Remof,e Multiple Access of
CD-ROM Information
over a Network of DOS PCs

A thesis submitted
in partial fulfiliment
of the requirements

for the degree of

Master of Technology

by

Navdeep Sood

to the

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

March, 1994



CSE- quq“M”SOO”REM

1 SAPR 1894
CENTRAL L:ITRARY

1T, KAWROK

“_N‘. A- TR -1



CERTIFICATE

It is certified that the work contained in the thesis entitled Remote Multi-
ple Access of CD-ROM Information over a Network of DOS PCs,
by Navdeep Sood has been carried out under our supervision and that
this work has not been submitted elsewhere for a degree.

\peht2 KR Lrondlonon

Rajat Moona, K. R. Srivathsan,
Assistant Professor, Professor,

Department of Computer Science Department of Electrical
and Engineering, Engineering,

IIT Kanpur IIT Kanpur

March, 1994



Abstract

This project aims at designing and developing software for remote multiple access of
CD-ROM information over a network of DOS Personal Computers. With its help several
users can refer to refer to a remote CD-ROM database in the same session. A request-
reply based client server approach was used. The client and the server were implemented
over the IP layer of PCIP. The client software resides on the user PC and functions as a
handler for CD-ROM system calls made by the CD-ROM based application being run by
the user. All requests for CD-ROM data are redirected in a transparent manner over the
network to the server software running on the server machine. The server machine has the
CD-ROM mounted on a local CD-ROM drive. It executes the CD-ROM system call from
the client machine on the CD-ROM under its control and reports the results back to the
client machine. The client software on the client machine, which had been been waiting
for the reply after having despatched the request, extracts the data in the reply packet and
hands it over to the application program. The application program then proceeds with
its execution as if its CD-ROM system call had been serviced locally. A stateless protocol
allows easy recovery from client and server crashes. Such software would be a useful tool in

setting ﬁp CD-ROM based Electronic Library services.



ACKNOWLEDGEMENT

I am grateful to my thesis supervisors Dr K R Srivathsan and Dr Rajat
Moona for their invaluable guidance and constant encouragement throughout
the course of this thesis. I would like to thank the ERNET and CSE lab staff
for being very cooperative.

I thank Dr T V Prabhakar, Dr Gautam Barua and Mr Amitabha Roy for
providing me with immediate answers to my questions in spite of their busy
schedules.

Navin Kumar Saxena, Deepankar Bairagi, Vivek Magotra, Shreesh Jadhav,
Deepak Gupta and Tarun Anand were always around to help me.

NAVDEEP SOOD
March, 1994



Contents

1 Introduction 1
1.1 An Overview of Information Sharing Methods . . . . ... ... ... ... 2
1.1.1 Through Distributed File Systems . . ... .. ... ......... 2

1.1.2 Through a Relational Database Management System(RDBMS) . . . 2

1.1.3 Distributed Information Services like Gopher and WAIS . . .. . .. 3

1.2 Motivation . . . . . .. e e e e e e 3
1.3 Organizationof the Thesis . . . . . . ... .. ... ... ... .. ... 4

2 Design Considerations 6
2.1 CD-ROMunder DOS . . . . ... . . .. . e 6
2.2 CD-ROM System Calls .‘ ............................ 7
2.3 Approaches to Distributed System Design . . . . ... ... ... ...... 7
2.3.1 Layered Protocol . . . . .« i i i i i e e 7

2.3.2 Remote Procedure Calls . . . .. ... ... ... ... ........ 8

2.3.3 Simple Client Server Protocol . . . . . ... .. ... ......... 8

2.34 Assumptions and Features of the Design Chosen . .......... 8

3 Implementation . . 11
3.1 TheProtocol ... ... . . i i e e 13
3.2 TheClient . . . . . . . . o i i e e e 13

3.3 The Server . . . v v i i i e e e e e e e e e e e e e e e e e e e e e 14



List of Figures

1.1 A CD-ROM Based Electronic Library . . . . ... ... ... ........

2.1 A Client Server Pair . . . . . . . . . .. e

iii



Chapter 1

Introduction

Today a PC on the network provides on-line access to remote databases. CD-ROM technol-
ogy has developed parallelly as a way of storing huge amounts of data and a wide variety of
library information is increasingly becoming available on this medium[Fox88]. Allowing a
CD-ROM database to be accessed over a computer network would make it possible to share
and distribute huge amounts of information inexpensively. Providing such network access
would be an effective tool in implementing Electronic Library services.

Presently, remote reading of information is possible from file-servers, relational database
management systems and some Internet utilities like Gopher[McC92] running under UNIX
like operating systems.

In contrast to multitasking operating systems like UNIX, DOS is a non-multitasking
operating system. In DOS there is no in-built facility for remote reading of information
stored in disks or other devices. The sharing of data has to be accomplished through file
servers running on top of DOS. For the lack of a standard for file sharing among machines
running under DOS, each of these programs follows its own, usually proprietary, protocol
for communication between the various components of the distributed system.

