[term - Indian terminal emulator for X

A Thesis Submitted

in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Nitu Choudhary

to the
Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur
Jan 1997

Certificate

Certified that the work contained in the thesis entitled “Iterm -
Indian terminal emulator for X”, by Ms. Nitu Choudhary, has
been carried out under my supervision and that this work has

not been submitted elsewhere for a degree.

(Dr. Rajat Moona)

Associate Professor,

Department of Computer Science & Engineering,
Indian Institute of Technology,

Kanpur.

Jan 1997

Dedicated To
My Parents

Abstract

In this thesis, iterm - an X Window based multilingual terminal software, is imple-
mented. This software allows the entry, and simultaneous display of text written in
Brahmi-based Indian scripts and English. Keyboard and Display driver are the two
basic components of iterm. Keyboard driver deals with the entry of text in vari-
ous scripts, while the display driver is responsible for displaying the text in chosen
script. The software has been tested against various applications such as editors,
filters, compilers, etc, on Digital Unix and Linux operating systems. Input/Output
of only Devanagari and English text has been tested, as fonts for other Indian scripts

were not accessible.

Acknowledgements

I express my sincere gratitude to my supervisor Dr. Rajat Moona, for his able
guidance and valuable suggestions. I thank Dr. Rajeev Sangal and Dr. Vineet
Chaitanya, professor in computer science and engineering and currently involved
in research work at University of Hyderabad, for their help and encouragement. 1

also thank my family members and friends for their help and support.

Contents

1 Introduction
1.1 Motivation
1.2 Terminal emulatorsfor X 0000 Lo
1.3 Indian terminalso o
1.4 Features of iterm L
1.5 Organization of thesis. 00000
2 Background
2.1 Terminal
2.1.1 Keyboard
2.1.2 Display
2.2 Overview of Indian languages,
2.2.1 Indian scripts structure L.
222 Syntax
2.3 Coding and keyboard standards for Indian scripts
2.3.1 ISCI standard oo oo
2.3.2 Other standards oo
3 Design and implementation
3.1 Designissues Lo e
3.2 General design of iterm oL
3.3 Configuration files. o000
3.3.1 Specification file L oo
3.3.2 Coding schemefile o000

i

10
11
12
14
15
15
19

3.3.3 Keyboard map file oo

3.34 Fontmapfile
335 Typemapfileo oo
336 Rulesfile.

3.4 Keyboard
3.4.1 Keyboard mapping oo
3.4.2 Encoding of characters

3.5 Display o
3.5.1 Screen buffer o oo
3.5.2 Generation of display symbols
3.5.3 Cursor movements
3.5.4 Text manipulation L.
35,0 Cutandpaste L oo

Results

Conclusion

5.1 Futurework

Control sequences

A.1 DEC VTI100 features
A.1.1 ANSI compatiblemode
A.1.2 VT52 compatiblemode L.

A.2 iterm control sequences
A21 VTI02mode
A.2.2 Mouse trackingo
A.2.3 Tektronix 4014 modeo
A24 Keyboard

Code

B.1 ASCII 7-bit code

B.2 DEC special graphicso

B.3 Indian script alphabeto o o000

11

40

47
48

50
50
50
56
57
57
60
62
64

B.4 ISSCII-8 code s 74

B.5 ISSCII-7 code 75
B.6 EA-ISCIlcode, 76
B.7 ATR chart 7

C Inscript keyboard 78
D User manual 83
D.1 Coding schemes Lo 84
D.2 Keyboard 84
D.3 Display 85
D.3.1 Character sets 85

D.3.2 Display problemso oo 85

D4 Cursor 86
D.5 Fonts oo 87
D.6 Indian scripts L 87
D.6.1 Syntax of Indian scriptso 87

D.7 Options o 88
D.8 Resources 89
D.9 Menu. e 89
D.10 Binding keyso o 90
D.11 Configuration file 91
D.11.1 Specification file format 91

D.11.2 Coding scheme file format 93

D.11.3 Keyboard map file format 94

D.11.4 Font map file format 94

D.11.5 Type map file format00 96

D.11.6 Rules file format 0L 96
References 105
Bibliography 106

v

List of Tables

© 0 I O Ot e W N

S e e e N i e e
O O W =1 O Ot ke W NN = O

Example - specification fileo 00000 25
Example - coding schemefile.00 0000 26
Example - keyboard map file0 L. 27
Example - font table 0 0 L 28
Example - typemap file 0 29
Syllable rules oo 29
Combination rules 30
Syntax - specification file oo 92
Example - descriptive names for Indian script characters 93
Syntax - coding schemefile. 93
Syntax - keyboard map file oo 94
Syntax - font map file.o oo 95
Syntax - typemap file L 97
Syntax - syllableruleso o oo 98
Syntax - combination ruleso o oo 99
Default categories - type map file 100
Default categories - type map file 101
Default syllable rules oo 102
Default syllable rules 103
Default combination rules 0 0L 104

List of Figures

© 0 1 O Ot R W N

—_ = =
N = O

Block diagram of a terminal 000 8
Basic Devanagari symbols oo 13
Graphical representation of pure consonants 13
Composition of characters in Indian script 33
Generation of display symbols o000 36
Insertion, replacement and deletion of characters 38
Results of alias, 1scommands 41
Viewing a file with cat command 42
Editing a file with vieditor L. 43
Sample program in C 44
Sample program in C (contd....) 45
Output of Cprogram 46

vi

Chapter 1

Introduction

1.1 Motivation

Terminals provide an interface via which the computer and users communicate with
each other. There are many applications such as word processing, natural language
processing, computer aided learning, etc, which needs a multilingual terminal allow-

ing input/output in various languages of the world.

X Window system [9] is a network transparent window system developed at MIT
(Massachusetts Institute of Technology). It runs on a wide range of computing and
graphics machine. X has a widespread support, and is one of the most extensively
used windowing system. One of the major advantages of X Window is that all the X
application programs can run without modification on a wide variety of architecture.
There are various terminal emulators under X, which provides support for Japanese,

Chinese, Korean, and English texts [6].

India is a multilingual country, with 15 official languages spoken throughout India

[1], written in several different scripts. The common phonetic structure of Indian

scripts allow easy transliteration between one script and another. Due to this com-
mon structure, same terminal can easily support several Indian scripts. Terminals
supporting I1/O of Indian scripts are available under a wide variety of platforms [4],
however, there is no such support for X Window. The motivation for this thesis was
to develop a multilingual terminal software running under X Window, which could

allow input and output of Indian script characters.

1.2 Terminal emulators for X

Most commonly used terminal emulator for X, which supports input/output of En-
glish text is xterm [7]. The xterm program emulates DEC VT102 and Tektronix
4014 terminals. Tt allows scrolling of displayed text, and also supports cut and paste
feature. Text is coded according to ASCII (American Standard Code for Informa-
tion Interchange) standards. The xterm terminal emulator, however, supports only
fixed width fonts and does not provide smooth scrolling, VT52 mode, the blink-
ing character attribute, or the double-wide and double-size character set. Besides
xterm, several variations of xterm exists, with provision for input /output of English

text [6].

The kterm program [6] is an X11R4-based VT100/VT102 and Tektronix 4014 ter-
minal emulator that supports the display of Chinese, Japanese, and Korean text (in
VT mode). It has capabilities of displaying Kanji strings and inputing them with
kinput [8] program. Multi-byte coding is used for storing the text.

The cxterm terminal emulator [6] is a Chinese xterm, which supports both GB312-
1980 and the so-called BIG-5 encoding. Hanzi input conversion mechanism is inbuilt
in cxterm. Most input methods are stored in external files that are loaded at run

time. Users can redefine any existing input methods or create their new ones.

Another terminal emulator hanterm [6], which is a modified xterm, supports Hangul

(Korean writing system) input/output.

1.3 Indian terminals

Hardware support is in form of GIST (Graphics and Intelligence based Script Tech-
nology) cards and GIST multilingual video display terminals [4]. GIST card can be
used with all IBM-PC compatibles running under MS-DOS/PC-DOS, and Xenix
operating systems. GIST card device driver is to be installed along with GIST card.
The GIST terminal is compatible with VT52/ANSI/VT100/VT220/VT320 stan-
dards. This terminal can be used under multi-user operating systems like Xenix,
Unix, VAX VMS or any other system supporting DEC VT100/VT220/VT320/VT52
terminals. On the other hand, software support is provided in form of GIST shell

running under MS-Windows.

GIST supports I/0 of all major Indian scripts and a number of foreign scripts. This
includes Devanagari (used for Hindi, Marathi, Nepali and Sanskrit languages), Ben-
gali, Gujarati, Punjabi, Tamil, Telugu, Malayalam, Kannada, Oriya, and Assamese.
Even the “right to left” scripts like Urdu, Sindhi, Kashmiri, Arabic and Persian are
supported. It also accommodates some foreign scripts like English, Russian, Ara-
bic, Thai, and Druk (Bhutanese and Tibetan). GIST has provision for automatic
transliteration between all Indian languages. All popular database packages, word
processors, spreadsheets, compilers and interpreters can be used in any of the above
languages. It also allows printing of documents in graphics mode on a variety of

printers.

These terminals are designed to support Inscript (Indian Script) keyboard overlay
and 7/8 bit ISCII (Indian Script Code for Information Interchange) coding standards
[3]. They also require that the fonts used for display of Indian script characters
should follow the ISFOC (Indian Standard FOnt Code) [4] standard.

1.4 Features of iterm

The iterm program is an X Window based multilingual terminal software, similar
to xterm, providing an interface for /O of ten Brahmi-based Indian scripts and
English. The user can set the keyboard and display mode to communicate with

computer in script of their own choice.

The salient features of iterm are as follows :

e The entry and simultaneous display of text written in Indian languages and

English is supported by iterm.

e The iterm has been designed to support all the Brahmi-based Indian scripts -
Devanagari, Bengali, Gujarati, Punjabi, Tamil, Telugu, Malayalam, Kannada,
Oriya, Gujarati and Assamese. But, at present it is configured to support 1/0
of only Devanagari scripts. A user can, however, easily configure iterm to

support all the above mentioned Indian scripts.

o The iterm program emulates DEC VT102 and Tektronix 4014 terminals, how-
ever, only DEC VT102 window supports the display of text written in Indian

scripts.

e The iterm program is also portable across various architectures which can run

X Window.

o A wide range of application programs can run on iterm, without any modifi-

cation.
e The iterm also supports scrolling and cut and paste feature.

e Both fixed and variable size fonts can be used to display the text in English

or any Indian scripts.

e Keyboard and display are independent of each other. While English script

characters may be entered via keyboard, display may be set to show the Indian

4

script characters and vice versa. This feature allows the existing applications

to run under iterm.

e English characters are coded according to ASCII standards, while ISSCII-8
and EA-ISCII standards have been used for encoding Indian script characters.

However the user can specify his own 7 and 8 bit standards for Indian script.

o Inscript keyboard overlay is supported by iterm, but this mapping can be
redefined through configuration file as per the choice.

e Any font which may or may not follow the ISFOC standard is supported by

iterm.
e Composition rules for Indian scripts can be redefined by the user.

o Default values of certain parameters, used by iterm, can be changed through

its resource database.

Keyboard and display driver are the primary components of iterm. Keyboard
driver receives input from the keyboard, encodes them and sends these codes to
the application program executing on the host computer. The keyboard driver
also handles keyboard mapping thus allowing entry of characters in chosen script.
Display driver receives the text and displays it in the script selected by the user.

The display driver also takes care of text manipulation, scrolling, and cut and paste.

The software has been developed in C using X1ib and X toolkit libraries [10, 11,
12, 13]. It runs under X11 Release 5 and above. The software has been developed

and tested on Digital Unix and Linux operating systems.

1.5 Organization of thesis

Rest of the thesis is organized as follows. Chapter 2 introduces the terms and

concepts relevant to discussions held in later chapters. Chapter 3 discusses the design

and implementation details of keyboard and display driver - primary components
of iterm. Results of various tests are presented in chapter 4. Finally chapter 5
concludes the thesis and makes suggestions for possible extensions. Appendix A
contains the summary of VT100 terminal features and iterm control sequences.
Appendix B and C enumerates the character sets, and Inscript keyboard layout
respectively. Appendix D is a user manual which provides guidelines on how to run

and customize iterm.

Chapter 2

Background

In this thesis, an attempt has been made, to develop an X Window based multi-
lingual terminal, which provides 1/O support for Indian languages and English. In
order to fully comprehend the capabilities of such a terminal, it is essential, to un-
derstand the basic capabilities of a terminal, and computer representation of Indian
languages. This chapter provides the background which will be useful later when

we discuss the design of iterm.

2.1 Terminal

A terminal provides user with the mechanism to communicate with application
programs executing on host computer. Terminals consists of transmit and receive
blocks. The transmit block interfaces with the keyboard, and sends the characters
typed in to the computer. The receive block receives characters from the host and
interfaces with the monitor for displaying them. Terminals support the standard 1/O
operations as well as terminal specific operations to control input /output behaviour

and cursor editing. Figure 1 shows the basic building block of a terminal.

TERMINAL

RECEIVE
LOGIC B

A

MONITOR

HOST
COMPUTER

Y

TRANSMIT
> LOGIC
KEYBOARD

Figure 1: Block diagram of a terminal

The most popular and standard code used worldwide for data exchange between the
terminal and computer is ASCII (American Standard Code for Information Inter-
change). It is a 7-bit code which defines 32 “control characters” and 96 “graphics
characters”. Refer to Appendix B for ASCII code chart.

