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Abstract

Retargetable tool-chains are used by embedded system designers to reduce the

cost and design time. The designers can explore several design options prior to

choosing one for their system. In order to assist design exploration, the designers

need processor-centric tools. The process is greatly simpli�ed by using a single tool-

chain development mechanism using processor description in architecture description

language (ADL). Generally, a tool-chain is created for a particular processor whose

speci�cations are available in an ADL. As a part of the retargetable tool-chain writ-

ten for the Sim-nML [37] processor architecture speci�cation language, a functional

simulator generator (FSimg)[19] was designed and developed at IIT Kanpur. FSimg

is used to generate a functional simulator (FSim) for the processor speci�ed.

In this work, we enhanced the GNU debugger (GDB) to provide debugging sup-

port for target applications running on FSim. Such a support needs GDB to be able

to change its target properties at run-time. GDB is a debugger and supports several

processors as targets for debugging. This support is achieved by an abstraction for

the target in GDB. Target speci�c functionality in GDB is provided by a set of target

speci�c functions which interface to rest of the GDB through a common interface.

These functions are compiled into GDB while building it for a speci�c target.

The GDB supports multiple processors in this way by using compile time re-

con�gurability. We introduced a dummy target simnml to GDB to incorporate

run-time recon�gurability. We update this dummy target from Sim-nML proces-

sor speci�cation at run-time. In our work we have introduced an fsim interface to

achieve run-time recon�gurability. Our work interfaces with the rest of GDB using

the remote-sim interface of GDB.
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Chapter 1

Introduction

Embedded systems span all aspects of modern life and there are many examples of

their use. An embedded system is a special-purpose system designed to perform one

or a few dedicated functions. Unlike general purpose computers, embedded system's

hardware is also designed according to the speci�c functionality it intends to perform.

The traditional design methodology is to �rst create the hardware components and

then write software for them. However, due to ever-increasing design complexity and

other constraints, this approach is no longer feasible. Some of the major issues in

this approach are as following.

• The hardware design errors become more and more expensive to correct as the

design progresses. If the errors are detected at an earlier stage, it will result in

substantial cost savings.

• It requires the separation of functionality to be implemented in hardware and

software at the beginning of the design itself. This reduces the �exibility of

the system and leaves very little scope for further revisions, translating into

sub-optimal designs.

• The design of these systems can have many additional constraints, including

performance, cost, time-to-market, power, space and reliability requirements.

1
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These problems forced the system designers to pursue new design approaches. In

these approaches, the hardware and the software are designed in tandem, leaving de-

signers with multiple choices of hardware software designs to choose from. Designers

can choose a design based on various criteria such as cost, power, space etc.

1.1 Hardware-Software co-design

In Hardware-Software co-design the design process of Hardware and Software is inte-

grated. The system description is written without any assumption about the hard-

ware or the software. This system description is often modular and suitable for

carrying out system simulations. The estimations of cost and performance can be

done by using various modeling and cost estimation techniques. The modular system

description is then divided between the hardware and the software through a tech-

nique known as hardware-software partitioning. An advantage of this approach is

that it allows us to fully explore the design space and to come up with an acceptable

solution.

After the division of modules, the design process consists of three steps, hardware

and software design, simulation of the design and veri�cation. In the �rst step, the

hardware is typically designed using hardware description languages (HDLs). HDLs

are used to write executable hardware speci�cation. They capture the notion of

time and concurrency, which are the basic features of hardware. HDLs are used

for synthesis and simulation of the hardware. In co-design approach the software

may be designed for general purpose processors, for speci�c purpose processors or

for programmable processor cores. The programmable cores allow the designers to

con�gure the processor core according to the speci�c need of the application.

The hardware and software simulations are carried out and then veri�ed for

the requirements of the system. If the requirements are not ful�lled, the division

of hardware and software modules may be changed. The modi�ed design is again

simulated and veri�ed.
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1.2 Retargetable processor modeling tools

Di�erent embedded systems have their own requirements. Often general purpose

CPUs are either insu�cient or carry an extra baggage of hardware causing extra

power being consumed. We can either make an entirely new processor core optimized

for the application requirements (Application Speci�c Processors) or enhance an

already existing one. In the second case we have several alternatives to choose

from, such as Tensilica [9] and Xilinx Vertex-5 [11]. However in these cases the

designer requires a new set of software tools for each alternative he may want to

use. Development of these processor-centric tools takes a lot of time and e�ort. This

problem can be solved by automation of the tool-set generation process.

The tool-set generation process can be automated using the architectural models

of processors. Each tool then takes the processor model description and con�gures

itself for the new processor. The speci�cation language shall have the syntax and

semantics to support the features, necessary in the processor description for tool-

set generation. The language should be able to specify static as well as run-time

behaviors of the processor.

1.3 Overview of languages for retargetable tools

The processor models used by the retargetable tools are written in some processor

speci�cation languages. They describe hardware details in such a way that the

retargetable tools can be generated from them, without much user intervention. The

operation of same hardware can be described by several levels of abstraction. The

level of abstraction decides the complexity of the description. The three levels, in

the increasing order of abstractions are switching circuit level, register transfer level

(RTL) and processor instruction set level. The hardware speci�cation languages

support one or more levels of abstraction.

Hardware models of processor at circuit or register transfer level are generally

described using hardware description languages (HDLs). Examples of these lan-
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guages include Computer Design Language (CDL) [28], A Hardware Programming

Language (AHPL) [33], Instruction Set Processor Speci�cations (ISPS) [17], Ver-

ilog [6] and VHDL [5]. Except ISPS, all the other HDLs describe hardware either

at register transfer level or at switching circuit level. The level of detail required,

makes it di�cult to use this technique for complex systems. Further these models

are extremely slow for the purpose of simulation.

Instruction Set Processor Language (ISPL) [16], developed at CMU, is the �rst to

use the abstraction at instruction level to describe a processor model. The constructs

introduced by this language, are still widely used by other speci�cation languages.

The language is used for generating processor simulators.

SystemC [7] is used for system description or behavior modeling, instead of hard-

ware description. It has similar semantics as HDLs but has more syntax overhead.

It provides a set of library routines and macros implemented in C++. SystemC is

better used for system modeling than to write a processor description.

Architecture description languages (ADLs) are higher level languages, designed

speci�cally to model processor architectures. They provide su�cient abstraction and

are suitable for making retargetable tools. Some of the ADLs and frameworks are

described below.

The nML [24] language is developed at TU Berlin. It uses the instruction level

abstraction to describe the processor. It however lacks constructs to support resource

usage and timing mechanisms. Sim-nML [37] language developed at IIT Kanpur is

an extension of nML, which adds these features.

ISDL (Instruction Set Description Language) [27] is developed at MIT. It is a

machine description language and describes the processor at instruction set level. It

is mainly targeted towards VLIW architectures. ISDL has been used to generate

assembler and code generator generator.

MDES (machine description language) [13] is developed at the University of Illi-

nois in collaboration with HP. It is used in Trimaran [10] compiler infrastructure. It

allows the user to develop a machine description for the HPL-PD family of processors
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in a high-level language, which is then translated into a low-level representation, for

e�cient use by the compiler. It provides limited retargetability.

MIMOLA [32] language is used for structural description of the processor. The

description consists of net-lists which makes it at a lower level than the instruc-

tion set. Hence, the descriptions in this language are di�cult to write and modify.

However, these descriptions are used for generating retargetable compilers.

LISA processor speci�cation language [36] was developed at Aachen University,

Germany. It supports behavioral, timing as well as instruction set model of the

processor. It covers architecture and pipeline details of modern DSP processors. It

has been used to generate retargetable tools such as assemblers and simulators.

RADL [40] is an extension to LISA. It provides multiple pipeline support to LISA

language.

EXPRESSION [29] language was developed at UC Irvine. It provides behavioral

as well as structural modeling support for architecture descriptions. It is used to

generate compiler and retargetable simulator. The language provides syntax for

structural information, which is used to generate reservation tables, required by the

compiler.

CoWare provides a design environment called CoWare Processor Designer [2],

which supports the speci�cation of heterogeneous systems and its systematic re�ne-

ment for heterogeneous implementation. Hierarchical data models of CoWare allow

encapsulation of existing speci�cation languages, their simulators and design envi-

ronments and forms the basis for system simulation and implementation.

1.4 Related work

The retargetable languages and frameworks have been used to generate retargetable

simulators.

ReXSim [34] developed at UC Irvine, is a retargetable processor instruction set

simulator. It uses the EXPRESSION ADL as its processor speci�cation language.

ReXSim carries out compiled simulations and gives superior performance than the
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interpretive simulators.

A fast and retargetable simulation technique is presented in DATE [26]. It im-

proves traditional static compiled simulation by aggressive utilization of the host

machine resources. Such utilization is achieved by a low level code generation inter-

face specialized for ISA simulation. This approach requires C descriptions that are

based on the internal implementation details of the simulator.

The simulator generated from FACILE [38] descriptions uses fast forwarding

technique to speed up the execution. FlexWare simulator [35] uses VHDL for its

description and needs low level hardware details to be speci�ed.

SimpleScalar [20] is a popular interpretive simulator. It supports a number of

contemporary architectures, but is not retargetable.

1.5 Introduction to Sim-nML

Sim-nML [37] is a language for describing arbitrary processor architectures. It pro-

vides processor description at an abstraction level of the instruction set and hides

all hardware level implementation speci�c details. It can be used to describe proces-

sor architecture for various processor-centric tools, such as instruction-set simulator,

assembler, disassembler, compiler back-end, pro�ler etc., in a retargetable manner.

Sim-nML has been used as a speci�cation language for generation of various processor

modeling tools.

1.5.1 Previous work with Sim-nML

Sim-nML was designed as an extension to the nML language [24]. The nML language

was not designed for modeling the execution time behavior of processors. It had no

constructions to de�ne the timings of operations. Sim-nML addressed this issue

by adding a resource usage model [37]. Using resource usage model it is possible to

extract the timing behavior of instruction execution incorporating details of pipelines,

superscalar and VLIW architectures. Sim-nML has been used as a speci�cation

language for generation of various processor modeling tools, some of which are given
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below.

• Disassembler: A processor independent symbolic disassembler [31] was de-

signed. To avoid processing of Sim-nML descriptions, an intermediate rep-

resentation (IR) of processor description in the form of �xed size tables was

also introduced. The disassembler would take the IR as an input in addition to

the processor binary code. The IRs were generated from Sim-nML descriptions

using Sim-nML parsers.

• Functional Simulator: A retargetable functional simulator (FSimg) [22] was

designed and extensive simulations were carried out using a PowerPC 603 pro-

cessor model.

• Compiler Back-End: This tool [18] reads a Sim-nML description in intermedi-

ate form and generates a partially complete GCC machine description for the

processor. The tool was tested by retargeting the GCC to Sparc processor [12].

• Cache Simulator: A cache simulator [15] was developed to provide a basis for

benchmarking various cache policies for a given processor and corresponding

binary application.

