seem too severe to programmers. Fortunately, it is not so. The idea of
binding values to identifiers is still available in SISAL. But it is imporia.nt to note that identifiers
are value-names rather than 'varia,bles. We thus come to the most important characteristic of

SISAL: single assignment. The single-assignment rule states that

Once an identifier is bound to a value, the binding remains in force for the entire scope of

access to that identifier
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Operations on structured objects are most effected by the value orientation. Just like any
other data object, arrays and records are also treated as mathematical values. Hence they can
never be modified. The only option is to build a new array or record that has the same values
in all of the old positions except for the particular element that is to be changed. This rule is
enforced by requiring that every identifier-value binding be made to a full identifier and not to a
field or subscript position. For example, a binding beginning with ‘A[I] := ...’ is illegal.

If the above concepts are implemented naively, it will lead to a lot of unnecessary copying
of large data structures like arrays. Though the single assignment rule must be strictly adhered
to at the programmer’s level, a good implementation should avoid copying arrays as far as
possible. Avoiding copies is not only conservative of space but also saves time. The reader might
be confused with the above seemingly contradictory statements. What we are trying to say is
simply this: from a programmer’s point of view, an operation behaves as if it creates a new
array whereas in the actual implementation it need not always be the case. The compiler should
copy arrays only when it is absolutely necessary to do so. This problem of copy avoidance or

copy optimization, as it is usually known, is an important issue in single-assignment language

implementation.

2.4 Expressions and Functions

In SISAL expressions and functions take the place of statements and procedures just as value-
names substitute for variables. There are no statements in the‘. conventional sense. All active
(nondeclarative) language features are functions; they use values provided by the current execu-
tion environment and have the sole effect of producing a set of result values?.

SISAL functions enjoy freedom from side effects. It is important to note this because the
prohibition of side effects and aliasing plays a major role in simplifying the automatic program
analysis. All parameters are passed by value and their evaluations can execute concurrently.
Parameters are bound to values at the call site and the function cannot rebind those values. A
function has no access to global identifiers (except type-names and other function-names).

SISAL has four expressions that reflect the notion of control flow in conventional languages:

let, if, tagcase and for. Unlike their counterparts in most languages, these are expressions

2SISAL functions may return more than one value.
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let
radius : real; % declare radius
pt, pi2 : real := 3.1416, 6.2832; % declare and define pi and pi2
radius := 100.0; % define radius
sqrad := radius * radius % deﬁﬁe sq.rad
in

pi * sq.rad,pi2 * radius % the result values of let expression
end let

Figure 2.6: Ezample of LET ezpression

ifa>bthena-b
elseif a < b then b —a
else a + b

end if

Figure 2.7: Ezample of IF expression

instead of statements.
2.4.1 Let Expression

The let expression allows the programmer to name intermediate results of a computation prior
to computing the final result value(s). The let consists of two parts: the name-value binding part
and an expression part separated by the keyword in (see Figure 2.6). Each name introduced in
the binding part must be defined exactly once. It is optional to declare the type of a name. The
right hand side of a binding may refer to a previous binding. The expression part consists of an
expression of arbitrary arity which is evaluated and returned as the result of the let expression.

The scope of the bindings is the entire let expression.
2.4.2 If Expression

- The if expression (see Figure 2.7) in SISAL is analogous to the if statements in other languages.
Like its counterpart, the if expression uses a Boolean value to determine which of several possible

result values to produce. Unlike its counterpart, the result clauses must be expressions (of the
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Let U be an expression of the following union type:

type a-union = union |
a, b, ¢ : integer ;
d, e f:real; g: character;

1

In the following tagcase expression P, Q and R are value-names of type integer. A is a value-name of
an array type. C is a value-name of type character. The tagcase expression returns two values, one an

integer and the other a boolean.

tagcase z := U

tag a,c: z, Alz] > z % x is an integer in this arm
tag d : integer(P + z), z =3.14 % x is a real in this arm

tag g : 26, (r > 'a’)&(r < '2’) % x is a character in this arm
otherwise : trunc(P + Q), Q > R % x is not defined in this arm
end tagcase

Note that the otherwise-clause is required because the tags b,e and f are absent in the tag lists. The

reason for not allowing z to be visible in the otherwise-clause should also be clear from the above

example—the left out tags have different types.

Figure 2.8: Erample of TAGCASE ezpression

same type) instead of statements. An arbitrary number of elseif clauses are permitted making

the if expression akin to a case statement. To ensure that the expression will always return some

value, the else clause must always be present. The if expression introduces no new name-value -

binding. All outer value-name scopes pass into an if construct.

2.4.3 Tagcase Expression

The tagcase expression (Figure 2.8) permits access to values of union type. The tag field is
interrogated to discover the union-value’s true type and a multiway branch is used to select the
appropriate result expression. The value associated with the union can be assigned a n'ame. The
type of this name is different in different arms of the expression. Like the if expression, all arms

of a tagcase must generate the same type of expression.
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for initial
1:=1;
s:= 0.0;
while i <= n repeat
i:=oldi +1;
t

ii

olds *afi] + 1;
s:=141
returns
value of tree sum s
value of catenate array [1 : 1]
array of i

end for

Figure 2.9: Ezample of FOR ezpression

2.4.4 For Expression

The For expressions correspond to the loops found in other languages. There are two versions
of the For expression: the iterative or sequential version also called the non-product form and

the parallel version also called the product form.

Iterative Version

The iterative version of for expression has four basic parts, each identified by a special keyword:
initialization section (prefixed by the keyword initial), repetitive section (prefixed by repeat),
termination test (prefixed by while or until), and a list of result clauses (prefixed by returns).
See Figure 2.9.

The initialization section is used to create local identifiers (loop-names) that will be used
throughout the for expression and to give them initial values. The initial section is treated as
the first pass of the loop. The repetitive section is used to specify repeated bindings to loop-
names. The repeat section may be viewed as a function that returns the new value binding for
each loop-name. The value bound to a loop-name in the previous pass is obtained by prefixing
the loop-name by the keyword old. The termination test may appear either before or after the

repeat body, indicating when the test is to be performed. Loop-names with old modifier must
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not appear in termination tests occurring before the repeat body.

The result clause has many unusual features. When a loop terminateé, the simplest way to
return a result would be to say “value of (ezpr)”, which is the value of (ezpr) with the last
binding of loop-names®. Using “array of” or “stream of” instead of “value of” would result
in values of (expr) for each binding of loop-names to be collected and returned as an array or
stream. Another interesting option is “value of sum (ezpr)”. This returns the sum of the
values of (ezpr). In addition to sum, permitted reduction operators include product, least,
greatest and catenate. SISAL also allows the associativity of these operators to be specified.
The associativity of an operator may be left, right or tree. Certain values from the sequence of
values of (ezpr) can be excluded from the result calculation. This is done by specifying a Boolean
condition (masking expression) in the result clause which has to be satisfied (or unsatisfied) in a
loop pass if the value of (expr) in that pass is to be used in the result computation. No 1oop—namé

with old prefixe is allowed in a result clause. However an old prefix may be used for the result

clause as a whole.

Parallel Version

SISAL includes a parallel form of for expression. This expression is useful when the same set of
actions need to be performed over a specific range of values.

The parallel for expression has three sections: the range specification section, the body and
the return clauses. The range specification section may specify a range of integers between
two bounds, or a range that runs through the elements of an array or stream. More complex
ranges may be specified by using multiple ranges to be crossed (outer product) or dotted (inner
product). See the manual for more details.

The body and result clauses are quite similar to the sequential version. See Appendix C for
an example of the parallel for loop.

The parallel version of for expression highlights the SISAL approach to concurrency. Although
the loop bodies can be executed in parallel, the compiler can choose to implement it as a fully
pa,ra.\.llel operation, a pipelined operation, or even as a sequential loop. This choice depends on

the availability of resources like memory and processors.

%(ezpr) has a different value in each pass of the loop. The last value in this sequence is used.
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2.5 Error Handling in SISAL

In the area of error handling, SISAL takes an approach which is unusual as far as conventional
languages are concerned. The approach adopted by SISAL is quite similar to the one employed by
VAL. In sequential languages, it is a relatively straightforward operation to bring a computation
to a halt after an error occurs. But in a more complex environment like the dataflow, such a task
is more difficult to do in a way that will permit the programmer to determine what went wrong.
Because of this difficulty, SISAL includes a somewhat unusual semantics for allowing programs
to continue safely in the event of an error.

When an operation results in an exception, it produces a special error value of the appropriate
type. The value error is a proper element of every SISAL type. This value could be produced
as a result of an arithmetic error or a control flow error. For example, addition of two inte-
gers might cause an overflow. In SISAL, the value of such a computation is error| integer ].
Similarly, a conditional test in an if expression or a for expression might produce an error
value—error| boolean ]. If it does, the for or if expression produces error values of the ap-
propriate type as results. SISAL also provides a special function for testing for the presence of
these error values, since normal tests would not give the correct answer (error{ boolean | =
error[ boolean ] yields error[ boolean ] and not true as one would expect). The is error
function indicates whether or not the input parameter is an error value. The output of is error
will never be an error value.

Normally, an operation receiving an erroneous input simply produées appropriate error values
as output. However, operations on arrays have a more complex semantics. The semantics of these
operations allows one to access as many elements as possible in erroneous arrays. We will not
discuss this aspect in detail here. Suffice is to say that the main objective of this error handling
aspect of SISAL is to retain as much information as possible after an error has occurred. The

details can be found in the language manual.
2.6 Summary

From the user’s view, the functional style has its good and bad sides. The bad side is that

programmers have to adopt a more restrictive discipline of programming. The good side is that
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they have a clean and simple environment for expressing parallelism safely, without concern for
making synchronization mistakes. Parallelism in SISAL is found not just in the parallel version
of for loop. If two expressions do not need each other’s answers (either directly or indirectly),
they can execute simultaneously without the possibility of any conflict or error. This condition is
the only rule for identifying concurrency in SISAL. The restrictions imposed to the programming

style by SISAL reduces the compiler effort required for program analysis because all dependencies

are clearly stated.




Chapter 3

An Overview of IF1

IF1 is a hierarchical graph language developed for use as an intermediate language in compilers
for high level data flow languages. |F1 provides a common interface between the frontend and the
backend of SISAL compilers for different machines. In this chapter, we present a brief 6verview
of the IF1 language. For the complete syntax of IF1, see Appendix B. The reader may refer to

the IF1 language reference manual [Ske85a] for more details.

3.1 The IF1 language

IF1 is a hierarchical graph language based on acyclic graphs. A SISAL compilation unit is trans-
lated to an IF1 file which is composed of four types of components: nodes, edges, types and graph
boundaries. Nodes represent operations, edges denote data dependencies, and the type attached
to an edge denote the type of data carried by it. A graph boundary encloses a gfoup of nodes
and edges. Figure 3.1 illustrates the various components of an IF1 graph. The graph represents
the expression —X + 2 * A[[].

An IF1 graph contains a set of nodes interconnected by edges. The boundary of a graph is
clearly marked out by what is called a graph boundary node. The graph boundary serves as
the source and sink of values entering and leaving the graph. The graph boundary contains a
set of input and output ports that serve as the interface between the nodes of the graph and
the external environment. The graph receives its input values from the outside environment
through the input ports. The values computed inside the graph are transported to the outside
environment via the output ports. More than one edge may use an input port on the boundary

as the source. But two edges are not allowed to use the same output port as the destination.

21
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X A I
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Times
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Figure 3.1: An Ezample IF1 Graph

In the figure, the large boldface box represents a graph boundary. This graph has three input
ports, one for A, another for I and a third for X (the ports are shown as small dark pegs on the
graph boundary). The graph has one output port for its result.