The terminal provides capabilities, for displaying a stream of characters received
from the computer. However, certain programs like screen editors, requires to ma-
nipulate the text that was sent before. They need to scroll the page, insert character,
move the cursor, delete lines, etc. So the terminals provide control sequences, which

allows the application program to modify the text that has already been displayed.

There are wide variety of terminals available, each of which includes a particular set
of features. In the following discussion, the features of a character based terminal

are reviewed.

2.1.1 Keyboard

Keyboard, with each terminal, contains standard typewriter keys and some addi-
tional keys to generate control sequences, cursor control sequences, cursor control
commands, and status indicators. The keys when pressed transmits one or more
character codes to the host. Some other keys such as control and shift do not

transmit codes when typed, but modify the codes transmitted by other keys.

The DEC VT style keyboard consists of the following parts :

e QWERTY keypad: These keys generate standard ASCIT codes. When caps
lock is selected, the alphabetic keys transmits the uppercase codes. With
shift selected, the alphabetic keys and numeric keys transmits uppercase

and shifted codes respectively.

e Special keypad: These keys have some special significance, and consists of
the tab, lock, ctrl, shift, return and delete keys. The tab key sends
a horizontal tab character, which moves the cursor to next tab stop. The ctrl
key used in conjunction with other keys generates control codes, usually in the
range of 00H-1FH. The caps lock key has a toggle function, and when selected
converts codes generated by QWERTY keypad to uppercase. The shift key
converts codes generated by the QWERTY keypad to shifted codes. The
return key sends a carriage return. Pressing the delete key sends the
code for CAN (cancel) character. There is also a compose character which is

used to generate characters not present on the keyboard.

¢ Editing keypad and cursor control keys: These keys, when pressed, gen-

erate a set of control sequences for cursor movement and editing.

e Numeric keypad: It is used to enter numeric data. Control sequences are

generated when in application mode.

e Function keys: These keys have functions assigned to them by the appli-

cation software in use. Keyboard will usually send a pre-defined character

sequence on pressing these keys.

2.1.2 Display

Generally the screen is divided into rows and columns of characters. Codes received
by terminals are rendered on the screen, in form of characters. Apart from displaying
the normal characters, terminal also receives control sequences, specifying some
special action to be taken. Each terminal provides different set of control sequences.

Appendix A lists the control sequences provided by VT100 terminal.

The control sequences can be grouped as:

e Character attributes: Application program can specify whether the char-
acter 1s to be rendered in bold or reverse video. It can also specify if the

character is blinking, or if it is to be underlined.

e Cursor commands: The application program can control the movements of
cursor, using this feature. Also it can ask the terminal to save and restore the

state of a cursor.

e Line size: It allows the application program to specify the height and width
of the line.

e Erasing: The application program specifies the portion of the screen to be

erased.

e Character set: The terminal can provide for many character sets, one of
which may be chosen as the active font. If the received character value is
less than or equal to 127 then the character displayed is selected from the
GL group. If the received character is greater than or equal to 128 then the
character is displayed from GR group. At any time GL and GR group can
have one of the four sets defined to them namely GO, G1, G2 and G3. The GO,

10

G1, G2, G3 character sets are designated to represent one of the character sets,
namely US ASCII, UK ASCII, Dec Graphics, etc. Any of these character sets

can be invoked by a series of control sequences, as specified in Appendix A.

e Scrolling region: Some control sequences are used to set the scrolling region

within which the text is to appear.
e Tab: Some control sequences are used to set or clear the tabs.

e Modes: Control sequences are also provided to set the number of column
between 80 and 132, screen mode as reverse or normal, etc. For a complete

list of all the modes refer to Appendix A.

e Editing: There are several control sequences for insertion and deletion of lines

and characters.

o Reports: These control sequences are used by application program to get

various status reports.
e Reset: The terminal can be reset to initial state by this option.

o Test: The application program can test for screen alignment.

2.2 Overview of Indian languages

India is a multilingual country having about 15 officially recognized languages, writ-
ten in various scripts. These existing scripts are derivative of ancient Brahmi and
Perso-Arabic scripts. Urdu, Sindhi, Kashmiri are primarily written in Perso-Arabic
scripts. All the other Indian languages have evolved from the ancient Brahmi script.
The Northern scripts are Devanagari, Punjabi, Gujarati, Oriya, Bengali and As-

samese, while the Southern scripts are Telugu, Kannada, Malayalam and Tamil [2].

11

Different standards have been envisaged for languages which originate from Perso-
Arabic scripts, and for languages which originate from Brahmi scripts. The stan-

dards for Brahmi-based Indian scripts are reviewed below.

For the following discussion Devanagari, which is the official script of India, is chosen.
Devanagari script is used for Hindi, Marathi, Nepali and Sanskrit languages. All
the Indian scripts originating from Brahmi have a common structure, and hence all
arguments for Devanagari are also applicable to other Brahmi-based Indian scripts.
Also for simplicity, elsewhere, the term Indian scripts implies Brahmi-based Indian

scripts.

2.2.1 Indian scripts structure

All Brahmi-based Indian scripts are phonetic in nature. The alphabet in each may
vary somewhat, but they all share a common phonetic structure. The differences
between scripts primarily are in their written forms, where different combination

rules get used [3].

Devanagari character set can be categorized into vowels, consonants, matras, modi-
fiers, numerals, punctuation and some special symbols like halant and nukta. Figure

2 shows the set of basic symbols used in Devanagari script.

In Devanagari scripts consonant have an implicit vowel 3T attached to it. A pure
consonant is obtained by attaching a special symbol called halant to the consonant.

Most of these pure consonants have a different graphic form.

Each vowel except 3T has a corresponding matra which can be attached to a con-
sonant to form composite characters. The modifiers are ansuswar (causing nasal-
ization), visarg (introducing aspiration), and chandrabindu (causing prolongation).
The diacritic mark nukta is used along with some consonants, and is mostly used

to represent some foreign sounds. All punctuation marks used in Indian scripts are

12

Vowel

Matra

Modifiers

Consonant

Halant

Nukta

Punctuation

Numeral

o4 99 o 4 §
A9 9o 84
e YR T R

o

o oa,y d 9
Za I B W

?

-

R

3oL, 4 “

€ I F K T U S s
T . o . T T
T T

T ST

T W

T

T o7

T I Y T 8

3 ¢ 4 % 9 ©w o ?

Figure 2: Basic Devanagari symbols

-3
T -
T T
S =
¥ F
3 § s Tg

Figure 3: Graphical representation of pure consonants

13

similar to the ones used in English, except for the full-stop, instead of which viram

is used.

Devanagari script is a logical composition of its constituent symbols in two dimen-
sions. The matras, modifier, halant, and nukta can be attached to a vowel or a

consonant to the right, left, top or bottom.

garf@ar g g @ 9 ar |@r
T T e
T

-~

o

Two or more pure consonants combine to form a conjunct. Conjuncts can form
composite characters by the addition of matras, and modifier in the same way as
consonants. Shape of these conjuncts usually differ from those of the constituting

consonants.

2.2.2 Syntax

A word is composed of syllables, which are formed from the alphabets of character set
discussed above. There are certain rules by which these characters can be combined.
The syntax for formation of a word is given in the following Backus-Naur Formation

(BNTF) [3)].

Word

Syllable
Vowel-Syllable
Cons-Vowel-Syllable ::

{Syllable}[Cons-Syllable]
Cons-Vowel-Syllable | Vowel-Syllable
Vowel [Modifiers]
[Cons-Syllable]Full-Cons[Matra] [Modifiers]

14

Cons-Syllable [Pure-Cons] [Pure-Cons]Pure-Cons

Full-Cons Halant

Pure-Cons

Full-Cons

Consonant [Nuktal]

Following conventions are used in the syntax given above :
::= defines a relation.

{} encloses items which may be repeated one or more times.
] encloses items which may or may not be present.

| separates items, out of which only one can be present.

A syllable can at the maximum have four consonants. In the above syntax nukta
can come only come after certain consonants with which it can combine. The above

discussion also ignores some vowels derived through nukta.

2.3 Coding and keyboard standards for Indian

scripts

2.3.1 ISCII standard

Since the 70s, different committees of the Department of Official Languages and the
DOE (Department of Electronics) have been evolving different codes and keyboard,
which could cater to all the Indian scripts due to their common phonetic structure.
In 1980s the ISCII code (Indian Script Code for Information Interchange) was rec-
ommended, and it is widely used for internal representation of Indian scripts. Also
the keyboard standard for ISCII character set was proposed around the same time,

and has become the de facto standard.

15

g ISCII character set

ISCIT character set [3] is a super-set of all the characters required in ten Brahmi-
based Indian scripts. For convenience, the alphabet of the official script Devanagari
(with diacritic marks for non-Devanagari alphabets) has been used in the standard.
The ISCIT code contains only the basic alphabet required by Indian scripts, and all
the composite characters are formed by the combination of these basic characters.

Refer to Appendix B for ISCIT character set.

ISCIT code has the advantage that there is only one unique way of typing a word.
The spelling of a word is the phonetic order of the constituent basic characters.
This provides a unique spelling for each word, which is not affected by the display

rendition.

T T .8 T = 7g7
® Ff W T = feua

N

As shown, display order may be different from the phonetic order. Having a spelling
according to the phonetic order allows a name to be typed in the same way, regardless

of the script it has to be displayed in, thus simplifying the transliteration procedure.

A word in an Indian script can be displayed in a variety of styles depending on the
conjunct repertoire used. ISCII codes however allow a complete delinking of the
codes from the displayed fonts. An ISCII syllable can be displayed using combi-
nation of basic shapes. Different implementations can choose variant techniques in
combination of these basic shapes. The same text can thus be seen in different font

styles by using a different font composition routine.

AT — A T
T . ¥ = T o W
a .7 — & or g

Also use of INV (Invisible) character, explicit halant and soft halant allow the display
to be rendered differently.

e The INV character present in ISCIT character set is used for formation of com-
posite characters which require a consonantal base, but where the consonant

itself should be invisible.

e Many a times it is essential to show an explicit halant on the consonant. Two
consecutive halants allows the formation of the explicit halant.

wx® _aqf = If@

-~

T ® T f = w=fa

~ N ~

o A soft halant is formed by typing a nukta character after a halant. This pre-

vents the preceding half consonant to combine with the following consonant.

= ofwar

g _af a7
a f v = qfgar

T a

-~

ISCII character set has two additional characters: ATR and EXT. The ATR code,
followed by a valid ASCII character, defines a font attribute applicable for the
following characters. The details are given in Appendix B. The EXT code defines a
new character which can combine with the previous ISCII character. This provision

has been primarily used for supplementing Vedic signs along with Devanagari text.

ISCII codes are rendered on the display device according to the display composition
methodology of the selected script. Transliteration to another script can be obtained

by merely redisplaying the same text in a different script.

17

m FEight-bit ISCII code

In this section ISSCII-8 (Indian Script Standard Code for Information Interchange)
[3], as standardized by DOFE in 1986, is reviewed. The lower 128 characters of the
8-bit table contain the ASCII character set, while upper half of the table is used
for Indian script code. The first two columns in upper half of the table is reserved
for control characters as per the recommendation of ISO (International Standard
Organization). Refer to Appendix B for the table. This coding scheme allows

Roman characters to be freely mixed with Indian scripts.

g Seven-bit ISCII code

Seven-bit coding is recommended for those computers and packages which do not al-
low the use of 8-bit codes. In 7-bit coding 128 positions are available for representing

all the characters of the script.

In ISSCII-7 [3] coding, control codes of ASCII are retained and all other symbols are
used for representing the Indian script alphabets. Refer to Appendix B for ISSCII-7
table. This coding however has the disadvantage that Roman scripts cannot be

mixed with Indian scripts.

Another 7-bit coding EA-ISCII (English Alphabet ISCII code) [3] allows Roman
scripts to be mixed with Indian scripts. Refer to Appendix B for the table. The
English upper and lowercase alphabet are interpreted as the corresponding Indian
script character shown in the middle of the column, when an ‘x’ is present at the
beginning of the word. The characters shown towards the right of a column are
obtained by appending the nukta code, to the corresponding Indian script charac-
ter shown in the middle of a column. All the vowels, except 3T, are obtained by

appending the corresponding matra to 7.

18

B Inscript keyboard

The Inscript (Indian Script) overlay [3] can be used on any QWERTY Keyboard.
The Inscript Overlay contains characters required for all the Indian scripts, as de-
fined by the ISCIT character set. It is optimized from phonetic/frequency consid-
erations which allows ease in typing the Indian scripts. Appendix C contains the

Inscript overlay for the ISCII character set as well as for individual Indian scripts.

2.3.2 Other standards

Another popular representation, published by NCST (National Centre for Software
Technology) [5], is pure consonant based coding. In this representation the conso-
nants are always in their pure form i.e with halant. Vowels when added to con-
sonants results in the corresponding matra symbol on the consonant. The coding
table is a 7-bit table where some of the ASCII codes are replaced by the Indian
script characters. This coding facilitates automatic alphabetization in perfect order
of Devanagari. Also it does not disturb basic ASCII codes of most of the signs which

are common in Devanagari and Latin.

19

Chapter 3

Design and implementation

Instead of developing afresh, iterm has been a result of modification of xterm -
a terminal emulator for X [7]. Thus iterm inherits all features of xterm, and in
addition provides entry and display capabilities for Indian scripts and variable width
English fonts. This chapter discusses the design and implementation of iterm.
Instead of examining in detail all the features supported by iterm, main stress is

laid on how xterm was modified to provide support for Indian scripts.