• Memory Pro�ler for Functional Simulator: A memory pro�ler [21] was devel-

oped, which generates pro�ling logs for the processes running on the simulator.

These logs are then analyzed for various purposes.

• Disassembler Support for Sim-nML targets in GDB: GDB is used to debug

the programs on Functional Simulator targets. A Sim-nML description has

assembly language syntax for each instruction. Target disassembler of GDB

[23] was con�gured and modi�ed to support the target speci�ed by Sim-nML

processor description.
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1.6 Overview of this work

The FSimg [19] was developed as part of the thesis work of Surendra Kumar Bish-

noi at IIT Kanpur. FSimg can be used to create retargetable functional simulator

(FSim). In our work, we have used the GNU Debugger (GDB) [3] to provide generic

debugging environment for the target applications of FSim. We have also imple-

mented the target side of GDB in the simulator.

In our work, we have used the remote-sim interface of GDB with functional

Simulator (FSim). GDB is a retargetable debugger. It can be built for any particular

target. However once GDB is built, it can not be used for any other target. Hence,

the GDB could not be used for retargetable simulators. We have developed an

interface, such that the target architecture of the GDB can be updated from the

processor speci�cation, at run-time.

FSim is a retargetable functional simulator. It is generated by FSimg [19] from

the processor speci�cation. GDB interacts with the simulator for handling of its

commands. GDB has several commands, which can be used to watch and update

the values of expressions, examine memory and stack, to suspend or to continue �ow

of execution and to examine the call stack. These commands are implemented in

GDB at the target side interface. In our work, we implement these commands in the

FSim simulator to make GDB runtime retargetable.

1.6.1 Motivation

An instruction set simulator can be used to analyze the execution behavior of an

application on a target processor. The highest level of abstraction provided by this

simulator is of machine instruction level. These simulators are of two types, interpre-

tive simulators and compiled simulators. Generally, the debug support is provided

to interpretive simulators by creating a new debugging environment. However, these

debuggers can only debug the programs at assembly instructions level. The GNU

Debugger (GDB) [3] provides an interface for processor architecture simulators, us-

ing which one can debug the programs written in a higher level language on the
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simulated processor. The problem here is that, this approach supports only the

simulators of existing GDB targets. In order to provide the debugger support for a

customized processor, one needs to write a new machine description for GDB since

GDB does not provide support for retargetable simulators.

Sim-nML is used for describing processor architectures. The aim of the language

is to minimize the e�orts needed for developing the software tool-set generation by

using automation. The functional simulator generator (FSimg) [19] generates a retar-

getable simulator FSim from a processor description written in Sim-nML language.

The FSim is used to simulate an application, which may be written in a higher level

language. The addition of debug support to FSim will provide an ability to debug

the applications written for customized target processor. GDB is one of the most

widely used debugger with a simulator interface. We therefore use the GDB for

providing the debugging support to the application simulated by FSim.

1.6.2 Organization of report

Rest of the thesis is organized as follows. In chapter 2, we describe the existing

Functional Simulator and discuss its retargetability issues in detail. In chapter 3, we

give the GDB overview in the context of our work. In chapter 4, we look into interface

between the GDB and the FSim. We discuss how a target is added to the GDB, and

how the GDB interfaces with a simulator. We also discuss the interface developed

for updating the machine architecture in GDB using the corresponding Sim-nML

description. In chapter 5, we discuss the implementation of the GDB commands in

the simulator. In chapter 6, we conclude this work and provide results and future

work.



Chapter 2

Retargetable Functional Simulator

Generator (FSimg)

The Functional Simulator Generator (FSimg) [19], based on the Sim-nML descrip-

tions, was designed and developed at IITK in an earlier M.Tech. thesis by Surendra

Kumar Bishnoi. It generates functional simulator (FSim) from the Sim-nML de-

scription and the target binary executable.

2.1 Overview of FSim

FSim is a functional simulator. It simulates the program for a target processor at the

instruction level. At runtime, the processor state is maintained by simulating the reg-

isters, �ags and memory. Execution of every instruction modi�es the target processor

state in the simulator to mimic the actual processor state. Micro-architecture details

of the processor are ignored, e.g. pipeline behavior of the processor is not simulated.

The functional simulation is useful for verifying the correctness of programs written

for new processor designs. It is also used to generate execution pro�le of a program,

for the target processor, which is later utilized by various pro�le visualization tools.

10
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2.2 Generation of FSim from a processor description

FSim is a compiled simulator. The simulator generation process is carried out in

three stages. In the �rst stage, a processor model is generated using the target Sim-

nML description. In the following step, the target binary program is decoded using

the processor model. In stage three, the functional simulator is generated.

2.2.1 FSim generation stage-I

In stage-I of functional simulator generation, a processor model speci�ed in Sim-

nML is converted to simulator programs in C language. This process is carried out

by using Sim-nML compiler. Every Sim-nML construct is converted into one or more

C constructions. The details of Sim-nML to C conversion are given in [39].

S i m - n M L  

d e s c r i p t i o n

G e n e r a t e d  S o u r c e  C o d e

( S t a g e  1 )
S i m - n M L  

c o m p i l e r

Figure 2.1: Stage-I of FSim generation

The stage-I of the FSim generation converts the Sim-nML processor speci�cation

to the following �les used by subsequent stages of FSim generation.

1. type_decl.h: Every processor has di�erent word size and address size. Every

�eld in the instruction opcode has a di�erent size. Hence, while creating a

processor speci�cation, certain new data types are de�ned. These help in

better readability of the speci�cation, after the conversion to C. These data

types are de�ned in this �le.

2. var_decl.h: The processor contains various storage objects as de�ned in the

Sim-nML description. These include registers, temporary variables and the

memory. The storage objects are converted to variables in the C program. All

such variables are de�ned in this �le.
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3. inst_tbl.h: Every instruction has an opcode and some operands. The image

attribute of the instruction in the Sim-nML description de�nes the operand and

the opcode. This image attribute information is converted to a table. Each

entry in the table has a bitmap and a binary mask to recognize the instruction.

It also has similar masks for extracting parameters from the instruction byte

stream of the program. The de�nition of this table is extracted for Sim-nML

description and generated in this �le.

4. func_def.h and inst_func.c: The semantics of instructions de�ned in the pro-

cessor speci�cation are converted to functions in C program for simulation

purposes. The prototypes of these functions are declared in func_def.h and

the function de�nitions are generated in inst_func.c.

2.2.2 FSim generation stage-II

In this stage, the binary executable, compiled for target processor1 is decoded and

converted to an ordered list of instructions. The opcodes of the instructions, number

of operands and the instruction formats changes with the processor description. It

is because of this reason that stage-II depends on the output of stage-I.

G e n e r a t e d  S o u r c e  C o d e

( S t a g e  1 )

S t a t i c  c o d e  o f  

t h e  D e c o d e r

D e c o d e r
 H o s t  C + +  

c o m p i l e r

Figure 2.2: Generating a decoder for target processor

As shown in �gure 2.2, a decoder is generated by combining the static code of

decoder and the generated code from stage 1 of functional simulator generation. The

decoder is then used for decoding of the binary executable �le compiled for target

1Target processor: The processor, for which we write processor speci�cation in Sim-nML.
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architecture.

The executable binary �le used for the decoding is supported only in the ELF

(Executable and Linkable Format) [42]. An ELF �le has machine instructions, linker

information and loader information so that a process can be created and control

can be passed to it. An executable ELF �le contains ELF header, program header,

section headers and the data referred to by the entries in the program and section

headers. The ELF header has a �eld that de�nes the target architecture of the

executable �le. It also gives the location of the program header table and section

header table, along with the associated number and size of entries for each table.

Lastly, the ELF Header contains the location of the �rst executable instruction.

A process image consists of verious segments which include stack, data, bss etc.

The program header table contains entries describing these segments. Each entry

provides the type, �le o�set, physical address, virtual address, �le size, memory

image size, and alignment for a segment in the program.

The section header table is an array of structures. Each entry of the table cor-

relates to a section in the �le. The entry provides the name, type, memory image

starting address (if loadable), �le o�set, the section's size in bytes, alignment, and

how the information in the section should be interpreted.

An operating system creates a process from the executable �le, initializes it and

passes the control to the �rst instruction of program. However, in our case simulator

has to perform these operations on its own by simulating the OS behavior. Thus

along with decoding the instructions, decoder also has to create the initial process

image. As shown in �gure 2.3 the data from the ELF executable �le is divided

accordingly by the decoder. In stage-II certain C �les are generated for the decoded

instructions and image �les are generated corresponding to the initial value of the

memory for the process. The image �les are in Intel hex format [30] and serve as

initial image of the process in memory. A number of image �les are generated, one

for each memory space supprted by the processor. The simulator has to just load

the image �le in memory and start the execution.
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T a r g e t  A p p l i c a t i o n

D e c o d e r
T a r g e t  

E x e c u t a b l e

G e n e r a t e d

 S o u r c e  C o d e  

( S t a g e  2 )

C r o s s - C o m p i l e r

( F o r  t a r g e t )

M e m o r y  I m a g e  o f  

T a r g e t  p r o g r a m  

Figure 2.3: Decoding the target binary (Stage-II )

Following �les are generated as output of stage-II.

1. defs.h: This �le contains the initial values of registers of the target processor.

These include stack pointer, program counter and other CPU registers. To

start the target program in simulator, processor state is initialized with these

values. The values of these registers are taken from the ELF binary �le.

2. exec_tbl.h: In stage-I of FSim generation, each assembly instruction speci-

�ed in the processor speci�cation is converted to a subroutine de�nition in C

language. When the instructions from the executable �le are decoded, each

instruction decodes to a pointer to the subroutine (generated in stage-I) corre-

sponding to the instruction. These pointers and operands of the each instruc-

tion are stored in a table. The table is de�ned in this �le.

3. mem.img: This �le is a memory image �le and is in the Intel hex format

[30]. It contains process's initial state of memory when the program is loaded.

Simulator reads this �le and generates the program memory state at the time of

execution. There may be many such �les generated, one for each address space

supported by the processor. All such �les are then loaded by the simulator for
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each memory space initialization. The name of the �le is the same as the name

of the address space while the extension is �.img�.

2.2.3 FSim generation stage-III

As shown in �gure 2.4, in stage-3 we compile together the outputs of stage-I and

stage-II of FSim generation process, along with the static code to generate FSim.

The FSim runs the decoded program.

G e n e r a t e d  S o u r c e  C o d e

( S t a g e  1 )

S t a t i c  s o u r c e  c o d e

 o f  F S i m

F S i m
 H o s t  C + +  

c o m p i l e r
G e n e r a t e d  S o u r c e  C o d e

( S t a g e  2 )

Figure 2.4: Generation of FSim (Stage-III)

2.3 FSimg organization in retargetable perspective

FSimg generates FSim in three stages. It does this by using the tools to generate

the source code of FSim such as Sim-nML compiler and decoder. The generation of

FSim depends on processor architecture and the OS of the target machine. The code

for FSimg is organized in four parts- processor independent, processor dependent,

OS dependent, and processor as well as OS dependent. A processor independent part

of FSimg does not change with the change in target processor speci�cation or the

OS. A processor dependent part needs to be generated/modi�ed for every processor

speci�cation and is usually done in stage-I of FSim generation. The OS dependent

part of the FSimg needs to be updated with change in the OS. To make the FSim

retargetable we generate the processor dependent information from the processor

description. The OS dependency can be of the two types,

• The dependency on host OS, where FSim is generated.
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• The dependency on target OS, for which the target processor executable is

created.