In this thesis an attempt has been made to provide an efficient yet simple utility for
remote access to data stored on CD-ROMs in DOS machines. Such a system which provides
remote simultaneous access to several users would be a highly economical and convenient

way of sharing data and also be an effective tool in building an Electronic Library.



1.1 An Overview of Information Sharing Methods 2

1.1 An Overview of Information Sharing Methods

As computer networks keep growing to reach thousands of sites and million of users around
the world, it is becoming increasingly important as well as difficult to share information
between computer users. Several approaches that have been employed are discussed in this

section.

1.1.1 Through Distributed File Systems

Distributed file systems are important mechanisms for sharing data in an environment.
They allow applications programs to access remote files as if they were stored locally. Sun
NFS[San85] and Andrew File System [Mor86] are two such systems. NFS client and server
for sharing disk files in DOS environment have been implemented by Bhaskar and Pawan
[Bha92], and Saxena[Sax93] respectively. A file server for DOS running on UNIX was
designed and implemented by Maniyar[Man91]. .

Any file sharing system that allows a PC file-system to be shared will make available the
CD-ROM data on the network since DOS makes a CD-ROM appear as a read-only drive.
The most widely sold and used such software is Novell Netware.

Netware is an operating system that allows a set of PCs to be linked together for sharing
files and peripherals between then. It also supports multitasking.

It runs in two modes, dedicated and non-dedicated. In dedicated mode, Netware is the
sole operating system in charge of the machine while in non-dedicated mode, it is loaded
on top of DOS. This allows other DOS application prograjms to run concurrently with the
Netware server. More details can be found in [Cro91).

Due to licensing fee etc., file servers like Netware are expensive. Our goal is to provide

a low cost CD-ROM sharing software.

1.1.2 Through a Relational Database Management System(RDBMS)

The information is stored on a remote machine with sufficient hard disk capacity. The user
establishes a connection with the machine, say by a remote-login, and queries the database
using any of the several querying modes supported by the package. RDBMS packages are
designed to manage highly structured information that can be easily visualized as a set

of tables. A column of the table can have entries belonging to only one of the limited



1.2 Motivation 3

number of data types supported by the particular package. For example, ORACLE version
6.0 provides for 14 data-types'like “Alpha™, “Char”, “Date”, “Number”, etc. Handling
non-ASCII information is difficult. if not impossible, using such systems. Besides, these
packages are expensive in terms of the hard-disk resources. They provide for easy and
efficient selective retrieval of information by indexing of data and optimization of queries;
by implementing a high level language for specification of queries; and by having forms'
based user interaction. Commercial RDBMSs have their greatest application in business
related data processing.

A multiple user RDBMS needs considerable computing resource. PC based RDBMSs

are considerably less sophisticated than the standard ones.

1.1.3 Distributed Information Services like Gopher and WAIS

Gopher[McC92] and WAIS[Kah91] are ways of accessing remote data in a WAN environ-
ment. Several such services have been listed and compared in [Sch92]. Data sharing in such
systems is accomplished by explicit user action. They allow file transfer and execution of
some pre-specified queries at a remote machine. They are limited to UNIX platforms on
the Internet.

A p.rotocol called RDAEM (Remote Database Access using Electronic Mail) has been
proposed in [Jha94] which specifies the format of messages exchanged between the requesting
machine and the responding machine. Using Email for remote database access is an effective
way of handling services that do not demand immediate response or when there is no

dedicated 24-hour communication link between the interacting systems.

1.2 Motivation

With remote multiple access possible, an extensive, economical and easy to use CD-ROM
database reference service can be set up. The heart of such a system would be an array of
CD-ROM servers, each capable of supporting several remote browsing sessions of any of the
CD-ROM disks under its control. Each CD-ROM disk would reside with some server. The
user would only have to name the database of interest to be served by the corresponding
server. The server machine could be just a PC-motherboard running the server software all

the time. This bank of dedicated servers providing the desired CD-ROM data on demand



1.3 Organization of the Thesis 4

can be compared to the juke box of olden days which provided its user any record from
those in its pack on demand and for a small fee. Figure 1.1 shows a typical CD-ROM based
electronic library scenario. Two server machines are supporting three clients. Client PCl1
is accessing information from two different servers in two different screen windows. The
CD-ROM on Server 1 is being read by all the three Clients at the same time. A dashed line

between two machines indicates flow of information between them.

1.3 Organization of the Thesis

In Chapter 2, we look at the essentials of the way DOS handles a CD-ROM and we discuss
the various approaches to the design of a distributed system like ours and propose a design.
Chapter 3 provides implementational details about the chosen design. A description of
the software that constitutes the remote multiple access system follows in Chapter 4. In

Chapter 5 we conclude with suggestions for further work.