3.1 Design issues

A multilingual terminal supports a group of languages/scripts, each of which has
some special requirements. The terminal should be designed to efficiently handle
all the common requirements, while at the same time it should also be able to deal
with the additional requirments for each language. Hence iterm should support
the distinct features of Indian scripts in addition to the common features of Indian
and English scripts. English has the advantage of linearity, that is, it is typed and
displayed in same sequence as it is written. However, Indian languages are non

linear in nature. Several Indian language specific issues are:

20

e Indian script characters are of variable width. The symbols of the script can

be attached either to the left, right, top or bottom of the previous symbol.

o As there are a large number of distinct display shapes in Indian scripts, a
character code usually do not correspond to a single display shape. Several
character codes may combine to form one display shape, or one character code

may be represented by several display shapes, available in the font.

e The order in which the characters are typed is not necessarily the order in

which they are displayed.

e As the characters are typed, they may combine with earlier typed characters

to form an entirely new display shape.

e The character codes can only combine according to certain rules, to generate

appropriate display shapes.

e The generation of font codes (display shapes) are context dependent.

A truly usable multilingual terminal, which can handle Indian scripts, should also
have flexibility to support several standards in use. Some of the issues related to

this are:

e Codes are used for internal representation of characters. Unlike in English
scripts where ASCIT is the de facto coding scheme, an Indian language has
several coding schemes in use. So the terminal should be flexible to support

any of the current and future coding standards.

e Keyboard mapping is essential to input characters in variety of scripts. There
should be some provision to handle keyboard mapping according to users

choice.

e Fonts are required for display of characters. There might be many fonts which
may not follow the standard coding. There should be flexibility to support

any font.

21

o The existing software packages should be able to run without any modification.

3.2 General design of iterm

As iterm is derived from xterm, it provides DEC VT102 and Tektronix 4014 com-
patible terminals, however, only VT102 terminal supports the display of Indian
scripts. The VT102 terminal support is fairly complete, but does not emulate
smooth scrolling, VT'52 mode, the blinking character attribute, or the double-wide
and double-size character sets. Appendix A contains the list of control sequences

supported by iterm.

In addition to emulating a terminal, iterm also provides cut and paste features and
support scrolling, whereby the number of lines in the scrolling region can be specified.
A status line is provided at the bottom, which contains the current terminal mode
for keyboard and display. Menus are present which allows the user to change the
terminal settings, fonts, and send various signals to iterm. Being an X application
program iterm also provides the user with screen resizing and refreshing features.

Resource files allow the overriding of initial values of parameters, used by iterm.

The iterm allows existing text based applications to be run using Brahmi-based
Indian languages along with English, where English letters can be freely mixed with
any Indian script text. The same keyboard can be used to switch between English or
Indian script inputs, by pressing some special keys. Similarly the display can be set
to show the characters in English or Indian scripts, either by pressing some special
keys or by an escape sequence. One of the Indian script out of those supported
by iterm may be chosen from a menu. The status line shows the current Indian
script. The keyboard mapping, character coding scheme, letter composition rules
and font tables specific to the particular Indian script are reloaded, whenever a script

is selected.

In Indian scripts the width of font characters are variable, and the characters may

22

be glued horizontally or vertically. Also there is no one to one correspondence
between the character codes and the shapes to be displayed. A single character
code may cause a combination of shapes to be displayed, while more than one
character code may lead to only a single display shape. Since the terminal has to
support the variable width of shapes, it does not assume the applications restriction
on the number of characters that can be displayed in a row. The characters can
be displayed till the total width of the characters in that row becomes equal to the

width of the screen.

However many applications, such as editors, require to determine the number of
characters that can be displayed per row. Depending on this information the appli-
cation sends only the specified number of character to be displayed in a row. Due to
this, a sentence which could have been displayed in a single row, maybe split over
two rows by the application program. On the other hand, sentence may be wrapped
to the next line by iterm, if the total width of the characters exceeds the width of
the screen and autowrap feature is enabled. Since there will be discrepancy in lines
displayed and the number of lines known to the editor in its data structure, editing
problems will occur. There is no workaround for this problem except choosing judi-
ciously the number of characters that can be displayed per row. For this a display
shape is chosen as the base character, and the minimum number of characters that
can be displayed per row is calculated by dividing the width of the window by the
display width of this character. This font code should be such that it represents the
average width of the most frequently used characters in the font. In iterm the base

characters may be specified through its configuration files.

The iterm allows the user and applications to communicate with each other in
different languages, translating keystrokes to codes and codes to display shapes.
The English characters are coded according to ASCII, while Indian scripts are coded
separately according to ISCII standards. There are some application programs which
permits the usage of 8-bit codes, while other software packages allow only 7-bit codes
to be used. To allow all kinds of application to run, iterm supports character codes

for Indian scripts in two modes: seven or eight bit, and can switch to either coding

23

scheme dynamically. To provide further flexibility, codes may be defined through
the configuration files. The current files, however, support ISCII coding standards:
EA-ISCII (7 bit), ISSCII-8 (8 bit).

Keyboard and display driver are the important components of iterm. Their func-
tioning, however, is independent of each other. Thus while the user can type in
English characters, display may be set to show the text in one of the Indian scripts.
This is necessary to support all the existing applications. Keystrokes from user are
received by the keyboard driver, which converts them into appropriate code and
transmits them to the application program. Similarly the codes received from the
application programs are processed to check for control sequences. Special action
is taken upon receiving a control sequence (as given in Appendix A), while other
character codes are displayed. Display driver interprets these codes according to
the chosen coding standard, converts them to display shapes and passes to X for

display.

3.3 Configuration files

There are several configuration files used by the iterm. There is a specification file,
which lists the scripts to be supported by iterm. Corresponding to each script, the
user can specify his own coding schemes, keyboard mapping, character composition
rules and font map. All these are provided in form of several files listed in the

specification file. The details of each configuration file is discussed in this section.

3.3.1 Specification file

The main configuartion file, called the specification file, contains the list of Indian
scripts to be supported by iterm. It also contains the default Indian script to

be used initially. Other scripts can be selected from the menu provided in iterm.

24

The information presented in this file for each specified Indian script contains the
following:

e Name of the font to be used for normal display.

e Name of the font to be used for bold display.

e Coding scheme file for specifying codes corresponding to each character.

e Keyboard map file for providing keyboard overlay.

e Font map file which contains mapping between characters and display shapes.

e Type map file which groups the character set into several user defined cate-

gories.

e Rules file which contains the display shape formation rule.

A summary of information presented in the specification file is shown in table 1.

Default Indian script
Devanagari
Font Files
Indian script | Normal | Bold Coding | Keyboard | Font | Type | Rules
scheme map map | map

Devanagari | dvngl0 | dvnglOQ | iscii keybd font1 | type | rulel
Gujarati gujrl0 | gujrl0 | iscii keybd font2 | type | rule2
Tamil tam10 | taml10 | iscii keybd font3 | type | rule3

Table 1: Example - specification file

3.3.2 Coding scheme file

This file contains the coding scheme for each Indian script character. As the iterm

supports two modes of display, seven and eight bit, both codes are provided in this

25

file. For each Indian script character only one character code is generated in eight
bit mode, while several codes may be generated in seven bit mode. Each Indian
script character is represented by a user defined name such as visarg, chandrabindu,
etc. These names are later used in other files. A name “Inv” is, however, reserved
and a character code must be defined for this. It is used to complete a character

which does not form a valid syllable, as per the rules specified in the rule file.

Character || String description | 8 bit code | 7 bit codes
) Chandrabindu 161 A
: Visarg 163 B x
AT Aa 165 Ck
g I 166 Cl
ED Ka 179 D
q Kha 180 E

Table 2: Example - coding scheme file

Codes used in seven bit mode are printable characters only, and are represented by
ASCII characters whose ASCII code is above 32. Table 2 shows a part of the code
file.

3.3.3 Keyboard map file

The mapping between the keyboard characters and the Indian script characters are
enumerated in the keyboard map file. Only the keys of QWERTY keypad can be
mapped to Indian script characters. A part of the keyboard map is shown in table 3.
The first entry in the file, for example, denotes that by pressing ‘&’ character on
the keyboard, three Indian script characters (F, _, ¥) are generated whose codes are

specified in the coding scheme file.

Keyboard characters | Indian script
characters

T

&l

T

T A= TH e
<q 45,

S

Table 3: Example - keyboard map file

3.3.4 Font map file

The font map file contains the following information:

e Font display code for determining the number of characters per row is specified

separately for seven and eight bit modes.

e Sequence of font display code (for example: f Q) to be moved to the beginning
or end, for displaying the font string according to the given specifications, is

also mentioned.

e Font table specifies the mapping between Indian script characters and font
codes (display shapes). The font table is divided into several user defined
categories (see table 4), and for each category the font mapping is defined.
These category names are used later for specifying the combination rules. Font
table is searched to generate the equivalent display shape for given string of
character codes. “Conjunct” is a reserved category, and the mapping provided

under this group is first searched.

3.3.5 Type map file

As discussed earlier, a word in Indian script is composed of syllables. A syllable

is formed by combination of several characters, according to some specified rules.

27

Font Type Characters | Font display

symbols
. ¥
Conjunct . T
. T
T
Vowel
Consonant

Half-Consonant

W o a WY g Y Y ey ¢ Y Yy

Matra

6

6 Pnold 4 g Y ey g4

Table 4: Example - font table

The rules specification requires categorization of the character set. This character
categorization is specified in the type map file. The category names are user defined
and are used in defining syllable and combination rules. A character not listed in
the type map file is assigned the default type provided by the user. Table 5 shows

some user defined categories.

3.3.6 Rules file

The rules file lists the rules for character combination and syllable formation.

28

Default type

Invalid

Character

Type

e 3 S opey Gy

1 ..

-~

Type_Vowel
Type_Vowel
Type_Vowel
Type_Vowel
Type_Consonant
Type_Consonant
Type_Consonant
Type_Consonant
Type_Modifier
Type_Modifier
Type_Modifier
Type_Matra
Type_Matra
Type_Matra
Type_Halant

Table 5: Example - type map file

p Syllable rules

The syllable rules uses the character categories specified in the type map file. Tt

lists all the valid categories, characters from which can be combined to form valid

syllables. Table 6 lists some of the valid syllables.

Valid syllables

1 | Type_Vowel Type_Modifier

2 | Type_Vowel

3 | Type_Consonant Type_Matra Type_Modifier
4 | Type_Consonant Type_Matra

5 | Type_Consonant Type_Modifier

Table 6: Syllable rules

g Combination rules

Characters in a syllable are converted into font display codes. The generation of
these font display codes are context sensitive. For example, consonants when fol-
lowed by a halant at the end of the word, is depicted as the consonant with halant
attached at the bottom, while if the same combination occurs in the middle of the

word, it is shown in it’s pure form (refer figure 3).

The combination rules allow the user to specify the mapping between the input
characters and the output font display shapes. This mapping is listed in form of
rules, and it specifies the combination of character in various categories (as specified
in type map file) which generates the font display code in several font categories (as

specified in font table). Table 7 lists some combination rules.

Input character type Display symbols type
Type_Consonant Type_Halant End Consonant Halant
Type_Consonant Type_Halant Half-Consonant
Begin Type_Cons-r Type_Halant | Reph
Type_Vowel Vowel
Type_Matra Matra
Type_Modifier Modifier

Table 7: Combination rules

Begin and End are reserved keywords which can be used in the rules to denote the

beginning and end of the syllable.

3.4 Keyboard

To input text in Indian and English scripts, the keyboard has provision for entry
of Indian script and English characters. The same key represents characters from
different languages, and depending on the mode of the keyboard, appropriate char-
acters are generated. Thus iterm is designed to provide support for a keyboard con-

taining English characters with an overlay provided for characters of Indian scripts.

30

The standard Inscript keyboard overlay, discussed in previous chapter, is supported.

However the mapping can be modified according to ones own requirement.

The keyboard consists of the standard typewriter keys along with some additional
keys, as reviewed in the previous chapter. The keyboard driver checks for the type
of key pressed and if any other key apart from the keys from QWERTY keypad is
chosen, standard escape sequences are sent to the application program. Appendix A
lists these escape sequences. Also, there may be some special keys mapped to
perform some specific functions. In that case, the corresponding action is carried

out and no sequence is sent to the application program.

However if any of the keys from the QWERTY keypad is pressed, keyboard mapping
is performed to generate appropriate characters. Also these characters are converted

into codes which is then sent to the application program.

3.4.1 Keyboard mapping

In order to generate the relevant characters, keyboard driver keeps track of the
keyboard mode. Generally, on pressing a key, the English characters are selected.
However, if the keyboard mode is set to generate characters from other Indian
scripts, English characters are mapped to characters in Indian script. This map is

loaded at the initialization.

A function is provided to switch between the two modes. To select between the
modes a key is mapped with this function, which is automatically invoked whenever
the key is pressed. The key to be mapped to the function can be selected through

resource database.

31

3.4.2 Encoding of characters

English characters are encoded according to the ASCII standard. However, the
Indian script characters can be encoded according to the ISSCII-8 or EA-ISCII
coding. The user chooses between one of these codings. Appropriate character
codes are generated for each character and sent to the application program. Mapping

between characters and codes are read from the file containing the coding scheme.

There are special functions to switch between eight bit and seven bit coding. These
functions can be registered with X and are called whenever a special user defined

key is pressed.