Consider a scenario where we want to simulate MIPS processor. We write processor

speci�cation for MIPS32. We install cross-compiler for MIPS32 on i386-linux ma-

chine and cross compile programs on this machine for MIPS32 processor. Now we

want to create FSim for the cross compiled MIPS32 programs intended to run on

MIPS32-linux machine, on i386-linux machine.

In this scenario, host OS is i386-linux and the target OS is MIPS32-linux. The

target processor is MIPS32.

2.3.1 Processor independent part of FSimg

Processor independent parts of FSimg is compiled only once for the host machine.

This includes the Sim-nML compiler. The Sim-nML compiler is part of stage-I.

It takes the processor description as an argument, processes it and translates it to

equivalent 'C' code.

2.3.2 Processor dependent part of FSimg

A decoder is a program which reads from the binary executable �le and generates

the C code along with memory image. Every instruction is mapped to a C function

generated in stage-1. Therefore, this mapping is di�erent for each processor speci�-

cation. For our example, this part will depend on the MIPS32 processor description

and the generated decoder will decode the instructions of MIPS32 machine.

2.3.3 OS dependent part of FSimg

ELF library provides routines to read the ELF �le. Here the ELF �le is cross-

compiled for target processor and target operating system. However the ELF �le

format only needs to know whether the operating system of the target is 32-bit

operating system or 64-bit operating system. In our example, this part will depend on
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the target OS, i.e. MIPS32 Linux distribution and the ELF library will be con�gured

for 32-bit operating system.

2.3.4 Processor and OS dependent part of FSimg

In stage-III the output of previous two stages along with static code of stage-III

is used to generate the FSim. FSim mimics target processor state for which it

should know the target processor architecture. The target program is compiled

for the target processor architecture and target OS. The compiled program uses

system calls of target operating system. During simulation, these system calls are

translated to equivalent system calls provided by the native operating system. In

an example, stat64 system call in MIPS32-linux is mapped to fstat system call of

i386-linux machine. Therefore, the stage-III of FSimg is dependent on the target

architecture, the target OS and the host OS.

2.4 FSim execution

At runtime, FSim only requires the memory image �le of the target program, gen-

erated by the decoder. Simulator creates and initializes the memory of the target

program using the mem.img �le. The register values are initialized and the execu-

tion of the target program is started. An instruction is fetched from the instruction

table2 and executed. In order to do so an index in the instruction table is derived

from the current PC register value. If the index is outside the range of the instruction

table the simulation is aborted. During the stack operations, there may also be a

stack over�ow in which case also the simulation is aborted.

Flow of execution of FSim is depicted in �gure 2.5.

2Instruction table is generated by decoder, in stage-II of FSimg.
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Figure 2.5: Flow chart of FSim execution
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2.5 Implementation of retargetability in FSim

A processor speci�cation only describes the architecture of the processor. However,

the simulator has to perform the functionality of an operating system as well as

that of the processor. Therefore we need to distinguish between the target operating

system functionality and the processor functionality.

To run a program on simulator, it must have following knowledge about the

target processor.

1. Endianity: The endianity is the byte ordering used to represent the multi-byte

data. It de�nes the order in which the individual bytes of data are stored in

the memory. The target program memory is created and maintained by the

simulator. A system call made by the target process which is simulated on the

host machine, may cause a data exchange between the host OS and the target

program's memory. If there is an endianity mismatch between the target and

the host processor, the simulator handles the situation by transforming the

data to the correct endianity. We add the endianity information of the target

processor in its Sim-nML description.

2. Program counter (PC) register: The program counter register has the address

of the instruction to be executed. When the simulator starts the execution of

the target program, this register is initialized with the starting address of the

program. However, every processor has di�erent name for the PC register. As

the FSim recognizes a register only by its name, it must be aware of the PC

register name of the target architecture.

3. Stack pointer (SP) register: The stack pointer register points to the program

stack. Function parameters are usually passed through the processor stack in

the executable code for that processor. A frame containing the return address

of the function, local variables and the previous SP register value, is also created

on the processor stack. As FSim simulates the process, it also needs to simulate

the stack. The initial value of the SP register varies with each target program,
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and is speci�ed in the ELF header of an executable. Similar to the PC register,

the name of the register used as stack pointer is di�erent for each processor.

4. Function calling conventions: Di�erent platforms use di�erent function calling

conventions. This a�ects the initialization of the target program in the FSim,

as the �rst function to execute might take some arguments depending upon

the OS environments. These arguments must be passed by the simulator to

the target process memory for which it must use the calling conventions of the

target OS for which the target binary was generated. In addition, the target

process makes various system calls of the target OS. We therefore need an

OS emulator that must handle such system calls. The system calls also use

di�erent calling conventions. The FSimg provides a support to pass on the

system calls of the target OS to host-speci�c functions and therefore needs to

be aware of host and target calling conventions.

The registers de�ned in a processor speci�cation are converted into variables in the

equivalent C code. These variables are accessed by the later stages of the simulator.

Therefore the FSimg can not know the variable names prior to the compilation of the

Sim-nML speci�cation. However, in the later stages, we need to access these variables

in the static code of FSim. Therefore, instead of using register variable names, we

use SP and PC identi�ers for stack pointer and program counter register respectively.

We rename these identi�ers using compiler directives to the actual register names

for the particular processor. The register names of PC and SP register are speci�ed

in the Sim-nML description.

A C function call can be made from Sim-nML speci�cation using canonical func-

tion mechanism. This facility is used to provide a system call interface for the

processor. In a new processor description, which needs a system call interface, a sys-

tem call handler is added in the static code of FSimg. This function translates the

target system calls to their equivalent host counterparts. The system call interface is

used to provide OS-processor communication. It is used for parameter passing and

to initialize thread data pointer, requierd by certain target OSes.



Chapter 3

GDB Overview

A debugger is an interactive software, that provides �ne-grained controls over the

execution of a program. It can examine and change the state of the process being

executed. GNU Debugger (GDB) [3] is a free, open source software. It is one of

the most commonly used source language debuggers. GDB has several commands,

which can be used to watch and update the values of expressions, examine memory

and stack, suspend or continue �ow of execution and examine the call stack. These

commands are entered through a command line interface.

3.1 GDB internals

As shown in �gure 3.1, GDB can be divided into four di�erent functionalities, user

interface, symbol handling, target architecture support and core gdb handling.

User interface includes taking the commands from the user and presentation of

debugging information to the user. It incorporates various routines to display the

debugging information, to read the commands from user and to invoke the handler

of the command given by the user. A command handler implements the debugging

algorithm by dividing the task associated with the command into smaller subtasks.

Symbol handling functionality of GDB consists of object �le readers, symbol table

management, expression handling, source language support, source display and other

activities that involve symbolic data. Binary File Descriptor (BFD) library which

21
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Figure 3.1: Basic GDB architecture

consists of facilities for reading various executable and object �le formats (ELF,

COFF, a.out etc.) is a core component of this subsystem. The symbol handling

functionality also supports various debug formats (Stabs, DWARF2 etc.), which are

used to express debug information.

The target architecture support consists of execution control, stack frame anal-

ysis, disassembly, opcode library, target speci�c routines for breakpoint, handling

registers etc. This is mainly used to access and manipulate target data. GDB as-

sumes the target machine includes a bank of registers and a block of memory. The

processor registers are assumed to form an ordered list. Every register is identi�ed

and accessed by its register number, which is its index in the list. The order of all

registers is �xed; it is same as that of GCC for the particular target.

The modular architecture of GDB allows GDB to be ported to large number of

target architectures.

GDB also provides support for interfacing with simulators (�gure 3.2) through a

simulator interface which is a very helpful feature for development of debuggers for

the embedded systems. The simulator provides the mechanism for target architecture
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Figure 3.2: GDB architecture with simulator

3.2 Initialization of GDB

For a debugger, the host machine is where the debugger resides, and the target

machine is for which the binary executables of the programs to be debugged are

generated. In a typical scenario, a debugger supports single target architecture.

A retargetable debugger is designed such that, it is relatively easy to modify the

debugger to support di�erent target CPU architectures. These modi�cations are

typically related to the architecture dependent parameters of the target support

functionality. A retargetable debugger can be built for any of the supported target

processor architectures. GDB is a retargetable debugger and the target processor is

selected during the con�guration of GDB.

In retargetable tools, the retargetability is usually provided by maintaining the

architecture dependent information in a set of variables. Some of the architecture

dependent information includes endianity of the processor, number of bits in the

address and data word of the processor, number of registers of the processor etc. In

GDB, the architecture speci�c information is provided through a source �le named
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<arch>-tdep.c. Here <arch> is the name of the processor. A processor initialization

routine in this �le initializes the architecture speci�c information of GDB with the

information of the selected target architecture.

The <arch>-tdep.c �le describes the basic layout of target processor architecture.

It contains miscellaneous code required for various operations on the target machine.

These operations include breakpoint handling mechanisms, stack frame handling and

register information retrieval mechanisms.

3.2.1 Target speci�c initialization for handling breakpoints

The implementation of breakpoint mechanism is processor dependent and is part of

the target side of GDB. Calculation of breakpoint address, insertion of breakpoint,

resuming the execution �ow after the breakpoint and removal of breakpoint are some

of the major functionalities in breakpoint mechanism. These are implemented by the

target speci�c routines.

If a breakpoint is asked to be set on a function, it means the breakpoint should be

set at the �rst instruction after the function prologue. The size of function prologue

varies with the ABI and hence, the routine to skip function prologue while setting the

breakpoint is implemented by target side. This routine gives the actual instruction

address, where the execution will break due to the breakpoint.

An interrupt or a trap instruction is inserted at the breakpoint address to set the

breakpoint. The opcode and size of the instruction to be inserted in place of actual

instruction is di�erent for di�erent targets. This information is provided by a target

speci�c routine. This routine is used during the insertion of a breakpoint.

The original instruction at breakpoint address is executed when the program

resumes its execution after the occurrence of a breakpoint. This can be handled in

multiple ways depending on the facilities provided by the hardware. If the hardware

provides single stepping support, GDB has to insert the original instruction back

to its original location, decrement the program counter to the breakpoint address,

execute a single step and insert the breakpoint again. If the hardware does not
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support the single stepping, the original instruction at the breakpoint address is

copied to an executable page in the program memory, and the instruction is followed

by the code to return to the next instruction after the breakpoint. In this scenario,

after the breakpoint the execution resumes at the memory location where the original

instruction from the breakpoint address is copied. The routines to implement any of

the above mechanism are dependent on processor architecture and hence are target

speci�c.

