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ABSTRACT

Multicomputers are message passing based
multiprocessor systems. Here processing units operate
asynchronously under the control of local controller, one for
each processing element. Hence a problem that has an
arbitrarily structured parallelism, can be programmed with
much flexibility on multicomputers. In this thesis, a general
purpose simulator is developed with the motivation of
providing a test bed for developing and testing concurrent
algorithms for multicomputer architectures. It is implemented
in three layers. Process creation and interprocessor
communication to simulate single processing element is
implemented in the first layer, the second layer which is
built over the first is specific to the particular class aof
multicomputers and provides better wuser interface. User
program is implemented calling the primitives provided in the
second layer. This package provides facilities to simulate
both, point to point and broadcast communication

multicomputer architectures.
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CHAPTER 1: INTRODUCTION

.

Multiple processor systems are now being increasingly
used for high speed computations. They can be broadly me
divided into two categories - the shared memory systems
{multiprocessors) and the message passing based systems
(multicomputers). In the message passing type of
multicomputer system, processing units operate asynchronously
under the control of a local controller one for each
processing unit[Reed87]. A problem that has an arbitrarily
structured parallelism, can be programmed with much
flexibility on a multicomputer system. An effort in the
direction of developing the parallel programming environment
for multicomputer systems lead us to the development of the
package, a general purpose simulator for multicomputer
architectures. This simulator can be used either in the
multiple program multiple data mode or in the single program
multiple data mode depending on whether the functions to be

executed by the processors are same or not.

1.1 MOTIVATION

The motivation for this work is to build a parallel
programming environment for simulating multicomputer
architectures. We do not have knowledge of any
implementation which have a comprehensive approach to
simulation. More precisely, the implementations thus far,
have been targeted for specific multicomputer architectures
and cannot be easily adapted to simulate any parallel

machine. What we have in mind is to build a general purpose



this simulator provides a comprehensive platform for parallel
processing which would encourage experimentation with

parallel algorithms in various application areas.

1.2 CONTRIBUTIONS AND OUTLINE OF THESIS

In this thesis, a general purpose simulator tool, for
multicomputers is built which can be dynamically
reconfigured, to simulate any wuser defined network of

multicomputers.

A multicomputer can be characterised by a number of
processing elements and a set of data routing functions
provided by the interconnection network[Siegel79]. The
processing elements are independent of the network topoleogy,
and therefore some general purpose routines are designed and
implemented in the first stage, namely simulator core. In
order to provide a mechanism for interprocessor communication
for both point to point and broadcast communication, modules

are also implemented in this core.

We have maintained a structure interface for each
topology, wherein a set of interconnection networks can be
predefined in structure core. In order to facilitate this a
number of auxiliary routines are provided in the simulator
core. Apart from the interconnection network the structure
core also provides an interface to the interprocess

communication in accordance with the network defined.

With the primitives provided by the structure interface,
user can easily write parallel programs and test his parallel

algorithms.



1.3 THESIS ORGANISATION

’

The thesis is organised into six chapters including the
present chapter. The concepts of process creation,

interprocess communication, the structure of simulator and

structure cores are introduced in chapter 2. Chapter 3
discusses the implementation of simulator. Chapter . 4
details few examples of interfaces to simulator core.

Chapter 5 presents the simulation runs, and few examples of

user programs. Conclusions and scope for further work are

outlined in chapter 6.

Appendix A contains the routines available for structure
core. Appendix B illustrates few examples of structure file.
Finally, Appendix C explains how to run user's program using

the simulator.



CHAPTER 2 : DESIGN OF SIMULATOR

2.1 INTRODUCTION

The simulator can be organised into three modules. In the
first module called simulator core, processing element
simulation is developed, which has been dealt with in section
2.2; In the second module, structure core, an interface to
the previous module 1is designed to encapsulate all
configurations of a particular class of multicomputers. The
structure core is discussed in section 2.3. The third module
involves the development of user program with the primitives
provided by the structure core. In section 2.4 we discuss

the third module. Finally we conclude in section 2.5.

2.2 SIMULATOR CORE

To simulate single processing element of the network,
the simulator package has to create a process.. Therefore, a
module for process creation is developed which consists of a
number of routines. Each newly created process is the exact
replica of the creating process, since all the processors

have the same status in the multicomputer network.

The asynchronous model of communication is chosen which
is the one generally used in multicomputers. This is also a
more natural model for the programmer. A synchronous model
of communication can always be built over the asynchronous
one in the structure core. The Kkey issues ‘involved in

interprocessor communication of both point to point and



1. Communication links

2. Design of communication routines.

2.2.1 Communication links

The interprocessor links for point to point communication
networks, can be simulated using named pipes[Bach86], unnamed
pipes and sockets. The socket mechanism is not chosen in our
approach because it adheres to a server-client model which is
inherently different from the type of communication 1in
multicomputers wherein all processors have equal status. For
using unnamed pipes, the parent process must open the pipe
before creating another process so that the child process can
share it. As every prbcess uses two pipes for bi-directional
communication, this approach exceeds the operating system
defined upper limit of the number of open files per process,

even for very small multicomputer configurations.

The advantage of using named pipes is that, it is not
passed to child process using parent_child inheritance. Thus,
if we have a pipe naming protocol which gives the name of the
pipe used for communication between the processors,
communication can be established and no process will have to
open pipes more than twice the number of ports per processor,

for bi-directional communication.

However, this approach cannot be wused for broadcast
communication because pipes provide mechanism of
communication only between two processors. Hence we use
files with supervisory locks, one for each broadcast bus to

solve the problem of inconsistency. It facilitates the



after doing the job by unlocking it to the other processors

which are connected on the same bus.

2.2.2 Design of Communication Routines

Simulator uses blocked mode of communication for
receiving message and unblocked mode of communication for
sending message. Thus the processor receiving a message
waits for the message to arrive if it has not arrived
already. But the sender of the message waits only in case
the message buffer is full. This wait can be minimised by
suitable choice of buffer size. Message length is kept as a
variable. Thus the routine used for sending messages
requires message length as an argument whereas the routine

used for receiving messages returns the message length for

similar reason.
2.2.3 Auxiliary Routines

A number of routines are developed which facilitate
writing the structure core for any topology of multicomputer

configuration. These are discussed in chapter 3.

2.3 STRUCTURE CORE

Design of the structure core depends on how simulator
works so as to adapt any configuration of multicomputers. At
the start of simulation, the control 1is given to the
structure core. The structure core at this point takes the
architecture dependent parameters as " the input and
establishes the interconnection network. It then initiates

the simulator core. The simulator core sets up the simulation



between them taking input from structure core. It then
passes the control to the user program. After doing the
simulation, the simulation environment 1is disposed by
terminating the processes and deleting the communiéation
links. To incorporate such software protocol, we summarise

the structure of the structure core as given below:
* an entry point to construct the interconnection network
of multicomputers
*# input interface

¥ an entry point to set the simulation environment is
called

* an entry point to the user's program is called
* a protocol to delete the communication links is called

¥ an interface to the interprocess communication for the
network is defined

¥ output interface

More about structure core is discussed in chapter 3.

Some examples of structure core are discussed in chapter 4.

2.4 USER PROGRAM

User, in his parallel programs invokes the
simulator using the primitivé for process creation given in
the structure core. In order to communicate the messages
between the processes the protocol provided by the
communication interface in the structure core, can be used by
the wuser program. Examples of user program can be found in

chapter 5, Simulation Runs.
7



2.5 CONCLUSION

In this chapter we described the different modules of
general purpose simulator for multicomputers. It can be used
to simulate wvariety of the algorithms designed for these

architectures.