In seven bit character set (EA-ISCII), same code is used to represent English and
Indian script alphabets. There is an escape character ‘x’ which when present at the
beginning of the word indicates that the word is written in Indian script. Hence,
whenever keyboard is set to generate characters of Indian script, and these charac-
ters are to be encoded according to the seven bit (EA-ISCII) standard, an escape
character is inserted at the beginning of the word. This automatic insertion of escape

character by keyboard driver prevents the user from explicitly typing it.

3.5 Display

Display driver displays the codes received form the application program at the cur-
rent cursor location. It also provides some functionalities for manipulating the text.
Some other features like cut and paste, and scrolling are also supported by the

display driver. In this section all the above functionalities are discussed.

The received character codes are converted into font display codes, generation of
which depends on the active character set. Display can be set to any one of the

character set: US ASCII, UK ASCII, DEC Graphics, ISSCII-8 and EA-ISCII. The
UK ASCII character set is the same as the US ASCII character, apart from the minor

32

difference that dollar sign in US ASCII is replaced by the pound sign in UK ASCII.
The DEC special graphics character set is the same as ASCII character set except
for the characters between 0x5f and 0x7e which are special line drawing characters.
To refer to various character sets see Appendix B. The list of escape sequences sent

to choose between any of these character sets are given in Appendix A.

After the generation of font display codes, exact position at which they are to be
displayed, is determined. This is done by adding width of all previously displayed
characters in the current row before the cursor position. All the characters may not
fit in the same row, and if autowrap is enabled, the extra characters are displayed
in the next row. Depending on the attributes the characters may be displayed as

normal characters or may be printed in bold or reverse video.

Display of English characters involves placing the characters one after another in a
linear sequence. However, Indian scripts, as reviewed, are very complex and there
is a dependency between characters to be displayed and characters which are to the
left of cursor. The new display symbols may be added to left, right, top or bottom
of the previous symbol. Also new character codes may cause the character to the

left of the cursor to be redisplayed. One such example is illustrated in figure 4.

Typing sequence | Display

T

449 4

°B
v f for

Figure 4: Composition of characters in Indian script

Hence, for proper display of characters, whenever characters are to be displayed, font
display codes are generated for the whole word. If required, the previous characters
are erased from the screen, and the new symbols are displayed. Display of characters

in Indian script incurs some overhead, which is necessary for proper display of text.

33

3.5.1 Screen buffer

Codes received by the program are stored in the buffer along with its attributes. This
is essential, as iterm allows scrolling, and also provide features for manipulating the
text. The attributes of the character can be set by various control sequences, as

discussed in previous chapter.

The screen buffer is big enough to hold the character rows currently displayed on
the screen and the rows that are to be saved for scrolling. Each element of screen
buffer points to a fixed size array, of characters. This array can store twice the
maximum number of characters that can be displayed per row with their attributes.
The maximum number of characters that can be displayed is equal to the pixel width
of the screen. This maximum would be reached when each character on the screen

is only of one pixel width (Example: Viram).

In case of English characters, the codes stored in the buffer has direct correspondence
with the font display code. This prevents unnecessary translation between the codes
and the display shapes in the font every time they are to be displayed. However,
if the display is to be in any of the Indian languages, it is not possible to store the
font display codes in the buffer. This is because one character code can generate
a combination of font display codes. Also the new character codes may combine
with previous character codes to form a new font display code, for which we require
to store the previous codes. Hence to distinguish between the English and Indian
characters, some information is stored along with the attributes which depicts the

presence of Indian script characters.

3.5.2 Generation of display symbols

For English text, the character codes and font display codes have one to one cor-
respondence. Also the characters are simply juxtaposed and each character is dis-

played independent of other characters present in that row. So the font display code

34

generation just involves mapping of character codes to font display codes.

However, to generate characters for several Indian scripts, several aspects are to
be considered. The characters can be only combined according to some rules, and
depending upon the context a character may be completely modified. To generate

font codes for Indian scripts, steps involved are:

e Step 1: The word is checked for valid syllables. If there is an invalid symbol

an “INV” character is inserted to make it a valid syllable.

e Step 2: The syllable is first searched for the presence of conjuncts in the
font table. If conjuncts are found then the set of input character codes which

matches the conjunct is replaced by corresponding font display codes.

e Step 3: For the rest of the character codes in the syllable, combination rules
are checked and font table is searched, replacing the input character codes by

the corresponding font display codes.

o Step 4: After the input string has been converted to a string of font display

codes, some of them are moved for proper display.

An example demonstrating the various steps is shown in figure 5.

3.5.3 Cursor movements

The cursor is displayed as a block cursor in inverse mode, the width of which depends
on the character on which it is placed. There is a horizontal cursor which shows the
logical positioning of the character. Whenever the current window is unselected, the

block cursor is changed to outline cursor.

In English there is one to one correspondence between the input character and the

symbol displayed, so the cursor shows the actual character. However, in Indian

35

Input (keyboard) Font code generation Display
syllable syllable syllable

Step 1 L IR S I SR B T T
Step2|T . T I T _ O T OT|F T L o R O
Step 3 T T R § TT
Step 4 T T o TT
Step 1 aT ®= _ a f
Step 2 w & _af I ® . ad f st
Step 3 I F a f
Step 4 I f =z«

Figure 5: Generation of display symbols

scripts many input characters may combine to form one display symbol. For exam-
ple, & is a combination of &, _ and ¥. To make it easier to determine as to which
of the characters cursor is positioned on, actual character is displayed on the status

line.

To move the cursor from one position to another, first the cursor at the current
location is hidden, and then a new cursor is drawn at the requested position. To
draw the cursor, the character to be represented by the cursor is determined. Then
the position and width of that character is found and a rectangular block is drawn

surrounding that character.

There are various control sequences to manipulate the cursor. The cursor may be
moved in any direction left, right, up or down till the screen boundaries are reached.
Insertion of carriage return causes the cursor to be moved to the next line, while
insertion of tabs causes the cursor to move horizontally. The detailed list of cursor

movements is given in Appendix A.

36

3.5.4 Text manipulation

The terminal emulator allows application program to edit the stored text. Char-
acters can be inserted at the current cursor position or they may overwrite the
existing characters. Various control sequences are provided for deletion of charac-
ters and lines, insertion of blank characters and lines, erasing of certain portions of

screen, and scrolling of text.

Insertion, replacement and deletion of characters requires the updation of screen
buffer. To insert characters at the current cursor location, all characters between
the cursor and the rightmost character of that row are moved to the right, by the
number of characters that are to be inserted. The characters to be inserted are then
copied at the current location. Overwriting of characters simply involves copying
the characters at the current cursor location. Deletion of characters require that all
characters to the right of the characters to be deleted should be moved to the left,
by the number of characters that are to be deleted.

After the screen buffer is updated, these results are to be shown on the display.
The insertion, deletion and replacement of English characters are very simple, as
there are no relationships between the constituent symbols. Insertion and deletion of
characters are reflected by first clearing the screen from the current cursor position
to the end of the screen, and then displaying all the characters stored in the screen
buffer from the current cursor location. Overwriting of characters simply involves
erasing only a portion of screen, mainly the characters which are to be overwritten,
and the new characters are displayed at that location. If the font being used has
variable width, then the characters to the right may be required to be moved to the
left or right.

However when Indian characters are edited some additional processing is required.

This is because insertion, overwriting and deletion of characters may affect the

characters to the left and right of the cursor location as shown in figure 5.

37

Typing Sequence Display

= [f

-~

g

Insert

4
A= 4
=
<
-

-~

Replace | T @

q
2

ﬁ_
4 A

é}’

Delete

4949 44
-4 = = -
Yy oy oy
0 =]

- 2

Figure 6: Insertion, replacement and deletion of characters

So the word boundary is determined, and instead of redisplaying the characters from

current cursor location characters are redisplayed from starting of word.

To provide scrolling all characters in the scrolling region are stored in a buffer.
Pointers denote the region which is currently displayed. This pointer is moved up or
down whenever scrolling is requested. To reflect the affect of scrolling on the screen,

screen is cleared and new text is displayed.

3.5.5 Cut and paste

The iterm allows already displaed text to be selected and copied within the same
or other window. The selection functions are invoked when the mouse buttons are
used. Pointer button one is used to save text into the cut buffer. The cursor is
moved to the beginning of the text, and then the button is held down, while the

cursor is moved to the end of the region and button is released. Selected text is

38

highlighted and is saved in the global cut buffer. Double clicking selects by words
while triple-clicking selects by lines. Pointer button two pastes the text from the
buffer. Pointer button three is used to extend the current selection. The assignment
of the functions described to keys and buttons may be changed through the resource
database.

X sends pixel position of the mouse when buttons are pressed or released. To mark
the text to be cut, character on which the mouse button is pressed or released is
determined. Pointers are used to mark the selected area. When the selection area
is extended new character position is determined, and pointer values are changed.
Once the selection is completed these characters are copied into the global cut buffer.

To paste the text, these characters are inserted as keyboard input.

39

Chapter 4

Results

The iterm supports all application programs that can run on xterm. The software
has been tested against some application programs like vi, more, cat, ls and C
compiler; and the results are presented in this chapter. The software was tested
under Digital Unix and Linux operating system. As fonts for all Indian scripts were

not available, tests were carried out with only Devanagari and English scripts.

Various snapshots of the screen showing interaction between a user and machine
were taken. FA-ISCII was used for input and output of devanagari script while
ASCII code was used for entry and display of English text. As EA-ISCII code allows
English characters to be mixed with Devanagari characters, any text displayed using

this coding scheme contains both English and Devanagari words.

With alias command user can create Hindi equivalent of English commands. One
such example is shown in figure 7. Figure 7 also shows the contents of present
directory. Figure 8 shows the contents contents of a file viewed by cat command.
Figure 9 shows the file being edited using vi editor. Figure 10 and 11 displays the

program written in C. Output of the program is presented in figure 12.

40

DEYANAGARL

nitu
nitu
nitu
nitu
nitu
nitu
nitu
nitu
nitu
nitu
nitu
nitu

nitu

users

users

users

users

users

users

users

users

users

users

users

users

users

656
143
245
251
1024
250
16219
1473
18231
79352
1200
1061
318

Dec
Dec
Dec
Dec
Dec
May
Dec
Dec
Nov
Dec
Dec
Dec

Dec

25
23
25

16
29
29

25
29
23
22

11:07
20:18
11:10
10:18
10:23

1996
09:44
09:43

character_set
command
date.c
hindi.txt
isciil

testl
g
AT .c

17:47 HSYSg
11:16 TEAT

09:37 HTIA-ITH TG,
19:37 &

19:44 ISR

-

DEYANAGARI (72 (KEYBOARD) /DEYANAGARI (/) (DISPLAY)

41

39T A 999 37 AL.AT.H s zmer e oL e AT sy Y

FT FHMT AT TE | §HERT AT T qg e g R o
T favs zoer & QT §I-giar, F9r 9. 89 uF argT o
9T 1T F 9T &iT AGqIT Fidh AR GG T Hitt 5§ ggraar
fentr | 59 go9e o Afas #1F &7 av & 9o fFRar

ag e & yeaas s St.og.aaer F e o Lang 27 ot
AT AT ATG AT i 95 [Gv oo goqiya & | §F SA99¢ 9¢ Tr
AT & UHTeRe O g WenfrT T & 3= sifvsrdr
UThEY U9 ATar AE 9 | §9 29 & Y9 Al e AN

y.¥ FUT F | T T 9.3° FUT §9F @\ F "I 5T |

7g e fafas sfastafor # qruEsT & 9ge9 UF 3oy

ug faferse gx==r & |

> vi AT-9TH TG |

DEYANAGART DEVANAGARI (/) (KEYBOARD) /DEYANAGARL (7) (DISPLAY)

ITET-9T & 399 & TG H JIheaT= & qearef = SToTer
HATA ATEAT |T G 780 9854 ¥ | F§ A= o FF A

T gfg] & g qutaaT ge=s & | SifRsTT 89T g6
RTEAT A5 H€ THAT | AEAT F Fi=Lr 09T F ATAT AT
A& .S A, AT qF IR Fr fE-las a7 9T 8, A<
F 9=t 9599 § A9 04T | ATEdT U9 Figd O - 9T
A5 A9 ¥ FIET AT @S5 A57 9r5ar |

TH HIT qIFRET AT HATTE TS T AS A G FT
T{r T | I gHA aTE g7 & fafaws 97 femmar | @ ar
fr arfareir 897 STIgT. fHMT o7 8 & 7 99 997
e vag F0F & | & 3WT & A7 gg X a9 F
TS & UFH 987 4T o7 15T & | §9 9% T AT Twiar
FHT T | 9IFRET=T a7 AT 919 9T BF AT -9r F UoTer
gg & Hifaaa 99 31T AT 90w F9€ F da &

g | a9 F ST AgTEiEaAr ST-ITE AT ST a9 50
o |

H H H H H H H H H H H

DEYANAGARL DEYANAGARI (7) (KEYBOARD) /DEYANAGARL (/) (DISPLAY)

43

ri;

=/
#i
#d
st

}:
ma

{

HUAT-fg=r.c

5 YT English 31T fg=4r & forar wmar §

It generates the hindi equivalent word of English.
The database is read in from "ST&&ZHIT"

nclude<stdio.h>
efine No_Char 20
ruct _tabled

char eng[No_Charl:
char hindilNo_Charl:

in()

