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Abstract

Embedded systems have been usually built around proprietary operating systems
and interfaces. Even when the external interfaces to these proprietary operating
systems are standardized, there is usually no support for subsystems like a file
system. Traditionally, embedded systems have found no need for a file system and
have handled data storage and manipulation in their own non-standard ways. This
thesis discusses the need for a file system interface for object management and
emphasizes the necessity of a generic, efficient and light-weight interface. An object
oriented design which addresses the issues is then presented. The advantages of
using a microkernel based operating system like Mach as a basis for designing the
interface and developing a prototype implementation is also discussed. Finally a

prototype implementation on the Mach microkernel is presented.
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Chapter 1

Introduction

1.1 Embedded Systems

Embedded systems encompass a broad range of systems in which computers are used
for specialized applications as opposed to general purpose computing. Embedded
systems usually use specialized processors such as embedded microcontrollers; many
embedded microcontrollers are modified versions of general purpose microproces-
sors. The diverse applications of embedded systems range from simple controllers
for house hold appliances to massive control systems for industrial applications.
Typical functionality of embedded systems include data acquisition and process-
ing, command handling from remote systems, storage of acquired parameters for
later analysis, process control based on the acquired data etc. Embedded kernel or

embedded OS is the operating system targeted to run on embedded systems.

1.2 The Need for a File System

An embedded kernel also needs to store and manipulate data objects as any other
operating system. In a generic OS, the file system provides these services. However a
file system is not usually built into a embedded system because space and efficiency
are at premium. This usually results in ad-hoc methods of managing memory to be

able to accommodate data objects.



A file system is useful in many embedded systems and can swiftly be substituted
for non-standard data handling; for example an embedded kernel in a remote data
acquisition equipment can use a file system to store it’s data temporarily before
forwarding it to the final destination; a Cockpit data recorder needs to continuously
store the collected data. A file systemgterface is also useful as a general way of
storing and manipulating system objects. Consider a DSP application for example;
on-chip memory is at a premium, so a file system can hold the programs or parts of
programs that can be overlaid in this fast on-chip memory as and when needed.

There are two reasons why file systems are not used in embedded kernels - one,
there is usually no disk or other kind of storage associated with the system and
two, a file system could be a unnecessary baggage when memory is at a premium.
However as mentioned earlier a file system like interface is useful as a uniform way of
manipulating system objects. This thesis provides a solution to both the issues. An
interface which serves as a generic interface for managing system objects, which is at

the same time light weight and efficient will be presented in the following chapters.

1.3 Existing §olutions

There are many different embedded kernels available in the market, most are pro-
prietary in nature. QNX, a microkernel based embedded and scalable Operating
System, is one of the few non-proprietary kernels which has been used in a number
o/f embedded applications [Hil92]. Solutions for managing named objects in such
kernels vary widely. QNX, for example provides a full POSIX.1[Lew91] compati-
ble file system for development environments, a simplified file system for embedded
applications and different file systems for other media, like a Flash Memory File
System. Many other embedded kernels provide no support for a file system at all.
It must be emphasized that a complete POSIX compatible file system interface
is neither needed nor easy to provide in an embedded system because the code com-
plexity will be too high. Therefore, a simplified interface which can be implemented

cheaply is needed.



1.4 Design Issues

As the usefulness of a file system depends on the requirements of a particular system,
the implementation is likely to vary widely. For example the secondary storage
medium may be a disk, flash memory or even part of the main memory. Even
for the same medium many different organizations are possible. For example, the
file system implementation for a data recorder will be such that appending is very
fast. The interface therefore needs to be flexible as well as generic. The other main
concern as pointed out earlier is that of space and efficiency. The issues can be

summarized as follows

e Well defined implementation independent interfaces should be provided.
e It should be possible for multiple file system implementations to co-exist.
e The interface should allow implementations that are eztremely lightweight.

e The interface should be very efficient - no unnecessary copies from file server

or kernel space to user space or buffers.

The first two of these issues are easy to attain, indeed Sun’s Vnode-VFS inter-
face for Unix achieves exactly this and is used in all modern Unix implementations
[K1e86]. The last two issues are the ones we are most concerned with. The overheads
needed due to the implementation of file system should be as minimum as possible,
otherwise the very purpose of putting a file system where memory is at a premium

1s lost.

1.5 File System Interfaces

When we talk about a file system interface, there are actually two interfaces which
come into the picture. The first interface is the interface to the user. This is the User-
Library interface which is the user’s view of the file system. The second interface is
the low-level interface that is provided by file system itself. This is the concern of

the library writer. The OS specific issues in the low-level interface remains hidden



from the end user through a user library that implements the user-library interface.
To give an analogy, the user-library interface and the low-level interface correspond
to the ANSI stdio library built on top of (low-level) system calls in an OS like Unix
or DOS.

User Low-level
Program interface
Library FileServer
Client  FileSys
\ / + Interface
Mefssages .
: GFS : \
N Server ' > File System
| A L) Implementations
N P ¢ :
\ : 7 ;
User-Library ', ) ¢
Interface ........ _...\; -------- , / :
........ \ , ’

Figure 1: File System Interfaces

Depending on the file system architecture, the interface required by each file
system to implement is directly the low-level interface or a third interface which
we call the Filesys interface. The three interfaces are shown in Figure 1 and are
discussed in detail in Chapters 3, 4 and 5.

All the interfaces should be thought out carefully. The ANSI stdio li-

brary has many drawbacks which makes it unsuitable as a user-library interface



[KV91][KSU92|. Similarly alternatives to the Unix system call interface have to be
considered keeping in mind the concerns for space and efficiency for the low-level

interface.

1.6 Mach as a Development Platform

Microkernel operating systems like Mach [ABB+86] and QNX [Hil92] offer several
advantages both to OS developers and OS users. Microkernel technology is rapidly
maturing and is being increasingly adopted in operating system design. Modern
commercial operating systems like Windows NT and OS/2 Warp, in addition to
many Unix variants are based on microkernel technology. It is likely that in future
most operating systems will be microkernel based.