Even though the implementation of above routines varies with the processor

architecture, their functionalities do not change. GDB declares function pointers

for each of these functionalities and their implementation is provided by the target

architecture. Each routine is then registered with GDB for its functionality.

3.2.2 Target speci�c initialization for handling call stack

Each time a program performs a function call, certain information about the call is

gathered. This information includes the location of the function call in the program,

arguments of the function call and the local variables of the function being called.

This information is saved in a block of memory called frame. The frames are usually

allocated on the stack known as call stack.

A stack frame has data associated with a call to any function. When the program

is started, the call stack has only one frame, corresponding to the functionmain. This

frame is called the initial frame or the outermost frame. Each time a function is

called a new frame is created. Each time a function returns, the frame for that

invocation is destroyed. The frame for the function in execution (on stack top) is

known as the innermost frame. The frames are linked together by use of frame

pointers, the memory address of a frame. Each time a new frame is created, address

of previous frame is stored in the new frame. Using the backtrace command of GDB a

user can examine all the frames on the call stack. However, to retrieve the call stack

information the GDB has to trace back from the innermost frame. The call stack

structure is speci�c to the target architecture. A sni�er routine is used to retrieve
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previous frame information from a given frame. The process of retrieving previous

stack frame from the given frame pointer is known as unwinding the stack. GDB

provides sni�er routines for each debug format. In addition to those routines target

speci�c unwinding routines are also provided. GDB maintains the list of unwinding

routines speci�c to the target architecture. These sni�er routines are registered

during the initialization of the target architecture.

A frame has an associated frame pointer. The frame data is accessed by using

the frame pointer. The absolute address of a variable stored on the stack frame

is calculated by adding its o�set and the frame pointer. The o�set of each local

variable from the frame pointer is given in the debug information of the program.

The o�sets of function parameters, return address and the non-volatile registers from

the frame pointer are �xed for a particular application binary interface (ABI). As

the ABI is target procesor speci�c, these o�sets are also target processor speci�c.

This information is used while tracing the execution path of the program, i.e. to

trace the calls made from the beginning to reach the current function.

3.2.3 Target speci�c initialization for handling CPU registers

Routines to provide name of a register, type of a register and to get the value stored

in the register are speci�c to a target. In addtion a separate routine is provided to

get the value of the program counter register. All these routines are identi�ed during

the initialization of GDB with a speci�c target.

After specifying these routines and initializing the architecture information, the

GDB is ready to accept a command.

3.3 GDB command processing

GDB has a command processing engine which maintains the list of commands that

are supported. During initialization of GDB, the supported commands are added

to this list. Each command has its own syntax and associated command handler.

Whenever an input command matches with one of the commands in the list, the
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corresponding command handler is invoked, with the rest of the input command

passed as the parameter. Command handler parses the parameters and performs the

actions speci�ed by the command. The output from the command handler is printed.

For example, when a command such as the one to print the value of a variable is

given, GDB makes a call to read data from the memory location corresponding to the

address of the variable. In this example size and address of the variable is obtained

from the debug information.

The values stored in the memory are in the endianity of the target architecture.

However the code to print them runs on the host processor. Hence these values

are printed according to the host endianity. The conversion of endianity from the

target to the host is carried out by the command handler. GDB assumes that it

will get all the data in the host endianity. The command handlers therefore have

to implement all target-speci�c functionality such as reading of the CPU registers,

memory locations and parsing of CPU speci�c expressions.

3.4 Debug information

The debugger needs the debug information for symbolic source level debugging. GDB

supports a variety of debug information formats such as stabs, COFF, DWARF-1,

DWARF-2 etc. The debug information formats are processor independent. However,

they are used to provide information about the target processor and application

binary interface.

Following debug information about the target architecture and application binary

interface (ABI) is required by GDB and is provided by the debug format.

1. When a function is called, the control shall return to the next instruction after

the execution of the function. The address of the next instruction after the function

call instruction is the return address of the callee function. Many processors use a

dedicated register to store return address of the function. The register in that case

is known as return address register. Return address of a function is stored in the

return address register and/or in the frame on the call stack. For example in MIPS,
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the return address of a function is stored in the return address register, but not on

the call stack. The return address is required by GDB for the execution of �nish

command. It is also used to get the call stack information in GDB. The method

to get the return address value of the function is stated in the debug information.

For example in MIPS, the return address of currently executing function is obtained

from the return address register, while for other functions it is extracted from the

stack frames. In the later case the o�set of the memory location within the frame

where the return address is stored is given in the debug information.

2. Each time a function is invoked, a new frame is created on the call stack.

Each time a function returns, the frame for that function is removed from the stack.

The debug format provides information about the size of the memory required by

the frame for each function.

3. When the program execution breaks, the GDB commands can be used to

display the values of variables. The variables are considered from the current frame

of execution unless any other frame is selected from the call stack. From the debug

information, the o�set of the memory location where the variable is stored is known.

The address of the variable can be computed by adding the frame pointer to this

o�set. Hence, to store and retrieve the values of variables GDB needs to know the

frame pointer. The frame pointer is usually kept in a CPU register. Therefore, the

GDB needs to know the frame pointer register for the target architecture.

4. The old frame pointer is stored on the call stack at some �xed o�set in the

current frame when a function is invoked. This o�set is dictated by the ABI of the

target processor. The value of old frame pointer is needed to unwind the stack frame.

Hence GDB needs to know the o�set where the previous frame pointer is stored in

a stack frame.

The debug information for a function includes the extents of memory addresses

where the instructions of the functions are storeed. These are indicated by two

addresses known as low-pc and high-pc for each function.

When the execution of the program is broken, the value of the current PC is com-
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pared with the extents of all functions to �nd the function for the current instruction

where the execution was broken.



Chapter 4

GDB Simulator Interface

In a normal scenario, the GDB is used to debug programs on the native machine.

This is known as local debugging. GDB can also be used to debug programs running

on a remote machine connected through a network connection. This scheme is known

as remote debugging. GDB is also used to debug the programs running on processor

instruction set simulators. For our work, we are interested in using GDB for simulator

target.

4.1 Types of simulators handled by GDB

GDB provides two kinds of debugging facilities for simulators. In one kind of organi-

zation, the simulator runs on the same machine where the GDB runs and simulates

the instruction set of the target machine. In the other kind of organization the

GDB and the simulators reside and execute on di�erent machines and use remote

debugging facility of GDB.

4.1.1 Native simulators

GDB includes built-in instruction set simulators for several processors such as Hitachi

h8300 [4], Motorola 68hc11 [8], MIPS [14], PowerPC [12] and ARM [1]. These

simulators use the remote-sim interface to utilize the debugging facility of GDB.

The remote-sim interface provides the functions through which the GDB can access

30
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and control the simulator for debugging a program. In this approach the GDB is built

for simulator of speci�c target architecture. A new instruction set simulator can be

interfaced to work with GDB using simulator interface of GDB. If the simulator runs

on the same machine where the GDB runs, it is a native simulator. The interface

between the two can be a procedural interface.

4.1.2 Simulators on remote machine

GDB remote protocol is used for remote debugging of programs. Usually this facility

is used for a target machine which does not have operating system powerful enough

to run a full-featured debugger. The host machine has a full featured GDB and the

target machine has a program known as GDB stub which would communicate with

the host GDB and would implement basic GDB functionality on the target side. Here

the target machine can either be a hardware machine or a simulator of the speci�c

target architecture for which GDB is built. The communication is performed over

a serial line, or over an IP network using TCP or UDP. To use this approach, a

simulator has to implement the GDB stub.

4.2 Using GDB for FSim simulator

The instruction set simulator (FSim) is generated from the processor description

written in the Sim-nML language and is used to simulate execution of the program

for target architecture. However the simulator does not provide any insight into the

program being executed or the processor state. We have interfaced our simulator

with GDB to utilize its debugging functionality.

The FSim is a retargetable simulator. In order for GDB to support FSim, the

GDB must incorporate runtime retargetability. This is however not possible within

the architectures of GDB. Hence we create and add a new target known as simnml

to the existing targets of the GDB. We con�gure GDB to run with simulator using

target simnml. The simnml target initially has dummy information to create the

target architecture. During the initialization of the target architecture of GDB, the
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dummy information about the target is replaced by the actual information from the

processor description. Hence, we need an interface which would take the target-

speci�c information at runtime from the processor description.

We use the existing features of GDB which make it retargetable. For this we use

existing interface of GDB to connect to the simulator and add a new interface to

update target architecture information of GDB. This information is gathered from

the processor description at runtime of GDB.

4.2.1 Addition of simnml target to GDB

As mentioned earlier, the GDB needs to be retargetable at its runtime to support

FSim. However as per the GDB architecture, we need to specify a target to build

GDB. We therefore added a new target, simnml, to the existing targets of the GDB.

To add a new target simnml to GDB, we had to make some changes in the con�gu-

ration �les. The changes are as follows.

1. The topmost level of con�guration �les checks whether the particular target

architecture is supported by GDB or not. We had to add the name of the

target architecture in the top level con�guration �les.

2. The Binary File Descriptor (BFD) library is used to read the contents of the

executable �le which include the metadata of di�erent sections of the �le, ex-

ecutable code and the debug information. Some of the routines used in the

BFD library depend upon the target architecture properties such as the endi-

anity of the target. Hence, whenever we want to add a new target in GDB, we

have to also add it in the con�guration �les of BFD. The bfd_arch_info struc-

ture in BFD stores the basic information about the target required by BFD

library, and its instance for a target <arch> is de�ned in the cpu-<arch>.c

�le. An instance of bfd_arch_info structure is de�ned for each of the sup-

ported target architectures. For the target architecture simnml, we de�ned the

instance of structure bfd_arch_info as bfd_simnml_arch in the �le named

as cpu-simnml.c. The name of the variable (bfd_simnml_arch) is then listed
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in the con�g.bfd �le. An array of pointers of type struct bfd_arch_info is

de�ned in archures.c �le. Each entry in this array points to the instance of

bfd_arch_info structure de�ned for a certain target architecture. The simnml

target related information is added in this array.

3. BFD library also performs object �le format handling, such as ELF handling,

for GDB. The internal structure of an ELF �le varies with only two archi-

tecture dependent parameters, i.e., endianity and the word size of the target

machine. In order to support di�erent target-speci�c features of the ELF, the

corresponding BFD library provides a list of byte exchange routines which are

used by GDB while handling an ELF �le targeted for a processor of particular

endianity and word size. Two such lists for di�erent endianities are de�ned

in the source �le elfxx-target.h within the GDB. During the con�guration of

GDB target speci�c list is to be used depending on the target endianity. Since

we need runtime retargetability, we don't know which list to use at compile

time. Hence we select a dummy ELF vector. We replace this dummy vector

by the appropriate target ELF vector when the target architecture parameters

are retrieved from the processor speci�cation. An array of supported target

ELF vectors is de�ned in the �le targets.c. We add our new target ELF vector

(bfd_elf32_simnml_vec) in this �le.