In the latef chapters, we will be describing the
implementation of simulator with few examples of structure

core and some example user programs.



CHAPTER 3 : IMPLEMENTATION OF SIMULATOR

3.1 INTRODUCTION

The implementation of simulator can be broadly divided
into three stages, namely simulator core, structure core and
user program. In the simulator core, the general purpose
routines for process creation and mechanisms for inter
process communication are implemented. This core contains
parts of simulator, specific to operating system and common
to all configurations of multicomputers. In section 3.2 we
discuss the simulator core implementation. In the second
stage,using these general purpose routines, the primitives to
simulate any given multicomputer configuration are
implemented. The structure core is therefore specific to a
processor topology. In general it is parameterised and can be
used to encapsulate all configurations of a particular class
of multicomputers. The structure core is discussed in section
3.%. The primitives provided by the structure core are used
to develop the user program. Finally we conclude this chapter

in section 3.4.

3.2 SIMULATOR CORE

The basic simulation routines of process creation,
termination and raw mode of communication between the
processor and its immediate neighbors in case of point to
point communication, and the processors connected on the same
bus in the case of broad.cast communication are implemented

here.



3.2.1 Process Creation

Creation of process and generation of associated 1links
for inter process communication is implemented through a
number of routines in simulator core. Let us start with the
routine to create the process, namely pfork().
PFORK subroutine
int pfork (i)

int i:

This subroutine creates the new process. The new
process is an exact copy of the creating process. The newly
created process > creates and opens the named pipes as
communication links to its immediate neighbors in case of
point to point communication or create shared files for each
bus in case of broad cast communication. If successful, this
~ routine returns 0 or else it returns ERR_FORK killing all the

processes created until now.

The procedure call create_pipes() called by each
newly created process causes the creation of named pipes, as
unidirectional communication links to its neighbors. For
implementing bi-directional communication links two pipes are
used. The pid of the parent is used in the name of the pipe,
so that more than one simulations active at the same time
don't have duplicate pipe names. If successful, the routine

returns 0 or else returns ERR_PIPECREATE.

The procedure call open_pipes() called by the
process opens the named pipes to its neighbcrs for

communication. This procedure returns 0 in case of



The opening of pipes is not as simple it seems at first
sight. This ié because of the deadlock avoidance scheme in
unix for pipes. The problem arises if a process opens a pipe
for just reading, it is made to wait till another process
opens the same pipe for writing and viceversa[Bach86]. So, if
each process follows naive algorithm given in fig 3.2 for
opening the pipes we can have classical deadlock situation

in the following scenario.

Consider the hypercube in dimension 2. The processors are
numbered as shown in fig 3.1. The following sequence of

events is possible(even likely to occur):

i) The processor 0 tries to open the pipe from processor 1
for reading and gets blocked waiting for processor 1 to

open it for writing.

ii) The processor 1 tries to open the pipe from processor
0 for reading and gets blocked waiting for processor O
to open it for writing.

iii) The processor 2 tries to open the pipe from
processor 0 for reading and gets blocked waiting for

processor 0 to open it for writing.

iv) The processor 3 tries to open the pipe from processor
1 for reading and gets blocked waiting for processor 1

to open it for writing.

Processors 0.1.2.,3% are now 1in classic deadlock
situation. Similar 1is the fate »of processors in higher

dimensions also.



A simple solution to this problem would make each
process open pipes for reading and writing even though it
might wuse it for reading or writing only. In this case no
process has to wait for another. But in unix even this
solution is unfeasible because, whenever the process closes
the pipe the data in the pipe is flushed if there are no more

readers left[Bach86]. Thus the following sequence of events

is possible:

i) Process 2 opens the pipe ts process 0.
ii) Process 2 sends the message to process 0.
iii) Process 2 closes this pipe and exits.
iv) Process 0 opens this pipe and tries to read the
message from process 2. Since the pipe has no data ,
process 0 waits forever for some message to arrive in

the pipe.

The solution adopted 1in this approach is to have
processes open the pipes in different order, in accordance
with a protocol which ensures that a deadlock situation never

arises.
According to this protocol:

1. Process 0 opens the pipe from process 1 and tries to
read, it will be successful since process 1 opens the

same pipe for writing first.

2. Process 1 opens pipe from 3 for reading and 3 opens the
same pipe for writing first and hence process 1 succeeds

to read the data from the pipe.



Similar is the case with the other processes. Fig 3.3
shows this protocol.

The complimentary routine of process creation is to
terminate a process is called by a process when its execution

is complete.

TERMINATE subroutine
void terminate();

This routine when called by a process causes the normal

termination of the process.

After simulation, the simulation environment is
disposed by terminating the processes and deleting the
communication links. To delete all the files created during
simulation, the subroutine clean is called by the process 0
before termination.

CLEAN subroutine
void clean();

This routine when called by the process removes all the

named pipes and shared files (if created).
3.2.2 Interprocessor Communication

Having described the creation and termination of
processes, we now describe communication routines which are
called by the processing elements in a multicomputer
configuration for communicating among themselves. The
communication routines are implemented by the complementary

pairs of subroutines namely read_from and write_to.



WRITE_TO subroutine

int write_to (which, mesg, len)
int which, len;:

char #*mesg;

The routine write_to writes 'len' number of bytes into
the pipe to process 'which', from the memory location 'mesg’.
Since the message length is a variable, four bytes containing
the message length are prepended to the message when it is
written in the pipe. In case of successful writing
operation, the routine returns a value 0 or else it returns -

1l as an error condition.

READ_FROM subroutine

int read_from (which, mesg, len);
int which; char *mesg;

int *len;

This routine causes the process to read the message
length indicated by memory location 'len' and then reads that
many number of bytes into the memory location mesg, from the
pipe specified by ‘'which'. As this is a blocked read
instruction, execution is suspended till the number of bytes
indicated by memory location len are read from the pipe: 1f
all the requested bytes are read, read_from routine returns
0 indicating the success of read operation or else it returns
-1.

Now let us discuss the routines which are called by the
'

processes for interprocessor communication in case of

broadcast communication.



BREAD(channel, mesg, len)
int channel;

char #*mesg;
int #*#len;

This routine causes, number of bytes indicated by memory
location ‘len' to be read from the file, ‘channel’ into the
memory location 'mesg'. In order to overcome the problem bf
inconsistency, the process, opens the shared file 'channel"',
and locks it and then reads the message and then unlocks it,
releasing the file for other processors connected on the same

bus. If the reading operation is successful then the routine

returns 0 or else it returns -1.

BWRITE(channel, mesg, len)

int channel;
char #mesg;

int len;

This routine causes, 'len' number of bytes to be written
to the file, 'channel' from the memory location 'mesg’. The
process, opens the shared file 'channel', and locks it and

then writes the message and then unlocks it, releasing the
file for other processes connected on the same bus. If the

writing operation is successful then the routine returns 0

or else it returns -1.

3.2.3 Support Routines

In this section, we describe number of support
routines. These routines simplify the task of writing
structure core to any topology of muticomputer network. We
start with the routine connected() which is used to verify

the connectivity of two given processing elements.



CONNECTED subroutine
#define TRUE 1
#define false 0

int connected(a,b)
int a,b:

The subroutine returns TRUE if the processing elements

whose node ids are 'a' and 'b', are connected by a link,

otherwise a FALSE value is returned.

