DESIGN OF TWINE — RISC

By
- DINESH RAO B.

96’3 - bEPART@NT \OF‘GOMPI.;"I‘EI; >SCIENGE&ENGINEERING
e INDIAN INSTITUTE OF TECHNOLOGY KANPUR

MAR’CH 1993 :

DESIGN OF TWINE-RISC

A thesis submitted

in partial fulfillment

. of the requirements
for the degree of

Master of Technology

by

Dinesh Rao B

to the
Department of Computer Science and Engineering

Indian Institute of Technology, Isanpur

February, 1993

07 APR ;393

T KAD -
CSE-—l?Q\g,— M RAD

1y r_,LKA%Lﬁ?AR) ,
“ 0 AlT5a

L™ ...%

i g il

This is to certify that the work contained in the thesis titled. DESIGN OF
Twine-RISC, was carried out under my supervision by Dinesh Rao B
and it has not been submitted elsewhere for a degree.

Dr. Rajat Moona
Asst. Professor

Dept. of Comp. Sc. and Engg.
LLT., Kanpur

Abstract

RISC machines,derived from the conventional von Neumann architecture
are easy to design and have tremendous computing power. However. the
stored program concept and the centralized control of these computers have
led to inter-dependence of instructions. This leads to inefficient execution
of parallel programs.

Twine-RISC combines the ideas of von Neumann and Dataflow architec-
tures and eliminates the drawhacks of RISC machines in paralle] execution
of programs. In this thesis, we have proposed a simple design for Twine-
RISC. The proposed design of two stream Twine-RISC processor consists
of less than 40k transistors. A novel design for a queue has also been im-
plemented in VLSI. In our qucuec, Read and Write operations take less than
1ns.

ACKNOWLEDGEMENT

I am very grateful to my guide, Dr RAJAT MOONA, for offering constant
guidance throughout my thesis work.

I thank Shantakka, Harish, Galagali. Sudheer and my other friends for help-
ing me when I was down with Jaundice. I also thank my friends for making my
stay at 1. I. T. K very pleasurable.

DINESH RAO B.
19 - 03 - 93.

Contents

1 Introduction 1
2 RISC and Dataflow Computers 3
2.1 Introduction to RISC'. 3
2.2 Common RISC features 4
23 RISCwvariationso oL oo 5
2.3.1 Register Windows 5

2.3.2 Pipeligesr= = . 7 . . . x fmWER L L L. L. L 5

2.4 Memory Latencyo .ot 5
2.5 Dataflowmachines 6
2.5.1 Dataflowgraphs 6

2.5.2 The basic execution mechanism in Dataflow machines 6

2.5.3 The I-structure Memory L. n

2.6 Incorporating Dataflow ideas in von-Neumann processors . . 9

2.7 P-RISC and Twine-RISC 10
2.8 Conclusion 11
3 Tuwine-RISC ARCHITECTURE 12
3.1 Imtroduction. 12
3.2 Operand Memory (OM) 12
3.3 Code Memory (CM) v 14
3.4 Token Queue (TQ) o i i 14
3.5 Sequencer 14
3.6 DataQueue (DQ), 15
3.7 Message processor (MP) 15
3.8 Instruction Fetch Unit (IFU) 15
3.9 Operand Fetch Unit (OFU) 16
3.10 Execution Unit (EXU) 16

ii

3.11 Result Store Unit (RSU)
3.12 Conclusion e e
Design Of Twine-RISC
4.1 The Handshaking Module
4.2 The Instruction Fetch Unit
4.3 The Locking Logic(LL)
4.4 Operand Memory(OM)
4.5 Operand Fetch Unit(OFU)
4.6 The Execution Unit(EXU).
4.7 The Result Store Unit(RSU)
4.8 The Sequencer
4.9 The Token Queue(TQ) and the Data Queue(DQ)
4.10 Message Processor oo oL
4.11 Conclusion J A Fend U s Ay 5 X - - 0 o e
Conclusion
5.1 Features of Twine-RISC'design
5.2 Deficiencies . . . L ... o ol o
5.3 Extensi_ons and future work
Instruction Set for Twine-RISC
A.1 Arithmetic and Logicgroup
A.1.1 ADD, SUB, AND, OR, XOR instructions . .
A.1.2 SFTL, SFTR instructions
A.2 Branch instructions
A.2.1 JMP instruction
A.2.2 JUMP.instruction
A23 JZ,JP,JPZ, JNZ instructions
A.3 Special instructions oL
A.3.1 MFORK instruction
A.3.2 MJOIN instruction v
A.3.3 CHFPinstruction
A4 Memory based instructions
A.4.1 LOAD instruction
A.4.2 LOADX instruction

A.4.3 RESM instruction v i v

16
16

17
17
20
25
28
33
34
43
43
43
49
49

53
53
54
54

5T

iii

A.4.4 STORE instruction

....................

A.4.5 STOREX instruction v v v v v v v v v v ..

B Table of instructions

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

List of Figures

A Dataflow Graph 7
Basic execution mechanism in Dataflow Architectures 8
Architecture of Twine-RISC 13
Block Diagram of the Handshake Module 18
State Diagram for Handshake module 19
Karnaugh Map for Handshake module 21
Logic Diagram of the Handshake module 22
Block Diagram of the IFUo ..o .. 23
Handshaking Logic for IFU, 24
Load Logic 4., \, Ao W A8 =8 25
Mjoin Logic M\ 4. "M Aa.nl™M A 0 25
Incrementing Register with Load 26
The Locking Logic o . 27
The Operand Memory 29
Level#2 of the Operand Memory 30
The Memory Cello o o oo 31
Multiplexer of Operand Memory 32
Block Diagram of the OFU 33
Handshaking Logic for OFU 35
Decoder Block for OFU 35
The BLC Adder 36
Multiplexed Inputs for Latches 37
Multiplexed output for R2 oo 38
Block Diagram of the EXU 38
Handshaking Circuitry for EXUo o000 0. 39
The Jump Logic 40
The Mfork Logic 41

4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38

B.1

The Mjoin Logic 42
The Store/Load Unit 42
The Add/Sub Unito 42
The inputs to the Add/Sub Unit 44
The OR/XOR/AND Unit 45
Outputsfor B3 46
Outputsfor B4 46
Block Diagram of the RSU 47
Block Diagram of the Sequencer 48
Block Diagram of the TQ 49
The Queuecell 50
The State Diagram for D-ff 51
The Block Diagramof DQ 51
The Message Processor. 52

Instruction Format 63

Chapter 1

Introduction

RISC architectures[3] have been derived from the conventional von-Neumann
architecture. This architecture is widely used in modern commercial com-
puters of these days. The RISC instructions are simple, regular and are
usually based on three operands. However. in RISC', the inter-dependence
of instructions due to the stored program concept of von Neumann comput-
ers have proved to be a major bottleneck in parallel execution of programs.

Dataflow architectures[4] offer a possible solution for efficiently exploiting
concurrency of computation on a large scale. The computing nodes are fired
when the data arrives and the execution of instructions may not be in the
sequence in which they are stored in the memory of a computer[6]. However,
no architecture supports efficient execution of dataflow programs.

Nikhil and Arvind[1] proposed P-RISC. which combines the ideas of both
von-Neumann and dataflow computing. In P-RISC. the program counter(PC),
found in von-Neumanu computers is eliminated and multiple threads of com-
putation is achieved through the exccution of tokens. a concept borrowed
from dataflow computing[4.6.1-]. The RISC feature of pipelined instruction
execution is also effectively utilized. However. in a single processor, multiple
threads cannot be simultaneously executed.

Moona, Nandy and Rajaraman [2] have proposed a novel architecture
called Twine-RISC which supports multiple threads execution in a single
processor. Twine-RISC' has eliminated many drawbacks which are existing
in P-RISC and efficiently exploits (fine- grain) parallelism which is inherent
in most programs. In this thesis. we propose a simple design for Twine-
RISC.

The two stream Twine-R15C consists of less than 40K transistors. The
details of the transistor count has been given in chapter 4. The design can
be easily modified to accommodate more Twine-RISC streams. All blocks
in Twine-RISC pipeline operate asynchronously with handshaking modules
between each pair of blocks taking care of data overruns. A novel design for
queuecell has also been implemented in VLSI.

The rest of the chapters are organized as follows. In chapter 2, we survey
RISC, dataflow and a combination of RISC and dataflow architectures. In
chapter 3, we elaborate on Twine-RISC architecture. In chapter 4. we pro-
pose the hardware realization of Twinc-RI1SC and in chapter 5. we conclude
with the results and a brief note on the future work to be done in this field.
Appendix A explains the detailed instruction set of Twine-RISC. Appendix
B gives the coding of the Twine-RISC instruction set.