4. Whenever we add a target to GDB, we have to add a <arch>-tdep.c �le in the

source of GDB. This �le contains basic layout of target machine's processor

chip (registers, stack etc). It contains the target initialization routine which is

called to initialize the target architecture. In our implementation, we created

simnml-tdep.c �le for this purpose. The routines in this �le initialize the target

speci�c layout using the Sim-nML processor description at runtime.

To add a new simulator to GDB, we created a directory for the simulator target inside

the sim directory of GDB source and provided the implementation of the interface

between GDB and FSim simulator in this directory. This interface is compliant to
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Figure 4.1: GDB with remote-sim interface

the remote-sim interface of GDB.

4.2.2 Implementation of the remote-sim interface

When the GDB includes a CPU simulator that one can use instead of hardware CPU

to debug the programs, an interface is used to connect simulator to the GDB. This

interface is known as remote-sim interface and is provided by GDB.

In �gure 4.1 we show the execution of GDB with the remote-sim interface. After

the initialization, control is passed to the user interface module. Whenever user enters

a valid GDB command, appropriate command handler gets invoked. A command

handler completes the task associated with the command and returns the control to

the user. The command handlers use remote-sim interface to control the execution

and to gather information about the state of the simulated program and the CPU.

The command handlers need the information about the target architecture for their

execution.

The target architecture of GDB is con�gured by using the information of one

of the supported hardware targets. This way the target architecture information is

available to GDB at compile time.

The remote-sim interface provides the following template functions which should
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be implemented by the target simulator. In our approach, these functions are imple-

mented in the FSim simulator.

• SIM_OPEN: This is the main entry point for the simulator. It creates fully

initialized simulator instance. This function is called when the simulator is

selected from the GDB command line. In our implementation this function

creates the processor model from the Sim-nML description using the �rst phase

of FSimg and returns the success value back to GDB. From this point onward,

GDB is connected to simulator.

• SIM_CLOSE: This function destroys the simulator instance created by SIM_OPEN.

All resources which are allocated till that point, are released and certain other

book keeping functions are performed. From this point onwards, GDB is no

longer connected to the simulator. In our implementation the FSim instance

generated for the particular target and the binary executable of the generated

instruction set simulator (FSim) is deleted by this function.

• SIM_LOAD: This function loads binary program into simulator memory. In

our implementation the second phase of FSimg is carried out in this command.

This is achieved by decoding the input program and by creating the execution

table. Finally, simulator is created as a dynamically linked library (DLL).

• SIM_CREATE_INFERIOR: This function prepares to run the simulated pro-

gram. It should initialize target processor registers and state variables and set

command line arguments.

• SIM_FETCH_REGISTER: This function returns the contents of the requested

register. Register number is passed as an argument to this function.

• SIM_STORE_REGISTER: This function overwrites requested register's con-

tents by the value given in the function parameters.

• SIM_READ: This function returns the contents of a requested memory loca-

tion.



CHAPTER 4. GDB SIMULATOR INTERFACE 36

• SIM_WRITE: This function overwrites requested memory location's contents

with the value provided in the function parameters.

• SIM_RESUME: This function runs the target binary program in the simulator.

If the step �ag which is given as argument to this function is false, simulator

runs until it encounters a breakpoint or until the program ends. If it is true,

the simulator simulates only one line of the source program.

• SIM_STOP: This function stops the simulation process.

• SIM_STOP_REASON: This function returns the reason why the program has

been stopped. A list of valid reasons is given below.

� EXITED: The program has been terminated. The exit status is returned

through a signal.

� STOPPED: The program has been stopped. A signal value is returned to

identify the reason. It can be a breakpoint instruction, an illegal instruc-

tion, a sim_stop request, completion of single step, an internal error or

an access to wrong memory location.

� SIGNALED: The program has been terminated by a signal.

� RUNNING: The program is still running.

� POLLING: The simulator is waiting for a new command.

The above mentioned remote-sim interface is used to communicate with GDB and to

create the FSim instance, using the FSimg. Once the simulator instance is created,

it is driven by the remote-sim interface routines.

4.2.3 The fsim interface for GDB

In a usual scenario, in which a GDB is connected with a simulator using remote-

sim interface, the GDB is con�gured for one of the supported target architectures.

However remote-sim interface is insu�cient to provide retargetability support to the

GDB at runtime. We added fsim interface for this purpose. The fsim interface is
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Figure 4.2: GDB With fsim Interface

used by the simnml target of GDB and provides the runtime retargetability of the

GDB. Implementation of this interface is provided by the FSim simulator.

In �gure 4.2 we show the execution of GDB with the fsim interface. As shown in

�gure 4.1 GDB uses the target architecture information available at compile time.

GDB did not have support to change the target architecture information at runtime,

which is necessory for runtime retargetability. Hence we developed the fsim interface

to get the target architecture information at runtime from Sim-nML speci�cation.

The wrapper functions act as an interface between initialization routines of GDB,

target architecture information and the fsim interface. The wrapper functions update

the target information of GDB from the current Sim-nML target by using the fsim

interface. This way once the initialization of GDB is completed, the command han-

dlers can access the information of the target architecture speci�ed by the Sim-nML

processor speci�cation.

The fsim interface uses the following template functions which should be imple-

mented to provide runtime retargetability support to GDB.
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• get_sim_endianity: This function returns the endianity of the simulator tar-

get. The target endianity of the GDB is set to the endianity returned by this

function. For example, target endianity of GDB for i386 target architecture

will be little endian.

• get_sim_bits_per_word: This function returns the size of a word in the target

architecture. For example, for a MIPS target, bits per word are 32, while for

Intel 8086 architecture size of a word is 16 bits.

• get_sim_bits_per_addr: The function returns the size of address in the target

architecture. For 8085 architecture this function will return 16 where as for

MIPS it returns 32.

• get_sim_num_regs: The function returns the number of registers in the tar-

get.

• get_sim_pc_regnum: The function returns the index of the PC register in the

register list. Here all registers of the target are considered to form an array

and the index of PC register is returned.

• get_sim_sp_regnum: The function returns the index of the SP register in the

register list.

• get_sim_regnames: The function returns the names of registers in the target

architecture. Register names are required by GDB to communicate with the

user. User can set or get register values using the register name.

• get_sim_regtypes: Type of the register speci�ed by the index given as argu-

ment is returned by this function.

These functions form an interface between the GDB and the retargetable simulator

to update the target architecture of GDB at the runtime of GDB. A retargetable

simulator can use this interface along with the remote-sim interface to enable GDB

support for debugging.
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4.2.3.1 Wrapper functions for fsim interface

In our approach, we implemented the existing remote-sim interface and created a

new fsim interface to enable debugging of FSim simulator. The implementation of

fsim interface is generated at runtime from the Sim-nML speci�cation and then used

by the GDB. Implementation of runtime retargetability of GDB required update

of certain architecture information by the Sim-nML target. At compile time these

variables were set to some dummy values. The wrapper functions update these

dummy values as described in section 4.2.1 with the information from current target

architecture. The information is gathered from the Sim-nML processor speci�cation

through the fsim interface. We have implemented these functions in the �le simnml-

tdep.c. A list of these wrapper functions used for fsim interface is given below.

• output_reg_interface: All routines speci�ed in the fsim interface are generated

at the runtime of GDB using this function. The Sim-nML processor description

is read and is used to generate the de�nitions of the routines of fsim interface.

• update_simnml_architecture: This function calls the routines to initialize

GDB architecture from simnml target. It calls routines from BFD library

to update the target architecture information available in GDB and in BFD

library.

• update_gdb_sim_arch: It uses the register information functions of the fsim

interface to update the register information of the target architecture of GDB.

The information includes total number of registers of the target and register

numbers of the stack pointer and program counter register.

• update_arch_info_type_from_simnml: This function updates the architec-

ture information in BFD library (i.e. the bfd_arch_info data structure) and

is de�ned in cpu-simnml.c �le of BFD library.

• update_bfd_sim_vec: This function updates the target elf vector (i.e. the

bfd_elf32_simnml_vec data structure) in the BFD library. An elf vector is
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chosen according to the endianity of the target and the target elf vector of

GDB is modi�ed to point to the newly selected elf vector.

GDB simulator interfaces have enabled GDB to be used for debugging the programs

running on the retargetable simulator FSim. The fsim interface is used to initial-

ize and update the target architecture of the GDB from the Sim-nML speci�cation,

whereas the remote-sim interface is used by command handlers for performing exe-

cution control and accessing the runtime debug information of the program running

on simulator.



Chapter 5

Implementation of Debug

Mechanisms in Simulator

GDB commands are of two types. The �rst type of commands control GDB behav-

ior, while the second type of commands control and monitor behavior of the program

being debugged. It is the second type of commands which are implemented by the

target. In our case they are implemented by FSim simulator. These commands han-

dle breakpoints, control the program execution and modify/display memory state.

They also include the commands for register interaction.

5.1 The breakpoint mechanism

Breakpoints are used to suspend the �ow of a program. Breakpoint mechanism

includes creation, identi�cation and deletion of a breakpoint. The creation of a

breakpoint de�nes a condition to break the execution of a running program. Iden-

ti�cation of a breakpoint means to stop the running program whenever breakpoint

condition occurs. Deletion of a breakpoint causes the de�nition of the associated

condition to be nulli�ed.

In GDB the breakpoints can be set in two di�erent ways.

1. Function name: The breakpoints set for a function name causes the execution

41
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to be broken whenever the control reaches to this function. The ELF format

stores the information about function (starting address and name of the func-

tion), even if the source is compiled without any debug �ags. Hence, we can

always set a breakpoint using a function name existing in the program.

2. File name and Line number: The breakpoint set for a source line causes the

execution to be broken whenever the control reaches to that line. A line in the

C program is typically converted to multiple machine instructions in the object

code. We need to know the address of the �rst instruction for a particular line,

where we want to set the breakpoint. The ELF �le format does not store

any line number information unless the debug information is stored. Hence,

unless we have compiled the application with debug �ags set, we can not set

the breakpoint using this mechanism. If the �le name is not given, breakpoint

is set in the �le containing the function corresponding to the current frame.

Once the program execution is started, it should stop when the value of program

counter equals any of the breakpoint addresses. If none of the breakpoint addresses

match the program counter, program execution does not halt intermediately. The

execution of the program is carried out by the target processor. Therefore the break-

point handling is done by the target side. It stops the execution whenever it en-

counters a breakpoint address and passes control to the breakpoint handler. The

breakpoint handler routine in the core GDB then decides whether to break the exe-

cution or not. For example, in case of a conditional breakpoint, decision of breaking

the execution also depends upon the evaluation of condition according to present

values.

5.1.1 Debug information related to breakpoints

Di�erent ways of setting a breakpoint need di�erent types of debug information.