1.3 Organization of the Thesis

PC1

DD_\ PC 2

LAN

Ve

L Ry —_

DD_\ PC3

ya

e mmmm ===

CLIENT
PCs

SERVER 1

SERVER 2

K-+

100

CD-

ROM

DRIVE (==

Figure 1.1: A CD-ROM Based Electronic Library



Chapter 2

Design Considerations

2.1 CD-ROM under DOS

DOS supports a CD-ROM drive using a program supplied by Microsoft and a hardware-
dependent device driver supplied by the drive manufacturer. The program supplied by
Microsoft is named MSCDEX.EXE. The entire CD-ROM (potentially all 660 megabytes)
will appear to applications as a single MS-DOS drive letter. The Microsoft MS-DOS CD-
ROM Extensions provide a high degree of compatibility with applications that depend on
MS-DOS standard interfaces. Software developers need not do anything special for accessing
CD-ROM disks; they issue the same MS-DOS OPEN and READ calls for opening any
magnetic disks. Programmers can develop CD-ROM applications using standard MS-DOS
tools. They need to be aware that they cannot create any temporary files or write any files
in either that director'y or on the entire CD-ROM (isk.

The program MSCDEX.EXE is an installable file system driver implemented as a. ter-
minate and stay resident module. It is usually loaded us';ng AUTOEXEC.BAT when the
computer is booted. The hardware-dependent device driver implements basic functions
to read the CD-ROM disk and is loaded with the MS-DOS CONFIG.SYS file. The Mi-
crosoft M5-DOS CD-ROM Extensions implement both the High Sierra file format and the
IS0O-9660 version of that standard. Further details on how MS-DOS handles the CD-ROM
and a sample CD-ROM device driver can be found in Microsoft’s CD-ROM Device Driver
Development Kit which is sold by Microsoft.

The package for accessing CD-ROM information is specified by the disk manufacturer

6



2.2 CD-ROM System Calls 7

and is provided as a hinary file or files with the disks. There is no standard for writing
CD-ROM accessing software, hence the packages are highly incompatible with-each other.
Each is limited in application to its own CD-ROM database. Thus to reference a CD-ROM
database the user should be careful to use the accessing software meant for that particular
database. This also means that one collects an assortment of accessing packages as wide as

the variety of databases available for referencing.

2.2 CD-ROM System Calls

CD-ROM related system calls are made by tra.pp.ing to interrupt 2fh. Interrupt 2fh is the
multiplex interrupt and is becoming more commonly used as interrupt 21 functions are
getting to be in short supply. As there are several handlers that are linked to this interrupt,
the higher byte of register AX (called AH hereafter) identifies which handler is to handle
the interrupt. The value in AH is called the multiplex number. The specific function to
be performed by the handler is placed in the lower byte of register AX. The Programmer’s
Technical Reference[Wil85 ] details the CD-ROM services provided by MS-DOS CD-ROM

Extensions through interrupt 2fh. This information is given in Appendix A.

2.3 Approaches to Distributed System Design

Implementing a remote service over a computer network is a problem typical to Distributed
Systems. It follows from the fact that we are using loosely coupled machines that are funda-
mentally independent to interact to a limited degree when there is a necessity. Depending
upon the nature of the communication protocol between the cooperating processes several
approaches to the design of the software are possible. A good discussion on the various
aspects of Distributed Systems can be found in [Tan92]. The following approaches are

commonly adopted.

2.3.1 Layered Protocol

The protocol employed has levels or layers conforming to the Open Systems Interconnection
Refence model as specified in ISO 7498(ISO84] and commonly abbreviated to the OSI model.

Accordingly it is divided into seven layers with each layer looking after some aspect of



2.3 Approaches to Distributed System Design 8

communication. The main prohlem to be overcome is to transport the bits reliably over
poor physical lines. The layering could also follow some other model like TCP/IP. Relatively

slow wide-area distributed systems use layered protocols extensively.

2.3.2 Remote Procedure Calls

Remote Procedure Calls (RPC) is a more subtle way of providing communication. The
programs are allowed to call procedures located on other machines. Information is passed
from the caller to the callee in the parameters and can come back in the procedure result.
No message passing is visible to the programmer. The price paid for this sophistication
is a high overhead of RPC implementation. Locating a server, passing complex data ob-
jects, use of global variables and handling machine crashes are some tricky problems in the

implementation. Still, many distributed applications like Sun NFS are RPC based.

2.3.3 Simple Client Server Protocol

The distributed system is structured as a set of cooperating processes called servers that
offer services to the users called clients. The client and server machines normally run
under the same operating system. In a general client-server set up a machine can run a
single client or server process or any mixture of the two. The communication between the
cooperating processes is usually hased on a connectionless request/reply protocol. Often
the full OSI model is not adhered to and only a small subset of the layers is employed. See
Figure 2.1 for a representaion of this type of communication. This avoids the substantial
overhead associated with layered protocols for LAN based distributed systems since the
physical data transfer over a LAN is far more reliable than over a WAN. By conceptually
presenting interprocess communication to the programmer, the CPU processing related to
the Remote Procedure Calls mechanism is also avoided. Thus for a LAN based system the

request /reply based client-server model is cfficient.

2.3.4 Assumptions and Features of the Design Chosen

It has been assumed that CD-ROMs are mounted on attended remote PCs operating in
a DOS environment. Further that these and the client PCs are connected by a TCP/IP
network. The minimal TCP/IP support needed on both the CD-ROM PC and the user PC

is a connectionless service or UDP over IP.