The smaller boxes in the figure represent nodes. There are four nodes in the example graph:
Neg, AElement, Ttmes and Plus. Of these, Neg has only one input port; others have two
each. All the nodes have one output port each. In general, a node may have multiple input ports
and multiple output ports. Values enter a node through its input ports, the node performs its
operation, and the results are passed out through its output ports. There can be at most one edge
into a node’s input port; but more than one edge can emanate from an output port. The nodes
shown in the figure are simple in the sense that they represent simple elements of computation,
such as an arithmetic or Boolean operator, or a simple operation like array selection. IF1 nodes
can also be compound. Compound nodes represent the structured expressions of SISAL namely,
the if/then/else expression, the.tagcase expression, and the different for expressions.

A compound node comprises a number of subgraphs with implicit connections between ports
on the subgraph boundaries and ports on the compound node. Each subgraph of a compound
node defines a part of a structured expression. There are five compound nodes defined in IF1 as

shown in Table 3.1.

The directed arcs in Figure 3.1 are edges. Usually, edges have a source node and a destination
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[ Name [ SISAL expression ]
Select if/then/else

TagCase | tagcase :

LoopA iteration with termination test after one pass
LoopB iteration with termination test before one pass
Forall product form of for-expression

Table 3.1: Compound Nodes

| Character | Meaning

C comment

graph

exported function
imported function

edge

literal edge

type

node

start of a compound node
end of a compound node

o N A T |l Hea | 2T ] Kop!

Table 3.2: IF1 components

node. Edges connect an output port of the source node to an input port of the destination node.
However, in the figure, the edge incident on the first port of the node labelled Times does not
have a source node. This is because the value carried by this edge is the literal constant “2”.

Such edges are called literal edges. Edges also have types associated with them; this is not shown
in the figure.

3.2 |F1 File

An IF1 file consists of a set of lines delimited by newline characters. The first non-blank character

on each line gives the meaning of the line. Given in Table 3.2 are the permitted first non-blank -

characters. They have the indicated meanings.
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3.3 Nodes

As we have already seen, nodes can be either simple or compound. Simple nodes have the form:

N (label){op)
where the (op) is an ASCII string that represents the operation performed by the node. The
various operations in IF1 are listed in Appendix B. {label) is an integer that numbers the node.
This number is used to denote the source and destination nodes of edges.

Usually, simple nodes have a fixed number of inputs. However, there are a few simple nodes
that allow variable number of input ports. ABuild used for building arrays is an example of a
node with variable inputs. It takes an integer for the lower index of the array on the first input
port, and component values on ports 2, 3, ... etc. We shall come across examples of many

simple nodes when we discuss the translation of simple SISAL operations to the corresponding
IF1 nodes.

3.4 Graph Boundaries

An IF1 graph encapsulates a possibly large body of computation. A SISAL function is represented
in IF1 by a graph. The input and output parameter lists in the function header determine the
input and output ports of its graph boundary node. Graphs in IF1 appear as either function
graphs or as subgraphs of compound nodes. Function graphs are at the highest level of the
hierarchy; they may contain compound nodes which in turn may contain other compound nodes
etc. In an IF1 file, graph boundaries begin with a line containing G (or X, or I) and a type
reference. A graph boundary may either represent a function or a subgraph of a compound node.

Graph boundaries that represent functions are denoted:

G (type-reference) "(name)" % for a local function definition
X (type-reference) "(name)" % for a global function definition
I (type-reference) "(name)" % for an imported function

The field (name) above is the name of the function. The (type-reference) field associates a type
to a graph denoting a function. Graphs that are subgraphs of compound nodes are not typed

(this is denoted by a zero in the type reference field). We shall see more about type descriptors

in a later section.
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| Entry | Code | Paraml | Param2 |
Array 0 base type not used .
Basic 1 basic code | not used
(see Table 3.4)

Field 2 | field type next field
Function 3 argument type | result type
Multiple 4 base type not used
Record 5 first field not used
Tag 6 tag type next tag
Tuple 7 type next in tuple
Union 8 | first tag not used

Table 3.3: Type Entries

The graph boundary descriptor for a local or global function is immediately followed by nodes
and edges that constitute the body of the function. However, the graph boundary for an imported
function merely associates a type descriptor with a function name—no nodes or edges can follow
it.

Graph boundary nodes are always labelled zero. All other nodes have labels greater than

zero. Each graph begins numbering its nodes from one onward.
3.5 Edges

Explicit data dependencies within a graph are denoted by edges. An edge may be either an
ordinary edge with source and destination nodes, or a literal edge which has no source node.

Their respective forms are:

E (src-node)(src-port)(dst-node)(dst-port)(type-re ference)
L (dst-node)(dst-port) "(value)" (type-reference)

(src-node) and (dst-node) are the labels of source and destination nodes respectively. (src-
port) and (dst-port) denote the port numbers of the source and destination nodes. The field
(type-reference) denotes the type of the value carried by the edge. In the case of literal edges,
the field (value) denotes the value of the literal.
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Ilype I Code ]
Boolean
character
double
integer
null

real

[$,3 =N RILE I ] o) el

Table 3.4: Basic Type Codes

3.6 Type Descriptors

A type may be viewed as a linked list that associates type constructors with component types
and functions to arguments and results. A type descriptor is referenced in edges and graph
boundaries for functions. A type descriptor has the following form:

T (label)(code)(paraml)(param?2)

(label) is a positive integer that numbers a type descriptor. It is this (label) that is used in

the type-reference field of edges and graph boundaries. The other fields ({code), (paraml) and
(param?2)) take the values indicated in Table 3.3.

3.7 Compound Nodes

Compound nodes contain subgraphs and span many lines. The number of subgraphs in a com-
pound node may be fixed (in LoopA, LoopB and Forall nodes), or may vary (in Select and
TagCase node). Each compound node has its own semantics that relate its inputs and outputs
to the inputs and outputs of its subgraphs.

The form of a general compound node is:

{
GO
e subgraphg
GO
subgraphi

GO
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subgraph,
} (label)(op) k ay a3 ... ai

The { marks the beginning of a compound node. Each subgraph begins with a line containing
G 0. The } closes the compound node. The (label) and (op) fields have the same meaning as in
simple nodes. k is the length of the association list a; a; ... ax. The association list maps the

subgraphs that are described in the semantics of each compound node to the subgraphs in the

IF1 file.

3.7.1 Implicit Dependence in Compound Nodes

There are no explicit edges to specify how the subgraphs of a compound node are dependent on
one another. All such information is implicit in the compound node. Three kinds of implicit

dependence can exist within a compound node:

1. Data dependence between compound node and its subgraphs. The input values of a com-

pound node are passed to each of its subgraphs. No explicit edges are however used to

express this dependence.

2. Data dependence between subgraphs. This type of dependence occurs in loops. The values
computed by the Init subgraph may be used by the Body subgraph, Test subgraph and
Returns subgraph. Similarly the values computed by the Body subgraph may be passed to
the Returns subgraph, Test subgraph or back to the Body subgraph.

3. Control dependence. This type of dependence occurs in selection and iterative loops. In
selection, one of the alternative subgraphs have to be selected, depending on some Boolean

condition. In a loop, iteration has to be terminated depending on some Boolean condition.
3.7.2 Classes of Values and Ports

Every value that is passed into or passed out of a compound node subgraph has a class. The class
designates the value as imported value, loop value etc. Just as we talk of classes of values, we can
also talk of classes of ports on the subgraph boundary. All ports of the same class are numbered
contiguously. The semantics of the compound node lays down that ports of a particular class

should come before or after ports of some other class. For example, in a LoopA node, ports of
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imported values (class K) must precede the ports of loop values (class L). This division of values
into different classes is useful in loop analysis, because loop values can be quickly separated out
from loop invariants.

In our following discussion of compound nodes in IF1, we shall make use of two tables for
each compound node. One table gives the various port classes and their relative ordering. The

second table tells us which port classes are allowed for the input and output ports of the different

subgraphs.

Now we briefly describe the various compound nodes.
3.7.3 LoopA Node

The LoopA node is used to represent an iterative loop with its termination test after the loop

body. A LoopA node has four subgraphs: Init, Body, Test and Returns. The Init subgraph

initializes the loop values. The Body subgraph produces new loop values in every pass of the
iteration. The Test subgraph determines when the loop is to be terminated. A false value
generated by the Test subgraph signals the end of iteration. The Returns subgraph collects the

loop values and produces the results of the LoopA node from them. The association list for a

LoopA node is:

4 (init)(test)(body)(returns)

where (init is the number of the subgraph corresponding to Init
(test) is the number of the subgraph corresponding to Test
(body) is the number of the subgraph corresponding to Body
(returns) is the number of the subgraph corresponding to Returns

The implicit dependencies in a LoopA node are given below:

1. All inputs to the LoopA node are available to each subgraph on the class K ports.

2. The loop values from the output of the Init subgraph are connected to the inputs of the

Body and Returns subgraphs on the class L ports.

3. The loop values from the output of the Body subgraph are connected to the inputs of the
Test, Body and Returns subgraphs on the class L ports.
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Class | Usage

Port Range

LoopA input values

1...nxg

loop values

ng+1l...ng +n,

ng+np+1l...ng+np +nr

Boolean result of Test | 1...1

K
L
T derived loop values .
B
R

LoopA results

l...np

Table 3.5: Port assignments for each class in LoopA

Node/ Input Output
Subgraph | Ports Ports
LoopA K R
Init K L
Test | B
Body K.L 4K, LT
Returns K, L R

Table 3.6: Port usage for each subgraph in LoopA

4. The derived loop values from the output of the Body subgraph are connected to the inputs

of the Test subgraph on the class T ports.

5. The results of the Returns subgraphs are connected to the output ports of the LoopA node

on the class R ports.

6. When the result of the Test subgraph is false, the LoopA node makes its results available

at its output ports.

Tables 3.5 and 3.6 give the port assignments and port usage in a LoopA node.

3.7.4 LoopB Node

The LoopB node is used to represent an iterative ioop with its termination test before the loop

body. A LoopB node also has four subgraphs: Init, Body, Test and Returns. The Init subgraph

initializes the loop values. The Body subgraph produces new loop values in every pass of the

iteration. The Test subgraph determines when the loop is to be terminated. A false value

generated by the Test subgraph signals the end of iteration. The Returns subgraph collects the
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Class | Usage Port Range

K LoopB input values l...ng

L loop values ng+1...nx 4+ ng
B Boolean result of Test | 1...1

R LoopB results l...np

Table 3.7: Port assignments for each class in LoopB

loop values and produces the results of the LoopB node from them. The association list for a

LoopB node is:

4 (init)(test)(body)(returns)

where (init) is the number of the subgraph corresponding to Init
(test) is the number of the subgraph corresponding to Test
(body) is the number of the subgraph corresponding to Body
(returns) is the number of the subgraph corresponding to Returns

The implicit dependencies in a LoopB node are given below:

1. All inputs to the LoopB node are available to each subgraph on the class K ports.

2. The loop values from the output of the Init subgraph are connected to the inputs of the
Test, Body and Returns subgraphs on the class L ports.

3. The loop values from the output of the Body subgraph are connected to the inputs of the
Test, Body and Returns subgraphs on the class L ports.

4. The results of the Returns subgraphs are connected to the output ports of the LoopB node

on the class R ports.

5. When the result of the Test subgrapﬁ is false, the LoopB node makes its results available

at its output ports.