Let us consider the advantages that a microkernel operating system offers to
the developer. A traditional operating system allows users to add components to a
kernel only if they both understand most of it and have a privileged status within
the system. Testing new components requires a much more painful edit-compile-
debug cycle than testing other programs. It cannot be done while others are using
the system. Bugs usually cause fatal system crashes, further disrupting others’ use
of the system. The entire kernel is usually non-pageable.

A multi-server design [JCS™] based on a microkernel like Mach divides the kernel
functionality up into logical blocks with well-defined interfaces. Properly done, it is
easier to make changes and add functionality. Much more of the system is pageable.
Because of clean specifications of the interface, the system can be debugged more
easily and new system components can be tested without interfering with other
users. But the wall between user and system remains; no user can cross it without
special privilege. Since the operating system lies on top of the microkernel, machine
dependent part in the OS is minimal which makes it easily portable.

The benefits to the user is obvious. The system is much more stable. The mod-
ularity ensures scalability. It is easy to add subsystems or remove ones not needed
without bringing down the system and interrupting other users. This modularity

and scalability is of primary importance to embedded systems. For example, a file



system need not be included if it is not needed. Considering the success of Mach,
QNX and other microkernel operating systems, it is clear that future operating sys-
tems will be based on one micro kernel or another. Indeed the success of QNX in the
embedded systems market proves that microkernel technology is viable and mature.

Though QNX has proven itself in the embedded market, it is unfortunately a
commercial product. The Mach microkernel [ABB*86] [B*93] [Loe91b] developed
at the Carnegie Mellon University on the other hand is already a mature microker-
nel which is undergoing further active research in many places, including University
of Utah and the OSF Research Institute. Mach allows user level pagers and provides
features like fast IPC, multi-threading and advanced memory management [R*88]
[Loe91c]. The various versions of Mach are available for free to developers. For these
reasons, Mach was chosen as the development platform for the prototype implemen-

tation. A brief description of Mach and it’s features is presented in Chapter 2.

1.7 Organization of the Report

The rest of the report is organized as follows. In Chapter 2 a brief introduction
of Mach is presented with particular emphasis to external memory managers. An
overview of the thesis is presented in Chapter 3. In Chapter 4 the design of
the FileSys interface is described in detail, followed by a description of the user-
library interface in Chapter 5. An implementation of the GFS interface on Mach
is presented in Chapter 6, some benchmark results are also given. We finally

conclude in Chapter 7 and give suggestions for further work.



Chapter 2

Mach and User-Level Pagers

2.1 Introduction

The Mach macrokernel is designed to incorporate many recent innovations in op-
erating system research to produce a fully functional, technically advanced system.
Unlike Unix, which was developed without regard for multiprocessing, Mach incor-
porates multiprocessing support throughout. Mach 3.0 microkernel designed at the
Carnegie Mellon University is a stable and mature platform and serves as a base of

many current operating system research projects.

2.2 Design Goals and Chief Features

The key design goals and features of Mach are as follows:

o Multiprocessor operation: Mach was designed to execute on a shared memory
multiprocessor. Mach provides a multi-threaded model of user processes, with
execution environments called tasks. Threads are pre-emptively scheduled,
whether they belong to the same tasks or to different tasks, to allow for parallel

execution on a shared memory multiprocessor.

e Transparent eztension to network operation: Mach has adopted a location-
independent communication model involving ports as destinations. The orig-

inal Mach design relies totally on user-level network server processes, though
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this model has been changed in recent versions.

User-level servers: Mach supports an object-based model in which resources
are managed either by the kernel or by user-level servers. With the exception
of some kernel-managed resources, all other resources are accessed uniformly
by message passing, irrespective of how they are managed. To every resource,
there corresponds a port managed by a server. The Mach Interface Genera-
tor(MiG) was developed to generate RPC stubs used to hide message-based

accesses at the language level [Loe91c].

Operating System emulation: To support the binary-emulation of Unix and
other operating systems, Mach allows for transparent redirection of operat-
ing system calls to emulation library calls and thence to user-level operating

system servers. See Figure 2.

OSF/1 Linux
08§/2
DOS
4.3 BSD
tasks and IPC virtual scheduling
threads memory
Mach

Figure 2: Mach 3 structure



o Flezible virtual memory implementation: Mach supports a large, sparse pro-
cess address space, possibly containing many regions. Both messages and open
files, for example, can appear as virtual memory regions. Mach was designed
to allow user-level servers to implement backing storage for virtual memory
pages. This is a key feature for the Embedded File System design and is de-

scribed in more detail in Section 2.4 below.

e Portability: Mach was designed to be portable to a variety of hardware plat-
forms. For this reason, machine-dependent code has been isolated as far as
possible. In particular, the virtual memory code has been divided between

machine-independent and machine-dependent parts.

2.3 Basic Abstractions

The basic abstractions provided by the Mach kernel are as follows (See Figure 3):

o Tasks: A Mach task is an execution environment that provides the basic unit
of resource allocation. A task consists of a virtual address space and protected

access to system resources via ports. A task may contain one or more threads.

e Threads: A thread is a basic unit of execution, and must run in the context of
a task (which provides the address space). All threads within a task share the
task’s resources (ports, memory, and so on). There is no notion of a “process”
in Mach. Rather, a traditional Uniz process would be implemented as a task

with a single thread of control.

e Ports: A port is the basic object reference mechanism in Mach, and is im-
plemented as a kernel-protected communication channel. Communication is
accomplished by sending messages to ports; messages are queued at the des-
tination port if no thread is immediately ready to receive them. Ports are
protected by kernel-managed capabilities, or port rights; a task must have a
port right to send a message to a port. The programmer invokes an operation
on an object by sending a message to a port associated with the object. The

object being represented by a port receives the messages.