When a function name is used to set a breakpoint, the information required is the

starting address of the function. When a line number is used to set a breakpoint,

debugger requires the mapping between the line number and associated address to
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set a breakpoint. In case of conditional breakpoints, debugger may also need to know

the information of the variables if they are used in the conditional expression.

The mapping between the line number and corresponding address is provided

as debug information in the executable �le. In an ELF object �le, the .debug_line

section contains this information, where the following information is generated for

every source line.

• Source �le name

• Source line number

• Address of the �rst machine instruction translated from the source statement

The command handler matches the user speci�ed speci�cations of breakpoint with

the available debug information to �nd the starting address of the function or the

source statement, and uses that address to set the breakpoint.

5.1.2 Types of breakpoints

Apart from the breakpoint command, few other commands also use the breakpoint

mechanism in their implementation. These commands include step, next, �nish and

until. In order to handle these commands as well, the breakpoints are identi�ed

with certain types. In case of simulator we are concerned with following types of

breakpoints.

• bp_breakpoint: This is a normal type of breakpoint and is created by break-

point command.

• bp_until: This type of breakpoint is created by until command and is a tem-

porary breakpoint.

• bp_�nish: This type of breakpoint is created by �nish command and is a

temporary breakpoint.

• bp_step_resume: The step, stepi, next and nexti commands create this type

of breakpoint. This type of breakpoint is a temporary breakpoint.
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A temporary breakpoint is valid only in the context of the current debug command.

Whenever the execution is broken due to a temporary breakpoint, the GDB removes

all temporary breakpoints before it passes control to the user.

5.1.3 Implementation

In the target side, execution is stopped whenever a breakpoint instruction is encoun-

tered and control is passed to core GDB routines which handle further processing

about the breakpoint. Breakpoints can be implemented on the target side in two

ways.

1. In the �rst approach we keep a list of breakpoints. Before execution of every

instruction, we compare the program counter register with the entries in the

list. In case of any match, the program execution is broken and control is

passed to the core functions of GDB. A �ag is set which keeps track of the

reason of break in execution. When the program resumes its execution, the

occurrence of breakpoint is not checked for the �rst instruction to ensure that

the same breakpoint is not encountered again and again. However this ap-

proach is an ine�cient approach as it needs to search in a list of breakpoints

for every instruction execution. Though this approach is generally suitable for

the simulators, we use di�erent and e�cient approach in our simulator.

2. In the second approach, separate instructions such as a trap instruction, or a

sequence of instructions are used to handle breakpoints. In this approach, the

target side replaces the instructions at breakpoint address by these instructions.

The original sequence of instruction bytes at the breakpoint address is saved

in the data structure associated with the breakpoint. When a breakpoint

is hit, the trap instruction or the replaced instructions are executed causing

the control to be caught by GDB by exception mechanism or some similar

mechanism. The program counter (i.e. return address) is then checked for

breakpoints. In case a breakpoint is hit, execution stops and control is passed

to core GDB routines. When the program resumes the execution, original
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instruction is inserted back to the breakpoint address. The processor executes

one instruction in single step mode and then GDB reinserts the trap instruction

at breakpoint address for subsequent breakpoint. In case the breakpoint was

a temporary one, the breakpoint is not reinserted. The program execution is

then resumed in the normal mode.

We have used the second approach in our implementation. We create a breakpoint

list, in which we store the actual instruction from the breakpoint address. The list

is modi�ed by `create breakpoint' and `remove breakpoint' commands from GDB.

To insert a breakpoint, we replace the instruction at breakpoint address (in the

instruction table) by a dummy function pointer, implemented in the simulator. The

trap function does not increment the program counter. It only sets the breakpoint

�ag to true. Before executing every instruction we check the breakpoint �ag. If it

is set, the program execution is stopped and control is passed to GDB. When the

program execution is resumed, post processing of the breakpoint is done. In this

step, we execute the original instruction stored in the breakpoint table and resume

the normal program execution.

5.1.4 Data structures used for breakpoint

GDB creates a breakpoint data structure for every breakpoint. It keeps a list of

currently active breakpoints. The breakpoint data structure of GDB stores the

following information.

• Type of breakpoint: The type of breakpoint is related to the command that

caused the creation of this breakpoint as described earlier.

• Disposition Information: This speci�es the action to be taken when the break-

point is hit. For a normal breakpoint, there is no need for any additional

action. For step_resume_breakpoint or �nish_breakpoint, the action would be

to remove the temporary breakpoints.
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• Number: Each breakpoint has a unique number, which is used for identi�cation

by the GDB.

• Breakpoint Location Structure: This structure stores the information related

to the breakpoint location. This includes the address, number of breakpoints

at this location and a pointer to the BFD section associated with this address.

• Line number and source �le name.

• List of GDB commands to be executed when the breakpoint is hit. This may

be created because of display command of GDB for example.

• Frame Id: Frame Id corresponds to the identi�cation of frame on the call stack.

When it is non-zero, execution breaks only when current Frame Id equals the

stored value.

• Conditional Expression: This condition is checked whenever the breakpoint

is hit. If condition is false, the GDB resumes the normal execution without

passing the control to command handling and execution is not broken.

• Hit count: It stores the number of times a breakpoint is hit.

FSim simulates the behavior of the target side of GDB. It stores target side list of

breakpoints. The breakpoint structure on the target side is simpler than its core

GDB counterpart. It has following �elds.

• Enabled �ag: it states whether the breakpoint is valid or not.

• Breakpoint address: This �eld stores the breakpoint address. It is required to

distinguish between two breakpoints. No two breakpoints on target side have

same address. This �eld is compared with the program counter to identify the

instruction at breakpoint address, which is to be executed when program is

resumed.
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• Original instruction: The function pointer corresponding to the original simu-

lated instruction at the breakpoint address is stored in this �eld. The operands

of the instruction are taken from the instruction table.

5.2 The watchpoint mechanism

A watchpoint is a mechanism to stop the program execution whenever the value of

a pre-de�ned expression changes, without predicting a particular instruction address

where this may happen. An expression can be a single variable or many variables

combined by operators. When an expression has multiple variables, the value of the

expression may change due to change in any of the variables or may not change even

when multiple variables change. A watchpoint is also known as a data breakpoint.

Depending on the target, watchpoints may be implemented in the software or in

the hardware. If implemented in the software, GDB handles watchpoints by single

stepping the program, computing the expression and noticing the change in from

its previous value. In case of hardware implementation the target side monitors

the access to memory addresses and breaking the execution whenever any memory

location is accessed. The GDB prefers a hardware implementation if available in the

target. If GDB can not set a hardware watchpoint, it sets a software watchpoint.

5.2.1 Types of watchpoints

A watchpoint is used to stop program execution by examining the memory accesses.

A memory access by the program can be either to read from or to write into the

watchpoint address. There are three types of watchpoints according to the type of

memory access watched by the watchpoint.

1. bp_hardware_watchpoint: This type of watchpoint is set by using watch com-

mand. It sets a watchpoint for an expression expr. GDB breaks the execution

when the value of the associated expression changes.

2. bp_read_watchpoint: This type of breakpoint is set by using rwatch com-



CHAPTER 5. IMPLEMENTATIONOF DEBUGMECHANISMS IN SIMULATOR48

mand. If this type of watchpoint is set, GDB breaks the execution when the

value of variables is read by the program.

3. bp_access_watchpoint: This type of breakpoint is set by using awatch com-

mand. If this type of watchpoint is set, GDB breaks the execution when the

value of the associated variable is either read from or written into by the pro-

gram.

5.2.2 Debug information about watchpoint mechanism

Watchpoints monitors an expression for the data access. This requires the knowledge

of memory locations of the variables which constitute the expression. A watchpoint

can also be set on an array, and as the elements of an array can also be accessed

individually, the size of the memory region to be watched is also needed by the GDB.

This information is generated by the compiler in the debug section.

5.2.3 Implementation

During initialization of the target architecture of GDB, a �ag is set suggesting

whether the target can support a hardware watchpoint or not. If hardware watch-

points are not supported the GDB uses software watchpoints. In our implementation

we set the hardware watchpoint �ag and support the hardware watchpoint function-

ality through simulator.

Target side of the GDB provides the routines to insert watchpoints and to re-

move them. A routine to acknowledge whether the current break in the execution

is due to a watchpoint or not, is also implemented by FSim simulator. In a usual

scenario, target hardware such as the x86 processor have support for hardware watch-

point, and generate an exception on the occurrence of a watchpoint to return the

control to GDB. However in case of a simulator, we have to monitor every mem-

ory access and compare the requested memory address with the memory region

speci�ed by the watchpoints. If the memory address passed to the write_memory

routine is within the range speci�ed by the watchpoint and if the watchpoint is ei-
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ther bp_hardware_watchpoint or bp_access_watchpoint type then the execution is

stopped for the watchpoint and control is passed back to the GDB. Similarly for

the read_memory routine if the memory address is within the range of the watch-

point addresses then the control is passed to the GDB if watchpoint is of either of

bp_read_watchpoint or bp_access_watchpoint type. The FSim simulator keeps the

watchpoints in a linked list. Hence as opposed to the watchpoints provided by the

hardware targets, the number of watchpoints in FSim is not limited.

5.3 Single stepping and program trace mechanism

Step, stepi, next and nexti are the commands used for single stepping. Step and next

commands execute single line of source code and stop the execution at next line of

source code. The stepi and nexti commands execute a single machine instruction.

In case of a subroutine call, the step and stepi commands stop the execution at the

�rst line or at the �rst instruction in the subroutine. However, the next and nexti

commands break the execution after the subroutine call is completed.

5.3.1 Debug information for single stepping

Single stepping mechanism requires certain debug information about the program

being traced. The debug information required by each of these commands is discussed

below.

The step command need to use the debug information to check whether the

execution of source line is completed or not.

The nexti command need to use debug information to check whether the last

executed instruction made a call to a function or not.

The next command need to use debug information for both purposes, to check

whether the execution of source line is completed or not; and to check whether the

last executed instruction made a call to a function or not.

In order to control line level execution, GDB needs to know the line number in-

formation of every source line. This information is generated by the compiler. A line
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of source code is converted to several machine instructions. The debug information

about a source line includes the line number in the source �le, starting address of

the �rst instruction of the block of machine instructions to which the source line is

mapped, and the starting address of the �rst instruction of the block of instructions

to which the next source line is mapped.

In order to identify whether a particular instruction lies within a function or not,

GDB needs the information about the boundary of the function. The boundary of

a function starts at the starting address of �rst instruction of the function and ends

after the last byte of the last instruction. For every function in the program the

boundary information is provided by the debug format.

5.3.2 Implementation

Each of these commands controls the execution of the program until a certain condi-

tion occurs. The simplest way of controlling the execution of the simulated program

would be to simulate the execution of one instruction in the simulator and then to

pass the control back to the simulator engine of the GDB. The GDB would then

check for the occurrence of the condition speci�ed by the command. If it occurs,

the control would be passed to the user and GDB would go into interactive mode to

accept commands from the user. However, if the condition does not occur then the

control would be passed to the simulator to execute next machine instruction. This

process of execution control would continue until the occurrence of the condition

speci�ed by the command. This approach would work but is ine�cient due to the

large overhead of control switch between GDB and simulator. Therefore, we execute

a chunk of machine instructions before transferring control from simulator to GDB.