Tables 3.7 and 3.8 give the port assignments and port usage in a LoopB node.
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Node/ | Input | Output
Subgraph | Ports | Ports
LoopB K R
Init K L
Test K, L B
Body K,L| K, L

Returns | K, L R

Table 3.8: Port usage for each subgraph in LoopB

3.7.5 Forall Node

The Forall nodes is used to express independent (as opposed to iterative) execution. The product
form of for expressions in SISAL are translated into Forall nodes. The dot product form of for
expressions are translated into a single Forall node whereas the cross product form requires
nested Forall nodes. The Forall node has three subgraphs: Generator, Body and Returns. The
Forall node may be viewed as executing independently multiple instances of an expression. The
Body subgraph contains the expression to be evaluated. The Generator subgraph produces input
values for each instance of the body. The Generator produces at least one multiple value on class
M ports. Each element of a multiple value is sent to distinct instances of the body. A multiple
value as a sequence of values, of which each value is sent to exactly one instance of the Body
subgraph. The type of a multiple value is Multiple[T], where T is the type of individual values.
The Returns subgraph collects the values produced by the Generator and Body subgraphs and

produces the results of the Forall node. The association list for a Forall node is:

3 (Gener)(Body)(Returns) ,

where (Gener) is the number of the subgraph corresponding to Generator
(Body) is the number of the subgraph corresponding to Body
(Returns) is the number of the subgraph corresponding to Returns

The implicit dependencies in-a Forall node are:

1. All inputs to the Forall node are available to each subgraph on the class K ports.

2. The Body subgraph receives one value from each class M port.
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Class | Usage Port Range

K Forall input values l...ng

M Multiple values ng+1...ng+np

T Results of each Body | nxg + np +1...0x + np + 07
R Forall results 1...np

Table 3.9: Port assignments for each class in Forall

Node/ Input Output
Subgraph | Ports Ports
Forall K R
Generate K M

Body K, M T
Returns | K, M, T R

Table 3.10: Port usage for each subgraph in Forall

3. The results of the Body subgraph are available at the class T input ports of the Returns
subgraph.

4. The results of the Returns subgraph are available at the class R output ports of the Forall

node

Table 3.9 gives the port number ranges assigned to each class in a Forall node. Table 3.10

gives the classes of input and output ports of the Forall node itself and each of its subgraphs.

3.7.6 Select Node

The Select node is used to implement “case”-like expressions. It contains one subgraph for the
selector expression and a subgraph for each alternative in the case expression. The value returned
by the selector subgraph is an integer in the range 0... N — 1, which is used to select one of the
N alternative subgraphs. In SISAL, there is only two-way selection. Hence all our Select nodes
will contain exactly three subgraphs: the first one i:or the condition, the second for the true part
and the third for the false part of an if/then/else expression. Note that elseif clauses result in

nested Select Nodes.

In general, the association list of a Select node has the following form:
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| Class | Usage | Port Range |
K Select node input values l.ng
R Select node output values | 1..ng
S Selector value 1..1

Table 3.11: Port assignments for each class in Select

Node/ Input | Output
Subgraph | Ports | Ports

Select K R
Selector K S
Alternative K R

Table 3.12: Port usage for each subgraph in Select

n go-..9n-2
where n is the number of subgraphs
each g; is an integer in the range 0...n — 2 giving the
subgraph number to use for selector value ¢

In our case, n = 3, subgraph go corresponds to the false part and subgraph g; corresponds to

the true part. Here we are treating a false value returned by the if condition as 0 and true value
by 1.

The implicit dependencies in a Select node are:

1. All input values to the Select node are passed to the class K ports of each subgraph.

2. The result ports of each Alternative subgraph are connected to the corresponding output

ports (class R) of the Select node.

Table 3.11 indicates the port ranges associated with each port class in a Select node. Ta-

ble 3.12 indicates the input and output port classes for the Select node as well as for each

subgraph in it.



34

| Class | Usage [ Port Range |
U Union value 1...1
\Y Variant value 1...1

K Other TagCase input values | 2...ng
R TagCase output values l...ngp

Table 3.13: Port assignments for each élass in TagCase

3.7.7 TagCase Node

The tagcase expression of SISAL translates into a TagCase node in IF1. The TagCase node
contains as many subgraphs as the number of arms in the tagcase expression. Several tags may
share the same subgraph. The mapping of tags to subgraphs is given by the association list.
Each tag is associated with a unique integer > 0 based on the ordering of tags in the union
type specification. The association list defines a mapping between this integer and the subgraph

number for the tag. The association list takes the following form:

ngo...Gn-1 A
where n is the number of subgraphs
gi is the subgraph number for tag ¢

(gi’s need not be distinct since sharing of subgraphs is allowed)
The implicit dependencies present in a TagCase node are the following:

1. The input ports of the TagCase node are connected to the class K ports of each subgraph.

2. The value selected by the tag of the union value on port one of the TagCase node is passed

to the appropriate subgraph on port one.

3. The output ports of each subgraph are connected to the corresponding output ports (class

R) of the TagCase node.

Table 3.13 gives the port assignments and Table 3.14 gives the port usage for TagCase.
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Node/ Input | Output
Subgraph | Ports | Ports
TagCase | U, K R
subgraphs | V,K R

Table 3.14: Port usage for each subgraph in TagCase

3.8 Summary

IF1 cleanly separates the frontend of the compiler from the machine specific backend. The
hierarchical structure of IF1 graphs closely resembles the structure of input SISAL program. The
simple and compound nodes reflect the choice of program constructs made by the programmer.
The data dependencies are clearly stated either by explicit edges or by the implicit dependence
rules in compound nodes. The input values to a loop type compound node are grouped together
into contiguous ports so that loop invariants can be easily detected. All this makes optimijzation
analysis on IF1 simpler. With this discussion of IF1 and that of SISAL in the previous chapter, we

are now ready to describe the SISAL to IF1 translator. The next chapter describes the translator.




- Chapter 4

SISAL to IF1 Translation

In this chapter, we present the implementation details of the |IF1 generator. Most of the data
structures and algorithms used are discussed in detail. The chapter is admittedly abstruse at
places, but one could not help it because certain details seem to be inherently complex and a
better way of presenting them could not be found. In fact, this is a problem with the implemen-
tation details of almost all large programs. However, in large, we have tried to put things down

as succinctly as possible.

4.1 Lexical Analyzer and Parser

We used the LEX and YAcCcC compiler tools for lexical and syntactic analysis, respectively. Al-
though hand-coded analyzers coulq be more efficient, the compiler tools were used to generate
the analyzers, for ease of implementation. In the following, we mention only the unusual or
noteworthy aspects of the ana.iyzers.

Keywords are stored alphabetically in a table, all in lower case. Each time an identifier is
recognized by the lexical analyzer, it is first converted to lower case and then a search is performed
on the keyword table with the identifier. If a match is found, the token constant corresponding
to the keyword is returned. If no match is found, the token constant NAME is returned after the
token string is stored in a name table. Each time a literal (of type integer, real, double real,
character or character string) is recognized, the token string is stored in a literal table and the
appropriate token constant is returned.

The parser was built using YAcc. The parser checks for grammar conformance, builds the

abstract syntax structure and recovers from syntactic errors. Error recovery is necessary so that

36
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multiple distinct errors can be detected and appropriate error messages emitted.

4.1.1 Error Recovery

The error recovery used is that provided by Yacc and cqnsequently is somewhat crude. It
is based on augmenting the grammar with error productions containing special error tokens.
Given that an error occurs, the point at which parsing should be resumed is determined by the
presence of the token error in the grammar. When an error occurs, the parser attempts to find
a production that the parser might have been in at the point where the error token could most
recently have been returned from the lexical analyzer. Parsing continues at this point, with the
token that had caused the error being the next input token. If no rule exists, parsing terminates;
otherwise the parser behaves as if it sees error as an input token and tries to continue parsing
with the rule containing the error token. The parser enters an error state and remains in this
state until three tokens have been parsed successfully, beginning with the token at which the
error occurred. If a token is seen in the error state and it cannot be parsed, it is discarded. Error
messages are not printed for errors occurring in the error state to prevent a cascade of messages
from being printed before the parser has recovered from the error state.

This error recovery strategy is unsophisticated; it may spawn spurious error messages in the
event of certain errors. Anyhow, it suffices for the purposes of the translator, inasmuch as it
ailows the entire input to be processed even in the presence of errors. See [Sch85] for a detailed
discussion on the error recovery mechanism provided by YAacc. The strategy we have employed

to insert error symbols in the grammar is quite similar to the one described in [Sch85).

4.2 Type Analysis

One of the most important tasks in semantic analysis is to check whether the input program is

“type-correct”. In this section, we shall see how type checking is done by our translator.
4.2.1 Representation for Types

Before we discuss the algorithm for type checking, we have to ‘see how types are represented

internally. The following record written down as a C struct is the answer.
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struct T.NOD {
enum T_CODE code;
char *name;
struct T.NOD *parami, *param2;
struct T_NOD *equiv;
unsigned label;
/* ...misc. fields ...x/
};
/* where T_CODE is */
enum T_CODE {

Null, Boolean, Integer, Real, DReal, Character,

Array, Stream, Undef, Usrdef, Function, Tuple, Multiple,
Record, Field, Union, Tag,

The above struct is used to represent the basic types, array and stream types, record and
union types, fields of records, tags of unions, user-function prototypes, user-types and other IF1
types like multiple and tuple. Which of the these types does an instance of the above struct
represent depends on the value of its field code. The field 1abel is a positive integer that is used
to refer to the type in the output IF1 file. The field equiv will be discussed later.

An array is represented by a struct with code set to Array and parami pointing to the
base type of the array. If the array is the right hand side of some user-type definition, then
name will be set to the user-type name (this use of name is true not just for arrays but for other
structured types—streams, records and unions—as well). param2 is not used for arrays (set to
NULL). Streams are represented in a similar way.

A record field is represented by a struct with code set to Field. The field name contains
the name of the field. parami points to the type of the field. param2 points to the next field in
the record if there is one, otherwise it is set to NULL. A record is represented by a struct whose
code has the value Record and parami pointing to its first field. param?2 is not used in records.
Unions and tags are represented in a manner identical to records and fields.

We have seen that in IF1, certain nodes used in LoopA, LoopB and Forall produce “multiple”

values as output or take such values as input. Just like arrays, multiple values are represented
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with parami pointing to the base type.

A user-type is represented with the field name storing its name and parami pointing to the
type on the right hand side of its definition. param2 is not used here.

An expression with arity more than one, has the type tuple. A tuple is a list of structs
joined through the param2 field. Each struct has code equal to Tuple and paraml pointing to
the type of a component expression.

A user-defined function is represented by a struct with code having the value Function.
paraml points to the first argument in the formal argument list of the function. If the function

~ has no arguments, then parami is NULL. param2 points to the first type in the return type list.

Both argument list and return type list are represented as tuples. The field name is used for the

argument names.

4.2.2 Type Checking Algorithm

We have already seen the rules for type conformance, in Chapter 2. The unification algorithm
[Aho86] is used to implement them. The algorithm is capable of handling cyclic types. The
idea is to build equivalence classes of types. Two types are in the same equivalence class if
they conform according to the rules in Chapter 2. Each equivalence class has a representative
struct and all other structs in the class point to the representative through a chain of equiv
pointers. The equiv field of the representative is set to NULL. Given a type it is easy to find
the representative—just follow the equiv pointers until a struct with equiv equal to NULL is
reached.

The type checking algorithm takes as input two types typl and typ2 and returns 1 or 0
according as the types conform or do not conform. Figure 4.1 gives the algorithm using a C-like

syntax.