2.3 Approaches to Distributed System Design 9

It has been proposed that each of the P('s, physically connected to the CD-ROM drives,
run under the control of a server program which would listen on the LAN for CD-ROM data
requests and serve them when they arrive. The client process could run on any PC on the
campus network and interface between the CD-ROM database accessing software running
on the local PC and the server machine for that database in the Central Library. A server
program could entertain requests from several clients pertaining to the CD-ROM drives
under its control, thereby enabling several users to access the same CD-ROM database si-
multaneously. This would ensure high utilization of the CD-ROM databases and also save
users from long waits that would he encountered in a service that entertains one user at a
time. However, multiple simultaneous access will result in deterioration in the speed of ser-
vice. This should be kept within acceptable limits by exercising control over the maximum
number of clients that can be served simultaneously. A stateless request/reply protocol is
employed between the client and the server processes so that recovery from machine crashes
is uncomplicated. The following chapter gives an outline of the implementation and working

of this approach.



2.3 Approaches to Distributed System Design

10

Network

Client

Server

Kernel

Kernel

Reply

Request

The Client Server Model

Figure 2.1: A Client Server Pair



Chapter 3

Implementation

The Client and the Server programs have been implemented on top of the Internet layer
of PCIP. PCIP is the implementation of ARPANET’s TCP/IP protocol on PC in DOS
environment[Rom86]. The network part of PCIP includes the Internet layer, UDP layer
and the Net Interface. The Net Interface layer is responsible for packet reception and
retransmission through the Net Interface card. The Internet layer does the required routing,
translation etc., whenever a packet is reccived or has to be despatched. Upon packet
reception it is passed to a user specified packet handler. The UDP layer is the topmost
layer of PCIP. As with the Internct layer, a user specified handler function in invoked upon
the reception of a UDP packet. All the application programs are built as specified handler
functions on top of the Internet layer or the UDP layer.

PCIP does not support fragmentation and reassembly at the IP layer. This limits the
maximum IP packet size or UDP packet size , including headers, to the maximum ethernet
packet size of 1536 bytes. This limitation puts a rather low upper limit on the amount
of data that a PCIP packet can carry. In our design, the maximum data that any packet
carries has been kept to 1042 bytes. -

The overall design and implementation has three major pieces. The Protocol, the Server
and the Client. A summary of the operation of the system in the form of the sequence of

steps that make up one remote access cycle is depicted in Figure 3.1.

11



2.3 Approaches to Distributed System Design 12
CD-ROM CD-ROM
Application Drive
¥
Application
raises int 2fh for DOS returns DOS activates Drive
CD-ROM data control to the the drive returns
Application data
4 i
DOS DOS
Kernel Kernel
¥
Client extracts the Setvdninbokashhe DOS returns
Client filters out the data from the reply int 2fh with the .ﬁ'om the
request as the one p ackey(s)and ppts parameters taken int call
meant for it ™ \«.vher‘c the ap['wh- ~ [rom the enqueued
| cation Is expecting 1t packet !
Client Server
Software Software
3 4
. s - Server puts
Client packs the Client is waiting IP packet handler the data
parameters into an IP for the reply in the server picks i1t 2 packet
packet and despatches packet(s) and picks up the request and 4 Pd o
. = and sends i
it to the server them up enqueves it
\ v
' ' 1 '
t ! 1 '
Lecceoma Lecccececceecceccanem e e——-- 3 '
' 1
1 1
Lecccceccemmeecerececeacceemem——-—-— J

Figure 3.1: Block Diagram of the System




3.1 The Protocol 13

3.1 The Protocol

A very simple request and reply protocol is used. It is based on a connectionless packet
exchange. Because of constraints imposed by PCIP, no packet carries more than 1042 bytes
of total user data.

Whenever the client detects an interrupt 2fh call that pertains to CD-ROM service, it
floats a request packet addressed to the server machine containing details of the service
needed . The first 16 bytes in a request packet contain the values passed by the application
program in the CPU registers on the client machine to DOS at the time of invoking interrupt
2fh for a CD-ROM service in the eight CPU registers namely, AX, BX, CX, DX, DI, SI, ES,
and DS . A request packet may also contain any other information, such as the pathname
data which is a part of the interrupt request, after‘the first 16 hytes. Before despatching
the request packet the client software inspects the nature of the request to ascertain the
number of reply packets to wait for. After despatching the request packet the client goes
into a wait loop.

Each request packet to the server machine contains a request from some client. After
despatching this packet the client starts waiting for the server to respond with one or two
packets depending upon the type of request. A reply packet contains the CPU state that
the interrupt for CD-ROM service has returned. This information occupies the first 18
bytes. The extra two bytes are for the flag register. If the request has generated more than
1024 bytes of data over the results returned in the CPU registers then a second packet is
employed. No CD-ROM service request generates more than two reply packetfuls of data.
The first 18 bytes of the second packet are identical to the first 18 bytes of the first packet.