Chapter 2

RISC and Dataflow

Computers

In this chapter we discuss the origin and the development of the RISC and
dataflow machines. We also discuss about the attempts towards fusion of
dataflow and von-Neumann ideas to develop hybrid processors for parallel
execution. Section 2.1 discusses the evolution of RISC from CISC. Section
2.2 describes the common RISC' features found in many machines. In section
2.3, we discuss variations in the RISC designs. Memory latency is an impor-
tant factor which determines the maximum speed of instruction execution in
any RISC machine. We discuss about the effects of Memory latency on the
processor performance in section 2.4. In section 2.5, we discuss the dataflow
architecture and in section 2.6, we discuss the attempts made to synthe-
size a new architecture by fusing the ideas of von Neumann and dataflow
architectures. We discuss about P-RISC[1] and Twine-RISC in section 2.7.

2.1 Introduction to RISC

RISC (Reduced Instruction Set Computer) designers advocate a simple set of
instructions which can be easilv executed in pipelines. Before the advent of
RISC, there was a notion that smaller code size, more number of instructions
and more addressing nodes would improve the performance of the computer.
However, researchers of RISC-1{3] observed that in majority of applications,
a very small set of instructions(30-40) were frequently used out of a large
set of instructions (about 250-300) in a CISC (Complete Instruction Set
Computer). Also, the large number could be implemented from this basic

set of instructions.

A RISC machine had evolved because of the following design principles

e Functions should be kept simple unless there is a very good reason to

do so. Addition of an extra instruction should justify its inclusion.

e Microinstructions should not be considered to execute faster than the
simple instructions. The speed difference between control memory and
other memories is not large in the current scenario.

e Simple decoding and pipelined execution are more important than pro-
gram size. Increasing the number of instructions increases the com-
plexity of the decoding and the controlling circuitry, thereby reducing
the execution speed. Smaller program size need not always imply

faster execution.

e One should simplifv the instructions rather than complicating them.

2.2 Cbmmon RISC features

We can see the following common features in some actual RISC' machines
like the 801 from the IBM rescarch, RISC-1 and RISC'-2 from Berkeley and
MIPS from the Stanford university.

e Operations are register-register with only LOAD/STORE instructions

accessing memory.

e The operation and addressing modes are reduced to a large extent.
.Typically. there are 30-40 instructions and 3-4 addressing modes.

o Instruction formats are simple and do not cross word boundaries.

e RISC branches avoid pipeline penalties. Pipelines should normally be
flushed when a branch instruction takes place. The RISC solution is to
change jumps such that they take place only after the next instruction
is executed. This is called the delayed branch. The machine language
code is suitably shuffled for execution by the compilers.

2.3 RISC variations

2.3.1 Register Windows

Many registers were provided by the designers of RIS("-1 and RIS('-2 to keep
all the local scalar variables and all the parameters of the current procedure
in the registers. They also provided many register sets, or windows, of regis-
ters so that registers need not be saved on every procedure call and restored
on every return. Instead of copying the parameters from one window to
the other on each call, windows are overlapped so that some registers are
part of two windows. By putting the parameters into overlapping registers.

operands are automatically passed.

2.3.2 Pipelines

All RISCs use pipelined execution. but the length of the pipeline varies.
A balance has to be found between the four parts of a RISC instruction

execution, namely

o Instruction fetch

¢ Register read

.

o Arithmetic / Logic operation
¢ Register write.

The 801 assumes that each part takes the same amount of time and hence
uses a four-stage pipeline. RISC-1 and RISC-2 assume that instruction fetch
was equal to register read plus arithmetic/logic operations and thus have a

three-stage pipeline.

2.4 Memory Latency

’

It is the time taken between a memory request and its corresponding re-
sponse. This is the main factor that determines the maximum instruction
speed. von Neumann processors are likelv to idle during long memory ref-
erences. Caches reduce memory latency. Increasing the number of registers
and using multiport memories which are capable of receiving multiple over-
lapped requests are other ways of reducing memory latency. Some Dataflow
processors use I-structure memories[5] which eliminate the problem of mem-

ory latency by allowing split-phase transactions.

2.5 Dataflow machines

Dataflow architectures give a possiblo‘ solution for efficiently exploiting con-
currency of computation on a large scale. An instruction in a dataflow
machine is executed when the operands of its dataflow graph have arrived.
Dataflow machines do not have program location counters and there is no
concept of control flow. A consequence of data-activated instruction exe-
cution is that many instructions of a dataflow program may be available
for execution at once. Thus, concurrency is a natural consequence of the
dataflow concept.

2.5.1 Dataflow graphs

A dataflow program graph is a directed graph where each node is an operator
with lines connecting an output port of one operator to an input port of
another, provided that no two outputs are connected to the same input (Fig
2.1). Values are carried by tokens which move along the line between the
operators. Execution of a program graph is data driven in that an operator
executes by absorbing exactly one token fromn each input, computing results
and producing exactly one result token for each active output.

The dataflow graph specifies the partial order of execution of instructions
and hence it provides opportunity to cxecute instructions in parallel. This
also allows implicit sequencing of instructions and allows them to execute

in parallel if there is no dependency.

2.5.2 The basic execution mechanism in Dataflow machines

The basic instruction execution mechanism used in scveral current dataflow
projects is shown in Fig 2.2. The dataflow program describing the compu-
tation to be performed is held as a collection of activity templates in the
activity store. Each activity template has a unique address which is en-
tered in the instruction queue unit(a FIFO) when the instruction is ready
for execution. The fetch unit takes an instruction address from the instruc-
tion queue and reads the activity template from the activity store, forms
it into an operation packet and stores it in the operation unit. The oper-
ation unit performs the operations specified in the operation code on the
operand values and generates one result packet for each destination field of

the operation packet. The update unit receives result packets and enters

a b

o %

Figure 2.1: A Dataflow Graph

the values they carry into operand fields of activity template as specified by
their destination fields. This mechanism is thus a circular pipeline.
Many architectures on dataflow mechanism have been proposed. Some

have been implemented in experimental machines[6].

2.5.3 The I-structure Memory

I-structures[5] are a way of introducing a limited notion of state into dataflow
graphs, without compromising parallelism or determinancy. I-structures re-
side in a global memory. A producer dataflow graph writes into an I-structure
location while several other consumer dataflow graphs read that location. I-
structure semantics require that consumer should wait until values becomes
available in its location.

The I-structure memory also alleviates the problem of memory latency

by allowing multiple splil-phase transactions.

result packet operation packet
O operation unit(s LUS
Instruction queue
update fetch

activity store

Figure 2.2: Basic execution mechanism in Dataflow Architectures

2.6 Incorporating Dataflow ideas in von-Neumann
processors

The approaches taken by the conventional and dataflow architectures are
contrasted in relation to each other in the issues of memory latency, syn-
chronization and distribution costs in a multicomputer. Each approach fits-
well for specific applications and it is possible to have a framework in which
the two execution models can be mixed to suit the situation. Existing pro-
grams must run without much change and improvements could be made by
using new features to tolerate memory latency and to exploit more paral-
lelism.

Conventional multiprocessors connect a set of processors to a global
memory through a communication network. Computation on different pro-
cessors can be carried out independently. whereas processors communicate
through the shared memory and appropriate synchronization is accomplished
through program primitives. There are two sets of problems with conven-

tional multiprocessors

e When a program written for a single processor is being converted to
run on many processors. overheads such as detection of parallelism,
separating local and global variables. inserting appropriate synchro-

nization commands fall on the programmer.

¢ Problems due to the execution model which is based on a sequential

control, such as cache inconsistency. pipeline delays, busy waits etc.

Let us contrast the conventional and dataflow approaches in relation to
these problems. The dataflow model has no single locus of control, i.e., in-
structions like add, subtra.ct,‘._ multiply etc are executed upon the arrival of
data, thus solving the first set. The token model[l1. 12] solves the second
set of problems. One can also solve the second set of problems if one can
recognize an event, such as global memory access. which can take indetermi-
nate time and have a fast context switching capability. Thus. by adopting
programming discipline and by capturing the essentials of dataflow princi-
ples, one can solve the two sets of problems with almost the same style of
processors we have today.

The dataflow model does promise to extract the last ounce of parallelism
in an algorithm specification. However. the dataflow model also calls for a

10

radical departure in both programming methodologies and in architecture.
Normally, such radical shifts are very hard because of the presence of large
body of existing software and the high cost of developing a new architecture.

Let us highlight the following points.

e The new architecture should not be radically different from those in

existence.

¢ Existing software should run without substantial modifications or loss

in efficiency.

2.7 P-RISC and Twine-RISC

In P-RISC[1], a recent trend towards a synthesis of dataflow and von-
Neumann architectures has been utilized. It has a RISC like instruction set
and uses an efficient RISC pipeline. It has eliminated the use of PC (Pro-
gram Counter). P-RISC' has memory for code and frames. The location of
the next instruction that could be executed is given by the Continuation
process descriptor (FP, IP). FP is the Frame Pointer which points the cur-
rent frame in the frame memory and 1P is the instruction pointer indicating
the instruction to be executed in the code memory. A tag (FP, IP) is gen-
erated at the end of each instruction and is stored in the token store. The
loads are split-phase[1] transactions so that the path to the memory is not
occupied during the entire period.