4.3 An Overview of the Translation

Translation of types into IF1 form, from our representation for types is straightforward. We need
not output all the type structs—only the representative type from each e.quivalence class is

output. All types in an IF1 file have unique labels irrespective of their scope of definition in the
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Algorithm: unify;
Inputs:
two types typl and typ2;
Output:
1 if typl and typ2 conform; else O;
{
n = equiv_class_rep(typl); /* the equivalence class */
n = equiv_class_rep(typ2); /* representative */
eq = 1; ' '
if (m == n) return 1;
n->equiv = m;
if (m->code == n->code)
switch (m->code) {
case Array,Multiple,Record,Stream,Usrdef:
eq = unify(m->parami,n->parami);
break;
case Function,Field,Tag:
eq = strcmp(m->name,n->name) == 0;
case Tuple:
if (eq) eq
if (eq) eq
break;
default:
eq = 1;

eq && unify(m->parami,n->parami);
eq && unify(m->param2,n->param2);

}
else if (m->code == Usrdef)
eq = unify(m->parami,n);
else if (n->code == Usrdef)
eq = unify(m,n->parami);
return eq;

}
Figure 4.1: Type Checking Algorithm
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SISAL program. For convenience, all IF1 type descriptors are written into a file separate from
that of graphs (see Appendix D).

A SISAL compilation unit contains a set of function definitions. Equivalently, an IF1 file
contains a set of graphs denoting functions. The body of a SISAL function is an expression of
arity equal to number of types specified in the return type list of the function header. The
equivalent IF1 graph body contains a set of nodes (simple and/or compound) and edges from
the graph input ports to the nodes, edges éonnecting the nodes and edges from the nodes to
the graph output ports. Each input port of the graph corresponds to a parameter of the SISAL
function. Similarly, each output port of the graph corresf)onds to a return value of the SISAL
~ function.

Our translator goes about translating a SISAL function definition into an IF1 graph as follows.
If the function is a global function, an imported function descriptor (which is nothing but an
IF1 line containing the letter I, the label of the type denoting the function, and the name of the
function) is generated. If the function appears in the defines clause, then an exported function
descriptor is generated (the letter X is used instead of the I above). If the function is local to the
compilation-unit the letter G is used in the descriptor.

For global functions, the IF1 translation contains just the descriptor. Other functions have

the descriptor followed by the function body. The parameters of the function are available at

ports on the function’s graph boundary. The return values are passed to the output ports on the

graph boundary. Recall that the graph boundary is treated as a node with label 0. A node-port
pair such as (0,n) in an edge denotes an input port if it is used as the source and an output port
if it is used as a destination.

The function body is translated into a set of nodes and edges. A question we should ask
here is whether we can output code into the IF1 file, as and when a SISAL expressi.on is parsed
by the parser. It is difficult because the actual port number of edges in compound nodes will
not be known until the end of the corresponding SISAL expression is reached. For example, the
port number of the first loop-name in a LoopA node is one greater than the number of non-local
names used in the loop. The number of non-local names will be known only after the last return
clause in the loop is parsed. Therefore, we defer the output of IF1 code into a file until the

function body is completely parsed. Until then, we store the IF1 code in a suitable format (to be
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described below) at a convenient place.

The code is stored as a linked list whose nodes have the following type.

struct I.CODE {
char type; /% one of [ 'G’,’I’,'X’,"N’,’E’,’{*,'}* ] %/
void *attrib;

};

If typeis ’G’, ’I’ or ’X’, the attrib field points to a T_NOD denoting the type of the function.
If it is °N’, *E’, *{’ or ’}’, the attrib field points to a representation of a simple node, an

edge, a compound node opening or a compound node closing.

4.4 Representation for IF1 Nodes, Edges etc.

The various IF1 entities are represented in our translator as described in the following sections.
4.4.1 Simple Nodes

The C struct below depicts a simple IF1 node.

struct SIMPLENODE {
IF1_NODE node;
int label;
};
/* IF1NODE is an enum of IF1 simple nodes (Appendix B) */

The field node gives the type of the node (eg. Plus, Minus...). The field 1abel gives the label

of the node as used in edges connecting output ports of the node to ports of other nodes or graph

boundary.
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4.4.2 Edges

Edges connect input ports of a graph to nodes, output ports of nodes to input ports of nodes,
and output ports of nodes to output ports of graphs. Edges may also be literal edges that have
no source. Literal edges send constant values to input ports of nodes and output ports of graphs.
If we view literal edges as originating from invisible nodes:(henceforth called literal nodes and
- ports), all edges may be considered as connecting two ports. In other words, an edge is just a pair
of ports. A port is described by the label of the node it belongs to, the port class, and a positive
integer indicating its position on the node relative to the first port in the class (henceforth called
relative port number). The label of the node is zero if the port lies on a graph boundary or on
a literal node. The port class is a character that indicates which class (K, L, M, T, etc.) the
port belongs to. The port class is immaterial if the node label is non-zero (it is set to ‘O’ by
default). If it is zero, it is a character denoting the class of the port. The actual port number
can be easily calculated from the port class and the relative port number. If the port is a literal
port, the port class is set to ‘I’. In this case, the relative port number is an index to a table of
literal constants. A character string corresponding to the literal constant is stored at that index
in the literal table.

An edge is therefore, represented by the following struct.

struct EDGE {
char sc; /% source port class */
int sp; /* source (relative) port number */
int sn; /* source node label */
char dc; /* destination port class */
int dp; /* destination (relative) port number */
int dn; /* destination node label */
struct T_NODE *tp; /* type of value carried by the edge */
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4.4.3 Compound Nodes

The beginning of a compound node is marked by a { and the ending by a }. Henceforth, we use

the terms compound node opening and compound node closing. The two are represented by the

structs shown below:

struct COMP_NOD_BEG {

IF1 NODE node; /* type of the node (LoopA, LoopB, Select...)*/
int nK; /* number of class K ports */

int nL; /* number of class L or class M ports */

int nT; /* number of class T ports */

};

struct COMP_NOD_END {

IF1_NODE node; /* type of the node (LoopA, LoopB, Select...)*/
int *assoc; /* association list n,al,a2,...an */
int label; /* label of the node */

};

In COMP_NOD_BEG, nK, nL., nT denote the number of ports of various classes. Their values are
not known at the time when the “compound node beginning” is generatea. They are set to their
values after the end of the compound node is reached. The same field nL is used for both class L
and class M ports because only one of the two classes can occur in a compound node. Also note

that number of ports of classes such as R need not be stored.

4.5 Representation for Simple Expressions

This section is concerned with the internal representation of simple expressions. In SISAL, an

expression may be of arbitrary arity. A SISAL expression, in general, is represented by the

following struct.
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struct EXP {
struct NOD.L *nl;
struct T.NOD *tp;
};
/* where NODL is */
struct NODL {
unsigned node;
char class;
unsigned port;
struct NOD.L *nxt;
};

A single arity expression has a source node and port. If the source port is on a compound node
subgraph boundary, it has a port class (such as ‘K’ for imported values, ‘L’ for loop values etc.
). Each NOD_L stores these attributes of an expression of single arity. The EXP represents an
expression of arbitrary arity. The field nl points to a linked list of NOD_Ls. The field tp points to
the type of the expression. tp points to a non-tuple if the expression is of arity one; otherwise it

points to a tuple, whose component types are the types of individual expressions.
4.6 Blocks

The above representation of simple expressions can be used for the list of values returned by
a structured expression like if-then-else, tagcase and for. We also need a mechanism that
reflects the block structure of SISAL and the hierarchical structure of IF1 graphs. In general, a
function graph embodies several levels of nesting. The outermost level is the graph body. Inside
the graph body there may be several compound nodes one nested within another. In SISAL there
are also let expressions that add to the block structure of a program. let expressions are however
translated to IF1 as a sequence of nodes and edges, without introducing any nesting.

The block table is used to reflect the above block structure. A block in the block table may

contain the following:

e the type of the block viz. Let, TagCase, LoopA; LoopB, etc.




o table of local value-names, loop-names, temporary-names, index-names etc.

o table of imported value-names.

IF1 code generated for the block (linked list of I_.CODEs).

o miscellaneous data such as the number of ports of a particular class etc.

The block table is essentially a stack with elements of the type shown below.

struct BLOCK {
enum BLK.TYP btype;
void *attrib;
} /* where BLK.TYP is */
enum BLK_TYP {
Function, Let, Select, Select2, TagCase,
Loop, LoopA, LoopB, Forall, Forall2
};

btype indicates the type of the block. attrib points to a struct that is determined by the type

of the block. The attrib field points to different types of structs for different types of blocks—a

let block will not have a table of loop values whereas a LoopA or LoopB block will have such
a table. The top of the block table corresponds to the current block (the block being currently
parsed). The bottom most block will always be a block of type Function (the function body
being currently parsed). We shall discuss more about blocks when we consider the problem of

translating structured expressions.

4.7 Translation of Simple Expressions

The Yacc input file contains a list of grammar rules with action associated with some rules.
The action associated with a rule is executed when the parser reduces its right hand side to the
non-terminal on the left hand side. The action builds some abstract representation of a syntactic
construct, or calls routines that do type checking or generate IF1 code, etc. In the following,

we discuss the action associated with some of the most important grammar rules. We shall not
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write down the rules as such, but we shall describe what the parser does when it performs the
reduction for a rule. While reading the following, the reader may wish to consult the earlier

sections for the various struct definitions.
4.7.1 Constants

When a constant is recognized by the parser in the input program, a struct of type EXP (WhiCh
is our representation for an expression) is created. The typé of the expression is the type of the
constant which is a TNOD with code equal to Integer for integer-constant; for character strings
a T_NOD with code set to Array and parami pointing to a T_NOD with code equal to CharacteT;
and so on. The nl field has its node set to zero, class set to *I’ and port set to the indeX of

the literal table where the constant is stored.
4.7.2 Value-Names

A value-name can occur at many places in an input program. If it occurs on the left hand side
of a definition or a declaration it has to be inserted in the appropriate local symbol t@ble of
the current block. If it occurs as an index-name or as an element-name of a product form for
expression, it is inserted in the index-name table or element-name table of the current Forall
block.

Value-name references can be of two types: with and without the old modifier. A name with
an old modifier denotes a value-name different from one without it. Hence the two must have
different entries in a symbol table. Therefore, the key for symbol table search is not just a name
but a pair (oldbit,name) where oldbit is a single bit indicating whether the name has an old
modifier. If a value-name is not found in the current block, we look for it in blocks beloW it
in the block table (i.e., the outer blocks in the input program text). The search ends with the
Function block. If the value-name is still not found then an error is signalled. If it is found
the value-name is inserted in all blocks in the block table above the block in .which it is found.
Before we proceed with this discussion, we have to see what are the attributes of a value-name-

The following struct tells us.
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struct VALNAME {
char oldb;
char *name;
struct T.NOD *type;
char classt;
int portt, nodet;
char classf;
int portf, nodef;

~ o0ldb and name are the oldbit and the name of a value-name. type is the type of the value-name.
classt, portt and nodet are the port class, relative port number and node label respectively,
of the value-name. These three fields shall be referred to as the origin of the value-name. If the
value-name was imported from a lower block in the stack, classf, portf and nodef are the
~port class, relative port number and node label respectively of the value-name in the lower block.
When a value-name definition is parsed, the classt, portt and nodet of each value-name are
set to the class, port and node of the corresponding expression on the right hand side. When
a value-name is imported into a block its classt is set to ’K’, its portt is set to one plus the
number of class K ports in the block, and nodet is set to zero.
The action associated with the grammar rule for a value-name reference is to construct a
struct EXP with an nl whose class, port and node are the classt, portt and nodet of the

value-name. The tp field of the expression is set to type of the value-name.
4.7.3 Binary Operations
ey op ey

A binary operation comprises two expressions and a binary operator. Every binary operator in
SISAL has a corresponding IF1 simple node. The translation of a binary operation shown above

is done as follows.