9
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e Port sets: A port set is a group of ports sharing a common message queue.
A thread can receive messages for a port set, and thus service multiple ports.
Each received message identifies the individual port (within the set) that it
was received from; the receiver can use this to identify the object referred to

by the message.

e Messages: A message is the basic method of communication between threads
in Mach. It is a typed collection of data objects; for each object, it may
contain the actual data or a pointer to out-of-line data. Port rights are passed
in messages: passing port rights in messages is the only way to move them

among tasks.

e Memory objects: A memory object is a source of memory; tasks may access
it by mapping portions (or the entire object) into their address spaces. The
object may be managed by a user-mode ezternal memory manager. Memory
objects and external memory managers are described in detail in the next

section.

2.4 User-Level Memory Managers

User-level memory managers is a key feature of that is essential for this thesis.
A secondary-storage object is usually mapped into the virtual address space of a
task. Mach maintains a cache of memory-resident pages of all mapped objects, as
in other virtual-memory implementations. However, a page fault occurring when a
thread accesses a nonresident page is executed as a message to the object’s port.
The concept of a memory object being created and serviced and maintained by
nonkernel tasks is important. This makes user-level memory managers possible.
When the object is destroyed, it is up to the memory manager to write back any

changed pages to secondary storage.

Basic Manipulation Manipulation of a virtual address space by a user-mode

task takes the following basic form:

11
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Figure 4: User-level Memory Managers

o A task obtains the port for an object that can be mapped.

o A task establishes a new memory range by invoking the vm_map system call.
Included in this system call is a port which identifies the object, and the
memory manager which is responsible for the region. The kernel executes

calls on this port when data are to be read or written in that region.

The task attempts to reference a portion of this memory range (most likely
simply by touching it). Since that portion does not yet exist in memory, the
referencing task takes a page not resident fault. The kernel sends a message
to the range’s abstract memory object requesting the missing data. The reply

from the abstract memory object resolves the requesting task’s page fault.

Eventually, the resident pages of the memory range, with values possibly mod-
ified by the client tasks, are evicted from memory. Pages are sent in messages

to the range’s abstract memory object for their disposition.
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e The client task de-establishes the memory range by calling the system call
vm_deallocate. When all mappings of this memory object are gone, the abstract

memory object is terminated.

The kernel should be viewed as using main memory as a (directly accessible)
cache for the contents of the various memory objects. The portion of this cache
that contains resident pages for a memory object is referred to as the memory cache

object.

Memory Managers The kernel is involved in a dialog with various memory man-
agers to maintain it’s memory cache, filling and flushing this cache as the kernel sees
fit. The dialog consists, in general, of asynchronous messages, as the kernel cannot
be stalled by a memory manager, and memory managers wish the maximum possible
concurrency in their operations.

When the first vm_map call is made on a memory object, the kernel sends message
to the memory manager port passed in the call, invoking the memory_manager_init
routine, which the memory manager must provide as part of it’s support of a mem-
ory object. Two ports are passed to the memory manager in this message (and
most other messages), called the control port and name port. Name ports are used
throughout Mach. They are used simply as a point of reference and comparison.
Finally, the memory object must respond to the memory_manager_init call with
a memory_object_set_attributes call to indicate that it is ready to accept requests.
When all tasks with send rights to a memory object relinquish those rights, the
kernel deallocates the object’s ports, thus freeing the memory manager and memory
object for destruction.

There are several kernel calls that are needed to support external memory man-
agers. The memory manager itself must provide support for several calls so that it
can support an object. For instance the memory_objeci_data_request call must be
provided to handle a page fault in a user-level task which has mapped an object

supplied by this server. The various calls are well documented in [Loe91d, Loe91c].
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Chapter 3

Overview

3.1 Overall Architecture

The GFS architecture is based on a client-server model, keeping in-tune with the
microkernel philosophy. With this model, there are two possible designs in the
overall architecture of the file system. The first approach is to have a single file
system server which implements all the different file systems. The second one is
to have a separate server for each mounted file system and (if necessary) a master
file server to manage the namespace. The second design is obviously more modular
and is probably the best choice in a general purpose OS because of the flexibility it
offers.

The main drawback of the multiple server design is that this may result in a lot
of duplicated functionality in each file system implementation. Except for low-level
I/O and a few other details most file system implementations usually have a lot
in common. This code is unnecessarily duplicated in each file server. This is not
acceptable in an embedded system. Therefore the first design was chosen. There is
another advantage to the first design, the design can be adapted into a monolithic
kernel also with few modifications; this is much more difficult in a distributed design.

A design for a single file server does not automatically preclude it’s adoption for
multiple servers when it is suitable. A careful design of the interfaces and name

space management can ease the adoption of the design for multiple servers.
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3.2 The Embedded File System

The embedded file system architecture has a single file server, simply called File-
Server which can have multiple file system implementations built in. Clients which
need to access different file systems communicate with FileServer by either explicit
messages or indirectly through a memory-mapped interface (see Section 3.3 below.).
The architecture of the system is shown in the Figure 5. FileServer exports the
low-level interface mentioned in Section 1.5. Each file system implementation is not
concerned with this low-level interface and exports a standard interface called the
Filesys interface. This third interface is needed because the low-level interface may
be dependent on the target operating system and must be insulated from the file
system implementor. While three interfaces may seem to be a bit complicated, this
design provides the maximum flexibility and is no different from the Unix hierarchy
of VFS-Vnode interface, the Unix system call interface and the ANSI stdio interface.
In the case of a microkernel architecture the low-level interface will be RPCs from
the client (user program) to FileServer.

File systems are called Volumes and are identified by a unique 8-byte Volume
ID. Each volume is in it’'s own name space; a full pathname begins with a Volume
ID, followed by a : (colon), followed by the actual path (similar to MS-DOS). This
scheme was chosen over a single hierarchical name space as in Unix because name

lookup is much simpler and separating out servers for each volume is easier.