FILE =fp:
int j.len:
char ch.str[No_Charl:
struct _table ®*table:

fp = Fopen("ﬂFﬁfqﬁﬂT" P S 3
if (fp == NULL) {
printﬁ("Unable to open file &R :
exit(-1):
}
fscanf (fp."%d" .&len) :
if (len > 0) {
table = (struct _table %) malloc(sizeof{struct _table) ® len):
if (table == NULL) {
printf{"unable to allocate memory - exiting ‘n"):

exit(-1):

DEYANAGARL ENGLISH(KEYBOARD) /DEYANAGARL (/) (DISPLAY)

44

printf{"unable to allocate memory - exiting \‘n")

exit(-1):
}
¥
else {
printf{("Sorry. no words in the databse - exiting"):
exit(-1):

}
system("clear”):
for(j =0 : j< len I j++)
fscanf (fp."¥s¥s" .tablel jl.eng. tablel jl.hindi):
printf (" English — Hindi Dictionary \n"):
printf ("’ U - ’%EQI' &R \n\n"):
while(1>{
fflush(stdin):
printf (" Type any word “t \t"): scanf("¥s"”.str):
for(j=0: j< len : j+r+) {
if (Istrcmp(tablel j1l.eng.str)) {
printf("st %s - ¥s \n".tablel jl.eng.tablel j1.hindi):

break:

}
if (j == len) printf("\t Sorry not found “wn"):
printf("\n Another Word (Y/N)? "):

fflush(stdin): scanf("%c".&ch):
if (ch == "n” Il ch == "N7) exit(1):
if Cch =="y” Il ch =="Y") break:

DEYANAGARL ENGLISH(KEYBOARD) /DEYANAGARL (/) (DISPLAY)

45

English - Hindi Dictionary

[T - fE=ar s

Type any word Eye
Eye - AT

Another Mord (Y/N)? y
Type any word Mother

Mother - ﬁ%

Another Mord (Y/N)? y

Type any word Hater
Water - 9THT

Another Mord (Y/N)? y

Type any word Heather
Weather — HTEH

Another Mord (Y/N)? y

Type any word Apple
Apple - g

Another Mord (Y/N)? y
Type any word River

Serry not found

Another Mord (Y/N)? y

Type any word Bannana

Bannana — ZheAT

Another Word (Y/N)? n

>

DEYANAGARL ENGLISH(KEYBOARD) /DEYANAGARL (/) (DISPLAY)

46

Chapter 5

Conclusion

The iterm is a modified xterm, which in addition provides I/O support for text
composed in various Brahmi-based Indian scripts. Also iterm supports both fixed
and variable size fonts. Hence the text can be displayed using any font style, which

was not possible in xterm, as it had support for only fixed width fonts.

The iterm has been designed to support all the Brahmi-based Indian languages, but,
due to fonts being inaccessible, it has only been configured to support Devanagari
scripts. However, the user can configure iterm to support any other Brahmi-based
Indian languages. The iterm provides the flexibility to define ones own coding
scheme and keyboard mapping. The default coding scheme used by iterm are
ISSCII-8 and EA-ISCII. Inscript keyboard overlay has been supported. Any font

can be used for display of Indian script characters.

The default coding scheme and keyboard mapping can be overridden by modifying
the configuration files. One of the configuration files contains the font table, which
is to be supplied with every font. The configuration files also contains the rules for
composition of characters, which can be redefined. These values are read in at the
run time. These configuration files makes the implementation of iterm independent

of any coding scheme, keyboard mapping, fonts and character composition rules.

47

Keyboard and display driver of xterm has been extended to work with Indian scripts.
The keyboard driver handles the input of Indian scripts, and English characters. The
input handling requires keyboard mapping of characters to codes. The display driver
deals with display of text in any one of the selected scripts. Character composition
of the input characters are performed before displaying them. It also allows scrolling
and manipulation of entered text. Cut and paste features are also supported by the

display driver.

All the application programs which support 7/8 bit coding schemes can tun on
iterm. It allows variable width fonts to be used due to which the number of char-
acters that can be displayed per row actually varies. This causes certain difficulties

in vi which allows only a fixed number of characters to be displayed per row.

5.1 Future work

The iterm has not incorporated the ATR and EXT characters provided in ISCII
coding scheme. It can be extended to support the above characters, thus allowing

free mixing of all the Indian scripts and further extension of character set.

The Indian scripts are a derivative of ancient Brahmi and Perso-Arabic scripts.
Various Perso-Arabic based Indian scripts Urdu, Sindhi and Kashmiri differ from
Brahmi-based Indian scripts as they are written from right to left. The iterm only
supports the input and output of Brahmi-based Indian scripts. It can further be

extended to provide similar support for Perso-Arabic based scripts.

Only screen input and output of Indian scripts and English is provided by iterm.
Printing of Indian languages is currently not supported by iterm. The iterm could

be extended to print various scripts in graphics mode on a variety of printers.

Existing editors such as vi running under Digital Unix do not support eight bit input

and output. Also due to the variable width of the font the text when written in vi

48

is not justified properly. There is a need for an editor which would allow the entry

of eight bit codes and which would not assume fixed number of characters per row.

49

Appendix A
Control sequences

Appendix A lists the control sequences provided by a VT'100 terminal and the control
sequences supported by iterm. It also enumerates control sequences generated by

iterm when special keys are pressed.

A.1 DEC VT100 features

A.1.1 ANSI compatible mode

g Character attributes

ESC [Ps;Ps;Ps;...,Ps m
Ps = 0 or None All Attributes Off
1 Bold on
4 Underscore on
5 Blink on
7

Reverse video on

50

[| CLlI'SOI' movement commands

ESC
ESC
ESC

ESC
ESC
ESC [H
FSC D
ESC M
FSC E
ESC 7
FSC 8

[
[
[
[
[
[

Pn A Cursor Up

Pn B Cursor Down
Pn C Cursor Right
Pn D Cursor Left
PL;Pc H Cursor Position
PL;Pc f Cursor Position

Cursor Home

Index

Reverse Index

Next Line

Save Cursor and Attributes

Restore Cursor and Attributes

e Pn = decimal parameter in string of ASCII digits.(default 1)

¢ Pl = line number (default 0)

e Pc = column number (default 0)

m Line size (double-height and double-width) commands

ESC # 1
ESC # 2
ESC # 3
ESC # 4
ESC # 5
ESC # 6

Change this line to single-width, double-height top half
Change this line to single-width, double-height bottom half
Change this line to double-width, double-height top half
Change this line to double-width, double-height bottom half
Change this line to single-width, single-height

Change this line to double-width, single-height

51

p FErasing

ESC [K From cursor to end of line

ESC [0 K From cursor to end of line

ESC |1 K From beginning of line to cursor
ESC Entire line containing cursor

ESC
ESC
ESC
ESC

From cursor to end of screen

From beginning of screen to cursor

[
[
[
[2 K

[J

[0J From cursor to end of screen
(1]

[2)]

Entire screen

g Character set

GO Gl G2 G3 Ch. Set
ESC(A | ESC)A | ESC*A | ESC+A UK ASCII
ESC(B | ESC)B | ESC*B | ESC+B US ASCII

ESC(0 | ESC)0 | ESC*0 | ESC+0 DEC Special graphics

ESC(1 | ESC)1 | ESC*1 | ESC+1 | Alternate character Rom

ESC(2 | ESC)2 | ESC*2 | ESC+2 | Alternate character Rom

special graphics character

The character set GO, G1, G2 and G3 are invoked by following sequences.

52

Control name Coding | Function
LSO Lock Shift GO ST Invokes GO into GL (default)
LS1 Lock Shift G1 SO Invokes G1 into GL
LS1R Lock Shift G1 Right | ESC ~ | Invokes G1 into GR
[.S2 TLock Shift G2 ESC n | Invokes G2 into GL
LS2R Lock Shift G2 Right | ESC } | Invokes G2 into GR (default)
LS3 Lock Shift G3 ESC o | Invokes G3 into GL
LS3R Lock Shift G3 Right | ESC | | Invokes G3 into GR
552 Single Shift G2 552 Invokes G2 into GL
ESC N | for the next graphics character
SS3 Single Shift G3 SS3 Invokes G3 into GL
ESC O | for the next graphics character

m Scrolling region

ESC[Pt; Pbr
Pt is the number of the top line of the scrolling region;

Pb is the number of the bottom line of the scrolling region and must be greater than
Pt.
(The default for Pt is line 1, the default for Pb is the end of the screen)

B TAB stops

ESCH Set tab at current column
ESC[g Clear tab at current column

ESC [0 g Clear tab at current column
ESC [3 g Clear all tabs

93

g Modes

To Set To Reset

Mode Name Mode Sequence Mode Sequence
Insert/Replace Insert ESC [4h Replace ESC [41
Line feed /new line New line ESC [20h Line feed ESC [201
Cursor key mode Application ESC [?1h Cursor ESC [
ANSI/VT52 mode ANSI ESC < VT52 ESC [?721
Column mode 132 Col ESC [73h 80 Col ESC [?31
Scrolling mode Smooth ESC [?4h Jump ESC [?41
Screen mode Reverse ESC [?5h Normal ESC [?5]
Origin mode Relative ESC [?6h Absolute ESC [?6]
Wraparound On ESC [?77Th Off ESC [771
Auto repeat On ESC [78h Off ESC [781
Cursor Type Block ESC [720h Line ESC [7201
Cursor Enable On ESC [725h Off ESC [7251
Interlace On ESC [?79h Off ESC [?791
Graphic proc. option On ESC 1 Off ESC 2
Keypad mode Application ESC = Numeric ESC >

p FEditing functions

ESC
ESC
ESC
ESC

Pn P
Pn L
Pn M

[
[
[
[Pn @

Delete Characters
Insert Lines

Delete Lines

Insert Blank Characters

54

B Reports

Cursor position report
Invoked by ESC[6n
Response is ESC [PI; Pc R
* Pl = line number;
* Pc = column number;
Status report
Invoked by ESC [5n
Response is ESC [0 n (terminal ok)
ESC [3 n (terminal not ok)
What are you
Invoked by ESC [cor ESC[O ¢
Response is ESC[71;PsC
Ps = 0 Base VT100, no options
Processor option (STP)
Advanced Video option (AVO)
AVO and STP
Graphics processor option (GO)
GO and STP
GO and AVO

7 GO, STP, and AVO
* Alternately invoked by ESC Z (not recommended.) Response is the same.

[R O R T N

B Reset

ESC ¢

99

p Screen alignment

ESC # 8 Fill Screen with "Es”

A.1.2 VT52 compatible mode

ESC A
ESC B
ESC C
ESC D
ESC F
ESC G
ESC H
ESC 1
ESC J
ESC K
ESCY
ESC 7
ESC =
ESC >
ESC <

line column

Cursor Up

Cursor Down

Cursor Right

Cursor Left

Select Special Graphics character set
Select ASCII character set
Cursor to home

Reverse line feed

Erase to end of screen

Erase to end of line

Direct cursor address (see note 1)
Identify (see note 2)

Enter alternate keypad mode

Exit alternate keypad mode
Enter ANST mode

e NOTE 1: Line and column numbers for direct cursor address are single char-

acter codes whose values are the desired number plus 37 (in Octal). Line and

column numbers start at 1.

¢ NOTE 2: Response to ESC 7 is ESC / Z.

96

A.2

A.2.1 VT102 mode

Most of these control sequences are standard VT102 control sequences, but some
sequences from later DEC VT terminals are also present. VT102 features not sup-
ported are smooth scrolling, double size characters, blinking characters, and VT52

mode. There are additional control sequences to provide iterm-dependent functions,

like the scrollbar or window size.

Control sequences for character attributes, cursor movement commands, erasing,
scrolling region, tab stops, editing functions, reset, screen alignment are the same as

VT100 control sequences. Bold characters are drawn on receiving control sequences

for blinking attribute.

g Character set

iterm control sequences

GO Gl G2 G3 Ch. Set
ESC(A | ESC)A | ESC*A | ESC+A UK ASCII
ESC(B | ESC)B | ESC*B | ESC+B US ASCII
ESC(0 | ESC)0 | ESC*0 | ESC+0 | DEC Special graphics
ESC(1 | ESC)1 | ESC*1 | ESC+1 FA-ISCTT
ESC(2 | ESC)2 | ESC*2 | ESC+2 ISSCII-S

The character set GO, G1, G2 and G3 are invoked by the same sequence as specified

for VT100 terminals.

57

g Modes

Control sequences to set various modes - insert /replace, line feed /new line, keypad
mode, cursor key mode, column mode, scrolling mode, screen mode, origin mode,

wraparound and auto-repeat, are the same as that for VT100 terminal.

Dec private mode

ESC [? Pm h - Set (DECSET)

Ps= 2 Designate US ASCII for character sets G0-G3
9 Send Mouse X & Y on button press
38 Enter Tektronix mode
40 Allow 80 < 132 Mode
41 more(1) fix (see curses resource)
44 Turn on Margin Bell
45 Reverse-wraparound mode

46 start logging
47 use alternate screen buffer

1000 send mouse x & y on button press and release

1001 Use Hilite Mouse Tracking
ESC [7 Pm 1 - Reset (DECRST)

Ps= 9 Don’t Send Mouse X & Y on button press
40 Disallow 80 <+ 132 Mode
41 No more(1) fix (see curses resource)
44 Turn off Margin Bell
45 No Reverse-wraparound mode
46 Stop logging
47 use normal screen buffer

1000 Don’t send mouse x & y on button press and release

1001 Don’t Use Hilite Mouse Tracking
ESC [? Pm 1 - Restore DEC Private Mode Values. Value of Ps previously stored

is retrieved. Ps values are the same as above.