1. Check if the operands have valid types.
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2. Generate a simple node op.

3. Generate an edge from e; to the first port of op. This means that an edge with source
class, port and node values equal to that of e; is generated. This meaning of “generating

an edge from an expression” holds for the remainder of this chapter.

4. Generate an edge from e to the second port of op.

5. Return an expression (’0’, 1, label of op, result type of op). When we talk of an expression

(c,p,n,t) we essentially mean a struct EXP with nl pointing to {c,p,n} and tp pointing to
t.

4.7.4 Unary Operations
op e

The translation method is identical to binary operations. The only difference is, here we need to

generate only one input edge instead of two.
4.7.5 User Function Calls
f(er,es,...,€n)

The translation is described below:

1. First perform a search on the type table to find the type of the function with name f. If
the search fails check if it is a predefined function. Predefined functions are translated as

described in the next section. If it is not even a predefined function then an error is flagged.
2. Check if the actual argument types conform with the formal argument types.
3. Generate a Call node (say, C).
4. Generate a literal edge from function-name f to the first input of C.

5. For 1 < i < n, generate an edge from e; to the (i + 1)** port of C.
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6. Let m be the number of return values of the function. Return an expression whose nl points
to a list of m struct NOD_Ls whose class fields are ’O’, port fields are progressively set

to 1...m, node fields are set to the label of C. The tp field of the expression is set to the

return type of expression.
4.7.6 Predefined Function Calls

Each predefined function in SISAL has an equivalent IF1 simple node. The translation consists

of three steps namely argument type conformance checking, generation of the simple node, and

generation of input edges of the node.
4.7.7 Array Operatioﬁs
Array Reference
An array reference is of the form:
aley,es. .. ep)
The IF1 translation is composed of the following steps.
1. Check if a is an array with at least n dimensions and if all e;s are integers.
2. Generate n AElement nodes (say, AE;...AE,).

3. Generate an edge from a to the first input port of AE; and an edge from e; to the second

input port.

4. For 1 < i < n, generate an edge from AE;_; to the first input of AE; and an edge from e;

to the second input.

5. Return the expression ('0’, 1, label of AE,,type of nt* dimension of a).

Array Generator

There are three cases:
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Case I
array T ]
The empty array is translated as follows:
1. Check if T is an array type.
2. Generate an ABuild node (say AB).
3. Generate a literal edge from “1” to the first port of AB.

4. Return the expression (’O’, 1, label of AB, T).

Case II
array Tlej,es...e;n : €],€5... €]

Here the type 1" is optional. The translation is given below:

1. Check that all ;s are integers and all e}s are of the same type. If T is present then ensure

that it is an array with at least m dimensions and the m!" dimension has the same type as

the e’s.
2. Generate m ABuild nodes (say, AB;...ABn).
3. For 1 < i < m, generate an edge from e; to the first input of AB;.
4. For 1 £ i < m, generate an edge from AB;; to the second input of AB;.
5. for 1 < i < 7, generate an edge from €/ to the (i + 1)** input of AB,.

6. Return the expression (’0’, 1, label of ABy, type), where typeis T', if T is present; otherwise,

it is an m-dimensional array with the type of e’s as the base-type.

<A wRUR
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Case 111

. ol /
aler,ey...em €, €h. .. €]

We assume one index-list—expression-list pair. If there are more, the following steps are to be

repeated for each.

1. Check if a is an array with at least m dimensions. Also check if all ¢;s are integers and all

eis have the same type as the m** dimension of a.

2. Generate m — 1 AElement nodes (which we shall call AE;...AE,,_;). Also, generate m
AReplace nodes (which we shall call ARy ... AR,,).

3. Generate edges from a to the first port of AE) and to the first port of AR;. For 1 < i < m,
generate edges from AE;_; to the first port of AF; and to the first port of AR;. Generate
an edge from AE,_; to the first port of AR,

4. For 1 £t < m, generate edges from e; to the second port of AE; and to the second port of

AR;. Generate an edge from e, to the second port of AR,,.
5. For1<i<m, gener'a,te an edge from e/ to the (i + 2)™* port of AR,,.
6. Return the expression (’0’, 1, label of AR,, type of a).
4.7.8 Record Operations

Record Reference

r.f

The translation of the above record reference is as follows:
1. Check if r is a record and f is a ﬁéld in it.
2. Generate an RElements node (say, RE).
3. Generate an edge from r to RE.

4. Return the expression ('O’, p, label of RE, type of f) where p is an integer such that f is
the pth field of r.
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4.7.9 Record Generator

There are two cases:

Case I

record T[f1:e1;fa:€a;... fu i €n]
The type T is optional. The translation is given below:

1. Check that e;s have single arity. If T is present make sure that it is a record with fields

fis f2... fa in that order; for 1 < i < n, check that e; is of the same type as f;.

2. Generate an RBuild node (say, RB).

3. For 1 < i < n, generate an edge from ¢; to the i* input of RB.

4. Return the expression (’O’, 1, label of RB, type) where type is T, if T is present; otherwise
it is a record with fields fi, fa... fn. '
Case 11

r replace(fi.fo...fn: €]

We assume one field-name-list—expression pair. If there are more than one, repeat the following
steps.

1. Check that r is a record. Check that f; is a field of 7, f is a field of . f;, f3 is a field of
r.f1.f2, and so on. e must be of the same type as r.f1.fa... fn. In the following, assume

that f; is the pt? field of r, f, is the pi" field of r.f1, f3 is the p¥* field of r. fy. f2, and so on.

2. Generate n — 1 RElements nodes (which we shall call RE;...RE,_;). Also, generate n
RReplace nodes (which we shall call RR; ... RR,).

3. Generate edges from r to the first ports of RE; and RR;. For 1 < i < m, generate edges

from RE;_; to the first ports of RE; and RR;. Generate an edge from RE,_; to the first
port of RR,,.
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4. For 1 < i < n, generate an edge from RR;y; to the pt* port of RR;. Generate an edge

from e to the pt* port of RR,,.

5. Return the expression ('0’, 1, label of RR;, type of r).
4.7.10 Union Operations
Union Generator
union T'[t : e]
The translation of union generator given above comprises the following steps:
1. Check that T is a union, ¢ is a tag of T and the type of ¢ and ¢ are the same.

2. Generate an RBuild node (say, RB).
3. Let t be the p* tag of T. Generate an edge from e to the p** port of RB.
4. Return the expression (’0’, p, label of RB, T).
Union Test
is t(e)

€ is a union-type expression and t is a tag of the union. The above union test may be transformed

to the tagcase expression shown below:

tagcase ¢
tag ¢ : true
otherwise: false

end tagcase
The above tagcase expression has the following IF1 translation:

C Nodes and edges of e follow...

C let n and p be the node and port of e.
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C "let T be the type of e.

C let u be the type reference label of T.
C the TagCase node follows...

{

GO

Lo11“T”

GO

Lo11“F”

} m TagCase k a; a3... ag

C m is the label of the TagCase node.
C k is the number of tags in T.

C for 1 < i< k,a; =0iftis the

C ith tag of T; otherwise a; = 1.
Enpmlu

4.8 'Translation of Compound Expressions

4.8.1 Let Expression

A let expression has no explicit equivalent in IF1. Instead it is translated into a sequence of

nodes and edges. The translation proceeds as follows.
After the keyword let is recognized in the input, a let block is opened (that is, a block of
type Let is pushed onto the top of the block table). A Let block has the following attributes.

e a table of local value-names.
e a table of value-names imported from outer blocks.
o a linked-list of IF1 code generated for the block.

When the keyword pair end let is recognized, the block is closed (the block is popped off the
block table). Before the block is closed, the value-name tables are freed and the code-list is moved
to the outer block (outer in the input program but lies below in the block table). The expression
returned has its field nl pointing to a list of NOD_Ls that represent individual sub-expressions of

the possibly multiple-arity expression that makes up the let body.
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4.8.2 If-then-else Expression

An If-then-else expression is translated into a Select node with three subgraphs—one for the
first conditional expression, second for the then-part and third for the else-part.The elseif-parts
result in nested Select nodes. In our translator, the if causes a Select block to be open and

subsequent elseif’s cause Select2 blocks to be open. After recognizing the end if, the Select2

nodes and the Select node are closed.

A Select or Select2 node has the following attributes:

e a table of imported value-names
o a linked-list of code generated for the block.

¢ the next available input port of the compound node.

After an if is read, a Select block is opened. Then a compound node opening ({) is generated
followed by G O to mark the beginning of the selector subgraph. The nodes and edges of the
selector then follow. An edge is generated to join the selector expression with the subgraph
boundary. On reading then, G 0 is generated. It is followed by the nodes and edges for the then-
part. Edges are generated to join the individual subexpressions following then to the subgraph
boundary. When an elseif is read, action similar to that after reading if is taken; however a
Select2 block is opened instead of a Select. The then-part of elseif clause is handled exactly as

in if clause. After reading else, the steps taken are identical to that in a then-part. On reading

" end if, the fdllowing course of action is taken.
1. Generate a } with appropriate label and association-list.
2. Generate edges to the compound node for importing non-local value-names.

3. Free the value-name table and move the code-list to the outer-block.

o

. Close the block.

[S38

. Repeat the above steps for each Select2 and the Select node.

The expression returned as the result has its field nl pointing to a list of m struct NOD_Ls,
where m is the arity of the if-then-else expression. The struct NOD_Ls have their class fields

set to ’Q’, port fields set 1...m, node fields set to the label of the Select node.
y P )
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4.8.3 TagCase Expression

A tagcase expression is translated to a TagCase compound node. Each branch of the tagcase

expression corresponds to a subgraph in the TagCase node. The association of tags to subgraphs

is depicted in the association list.

When a tagcase expression is seen in the input program, the translator opens a TagCase
block. A TagCase block has the following attributes:

e a pointer to tagcase variant.
e a pointer to tagcase selector expression
e a table of value-names imported into the block.

o linked list of code generated for the block.

¢ a positive integer indicating the next available input port of the compound node.

The IF1 code for the tag selector expression should appear outside the TagCase node. After
recognizing the selector expression, a TagCase block is opened. The tag selector expression field
of the block is set to its value. If there is a variant name, then make the variant field of the block
point to a struct VALNAME with classt, portt, nodet slet to ’0’, 1 and 0 respectively; keep
its type field equal to NULL. A compound node opening ({) is then generated. ‘

On recognizing each tag list, the translator does the following.

1. Ensure that the tag-names are not repeated. Also, make sure that tags in the same tag list

have the same type.

2. Set the type of variant (if there is one), to the type of tags in the current tag list. This
ensures that when a reference to the variant is made in the tagcase branch expression, it

(the variant) has the correct type. An otherwise clause resets the type back to NULL.

3. Generate a G 0 to mark the beginning of a subgraph.
4. Generate code for the tagcase branch expression.

5. Join individual single arity subexpressions in the branch expression to the graph boundary.
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On reading end tagcase, generate a compound node closing }. The generation of association
list is a bit difficult. We have to keep track of each tag list. Let t;; be the j** tag-name of the it*
list. (Otherwise clauses are expanded to a list of tags not specified in other tag-lists). Let #t;;

denote the order in which t¢;; appea;s in the union definition. Now the association list is
may a...am

where m is the number of tags in the union; ax = 7 s.t. #t;; = k for some k.