3.3 Memory Mapped Interface

A direct function call interface for all file system related calls including read and
write similar to Unix is an obvious choice for the low-level interface but suffers from
two disadvantages; the first one is that there are unnecessary copies from system
space to user space and vice versa. In the case of microkernels this copying may
be avoided through memory management optimizations but RPC costs for every
read/write may be prohibitively expensive [DA92]; the second disadvantage is the
need of a cache to maintain acceptable levels of performance. In Unix, the buffer-

cache is an important part of the file system [Bac86]. While the buffer-cache is

-
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Figure 5: Embedded File System Architecture

efficient and elegant, it also contributes significantly to the code size of the file

system.

The overall concern for a light weight interface and efficiency, therefore makes

the choice of a memory mapped interface inevitable. Krieger et al. [KSU92] show
that use of memory mapped files in standard Unix make applications run two to
three time faster. As in any case memory mapping will be there for other functions
of an embedded controller, this will pose very little overhead too. Moreover, in
this approach the pager functionality will be provided through a shared library in

systems using user-level memory managers; for example the GNU Hurd operating

system does this over the Mach microkernel [Sta90].

16



A mapped file implementation eliminates all unnecessary copies. More impor-
tantly there is no need for a separate buffer cache as in Unix since the pager func-
tionality automatically takes care of caching. Gingell et al. [GMS8T7] discusses the
advantages of memory mapped files and the unified memory cache for all system
objects. User level memory management is usually available in embedded micro ker-
nels or should be relatively easy to implement. A mapped interface does not imply
that it has to be through paging. Systems without virtual memory can achieve sim-
ilar results by overlaying a portion of the process’ address space. The Mach micro

kernel supports user-level pagers directly as described in Chapter 2.

3.4 Interface Design

A memory mapped interface is efficient, but is not very convenient to use. A suitable
user-library interface has to be provided (See Section 1.5). The low-level interface
is operating system specific as mentioned earlier and the Mach implementation is
through RPCs and the vm_map system call.

An object-oriented design using a hierarchy of C++ classes is presented [ES90]
for both the Filesys interface and the user-library interface. C++ is was chosen for
interface specification because it is gaining importance as a system programming
language. Moreover, file system interfaces naturally fall into an object oriented
class hierarchy and abstract base classes in C++ are good at expressing interfaces
[Str91, Str94]. And finally the freely available GNU C/C++ compiler suite for most
architectures makes porting a non-issue. The FileSys interface and the user-library

interface are described in detail in the following two chapters.
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Chapter 4

Filesys Interface

4.1 Introduction

This chapter details the Filesys interface, the interface that must be implemented by
a new file system implemention. There are primarily two different kinds of objects
in a file system; file system volumes and objects in the volumes. The objects in the
volumes are files and directories.

The Filesys interface is loosely based on Sun’s Vnode/VFS architecture for Unix
[K1e86]. An object residing in a volume (file or directory) is abstractly modeled as
a GObj (generic object). File and directories are derived from GObj. The file and
directory are called GFile and GDir respectively. Similarly each mounted file system
is represented by an object called a GVol (generic volume). GObj, GFile, GDir and
G Vol are all abstract classes and don’t represent real objects. They are instead used
to export standard interfaces that a file system implementor has to implement. Since
file attributes and directory entries have to be generic, a common base structure for

these entries has been defined for this data types. Figure 6 shows these data types.

4.2 File System Volumes

A mounted file system is represented by an object called a GVol (generic volume).

A new file system implementation derives from G Vol and implements the required

18



typedef char gvolid_t[8];

typedef struct {
enum modes { rdonly = 0x0001, rdwr = 0x0002, dir = 0x0100 };

size_t ga_length; /* file size */
unsigned ga_mode; /* file modes */
} gattr_t;

typedef struct {

unsigned gd_id; /* Unique 1d */
char gd_name[256] ; /* file name */
} gdirent_t;

typedef struct {

gvolid_t sg_volid; /* name of the volume */
unsigned  sg_pages,; /* total # of pages */

unsigned sg_free; /* # of free pages */

unsigned sg_files; /* # of files (including dirs) */

} statgvol_t;

Figure 6: Basic Data Types in GFS

interface methods. The operations on a GVol are:?

gv-mount(gvolid_t volid)
Mount the file system volume with volume id volid. The volume must be of
the expected type.
gv_unmount()
Unmount the file system and free it’s resources.
gv_root(GObj **gpp)
Return a pointer to the root GObj? for this file system in gpp.

1All operations are method invocations on the respective objects, the object itself is implicitly
passed in the call.
2GOb; is a generic object in the file system and is described below.
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gv_statvol(statgvol_t *svp)
Return information about a mounted file system. svp points to a statgrol_t

structure for the results. The statgvol_t structure is shown in Figure 6

4.3 File System Objects

The GOby is the base for the file system objects (files and directories). It is analogous
to the incore wnode in Unix and keeps track of open objects in the system. The GObj
exports a minimal set of generic operations common to both files and directories.

GFile and GDir inherit from GObj and exports operations on files and directories.

4.3.1 Generic Object

The GObj represents data and functions that are common to both files and direc-
tories. There are only three operations defined in this class. All operations return
error codes indicating success or failure. The operations are:
go_getatir(gatir_t *gap)
Get the attributes of the GObj, where gap is a pointer to the attributes struc-
ture of the object. See Figure 6.
go_setattr(gatir_t *gap)
Set the attributes of the GObj.

go_sync()
Write out the cached information for this GObj.