CONNECT subroutine
connect(a,b)
int a,b;
The subroutine establishes an wunidirectional link

between processing elements whose nodeids are ‘a' and 'b’.

BROAD_LINK subroutine
broad_link(a,b);
int a,b;
This subroutine establishes,a broadcasting link between

the processing elements whose nodeids are 'a’ and 'b".

COMPLIMENT subroutine
int compliment(nodeaddr,i,d);
int nodeaddr,i.d:
This routine inverts the ith digit of node identifier
nodeaddr, having 'd' number of digits , and returns the

inverted node address.

GET_DIGIT subroutine

int get-digit(nodeaddr,r.d,i);
int nodeaddr,r,d,i;



Subroutine get_digit returns the ith digit from radix

‘'r' representation of the node identifier nodeaddr, having

'd' digits.

REPLACE (nodeaddr,r,i,j) subroutine

int nodeaddr,r,i,j;

Subroutine replace substitutes ith digit of the node
identifier 'nodeaddr’ by the digit ‘'j° and returns

substituted node identifier nodeaddr.

3.3 STRUCTURE CORE

Having described the basic routines, to simulate single
processing element of multicomputers we now describe the
routines in the second layer of simulator. The second layer
is built on top of the basic routines of simulator core and

provides better user interface.
The structure core contains the following maodules:

a. Input interface

b. Topology setup

c. Process Creation

d. Interprocessor Communication

e. Support routines

3.3.1 Input interface
The macro input() asks for the parameter and reads the
parameter. Then the total number of processors in the

network, is computed.



3.3.2 Topology Setup

The simulator core provides number of support
routines to describe the network topology. Number of examples
of the different multicomputer configurations are discussed
in the next chapter. This network topology is passed to the

simulator core to create the processes with appropriate

communication links.

3.3.3 Process Creation

Different types of process creation calls are
developed depending upon the topology of the multicomputers.
All these routines have been implemented wusing the basic

routine of process creation pfork().These are listed below:

subrout ine SFORK

int sfork(dest);
int dest;

The sfork call is used in the networks like, ring or
linear array of processing elements to create the processes

sequentially. sfork returns 0 for normal operation and

returns -1 for an error condition.

subroutine LFORK
int lfork(parameter);
int parameter;

The lfork call is used in multicomputer networks to
create the process in accordance of the parameter. Here the
parameter can be dimension(hypercube MMS), level(tree),
direction(mesh) etc. The call creates all the processes in
the specified parameter. The routine returns 0 in normal

execution and -1 for an error condition.



subroutine GFORK

int gfork();

The gfork call is used to create all the processes of
the multicomputer network. This routine is used to create
the processes in the networks of broadcast communication. On
successful execution, this routine returns 0 or else it

returns -1 as an error condition.

3.3.4 Interprocessor Communication

In this «class of routines, data communication among
processing elements is handled by the enhanced set of
interprocess communication routines. These routines are
developed using the basic routines of communication, write_to
and read_from in case of point to point communication, bread

and bwrite in case of broadcast communication.
Point to point communication:

subroutine LSEND_TO

int lsend_to(src,param,dataptr,len);
int src,param;

char xdataptr;

int den;

This routine causes processing element 'src' to send
*len' number of bytes to the processing element connected in
parameter ‘param'. This parameter can be level(tree),
dimension(hypercube ,MMS) , direction{mesh) etc. The
complimentary routine, to receive the data is handled by

lrecv_from wherein 'len' number of bytes are read by the

processing element ‘'dest'.



subroutine LRECV_FROM

int lsend_to(dest,param,dataptr,len);
int dest,param;

char dataptr;

int len;

These routines have been implemented in accordance with
the parameter in the interface to different topologies in the

next chapter EXAMPLES.

Broadcast communication:

subroutine GSEND_TO

int gsend_to(src,dim,dataptr, len);
int src,dim;

charsdataptr;

int len;

subroutine GRECV_FROM

int grecv_from(dest,dim,dataptr,len);
int dest.dim;

char «dataptr;

int den;

The gsend_to routine is used by the processing element

src to send data to all processing elements connected to
the broadcast bus in dimension ‘dim’. Whereas the
complimentary routine grecv_from causes the processing
element ‘'dest' to read the data from the broadcast bus

connected to it in dimension 'dim'. These routines can be
implemented by using the the basic routines of broadcast
communication bread and bwrite. The implementation is
illustrated in the next chapter EXAMPLES under structure

interface to broad-cast hypercube.



3.4 CONCLUSION

In this chapter we presented the implementation of
simulator suitable for all multicomputer configurations. The
implementation is divided into two layers. The first layer is
an implementation of proce;s creation and interprocessor

communication to simulate single processing element.

The second layer which 1is built over the first
provides better wuser interface. The subroutine pfork,
terminate, clean, connected,read_from, write_to implement
general purpose routines and other subroutines described in
this chapter are specific to the particular class of
multicomputers. The simulator has been implemented on a sun

3/60 work station running sun operating system version

4.0.%c.
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procedure open_pipes_l /% Executed by each process %/

begin
for all processors from 0 to N-1 do
begin
if connected then
begin
open pipe from this processor for reading
open pipe to this processor for writing
end
end
end

Figure 3.2 : A naive algorithm for opening pipes.

procedure open_pipes_by_proc i // Executed by each
process //

begin
for all processors from j = 0 to N-1 do
begin
if connected then
if (i >
begin
open pipe from this processor for reading
open pipe to this processor for writing
end
else
begin
open pipe to this processor for writing
open pipe from this processor for reading
end
end
end

Figure 3.3 : Dead_lock avoiding algorithm for
opening pipes.



- CHAPTER 4: EXAMPLES

4.1 INTRODUCTION

The major objective of the thesis is to provide
facilities for simulation of multicomputers. A multicomputer
is characterized by number of processing elements and a set
of data routing functions provided by the interconnection
network. The processing elements are independent of the
network topology and therefore are implemented by the
simulator core. The interconnection network is specific to a

class of multicomputers and is described by the structure

core.

The interconnection functions are different for

different machines. So in order to provide a general purpose

simulator tool, we maintain structure interface for each
topology. In this chapter we discuss different examples of
such interfaces. 1In section 4.2 we discuss the hypercube

structure core, MMS (Multidimensional Multilink System)
structure core in section 4.3, mesh[Hwang85] structure core
in section 4.4 binary tree structure core in section 4.5 and
lastly in section 4.6 the broadcast hypercube structure core

Finally we conclude in section 4.6.

The structure core consists of the following
modules:
i) Input interface
ii) Topology setup
iii) Process creation
iv) Interprocess communication

v) Support routines



Let us discuss these modules with respect to different

topologies.
4.2 STRUCTURE INTERFACE TO HYPERCUBE[Chp_cube.c]

d
The network consists of N = 2 nodes forming a d

dimensional hypercube. The nodes are labeled 0,1, .02 -1.
Two nodes are adjacent if their labels differ in exactly one

bit position. Fig 4.1 shows a hypercube model.