4.8.4 For Expression

Iterative Version

The iterative version of for loop is translated to either LoopA or LoopB depending on whether
the termination test is after or before the loop body. The for loop results in a LoopA or LoopB

block being pushed onto the top of the block table. The attributes of the block are
¢ table of imported value-names.

o table of loop-names (There are four copies of the table one for each subgraph. We call
these tables Init loop-name table, Body loop-name table, Test loop-name table and Returns
loop-name table. In the Init table, each loop-name has its port on a node inside the Init
subgraph, rather than on the graph boundary. In the Body table, each loop-name has two
copies one for the current value of the loop-name and the other for the old value—recall
the use of oldb field in struct VAL NAME. The Body table also contains temporary-names
introduced within the body. The old loop-names have their ports on the graph boundaries.
Loop-names and temporary-names have their ports on nodes inside the Body subgraph.
The Test table contains loop-names (as well as old loop-names and temporary names if the
loop is a LoopA); they have their ports on the graph boundary. Returns table contains

only loop-names and they have their ports on the graph boundary).
e linked list of code generated for Init, Body, Test and Returns subgraphs.

¢ last node label in Init subgrz}ph, in Body subgraph (We have to keep track of the labels

because while translating the return expression list, code may have to be inserted in the
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Init and Body subgraphs—a node inserted must have a label that is different from earlier
nodes in the subgraph).

o the current status of the block (one of the five values—Init, Body, Test, Returns or
EndFor. It tells us which part of the loop is being currently parsed. When a loop-name
or temporary-name is referenced, which of the four tables must be searched is determined
by the status. Similarly, in which linked-list should the code generated be inserted is also
determined by the status field. When the loop status is Returns the code is inserted into

both Init and Body lists. If the status is EndFor, the code is inserted into Returns list).

e next available class K port, class L port, class T port, class R port etc.

After reading the keywords for initial, a loop Block is opened. At this stage, the translator
does not know if it is a LoopA or a LoopB. So tentatively, it sets the type of the block to Loop.
Set the status to Init. Then a compound node opening { and G O are generated. The value-
names introduced in the Init section are entered into the Init table. The last node label in the
initialization subgraph is remembered because at a later stage, we may have to insert code into
the Init subgraph.

On recognizing the keywords while or until, check if the type of the block is still Loop. If
so—it means that the termination test precedes the iterator b;)dyé—set the type to LoopB and
copy the Init table to Test table with the origin fields in each entry changed so that the loop-
names now belong to ports on the graph boundary. Otherwise, copy the Body table to Test
table, with the origin fields suitably changed. Generate G 0 to mark the beginning of the test
subgraph. Also set the status to Test.

On recognizing the keyword repeat, check if the block type is still Loop. If so, set it to
LoopA. In any case, copy the Init table to Body table with the old bit set and origin fields
suitably changed. Set the status to Body and generate G O.

After parsing both iterator and termination-test (which may be in either order depending on
the type of loop—LoopA or LoopB), the Init table is copied to the Returns table. On reading
returns, the status is set to Returns. While processing the return expressions and masking
clauses, every node and edge generated are generated in duplicate; one to be inserted in the Init

code list and the other in Body code list. A structure that represents the return expression part
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is also built at the same time. We shall begin to generate the Returns subgraph only after the
last return clause is parsed. Therefore we need to store the structure of returns part somewhere.

The structure is a linked list in which each node is of the following type.

struct CLAUSE {
char builder;
struct EXP *ret,*mask;

};

Recall that a return clause has six parts: an optional old modifier, a constructor (value, array,
stream), an optional reduction operator and its direction of associativity, an expression, and an
optional masking clause expression. Four bit fields are packed into the field builder. The least
significant bit indicates the old modifier, the next two bits are for the constructor, then three
bits for reduction operator and the most significant two bits for the direction. If a bit field is not
used, it is set to zero by default. The fields ret and mask are for the expression and masking
clause respectively.
On reaching the end of returns part, edges connecting.the nodes producing loop-names to
" the graph boundary, are generated in both Init and Body subgraphs. Status of the block is
set to EndFor. Generate a G 0 to indicate the beginning of Returns subgraph body. Generate
the nodes and edges in the subgraph. Each return clause results in a separate output port for
the subgraph. Old modifiers are translated to RestValues nodes; array/stream constructors to
AGather nodes; value constructors to FinalValue (when there is no reduction operator) and to
Reduce, RedLeft, RedRight or RedTree (when there is a reduction operator). After generating
the Returns subgraph body, the four code list are coalesced into one. A compound node closing
is then added at the end. The code list is moved to the outer block, the value-name tables are
freed, the nK, nL, nT fields of the compound node opening are set to their values, the block is

popped off. Then an expression to be returned as the value of the loop is constructed.
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Parallel Version

The parallel version of for expression is translated to a Forall node. The translation is in many

ways similar to the non-product form. The attributes of a Forall block are:
e a table of imported value-names.
o tables of element-names, index-names and temporary-names.
e linked-lists of code for Generator, Body and Returns subgraphs.
o status of the loop (Generator, Body, Returns, EndFor)
o next available class K port, class M port, class T port, class R port etc.

in expressions generating integers within a range are translated to RangeGen nodes. Ar-
ray/stream generators are translated to AScatter nodes. A dot expression list is translated to
a Generator subgraph with multiple RangeGen or AScatter nodes. A cross expression is trans-

lated to a Forall node with nested Forall nodes (Note that an array/stream generator with

multiple index value-names implies a cross product). The nested blocks have the type Forall2 |

just as nested blocks in Select have the type Select2.

4.9 Conclusion

We have thus come to the end of our discussion of SISAL to IF1 translation. But we have not yet
addressed one important issue. How do we know that our translator produces correct code?
This is a rather difficult question. Until formal program verification techniques become com-
monplace, establishing program confidence will continue to be cumbersome. Our method of
testing is admittedly crude. The translator was tested with a number of carefully chosen test
programs. The code generated was then examined manually and found to be correct. The tests

exposed a few bugs in the translator which have been removed.

The test programs were chosen in such a way that each type of SISAL data structure and °

expression appeared in at least one program. In particular, most of the input programs contained

for expressions and array operations which are the most difficult to implement. We have taken

special care to ensure that every part of the translator’s source code has been executed at least
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once. One of the problems is that we have not been able to test the translator for large programs.
Most of the test programs are less than 50 lines. The problem is that even if the input program
contains only a few hundred lines, the IF1 code produced is so large that testing it manually
is a painful job. It is in such cases an IF1 interpreter or a program that generates a graphical
representation of IF1 code could be of great help. '

Testing a program in this manner is not 100% reliable. But it has revealed that the translator

produces correct code for a good number of input programs.




Chapter 5

Future Work and Conclusion

This chapter concludes the thesis after outlining the various possible continuations of this project.

5.1 |IF1 Interpreter

The testing of the code generated by our translator was done manually, which is an onerous and
error prone job. If we could write an IF1 interpreter for the code generated, the testing job can be
simplified to a great extent. This helps to bring out not only the errors in the translator, if any,

but also the logical mistakes in the input SISAL program. I'Jntil a full-fledged SISAL compiler is
| ready, the interpreter can be put to immense use. But it should also be pointed out that the

interpreter is bound to be extremely slow for computationally intensive programs.

5.2 Pictorial Representation of IF1 graphs

A pictorial representation of IF1 graphs is far more readable to a human being than the textual

output produced by the IF1 generator . A pictorial representation similar to the figures in
Appendix C can be very useful if one wants to compare the output of the IF1 generator and that

of the optimizer. A program could be written to translate IF1 into a suitable graphics language.

5.3 Optimization of IF1 graphs

The code generated by our translator is not of high quality. It produces a lot of redundant code.
One should not expect the code generated by a straightforward translation of IF1 graphs to run

efficiently on any machine.

lit is exactly the opposite for a machine
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The IF1 graphs are amenable to a range of machine independent optimizations. Most of the
classical optimization techniques can be easily applied to IF1 graphs [Ske85b]. The optimizations
might include inline expansion of function calls, common subexpression elimination, loop invari-
ant removal, etc. These techniques are described in [Aho86] and [Bar88]. They—as applied to IF1

graphs—are described in [Ske85b]. In imperative languages, function and procedure calls make

automatic program analysis very difficult. Sharing of data by common blocks, call-by-reference'

parameters, and aliasing all complicate the global datafiow analysis that is inevitable for many
optimizations. In SISAL, this problem is absent because side effects and aliasing are prohibited
by the language definition. Optimization analysis is greatly simplified by replacing a function
call by a copy of the function body. Such “inline expansion” is easy to for IF1. Code replaced
inline can be subjected to common subexpression elimination and loop invariant removal.

The standard common subexpression elimination (CSE) algorithm—as applied to imperative
languages—appears in [Aho86]. The basic unit of analysis for an imperative language is a basic
block (a sequence of statements that contains no embedded branches). The optimizer first par-
titions the intermediate code produced by the compiler into basic blocks. Then it constructs a
control-flow graph whose nodes are the basic blocks. The common subexpression elimination al-

_ gorithm is inexpensive, but must be conservative as evident from the following example [Ske85b],

B := A[l};
A[d] := G;
D := A[l)

A[I] is a common subexpression only if it can be determined the I#J. If that cannot be determined,
then the optimizer must assume that I=J, and not combine the expressions. If the optimizer
cannot make nice assumptions (I#J), it must assume the worst. It should be obvious that this
problem stems from allowing arbitrary assignment, side effects and aliasing, and therefore cannot
occur in a single-assignment language like SISAL.

Since the SISAL compiler directly produces IF1 graphs, no time is spent partitioning the
intermediate code into basic blocks. |F1 graphs are generally larger than basic blocks, so more
common subexpressions might be found. Moreover, any two SISAL expressions that look identical
within a scope, actually pfoduce the same value by virtue of the single assignment rule and value

orientation. This simplifies the CSE algorithm.
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Loop-invariant detection and removal for imperative languages can be extremely slow. Loop
detection first requires the construction of a control-flow graph; then dominators for each basic
block within the control-flow graph have to be computed. Finally, loops are detected by finding
“back edges” in the control-flow graph [Aho86]. Loop detection is much simpler in IF1; all we
need to do here is search the graphs for loop nodes (LoopA, LoopB and Forall).

After detecting a loop, the inputs to each expression inside its body are inspected to see if
their definitions lie outside the loop. If so, the expression is loop-invariant and can be moved
outside the loop. In imperative language compilers, use-definition (u-d) chains must be computed
for each variable not previously defined within a block. Global data flow analysis must be done
on the entire program in order to compute u-d chains.

In IF1 loop invariant analysis is much simpler. If all input edges of a node inside the loop
body correspond to the input edges of the loop, the node denotes a loop invariant operation.
This process is very inexpensive.

For the details of the above optimization algorithms, the reader is referred to [Ske85b).
5.4 Conclusion

A translator for the single assignment language SISAL to an interemediate graph representation
IF1 has been implemented. The translator can serve as a common module in SISAL compilers
for a range of sequential and multiprocessing sytems. The code produced by the translator is
a straightforward translation of the source program and hence not efficient. The code can be
improved by the usual optimization techniques. These techniques are easier to implement for IF1

than for conventional languages.



Appendix A

SISAL Syntax

A.1 Lexemes

¢ Reserved words:

array at boolean catenate character
cross define dot double_real else
elseif end error false for

forward function global greatest if

in initial integer is least
left let nil null of

old otherwise product real record
repeat replace returns right stream
sum tag tagcase then tree
true type union unless until
value while when

e Names: A name begins with a letter followed by zero or more digits, letters or under-

scores (). The number of significant characters in a name is 32.

e Numbers: Integer and real constants have the usual syntax. Double_reals use the letters

d or D instead of the e or E used for exponents in reals. -

¢ Character Strings and Constants: SISAL uses the C syntax for character constants

and strings.
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e Comments: Comments begin with a % and extend upto the end of line.