This is achieved by providing certain information about the debugging command to

the simulator which is used to check for the occurrence of the conditions associated

with the command on the simulator side itself, reducing the control switch.



CHAPTER 5. IMPLEMENTATIONOF DEBUGMECHANISMS IN SIMULATOR51

5.3.2.1 Driver function of simulator

The machine instructions of the program are executed by the driver function of the

simulator, i.e. run_simulator. This function has a loop in which the execution of

instructions is simulated. One machine instruction is executed in each iteration of

this loop. The information about the current GDB command is passed through two

parameters to this function, namely command and stop_address.

- - - - - N SI LLC

LLC - Line Level Control Flag

SI - Single Instruction Flag

N - Next Flag

Figure 5.1: The command parameter of simulator driver function

As shown in �gure 5.1 the command parameter is an 8 bit number and carries

three �ags for three di�erent types of controls. Remaining bits of the command

parameter are not used and are always set to zero. The three �ags are line level

control �ag, single instruction �ag and the next �ag. The line level control �ag is

set to 1 for the commands which control the program execution at the granularity of

lines of the source code. The single instruction �ag is set for the commands which

control the program execution at the granularity of the machine instructions. The

next �ag is used to specify to step over the function calls while single stepping.

Di�erent combinations of these three �ags are used for di�erent GDB commands as

shown in �gure 5.2.

The value of stop_address parameter is valid only if the line level control �ag of

the command parameter is set. A valid stop_address value points to the starting

address of the next source line.

N SI LLC

0 0 1

1 0 1

0 1 0

1 1 0

0 0 0

Commands

Step

Next

Stepi

Nexti

run, continue, finish

Figure 5.2: The command parameter �ags for GDB commands
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The two parameters are used to collect the information about the current debug

command and to devise the terminating conditions for the loop accordingly. If there

is no terminating condition associated with the current command, the run_simulator

function executes the instructions in an in�nite loop. We show the working of the

driver function in algorithm 1. The simulator state is maintained by a global vari-

able SIM_STATE. Its value is initialized to RUN before starting the execution of

instructions. The occurrence of a breakpoint or watchpoint might change its value

to STOP. In that case the loop terminates and the control is returned back to the

GDB. For the stepi and nexti commands a single instruction is executed and control

is returned to the GDB. In the current implementation of run_simulator the next

�ag of the command parameter is not used. It can be used in future to enhance the

implementation of the next and nexti commands on the simulator side without any

change in the GDB source code.

5.3.2.2 Implementation of commands

The execution control commands are implemented in remote-sim interface and are

described here.

• step: For the step command the LLC �ag of the command parameter is set

to 1 and the stop_address parameter is set to the address of �rst machine

instruction of the next source line. During compilation of the program, every

line of source code is translated to a block of machine instructions. For the step

command, the command handler executes the block of instructions which cor-

respond to a single line of source code. The program execution stops whenever

the program counter contains an address which is outside the block of instruc-

tions corresponding to the line to step over. This can happen due to three

di�erent reasons. First, the block of instructions gets executed and then the

program counter points to the �rst instruction corresponding to the next line of

source code. Second, the source line had a branch instruction and after its exe-

cution the program counter points to the machine instruction corresponding to
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Algorithm 1 run_simulator (stop_address, command)

1: start_line ← program counter
2: SIM_STATE ← RUN
3: if command ∩ 0x1 then
4: {step/next command handling}
5: while true do
6: Execute the current instruction
7: if SIM_STATE = STOP then

8: break
9: end if

10: if ( ( PC < stop_address ) ∩ ( PC > start_line ) ) is false then
11: {Program counter points to di�erent source line}
12: break
13: end if

14: end while

15: else if command ∩ 0x2 then
16: {stepi/nexti command handling}
17: Execute the current instruction
18: else

19: {continue/�nish command handling}
20: while true do
21: Execute the current instruction
22: if SIM_STATE = STOP then

23: break
24: end if

25: end while

26: end if
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some other line of source code. Third, the source line had a function call which

causes the program counter to point to the machine instruction corresponding

to a di�erent function. By comparing the program counter with start_line and

stop_address after the execution of each instruction, we identify the change in

line and handle that accordingly.

• next : Handling of the next command is same as that of the step command

except for the source line having a function call. As there is no mechanism

available to identify the call instruction on the simulator side, in the current

implementation the next �ag is ignored. When the simulator executes a call

instruction the program counter crosses the boundary of the current source line,

and the control is passed back to the command handler. GDB then analyzes

the reason of break in the execution and if it is a function call, the control is

passed back to the simulator to continue the execution. In this way the program

execution is then continued until the function call is completed. However, if

the reason in execution break is not a function call then the control is passed

back to the user.

• stepi : For the stepi command the SI �ag of the command parameter is set and

LLC �ag is not set. The run_simulator algorithm then causes the execution

of single machine instruction and returns the control back to GDB.

• nexti : The nexti command is handled by the simulator in the same way as

the stepi. As there is no mechanism available to identify the call instruction

in the simulator, the next �ag is ignored. The control is passed back to the

GDB after execution of every single machine instruction as in the case of the

stepi command. In our implementation command handler on the GDB side

indenti�es the function call and passes the control again to the simulator in

that case.

• continue: For this command the value of the command parameter is passed as

0, to indicate that the execution must be broken only upon the breakpoints.
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• �nish: Command handler of the �nish command inserts a temporary break-

point of type bp_�nish at the return address of the function and then passes

control to the simulator. On the simulator side, the handling of this command

is same as that of the continue command. The value of the command pa-

rameter is passed as 0, indicating that the simulator should not stop until it

encounters a breakpoint or a watchpoint.

Command handler of the next command reduces the time spent on checking whether

the execution of a source line is completed by using a step_resume breakpoint.

It inserts a step_resume breakpoint at stop_address before passing control to the

target. The GDB checks for the occurrence of this breakpoint and implements the

behavior of the next command.

5.3.2.3 E�cient implementation of next and nexti

The current implementations of next and step commands on the simulator side are

identical. These commands are distinguished by the GDB by identifying the function

calls and passing the control back if necessary. Similarly the implementations of nexti

and stepi commands on the simulator side are also identical. The simulator does not

distinguish a call instruction from the other instructions. When this capability can

be built in the simulator, the next and nexti commands can be handled by the

simulator itself.

5.4 Call stack analysis mechanism

During runtime, a program maintains a call stack in memory. The call stack stores

the parameters, local variables and the return addresses for the active subroutines.

The commands to show the execution trace or the function call trace use this call

stack information. GDB also maintains a pointer to one of the frames on the call

stack. This is used to show/modify variables related to that frame. Usually this

pointer refers to the outermost frame. However for convenience it can be changed.

This change has no e�ect on the execution behavior since it has no relation to the
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machine frame pointer register. GDB provides commands to modify this pointer, i.e.,

to select one of the frames on the call stack as default frame related to the display

of variables.

The commands that use call stack include frame, backtrace, up and down. The

frame pointer maintained by the GDB is modi�ed by frame, up and down commands.

The backtrace command is used to show information from all active frames.

5.4.1 Debug information related to call stack analysis

Debug information required for these commands is target architecture dependent.

This includes the return address register number and the call stack unwinding mech-

anisms. The stack and program counter unwinding routines which are registered

during the initialization of target architecture are used by command handlers of

these commands. Each frame on the call stack represents execution of a function.

Thus when GDB is asked to display the frame information, it also displays the infor-

mation about that function. Hence debug information required to display a frame

includes the name of the function, name of the source �le, line number at which the

execution is stopped or the line number at which subroutine of the next frame is

invoked.

GDB can select one of the frames from the call stack as default frame for display of

variables. For this operation GDB needs the saved register values. The information

about the frame is obtained from the call stack by using unwinding routines of the

GDB. The stack pointer together with the program counter serves as the frame id. A

call frame also stores the value of the frame pointer referring to the previous frame.

The o�set of location where the previous frame pointer is stored within a frame and

the size of current stack frame are given by the debug information. This information

is essential as previous frame can only be recovered from the current frame pointer.

Similarly the next frame pointer can be obtained by adding the size of the current

stack frame to the current frame pointer. The o�set of memory location where the

return address is stored is constant from the frame pointer and is also given by the
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debug information.

5.4.2 Representation of call stack in GDB

GDB uses a structure frame_info to store the information about a frame on the

call stack. A linked list is created to store the call stack information of the target

machine in GDB, where each node of the list is of type frame_info and corresponds

to a single frame on the call stack. Head of the list stores information about the

current frame whereas the last node contains the information about the innermost

frame. The frame_info is used to store the frame pointer, the stack pointer, the

return address, the register values and the stack frame number of the stack frame

in the call stack. The command handlers only have the current frame information

which is used along with the debug information to extract the complete call stack of

the program from the target machine.

5.4.3 Implementation

GDB accesses all registers as if they form a single register bank. A register is accessed

by its index in the register bank. The order of the registers within the register bank

is dictated by the compiler. The order of declaration of the registers within the

processor speci�cation is exactly the same as used by the compiler of that processor.

The program counter and stack pointer registers are frequently used by the command

handlers of all the commands. The indices of these registers are not speci�ed in

the debug information. This information is provided by the Sim-nML speci�cation.

During initialization of the target architecture of GDB from Sim-nML speci�cation,

these indices are calculated and registered with GDB.

GDB generates the linked list which represents the stack frames of call stack from

the current values of stack pointer, frame pointer and program counter registers.

Information about the current routine is used to access the previous stack frame.

The unwinding routines extract the previous frame information from the current

frame. The return address is used to identify the previous function and to associate
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static information about the frame such as the name of the function and source �le.

After frame unwinding, the extracted information about the previous frame is used

to add a new frame to the list of frames in GDB. The process of frame unwinding is

carried out until we reach the function main.

After the generation of linked list, remaining functionality of these commands

is platform independent. Selecting a frame just need to set the values of simulator

registers to that of the selected stack frame. As local variables are accessed by using

the frame pointer, one can access the local variables of only currently selected stack

frame.

5.5 Program state control mechanism

Program state is maintained by the data stored by the program in the memory.

The program uses variables to access the data. Accessing a variable is basically to

access the chunk of memory which stores the value of variable. To access a variable,

GDB generates the call to load or store routines and passes them the address of the

variable along with the size. Controlling the program state includes presenting the

memory contents and altering them by the user de�ned values. Routines to access the

memory of the target machine from GDB are registered during the initialization of the

target architecture. In our case, FSim simulates the target memory for the simulated

program and acts as target machine for GDB. Hence during the initialization of the

target, the routines to access memory from simulator are registered to GDB.