(i) Input interface: The macro, input(d) reads dimension 'd’'

as an input. Then the total number of processors present in

d
the network , N = 2

(ii) Topology set_up: Number of support routines are provided
in the simulator core to facilitate the set up of topology of
different multicomputer configurations. The hypercube
network has been established using these routines as as
fol lows
for peid = 0 to N-1
for j = 0 to d-1
connect(peid,compliment(peid, j));
Where peid is the node address of the processing element.
(iii) Process creation: As described in the previous chapter,
in section structure core, the routine lfork 1is wused to
create the process dimension wise.
LFORK subroutine
1fork (dim);
in dim;
The 1fork call creates all the processes in dimension

‘dim'. The subroutine is implemented by the basic routine of



(iv) Interprocess communication: Using the basic routines of

communication, read_from, write_to implemented in simulator

core, the subroutine lsend to is developed to provide

communication for any process to its neighbor in the

dimension specified by 'dim'. These routines return 0 on

successful execution else return-l as an error condition.

LSEND_TO subroutine

int lsend_to (src, dim, dataptr, len);
int src, dim;

char #*dataptr;
int len;

LRECV_FROM subroutine

int lrecv_from (dest, dim, dataptr, len):
int dest, dim;

char #dataptr:

int len;

The subroutine lsend_to allows 'len' number of bytes to

be sent by the processing element whose address is specified

by ‘'src' to the processor connected to 'src' in dimension
'dim®'. The complimentary routine for receiving data has been
implemented by the routine lrecv_from(). These routines are
implemented using the basic routines of interprocessor

communication, as follows:

int l1send_to (src, dim, dataptr, len);

int src, dim;
char #*dataptr;
int len;

{
int neigb;

neigb = compliment (src.dim);
write_to (neigb, dataptr, len);
}



lrecv_from (dest, dim, dataptr, len)

int dest, dim;
char #*dataptr;
int len;

{
int neigb;

neigb = compliment (dest.,dim);
read_from(neigb, dataptr, dim);
3
(v) Support routines: Number of subroutines in this section
include calls for obtaining topological parameters to
simplify the task of user programming. We start with the

get_nodeid subroutine wused to get the node address of the

processing element.

GET_NODEID subroutine
int get_node_id();
This routine returns the node address of the process

being executed.

GET_DIM subroutine
int get_dim();
The subroutine returns the dimension of the hypercube

network.

GET_NOPROCS subroutine
int get_noprocs();
The routine get_noprocs returns the number processors in

the hypercube network.

4.3 STRUCTURE INTERFACE TO MMSCmms.cl

d
The model consists of N = p nodes forming a MMS

network in dimension 'd' of drop 'p'. The processors are



connected if only if the addresses of the processors are

differed by single bit. Fig 4.2 illustrates this model. The

processors are numbered from 0 to N-1.

(i) Input interface: The macro, input{(d) reads the dimension

and the macro input(p) reads the drop of the network. Then

d
the total number of processors in the network = o]
(ii) Topology set_up: The topology of the MMS network is set

up by using the support routines provided in the simulator as

follows:

for peid = 0 to N-1
for j= 0 to d-1
for i = 0 to p-1
if (get_digit(peid,j.p) t= i)
connect(peid,replace(peid,p,j.i)?}
Where peid 1is the node address of the processing
element. This topology of the network is passed to the
simulator core to create the processes with the appropriate

communication links.

(iii) Process creation: The routine lfork is implemented to
create the processes dimensionwise. It is same as in the
case of hypercube network, since, hypercube is the special
case of MMS structure , wherein drop of the network is always

two.

(iv) Interprocess communication: The subroutine lsend_to and
lrecv_from are developed to provide communication between the
process and its neighbors in the dimension specified by the
argument 'dim' and drop 'dr'. These routines return O

indicating the success of the operation or else it return -1.



LSEND_TO subroutine

int lsend_to (src, dim, dr, dataptr, len};
int src, dim, dr;

char #*dataptr;

int len;

LRECV_FROM subroutine

int lrecv_from (dest, dim, dr, dataptr, len):
int dest, dim, dr;

char #*dataptr;

int len;

These routines are implemented by wusing the basic
subroutines of interprocess communication write_to and
read_from as follows.

lsend_to(src,dim,dr,dataptr,len)
int src,dim,dr;
char *dataptr;
int len;
{
int neighb;
neighb = replace(src,p.dim,dr);

write_to(neighb,dataptr,len);
}

lrecv_from(dest,dim,dr,dataptr,len)
int dest.,dim,dr;
char #*dataptr;
int len;:
{
int neighb;
neighb = replace(dest,p,dim,dr);
read_from(neighb,dataptr,len);:
}
(v) Support routines: The subroutine get_drop is implemented

here in addition to the routines that are explained in

hypercube structure, to get the drop of the MMS network in

the user program.

GET_DROP() subroutine
int get_drop();



4.4 STRUCTURE INTERFACE TO MESH[mesh.c)

In a mesh network, The nodes are arranged into a
two dimensional lattice. Communication is allowed only
between neighboring nodes; hence interior nodes communicate
with four other processors. Fig 4.3 illustrates a 2_d mesh
network with no wraparound connections. Let 'n' be the size
of the mesh. Let N be the total number of processing elements

in the network. The processors are numbered from 0 to N-1.

(i) Input interface: The macro input(size) reads the size of

the mesh to be described. Then total number of processors in

the network, N = n¥*n.

(ii)> Topology setup: The network of the 2-d mesh wusing the
support routines of the simulator core can be established as

follows:

for peid = 0 to N-1
connect(peid,get_neighb(peid,LEFT));
connect(peid,get_neighb(peid,RIGHT));
connect(peid,get_neighb(peid,ABOVE));
connect(peid,get_neighb(peid,BELOW));

The routine get_neighb is described later on under
support routines. Once structure of the network is

established, it 1is passed to simulator core, to create

processes and the appropriate communication links.

(iii) Process creation: The subroutine lfork() is implemented

to create the processes row wise.

1fork subroutine

int lfork{(row);
int row;



This routine has been implemented using the basic routine
of process creation pfork().
(iv) Interprocesisor communication: The complimentary

subroutines for communication between each processor of the
network, to its neighbor in the different directions like,

LEFT, RIGHT, BELOW: ABOVE, lsend_to and Irecv_from have been

developed. On suctessful completion of the data transfer, the

routines return O0- or elgse they return -1 as an error

condition. 3

subroutine LSEND_TO

int lsend_to(bxc,dir,dataptr,len);
int src, dir;sre
char *dataptr ;%
int len; te

subroutine lrecv_from

int lrecv_froin(dest,dir,dataptr,len);
int dest, dirj
char #%*dataptr;
int len; i

These subroutines cause the processing element to send
the data to or receive the data from the processor connected
to it, in the direction ‘'dir'. An implementation of these

routines using the basic routines of interprocessor

communication is given below.

int lsend_to(src,dir,dataptr, len);
int src,dir; ¢

char #*dataptr;

int len;

{
int neighb; :
neighb = get_neighb(src,dir);
write_to(neighb,dataptr,len);
}



int lrecv_from(dest,dir,dataptr, len);
int dest,dir: '

char #%*dataptr;

int len;

{
int neighb;

neighb = get_neighb(dest.,dir);
read_from(neighb,dataptr,len);
}

The get_neighb() is described later on in this section

under support routines.

(v) Support routines : The routines to get the parameters of
the 2_d mesh network are implemented here. The routine
get_size() returns the size(no. of rows or columns) of the
2_d mesh network. The routine get_noprocs() and get_nodeid()

are same as in the case of hypercube structure core.

Subroutine get_neighb is developed to get the neighbor of

the processor connected to it, in direction dir.