Twine-RISC' [2] is a modification of P-RISC' which efficiently exploits
the fine-grained parallelism existing in the programs by allowing multiple
threads to execute simultaneously without a multiprocessor interconnection.
In Twine-RISC, a Continuation Token (FP, IP)is generated only when a new
thread is to be executed. A thread is a sequence of dependent instructions.
The Instruction Fetch Unit(IFU) checks if the current instruction is a non-
jump type instruction and increments the IP (effectively incrementing the
PC). A new Continuation Token is generated by the Execution Unit (EXU)
only if the instruction is not of Arithmetic/ logic type. type. This eliminates
the generation of unnecessary tokens. If more than one token is present in the
token store, the n{ult.iple Twine -RISC Streams (TRSs) of the Twine-RISC
execute simultaneously. thereby injecting greater parallelism in instruction
execution. Multiple load requests can be issued to the global memory and

11

Twine-RISC can accept responses in a different order in which requests were
issued. The processor is not idlc until the response to the Load arrives from
the global memory.

2.8 Conclusion

Dataflow and RISC architectures have their own merits and demerits. Twine-
RISCis a processor which effectively fuses the advantages of von-Neumann
and dataflow architectures. Multiple threads can be efficiently executed in

Twine-RISC' The next chapter describes the processor architecture of the

Twine-RISC.

Chapter 3

Twine-RISC
ARCHITECTURE

3.1 Introduction

In this chapter. we discuss the processor architecture of Twine-R1SC. The
multiple RISC pipeline in Twinc-RISC effectively exploits the instruction
level parallelism and simultaneous execution of multiple threads. The Twine-
RISC supports split-phasc transactions between the global memory and the
processor through the message processor. Fig. 3.1 illustrates the pro-
cessor architecture of the Twine-RISC. In the subsequent sections we dis-
cuss the major functions of each block of Twine-RISC viz., the Operand
Memory(OM), the Code Memory(C'M), the Token Queue(TQ). the Data
Queue(DQ), the Sequencer. the Message Processor(MP) and the TRS. The
various stages in the TRS are the Instruction Fetch Unit(IFU) . the Operand
Fetch Unit(OFU). the Execution Unit(EXU). the Result Store Unit(RSU).
All the units of the TRS operate asynchronously and a handshaking unit is
present between each pair of interfaced blocks of a TRS. Handshaking units
are also placed between the EXU and the Sequencer. There are two TRSs
in the Twine- RISC viz., TRS#1 and TRS#2.

3.2 Operand Memory (OM)

The OM concept in Twine-R1SC'is similar to the register file of conventional
RISC processors. It consists of 64 words. each word of 32 bit length. The
OM is shared by the multiple TRSs. The OM is a 3-port memory structure
having two read ports and one write port. For read and write operations,

12

13

to TRS#2
TRS#1 Locking [
JRLLIEPE RN R
] ! : ___\%
1 : Logic from TRS#? \
1 fc—
Code : Instrn : :
) |Fetch ! to TRS#2 1
emory |1 [Unit : :
! . .
- | : Data :
to TRS#2 ! \ i
to TRS#2 | ¥ Queue l
) | B1 ! i
1 |
: ! [
Operand | v) !
fmemory] I |Operand : To :
b J I
B e o |
ini D i
T : y'nit :T R%s#z Message 1
1 ! 1
| 1
[Token 15:;0"‘- : T | Processol From |
S¥2 i ! global !
Queue : @ : €— memory :
TR X PN .
i ! 1
|
: Exccutio 1o -~ - 1
1 - i i
 [Unit | :
) i
1 | ‘ '
| 1 !
! | !
N ' |
] i
!
O RN Y |
1 i
| 'l’ 'f X |
I |Result ! :
i 1
L_IStore ! !
| 1 I
I {Unit I !
I | !
| I |
i I)
[, R B |
|
Sequencer
- From
host
processor

Figure 3.1: Architecture of Twine-RISC

TRS#2

="

|
|
I
1
1
I
I
I
]
i
|
I
i
I
I
|
|
i
|
i
1
I
1
1
1
1
|
1
1
L}
1
{
|
1
|
1
1
i
i
i
|
|
!
1
i
|
|
|
|
I
|
1

14

the clock period is split into two phases phi-1 and phi-2, the first phase being
utilized by TRS#1 and the second by TRS#2. The read ports are utilized
by the OFU’s of the TRSs and the write port is used by the RSUs.

3.3 Code Memory (CM)

The CM is common to all TRSs and is positioned outside the chip. It holds
the instructions and is read-only for the TRSs. A separate host processor
is used to initialize the CM. The design for the CM is trivial and is not

included in this thesis.

3.4 Token Queue (TQ)

The continuation tokens for the TRSs are stored in the TQ. A continuation
token consists of two pointers. namely the frame pointer (FP) and the in-
struction pointer (IP). The IP points to the position of the instruction to
be executed in the CM and the I'P is a base pointer to the data in the OM
for a code block. Multiple active invocations for the same code block are
possible by the use of frame relative addressing. A continuation token can
be utilized by any TRS. The TQ is initially loaded by the host processor
through the Sequencer and subsequently, the continuation tokens are sup-
plied by the TRSs. Host can also insert tokens later during the program run
to make Twinc-RISC execute threads asynchronously and therebv handle

asynchronous events.

3.5 Sequencer

The continuation tokens generated in the system are stored in the TQ af-
ter passing through the Sequencer. The two streams of Twine-RISC may
generate more than one continuation token during a clock cvcle. The con-
tinuation tokens are also generated by the MP and the host processor. The
sequencer serializes these tokens and sends them one after the other to the
TQ. All the tokens present in the TQ are independent of one another and

the sequence in which these tokens are stored in the TQ is irrelevant.

15

3.6 Data Queue (DQ)

It is similar to TQ and is used to store the data coming from the global mem-
ory in response to LOAD/LOADX through the Message Processor. When
a memory operation like LOAD/ LOADX is encountered. a value. continu-
ation token and destination register is returned by the Message Processor.
These data are written into the DQ and a thread to execute the instruction
RESM is added to the TQ. When RESM is executed, data is finally moved
from the DQ to the OM and the thread is reintiatated.

3.7 Message processor (MP)

MP takes care of the movement of the data between the TRSs and the
global memory. In case of a read request. the MP receives a response from
the global memory controller containing a value, Operand Memory address
and continuation token. The MP writes data into DQ and generates a
continuation token (0.0) to he stored in the TQ. The MP also directs the
LOAD/STORE requests to the global memory. The EXU of the RISC
pipeline sends 78 bits data to the MP consisting of 1-bit Read. 32-bit ad-
dress, 32-bit IP, 6-bit Destination Register (DR) and 1-bit request. The
MP receives a similar message (77-bits) from the global memory controller

without the request line and sends it to the DQ.

3.8 Instruction Fetch Unit (IFU)

Initially, when the restart(RST) line is activated, IFU fetches a new token
from the TQ and fetches the corresponding instruction from the CM. For
the subsequent instructions. it determines whether the next instruction is to
be fetched from the next CM location or not. In case of branch instructions,
the IFU fetches a continuation token from the TQ and starts a new thread.
Two MJOIN instructions should not execute simultaneously as they may
may write to the same OM concurrently. To prevent a race between MJOIN
instructions. the IFU detects the MJOIN instruction and sets the lock line.
The locking logic associated with the IFUs prevents simultaneous execution
of MJOIN instructions. .

16

3.9 Operand Fetch Unit (OFU)

This TRS block recognizes instructions partially by decloding three bits of
opcode and decides the number of operands to be fetched from the OM. This
unit also detects the RESM instruction and if so, fetches operands from the
DQ. It then routes the instruction, operands. FP and IP to the EXU.

3.10 Execution Unit (EXU)

It is similar to the ALU of a conventional processor. It also prepares contin-
uation tokens (FP,IP) for branch and other special instructions for thread
initiation and forwards it to the Sequencer through the buffer B3. After
executing the arithmetic and logical instructions, it sends the result and
the address of the destination register to the RSU. Requests for memory
read/write are sent to the MP.

3.11 Result Store Unit (RSU)

This is the only stage the that can write to the Operand Memory(OM).
It writes the value of the result generated by the EXU in the destination
register . It also releases the MJOIN lock line set by the IFU.

3.12 Conclusion

The architecture of Twine-RISC has a simple pipeline structure and a mod-
ular design. This helps us in designing each of the blocks in a systematic
way with minimum overheads. The next chapter describes the hardware
design of Twine-RISC.