3.2 The Client

The client provides a transparent interface to the remote CD-ROM data. It resides as a
Terminate and Stay Resident program while the program that needs data from the remotely
mounted CD-ROM runs in the foreground. The client catches all interrupt 2fh calls and for
each call determines whether it is a CD-ROM related call or otherwise. If a call is found
to refer to a CD-ROM service, that is, if the higher byte of register AX contains the value
15h, the client takes necessary action to request the required service from the CD-ROM

server. The client blocks until the server returns the results. After receiving the reply from



3.3 The Server 14

——

the server, the client hands over the results to the calling program and returns the control
to it as shown in Figure 3.1. I the interrupt 2fh call is determined to be a non CD-ROM
call it is chained back to the original interrupt handler.

Each invocation of the interrupt 2fh that is made with 15h value in AH genera.teé a
request-for-service packet by the client software. This packet contains the CPU state that
the server would require to provide the requested information. If the server fails to send a
reply within a predecided time, the request packet is retransmitted. After a finite number
of unsuccessful retransmissions the client reports failure to the calling program.

Any CD-ROM request that requires long service time is broken up into a sequence of
shorter remote requests by the client software. This is done in a way that is transparent
to the calling program. This ensures a more equitable distribution of server time between
competing clients and prevents any particular client from monopolising the server for long

durations.

3.3 The Server

The server software runs continuously on the server machine as a normal DOS program.
Request packets are queued as they arrive by the IP packet handler in the server as in
Figure 3.1. The packet at the hcad of the queue is taken up for processing as soon ag
the previous packet is processed. Each request-for-service packet contains the CPU state
of the client at the time the interrupt 2fh was invoked. .Hence each packet in the queue
represents an interrupt 2fh call on some client on the network, that had 15h in AH. This
way several clients are able to seek service from the same server at the expense of a small
and unnoticeable wait. Most of the time the wait would be insigniﬁcantl, as the number of
clients that would be reading data from the same CD-ROM in the same session would be
only one or two. The maximum possible wait is a function of the maximum queue length
allowed which can be set at compile time. Once the queue is full any further request packets
are ignored. \

After dequeuing a request packet the server fills up the client CPU state into an a,;}
propriate data structure and executes an “Int86” function call. This function is a part of
the Run-Time library that the Microsoft C Compiler provides. Depending upon the kind

of service sought one or two reply packets are despatched to the client machine. The client



3.3 The Server 15

machine knows how many reply packets to expect from the server and waits for them. There
is no remote service call that needs more than two reply packets.

The server does not wait for anv acknowledgements from the clients. A client that has
missed the reply packet(s) meant for it times out from the wait and resends its request.

The maximum length request packet queue in the server should not be raised to a size
that makes the maximum wait time in the queue equal to or greater than the timeout
duration on the client end. Otherwise there is a high possibility of a client timing out
before its request packet is taken out of the queue by the server and then resending the
same request. However, such an occurrence would not cause anything worse than some

unnecessary work for the server.



Chapter 4

Software Description

This chapter provides a brief description of the software written to implement the design
discussed in the previous chapters. The whole code forms two programs: the Client and

the Server. Most of the code is in C and the remaining in assembly. Microsoft C Compiler

5.0 and Microsoft Macro Assembler 5.1 and their associated utilities were used to compile
and link the two programs. Short descriptions of the procedures that make up the Client
and the Server code follow.

The data structure central to the whole software is a structure that stores all the in-
formation about the particular interrupt service request being attended to. It has been

typedefined in the header file cdr.h as type req, which stands for “request for service”.

struct req {

union REGS regs; /* for general registers */

struct SREGS sregs; /* for segment regiéters */

int status; /* request sent, reply received, timed out */
in_name svr_name; /* us;d by client for server name */

PACKET req_pkt; /* IP packet that contains the request */

int req_len; /* length of the data in the request packet */
PACKET rep_pkt; /* IP packet if received in reply to request */
int rep_len; /* length of the data in the reply packet */
in_name source; /* used in server only to record the source of the

request for transmitting back the reply to */

};

16



4.1 The Client Program 17

typedef struct req req;

The first two fields store the client CPU state at the time the CD-ROM system call
was made. Their types have been defined in the header file “dos.h” that comes with the
C compiler used. The next field indicates the status of the request trapped by the client:
whether a request packet has been despatched to the server, whether the reply is awaited,
or whether the wait for the reply has been timed out, etc. The full list of the values this
field takes is in the file cIn.h. The remaining fields are well described by the comments

beside them.

4.1 The Client Program

As stated in chapter 3, the Client has been implemented as a terminate and stay resident
program on the user machine. It traps all CD-ROM related interrupts and procures the
required service from the server machine on the network. The client software is made up of

several routines. This section discusses them in brief.

4.1.1 Main Function

The main procedure starts by saving the stack pointer and stack segment values and ends
by making itself memory resident. In between the network communication initialization

and the installation of the interrupt servicing routine are carried out.