Subroutine GET_NEIGHB

int get_neighb(nodeaddr,dir)
int nodeaddr,dir;

This routine checks whether the processor with node
address nodeaddr has neighbor in the direction 'dir', if so
it then returns node address of the processor connected to it
in direction 'dir'(LEFT,RIGHT,ABOVE,BELOW) or else it returns

-1;

4.5 STRUCTURE INTERFACE TO BINARY TREE[tree.c]

1
The network consisting of N =2 -1 nodes forms a binary

tree of height 1. Communication is allowed only between



their parent and children. Fig 4.4 shows a binary tree. The

processors are numbered from 0 to N-1.

i) Input interface: The macro input(l) reads the

no. of
levels(height) of the binary tree network. Then total number
1
of processors in the network, N =2 -1.
ii) Topology setup: The topology of the netWork is

established by using the support routines of simulator core

as follows:,

for peid = 0 to N - 1
get_parent(peid)
connect(peid,get_parent(peid))
connect(peid,get_left_child(peid))
connect(peid,get_right_child(peid))
The routines get_pafent. get_left_child and
get_right_child are described later under support routines.
Once the network is established, it 1is passed to the

simulator to create the processes with communication links

accordingly.

iii) Process creation : The routine Ilfork creates the
processes level'by level. This routine has been implemented
by the basic routine of process creation pfork. It returns O
on successful creation of the processes or else it returns -1
as an error condition.

subroutine LFORK

int 1fork(level);

int level;

iv) Interprocess communication: Number of interprocess



communication for the processor with its parent and its

children of the binary tree network.

Subroutine SEND_TO_PARENT

int send_to_parent(src,dataptr,len);
int src: char *dataptr; int len;

Subroutine RECV_FROM_PARENT

int recv_from_parent(dest,dataptr,len):
int dest; char *dataptr; int len;

The subroutine send_to_parent causes the data to be
sent from the processor specified by the node address ‘'src'
to its parent. The complimentary routine recv_from parent
makes the processor 'dest', to receive the data from its
parent. These routines, return 0 on successful execution or
else they return -1 as an error condition. These routines are
implemented by using the basic routines of communication

read_from,write_to as follows:

int send_to_parent(src,dataptr,len)
int src;

char *dataptr;

int len;

{
int dest;

dest = get_parent(src);
write_to(dest,dataptr,len);
}

int recv_from_parent(dest.dataptr.len)
int dest;

char #*dataptr:

int len;

{
int src;

src = get_parent(dest);
read_from(src,dataptr.len);
}



Similarly the routines Send_to_left_child, recv_from

left_child, send_to_ right_child and recv_from_right_child
are implemented to provide communication between the

processor and its child. Please refer tree.c in APPENDIX B

for details.

v) Support routines: The subroutine get_height(),callei by
the user program ,is implemented to get the number of levels

in the binary tree network.

Subroutine GET_HEIGHT

int get_height()3
The subroutines get_noprocs(), get _nodeid() are same as that
of other structure cores. In addition to these, the
subroutines get_parent,get_left_child, get_right_child are
implemented to ease the writing of topology setup and to

develop the routines of interprocess communication.

Subroutine GET_PARENT

int get_parent(nodeaddr)
int nodeadddr;

get_parent checks, whether the processor specified
by node address, 'nodeaddr' is a root of the tree . if so,
it returns -1 or else it returns the node address of its

parent processor.

Subroutine GET_LEFT_CHILD

int get_left_child(nodeaddr);
int nodeaddr;

get_left_child wverifies. whether the processor
specified by node address, 'nodeaddr' is a leaf node. If so,

it returns -1 or else it returns the node address of its left



Subroutine GET_RIGHT_CHILD

int get_right_child(nodeaddr):
int nodeaddr;

get_right_child verifies, whether the. processor
specified by node address, nodeaddr is a leaf node. If so, it
returns -1 or else it returns the node address of its right

child processor.

Now let wus go for the structure core for broad _ cast
communication network. We discuss only example of it i.e.

structure interface to broad-—cast hypercube.
4.6 STRUCTURE INTERFACE TO BROADCAST HYPERCUBE [br_hpcubr .c]

Fig 4.5 shows a broad—_cast hypercube model . Let 'd' be
the dimension, let 'p' be the drop of the of the hypercube
network . Let 'N' be the total number of processors in the

network. The processors are numbered from 0 to N-1.

i) Input interface: It is same as in the case of interface to

MMS structure with point to point communication.

ii) Topology setup: Using the support routines of simulator

core the network of broadcast hypercube is established as

follows:
for peid = 0 to N-1
for j = 0 to d -1

for i = 0 to p-1
if(get_digit(peid,j,p) != i) .
broad_link(peid.replace(peid.p,j.i).get_channel(peid.)));
The routine get_channel is described later on under

support routines. The topology of the network is passed to

the simulator to create the.pr0cesses with broadcast links in



iii) Process creation: The gfork routine creates the

processes dimension wise creating files, on for each

broadcast channel. This routine has been implemented using

the basic routine of process creation pfork. The routine

returns 0 on successful creation of processes or else it
returns -1 as an error condition.
subroutine GFORK

int gfork{(dim);

int dim;

iv) Interprocess communication: The routine gsend_to causes
the processor ‘'src' to send the data on the broadcast bus
connected to it in dimension 'dim'. The complimentary routine
grecv_from makes processor dest to receive the data from the
broadcast bus connected to it in dimension 'dim'. If the
operation of data transfer is successful the routines return

0 or else they return -1 as an error condition.

Subroutine GSEND_TO

int gsend_to(src,dim,dataptr,len);
int dim,src; char dataptr; int len;

Subroutine GRECV_FROM

int grecv_from(dest.dim.dataptr.len);
int dim,dest; char dataptr;: int len;

These routines are implemented by using the basic routines of

broadcast communication bread and bwrite as follows:

int gsend_to(src.dim.dataptr.len)

int src,dim;
char dataptr;
int len;



int ch;

ch = get_channel(src,dim);

bwrite(src.ch.dataptr.len);
}

int grecv_from(dest.dim.dataptr,len)
int dest,dim;

char dataptr;

int len;

{
int ch:

ch = get_channel(src,dim):
bread(dest,ch,dataptr,len);

v) Support routines: The routines get_drop, get_dim,

get_noprocs are the same as in the case of interface to hypercube

with point to point communication.

In addition to these, a support routine get_channel has been

implemented.

Subroutine GET_CHANNEL
int get_channel (nodeaddr,dim);
int nodeaddr,dim;
This routine returns the channel number to which the
processor, with node address 'nodeaddr' is connected in

dimension ‘'dim’'.



4.7 CONCLUSION

This chapter has discussed four multicomputer

configurations of point to point communication, namely

hypercube, MMS, 2 d mesh, binary tree and one multicomputer

network of broadcast communication i.e. broadcast hypercube

model. To provide better user interface, each structure file
consists of an input interface to read the parameters of the
network, and interfaces for process creation and interprocess
communication. Number of support routines are available to

get the parameters of the network in the user program.
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5.

CHAPTER 5 : SIMULATION RUNS

1 INTRODUCTION

In this chapter, we discuss the sample programs of few

parallel algorithms, that are implemented using the simulator

package. In section 5.2, we discuss the 1mplementation of
summation of numbers on hypercube architecture, summation of
numbers on mesh structure i1n section 5.% and matrix_by_vector
multiplication on tree structure 1n section 5.4. Finally we

conclude 1n section 5.4.