A.2 Grammar

The grammar of SISAL is given in the extended BNF notation. The left and right hand sides
of a rule are separated by the symbol ::=. Non-terminals are shown in roman font. Terminal
symbols (including the reserved words) are shown in typewriter-like font. Some terminal
symbols like name, integer-constant, real-constant etc. are shown in sans serif font. A string of
grammar symbols that appears within a pair of brackets ([ ]) is optional. An ellipsis (...) denotes
a repetition (non-empty sequence) of the grammar symbol preceding it. If the ellipsis follows an

optional string (i.e., enclosed within []’s), it means that the string may be repeated zero or more

times.

compilation-unit ;1= define function-name-list

[ type-def-part ]

[ global function-header | ...

function-def ...
function-name-list  ::= function-name [ , function-name] ...
function-def 2= forward function function-header

| function function-header

[ type-def-part ]

[ function-def ] ...

expression

end function

type-def-part = type-def [ ; type-def]...[ ;]

type-def ;1= type type-name = type-spec

function-header ::= function-name ( [ decl-list ] returns type-list )
decl-list n=decl [ ; decl]...[;]

type-list ::= type-spec [ , type-spec] ...

type-spec ::= basic-type-spec

| compound-type-spec

| type-name
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basic-type-spec ::= boolean
| character
| double_real
| integer
| null
| real
compound-type-spec ::= array [ type-spec ]
| stream [ type-spec ]
| record [ field-spec [ ; field-spec ] ...[;]]

| union [ tag-spec [ ; tag-spec]...[;]]

field-spec ::= field-name [ , field-name ] ...: type-spec .
tag-spec = tag-name [ , tag-name ] ...[ : type-spec ]
expression ::= simple-expression [ , simple-expression ] ...

simple-expression  ::= primary [ binary-op primary ] ...

unary-op = B2 NN N
binary-op n= AH NG I o) = =
| N
| LA I A R
|1
primary ;1= constant
|  value-name

( expression )
invocation

array-ref

|

|

|

| array-generator
| stream-generator
| record-ref

| record-generator
| unjon-test

| union-generator
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invocation
array-ref

array-generator

expr-pair

stream-generator

record-ref

record-generator

field-def

field

union-test
union-generator
error-test
prefix-operation

let-in-exp

l
|

error-test
prefix-operation
condtional-exp
let-in-exp
tagcase-exp
iteration-exp .
old value-name
unary-op primary
function-name ( [ expression ] )
primary [ expression ]
array type-name [ ]
array [ type-name | [ expr-pair ]
primary [ expr-pair [ ; expr-pair ] ...[ ;] ]
expression : expression
stream type-name [ ]
stream [ type-name | [ expression ]
primary . field-name
record [ type-name ] [ field-def [ ; field-def]...[; ] ]
primary replace [ field : expression
[; field : expression]...[;]]
field-name : expression
field-name [ . field-name]...
is tag-name ( expression )
union type-name [ tag-name [ : expression ] ]
is error ( expression )
prefix-name ( expression )
let
decldef-part
in

expression




decldef-part
decldef

decl
def

tagcase-exp

tag-list

conditional-exp

iteration-exp

iterator-terminator

iterator

iterator-body

end let
= decldef [ ; decldef ] ...[ ;]
u= decl
| def
| decl [, decl]...:= expression
::= value-name [ , value-name ] ...: type-spec
::= value-name [ , value-name ] ... := expression
::= tagcase [ value-name := ] expression
tag-list : expression
[ tag-list : expression ] ...
[ otherwise : expression ]

end tagcase

tag tag-name [ , tag-name | ...

It

if expression then expression
[ elseif expression then expression ] ...
else expression
end if
1= for initial
decldef-part
iterator-terminator
returns return-exp-list
end for
|  for in-exp-list
[ decldef-part ]
returns return-exp-list
end for
= iterator termination-test
| termination-test iterator
1= repeat iterator-body

::= decldef-part

70 .
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termination-test
in-exp-list
in-exp

index-list
return-exp-list
return-clause

masking-clause

return-exp

direction

reduction-op

constant

::= while expression
until expression

1= in-exp

| in-exp dot in-exp [ dot in-exp | ...

| in-exp cross in-exp [ crossin-exp ] ...
::= value-name in expression [ at index-list ]
1= value-name [ , value-name ] ...

1= return-clause ...

= [ old ] return-exp [ masking-clause ]

::= unless expression

| when expression

= value of [ [ direction ] reduction-op ] expression
| array of expression

| stream of expression

= left

| right

| tree

= sum

| product

| least

| greatest

| catenate

= false

| =nil

| true

| integer-constant

| real-constant

|  character-constant
| . character-string-constant

| error [ type-spec ]
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prefix-name

function-name
field-name
tag-name
type-name

value-name

character
double_real
integer
real

name

name

name

name

name



Appendix B

IF1 Syntax

The IF1 grammar is given below in the extended BNF. The non-terminal symbols are shown in
roman font. The terminal symbols appear in a typewriter-1like font if they stand for themselves
and in sans serif otherwise. Newline denotes the new-line character, Literal denotes any string of
printable characters except the new-line, Poslnteger denotes a positive integer, and Integer denotes
either zero or a positive integer. A string of symbols enclosed by [ ]’s denotes an optional item.
An ellipsis (...) denotes the repetition of one or more times of the symbol it follows. If the

ellipsis follows an optional string it represents the repetition of the string zero or more times.

File ::= [ Line Comment Newline ... ] ...
Line::=C

N Label Node

T Label TypeTableEntry

I

|

| E Source Destination TypeReference

| L Destination TypeReference "Literal"

| L Destination TypeReference ErrorValue

| G TypeReference

| G TypeReference "Literal"

| 1 | TypeReference "Literal"

| X TypeReference "Literal"

| {

| } Label Node Count AssociationList
Label ::= Posinteger
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Source ::= SourceNode SourcePort
Destination ::= DestinationNode DestinationPort
SourceNode 1= Integer

SourcePort ::= Poslnteger

DestinationNode ::= Integer

DestinationPort ::= PosInteger

TypeReference ::= Integer

Count 2= Integer

AssociationList ::= Integer ...

Node ::= ForAll | Select | TagCase | LoopA | LoopB
| AAddH | AAddL | AExtract | ABuild | ACatenate
| AElement | AFill | AGather | AIsEmpty | ALimH
| ALimL | ARemH | ARemL | AReplace ' | AScatter
| ASetL | ASize | Abs | BindArguments | Bool
| Call | Char | Div | Double | Equal
| Exp | FirstValue | FinalValue | Floor
| Int | IsError | Less | LessEqual
| Max | Min | Minus | Nod | Neg
| NoOp | Not | NotEqual | Plus
| RangeGen | RBuild | RElements | RReplace
l RedLeft | RedRight | RedTree | Reduce | RestValues
| Single | Times | Trunc |

TypeTableEntry ::= Array  TypeReference
| Basic BasicType
| Field TypeReference TypeReference
| Function TypeReference TypeReference
|  Multiple TypeReference
| Record TypeReference
| Stream TypeReference

| Tag TypeReference TypeReference

L3




75

|  Tuple
|  Union
BasicType ::= Boolean
Character

Double

Null

|
|
| Integer
|
| Real

TypeReference TypeReference
TypeReference




Appendix C

A Sample Program and its
Translation

In this appendix we present a sample SISAL program and its IF1 equivalent. The program

contains a function for multiplying two matrices. We give both the textual and the pictorial

representations of IF1 graphs. The IF1 code given in this appendix contains comments that were
not generated by our translator—they were manually inserted.

The Input Program
define multiply

type matriz = array[ array[ real ] |
function rowcol (A : matriz returns integer,integer)

array size(A),arraysize(A[1])
end function

function multiply ( A, B : matriz returns matriz )

let
ar,ac := rowcol(a);
br, bc := rowcol(a[1});
in .
if ac = br then
for I'in 1,ar cross J in 1, bc
IP:=for K in 1,ac

returns
value of sum A[l, K] * B[K, J]
end for
returns
array of IP
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end for

else '

error[ matrix ]

end if

end let

end function

The IF1 Code

R R R - I R I I I I IS I T I IS B I B B T R I TS I I I

i Basic Boolean
2 Basic Character
3 Basic Double_Real
4 Basic Integer
5 Basic Real
6 Basic Null
9 Multiple 4
10 Array 6
11 Array 10 Yna="matrix"
12 Tuple 11 13 Yna="A"
13 "Tuple i1 0 Yna="B"
14 Tuple 11
15 Function 12 14 Y%na="multiply"
16 Multiple 6
17 Multiple 10
i8 Function 28 29
28 Tuple 6 29
29 Tuple 6 0
30 Tuple 11 0 Y%na="a"
31 Tuple 4 32
32 Tuple 4 0
33 Function 30 31 Y%na="rowcol"
33 '"rowcol"
1 ASize
01 11 11 Yna="A"
2 AElement
01 21 11 Yna="A"
22 4 "M
3 ASize
11 31 10
16 ‘"multiply"”
1 Call
11 33 "rowcol"
01 12 11 Yna="A"
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N
L
E
{

:tumzmmummznmmr'-:ohnmmrnoﬁhnmmr‘:aaamnzmmzm

» O O W O » N O O =

2 Call
21 33 '"rowcol"
02 22 11 Y%na="B"

nkK=6

0 Selector
1 Equal
02 11 4 Yna="ac"
04 12 4 YJna="br"
2 Int
11 21 1
21 01 4

0 True Part
nK=5 nM=1 nT=1

0 Generator
1 RangeGen

11 4 "1"

01 12 4 Yna="ar"
11 06 9 Yna="I"

0 Body

-nK=5 nM=1 nT=1

0 Generator

1 RangeGen
11 4 "1

03 12 4 Yna="bc"
11 06 9 Yna="J"

0  Body
nK=5 nM=1 nT=1

0 Generator

1 RangeGen
11 4 "1"
01 12 4 Y%na="ac"
11 06 9 Yna="K"
0 Body
AElement

2 11 11 Yna="A"
4 12 4 Yna="I"
AElement

1 21 10

6 22 4 Yna="K"
AElement

3 21 11 Yna="B"

6 22 4 Yna="K"
AElement
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mmmmmmvmmr*zommmmmmvtumr'zominmmmmvmmr*r-zmmmmzmm

31 41 10
056 42 4
6 Times
21 51 6
41 52 6
61 07 86
0
1 Reduce
11 18
12 6
07 13 16
i1 01 86
1 Forall 3 0
01 11 4
02 12 11
04 13 11
06 14 4
06 16 4
11 07 &6
0
1 AGather
11 4
07 12 16
11 01 10
1 Forall 3 0
02 11 4
03 12 11
04 13 4
06 14 11
06 156 4
11 07 10
0
1 AGather
11 4
07 12 17
11 01 11
1 Forall 3 0
01 11 4
02 12 4
03 13 11
05 14 4
06 15 11
11 01 11

'/.na="J"

Returns

" suml'
No . oll

12
Yna="ac"
%na="A"
%na="B"
%na="I"
Yna="J"

Returns

'!1"

12
%na="ac"
%na="A"
%na="bc"
%na="B"
Yna="I"

Returns

"1"

12
%na="ar"
Jna="ac"
%nas"A"
%na="bc"
Yna="B"
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(T T B T > I > B < I A S 2]

W O NN O +» » W
O I S e N A

0

01 11
Select 3 0

31 4
32 4
33 11
34 4
35 4
36 11
01 11

False Part
"“erxror"
21
'/.na=uaru
’/.na.="a.c"
'/.na="A"
l/.na=ubrn
%na="bc"
'/.na;an
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l
ASize AElement
N N2
ASize
N3

