
Public Key Infrastructure in SCOSTA

CS499 - Project Report

by

Venkata Rao Pedapati and Sri Simil Dutta
Y3395, Y3350

under the guidance of

Prof. Rajat Moona

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

May 2007





Abstract

Public Key Infrastructure(PKI) systems have gained popularity over the last
few years because of their scalability, security and ease of maintainence. They are
slowly turning into a necessity from being a luxury particularly in smart card in-
dustry. Smart cards �t seamlessly into Public Key Infrastructures. They are very
natural key storage units. Today's extensive use of smart cards in variety of applica-
tions in conjuntion with the advent of advanced cryptographic smart cards that can
do complex cryptographic calculations on board demand robust operating systems
with PKIs built into them. Although some operating systems with these features
exist, few implement open standards. In addition, many PKIs designed by other
parties, very often outside India, do not address the native problems in appropriate
ways. Since we understand the kind of applications that are going to be deployed in
India and limitations of existing resources better, we felt the need of an e�cient PKI
system developed in-house. In this report, we present the design and implementa-
tion details of PKI in SCOSTA - a Smart Card Operating system that is already
widely used by some Government agencies in India. We look at what di�erent com-
ponents or modules should constitute a PKI architecture and how we approached
and implemented each of them. We shall also present details about how we tested
our system to make it robust enough.

i



1 Introduction
Smart cards are intelligent cards equipped with a micro-controller. They are typically
used to host security sensitive applications like Monetary applications and Identi�cation
systems where more conventional approaches using PCs are highly vulnerable to attacks.
Smart cards need to be di�erentiated with Memory cards, which do not contain any
micro-controller but only some internal memory which can be read or written to with
substantial ease. In contrast, the data stored in the smart cards is under the control of
the processor, and cannot be read or written to directly by an external entity. Todays
smart cards typically contain an 8-bit microcontroller, a few kilobytes of RAM, few tens
of kilobytes of ROM, and variable amounts of EEPROM to store temporary data, code
and permanent data respectively. An anology can be drawn with conventional computing
systems which also contain a processor, memory, and a hard disk to hold the �le system.

Despite the feeble power of microcontrollers and very less memory when compared to
regular PCs, there are several reasons why even smart cards need operating systems. To
accomodate the growing markets, and ever growing list of potential applications, appli-
cation development on smart cards needed to be made much faster. Hence, application
developers needed to be exempted from details about hardware architecture, �le system
etc. Another reason is that security features are much easier to realise when a well de�ned
OS is present at the foundations.

SCOSTA (Acronymn for Smart Card Operating System for Transport Applications) is
one such operating system. When it was created in June 2001, it was intended to be used
in Transport applications for identity and security. However, slowly it is evolving as a gen-
eral purpose smart card operating system. The primary objectives of SCOSTA project are
Standardization of Information, Inter-operability, Multi vendor support/Non-Proprietary
and Security and integrity of data. The initial versions of SCOSTA partially realized
these goals. We shall stress more on security features of SCOSTA from now. Starting
from it's inital design, SCOSTA supported security operations involving symmetric key
cryptography. In particular, it supported encryption and decryption of data, authen-
tication procedures and even cryptographic checksum calculation and veri�cation using
DES algorithm in CBC mode. However, there was no architecture for using SCOSTA in
conjunction with PKI. As the complexity and scope of applications increased, the secu-
rity features provided by SCOSTA are no longer su�cient. So, for SCOSTA to become
a usable operating system in large applications, an e�cient implementation of PKI has
become necessary.

The remaining part of this report is organized as follows: We give a precise problem
statement in chapter 2, we shall list the goals to be achieved in order to bring up a

1



working PKI system. Then in chapter 3, we shall give further motivation for our work
with some examples. In chapter 4, we shall give some background information a reader
needs to be aware of, to understand the rest of the report. Chapter 5 describes a high
level design of our system. We shall show the important components contained in the
system and how they are connected. Chapter 6 gives details about the implementation of
each of the components mentioned in Chapter 5. It also speaks about some challenges we
encountered during implementation and how we solved them. Chapter 7 describes how
we tested our system. Chapter 8 summarises our results and �nally Chapter 9 points out
some defects and areas of improvement after which we conclude the report.