4.3.2 Generic File

The generic file object is called GFile and inherits from GOb;. File I/0 is through
mapped files for efficiency and flexibility. However, a pager interface is by nature
operating system specific, therefore GFile only requires generic read and write oper-
ations that are page aligned. The pager interface is then an implementation specific
issue and calls read or write in responding to a paging request. Though direct read
and write calls could be supported by the file system, the mapped interface should
be preferred. The GFile operations are:
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gf-open()
Open the file for reading. This method is called by FileServer when a client

maps in this file.

gf-close()
Close the file, flushing all buffers to backing storage. This method is called

when all clients have unmapped this file.

gf-read(unsigned pageno, unsigned n, void **datapp)
Read n bytes of data starting from page pageno. datapp points to a pointer
to the returned page(s).?

gf-write(unsigned pageno, unsigned n, void *datap)
Write n bytes of data starting from page pageno. datap is a pointer to the
data to write.

gf-link(GDir *tgdp, char *tnm)
Link this object into directory tgdp under the name énm. This call may not be
implemented if the underlying file system does not understand multiple links

to the same file.

4.3.3 Generic Directory

The generic directory object is called GDir and inherits from GObj. GDir exports
a uniform interface for directory operations. Though a generic directory structure
for operations on directories is defined (See Figure 6), a particular file system is free
to implement it’s own directory structure internally. The GDir generic operations

are:

gd_create(char *nm, gatir_t *gap, GFile **gfp)
Create a file named nm in this directory with attributes gap. gfp is a pointer
to the newly allocated GFile that is returned.

gd_rename(char *nm, GDir *tdgp, char *tnm)
Move the object named nm in this directory into the target directory tdgp

under the name tnm.

3We return a pointer to a pointer to avoid an unnecessary copy here. 2 8 JU N
1996
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gd_remove(char *nm)

Remove a file with name nm in this directory.

gd_lookup(char *nm, GObj **gpp, unsigned lookupflags)
Lookup a pathname component nm in this directory. gpp points to a pointer
to pointer to a GObj for results. lookupflags indicates whether to lookup for

read/write.
gd_mkdir(char *nm, GDir **gdpp)
Create a directory nm in this directory. The newly created directory is re-
turned in the pointer to a GDir pointer gdpp.
gd_rmdir(char *nm)
Remove a directory nm from this directory.
gd_readdir(dirent_t *dirp, int &nentries)
Read the contents of this directory. The results are returned in an array of

dirent_t structures, dirp. nentries is the number of entries in dirp

GDir doesn’t have explicit open() and close() operations because a directory
is implicitly opened when looked up and closed when nobody refers to it, whereas
GFile is opened only when it is mapped. The difference is because GFile operations

are meaningful only when somebody maps in a file unlike GDir operations.



Chapter 5

User-Library Interface

5.1 Introduction

The user-library interface for GFS provides fast stream I/O. It is a complete re-
implementation of the Alloc Stream Interface described by Krieger et al. [KSU92].
It is also modified to fit into the object-oriented framework of GFS. The user-library
interface is not only faster than the ANSI stdio library, it is also very light-weight
and thread safe. In this chapter the problems of the stdio are discussed and the new

user-library is discussed in detail.

5.2 Problems with the stdio Library

There are two main disadvantages with the Unix I/O interface: Firstly, as the
interface now stands, an excessive number of system calls result if a user process
accesses a file with many small read and write operations. Secondly, the user supplies
a private buffer into which the data should be read, or from which data should be
written. This can result in a large performance cost when data is copied to and from
the system buffers.

To reduce the number of interactions with the operation system, the stdio run-
time library buffers data in the application’s address space and thus amortizes the

cost of interactions with the operating system over several application requests.
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However, buffering at the user level introduces yet another layer of copying, namely
between library and application buffers. Moreover, most implementations of s¢dio
are not re-entrant, which means that in a multi-threaded environment each thread
is forced to do explicit locking and unlocking before and after each operation.

The GFS design adopted a mapped interface to reduce the copying between
different buffers, and can allow for different threads in an application to concurrently
access different parts of the same file. The user-library should be also designed in

the same spirit by avoiding unnecessary copies.

5.3 Design of User-Library Interface

The user-library interface for files are modeled after the Unix memory allocation
interface (i. e. malloc, realloc, free). The interface returns a pointer directly into
library buffers (which is in fact a pointer into the mapped region), so there are no
unnecessary copies. Another advantage of the interface is that the user need not
learn a totally new interface since it is modeled after the standard malloc interface.
There are no new directory operations in the interface, traditional interfaces or

similar ones are provided.

5.3.1 RawFile

The base object for the user-library interface is called the RawFile and exports
operations that are common to both files and directories. The operations exported
by RawFile are as follows:
open(char *path, unsigned flags, unsigned mode)
Open file/directory for reading. The flags parameter specifies lookup for
read/write/both and the mode parameter indicates the creation mode if the

file is not found and is opened for write.

close()

Close the file or directory, flushing the contents to secondary storage.

flush()

Flush the contents to secondary storage.
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5.3.2 File

The File object inherits from RewFile and exports the malloc kind of interface to
access memory-mapped files provided by the FileServer. The File object maintains

a doubly-linked list of mapped regions and exports the following methods:

void *salloc(int &length)
salloc is similar to malloc and allocates length bytes from the current offset
in the file and returns a pointer to the allocated area. length is a in/out

parameter and returns the actual length allocated or a negative error code if

the request could not be satisfied.
void *srealloc(void *bufp, int &length)
srealloc is similar to realloc and resizes an already allocated buffer bufp and

adjusts it to the size length. length returns the actual size or a negative error

code if the request cannot be satisfied.

void *sallocAt(void *bufp, int offset, int &length)
In Uniz random access to a file is by a seek followed by read or write. In
a multi-threaded environment, the file has to be locked before the seek and
unlocked only after read or write. To avoid this, sallocAt provides an interface
which returns a pointer to a buffer of size length at the given offset.
free(void *bufp)
free() frees a buffer which was allocated earlier. bufp should be the a pointer

returned by an earlier salloc, sallocAt or srealloc.