X

Figure C.1: Graph of rowcol

A B
-
“rowcol” “rowcol”
4 !
Call Call
N1 N2
) |
ar ac A br bec B
Select N3
Selector Subgraph| |Subgraph
0 1 2
See Fig.C.3 See Fig.C.4 See Fig C.5

i

Figure C.2: Graph of multiply
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ar ac A brbc B

“'T_Tr"'

Equal
N1

Int
N2

:

Figure C.3: Selector
ar ac A br bc B

™

ar ac A be B

Forall N1
Generator Body Returns
See Fig. C.6 See Fig. C.7 See Fig. C.8

l

Figure C.4: Subgraph 1

ar ac A brbc B

error[matrix]

l

Figure C.5: Subgraph 2
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arac A bc¢ B
1

l

RangeGen
N1

lﬂﬂjﬂl

I

Figure C.6: Generator 1

ar ac A be B I
ac A bc B I

Forall N1
Generator Body Returns
See Fig. C.9 See Fig. C.10 See Fig. C.11

L

el ul inl 0 0

g

ar ac A be B I
Figure C.7: Body 1

arac AbcB I X

T

|

AGather
N1

L

Figure C.8: Returns 1
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ac AbcB I

Figure C.9: Generator 2

ac A be B I I
ac A B I J :‘
Forall N1
Generator Body Returns
See Fig. C.12 See Fig. C.13 See Fig. C.14 ;
| o
ac A bc B I J Y |

Figure C.10: Body 2

acAbcB I JY

1
|

AGather
N1

l

Figure C.11: Returns 2
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Figure C.12: Generator 3

ac A B I J K
AElement AFElement
N1 N3
AElement AFElement
N2 N4

=

Times
N5

bul

Jal 0

|

(n]

il

A B

ac

I

J K

Figure C.13: Body 3
acABI JK

|

“Su m k] ‘

0.0
|

Reduce

N1

|

IP

Figure C.14: Returns 3




Appendix D

IF1 Generator: User’s Manual

This appendix is for the users of SISAL to IF1 translator. In this appendix, we shall refer to
the IF1 generator as ifg. The first section suggests how to run the ifg program and describes
the output files it produces. The second section describes error recovery in ifg and the error
messages it produces. In the error messages given here, typewriter-like font is used for the
actual computer output and italics for symbols that will be replaced by other strings in the actual
output (eg., name will be replaced by an input program identifier).

D.1 The Program ifg

NAME

ifg - SISAL to IF1 translator
SYNOPSIS

ifg file
DESCRIPTION .

The ifg program receives a SISAL program as input and produces its IF1 representation
as output. Two output files are produced by the program. If the input file is called
file, the output files are named file.t and file.g. The output file file.t contains the IF1
representation of types in the SISAL program. The file file.g contains IF1 graphs.

RETURN VALUE

>0 error in the input program
0 successful completion
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A Sample Run

Shown below, are a small program (with errors) and the messages produced by ifg when given
that program as input.
An Input Program:

define funci,func2

type vector = array[integer];

function funci(a,b: integer returns vector)
a+b
end function

" function func2(a integer returns real

end function
Messages emitted by ifg for the above program:

[L 6] clash between expression type and return type of function "funci"

[L 8] at or before key word "integer': expecting: ’,’ ’:’

D.2 ifg Error Messages

ifg does not stop at the first error in the input SISAL program. It recovers from errors and
tries to find as many of them as possible using a simple error recovery mechanism. A syntactic
error in the source file causes ifg to abort further semantic processing. Once a syntactic error
is detected, the source file is scanned further to detect only syntactic errors. Code generation is
aborted in the event of both syntactic and semantic errors. The various syntactic error messages

are shown below.

at or before name: ‘'name": expecting: list-of-symbols

at or before keyword: ‘'keyword": expecting: list-of-symbols
at or before symbol: ‘'symbol": expecting: list-of-symbols
at or before name: syntax error

at or before keyword: syntax error

at or before symbol: syntax error

character constant exceeds line

character string exceeds line




In the above messages, name, keyword and symbol denote a name, a SISAL reserved word and
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any other symbol respectively at or before which the error occurred. The list-of-symbols is a set .

of symbols of which one could have possibly averted the error. That is, if a symbol from the list

appeared before or instead of the one that is currently being scanned, the error might not have -

(possibly) occurred. Some times the list-of-symbols will not be displayed. This is when there are |

too many symbols in the list—listing all of them serves no purpose other than cluttering up the |

display. In this case, ifg simply says syntax error.

Now we turn to semantic errors. Once a semantic error has occurred (which might be due

to a type clash, an undefined name, etc.), ifg displays an appropriate message, aborts IF1 code

generation and proceeds to find more errors in the program. The complete list of semantic error

messages follows:

redefinition of typename 'name"

The type-name name is defined more than once in a type definition part.

typename ''name" unknown

The type-name name is not defined.

type name undefined "name"

All type-names introduced in a type definition part must be defined exactly once. This error occurs

immediately after the end of a type definition part, whereas the previous error occurs inside a function

body (i.e., in an expression).

recursive type "name" non-terminating

The mutual recursion in the type definition part does not terminate.

function name "name" duplicated in DEFINE

Function-name name appears more than once in the define clause.
function name '"name' appears in both DEFINE and GLOBAL

A function-name cannot appear in both clauses.

illegal forward (re)declaration of function "name"

One of the following happened:

e A forward declaration of function name had already appeared in the same function scope or an
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outer scope.

o A definition of function name had already appeared in the same function scope or an outer scope.

type clash between function "name' and its forward declaration

The headers in the forward declaration and the definition of function. name do not match.

forward declared function ''name" not defined

A forward declared function must be defined before the end of its scope.

redefinition of function "name"

A definition of function name has already appeared in the same function scope or an outer scope.

argument name "name'" duplicated in function header .

The argument name name occurs more than once in the function header,

clash between expression type and return type of function "name"

The type of the expression forming the function body and the return type of the function (as it appears
in the function header) do not match. This could also be a mismatch in arity. name is the name of the .

function. !

type clash between actual and formal arguments of function "name" '
The type of actual parameters in a call to function name do not match with the type of formal parameters. |

This message is also emitted when there are too many or too less actual parameters.

unknown function "name"

The function neme is undefined.

definition of export function "name" missing

A function appearing in the define clause must be defined in the compilation-unit.

illegal binary operation (iypel op type2 !)

The operand types typel and type2 are illegal for the binary operation op. i

illegal unary operation (op type !)
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The operand type type is illegal for the unary operation op.

illegal prefix operation op on type

The operand type type is illegal for the prefix operation op.

too many arguments for error test

error test can have only one argument.

non-integer (lype !) index in array reference

The index in an array reference must be an integer and not type.

non-array operand (i{ype !) in array reference

The array reference operand is found to be of type type when it must be an array.

non—-integer index (iype !) in array generator

The index in an array generator must be an integer and not type.

non~-array operand (iype !)in array generator
The array generator operand is found to be of type type when it must bhe an array. Or, the type-name

specified in the array generator is not an array.

type clash (iypel vs iype2) between elements in array generator
All elements in the element-list for a particular dimension in an array generator must be of the same type.

A type clash between typel and type2 occurred.

non-stream operand (iype !) in stream generator

The type-name specified in the stream generator must be a stream and not type.

type clash (iypel vs type2) between elements in stream generator
All elements in the element-list of a stream generator must be of the same type. A type clash between

typel and type2 occurred.

field name "name" duplicated in record definition

The field-name name occurs more than once in the record definition



91

non-record operand (I{ype !) in record reference

A record reference must have a record operand and not type.

unknown field name "name" in record reference

The field-name name does not appear in the definition of the record.

non-record (type !) operand in record generator

A record generator must have a record operand or a record type-name and not tfype.

unknown field name '"name" in record generator
The field-name name appearing in the record generator does not occur in the definition of the record

type-name,

field name 'name" reassigned in record generator

The field-name name is assigned a value more than once in the record generator.

multiple arity expression assigned to field name '"name"

A field-name in a record generator can be assigned only a single arity expression.

type clash (ifypel vs iype?) in assignment to field name "name"
The type type2 of the expression assigned to field-name name in the record generator clashes with type2,

the field-name’s type in the definition of the record.

tag name "name" duplicated in union definition

The tag-name name occurs more than once in the union definition.

non-union (iype !) operand in union test

The type of expression appearing in the union test is {ype when it must be a union.

unknown tag name "name" in union test

The tag-name appearing in the union test does not occur in the definition of the union.

non-union (iype !) operand in union generator

The expression type in a union generator must be .union and not type.
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unknown tag name "name" in union generator

The tag-name name does not appear in the definition of the union.

type clash ({ypel vs type?) in assignment to tag name "name"
The type type2 of the expression assigned to tag-name name in the union generator clashes with ype2,

the tag-name’s type in the definition of the union. ,

non-union (type !) selector in tagcase expression

The selector expression in a tagcase expression must be a union and not type.

unknown tagname '‘name'" in tagcase expression

An unknown tag-name (name) appears in a tag clause.

tag name “name" duplicated in tagcase expression

. The tag-name name occurs in more than one tag clause in the tagcase expression.

incompatible types for tagnames in "TAG tagname-list"

All tag-names in a tag clause must have the same type.

redundant OTHERWISE clause in tagcase expression

The otherwise clause is redundant because all tag names in the union type are covered by the tag clauses.

missing OTHERWISE clause in tagcase expression

An otherwise clause is required because all tag names in the union type are not covered by the tag clauses.

type clash between branches of tagcase expression

The branches of tagcase expreésion differ in type/arity.

type clash between branches of conditional expression

The branches of if-then-else expression differ in type/arity.

non-Boolean (iype !) expression after keyword
The type of expression appearing after keyword ( if, elseif, while, until, when or unless) is type when

it must be boolean.
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valuename "name" redeclared

2} 1 . .
The value-name name is declared more than once in the same scope. Or, the value-name has already been

introduced in the same scope by a reference or a definition.

valuename 'name" referenced but pnot defined

The value-name name is used in an expression but was not defined before.

valuename '"old name' referenced but not defined

One of the following situations caused the error.

¢ A value-name which is not a loop-name is referenced with the old modifier.

e The old value of a loop-name is referenced in the initialization section or the returns section of a
for expression.

e The old value of a loop-name is referenced in the termination test of a LoopA type for expression.

valuename "name" reassigned

A violation of single assignment rule. The value-name name is assigned a .value more than once in the
same scope.

unbalanced valuename definition (;; valuename(s) := = expression(s) !)

The number of value-names on the left hand side of : = does not match with the arity of expression on the

right hand side. -

type clash (typel vs type2 !) in agsjgnment to valuename "name"

The type (type2) of expression assigned to valye-name name clashed with the type (typel) given to it by
an earlier declaration.

" " 1 3 . . . Y . s
loopname "name" not defined in for expression initialization

The loop-name name was introduced by a declaration but not defined in the initialization section of for
expression.

‘element name "name" duplicated in generator

name occurs more than once in the in expression list of for expression




94

index name "“name'" duplicated in generator

name occurs more than once in the in expression list of for expression.

index name list in integer range generator

No index-name can appear in integer range generator of a for loop in expression list.

illegal type for generator expression
" The type of an in expression in a for loop generator must be one of the types Array, Stream or

(Integer,Integer).

DOT and CROSS products intermixed in generator

Dot and cross products cannot be intermixed. Note that more than one index-name for an array/stream

element generator implies a cross product.

multiple arity expression after return clause prefix

Only a single arity expression can follow the return clause prefix in a for expression.

illegal reduction operation (op of itype !)

The type of the expression appearing in a return clause of a for expression is illegal for the reduction

operator op.
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