5.2 SUMMATION OF NUMBERS ON HYPERCUBE[Quinn87]

m
The algorithm to add n = 2 values on a hypercube model

has been adapted from [QuinnB87]

procedure SUMMATION(n)

/% computes a + a +a + ... t &
0 1 2 n-1
result 1s stored 1n a */
0
begin
for 1+ = logn-1 downto 0 do /% 1 : dimension number */
i
d = 2
for jJ = 0 to d-1 do in parallel
t <= a
} ) +d
a <- a +t
) b
endfor
endfor
end

In the algorithm above, communication of the data item

from an adjacent processor's local memory 1nto the active



C
»1nce, every loop 1teration requires constant time, the

complexity of this algorithm 1s OClogn). The algorithm is

tllustrated 1n fig 5.2.1 for n =16.

Thie algorithm can be implemented using the primitives
available 1n the concerned structure file (hp_cube.c]. The
routine lfork{(dim) 1s called to invoke the simulator to
create the processes dimension wise and the routines Isend_to
and lrecv_from by the process to communicate to 1ts nei1ghbour
tn  the given dimension. The user's program implementing the

above algorithm 1s 1llustrated in Fig 5.2.2.
5.3 SUMMATION OF NUMBERS ON 2_d MESH STRUCTURE

An algorithm{QuinnB87] to do the same task on a 2_d mesh
connected model 1s given below. n=12. where 1 be the number
of rows (or columns) in the model. For simplicity the n
values to be added are stored, one per processing element.

The algorithm works by summing all the rows in column 1 and

then summing column 1.

When the algorithm concludes the element
a contains the sum.
AééiTIDN (2_d mesh)
begin
for 1 <- 1-1 down to 0 do

for all P where 1<j<1 do

t <= a +1 /% column 1 activex/
R ol
a <- a + t -
). j.1 j i
endfor

endfor



for 1 <- 1-1 downto 0 do

for all P . do /*only a single processing element
1,
t <= a in column 1 1s active */
1,1 1+1,1
a ‘- a + t
1,1 1,1 1,1
endfor
endfor
end

This algorithm has been successfully 1mplemented and
tested using the simulator package. The routine lfork(row) is
called for process creation row wise and lsend_to and
lrecv_from for i1nterprocess communication. These routines are
avallable in the corresponding structure file [mesh.cl. The

program implementing the summation algorithm is 1illustrated

tin fi1g 5.2.2.

5.4 MATRIX_BY_VECTOR MULTIPLICATION ON TREE STRUCTURE

The problem addressed in this section 18 that of
multiplying an m X n matrix A by an n X 1 vector U to produce
an m X 1 vector V. Matrix_by_vector multiplication requires
m+n-1 steps on a linear array. It is possible to reduce this
time to m - l+logn by performing the multiplication on a tree

connected network.

The algorithm[Ak189] 1is given as a procedure TREE MV

MULTIPLICATION.

procedure TREE MV MULTIPLICATION(A,U,V)

do steps 1n parallel
(1) for i = 1 to n do in parallel
for j = 1 to m do in parallel
(1.1) compute u ¥ a
i ja
(1.2) send results to parent
endfor



(2> for 1 = n+l to 2n-1 do 1n parallel
while P receives two inputs do
1

(2.1) compute the sum of the two 1nputs

(2.2 1f 1 < 2n -1 then send the result to parent

else produce the result as output.
endr f

endwhi le
endfor

This algorithm 1s illustrated 1n fig 5.4.1 for n=3.

This algorithm can be easily 1mplemented calling the
routines availlable I1n  tree structure file [tree.c],
lfork(level) for creating the processes level wise,
lsend_to_parent and lrecv_from rhild and Irecv_from rchild
for i1nterprocess communication. The user program 1mplementing

the above algorithm 1s 1llustrated 1n fig 5.4.2.

5.5 CONCLUSION

The simulator, can be easily used as a test bed to
verify the parallel algorithms, for different multicomputer
architectures. User should use only the routines that are
available in the concerned predefined structure file. To run
the user program he should read the instructions given 1n the

appendix C.
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SUMMATION (numbers)
int numbers[sizel:

int lsum,dim,d,k,dl;
int len,from_source,node_id;

for( dl = 0; dl < get_dim(); dl++)
1fork(dl);

node_id = get_nodeid();

dim = get_dim()-1;
/¥add the numbers dimension_vise#/

numbers[node_id];

lsum
dim; d >= 0; d--)

for( d
{
k = power(2.,d);

if ¢ node_id >= k)

{
lsend_to(node_id,d,&lsum,sizeof(int));

terminate();
}

else

€
lrecv_from(node_id,d,&from_source,&len);

lsum += from_source ;

}
3}
if( node_id == 0)
return lsum;
}
User program for summation

Figure 5.2.2
on hypercube
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MESH_SUMMATION (numbers)
int numbers(size]l;

{
int lsum,len,node_id, from source;
int r,kl,row,sizel,column;

for{ r = 0; r < sizel; r++) /¥create the process
lfo?k(r): row wise */

node_id = get_nodeid();

sizel = get_meshsize();

lsum = numbers[node_id];
/%*add the numbers column_vise#*/

for( column = sizel-1; column > 0; column--)

{
if ( node_id % sizel == column)
{
lsend_to(node_id,LEFT &lsum,sizeof(int));
terminate();
}
else
if({node_id % sizel) == column-1)

( .
lrecv_from(node_id,RIGHT ,&from_source,&len);
lsum += from_source ;

}

}

/% only first column is active */
for( row = sizel-1; row > 0; row--)

{
if((node_id /sizel == row) &&(node_id % sizel == 0))

{
lsend_to(node_id,ABOVE,&lsum,sizeof(int)):

terminate();
}

else

i f((node_id/sizel == row-1)&&(node_id % sizel == 0))

{
kl = node_id +sizel;
lrecv from(node_id,BELOW.&from_source,&len);
lsum += from_source ;
}
3

if( node_id == 0)
return lsum;

Figure 5.3.2: User program for summation
on 2_d mesh
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matrix_by_vector(A,U,V)
int Alsizellsizel];
int Ulsizel];
{
int 1,i,n, m = 0;
int node_id,len;
int lsource,rsource;

forC 1 = 1; 1 < get_height(); 1++)

l1forkd(l);

node_id = get_nodeid();
1 = get_height();

for¢( i =0 ; i < n; i++)

{

/% Compute results and send to parent */
if(leaf_node(node_id))

{

index = node_id - (power(2,1-1)-1)
product = Ulindex] #* A[il[index];
send_to_parent(node_id, &product,sizeof(int));

-
A\

}

else
{

/#Receives two inputs and find the sum%/
recv_from_leftchild(node_id,&lsource,&len) ;"

recv_from_rightchild(node_id,&rsource.&len);
productl = lsource + rsource;
if(node_id != 0) /* 1f not root node send the

result to parent */
send_to_parent(node_id, &productl,sizeof(int));

else
{
Viml = productl; /#¥produce the result as
m++; output*/

} /*else*/
} /*else*/

} /*for*/

Figure 5.4.2 : Matrix_by_vector multiplication
on tree structure



CHAPTER 6: CONCLUSIONS
In this thesis, a simulator package is developed. It is
a platform for testing users parallel algorithms written to

run on multicomputer architectures. In order to make this

package complete on its own, some features are to be added.
A debugger to correct user's program is dealt in section 6.1,
a performance monitor is discussed in section 6.2. Finally
the shortcoming of this simulator is discussed in section

6.%.