Chapter 4

Design Of Twine-RISC

In this chapter we describe the design of the Twine-RISC processor. There
are two TRSs in the Twine-RISC viz.. TRS#1 and TRS#2 (Fig 3.1). We
describe the design of a TRS and its associated modules in this chapter. In
the first section. we describe the design of the handshaking module which
is present between each pair of blocks in the TRS pipeline(lig 3.1). The
subsequent sections describe the design of the other blocks of the Twine-
RISC, viz., the IFU, The EXU, the OFU, the RSU, the CT, the OM, the
DQ, the TQ, the MP and the Sequencer.

4.1 The Handshaking Module

The function of this module is to guide the transfer of data from one block
of the TRS pipeline to another such that both blocks can run independently.
Four such modules have been used in each of the TRS pipeline(Fig 3.1).
Length of the d-latch is suitably adjusted for each module. Fig 1.1 illustrates
the block diagram of such a module. The operation of the handshake module
is as follows.

A sending block informs the handshake module that it has data available,
while the receiving block has informed the handshake module that it is
not using the data available at it. The handshake module now stores the
valid data in the latch and acknowledges the receipt. The second step of
the module is to tell the receiving block that it has data ready after it
has informed the handshaking module that it is ready to accept new data.
The sending block now tells the handshake process that its data is invalid.
The cycle is finished when the receiving block indicates that it has finished

18

Sending Block

Ri n

(lin

Latch

d.
RL'JUI out

Receiving Block

Figure 4.1: Block Diagram of the Handshake Module

19

Ry Ain

dO

Oc

d = don’t care

Figure 4.2: State Diagram for Handshake module

processing and does not need the data held in the latch any more. R;, is
the request coming into the handshake module and R, is the request from
the module to the receiving block. :;, is the acknowledgement coming from
the receiving block and -, is the acknowledgement to the sending block.

In the initial state, A,y is equal to 0 because no data has been received by
the handshake module and R, is equal to 0 indicating that the handshake
module has no new data available for the receiving block.

The next state is reached by raising R;, by sending block. indicating
that it has valid data at its outputs. The handshake inodule stores the data
in the latch and acknowledges by raising A,,.

Once the r&eiving block passes the message that it is ready to accept
new data by lowering -1;,. the handshaking module indicates the receiving
process that it can start operating on the new data by raising R,,;:.

The next transition is caused by resetting of R;, indicating that the
output data is no longer valid data. Ay, is set to 0 indicating that the
handshake module is awaiting new data.

Handshake module is turned into its first state after receiving module
has acknowledged receipt and processing of data by raising A;,.

20

From Fig 4.2, we can see that during state (Rou: =1, Agw =1) both
blocks can concurrently execute. The init signal is set to 0 only at startup
time, to initialize to the correct state and is further held at I. Fig 4.3
illustrates the Karnaugh map for the logic formulas of R, and Ayy.

From this Karnaugh Map we can derive the minimal logic formulas in-
cluding the init signal. Fig 4.4 gives the logic diagram for the handshake
module, The width of the latch[7] should be suitably adjusted for different
buffers.

4.2 The Instruction Fetch Unit

The Fig 4.5 illustrates the block diagram of the IFU. 38 input lines are
accepted from the TQ (FP(6).1P(32)). 24 input lines from the ("M, a grant
signal from the Locking Logic and a handshaking signal(A,) from the
buffer B1 . The output lines consist of 32-bit address line to the CM, a
request line to the TQ(TQR), a lock line (L1) to the Locking Logic, 62 lines
to B1 (6-bit FP, 32-bit IP. 24-bit instruction) and a handshaking signal Rino
to the buffer B1. The clock cycle is divided into 4 phases viz., phi-1, phi-2,
phi-3 and phi-4. Phi-1 and phi-4 are used for handshaking. Phi-2 is used
for loading a new token from TQ or incrementing the IP and phi-3 is used
for fetching instruction from the ("M.

The IFU initially makes surc that it can proceed normally by lowering
the signal R;no to Bl(handshaking buffer between IFU and OFU). If A0
turns low, the IFU proceeds with its normal instruction fetch (Fig 4.6). The
.d-FF(d flip-flop) keeps track of the state of the IFU (Q = 1 implies normal
operation). When the IFU has completed its operation, R, is asserted
during phi-4 to inform BI that data is ready in the IFU.

The Load Logic Fig 4.7 checks if a new token is to he fetched from
the TQ. Bit IR 33 in the 24-bitinstruction Lalch (IR) indicates whether the
previous instruction was jump/memory/special type (IR23 = 1) or Arith-
metic/Logic type (IR,; = 0). During Phi-2, if IRy3 = 1, a new token is
loaded into FP (6-bit d-latch) and 1P (32-bit Incrementing Register) from
the TQ. Otherwise. the IP is incremented. ' '

The contents of the IP serve as the address for fetching the instruction

from the CM. The instruction will be available in the I during phi-3.

21

]{m -41':)

Rout Am,t

l 00
01

11

10

Riﬁ .-‘,‘,,

Roul -"luui

l 00
01

11

10

—_—
00 0l 1110
0 0 0 0
1 0 0 1
1 1 1 1
| 0 0 1
Rout (next)
A
00 0l 11 10
I 1 0 0
1 1 1 i
1 1 0 0
0 0 0 0
Aout (next)

Figure 4.3: Karnaugh Map for Handshake module

22

}
Ain } Rout
o}
o}
Rin }—‘ Agut
—

Figure 4..}: Logic Diagram of the Handshake module

23

24-bit
instn Q
from CM emPLY
TQR \L
6-bit
FP FP[6] Instn latch (IR)
from TQ
. o lock
32-bit Load Mjoin to Locking logic
Ip logic logic
from TQ IP[32] < grant
from Locking logic
32-bit
address |: Handshake
to CM logic

6:-DT ypi 21 T l

-bit . 1, 2:1-bit .

; 32-hit 4 -

L} P 1P fustn Aout Rinl l

interface to Bl

Figure 4.5: Block Diagram of the IFU

24

Mjoin
Grant _}

TQ empty

Aautl —

Figure 4.6: Handshaking Logic for IFU

>_

phi-1

-ve edge
Din triggered
d-FF

Clk

R;,; to Bl
LI

25

Mjoin + Grant :

Figure 4.7: Load Logic

IR,y —

IRy, — Mjoin/ lock

IRy —

TRy, — ‘[request to Locking logic]
IR,y ——

Figure 4.8: Mjoin Logic

The Mjoin Logic Fig 4.8 checks if the current instruction is MJOIN and
issues a lock command to the Locking Logic. The Locking Logic is common
to both the TRSs.

The 24-hit instruction latch(IR) consists of d-latches. Data gets latched
in during phj-3,

Fig 4.9 shows the details of the IP[7]. Each bit of the register contains a
half-adder{7), a d-latch[7] and a multi plexer[8]. The adder is arranged as an
accumulator such that it increments in the same manner as an accumulator.

The multiplexer allows the IP to be loaded from the TQ if the load line is
high.

4.3 The Locking Logic(LL)

The LL resolves the race between the two TRSs to execute MJOIN instruc-
tion and issyes a grant signal to one of the TRSs. It consists of a state track-
ing +Vve edge-triggered T-flipflop(- ff)[&8],two d-FFs and two And gates. Fig

4.10 shows the logic diagram of the LL. Raising of one of the release lines

26

half adder d-lacch |1 31
- MUX
enable
: TQ:H
1
I
]
I
1
I
|
|
|
i
' IP
d-latch
+ MUX
enabje
T,
I P,
MUX d-latch
— enaple
TRas TQo
INR
AO‘U

Figure 4.9: Incrementing Register

with Load

phi-1

clk
in

lock1

lock2

+ve
edge

triggered
T-ff

-ve grantl
edge >
triggered
d-FF
clk

?

phi-3 of TRS# 1

-ve
edge

triggered
d-FF

clk

|

phi-3 of TRS# 2

Tin = grantl V grani2 V releasel V release2

Figure 4.10: The Locking Logic

grant2

28

by the RSU of the TRSs sets the t-FF to free(Q=1) state. The grant line is
set when the Q-output of the t-FF is high and there is a request for grant.

4.4 Operand Memory(OM)

In this section, we discuss the design of the 3-port, 64-word. OM. The OM
is organized in a 3-level hierarchical fashion. The block diagram of the OM
is shown in Fig 4.11. T'wo ports are read-only while the third one is a
write-only port. The RSU of the TRSs utilize the write port and the OFUs
make use of the read ports. The address and data lines of OM is multiplexed
such that TRS#1 uses it during phi-1 and TRS#2 uses it during phi-2. The
inputs to the OM consists of two 6-bit address lines from the OFU, one
address line of 6-bits and a 32-bit data line from the two RSUs. The output
lines consist of two 32-bit data lines to the QFU.

Three decoders are necessary for 3-port memories. For simplicity, let
us consider only one decoder. Iig -1.12 gives the organization of the such
an OM. In level#2. we have two rows of two submodules each, with each
submodule having 4 * 4 words. Three row addresses are run vertically along
the left side and the 3 column addresses are run horizontally. Ag is used
by the decoder to select one of the two rows of submodules. The select line
running through that module is driven. The other two row address lines run
horizontally into each of the two rows of submodules, where they serve as
column address wires for the submodules. Out of the 3 column address lines,
2 are run vertically in each of the 2 columns of submodules, where they serve
as row addresses. The other address line is used by the multiplexer to select
one of the two data wires coming out of the columns of the 2 submodules.