The salloc, srealloc, sallocAt and sfree methods lock the object before the method
is performed for safe multi-threaded operation. There are faster versions named with
a prefix u_, namely u_salloc, u_srealloc, u_sallocAt and u_sfree which do not lock the
object. These faster can be used if there is only one thread or when the lock is

obtained once before a set of consecutive operations.
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5.3.3 Directory

The directory object Dur inherits from RawFile and its interface is traditional. There
would be no benefit in using mapped files for directory operations because the inter-
nal directory structure is specific to a file system implementation and a conversion

to the generic structure (and hence a copy) is always necessary. The directory

operations are as follows:

readdir(dirent_t *entryp)
This method returns a single directory entry in entryp. Repeated calls of the
function return consecutive entries in entryp.

mkdir(char *name)

Create a new directory with name name.

rmdir(char *name)
Remove the directory with name name. The directory specified by name must
be empty.
unlink(char *name)
Remove a file with name name.
rename(char *oldname, Dir *newdir, char *newname)
Move the entry oldname from this directory to the directory newdir under the

name newname.

5.4 Interaction with the Low-Level Interface

The details of how the user-library interface maps on to the low-lerel interface is
left unspecified on purpose. The File object for example expects some equivalent to
the Unix mmap call in order to map files. The actual call that it uses is operating
system specific. The Dir object similarly expects low-level operations corresponding
to it’s exported interface, in trivial cases these methods may be inline expansions
that call the low-level interface without any library overheads. Some issues specific

to the Mach implementation is presented in the following chapter.
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Chapter 6

Implementation

6.1 Mach Implementation

An implementation of the three interfaces was developed on mach4-uk02p18' run-
ning Lites-1.1.u8, a BSD compatible Unix server and emulator distributed by the
University of Utah [Hel94] hosted on NetBSD-1.0. The compiler tools used were
from Free Software Foundation’s GNU C/C++ compiler suite. The entire envi-

ronment is freely downloadable from the Internet.

6.2 Low-Level and User-Library Interfaces

The low-level interface for most operations is Mach RPCs, these RPC calls are
defined using the MiG language specification. The user-library makes these RPC
calls on behalf of the client. For mapped files the interface is using the vm_map
call described in Chapter 2. The user-library interface has been implemented using

vm_map call and RPC stubs generated using MiG.

- 1Mach 4, is currently just Mach 3.0 from CMU in a new, flexible build environment and a few
minor modifications.

[S\]
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6.3 FileServer

FileServer is a multi-threaded user-level Mach server. FileServer has two sets of
threads. The first set handles name lookup and volume operations like mounting
and unmounting. The second set of threads handle object operations. This set of
threads function as external memory managers for file objects and also as simple
servers for directory operations. The overall architecture is shown in Figure 7.

FileServer begins it’s operation by registering it’s port with a name server with
the name GFS_Server so that clients can lookup the name and can access it. Then
it forks off the threads for volume requests like lookup, mount etc. This is the first
set of threads. Next it allocates a port set for object operations (including paging)
which is initially empty and forks off threads to service these object requests.

Once a file system is mounted and a object is looked up, a unique port is created
for the object and moved into the object port set. In the case of directories all
directory operations are direct RPC calls to the the object port. File I/O is imple-
mented through the Mach Erternal Memory Manager interface, where messages are
exchanged with the kernel and not directly with the client. In either case any of the

object threads receive a message and invoke the appropriate object method.

6.4 Pseudo File System

A Pseudo File System (PFS) which uses a Unix file system provided by the Lites
server was implemented to test the functionality of the GFS interface. PFS converts
all object operations into file system calls on the underlying Unix file/directory. The
PFS is only intended to demonstrate that the FileSys interfaces are easy to use and

efficient. A few benchmarks are presented in the next section for comparison.

6.5 Benchmarks

The benchmarks compare the performance of FileServer with PFS on the Mach
micro kernel with the Lites server on the same machine and with native NetBSD-

1.0. All timings were taken on a 436 DX2 66 MHz with 8MB of main memory. The
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Figure 7: Mach based GFS Implementation

Unix call times? was used to take the benchmarks.®

Because of two user-level programs interacting in the case of Lites and GFS
benchmarks we analyze only the real time, that is the wall clock time in the first two
benchmarks. Though the benchmarks were taken on a lightly loaded system with
only the system daemons were present in addition to the servers, the benchmarks
are likely to be a bit inaccurate because of operating system overheads. However
since these benchmarks are only representative they are quite sufficient to provide

a good comparison. .

2times reports user, system and real times for a process and it’s children.
SAll timings are reported in units of clock ti%kgs, which is 10ms on both the Lites and Uniz.



6.5.1 open and close

The following table reports the timings for open and close. It may be noted that
GFS timings include overheads due to PFS (based on the Lites file system using
Lites system calls) and therefore do not represent the correct timings for GF'S alone.
The timings are therefore only for refex;ence because they were subtracted from
read/write timings in the next section. The timings are the averages of 10 trials

with 1000 opens and closes in each trial. Table 1 gives the benchmark results.

Benchmark CPU | Real
NetBSD syscall | 21.70 | 21.60
NetBSD stdio 25.80 | 26.00
Lites syscall 31.60 | 92.70
Lites stdio 32.90 | 96.90
GFS User-library | 71.60 | 238.95

Table 1: Comparison of open and close times

The difference in timings between NetBSD syscall and Lites syscall is because
NetBSD is a monolithic kernel while Lites is a user-level server on Mach. Dean and
Armand [DA92] gives comprehensive benchmarks on RPC call timings on Mach
and Chorus microkernels. The 2.6 times increase in the cost of the GFS file server
benchmark is an artifact of the PFS implementation. In this benchmark, with the
pathname having two components, the PFS open does two stat system calls and

open system call on the Lites Unix file system.®.