4.1.2 nwinit()

This is the routine called by the main client procedure to initialize the network. It is
called only once during the installation of the client program on the client machine with the
number of PCIP packet buffers and the packet buffer size as its inputs. It contains calls to

the required PCIP procedures.

4.1.3 inst_cln()

This routine is called after the network has been initialized. It makes up the second half
of intialization and exits after installing the client program as an interrupt service routine.
An IP connection to the server is opened and the interrupt 2fh vector is appropriated. The

old value of the interrupt handler for 2fh is saved.



4.1 The Client Program 18

4.1.4 new2fh()

It contains the interrupt 2fh handler that performs the function of filtering out CD-ROM
related requests and processing them. Non CD-ROM calls are passed to the previous handler

whose address had been saved.

4.1.5 CD-ROM functions

There is a function for each possible CD-ROM system call (see Appendix A for a list of
CD-ROM calls). When invoked, each of them sends a request packet and processes the
reply packet (if it comes) before exiting. These functions are ichk(), adr(), adw(), dc(),
gafn(), gbdfn(), geddl(), gefn(), tdoff(), tdon(), gddl(), gde(), gmv(), gsvdp(), rbms() and
rvtoc(). Exactly which of these sixteen is called depends on the value of register AX (to
be specific on the value of AL the lower byte of the register AX) at the time of raising of

interrupt 2fth on the client machine.

4.1.6 nodata(), smalldata() and longdata()

These functions do the actual sending and receiving of the packets for the functions in the
previous section. All CD-ROM system calls have been implemented by using one of the
three depending upon whether the call requires no data other than the server CPU state
from the server (where nodata() is used), or whether the call requires a small amount of
data from the server in addition to the server CPU state from the server (where smalldata()
is used) or whether a larger amount of data with the ser\;er CPU state is required (where
longdata() is used). Up to 1024 bytes of data is considered “small” and up to 2048 bytes is

considered “long”.

4.1.7 rep_wait()

This routine is called by any procedure that is waiting for an IP packet from the server.
The body of this procedure is a busy-wait loop which terminates when a certain number of
iterations are over (which is the timeout situation) or when a packet is received from the
server. PCIP does not permit an interrupt service routine to use PCIP timers [Rom86].

Hence this procedure uses busy waiting which instead of using a PCIP timer and yielding



4.2 Server Software 19

the processor is fine since the client machine has nothing to do while the wait for the reply

is going on.

4.1.8 ip_hndlr()

This function is invoked by PCIP whenever an IP packet, which belongs to the protocol
the client and server programs are using to communicate, arrives from the server. It checks
if the Client program is expecting a server reply, that is if rep.wait() is executing, before
accepting the packet for further processing. Otherwise the IP packet is discarded. This
checking prevents snags due to delayed packets. A look at the status field of the regstructure

tells if any request for service is awaiting the server reply.

4.1.9 Stack Management Functions

The client program when called by an invocation of interrupt 2fh, switches over to its own
stack from the stack of the program which has raised the interrupt. After its job is done
the stack of the calling program is restored. This is done by the functions set_tsrstk() and
rst_tsrstk(). svstk() stores the stack pointer and stack segment values during the initial

phase for subsequent use.

4.1.10 Data Movement Functions

mdata(), mpname() and cp_regs() are used for moving data from one place to another. Their
names are quick and unimaginative abbreviations for “move data”, “move path name” and

“copy registers”.

4.2 Server Software

The Server is basically the interplay between the packet handler which enqueues the request-
for-service packets as they arrive from various clients and the remaining routines which
dequeue these packets one by one, invoke the corresponding interrupt locally, and despatch

the generated results to the respective client machine.



4.2 Server Software 20

4.2.1 Main Function

The main function intializes the network communication, installs the packet handler and
starts waiting for the request packets to be put in the service queue. As soon as a waiting
request is detected it is processed and the queue is readjusted. If another request arrives in

the meantime it is taken up otherwise waiting commences.

4.2.2 ip_hndir()

This function is invoked by PCIP whenever a packet on the server’s IP connection is received.
L]

It enqueues the received packet and exits.

4.2.3 service()

This function is called by the main server function to process any request at the head of the
queue. It in turn calls CD-ROM system call functions which invoke the specified interrupt

and send back the reply.

4.2.4 CD-ROM system calls functions

These functions correspond to the client functions in number and name. That is, they are
sixteen in number and are named as ichk(), adr(), adw(), de(), gafn(), gbdfn(), gcddl(),
gefn(), tdoff(), tdon(), gdd1(), gde(), gmv(), gsvdp(), rbms() and rvtoc(). Each invokes the
2fh interrupt on the server machine and despatches the results using the functions described

in the next section.

4.2.5 sendnodata(), sendsmalldﬁta() and sendlongdata()

These functions do the actual invocation of the interrupt and the subsequent processing
of the data got from the CD-ROM. One of them is used by each CD-ROM system call
function of the above section depending on the ;xmount of the data, in addition of the server
CPU state, that has to be sent to the client. sendnodata() sends only the CPU state,
sendsmalldata() is for additional data till 1024 bytes over it and sendlongdata() is for up to
2048 bytes of data over the basic CPU state.