Fig 4.12 shows the 3-port static memory MOS cell used in the OM.
The circuit consists of two cross-coupled inverters and four pass transistors.
The load devices are the P-transistors. To write the cell, DATA is placed
on the bitl line and DATA is placed on the bitl line. The word line W1 is
then asserted. For reading, the corresponding word line is asserted and data
will be available on its data line. The sense amplifiers consisting of serially
placed ratioed inverters[8] amplifics the output to the required level.

Precharging is doue for bit lines of each submodule. Fig .14 shows
the design of multiplexers used to multiplex the addresses from TRS#1 and
TRS#2.

29

3-level

MUX-1 Memory array

bbbl

o MUIX-2
sense amplifiers

o 32-bit data

g R, D, D, from TRS#2

32-Lit 32-bit 32-bit.
data fOMTRS#1

Ra] R.s Ru,3 —= addresses from TRS #1
Rb1 Ryy Ry > addresses from TRS #2

Figure 1.11: The Operand Memory

30

Ap- Az

4-Submodules of 16-words each

L 1 T 1 T 1
l i | 1 1 |
"o TS| o T . | S B
| |))] i
” | 1 t i 1
i e el T e X e R T R
1)) i)]
M g P L . N X). T
row 1 LT 1]]
select decoder] | | | | i
address TF T % T
I | | | | |
P % LYl il A d i L
i i i i 1 |
1 I i 1 1 1
F-y-sFr=a= =77 -ya
1 ! 1 | l !
ted S b = B b = el £ O
1 1 i]] 1
1 1 i [1 1

Multiplexer

As-4s

Column address

Figure 4.12: Level#2 of the Operand Memory

31

W,

datal

datal

Figure 4.13: The Memory Cell

data2

data3

32

phi-1

write

/a).)

Rai
[0-31]
phi-2
Ry;
[0-31]
phi-1
Ra3
[0-31]
phi-2
Ry3
[0-31]
phi-1
writel
phi-2
write2

Figure 4.14: Multiplexer of Operand Memory

write

——

i=1,2

33

Bl

b l
Routl A IP FP Instn

L1

- handshake latches 64-bits from OM
logic
I 76-bits from DQ
6‘blt [
Rax) adder decoder
1 logic logic
6-bit [8 .
Ra.Z

P!

| Rin: £ph | 108-bits to B2

B2

Figure 4.15: Block Diagram of the OFU

4.5 Operand Fetch Unit(OFU)

The main function of the OFU module is to fetch operands from the OM.
If the instruction being executed is RESM, then operands are fetched from
the DQ. The block diagram showing the inputs and outputs of the OFU is
given in Fig 4.15. 62-bits of data consisting of FP(6-bits). IP(32-bits) and
instruction(24 bits) are accepted from the buffer B/. The DQ returns 76-bits
consisting of 32-bits of data. 6-bit address of the destination register(DR)
and 38-bits of CT(6-bit FP.32-bit IP). The input lines from the OM consist
of two operands, each of 32-bit length. Two handshaking signals(one from
B1 and one from B2) also come to the OFU. The output lines consist of 114
lines(6-bit instruction, two 32-bit operands, a 6-bit destination register(DR),
32-bit IP, 6-bit FP) to the buffer B2 between OFU and the EXU, two 6-bit
addresses to the OM. one DQ request line and two handshaking lines. one
each to BI and B2.

During phi-1, handshaking signal R;,2 is made low. If A,,4> goes low
indicating that the buffer B2 can accommodate incoming data at the end

34

of the current cycle. operations of the OFU can proceed normally. A
is made high if R,y is high. requesting data from Bl. The data is now
latched into the 62-bit d-latch(L1). The d-FF. triggered by the negative
edge of phi-1, keeps track of the state of execution of the OFU(Q=1 means
normal operation). During phi-3, R;,» is made high depending on the state
of the d-FF. Fig 4.16 shows the details of the handshaking logic for the
OFU.

The Decoder logic makes use of IR15 and IR g of the instruction latch(IR)
to determine whether the instruction is of type no fetch, one fetch, two fetch
or DQ fetch. Four 2-bit decoders are used to for this purpose. Fig 4.17
gives the details of the Decoder logic.

Two 6-bit Binary Lookahead Carry (BLC')[7] adders are used to add the
FP with two 6-bit OM addresses (bits 6-11 and 12-17 of the instruction
latch(IL)) to obtain FP+rl and FP+r2. The resultant addresses are sent
to the OM for fetching the operands. Fig 4.18 gives the details of the BLC
adder.

During phi-2. if DQ feteh line is high. a request to DQ is made through
the DQfetch line. At the end of phi-2. data from the DQ(if DQfetch line is
high), or the operands from the OM are ready. The incoming data from the
OM is stored in latches R1 and R2. Data from the DQ is latched into FP,
IP, destination register(DR) and R1. The details of multiplexing the inputs
for these latches is shown in (Fig 4.19).

The output of R2 is multiplexed with IR before sending it to B2. Fig
4.20 illustrates the details of the multiplexer.

4.6 The Execution Unit(EXU)

The operation of the EXU is similar to that of the conventional ALU. Fig
4.21 illustrates the input/output interfaces and the block diagram of the
EXU. 114 input lines (6-bit instruction, 32-bit operand R1, 32-bit operand
R2, 6-bit DR, 32- bit IP. 6 bit FP) come from the buffer B2. Three hand-
shaking lines, one each from B2. B3 (situated between EXU and RSU) and
B4(situated between EXU and The sequencer) come into the EXU. The
output lines consist of 45 lines to the buffer B3, 38 lines to B4 and 78 lines

to the message processor(MP).

35

IR
IRs

IRyg
IR

phi-1

0
R
to
Q
phi-3
_ phic1
A out? -
/\Ruull '4i111
phi-1
Agur;
[¥ u(Z_ Q
A Ruuil d-FF
Clk
phi-1

Figure 4.16: Handshaking Logic for OFU

DQ fetch
ﬁ}ﬂﬁmd,

IRIQ
1R

TRy

NO fetch

IRyg |

Figure 4.17: Decoder Block for OFU

: ONE fetch

36

6-bit FP 6-bit address

6-bit BL(adder

LV

6-bit resultant address

Figure 4.18: The BLC Adder

During phi-1. handshaking signals Rin3 and R4 are made low. If 4,43
and A,yiq go low, indicating that the buffers B3 and B4 can accommodate
incoming data at the end of the current evele. the EXU can operate normally.
Ain2 is now made high if 2, is high aud the contents of the downcounting
register (of MJOIN logic) is zero. The d- fi(state tracking d flip-flop) is set
if normal operation is being performed in the current cycle (Fig 4.22) and
the 114-bit input from B2 is latched into latches INST(6-bit), R1(32-bit),
R2(32-bit), DR(6-bit) and FP(6-bit) respectively.

The decoding circuitry consists of 4-bit decoders for the instructions
ADD, SUB, MJOIN. JZ, JP. JPZ. JNZ, LOAD, JUMP, CHFP. The in-
structions RESM, JMP, LOADX require 3-bit decoders and the instructions
AND, OR, XOR, STORE. SFTL. SFTR. MFORK, STOREX. need 5-bit
decoders.

The Jump Logic (Fig 4.23) takes the contents of R2 as the input and de-
termines whether the conditions Positive(P), positive or Zero(PZ), Zero(Z)
or Negative or Zero(NZ) are true. Tlhe lines P, PZ, Z, NZ turn high if its
respective logic is true.