6.5.2 Uncached read

It is difficult to measure the timings for an uncached read for small data sizes, so this
benchmark reports the timings for an uncached read for 100 pages (409600) bytes
from GFS. The cached® read for Lites and NetBSD is also given for comparison for

comparison and analysis. Write timings have not been compared because the BSD

4Two stat calls cost approximately 100 clock ticks, so the GFS open takes effectively 45 clock
ticks.
5That is, present in the buffer cache.
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write system call is always synchronous and the GFS write is always asynchronous.

Table 2 gives the benchmark results.

Benchmark CPU | Real
NetBSD syscall cached 4.00 | 100.88
NetBSD stdio (cached) 6.33 | 100.00
Lites syscall cached 14.00 | 69.00
Lites stdio (cached) 11.33 | 76.00
GFS User Library (uncached) | 4.00 | 89.00

Table 2: Comparison of read times for 100 uncached pages

The real timings in this uncached benchmark varies very widely for Lites server.
The GFS benchmark also varies but not as much as the Lites case. We haven’t
investigated the reasons for this, however the cause is most likely due to operating
system overheads.®. The average of the lowest timings in 10 trials were taken for all
the cases.

Since the PFS actually does a read system call to the Lites server, subtracting
this from the GFS benchmark shows that the overhead due to a Mach RPC and
FileServer is very less (200ms in comparison to the Lites case of 690ms to get it
from the buffer cache). The NetBSD real time is surprisingly poorer than both Lites
and GFS in this benchmark.

6.5.3 Cached read/write

The most important benchmark is the cached read, in the case of Unix or Lites from
the buffer cache and in the case of the GFS from the virtual memory cache (VM
cache). The performance of a raw memcpy is also shown for comparison. Lites has
not been compared here because of two reasons, firstly we are actually measuring
the page fault overhead and it is reasonable to compare it with a monolithic kernel
and secondly Lites benchmark results were found to show a great deal of variation
between different trials. The time reported is the average time for 100 reads/writes

in 10 trials.

6The CPU timings did not show this much variation, thereby justifying this claim.
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In the GF'S case both read and write is a touch of the first word of each page.
Touching a page is a fair comparison because once a page is touched the entire page
is completely mapped into user space. Similarly modifying the first byte will cause

the entire page to be written back. The results are shown in Tables 3 and 4.

Benchmark memcpy NetBSD syscall | NetBSD stdio | GFS User-Lib

CPU | Real | CPU Real | CPU | Real | CPU | Real
1 byte 0.10 | 0.00 | 2.25 2.24 | 8.02 7.90 | 4.65 5.47
1 kbyte 0.27 | 0.27| 2.83 2.79 | 8.17 8.22 | 4.67 5.48
1 page 0.93 | 0.98 | 4.60 4.57 | 9.89 9.88 | 4.68 5.62
lpage+ 1| 093] 099 | 573 5.74 | 9.63 9.67 | 5.14 6.02
2 pages 1.94 | 1.99| 7.63 7.60 | 11.76 | 11.81 | 5.42 6.24
4 pages 3.91 | 3.90 | 14.93 14.93 | 22.62 | 22.62 | 6.53 7.54
6 pages 5.60 | 6.00 | 22.65 22.34 | 38.62 | 38.90 | 7.39 9.55
8 pages 7.10 | 8.20 | 28.55 28.44 | 41.72 | 41.70 | 8.79 | 10.05
10 pages 9.20 | 9.80 | 34.75 34.34 | 51.72 | 51.70 | 9.49 | 11.25
16 pages 15.00 | 15.50 | 58.15 58.54 | 82.52 | 82.20 | 13.39 | 15.35

Table 3: Comparison of read times for cached pages (100 reads each)

The NetBSD write times are much more than the read times because writes are
synchronous. The read benchmark shows that cost of a memory mapping operation
is much faster reading data from the buffer-cache using a system call. It can also be
seen that stdio overheads are significant in most cases because of the extra copy.

It is also interesting to note that for reads more than 8 pages (64 Kbytes) the GFS
user-library costs less than a memcpy. This is because all copies have been eliminated
in memory-mapping and the only overheads are the page table manipulation by the
kernel at page fault time and the user-library pointer management overheads. The
raw page-in performance is even better (See Table 5), giving better results than
memcpy for just 4 pages. In an embedded system this is likely to improve further
because context switch times due to changing protection domains (from user to

kernel and back) can be minimized by moving all processes into kernel space.
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Benchmark | NetBSD syscall | NetBSD stdio | GFS User-Lib

CPU Real CPU Real | CPU | Real
1 byte 3.95 4.04 | 10.12 10.50 | 5.05 5.07
1 kbyte 5.17 5.11 | 11.79 11.76 | 5.17 5.09
T page 820 | 821| 16.36| 16.35| 5.24| 5.13
1 page + 1 | 10.80 10.80 | 25.30 25.31 | 5.71 5.75
2 pages 19.26 | 164.61 | 34.66 | 164.19 | 5.73 5.98
4 pages 32.48 | 332.09 | 67.11 | 331.27| 7.36 7.18
6 pages 50.85 | 497.94 | 100.82 | 499.20 | 8.14 9.50
8 pages 63.65 | 665.04 | 118.52 | 664.50 | 7.14 9.90
10 pages 77.95 | 873.34 | 205.32 | 784.30 | 9.44 | 11.11
16 pages 125.65 | 1387.24 | 333.32 | 1227.80 | 14.94 | 14.40

Table 4: Comparison of write times for cached pages (100 writes each)

6.6 User-Library Overheads

The overhead of the user-library over directly using the pointer returned by vm_map
is shown in the Table 5 (All reported timings in Section 6.5 were using the user-
library). The benchmarks show that library overheads are significant for small sizes
but is relatively less for larger sizes. The overhead is because a library function
call is made for every page. Since profiling support is not included in the current

Mach implemention, the bottle neck could not be identified, the timings are likely

to improve after proper profiling and tuning.
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Benchmark | Raw vm_map User-Library