ESC [? Pm s - Save DEC Private Mode Values. Ps values are the same as above.

58

B Reports

The control sequences for obtaining cursor position and status reports are the same
as VT100 control sequences. Even the terminal identification control sequence is
the same except that the iterm responds by
ESC[?1;PsC
Ps = 2 Base VT100, Advanced Video option (AVO)
Terminal parameters

Request ESC [Ps x

B Miscellaneous control sequences

ESC] 0 ; Pt BEL Change Icon Name and Window Title to Pt
ESC] 1 ; Pt BEL Change Icon Name to Pt

ESC] 2 ; Pt BEL Change Window Title to Pt

ESC |4 6 ; Pt BEL Change Log file to Pt

ESC] 50 ; Pt BEL Set Font to Pt

ESC 1 Memory Lock (per HP terminals)

ESC m Memory unlock (per HP terminals)

ESC [Ps;Ps;Ps;Ps;Ps T Initiate hilite mouse tracking.

parameters are func; startx; starty; firstrow; lastrow

e Ps - A single (usually optional) numeric parameter, composed of one of more

digits.

¢ Pm - A multiple numeric parameter composed of any number of single numeric

parameters, separated by ; character(s).

e Pt - A text parameter composed of printable characters.

99

A.2.2 Mouse tracking

The VT widget can be set to send the mouse position and other information on
button presses. These modes are typically used by editors and other full-screen
applications that want to make use of the mouse. There are three mutually exclusive
modes, each enabled (or disabled) by a different parameter in the DECSET (or
DECRST) escape sequence. Parameters for all mouse tracking escape sequences

generated by iterm encode numeric parameters in a single character as value+040.

X10 compatibility mode sends an escape sequence on button press encoding the
location and the mouse button pressed. It is enabled by specifying parameter 9 to

DECSET. On button press, iterm sends

ESC [M CbCxCy

e Cb is button-1.

e Cx and Cy are the x and y coordinates of the mouse when the button was

pressed.

Normal tracking mode sends an escape sequence on both button press and release.
Modifier information is also sent. It is enabled by specifying parameter 1000 to

DECSET. On button press or release, iterm sends

ESC [M ChCxCy

e The low two bits of Cb encode button information: 0=MBI1 pressed, 1=MB2
pressed, 2=MB3 pressed, 3=release.

e The upper bits encode what modifiers were down when the button was pressed

and are added together. 4=Shift, 8=Meta, 16=Control.

60

e Cx and Cy are the x and y coordinates of the mouse event. The upper left

corner is (1,1).

Mouse hilite tracking notifies a program of a button press, receives a range of lines
from the program, highlights the region covered by the mouse within that range un-
til button release, and then sends the program the release coordinates. It is enabled
by specifying parameter 1001 to DECSET. On button press, the same information
as for normal tracking is generated; iterm then waits for the program to send mouse
tracking information. All X events are ignored until the proper escape sequence is

received from the pty:

ESC [Ps; Ps; Ps; Ps; Ps T

The parameters are func, startx, starty, firstrow, and lastrow. func is non-zero
to initiate hilite tracking and zero to abort. startx and starty give the starting x
and y location for the highlighted region. The ending location tracks the mouse,
but will never be above row firstrow and will always be above row lastrow. (The
top of the screen is row 1.) When the button is released, iterm reports the ending

position one of two ways:

ESC [t CxCy - if the start and end coordinates are valid text locations.
ESC [T CxCyCxCyCxCy - if either coordinate is past the end of the line.

The parameters are startx, starty, endx, endy, mousex, and mousey. startx, starty,
endx, and endy give the starting and ending character positions of the region. mou-
sex and mousey give the location of the mouse at button up, which may not be over

a character.

61

A.2.3 Tektronix 4014 mode

Most of these sequences are standard Tektronix 4014 control sequences. Graph
mode supports the 12-bit addressing of the Tektronix 4014. The major features
missing are the write-thru and defocused modes. The control sequences listed below
do not describe the commands used in the various Tektronix plotting modes but

does describe the commands to switch modes.

BEL Bell (Ctrl-G)

BS Backspace (Ctrl-H)

TAB Horizontal Tab (Ctrl-I)

LF Line Feed or New Line (Ctrl-J)

VT Cursor up (Ctrl-K)

FF Form Feed or New Page (Ctrl-L)

CR Carriage Return (Ctrl-M)

ESC ETX Switch to VT100 Mode (ESC Ctrl-C)

ESC ENQ Return Terminal Status (ESC Ctrl-E)

ESC FF PAGE (Clear Screen) (ESC Ctrl-L)

ESC SO Begin 4015 APL mode (ignored by iterm) (ESC Ctrl-N)
ESC SI End 4015 APL mode (ignored by iterm) (ESC Ctrl-O)
ESC ETB COPY (Save Tektronix Codes to file COPYyy-mm-dd.hh:mm:ss)

(ESC Ctrl-W)

ESC CAN Bypass Condition (ESC Ctrl-X)

ESC SUB GIN mode (ESC Ctrl-Z)

ESC FS Special Point Plot Mode (ESC Ctrl-\)
ESC 8 Select Large Character Set

ESC 9 Select #2 Character Set

ESC : Select #3 Character Set

ESC ; Select Small Character Set

62

ESC] Ps ; Pt BEL Set Text Parameters of VT window

ESC ¢
ESC a
ESC b
ESC ¢
ESC d
ESC h
ESC i
ESC j
ESC k
ESC 1
ESC p
ESC ¢q
ESC r
ESC s
ESC t
F'S

GS

RS

US

Ps = 0 — Change Icon Name and Window Title to Pt
Ps = 1 — Change Icon Name to Pt

Ps = 2 — Change Window Title to Pt

Ps =4 6 — Change Log File to Pt

Normal 7 Axis and Normal (solid) Vectors
Normal 7 Axis and Dotted Line Vectors
Normal 7 Axis and Dot-Dashed Vectors
Normal 7 Axis and Short-Dashed Vectors
Normal 7 Axis and Long-Dashed Vectors
Defocused 7 Axis and Normal (solid) Vectors
Defocused 7 Axis and Dotted Line Vectors
Defocused 7 Axis and Dot-Dashed Vectors
Defocused 7 Axis and Short-Dashed Vectors
Defocused 7 Axis and Long-Dashed Vectors
Write-Thru Mode and Normal (solid) Vectors
Write-Thru Mode and Dotted Line Vectors
Write-Thru Mode and Dot-Dashed Vectors
Write-Thru Mode and Short-Dashed Vectors
Write-Thru Mode and Long-Dashed Vectors
Point Plot Mode (Ctrl-\)

Graph Mode (Ctrl-])

Incremental Plot Mode (Ctrl-A)

Alpha Mode (Ctrl- _)

63

A.2.4 Keyboard

8 Numeric keypad

Numeric

Application

© 0 ~1 O Ot ke W NN = O

Enter
PF1
PF2
PF3
PF4

© 0 ~1 O Ot ke W NN = O

b

CR/CR LF
FSC O P
ESC 0 Q
ESC O R
FSC O S

ESC O p
ESC O q
ESC Ot
ESC O s
ESC O t
ESC O u
ESC O v
ESC O w
ESC O x
ESC Oy
ESC O m
ESC 01
ESC O n
ESC O M
ESC O P
ESC 0 Q
ESC O R
ESC O S

64

g Cursor control keys

Cursor | Application

B
[C|ESCOC
D

Up ESC[A | ESCO A
Down | ESC
Right | ESC
Left | ESC

ESC O B

ESCOD

p FEditing keypad

Key Code

Find ESC[1~
Insert ESC[2 ~
Remove ESC[3 ~
Select ESC [4 ~
Prev Screen | ESC [5 ~
Next Screen | ESC [6 ~

65

g Function keys

Key | Code Code(Sun)

F1 | ESC[11 ~ | ESC [224 ~
F2 | ESC[12 ~ | ESC [225 ~
F3 | ESC[13 ~ | ESC [226 ~
F4 | ESC [14 ~ | ESC [227 ~
F5 | ESC[15 ~ | ESC [228 ~
F6 | ESC[17 ~ | ESC [229 ~
F7 | ESC[18 ~ | ESC [230 ~
F8 | ESC[19 ~ | ESC [231 ~

F9 | ESC[20 ~ | ESC [232 ~
F10 | ESC ESC [233 ~
F11 | ESC [23 ~ | ESC [192 ~
F12 | ESC [24 ~ | ESC [193 ~
F13 | ESC [25 ~ | ESC [194 ~
F14 | ESC [26 ~ | ESC [195 ~
F15 | ESC [28 ~ | ESC [196 ~
F16 | ESC [29 ~ | ESC [197 ~
F17 | ESC ESC [198 ~
F18 | ESC [32 ~ | ESC [199 ~
F19 | ESC [33 ~ | ESC [200 ~
F20 | ESC [34 ~ | ESC [201 ~

— — — — — — — — — — — — — — — — — — — —

Appendix B

Code

This appendix contains the popular coding schemes used for internal representation

of English and Indian scripts.

US ASCII code is a 7-bit code with 32 “control characters” and 96 “graphics charac-
ters”. UK ASCIT is the same as US ASCII except that the dollar sign is replaced by
pound sign. The Dec Special Graphics character set is the same as ASCII character
set except for the characters between 0x5f and 0x7e which are special line drawing

characters.

ISCII (Indian Standard Code for Information Interchange) was standardized by
DOE. The ISCII code contains only the basic alphabet required by the Indian scripts.
All the composite characters are formed through combination of these basic charac-
ters. Immediate transliteration between different Indian scripts is possible, just by
changing the display modes. In addition to the alphabets of Indian scripts the ISCII
character set also contains the INV, ATR and the EXT code. INV character is used
as a consonant and 1s used to for formation of composite characters which requires a
consonantal base. ATR character followed by a displayable ASCII character, defines
a font attribute applicable for the following characters. EXT followed by an ISCII

character, defines a new character which can combine with previous ISCII character.

67

ISSCII-8 is a 8-bit code with lower 128 characters of the table containing the ASCII
character set. ISSCII-7 bit code is meant for ISO compatible 7/8 bit environment,
and 94 positions in the ASCII table is replaced by characters from ISCII character
set. EA-ISCII is also a 7 bit code, however, it allows the mixing of Roman characters
with Indian scripts. ‘x” at the beginning of the word denotes the word in Indian

script. In EA-ISCII ’x” is interpreted as follows:

o double » - xx 1s displayed as x. It is required for writing an English word

beginning with x.

o standalone x - x which is preceded and followed by space or non alphabet,

shows up as x rather than nukta.

In the table the rightmost characters are formed by appending nukta to the corre-

sponding Indian script character shown in the middle of the column.

68

B.1

ASCII 7-bit code

69

B.2 DEC special graphics

70

B.3 Indian script alphabet

71

72

73

B.4 1ISSCII-8 code

74

B.5 1ISSCII-7 code

75

B.6 EA-ISCII code

76

B.7 ATR chart

77

Appendix C

Inscript keyboard

The Inscript (Indian Script) keyboard overlay was standardized by DOE. It can
be used on any QWERTY keyboard. The Indian script legends are shown on the
right hand side of the key, as the left hand side has the English legends. It contains
characters required for all the Indian scripts, as defined by ISCII character set. The
overlay has been optimized from phonetic/frequency considerations. It is divided in
two parts: the vowel pad on the left hand side, and the consonant pad on the right
hand side.

Due to the phonetic/alphabetic nature of the keyboard, a person who knows typing
in one Indian script can type in any other Indian script. The logical structure allows
ease in learning, while the frequency considerations allow speed in touch typing. The
keyboard remains optimal both from touch-typing and sight-typing points of view,

in all Indian scripts.

78

79

30

81

82

Appendix D

User manual

The itermis an X11R5-based VT102 and Tektronix 4014 terminal emulator, which
supports the input and output of Indian and English scripts. It is an extension
of xterm, and most of the functions are the same as original xterm~s, however, it
has capabilities of displaying and entering text in Indian scripts, if compiled with

-DITERM option. It also provides a status line, where relevant details are displayed.

Command to run iterm:

iterm [-toolkit option....] [-option]

The iterm has been designed to support all Brahmi-based Indian scripts - Devana-
gari, Punjabi, Gujarati, Oriya, Bengali, Assamese, Telugu, Kannada, Malayalam
and Tamil. However, it is only configured to provide 1/O of Devanagari scripts.
User can configure iterm to support other Indian languages by making changes in
the specification file. The default name of specification file is specs and should be

present in ./config directory.

It also supports variable width fonts in addition to fixed width fonts. Due to this,
the text can be viewed in any font style, which was not possible in xterm as it

supported only fixed width fonts.

83

The user can select between English and Indian scripts by pressing the various func-
tion keys, which can be customized (refer section on binding keys). The keyboard
and display are independent of each other. F1 and F3 switches the keyboard and
display mode respectively between English and Indian scripts. In addition it allows
both 7 and 8 bit coding for Indian scripts. F2 and F4 changes between 7 and 8 bit
coding (of Indian scripts) for keyboard and display respectively.

Termcap entries that work with iterminclude “iterm”, “xterm”, “vt102”, “vt100”,
and “ansi”. The iterm automatically searches the termcap file in this order for

these entries and then sets the “TERM” and “TERMCAP” environment variables.

D.1 Coding schemes

The English text is coded in ASCII. To allow all the existing applications to run,
both 7 and 8 bit coding for Indian scripts are supported. The default coding schemes
provided for Indian script are ISSCII-8 (Indian Script Standard Code for Information
Interchange) and EA-ISCII (English Alphabet ISCIT). However the user can specify
his own 7 and 8 bit coding schemes. These details are to be provided in coding

scheme file, the format for which is discussed below in the section of file formats.