The Mfork Logic (Fig 4.24) consists of a 3-bit downcounting regis-

37

B1 [6-23]

Ll

B31 [0-5] DQ [destination reg]

'—> IR [6-23)

phi-1

I—> IR[0-5]

phi-1 V(DQreq A phi — 2)

(a) Instruction latch inputs

Rl from OM data from DQ R2 from OM

32-bit R2

l——’ 32-bit R1
phi-2

’_;-2

(b) Multiplexed inputs for R1 and R2

from Bl

from DQ

38-bit FP. IP

phi-1 V(DQreq A phi — 2)

(c) Multiplexed inputs for FP, IP

Figure 4.19:

Multiplexed Inputs for Latches

38

R2 [0-23]

ONEfetchV NO fetch

—2>

IR [0-23]

MUX

1

R2 [24-31

ON E fetch v NO fetch J:L

to R2 of B2
to R2 of B2
Figure 4.20: Multiplexed output for R2
R 114-bits from
out2 A ‘Tnz, &
Latches
Decoding circuitry
Handshake
logic JUMP Mfork Mjion Store/ Load
logic logic logic logic
Add/ Sub Shift AND/ OR/ XOR
unit unit unit
78-lines
to MP
Multiplexers)
J’ l AL .
Rins TRirm T . .
A A 45-bits to 38-bits
out3 outd B3 to B4

Figure 4.21: Block Diagram of the EXU

39

phi-1
1
0
Riu3
-
RSreqA D
phi-3
phi-1
A L
0
Riml
pes
CTregN I _______
phi-3
phi-1
D-Mfork ____C I
Ro wi? —{ A out?
Aoyt3 c
AouH O

Figure 4.22: Handshaking Circuitry for EXU

40

B :
: >0 >
Rig
P
——
PZ
NZ

Rls DG PE

Figure 4.23: The Jump Logic

ter(DCR) with load option. decoder circuitry and Multiplexer Logic. The
downcounting register is loaded when a MFORK instruction is encountered.
The loading circuitry determines whether 0, 1. 2. 3 or 4 is to be loaded into
the DCR .The contents of the DCR is decremented in the subsequent clock
cycles till it becomes zero. New instructions are not taken up by the EXU
until the contents of the DCR is zero. The decoder circuitry determines
whether the contents of the DCR is 0, 1, 2, 3 or 4 and the multiplexer
correspondingly directs the contents of R1 to the Add/Sub unit.

The Mjoin Logic (Fig 4.25) consists of a 3-input And gate to determine
if the content of R1 is zero. If so. a new Continuation token is generated
and sent to the CTU.

The Store/Load unit (Fig 4.26) sends a proper message to the Message
Processor. The multiplexing circuitry prepares 78 bit package consisting of
one bit Read/Write signal. 32-bit address a, 32-bit IP and 6-bit FP along
with one bit request line.

The Add/Sub unit consists of a set of eight 4-bit Manchester Carry
Lookahead[7] adders to make a 32-bit adder. Less than 1K transistors are
required for a 32-bit Manchester Carry Lookahead adder. The Manchester
chain takes more time to propagate the carry than in a parallel adder, but
time is not a crucial factor for the EXU. Fig 4.27 gives the block diagram

42

load

loadx

store

storex

Rlg
R1;
R1,

Mjoin Zero

Figure 4.25: The Mjoin Logic

R1 [31-] FP [5-0]

DR [5-0 R2 [31-0]

d 4 J

R1 [31-0] R2 [32-0)

data [0-31]

&

76 bits

STreq Read

[FP. [P. DR. data] to MP

IP [31-0] from ADD/ SUB unit

load

store

a

loadx STreq
storex
load Read
loadx

Figure 4.26: The Store/Load Unit

43

IA31 l A I Ao

Manchester Carry Adder :\—ISD / SUB
32-bits

Figure 4.27: The Add/Sub Unit

of the adder unit.

The Add/Sub unit is used to add/sub data as well as for the generation
of the Continuation tokens for jump/memory type of instructions. The
multiplexed input circuitry for the INP1 and INP2 of Add/Sub unit is shown
in Fig 4.28.

A 32-bit barrel shifter [7] is used to implement the Shift unit. The details
of the OR/XOR/AND unit are given in Fig 4.29.

The Multiplexing unit directs the outputs of the Add/Sub unit, Shift
unit, OR/XOR/AND unit to the buffers B¥ and B4. Fig 4.30 gives the
details of the output for B3 and Fig 4.31 gives the details of the multiplexed
outputs for FP and IP to B4.

4.7 The Result Store Unit(RSU)

The main function of the RSU is to store the result generated by the EXU in
the OM, the address to which is pointed by the contents of the Destination
Register(DR). 45 inputs come to the RSU from B2. Fig 4.32 illustrates the
block diagram of the RSU. The output of the RSU goes to the TQ.

The RSU first checks if data is present in the buffer B3 (R,.3 = 0) and
raises A;,3 during phi-1. The contents of FP is added to the the contents
of DR using a 6-bit Manchester Carry lookahead adder and the resultant
address is placed on the address lines going to the OM. The 32-bit data is
placed on the data lines. _

Bit-0 of the incoming data from B.Jindicates that the current instruction
is MJOIN (bp = 1). This line is sent to the Locking Logic during phi-1.

44

ADD
o
SUB

Mjoin-
AMjoinzero

Mfork

Zero

IMP
JUMP__D

JZNZ
JNZANZ
JPZANPZ
JPAP

JPAP

SUB
Mijoin
AMjoinzero

Mfork-out[6-1)

R2[6-1)

Il

0

b
) [IP = IP + Mfork-out]
L

C

[IP = IP +R1)

Add

R1[6-1]

4 4

MUX

lee——

fe—

Q, INP2 [;1]

Figure 4.28: The inputs to the Add/Sub Unit

[IP =

R1[31-0]

X

[add/ sub) X
—

1P[31-0]

.

MUX

R2[31-18]

d

J:L INP1[31-0]

1 fork — out;

0 RI[31-18)]

& J

fe——— 3
< b
e dVe

jc—— €

MUX

d

[IP = IP + jmpofiset]

J:L INP2 [31-18]

M fiork — out-

R2[17-7]

o RIN7-7]

7 dl

€

IP+1]

re— 2
le— b

MUX
e— ©

s— cVd

R2,

J:L INP2 [17-7)

M fork — outy
1 Rlu

!

lee— b
MUX
fec— €

<— cVd

c+d

& IN P2,

45

R1 [31-0] R2[31-0)

H,

OR

XOR 5
OR / XOR / AND unit
AND—>

-

OUT [31:0]

ouT

-

XORVOR XORVOR ORVAND
Figure 4.29: The OR/XOR/AND Unit

46

AdderOUT(0-31]

ShifterQU'T [0-31)

AND / OR / XOR OUT [0-31]

ADD vV SUB

(X) —

SFTLV SFTR

Y) —_—

ANDV XORVOR

(2) 7

MUX

Figure 4.30: Outputs for B3

AdderOUT [0-31] IP [0-31]

RESM
—_—
MUX
RESM
—_—
[V
IP [0-31]

L)
DataOUT [0-31)

RSreq=XVvYVZ

FP[os5 R1[o3]

CHFP
—

MUX
CHFP
—_—

\h——/

FP [0-5]

CTreq = IRy3 A (MjoinV Mjoinzero) A Read

Figure 4.31: Outputs for B4

47

from B2
[|
Mjoin FP[0-5] data [0-31] DR[0-5]
Rout3
—3
Aouts Handshake Unit
-—

6-bit addr;ss
to OM

‘ .
32-bit data Adder Unit

to OMI/

N

Release = M join A phi — 1
Mjoin Unit R
[to Locking logic]

Figure 4.32: Block Diagram of the RSU

4.8 The Sequencer

The Sequencer is outside the TRS. It simply consists of a multiplexer which
directs the Continuation Tokens(CT) from TRS#1, TRS#2,the Host pro-
cessor and the Message Processor(MP) to the TQ. CT from TRS#1 is routed
to TQ during Phi-1, TRS#2 during phi-2 , MP during phi-3 and Host pro-
cessor during phi-4. Fig 4.33 gives the details of the Sequencer.

4.9 The Token Queue(TQ) and the Data Queue(DQ)

The TQ is 2 FIFO(First In First Out) which stores Continuation Tokens. It
can be initially loaded by the Host Processor through the Sequencer. The
block diagram of the TQ is given in Fig 4.34. The inputs to the TQ come
from the Sequencer. The TQ supplies tokens to the IFU of the two TRSs.
The TQ consists of six words of 38-bits. Each queuecell is made up of
three pass transistors(A. B and (°) and two inverters. A d- fl is associated
with each word. It keeps track of the state of each queue word(Q. = 1 implies
word contains a CT). Fig 4.35 gives the structure of a single queuecell and
the associated state circuitry. Qn indicates the state of the next queue word
and @, that of the previous word. Read (R) and Write(W) operations can
be performed simultaneously during a single cycle. The Queue makes use
of two phase clocking(phi-1 and phi-2). For the first word, @, = 0 and
Q. = 1 for the last word. During write operation (W=1), all cells with

48

from TRS#1 from TRS#2
|] a
A'¢u4 “
it .
RauM 38-bit data RouM 38-bit data
Host & i
—> le——— MP req
38-bits Handshake Logic 38 - bits from MP
from host
processor

Multiplexer

L__J
38 - bits to TQ

write

(a) The Block Diagram

TRS#2 data Host data
TRS#1 data MPdata

phi-1 —>]

phi-2 ——

MUX
phi-3 —> [38-bits)
phi-4 —>

\LJ

Sequencer data [38- bits]

(b) The Multiplexer

Figure 4.33: Block Diagram of the Sequencer

49

read write
— <

TQempty e— |

sequencer-data [0-37]

y,
TRS#1 data | MUX2 5- WORD 38-bit QUEUE | MUX1
[38-bits]

A
TRS#2 data I\
[38-bits]

[<—— CLR

Figure 4.34: Block Diagram of the TQ

its state as well as that of the succeeding cell as empty (@, = 0, @n =
0), are transparent. In these cells, pass transistors A and C are on during
phi-1. A cell with Q. = 0 and @, = 1 is blocking and only A is on during
phi-1. In cells which are neither transparent nor blocking, pass transistor
B is on during phi-1. During read, all cells with Q. = 1 and @, = 1 copy
the data from the previous cell. Pass transistor A is made on for such cells
during phi-1. Pass transistor B will be on for all other cells during phi-1.
Irrespective of the operation, C is on during phi-2 for all the cells. When
read and write operations are simultaneously required, the cell with Q.=0
and Q, = 1 will additionally have pass transistor C to be on.