4.3 Compiling and Running the Programs 21

4.2.6 Other functions

These are small functions that do miscellaneous jobs. They include the data movement
functions and a function to despatch an IP packet. The data movement functions are
mdata(), mpname() and cp.regs(). They are identical to their client counter parts save for

cp-regs which is slightly different. despatch() is used to despatch [P packets.

4.3 Compiling and Running the Software

The Client code resides in the directory “cli”. To compile the Client use the makefile
clnmake. The Client code is compiled and linked into cln.exe. Boot up the client machine
using the same start up files AUTOEXEC.BAT and CONFIG.SYS as if the CD-ROM drive
were local to the client. Install the Client on the client PC by executing cln from the DOS
prompt.

The Server code is in the directory “server”. It can be compiled by using srvmake. The
executable file is called srv.exe.

Read the README files in the directories before compiling the programs.

CENTRAL LIBRARY
I 1.T., KANPUR

.. o 1176K¢




Chapter 5

Conclusions

Software for remote multiple access of CD-ROM information over a network of DOS Personal
Computers was designed and coded. It has a Client part which runs on the user'PC and
a Server part that runs on the server PC. They communicate over the network using a a
request /reply protocol. The Client and the Server were implemented over the IP layer of
PCIP to have a faster response than a UDP based implementation.

The Client software installs itself as a Terminate and Stay Resident program on the
client PC and it functions as an interrupt handler for interrupt 2fh through which CD-
ROM system calls are made. All requests for CD-ROM data are identified and redirected
by the Client in a transparent manner over the network to the Server software running on
the server machine. The Server machine has the CD-ROM mounted on a local CD-ROM
drive. The Server sofltware extracts the parameters of the call from the request packet
received from the client machine and executes the call on the CD-ROM under its control
and reports the results back to the Client . After receiving the reply from the server, the
Client extracts the data in the reply packet and hands it over to the application program.
The application program then proceeds with its execution as if its CD-ROM system call
had been serviced locally. A stateless protocol permits uncomplicated recovery from client
and server crashes.

Because of non-availability of a PC with a CD-ROM drive on the network the design
was tested in a limited way using two PCs which were running the Server and the Client
progra.ms'respectively, The Client software became properly memory resident and filtered

out all arificially raised CD-ROM system calls. Futher testing, on the full hardware config-

22



uration assumed in the design, is needed. When being tested fully in future, the software
should be modified, if necessary, to reflect the changes in the specifications of the CD-ROM
system calls from the ones uscd in this project. See Appendix A for a complete description
of the CD-ROM system calls implemented.

Further extentions and additions to the work in this thesis that would make the software
developed a better Electronic Library utility are:

(1) Integrating the Client code with a widowing environment to allow the user to run
more than one CD-ROM application simultaneously and independently of each other.

(2) The Server program can have CD-ROM usage statistic collection added to it. It
would help in the management of the CD-ROM based services by providing data which can
be analyzed to ascertain user preferences and other such information.

(3) User authentication measures can be added so it becomes possible to provide selective
access.

The benefits of remote multiple access to CD-ROM information in buliding an Electronic
Library system have been discussed earlier. This work can be a starting platform for setting

up a shared bank of CD-ROM databases and be the first step towards an Electronic Library.



Bibliography

[Bha92]

[Cro91]

[Fox88]

[1S084]

[Jhag4]

(Kah91]

[Man91]

[McC92]

[Mor86]

[Rom86]

Bhaskar, H., Pawan, G., NFS Client for PC in DOS environment, B. Tech Thesis,
IIT Kanpur, Apr 1992.

Croucher, P., Novell Netware Companion, Galgotia Publications, 1991.

Fox, E.A., Optical Disks and CD-ROM: Publishing and Access, Annual Review
of Information Science and Technology, Vol 23, 1988.

ISO 7498, Information Processing Systerns - Open Systems Interconnection - Ba-
sic Reference Model, 1984.

Jha, S.K., Prabhakar, T.V., Querying Remote Electronic Libraries, In prepara-
tion, March 1994.

Kahle, B., Medlar, A., An Information System for Corporate Users: Wide Area
Information Servers. ConneXions - The Interoperability Report, 5(11), Interop
Inc, Nov 1991.

Maniyar, S.N., A Remote DOS Disk Server on UNIX Machine, M. Tech. Thesis,
IIT Kanpur, 1991.

McCahil, M., The Internet Gopher: A Distributed Server Information System,
ConneXions - The Interoperability Report, 6(7), Interop Inc, July 1992.

Morris, J.H., Satyanarayan, M.,Conner, M.h., Howard, J.H., Rosenthal, D.S.,
Smith, F.D., Andrew : A Distributed Personal Computing Environment, Com-

munications of the ACM Vol 29, No 3, March 1986.

Romkey, J.L., The PC/IP Programmer’s Manual, Unpublished Documentation,
Laboratory of Computer Science, M.I.T., Jan 1986.