6.1 DEBUGGER

In this simulator, we have used signals to take care of
errors occurred during simulation. Wherein, the process at
which error has occurred sends the signal to the parent
process (process 0) which in turn distributes the signal
among all processes created, terminating them with error
condition. Added to these we should provide a debugger for
the user in such a way that he should be able to correct his

program with least difficulty.

6.2 PERFORMANCE MONITOR

In most of the cases, a specific multicomputer network
is more feasible than the rest for the given parallel
algorithm. Hence a facility can be provided, so that the
simulator can evaluate the performance of the user's progfam
on different multicomputer networks and should come out with

the most efficient one with minimum communication costs.



6.3 SHORTCOMINGS

The main shortcoming of the implementation is that, the

gsize of multicomputer network that can be simulated is

limited. This is because, the operating system imposes an

upper limit on the total number of processes and also on the

number of processes that a single user can have running at

the same time[SunB88]. Thus simulator can't simulate very

large network (bigger than 64 processors). This shortcoming

can be removed with the usage of user level thread package.



APPENDIX A

Routineslavailable to write structure file
NAME
connect - establish the link between two processors.

SYNOPSIS

#include "structure.h"
void connect(a,b?)

int a,b;
DESCRIPTION

Connect establishes the unidirectional link between two
processing elements whose node ids are 'a' and 'b'. This
subroutine is used to set up the topology of point to point
connected multicomputer network.
RETURN VALUE £
None.
NAME
connected - <checks the connectivity between processing

elements.

SYNQOPSIS
#include "structure.h"
int connected(a,b)
int a,b;
DESCRIPTION
Connected returns TRUE if the processing elements whose

node ids are 'a’ and 'b' are connected else returns FALSE if

not connected.



RETURN VALUE

Returns 1 if connected else returns 0.

NAME
broad_link - establishes broadcast link between the two

processing elements.

SYNOPSIS

#include "structure.h”
void broad_link(a,b,ch)
int a,b,ch;
DESCRIPTION

Broadcast link establishes broadcast link, 'ch' between

processing elements whose node ids are 'a' and 'b'. This

routine is used to establish the structure of the broadcast

communication network of multicomputers.

RETURN VALUE

None.

NAME

get_digit - extracts a specified digit from the address of

nodeid.

SYNOPSIS
#include "structure.h"”

int get_digit(nodeaddr,r,d,i)
int nodeaddr,r,.d,i;

DESCRIPTION
get_digit extracts the ith digit from the radix i o

representation with 'd' digits in the node identifier

nodeaddr.



RETURN VALUE
Returns the extracted digii.

NAME

compliment - inverts the specified digit of node address

SYNOPSIS

int compliment(nodeaddr.d, i)
int nodeaddr,i,d;

DESCRIPTION

compliment inverts the ith digit of node address having

'd*' digits, nodeaddr.

RETURN VALUE

Returns the comp!limented node address.

NAME

replace - substitutes the specified digit of node address

by given digit.

SYNDPSIS
#include "structure.h”
int replace(nodeaddr.r,d,i, j)
int nodeaddr,r.,d,i,j;
DESCRIPTION
replace, substitutes the ith dfgit of radix ‘'r°

representation of the node identifier, having 'd' digits,

nodeaddr by the digit 'j'.

RETURN VALUE

Returns the substituted node identifier, nodeaddr.



APPENDIX B: EXAMPLES OF STRUCTURE FILE

‘hp_cube.c'
#include "structure.h"

int dim;
int proc_no;

structmain()
{
int peid,id,neighb;

input(dim) /*input
no_procs = power(2.,dim);
initialize();

interface#*/

_ ‘ /% Topology Setup¥*/
for(peid = 0; peid < no_procs; peid++)

{
for(id = 0; id < dim; id++)
{
neighb = compliment(peid,id,dim);
connect(peid,neighb);
} .
}
stgrt_sim(); /% Set up the simulation environment %/
main{); /% Entry point of user programme ¥/
clean(); /% Remove the communication links %/
terminate(); /% Terminate the process 0 #/
}

/*¥Praocess creation*/
l1fork(diml)
int diml;

{
int np.k,p.pl;
np = power(2,diml);

if (get_nodeid() != 0)

return;

for(p = 0; p < np; ptt) /% Create processes in
dimension diml*/

k = ptnp;
pfork(k);
pl = getpid();
if(pl == child_pid)
{
proc_no = Kj;
return ;



/*Interprocess Communi i
lsend_to(src,diml,mesg, len) unication*/

int diml,src:
char ¥*mesg ;
int len;

{
int i,dest;:
dest = compliment(src,diml,dim);
write_to(dest.mesg,len);
)

irecv_from(dest,diml .mesg, len)

int dest,diml;
char #*mesg ;

int *¥len;
{
int i,src;
src = compliment(dest,diml,dim);
read_from(src,mesg,len);
}
/%Support Routines#*/
get_dimQ)
{
return dim;
}

get_noprocs()

{
return no_procs;
}

get_nodeid()

{
return proc_no;:
3



‘mms.c'

#include "structure.h"

int dim,drop;:
int proc_no;

structmain()

{
int peid'dlp'neighb;
char str[LENGTH];

/¥in i

input (drop) put interfacex/
input(dim)
no_procs = power(drop,.dim);
initialize();

/#*Topology setup%/

for{peid = 0; peid < no_procs; peid++)
{
for(d =0; d < dim; d++)
{
for(p = 0; p < drop; pt+)
{

if(get_digit(peid,drop,dim,d) != p)
connect(peid, replace(peid,drop,dim,d,.p));

}
)
}
start_sim(); /% Set up the simulation environment */
maind{); /% Entry point of the user programme */
clean(); /% Remove the communication links */
terminate(); /% Terminate the process 0 %/

}

/#%Process Creation®/
1fork(diml>
int diml;

{

int np,npl,.k.,p,pl:;
np = power{drop,diml) % (drop -1);
npl = power{(drop,diml);

if( get_nodeid() != 0)
return;
for( p = 0; p < np ; pt++)/#Create the processes
in dimension diml¥*/
{
kK = ptnpl;
pfork(k);
pl = getpid();



if( pl == child_pid)
(
proc_no = K;
return;

/*¥Interprocess Communi .
lse"d_tO(srC-diMI.dr.mesg‘len) ication®/

int src.,diml ,dr;
char *mesg;:

int len; ¢
{
int i,dest;
dest = replace(src,drop,dim,diml,dr);
write_to(dest.mesg.len);
}

lrecv_from(dest.diml.dr,mesg.len)

int dest.diml . dr;
char ¥mesg;
int *len;

{
int i,src;
src = replace(dest,drop.dim.diml.dr);
read_from(src.mesg.len);
3}
/%Support Routines*/
get_dim()
{
return dim;
}

get_drop()

{
return drop:
}

get_noprocs()

{
return no_procs;
)

get_node1d(}
{

return proc_no;
}



‘'mesh.c'
#include "structure.h"
int mesh_size,proc_no;
structmain()

{

int peid,neighb;

| /#Input interfacex/
input(mesh_size)

no_procs = mesh_size*mesh size;

inttialize():

/% Topology Setup %/

for(peid = 0; peid < no_procs; peid++ )

{

if{({(neighb = get_neighb(peid,LEFT)) t= -1)
connect(peid, neighb):

if{{neighb = get_neighb(peid,RIGHT)) 1= -1)
connect(peid, neighb);

if({neighb = get_neighb(peid,ABQVE)) 1= =1)
connect(petid, neighb);

if({neighb = get_neighb(peid,BELOW))!= -1)
connect(peid, neighb);

start_sim();

main(); /% Entry pont of the user programme */
clean(); /% Remove the communication links #*/
terminate(); /% Terminate the process 0 #/