The state diagram for Q. of the d-FF is given in Fig 4.36.

Fig 4.37 shows the block diagram of the DQ giving the details about
the inputs and the outputs. The basic queuecellis as in Fig 4.35.

4.10 Message Processor

The MP is the interface between the global I-structure controller and the
Twine-RISC. Tt can be divided into two parts, viz., the sending unit and
the receiving unit. The sending unit simply multiplexes the output of the
Store/Load units of the two EXUs and sends the 78-bit (1-bit Read/Write,
32-bit address a, 32-bit IP, 6-bit FP, 6-bit DR, 1-bit request line) read/write
request to the I-structure controller. The receiving unit receives a packet of
77-bits(1-bit request, 32-bit data. 6-bit DR, 6-bit FP, 32-bit IP) and sends
it to the DQ. It also generates a token (0,0) and sends it to the TQ if there
is a request from the I-structure controller. Fig 4.38 gives the details of the

MP.

50

a queuecell

[ettt "
I .
! data-in 4 B data-out |
1
| T
1 ! !
queuece | A: Bi |
: X B Y :
: C I
] t
| 29 :
: o :
b e e e e e ek e e e e o o e = -~ = - - ———]
A[B[c{ KT B f C I
WA e YA\
0 Qn :
' Qp :
phi A !
=i [
state [Jhl T~ :
. | Clk !
crcultry D, :
associated —_— d-FF X
!
1
1
1
1
!
1

o o o - o - e e = e e G - - . - =

A= ((WAQ:)V(RAQ.))Aphi

B = ((WAQ:)V(RAQ.)) A phi

C=(WAQ:AQn)V(RAQ:AQn)Aphi)V phi
Din = (Qu AW AR)V(Qp A RAW) V (Qe(W AR) V(W A R)))

Figure 4.35: The Queuecell

51

0101

d = don’t care

QpQn R W

Figure 4.36: The State Diagram for D-ff

QpQn R W

e
Read Write
Data Queue

q: (5-words of 76-bits)

76-bits 76-bits
to OFU from MP

Figure 4.37: The Block Diagram of DQ

CENTRAL L{3RARY
I LLT., KANPUR

52

78-bits

from TRS1__

78-bits
. Sending block
from TRS2 [MUX]

N

77-bits
to DQ

29 bits Receiving block

to Sequncdr

78-bits
to global memory

(a) The Block diagram

76-bits from global memory reéduest

—

77-bit latch

J:L to Sequncer

76-bits to DG, and DQ

(b) Receiving Unit

Figure 4.38: The Message Processor

76 -bits
_from global memory

request

53

4.11 Conclusion

In this chapter we have described the hardware realization of Twine-RISC.
The IFU requires approximately 700 transiters, the Locking Logic 100, The
Operand Memory(64-words) 18500, the OFU 1750, the TQ(5-words of 38-
bits) 1700, the DQ(8-words of 76-bits) 5600, the RSU 1000, the Sequencer
200 and the EXU 3000. Thus, the number of transistors required for a two
stream Twine-RISC is less than 40K and hence it can be put in a single chip.
The above realization can be implemented in VLSI either in Psuedo-NMOS
or in C-MOS technology. In the next chapter, we conclude the thesis with

results and a brief note on the future work to be done in this field.

Chapter 5

Conclusion

Our main aim in this thesis has been to propose a simple hardware design for

Twine-RISC. In the design proposed, less than 40k transistors are required
for a 2-stream Twine-RISC. We have also implemented the novel design
of the queuecell (explained in the previous chapter) in VLSI and excellent
results have been obtained from this exercise.

5.1

Features of Twine-RISC design

The design allows the easy expansion of Twine-RISCin terms of num-
ber of TRSs.

Handshaking units are present between each pair of TRS blocks thus
aiding asynchronous operation and implementing semi-self timed cir-
cuits.

Fach TQ and DQ operation(read or write) takes less than 1ns. The

operation of the queue is very fast and it can easily cope up with more
TRSs in the Twine-RISC.

A hierarchical design has been proposed for the OM. This reduces the
delay while reading the data from the memory.

Loading and incrementing the Instruction Pointer are done in parallel
in the IFU , thereby reducing the operation time of the IFU, which is
a major bottleneck.

Decoding of instruction is distributed across the units to simplify the
decoding logic and make it fast.

54

55

5.2

5.3

MJOIN instruction is made mutually exclusive to avoid possible dead-
lock in the system.

Deficiencies

Though two TRSs bring out the fine parallelism exploitation concept,
they still remain to effectively exploit the fine-grain parallelism since a
typical program will have a fine-grain parallelism of degree much more
than 2. With a change in technology, it should be possible to include
more than 2 TRSs.

A lot of extra software support is needed for managing the OM. How-

ever, this can be done by the compiler at compile time.

While increasing the number of TRSs, more ports should be provided

in the OM, making it more complex.

The design supports a very small TQ and DQ. However it is very easy
to increase the size by replicating the VLSI layout. For a realistic 256
word TQ and 128-word DQ sites, 2-stream Twine-RISC will require
approximately 200k transistors.

Extensions and future work

VLSI implementation of our proposed design should be done after
determining the optimum size of TQ and DQ through software simu-
lation. The size of the above mentioned queues depend on the specific
applications.

e Appropriate clocking circuitry should be provided for the design. The

blocks of the TRSs have 3-4 phases and the operation of each block
should be properly timed.

o The number of TRSs per Twine-RISC should be increased to at least

4. This will help in exploiting fine-grained parallelism more effectively.

o Software support like the assembler, loader etc should also be pro-

vided. The software requirement of Twine-RISC'is different from that
of existing machines. For example, the compiler should identify the

56

parallelism in the program and code it using MFORK and MJOIN
instructions.

Appendix A

Instruction Set for
Twine-RISC

The instruction set of Twine-RISC' is a simple extension of RISC models.
Out of the 21 instructions, 20 instructions can be executed in a single cycle.
Only MFORK requires more than one cycle. Instructions are classified into
four major categories viz. Arithmetic and Logic, Branch, Memory reference
and Generation and synchronization of multiple threads. In this appendix,
we describe the instruction set of T'wine-RISC.

A.1 Arithmetic and Logic group

This group of instructions perform the arithmetic and logic instructions

A.1.1 ADD, SUB, AND, OR, XOR instructions

These instructions fetch two operands from the OM and store one result
in the OM.

The syntax of these instructions is

opcode rl, r2, r3 where

rl - left operand source register.

r2 - right operand source register.

r3 - destination register.

The OFU fetches two operands [FP + r1] and [FP + r2]. EXU performs
the required operation. The resultant value r3 is passed on to RSU. RSU
stores the value in [FP + r3]. Execution continues from the next location

(IP + 1) and no continuation token is generated.

37

58

A.1.2 SFTL, SFTR instructions

Operand can be shifted left or right by 32-bits. The shift count is stored
in the instruction in 6-bits (/Ry2 - /R;7). One operand is fetched from the
OM and the result is stored in the destination register.

The syntax is

opcode a, r2, r3.

a - number of bits to be shifted.

r2 - operand source register.

r3 - destination register.

The OFU fetches one operand [FP + r2]. The EXU shifts the operand
by the required number of bits and passes the value and r3 to RSU. RSU

stores the value in [FP + r3]. The execution continues from IP + 1.

A.2 Branch instructions

These are the jump group of instructions.

A.2.1 JMP instruction

JMP supports direct jump up to a address range of 2!8-1. There is no
operand fetch.

The syntax is

JMP x :

x - 18-bit value specifying the jump address.

x is treated as an operand. EXU generates continuation token (FP. IP
+ x) and passes it to the Sequencer which forwards it to the TQ.

A.2.2 JUMP instruction

JUMP supports jump to a address range of 232-1. There is a single operand
fetch.

The syntax is

JUMP rl.

rl - register specifying the jump offset.

The OFU {fetches one operand [FP + r1]. EXU generates a continuation
token (FP. IP + [r1]) and passes it to the Sequencer which forwards it to
the TQ.

59

A.2.3 JZ,JP,JPZ, INZ instructions

These instructions support conditional jump up to 12-bit offset from the cur-
rent IP. As jump offset is directly specified in I Rs - IRy7 of the instruction,
only one operand is fetched from the OM (where the condition is stored).