2 Problem statement
Our goal for this project was to design and implement Public Key Infrastructure in
SCOSTA. The goals of any public key infrastructure are best described by the func-
tionalities or interface it provides to the users:

• A subsystem to store and retrieve keys and certi�cates easily.

• Encryption and Decryption of data using public keys and private keys respectively.

• External and Internal authentication procedures using asymmetric keys.

• Computation and Veri�cation of digital signatures.

• Storage and veri�cation of digital certi�cates.

Other than these, there are other non-functional goals like

• The system should be compliant to relevant international standards in order to be
interoperable with di�erent application vendors (ISO/IEC 7816-4[1], 8[2], 9[3] and
15[4], PKCS#1 v2.1[5]).

• The system should utilize native architecture speci�c facilities such as cyrpto copro-
cessors on some microcontrollers to produce fast executing code. In other words,
the decrease in the response time of the system after incorporating new procedures,
should be negligible.

• The implementation should be modular and layered in structure so that it can be
easily extended later.

• The implementation should be backward compatible. That is, all the older proce-
dures using symmetric keys shall be still working.

2



3 Motivation
SCOSTA is being used in DL(Driving license) and RC(Vehicle Registration Certi�cates)
applications successfully. A surprisingly simple implementation added to the strong secu-
rity features including encryption and decryption using 192-bit Triple DES enabled fast
development of applications over it. Recently, an identi�cation system was successfully
developed and deployed at IIT Kanpur, based on SCOSTA OS. It further boosted build-
ing of applications that are going to change the way many administrative processes are
performed at IIT Kanpur.

On a small scale like IIT Kanpur, this architecture seems �ne. However, when escalated
to national or international level, SCOSTA with symmetric key cryptography has some
serious limitations. In near future, plans are on for using SCOSTA in applications like e-
Passport and National ID. As more applications based on smart cards emerge, the security
and ease of maintainence provided by a symmetric key system are no longer su�cient. At
that level, where thousands or even millions of cards are distributed to individual users
and multiple applications must be accomodated on a single card, it is necessary to have
a stronger security system. Since applications typically deal with money transactions,
security of user information is of utmost concern there. Since an architecture to support
PKI systems already exists in India, implementation of PKI built in to it would make
SCOSTA suitable for these kind of applications.

In most typical applications, there exist few authorities while number of users is usually
much higher. Only these authorities should be able to modify certain parts of data stored
in user's cards and no others. The obvious way to deal with this situation is to share
a common secret key between the authorities and all the users' cards. But, since the
whole security of the system depends on that single key, replicating it in thousands of
cards clearly compromises the whole system. This problem is often dealt with by deriving
user speci�c keys from a master key using some information which is speci�c to that
user like password or chip serial number. Although this increases reliability a bit, it still
does not compete against superior key management systems provided by asymmetric key
cryptographic systems. Some requirements like Data integrity and Non-repudiation are
impossible to achieve in symmetric key systems. The key management is one of the major
problems in this architecture. Even using the derived keys, the security of individual users
cannot be guaranteed.

Public key cryptographic (PKC) systems are much better in this respect, because of
the fact that no separate key management is needed. With the availability of sophisticated
certi�cate management systems already in place, which make key management seamless,
adopting smart card operating systems towards PKI systems seems a necessary choice to

3



make.
The recent upsurge in production of microprocessors having extra capabilities to sup-

port costly calculations in public key systems further encourages us toward this goal.
Highly secure chips with special coprocessors that run in parallel to the main processor to
support mathematical operations of huge operands, makes more secure SCOSTA without
compromising speed and e�ciency, not just an idea for the far future anymore but a real
life possibility. Modern processors can execute RSA (most popular among public key
systems) algorithm in less than a second (when implemented using Chinese Remainder
Theorem)[7].

There are very few smart card operating systems, that implement open international
standards to support PKI, at least in India. PKI thus makes SCOSTA available to larger
user base.

4 Background
In this chapter, we shall look at some basics of SCOSTA internals and existing security
architecture. These concepts shall be used in further chapters without any further ex-
planation. Readers who are already familiar with SCOSTA �le system design and it's
security architecture may skip this chapter.