The GDB is con�gured for target endianity at runtime. Hence the value returned

from the simulator shall be in the target endianity. If there is endianity mismatch

between host and target it is taken care by display routines of GDB. This point

becomes important in case of arrays, because if the GDB is asked to print the value

of array, it generates a combined read request for the complete array. For example,

the array is of size ten and each variable has size of four bytes then the memory

request will comprise of starting address of array and 40 bytes. Assuming that

target and host endianity does not match, if the endianity mismatch would have
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been handled by the simulator, the simulator would reverse the 40 bytes and then

pass it to the GDB. But the correct solution here is to reverse each four bytes of

all ten elements of the array. Due to updating of target architecture from Sim-nML

description, we can use this functionality of GDB.

The commands to display the memory contents take the address and the size

as parameters and pass it to the memory handler routines. Instead of accessing

routines for hardware target, GDB uses memory access routines provided by the

GDB simulator interface.

GDB can be used to set conditional breakpoint where conditions are de�ned by

using variables. These variables are evaluated every time GDB hits the particular

breakpoint and the access to the variables is made in the same way as described

above.

5.6 CPU state control mechanism

FSim is a retargetable simulator. For FSim, the information about registers such as

the names and the sizes of registers change with every processor description. Hence,

the information about the registers of the target architecture of the GDB also changes

and it should be updated from the simulator, at runtime. The commands to access

the register include info reg and p $regname. The info reg command displays names

and values of all the registers of the target machine. A command to display the value

stored in the register accepts register name as an argument. This name is compared

with the list of register names made available by the Sim-nML speci�cation for the

processor. If the name is matched with any of the members of the list, the index of

that member is used as the register number in the register bank and is passed as an

argument to the subroutine which retrieves the value stored in the register.

The fsim interface provides the functions which return the list of register names

and the value of register for the given register number. These functions are generated

from the Sim-nML description at runtime and form a shared library which is then

used by GDB to access the registers. These routines include load and store operations
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on registers, to get the value of the current PC, those for to get the register names,

to get the register type and to display the values of all registers.

Other commands which use the same underlying functionality did not require

any further enhancement. These commands include display, until, �nish and info

frame.

The disassembly of Sim-nML target was implemented successfully in an earlier

thesis by Nitin Kumar Dahra. In our work we merged it with our implementation.

Other GDB commands such as list which lists the source �le are target architecture

independent and no enhancement was required to tune them for the retargetable

simulator.



Chapter 6

Results and Conclusions

In our work we have interfaced FSim with GDB so that the debugging facility of

GDB could be used to debug the programs simulated by FSim. In this chapter we

discuss the results and conclusion of this work. We have carried out our experiments

on various types of applications compiled for two di�erent target architectures. Aim

of these experiments was to validate the use of GDB for the retargetable simulator

FSim. The experiments included using various commands of GDB (which is built

for retargetable simulator FSim) to debug the programs compiled for di�erent target

architectures and simulated by FSim.

6.1 Experimental setup

We tested the GDB and FSim integration to debug the programs compiled for two

di�erent architectures, namely, PowerPC603 and MIPS32. Sim-nML processor de-

scriptions of MIPS and PowerPC contain all the instructions except those related

to caches and processor pipelines. The instructions related to coprocessor-1 of both

machines, i.e., �oating point instructions are also implemented.

6.1.1 Machine settings

We have used two di�erent con�gurations to test GDB. The con�gurations of these

machines are as follows.

61
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• Machine1: Intel Pentium-4 2.4 GHz a little endian 32-bit processor with 256

MB RAM running Linux-2.6.22

• Machine2: Intel Dual Core 2.13 GHz a little endian 64-bit processor with and

256 MB RAM running Linux-2.6.18

• Cross compiler for PowerPC603: gcc version 4.2.2, binutils version 2.18, glibc

version 2.7

• Cross compiler for MIPS32: gcc version 4.1.2, binutils version 2.18, glibc version

2.6.1

• GDB version 6.3

As both cross compilers were using NPTL (native pthread library) [41], we changed

the startup code provided by GNU C library (glibc) [25] to skip the pthread handling

routines. We implemented few programs which perform diverse functionalities and

use di�erent programming constructs to cover a large set of instructions for these

processors. These programs were then compiled for PowerPC, MIPS and the host

machine. For each program, the cross compiled binary executables were debugged

by the GDB for retargetable simulator, using GDB commands applicable for the

program. Same set of GDB commands were then used to debug the binary executable

of the native machine. The outputs of these three debug sessions were then compared

for correctness.

Firstly, basic programs for checking all arithmetic and bitwise operations were

implemented. These programs were then debugged successfully using GDB. Few

programs for solving some basic mathematical problems were implemented. These

include programs to calculate matrix multiplication, to �nd palindrome numbers

and perfect numbers, program for �nding proper factors of a number, for computing

Fibonacci series, to �nd prime numbers and to rotate an array.

Various algorithms for sorting, searching and some basic algorithmic problems

were implemented and tested. The algorithms include bubble sort, heap sort, merge
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sort, selection sort, quick sort, linear and binary search, tower of Hanoi, and n-queens

problem.

As part of the testing, few functions from glibc library were debugged. These

functions have much larger size and take help of verious system calls for their imple-

mentation. The debugged programs were using functions such as printf, scanf and

the functions performing �le operations such as fopen, fwrite, fread, fprintf etc. For

�le operations, we wrote a program for operations on linked list of structures which

would be stored in a �le and retrieved again.

The coprocessor functionality was tested successfully using the programs for basic

�oating point arithmetic operations including those to multiply two matrices, to

round of a real number and to calculate sine of an angle.

All these programs were debugged using GDB by creating the simulator instance

for each of them for both PowerPC and MIPS machines. The GDB commands

were used to perform operations on the call stack, access values of the variables and

registers, display disassembly of the program and use breakpoint mechanism.

6.2 Results

The programs were compiled using GCC cross compilers for the PowerPC and MIPS

machines. Our enhanced GDB for FSim was used to debug these programs. In this

section we show results of debugging a small C program for both these processors

using our GDB. We use various GDB commands to debug the program and compare

the output of GDB for both architectures.

When we want to debug programs on a simulator using GDB, we need to give two

commands before starting the debugging. These commands are remote sim and load.

For an usual simulator the remote sim command is used to connect GDB to simulator

and the load command is used to load the target program in the simulator. In our

implementation we use GDB for retargetable simulator FSim. In our implementation

the remote sim command performs stage-I of fsimg (described in section 2.2.1). The

implementation of load command is used to create the simulator instance in the
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Figure 6.1: Sample C source code

form of a shared library. It performs stage-II (described in section 2.2.2) and stage-

III (described in section 2.2.3) of simulator generation process. So after these two

commands are executed, GDB is ready to process the commands related to the

program execution.

The program used is in the �le test.c as shown in �gure 6.1. It initializes a local

variable temp with value 365 and prints it on the stdout.
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Figure 6.2: Example of disassemble command execution

The output of the disassemble command for the binaries for MIPS and PowerPC

architectures is shown in the �gure 6.2 for the function main of test.c. As it can

be observed, the two architectures have the di�erent disassembly due to di�erent

instruction sets. For example, in case of the MIPS machine the call to printf is made

by the instruction at address 0x400430 and the instruction used is jalr (jump and

link register). For the PowerPC machine the instruction is bl (branch and link) and

its address is 0x10000324.

The breakpoint command is used to create a breakpoint. We have set the break-

points at function main. As shown in �gure 6.3 starting addresses of function main
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for both architectures are di�erent and this can be observed from the breakpoint

addresses returned by breakpoint handler. We use run command to start the exe-

cution. The program execution was broken at the �rst breakpoint, i.e. at function

main.

Figure 6.3: Example of setting a breakpoint on a function

The breakpoint command can also be used with the line number and source �le

name as parameters. In the output shown in �gure 6.4 we specify only the line

number to set a breakpoint. As the current frame is from the �le test.c, breakpoint

is set on the speci�ed line number of the same �le.

Figure 6.4: Example of setting a breakpoint on a line in the source �le

In the output shown in �gure 6.5 we use GDB commands to display the addresses

of the variable temp and value stored at those addresses. The endianity of the target

can be observed from the displayed memory content. Both target processors use big

endianity for memory.
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Figure 6.5: Example of accessing a variable

In the output shown in �gure 6.6 we show the execution of watchpoint com-

mand. In this program none of the variables have their values reassigned, hence we

used rwatch command to break the execution of the program on reading the value

of variable temp. The execution is broken after the completion of the read opera-

tion. Hence, the program counter points to the instruction next to the one which

has caused memory read operation at the watchpoint address. From the disassem-

bly of the programs we can observe that for the MIPS machine the instruction at

0x00400424 and for the PowerPC machine the instruction at 0x1000031c are load

instructions. Both these instructions read the value of the variable temp and caused

read watchpoint to break the execution at the addresses 0x00400428 and 0x10000320

respectively.

Figure 6.6: Example of setting a watchpoint

In the output shown in �gure 6.7 we show the execution of commands step and

next for the PowerPC architecture. As shown in the �gure, GDB steps over the func-
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tion to execute the next command, whereas for the step command it stops execution

at the �rst line of the callee function. The callee function here is printf and the

caller function is main.

Figure 6.7: Example of step and next command execution

In the output shown in �gure 6.8 we show the execution of commands stepi

and nexti for the PowerPC architecture. Instruction at address 0x10000324 is a

call instruction with pneumonic bl (branch and link) which can be found from the

disassembly of the function main. As shown in the �gure, GDB steps over the

function for the execution of nexti command, whereas for the stepi command it

stops execution at �rst instruction of the callee function. Again, the callee function

here is printf and the caller function is main. The similar behavior were seen for the

MIPS binary programs as well.
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Figure 6.8: Example of stepi and nexti command execution

In the output shown in �gure 6.9 we show the result of backtrace command of

GDB for two di�erent architectures. The value of variable temp can not be printed

from call frame of printf. So we select the frame corresponding to the function main

and display the value.

Figure 6.9: Example of execution of backtrace command
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6.3 Conclusions and future work

In this thesis we developed a debugger support for the retargetable simulator FSim.

The GDB can be used to debug the programs written and compiled for multiple

simulator targets. We have used the existing simulator interface of GDB to connect to

the FSim simulator. The newly designed interface to update the target architecture

of GDB from the target architecture of a simulator is used successfully with the FSim

simulator. In our approach we update the target de�nition of GDB from processor

speci�cations in Sim-nML language. We have successfully implemented the target

architecture functionality of GDB in the FSim simulator.

We have tested GDB and FSim for two architecture descriptions, MIPS and

PowerPC. The functional simulator generator (FSimg) along with GDB can be used

to speedup the development of processor descriptions and of their simulators. This

debugger can be used to study and to help mapping of operating system calls made

by the target architecture to the host architecture in the simulator.

The fsim interface designed and developed as part of this thesis is used to update

the target architecture de�nition of the GDB from the Sim-nML speci�cation and is

used to debug the retargetable simulator FSim. In future, this interface can be used

by GDB along with other simulator interfaces to provide debugging support to other

retargetable simulators.
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