The syntax for these instructions is

JCND 11, x

rl - condition operand source register.

x- 12-bit value specifying the jump offset.

OFU fetches one operand [FP + rl1] from the OM. EXU tests for the
condition in this register. If the condition is true, the EXU generates a
continuation (FP. IP + [rl1]). Otherwise, (FP, IP + 1) is generated and
inserted into the TQ through the Sequencer.

A.3 Special instructions

These instructions are extensions to the conventional RISC instruction set.

A.3.1 MFORK instruction

MFORK spawns parallel threads of computation from an executing thread.
Four possible new threads are organized as 8-bit offsets n1, n2, n3, n4 and
grouped into a 32-bit word. This is stored in an OM location. One operand
fetch is required for this instruction.

The syntax is

MFORK rl, r3

rl - operand source register from which new thread offsets are derived.

r3 - destination register.

OFU fetches an operand [FP + r2] from OM. The EXU interprets it
as four bytes of 8-bits each. For each byte, if the value is non-zero, a new
thread is generated. EXU prepares a continuation token of (FP, IP 4 offset
value) for each non-zero offset value and sends it to the Sequencer. One
continuation (FP, IP + 1) is always generated. EXU passes (number of
threads, r3) to the RSU. RSU stores the number of threads in [FP + r3].

60

A.3.2 MJOIN instruction

The MJOIN instruction helps in the synchronization of multiple threads.
This instruction decrements the specified register content by 1 and writes

the result back in the same location. ‘
~ The syntax of MJOIN is

MJOIN ri, rl.

rl - operand source register which contains the number of threads to be
synchronized.

OFU fetches one operand [FP + r2] from the OM. The EXU decrements
it by 1 if the value is not zero. If the value is zero, the continuation (FP, IP
+ 1) is passed to the EXU. The RSU stores the value in the register (FP +
r2).

A.3.3 CHPFP instruction

This instruction changes the FP with the first 6-bits of the specified register.

The syntax is CHFP rl.

rl - operand source register.

The OFU fetches [FP + r1] from the OM. The EXU changes the contents
of the FP by the first 6-bits of [FP + rl1] and sends the resultant continuation
to the TQ through the Sequencer.

A.4 Memory based instructions

These instructions are used to move data to and from the global memory.

A.4.1 LOAD instruction

This instruction is used to load data from the global memory to the OM.

The syntax of this instruction is

LOAD rl, r3.

rl - operand source register containing the global memory location.

r3 - destination register in the OM.

OFU fetches one operand [FP + r1] from OM and gets the global memory
location. EXU sends a read request to MP which then forwards it to the
memory controller of the global memory. The request format is (read, STreq,
[FP + r1], FP, IP + 1, r3). STreq indicates that there is a request from the
TRS to the global memory controller. After the instruction is completed by

61

the memory controller, it responds by sending (Req, v, FP, IP + 1, r3) to
the MP. Req indicates that memory controller is sending data and v is the
32-bit data value. MP inserts the value (v, FP, IP + 1, 13) in the DQ and
sends a continuation (0, 0) to the TQ through the Sequencer.

A.4.2 LOADX instruction

The syntax is

LOADX a, r3.

a - 6-bit value specifying the address of the global memory location in
the instruction.

r3 - destination register.

OFU does not fetch any operand from the OM. The message format to
the global memory controller is (read, STreq, a, FP, IP + 1, r3). After the
instruction is completed by the memory controller, it responds by sending
(Req, v, FP, IP + 1, r3) to the MP. Req indicates that memory controller
is sending data and v is the 32-bit data value. MP inserts the value (v, FP,
IP + 1, r3) in the DQ and sends a continuation (0, 0) to the TQ through
the Sequencer.

A.4.3 RESM instruction

This instruction is executed to move the data from the DQ to the OM.
Operands are fetched from the DQ.

The syntax is

RESM

OFU fetches data(v. FP, IP + 1, r3) from DQ instead of OM. EXU
passes (v, r3) to the RSU. EXU also prepares a continuation (FP. IP + 1)
which is then forwarded to the TQ through the Sequencer. RSU stores v in
[FP + r3].

A.4.4 STORE instruction

This instruction is used to store data into the global, memory from the OM.

The syntax is
STORE rl, r2.
rl - operand source register containing the address of the global memory

location.

62

12 - operand source register from which data is to be moved to the global
memory.

OFU fetches two operands [FP + rl1] and [FP + r2] from the OM. EXU
sends (read, STreq, [FP + r1], [FP + r2]) to the MP. The memory controller
stores the value [FP + r1] in the location [FP + r2) of the global memory.

A.4.5 STOREX instruction

The syntax is

STOREX rl, x

rl - operand source register from which data is to be moved to the global
memory.

x - 6-bits specifying the address of the global memory location in the
instruction.

OFU fetches one operand [FP + r2] from the OM. EXU sends the mes-
sage (read, STreq, [FP + r2], x) to the MP. The memory controller stores
the value [FP + r2] in the location FP + x of the global memory.

Appendix B

Table of instructions

63

64

Instrn name

6-bit opcode

descripton about the other 18-bits

1 ADD 000000 rl, r2, r3: three 6-bit addresses;

2 SUB 000100 rl, r2, r3: three 6-bit addresses;

3 AND 010000 rl, r2, r3: three 6-bit addresses;

4 OR 010100 rl, r2, r3: three 6-bit addresses;

5| MIOIN 111111 rl, rl: 6-bit r1[17-12), 6-bit r1[5-0];

6 XOR 011000 rl, r2, r3: three 6-bit addresses;

7 SFTL 010011 a, 12, r3: 6-bit shift number, two 6-bit addresses;
8 SFTR 010111 a, r2. r3: 6-bit shift number, two 6-bit addresses;
9! MFORK 011011 rl, r3:6-bit r1[17-12], 6-bit r3[5-0];

10| STOREX | 011111 rl, x : 6-bit r1[17-12], 6-bit x[5-0];

11 STORE 011100 rl, r2 : two 6-bit addresses;

12 LOADX 110110 a, r3: 6- bit address a, 6-bit r3;

13| LOAD 111011 rl, r3:6-bit r1[17-12], 6-bit r3[5-0];

14| JUMP 110011 rl : 6-bit register specifying offset;

15/ jmp 110010 X : 18-bit value specifying jump address;
Y 100011 rl. x : 6-bit r1, 12-bit jump offset x;

17} gp 100111 rl, x : 6-bit r1, 12-bit jump offset x;

18] JNZ 101111 rl, x : 6-bit r1, 12-bit jump offset x;

19 JPZ 101011 rl, x : 6-bit r1, 12-bit jump offset x;

20 RESM 111101 other bits are not required;

21| CHFP 110111 rl : 6-bit register giving new FP;

Figure B.1: Instruction Format

Bibliography

[1] R. Nikhil, Arvind. Can Dataflow Subsume Von Neumann computing?,
Proc. 16" Int. Symp. On Computer Architecture, Jerusalem, Israel,
June 1989. pp 262-272.

[2] R.Moona, S.Nandy, V.Rajaraman. Twine RISC: An Architecture for Si-
multaneous Erecution of Multiplc Threads. [Personal Communications].

[3] David A. Patterson and Carlo H. Sequin, 4 VLSI RISC, IEEE Com-
puter, Sept. 1982, pp.8-21.

[4] Arvind, D. Culler. Dataflow Architectures, Annual Reviews in Com-
puter Science, Vol 1, Annual Reviews Inc., Palo Alto, CA, 1986. pp
225-253.

[5] Arvind, Rishiyur S. Nikhil and Keshav K. Pingali, I-Structures : Data
structures for parallel computing, Proc. Workshop on Graph Reduction,
Los Alamos NM, Sept-Oct. 1986.

[6] Arvind, Rishiyur S. Nikhil. Erecuting a Program on the MIT Tagged-
Token Dataflow Architecture, IEEE Trans. Comp.. 1989.

[7) Weste, N. H. E. and Eshraghian, K. (1985). Principles of CMOS
VLSI design: A system perspective Approach. Addison-Wesely Publish-
ing Company.

[8] Mead, C. A and Conway. L. (1980). Introduction to VLSI Systems.
Addison-Wesely, Reading. Mass.

[9] Arvind, S. Brobst. The Evolution of Dataflow Architectures from Static
Dataflow to P-RISC. Technical Report, CSG Memo 316, MIT Lab for
Computer Science, August 1990.

65

66

(10] Arvind, D. Culler, lanucci, V. Kathail, K. Pingali and R.Thomas. The
Tagged Token Dataflow Architecture. Technical Report, MIT Lab for
Computer Science, October 1984.

[11] D. Culler, G. Papadopoulos. The Ezplicit Token store, CSG Memo 312,
MIT Lab for Computer Science, June 1990.

[12] G. Papadopoulos, K. Traub. Multithreading : an Ezplicit Token Store
Architecture, Proc. 17t Int. Symp. on Computer Architecture, Seattle,
Washington, May 1990. pp 82-91.