3

/% Get up the simulation environment %/

/% Process Creation %/

lfork{(row)

int row;
{
int np,npl,p.k,pl:
if(row == ()
{
npl = 1;
np = mesh_size-1;
}
else
{
npl = row ¥ mesh_size;

np = mesh size;



if(get_nodeid() t= 0)
return;

for(p = 0: p < np; p++)

{
k = ptnpl;
pfork(k);
pl = getpid();
if(pl == child_pid)
{
proc_no = K;
return;
}

'/*Create the processes
In the given row #*/

/% Interprocess Communication #*/
int lsend_to(src,dir,dataptr,len)

int src.dir:
char #dataptr;
int len;

{
int dest;

dest = get_neighb(src,dir);
write_to(dest,dataptr,len);

3

int lrecv_from(dest,dir,dataptr,len)

int dest,dir;
char #%*dataptr;
int *len;

{
int src;
src = get_neighb(dest,dir);
read_from(src,dataptr,len);
}

/% Support Routines %/

get_nodeid()

{

return proc_no;
3
get_noprocs()

{
return no_procs;

}



get_mesh_size()

{
return mesh_size;
}

int get_neighb(peid,dir)
int peid,dir;

{
int neighb;

switch(dir)
{

case LEFT: if(( peid % mesh size) != 0)
return peid-1; -
else return -1;
break;
case RIGHT: if((( peid+l) % mesh_size) != 0)
return peid+l;
else return -1;
break;
case ABOVE: if( peid >= mesh_size)
return peid - mesh size;
else return -1;
break:
case BELOW: if( peid < mesh_size¥(mesh_size-1))
return peid + mesh_size;
else return -1;
break;



‘tree.c’
#include "structure.h"

int height;:
int proc_no;

structmain()
{

int peid.,left_child,right_child,parent, leaf:

/% Input int
input (height) erface %/

no_procs = power(2,height) -1;
initialize();

/% Topology Setup */
for(peid = 0; peid < no_procs; peid++) P

{

if(( parent = get_parent(peid)) 1= -1)
connect(peid,parent);
if((left_child = get_left child(peid)) != -1)
connect(peid,left_child);
if((right_child = get_right_child(peid)) 1= -1)
connect(peid,right_child);

}

start_sim(); /% Set up the simulation environment */

main{(): /% Entry point of user programme */
clean(); /% Remove communication links %/
terminate¢); /% Terminate process 0 */

)

/% Process Creation */
lfork(levell)
int levell;

{
int np.npl.k,p,.pl:
np = power(2,levell);
npl = np -1;
if (get_nodeid() != 0)
return;
for(p = 0; p < np; pt+t) /% Create processes at

level levell %/
{

k = ptnpl;

pfork(k);

pl = getpid();
if(pl == child_pid}
{

proc_no = K;

return



/* Interproce . .
int send_tO_parent(src,aataptr.l:z)COMmunlcatIOn

int src; s
char #*dataptr;
int len:

{
int dest;

dest = get_parent(src);
write_to(dest, dataptr,len);
}

int recv_from_parent(dest,dataptr, len)
int dest;

char #*dataptr;

int *len;

{
int src;

src = get_parent(dest);
write_to(src,dataptr,len);

int send_to_leftchild(src,dataptr,len)
int src;

char #*dataptr;

int len;

{
int dest;

dest = get_left_child(src);
write_to(dest,dataptr,len);
}

int recv_from_leftchild(dest,dataptr,len)
int dest;

char *dataptr;

int *len;

{
int src:
src = get_left_child(dest);
read_from(src,dataptr,len);
}

int send_to_rightchild(src,dataptr,len)
int src;

char %*dataptr;

int len;



{
int dest;

dest = get_right_child(sre);

write_to(dest,dataptr,len);
)

int recv_from rightchild(dest,dataptr,len)
int dest; '

char #*dataptr;
int *len;

{
int src;
src = get_right_child(dest);
read_from(src,dataptr,len);
}

/% Support Routines #*/
get_height ()

{
return height;
)

get_noprocs()

{

return no_procs:
}

get_noded()

{

return proc_no:
3

int get_parent(peid)
int peid;

{
int parent;

if(peid == 0)
return -1;

else {
1f(peid % 2 == 0)
parent = peid/2 -1:
else parent = peid/2:
return parent;
}



‘br_cube.c'

#include "structure.h”

int dim,drop:
int proc_no;

structmain()

{

int peid,id,il;
char str[LENGTH];

input(dim)

input{drop)

no_procs = power(2,dim);
itniti1alize();

/% Topology Setup */

for(peid = 0; peid < no_procs; peid++)

{

}

for{d = 0; d < dim;: d++)

/% Input interface #/

1]

{
for(p = 0; p < drop; p++)
{
ch = get_channel(peid.d);
if(get_digit(peid,drop,dim,d) 1= p)
broad_link(peid.replace(peid.drop,dim.d.p).ch)~
}
}

start_sim():

maind{);

clean();

terminate();

}

/% Process Creation %/

l1fork{(diml)
int diml:

{

int np,.k,p.pl:

np

= power{(2,diml);

if (get_nodeid() != 0}
return;
for(p = 0; p < np; p++) /% CHANGE*/

{

k = ptnp;

pfork(k);

pl = getpid();

i1f(pl == child_pid)

{

proc_no = k;
return ;

/%*Delete the communication links#*/



/* Interprocess :
gsend_to(src.diml, mesg,len) Communication

int src,diml;
char *mesg

int len;
{
int ch;
ch = get_channel(src,diml);

bwrite{(ch,mesg, len);
b

grecv_from(dest,diml .mesg,len)

int dest.diml
char #¥*mesg ;
int #len;

{
int ch;

ch = get_channel(dest,diml);
bread(ch,mesg.,len);
}

/% Support Routines %/
get_dim()

{
return dim;
}

get_nnprnrﬁ()

(
return no_procs;
}

get_node1d()

{

return proc_no;
}

get_channel (peid,d)
int peid.d;

{

int ch;

if(dim == 0)

ch = pei1d/drop;

else ch = (peid % power(drop,d)) + (drop¥d);
return rch-



To run the program on the simulator user has to do the

following things:

Writing the program

User should call only the routines that are available
in the concerned structure files in his program. For example
if the user wants to run the program on hypercube structure
he should refer the file hp_hube.c and can use the rouines
that are available in that file. Please refer APPENDIX B for
the details of different structures that are already defined.
User should see that final result of the program is always

computed at processor 0.
Preparation

Copy the following files to your area.

1) “jshree/arch/proj/cc_hpcube to run the program on
hypercube.

ii) “jshree/arch/proj/cc_mesh to run the program on 2_d
mesh

iii) “jshree/arch/proj/cc_mms to run the program on MMS
iv) “jshree/arch/proj/cc_tree to run the program on tree

v) “~jshree/arch/proj/cc_brhpcube to run the program on
broadcast hypercube

Compiling the program

To compile the user program he should use concerned
compiling command. cc_hpcube, cc_mms, cc_mesh, cc_tree are

used to compile the user programmes to simulate hypercube,



MMS, 2_d mesh and tree structures respectively. cc_brhpcube
is wused to compile the programs written for hypercube with
broadcast communication. cc_hpcube,cc_mms, cc_mesh,

cc_treeand cc_brhpcube have got the same usage as that of

usual ¢ compiler cc.
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