CPU | Real | CPU | Real
1 byte 1.36 2.43 4.65 5.47
1 kbyte 1.35 2.34 4.67 5.48
1 page YW 2.40 4.68 5.62
1 page + 1 1.88 2.37 5.14 6.02
2 pages 192 3.03 5.42 6.24
4 pages 3.59 4.29 6.53 7.54
6 pages 4.29 5.55 7.39 9.55
8 pages 5.09 6.15 8.79 | 10.05
10 pages 6.79 7.35 949 | 11.25
16 pages 9.69 | 10.35| 13.39 | 15.35
32 pages 17.29 | 18.75 | 22.89 | 24.35
64 pages 33.29 | 34.45| 46.39 | 43.55
100 pages 52.39 | 53.35| 65.19 | 65.65
200 pages | 101.09 | 102.35 | 124.69 | 126.25

"able 5: Overheads due to GFS User-Library
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Chapter 7
Conclusion

A generic file system interface for embedded kernels has been designed based on a
memory mapping interface. Interfaces for both the file system implementor and the
File System user have been presented in detail. An multi-threaded implementation
of the interface has been done on the Mach micro-kernel, with relatively fine grain
locking'. Benchmark results on a Pseudo File System (PFS) were presented and

prove that the memory-mapping interface is extremely efficient.

7.1 Analysis of the Design

The design has been done from both the File System implementor’s perspective
and the file system user’s perspective. The multi-threaded design ensures that the
implementation is scalable. The interface is also flexible in the sense that individual
file systems can be implemented as separate servers if necessary because the file

system name space has been completely partitioned.

7.2 Future Work

Because of lack of profiling tools for multi-threaded programs in the University of

Utah version of the Mach kernel it was not possible to study if there were any

1There is a lock for every object
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bottle necks in FileServer implementation. Once this support is available profiling
of FileServer should be done. A flexible and efficient design has been presented.
Further work on GFS can be in two directions.

One is to design an efficient file system for embedded kernels using the GFS
interfaces or porting an existing file system implementation to the GFS framework.
The second is to improve the performance of the interface, so that overheads are
further minimized. Cost of an RPC on Mach is still significant compared to a system
call in a monolithic kernel, the GFS server (FileServer) should be moved into the

kernel once support becomes available in the Mach microkernel.

36



Bibliography

[ABB*86] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard

(B*93]

[Bac306]

[DAY2)

[ES90]

[GMSST)

[Hel94]

[Hil92]

Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel
foundation for UNIX development. In USENIX Conference Proceedings,
pages 93-112, Atlanta, GA, Summer 1986. USENIX.

Boykin et al. Programming under Mach. System Programmer’s series.
Addison-Wesley, Reading, MA, first edition, 1993.

Maurice J. Bach. The Design of the UNLX Operating System. Prentice-
Hall, Englewood Cliffs, NJ 07632, USA, 1986.

Randall W. Dean and Francois Armand. Data movement in kernelized
systems. In USENIX Workshop on Micro-Kernels and Other Kernel
Architectures, pages 243262, Seattle, WA, April 27-28 1992. USENIX.

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley, Reading, MA, USA, 1990.

Robert A. Gingell, Joseph P. Moran, and William A. Shannon. Virtual
Memory Architecture in SunOS. In USENIX Conference Proceedings,
pages 81-94, Phoenix, AZ, Summer 1987. USENIX.

Johannes V. Helander. Unix under Mach, The LITES Server. Master’s

thesis, Helsinki University of Technology, Helsinki, 1994.

Dan Hildebrand. An Architectural Overview of QNX. In USENIX Work-
shop on Micro-Rernels and Other Kernel Architectures, pages 113-126,
Seattle, WA, Apr11 27-28 1992. USENIX.

37



[JCS*]

[K1e86]

[KSU92]

[(KV91]

[Lew91]

[Loe9lal
[Loe91b]
[Loe9lc]
{Loe91d]

[R*88)

[Sta90]

Daniel P. Julin, Jonathan J. Chew, J. Mark Stevenson, Paulo Guedes
). PN k]
Paul Neves, and Paul Roy. Generalized Emulation Services for Mach 3.0:

Overview, Ezperiences and Current Status. OSF and CMU.

S. R. Kleiman. Vnodes: An Architecture for Multiple File System Types
in Sun UNIX. In USENIX Conference Proceedings, pages 238-247, At-
lanta, GA, Summer 1986. USENIX. |

Orran Krieger, Michael Stumm, and Ron Unrau. Exploiting the advan-
tages of mapped files for stream 1/O. In USENIX Conference Proceedings,
pages 27-42. San Francisco, CA, Winter 1992. USENIX.

David G. Korn and K. Phong Vo. SFIO: Safe/Fast String/File I0. In
ISENIX Conference Proceedings, pages 235-256, Nashville, TN, Summer
1991. USENIX.

Donald A. Lewine. POSIX programmer’s guide: writing portable UNIX
programs with the POSIX.1 standard. O’Reilly & Associates, Inc., 981
Chestnut Street, Newton, MA 02164, USA, 1991.

Keith Loepere. Mach 3 Kernel Interfaces. OSF and CMU, 1991.
Keith Loepere. Mach 3 Kernel Principles. OSF and CMU, 1991.
Keith Loepere. Server Writer’s Guide. OSF and CMU, 1991.

Keith Loepere. Server Writer’s Interfaces. OSF and CMU, 1991.

Richard Rashid et al. Machine independent virtual memory management
for paged uniprocessor and multiprocessor architectures. [EEE Transac-
tions on Computers, 37(8):896-907, 1988. Also appeared in Proceedings
of the Second ACM Symposium on ASPLOS, 198T7.

Richard Stallman. Towards a New Strategy in OS Design. In the GNU
Bulletin, 1990.

38



[Str91) Bjarne Stroustrup. The C++ Programmang Language. Addison-Wesley,
Reading, MA, USA, second edition, 1991.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley,
Reading, MA, USA, first edition, 1994.

39