Generally it is desirable to mix Indian script with English. For this purpose the
7-bit coding schemes have an escape character to switch between the two languages.

However this escape sequence is optional.

D.2 Keyboard

Ordinary QWERTY keyboard is supported, with an overlay for Indian Script char-
acters. Normally the keys of the QWERTY pad will generate English characters,

but on pressing F1 function key the Indian script characters will be generated. F1 is

84

a toggle key, which selects the entry of Indian script or English characters. Inscript
keyboard overlay as recommended by DOE is supported. However the keyboard
can be mapped according to user’s convenience. This mapping is to be provided in
keyboard map file, the format of which is specified below. Also the user can choose
between 7 or 8 bit coding for Indian scripts, by pressing of F2 function key (toggle
key). The user can assign the functions of F1 and F2 keys to some other keys, by

specifying in the resource database. See the section on binding keys for more details.

D.3 Display

The display can be set to show the text in Indian or English language. Pressing
of F3 key switches the display mode between Indian script and English. The F4
function key can be used to select between 7 and 8 bit coding for display of Indian

scripts.

D.3.1 Character sets

Special control sequences can also be sent to set the display. This can be done by
setting GO, G1, G2, and G3 to the appropriate character set and invoking these into
GL and GR group. The character sets supported by iterm are listed in Appendix A.
The function keys F3 and F4 actually sets the current set (G0, G1, G2, G3) to the
corresponding character (EA-ISCII/ISSCII-8) set. For mapping this functionality

to some other keys, see the section on binding keys.

D.3.2 Display problems

Due to support of variable width font, the number of characters that can be dis-

played in a row cannot be determined. The maximum number of characters that

85

is supported to be displayed per row is equal to the width of the row. There are
certain applications, like vi, which require to know about the number of characters
that can be displayed in a row. These applications send only the specified number of
characters to be displayed in a row. Due to this a sentence which can be completely
displayed in the same row may be split over two rows. Or if large number of char-
acters are specified then iterm may wrap it to the next line though the application
may still think that it is displayed in the same row. This can cause editing problems.
So to support these applications the number of characters to be displayed per row

has to be judiciously chosen.

For calculating this, a font display symbol is considered to be a base character and
the width of the screen divided by the width of the base character is assumed to
be the number of characters that can be displayed per row. The user can choose
this character and specify it in the font map file, format of which is specified in the
section of file formats. The 7 bit coding generally contains an escape character for
switching between the Roman and English text, which is normally not shown on the
screen. Due to this additional character, the actual number of characters which are
to be displayed in the same row under 7 bit mode should be more than when 8-bit
code is used. The users can specify different base character for both seven and eight

bit mode.

D.4 Cursor

Cursor is displayed as a block surrounding the current character. There is a hori-
zontal cursor which displays the logical position of the cursor. Whenever cursor is
placed on a composite character, the actual character on which it is placed is shown

on the status line.

86

D.5 Fonts

It supports both fixed width and variable width fonts. For viewing the Indian
scripts any font can be specified. The fonts are not required to follow any standard.
However the user has to specify the font table corresponding to that font in font

map file, the format of which is given in the section of file formats.

D.6 Indian scripts

In total ten Indian scripts can be supported at a time. Dynamically, one can switch
between the Indian scripts by selecting through the menu, which appears by pressing
the following sequence: Ctrl + 3rd button. The default Indian script and the
details of the Indian scripts can be specified in the specification file.

Each script can have its own coding, keyboard mapping and composition rules.
Generally these will not change for different Indian scripts but one can use this
feature to his own advantage. The user can specify two different languages say
Devanagaril and Devanagari2, both of which may have different keyboard mappings
and coding schemes, but which actually represents the same script. So, if a user has
files in two different coding scheme or the users wants to enter files using different
keyboard mapping (different users may prefer different keyboard mapping), then
he can dynamically switch between the two, just by clicking on the appropriate
language in the menu. However, in this case the user will be able to use only 8 other

Indian languages.

D.6.1 Syntax of Indian scripts

The Indian script characters can only be combined according to some rules. Every

word consists of a number of syllables. To identify a correct syllable there are certain

87

rules, which are to be specified by the user. The default rule provided is as follows :

Word ::= {Syllable}[Cons-Syllable]

Syllable ::= Cons-Vowel-Syllable | Vowel-Syllable
Vowel-Syllable ::= Vowel [Modifiers]

Cons-Vowel-Syllable ::= [Cons-Syllable]Full-Cons[Matra] [Modifiers]
Cons-Syllable ::= [Pure-Cons] [Pure-Cons]Pure-Cons

Pure-Cons ::= Full-Cons Halant

Full-Cons ::= Consonant [Nuktal

Following conventions are used in the syntax given above :
::= defines a relation.

{} encloses items which may be repeated one or more times.
] encloses items which may or may not be present.

| separates items, out of which only one can be present.

The above representation is in Backus Norm Form, however the users will have to
represent these rules using some other representation, the details of which could be
obtained in section on file formats. In the above syntax nukta can only combine

with certain characters.

According to above rules if an invalid symbol is found then it is preceded by an
“INV” (Invisible) character. This “INV” character should be present in the coding

scheme supported.

D.7 Options

The iterm terminal emulator accepts all of the options supported by xterm, and in

addition provides the following command line options.

e -version: This gives the iterm version.

88

o -/+ se: The escape sequence in 7 bit coding is shown or hidden.

e -specifile: The name of the specification file containing information about
different Indian languages can be specified by this option. Complete path has

to be provided.Default name of specification file is ./config/specs.

o -geometry: It specifies the geometry in pixel width and height as opposed to

xterm in which it denotes the character width and height.

For the various toolkit options and other options refer to xterm manual.

D.8 Resources

All the resource name and classes specified by xterm are supported. Besides these

it understands the following resources:

¢ showescseq (class ShowEscSeq): Specifies if the escape sequence is to be

shown or hidden when 7 bit coding scheme is used for display of Indian scripts.

¢ specfile (class SpecFile): It gives the name of the specification file contain-
ing information about different Indian languages supported. Complete path

has to be specified.

D.9 Menu

It supports the menu provided by xterm, however, some extra information can be
sent by the user to iterm with the help of these menus. The VT options menu

contains an extra entry which can be used to specify whether the escape sequence in

89

7 bit mode is to be shown or hidden. The font menu contains 10 extra entries cor-
responding to 10 Indian languages supported by iterm. The users can dynamically
choose between any of the languages. The name of the languages to be displayed
in the menu can be specified by the user in the specification file. The user can also

specify less than 10 languages.

D.10 Binding keys

By default, F1 and F2 function keys are used for selecting the keyboard mode,
while F3 and F4 function keys are used to select the display mode. There are
some functions to select these different modes. change mode keyboard() function
changes the keyboard mode between English and the chosen Indian sctipt. Similarly
change mode_display() changes the display mode between English and the Indian
script. hindi_code keyboard() and hindi code display() functions change the
keyboard and display coding respectively for Indian scripts between 7 and 8 bits.
It is possible to rebind other keys to this action by changing the translation table.
The default binding provided are:

“Meta <KeyPress>F1:change_mode_keyboard() \n\
“Meta <KeyPress>F2:hindi_code_keyboard() \n\
“Meta <KeyPress>F3:change_mode_display() \n\
“Meta <KeyPress>F4:hindi_code_display()

The keymap action can be used to add different keys for the above action. Following
is the example for rebinding of the keys.

iterm*VT100.Translations: #override \
“Meta <KeyPress>F14: change_mode_keyboard() \n\
“Meta <KeyPress>F15: change_mode_display()

90

D.11 Configuration file

There is a main configuration file or the specification file, default name of which
is specs, and it should be present in ./config directory. However, with use of
-specfile option or specfile resource the user can specily a different file. Be-
sides specification file, there are other files which contains coding details, keyboard

mapping, rules and font information. These files are listed in the specification file.

All the files follow a common format. Blank, newline and tabs are ignored. Com-
ments can be present between “/*” and “*/”. Every string should be followed by a
blank and all the strings except where specified can have maximum of 15 characters.
Rest of the string is ignored. % is a delimiter which should be present before starting

of each new information. : and “— >” are used as delimiters.

Various symbols used to explain the format of files are:

e <> indicates that the value conforming to the description in these brackets

be specified. The value may be in form of string, characters or decimal values.
e { } means that the value can occur 0 or more number of times.

e [] indicates that it is optional.

D.11.1 Specification file format

Specification file describes the Indian languages iterm should support. Default
Indian script name is specified. Normal and bold font names for each language is
also mentioned. Various files containing coding details, keyboard mapping, type
map, rules and fonts are to be specified for each language. Two different languages

can specify the same files.

91

%<Default language>

%<Language name> : <normal font name> <bold font name> :
<file which provides coding detail>
<file which provides keyboard map>
<file containing the font details>
<file which gives the type map>
<file containing the rules>

#<Language name> : <normal font name> <bold font name> :
<file which provides coding detail>
<file which provides keyboard map>
<file containing the font details>
<file which gives the type map>
<file containing the rules> b

%Devanagari

%Devanagari :dvngl0 dvngl0 :iscii keybd fontl type rulel
%Gujarati igujrl0 gujrl0 :iscii keybd font2 type rule2
% Tamil stam10 taml10 :iscii keybd font3 type rule3

Table 8: Syntax - specification file

Maximum of ten languages can be specified. All the entries are in form of string
of characters. The maximum number of characters present in the font name and
files could be upto 100. The fonts specified should be loaded else the default font
specified for English text is used for displaying the text in that script.

Absolute or relative filenames may be specified. If relative filename is specified, then
path prefix from specs file is prepended to the filename. The absolute filename
begins with \.

92

D.11.2 Coding scheme file format

The coding scheme file contains 7 and 8 bit coding details for Indian scripts. All the

characters in the set are given some descriptive names. This name is used to refer

to the character in all other files. For example:

Descriptive Name

Character

%Chandrabindu
%Visarg

%Aa

%1

%Ka

%Kha

AT
T
F

T

Table 9: Example - descriptive names for Indian script characters

Corresponding to each character its equivalent 7-bit and 8-bit coding is provided.
For each character there can be only one 8 bit code, while in 7 bit coding maximum
of 5 codes can form one character. INV is a reserved keyword and there should be

some character both in 8 and 7 bit which represent “INV”.

%[<Escape character >]

{%<string description for characters> ->
<8 bit coding in decimal> ->

{<7 bit coding in form of characters>} }
%ox /* Escape character (7-bit) x/
%Chandrabindu — > 161 — > A
%Visarg —>163 —>Bx
%Aa —>165 —>Ck
%ol —->166 —>Cl
%Ka —->179 —>D
%Kha —>180 —>FE

Table 10: Syntax - coding scheme file

93

The escape character may be specified for 7-bit coding which allows switching be-
tween English and Indian scripts. Decimal value is to be specified for 8 bit, however,
7-bit codes are specified in form of characters. For 8-bit coding the users can specify
any number ranging from 128 to 253. For 7-bit coding the range within which the
coding can be specified is from 33 to 126.

D.11.3 Keyboard map file format

The keyboard map can be specified by indicating the correspondence between the
characters on the keyboard and the characters in the Indian script. One key can
generate a number of characters in Indian script. This helps users to easily enter the
most commonly used conjuncts. The keys are written in form of characters while the
Indian script character to which it maps is entered in the form of string description
which was specified in the file containing the coding details. Every key can generate

a maximum sequence of 10 characters.

{%<Keyboard char> -> { <string description for characters> } }

%& — > Ka Halant Hard-Sha
%# — > Halant Ra

%H — > Pha

%l — > Gha

%X — > Chandrabindu

%D — > A

Table 11: Syntax - keyboard map file

D.11.4 Font map file format

Font table and font characters used for determining the number of characters per row

94

»{ }
»{ }

%#
%

{ %<type name>
{ %{<string description for characters>} -> { } } }

% 69 /% Characters to be moved to the beginning x/
% 13 /* Characters to be moved to the end x/
% 107 /* Base character for 7 bit code x/

% 107 /* Base character for 8 bit code x/

% Conjunct

%Ka Halant Hard-Sha — > 35

%oJa Halant Jna — > 43

% Vowel

% Aa - >97 65

%Consonant

% Ka — > 107

% Kha ->175

%Half-Consonant

% Ka Halant — > 63

% Kha Halant —> 172

%Matra

% Matra-Aa — > 65

% Matra-i — > 69

%Reph

% Ra Halant — > 13

Table 12: Syntax - font map file

95

are specified in font map file. Also list of characters to be moved to the beginning

or to the end of the syllable are present in font map file.

Fonts are basically categorized into various user defined types. Each category con-
tains several mappings. To generate the display symbols in font, font table is
searched for matching entries. “Conjunct” is a reserved keyword and all mappings
specified under conjunct are first searched for. The user may edit the present font
file to add more conjuncts. The categories defined here are used in listing all the

combination rules, details of which are present in rules section.

D.11.5 Type map file format

Word written in any Indian script is composed of syllables. Syllables are a sequence
of characters combined according to some rules. The user can provide the rules for
finding valid syllables. The word is scanned for syllables and any symbol which does
not form a part of valid syllable is preceded by an “INV” character.