24



Bibliography 25

[San85] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B., Design and Imple-
mentation of the Sun Nelwork Filesystem, Summer Usenix Conference proceed-

ings, June 1985.
[Sax93] Saxena, N.K., An NFS Server under DOS, M. Tech Thesis, IIT Kanpur, 1993.
[Tan92] Tanenbaum, A. S.,Modern Operating Systems, Prentice Hall, 1992.

[Wil90] Williams, D., The Programmer’s Technical Reference : MS-DOS , IBM PC Com-
patibles, Galgotia Publications, 1990.



Appendix A

CD-ROM System Calls

Interrupt 2fh CD-ROM calls are detailed under. These specifications have been taken from
[Wil90].

Function 1Sh CD-ROM extensions
Microsoft CD-ROM driver versions 1.0 through 2.0 will work only up

to DOS 3.31. DOS 4.0 and up require 2.1 drivers.

entry AH 15h CD-ROM services

AL subfunctions

00h Installation Check

BX 00h

return BX number of CD-ROM drive letters used
cX stérting drive letter (0 = A:)

note This installation check DOES NOT follow the format

used by other software.

01h Get Drive Device List

ES:BX pointer to buffer to hold drive letter list
(5 bytes per drive letter)

return buffer filled, for each drive letter :
byte subunit number in driver

dword address of device driver header

26



Appendix A 27

02h Get Copyright File Name
cX drive number (0 = A)

ES:BX  pointer to 38-byte buffer for name of copyright file

return CF sat if drive is not a CD-ROM drive
AX error code (15h)

03h Get Abstract File Name

cX drive number (0 = A)

ES:BX pointer to 38-byte buffer for name of abstract file

return CF set if drive is not a CD-ROM drive
AX error code (15h)

04h Get Bibliographic Doc File Name

cX drive number (0 = A4)

ES:BX pointer to 38-byte buffer for name of bibliographic
documentation file
return CF set if drive is not a CD-ROM drive

AX error code (15h)

0Sh Read VTOC (Volume Table of Contents)

cX drive number (0 = A)
DX sector index (0 = first volume descriptor,
mi = second, ...)

ES:BX pointer to 2048-byte buffer
return CF set on error
AX error code (15h, 21h)
CF clear if successful
AX volume descriptor type (1 = standard,

OFFh = terminator, OOh = other)

06h Turn Debugging On



Appendix A

28

BX debugging function to enable

note Reserved for development.

07h Turn Debugging Off
BX debugging function to disable

note Reserved for development.

08h Absolute Disk Read

cX drive number (0 = A:)

DX number of sectors to read
ES:BX pointer to buffer

SI:DI  starting sector number

return CF set on error
AL error code (1Sh, 21ih)
0%h Absolute Disk Write
cX drive number (0 = A:)
DX number of sectors to write

ES:BX pointer to buffer
SI:DI  starting sector .number

note Corresponds to int 26h and is currently reserved and
nonfunctional.

0OAh Reserved by Microsoft

OBh CD-ROM 2.00 - Drive Check

CX drive number (0 = A:)
return BX OADADh if MSCDEX.EXE installed
AX 0 if drive not supported

<> 0 if supported

0oCh CD-ROM 2.00 - Get MSCDEX.EXE Version



Appendix A 29

return BH major version
BL minor version

note MSCDEX.EXE versions prior to 1.02 return BX = 0.

0Dh CD-ROM 2.00 - Get CD-ROM Drive Letters

ES:BX pointer to buffer for drive letter list
(1 byte per drive)

return buffer filled with drive numbers (0 = A:). Each byte
corresponds to the drive in the same position for

function 1501ih.

OEh cd-ROM 2.00 - Get/Set Volume Descriptor Preference
BX subfunction

O0h Get Preference

DX 00h

return DX preference settings

01h Set Preference

DH volume descriptor preference
1 primary volume descriptor
2 supplementary volume descriptor

DL supplementary volume descriptor preference
1 shift-Kanji

CX drive number (0 = A:)

return CF set on error

AX error code (0ih, 15h)

OFh CD-ROM 2.00 - Get Directory Entry

CX drive number (0 = A:)

ES:BX pointer ASCIIZ pathname

SI:DI pointer to 255-byte buffer for directory entry
return CF set on error

AX error code



Appendix A 30

CF clear if successful
AX disk format (0 = High Sierra, 1 = IS0 9660)
note Directory entry format : -

byte length of directory entry
byte length of XAR in LBN’s
dword LBN of data, Intel (little-Endian) format
dword LBN of data, Motorola (big-Endian) format
dword 1length of file, Intel format
dword 1length of file, Motorola format
---High Sierra---
6 bytes date and time
byte bit flags
byte reserved
---IS0 9660---
7 bytes date and time
byte bit flags

---both formats---

byte interleave size

byte interleave skip factor

word volume set sequence number, Intel format
word volume set sequence number, Motorola format

byte length of file name
n bytes file name .
byte (optional) padding if filename is odd length

n bytes system data

Error codes :
01ih invalid function
i5h invalid drive

21h not ready