To specify the rules first of all a type map is to be provided. This map categorizes
the character set. For example the set may be categorized into vowels, consonants,
matras, etc. A particular character not included in this file is assigned the default
type specified by the user. Maximum of 50 different types can be present. “Begin”
and “End” are reserved keywords and cannot be used. Refer to table 13 for the

syntax of type_map file.

D.11.6 Rules file format

This file contains the syllable rules which lists the valid syllables. It also contains
the combination rules, which specifies the mapping between input characters and

output display symbols. The combination rules follow the syllable rules. “Begin”

96

h<default type>

{U<type> -> <string description for character> }
%Invalid
%Type_Vowel —>A
%Type_Vowel —> Aa
%Type_Vowel —>1
%Type_Vowel —>1

%Type_Consonant — > Ka
%Type_Consonant — > Kha
%Type_Consonant — > Ga
%Type_Consonant — > Gha

%Type_Cons-r — > Ra
%Type_Modifier — > Anuswar
%Type_Modifier — > Chandrabindu
%Type_Modifier — > Visarg
%Type_Matra — > Matra-Aa
%Type_Matra — > Matra-I
%Type_Matra — > Matra-U
%Type_Halant — > Halant

Table 13: Syntax - type map file

and “End” are reserved keywords and are used to denote the beginning and end of

syllable or word.

B Syllable rules

Now using the categories in type map file syllable rules can be specified. There are
a number of rules, each having some name. User can specify all combination of

categories representing valid syllables.

For example:
RO: Type_Vowel Type_Modifier
R1: Type_Vowel

97

Every type indicates one character of that type in the character set. If there can be
combination of same type, then the type has to be written down required number of
times. Some rules are very complicated. To specify these rules, the total combination
specifying a syllable can be split in many rules. The user can specify that a particular
rule does not indicate a valid syllable but it has to combine with some other rules
to form a complete syllable. To specify this he states what all rules can follow this

rule.

For example:
R2:Type_Consonant Type_Halant -> R3 R4
R3:End
R4 :Type_Consonant

If there are no rules present after — > then it indicates that the combinations present

in that rule signifies a valid syllable.

{%<rule number>: {<character types>} -> {<rule number>} }

%R0 :Type_Vowel Type_Modifier - >

%R1 :Type_Vowel - >

%R2 :Type_Consonant Type_Halant — > R3

%R3 :Type_Consonant Type_Halant — > R4

%R4 :Type_Consonant Type_Halant — > R5 R6 R7 RS
%R5 :End - >

%R6 :Type_Consonant Type_Matra Type_Modifier —
%R7 :Type_Consonant Type_Matra —
%R8 :Type_Consonant Type_Modifier —
%R9 :Type_Consonant —

vV V V V

Table 14: Syntax - syllable rules

g8 Combination rules

98

{%{ <character types> } -> {}}

%Begin Type_Cons-r Type_Halant End — > Half-cons
%Begin Type_Cons-r Type_Halant — > Reph
%Type_Halant Type_Cons-r — > Rkar
%Type_Consonant Type_Halant End — > Consonant Halant
%Type_Consonant Type_Halant — > Half-cons
%Type_Vowel — > Vowel
%Type_Modifier — > Modifier
%Type_Matra — > Matra
%Type_Consonant — > Consonant
%Type_Numeral — > Numeral
%Type_Punctuation — > Punctuation
%Type_Halant — > Halant
%Type_Nukta — > Nukta

Table 15: Syntax - combination rules

The input string of characters combine in some way to form display symbols of
certain category in the font table. These can be specified in form of combination
rules. These rules basically states that these combination of character from various
categories (specified in type map file) in the input string will generate the font codes
belonging to certain categories (specified in font map file). This helps in determining
the location in the font table where characters of that particular type are present.
Also it helps to genertate the font characters according to the given context. The
string which matches is replaced by font display code. Generation of font codes are
generally context sensitive. This requirement of the language is met by specifying

the combination rules.

99

%Type_Invalid
%Type_Modifier
%Type_Modifier
%Type_Modifier
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Vowel
%Type_Cons-nukta
%Type_Cons-nukta
%Type_Cons-nukta
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Cons-nukta
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Cons-nukta
%Type_Cons-nukta
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

V

/* Default value if some character is not specified */

Chandrabindu
Anuswar
Visarg

A

AA

I

II

U

UvU

RI

E

EY

Al

AYE

0

ow

AU

AWE

KA

KHA

GA

GHA

NGA

CHA

CHHA

JA

JHA

JNA
HARD_TA
HARD_THA
HARD_DA
HARD_DHA
HARD_NA
SOFT_TA
SOFT_THA
SOFT_DA
SOFT_DHA
SOFT_NA

Table 16: Default categories - type map file

100

%Type_Consonant
%Type_Consonant
%Type_Cons-nukta
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Cons-r
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Consonant
%Type_Cons-inv
%Type_Matra
%Type_Matra
%Type_Matra
%Type_Matra
%Type_Matra
%Type_Matra
%Type_Matra
%Type_Matra
%Type_Matra
%Type_Matra
%Type_Matra
%Type_Matra
%Type_Matra,
%Type_Matra,
%Type_Halant
%Type_Nukta
%Type_Punctuation
%Type_Numeral

VVVVVVVVVVVVVVVVVVVVVVVVVYVVVVVYVYVVYVYVYV

\%

NA

PA

PHA

BA

BHA

MA

YA

JYA

RA
HARD_RA
LA
HARD_LA
ZHA

VA

SHA
HARD_SHA
SA

HA

INV
MATRA_AA
MATRAI
MATRAII
MATRA_U
MATRA_UU
MATRA_RI
MATRA_E
MATRA_EY
MATRA_AT
MATRA_AYE
MATRA_O
MATRA_OW
MATRA_AU
MATRA_AWE
HALANT
NUKTA
VIRAM

0

%Type_Numeral
%Type_Numeral
%Type_Numeral
%Type_Numeral
%Type_Numeral
%Type_Numeral
%Type_Numeral
%Type_Numeral
%Type_Numeral

VVVYVYVVYVYVYV

O 00~ O O = W N —

Table 17: Default categories - type map file

101

%R0 : Type_Vowel Type_Modifier >

%R1: Type_Vowel >

%R2: Type_Consonant Type_Halant >
R8 R9 R10 R11 R12 R13

%R3: Type_Cons-nukta Type_Halant >
R8 R9 R10 R11 R12 R13

%R4 : Type_Cons-inv Type_Halant >
R8 R9 R10 R11 R12 R13

%R5: Type_Cons-r Type_Halant >
R8 R9 R10 R11 R12 R13

%R6 : Type_Cons-nukta Type_Nukta Type_Halant >
R8 R9 R10 R11 R12 R13

%R7: Type_Cons-inv Type_Nukta Type_Halant >
R8 R9 R10 R11 R12 R13

%R8: Type_Consonant Type_Halant >
R14 R15 R16 R17 R18 R19

%R9 : Type_Cons-nukta Type_Halant >
R14 R15 R16 R17 R18 R19

%R10 : Type_Cons-inv Type_Halant >
R14 R15 R16 R17 R18 R19

%R11 : Type_Cons-r Type_Halant >
R14 R15 R16 R17 R18 R19

%R12 : Type_Cons-nukta Type_Nukta Type_Halant >
R14 R15 R16 R17 R18 R19

%R13 : Type_Cons-inv Type_Nukta Type_Halant >
R14 R15 R16 R17 R18 R19

%R14 : Type_Consonant Type_Halant >
R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33
R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44

%R15 : Type_Cons-nukta Type_Halant >

R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33
R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44

Table 18: Default syllable rules

102

%R16 : Type_Cons-inv Type_Halant >

R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33

R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44
%R17 : Type_Cons-r Type_Halant >

R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33

R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44
%R18 : Type_Cons-nukta Type_Nukta Type_Halant >

R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33

R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44
%R19 : Type_Cons-inv Type_Nukta Type_Halant >

R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33

R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44
%R20 : End >
%R21 : Type_Consonant Type_Matra Type_Modifier >
%R22: Type_Consonant Type_Matra >
%R23 : Type_Consonant Type_Modifier >
%R24 : Type_Cons-inv Type_Matra Type_Modifier >
%R25 : Type_Cons-inv Type_Matra >
%R26 : Type_Cons-inv Type_Modifier >
%R27 : Type_Cons-tr Type_Matra Type_Modifier >
%R28 : Type_Cons-r Type_Matra >
%R29 : Type_Cons-t Type_Modifier >
%R30 : Type_Cons-nukta Type_Matra Type_Modifier >
%R31 : Type_Cons-nukta Type_Matra >
%R32 : Type_Cons-nukta Type_Modifier >
%R33 : Type_Cons-nukta Type_Nukta Type_Matra Type_Modifier >
%R34 : Type_Cons-nukta Type_Nukta Type_Modifier >
%R35: Type_Cons-nukta Type_Nukta Type_Matra >
%R36 : Type_Cons-nukta Type_Nukta >
%R37 : Type_Cons-inv Type_Nukta Type_Matra Type_Modifier >
%R38 : Type_Cons-inv Type_Nukta Type_Modifier >
%R39 : Type_Cons-inv Type_Nukta Type_Matra >
%R40 : Type_Cons-inv Type_Nukta >
%R41 : Type_Consonant >
%R42 : Type_Cons-inv >
%R43 : Type_Cons-r >
%R44 : Type_Cons-nukta >

Table 19: Default syllable rules

103

%Begin Type_Cons-r Type_Halant End
%Begin Type_Cons-r Type_Halant
%Type_Halant Type_Cons-r
%Type_Cons-nukta Type_Nukta Type_Halant End
%Type_Cons-nukta Type_Nukta Type_Halant
%Type_Cons-nukta Type_Nukta
%Type_Cons-nukta Type_Halant End
%Type_Cons-nukta Type_Halant
%Type_Consonant Type_Halant End
%Type_Consonant Type_Halant
%Type_Cons-r Type_Halant End
%Type_Cons-r Type_Halant
%Type_Cons-inv Type_Halant

%Type_Vowel

%Type_Modifier

%Type_Matra

%Type_Consonant

%Type_Cons-nukta

%Type_Cons-r

%Type_Numeral

%Type_Punctuation

%Type_Halant

%Type_Nukta

%Type_Cons-inv Type_Halant Type_Cons-r
%Type_Cons-inv Type_Nukta Type_Halant
%Type_Cons-inv Type_Nukta
%Type_Cons-inv Type_Matra Type_Modifier
%Type_Cons-inv Type_Matra
%Type_Cons-inv Type_Modifier
%Type_Cons-inv

VVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

V

Half-cons

Reph

Rkar

Nukta-cons Halant
Half-nukta-cons
Nukta-cons
Consonant Halant
Half-cons
Consonant Halant
Half-cons
Consonant Halant
Half-cons
Half-cons

Vowel

Modifier

Matra

Consonant
Consonant
Consonant
Numeral
Punctuation
Halant

Nukta

Consonant Rkar

Consonant Nukta Halant

Consonant Nukta

Consonant Matra Modifier

Consonant Matra
Consonant Modifier

Table 20: Default combination rules

104

References

1]

2]

3]

Barbara F. Grimes, Ethnologue: Languages of the world, ISBN:
0-88312-815-2 (paper) 0-88312-823-3 (hardcover), Twelfth edition, 1992,
http://www.sil.org/ethnologue/ethnologue.html.

Yashwant Malaiya, Language and scripts of India,
http://www.cs.colostate.edu/~malaiya/scripts.html.

Indian Seript Code for Information Interchange - ISCII Standard,
IS 13194 : 1991, Bureau of Indian Standards, Manak Bhawan, 9 Bahadur Shah
Zafar Marg, New Delhi, December 1991.

Gist Multi-lingual Card user’s guide, Quark Computers Pvt. Ltd., C-1, Sarvo-
daya Nagar, Kanpur, December 1992.

Sumant Narayana Pattanaik, Satyajit Nath and S.P. Mudur, Computer pro-

cessing of Indian scripts - a pure consonant approach, National Centre for

Software Technology(NCST), Bombay.
David B. Lewis, z-faq/part 1-6, {tp://ftp.x.org/contrib/faqs, 1995.

Online manual page for xterm - terminal emulator for X, X11R5, Massachusetts

Institute of Technology.

Online manual page for kterm - kanji terminal emulator for X manual, X11R6,

XXT working group in Japan Unix Society, Japan.

105

[9]

[10]

[11]

[12]

Nabajyoti Barkakati, X Window System Programming, TSBN-81-203-0958-8.
Prentice-Hall, Englewood Cliffs, NJ 07632, USA, second edition, 1995.

Adrian Nye, Xlib Programming manual, ISBN 0-937175-11-0 in Nutshell Hand-
books, O’Reilly and Associates, Inc., 632 Petuluma Avenue, Sebastopol, CA
95472, second edition, July 1990.

Adrian Nye, Xlb Reference manual, ISBN 0-937175-12-9 in Nutshell Hand-
books, O’Reilly and Associates, Inc., 632 Petuluma Avenue, Sebastopol, CA
95472, second edition, July 1990.

Adrian Nye and Tim O’Reilly, X Toolkit Intrinsics Programming manual, ISBN
0-937175-56-0 in Nutshell Handbooks. O’Reilly and Associates, Inc., 632 Petu-
luma Avenue, Sebastopol, CA 95472, second edition, September 1990.

Staff of O'Reilly & Associates Inc, X Toolkil Intrinsics Reference manual,
ISBN 0-937175-57-9 in Nutshell Handbooks. O’Reilly and Associates, Inc., 632
Petuluma Avenue, Sebastopol, CA 95472, second edition, September 1990.

106