4.1 SCOSTA �le system and Security
The �gure 1 illustrates the arrangement of �les and directories in SCOSTA. It is very
similar to unix �le structure. There is a Master File(MF) at the top of the directory tree.
There can be any number of Dedicated �les (DF) and Elementary �les (EF). Similarly,
each DF can contain any number of DFs or EFs under itself. As identi�ed in the �gure,
EF1, EF2 and EF3 are three special elementary �les under MF (�les with Short Identi�ers
1, 2 and 3). They are called internal �les and they are used by scosta for implementation
of security features and storage of keys. EF1 stores passwords, EF2 stores keys and EF3
stores security environments. The contents of these three �les controls the operations that
can be done on other �les under MF. This is called Global Security Environment. Likewise,
each DF may contain it's own DEF1, DEF2 and DEF3 serving similar purposes. If such
�les are present and contain valid information, then the security environment de�ned by
them shall override the security environment de�ned by the corresponding �les under MF.
EF4 in this example contains user data and it's contents are not interpreted by SCOSTA.
Hence it is also called an external �le.

While deploying applications on to smart cards, usually all the data belonging to an

4



Figure 1: SCOSTA directory structure

application is put under a single DF. Then a security architecture customised for that
application can be de�ned by the application provider and SCOSTA controls access to all
the resources in that application as speci�ed by the three internal �les present in it's DF.

Cryptographic keys are present in EF2 in a DF as a set of records. The exact structure
of each record and the metadata related to key is speci�ed in SCOSTA Speci�cations
1.2b[11]. In essence, each key has a unique identi�er. A command such as External
Authentication shall specify the key identi�er as a command parameter.

5



5 Design and Approach
The problem as a whole can be broadly divided into two components:

• A system of storing and retrieving keys when referred to, inside smart card. We call
this component, Key Storage Subsystem.

• A collection of routines that implement the required encryption/decryption/sign
procedures. We call this PKC subsystem.

5.1 Key Storage subsystem
In this subsection, we shall look at the �rst of the above two components - the Key Storage
Subsystem.

Various keys need to be stored inside the smart card for it to be able to perform
the operations it is supposed to. For instance, the card needs to have the private and
public keys of the user holding the card. In addition, it may also contain public keys
of several other users. These keys should be stored inside the card in appropriate place
so that they can be retrieved easily when required. The commands refer to keys using
their identi�ers. Each key inside the card of a speci�c type(public or private) shall have
a unique identi�er. The earlier method of storing keys in special internal �les has some
limitations in this regard. The Key stores cannot be easily shared between applications.
It also limits the total number of keys present. The International standard ISO/IEC
7816-15[4] or PKCS#15[6] describes a nice way to do this. Figure 2 shows an example. In
this �gure, under MF, there is a record EF called EF.DIR which contains list of mappings
between an application (referring to a DF holding that application) and it's corresponding
DF.CIA (CIA - Cryptographic Information Application). As mentioned earlier, di�erent
applications are usually present in di�erent DFs under MF and each such DF shall have
a DF name which acts like Application Identi�er(AID). So, each record in EF.DIR links
an AID with a DF.CIA. So, there can be multiple DF.CIAs in the same card. So di�erent
applications can use their own key stores. Also, using the same mechanism, two or more
applications can share a key storage subsystem simply by mapping to same DF.CIA.

The DF.CIA contains a EF.CIAInfo - General Information �le, and a EF.OD (Object
Directory). The EF.OD contains links to EFs which then contain the actual keys them-
selves. The ASN.1 speci�cations of format and structure of this metadata about the keys
are given in the standard ISO/IEC 7816-15[4]. So, while searching for a particular key,
we have to parse these ASN.1 objects and extract out the required data. Before actually
using the key, we have to cross check the intended operation against the attributes of the

6



Figure 2: Key Storage subsystem

key. Some keys are allowed to be used only for speci�c purposes. For instance, a private
key may not be used for encrypting data using ENCIPHER command. Similarly, a pub-
lic key may not be used to compute a signature. Likewise, a key intended for External
Authentication may not be used for Encrytion since it may lead to a re�ection attack.

Given an identi�er, to discover the location of the key, we use the following steps:

1. Get the Application Identi�er (DF Name) of the current DF. If the current DF has
no AID, get the AID of the parent of the current DF. Go upwards in the tree like
this until we get a DF which has an AID or we reach MF. If MF also does not have
AID, then use the older key stores (special internal �les EF1, 2 and 3) otherwise
proceed to step 2.

2. Once we got the AID, we parse the records in EF.DIR one by one to see if there is
a mapping from this AID to a DF.CIA.

3. At this point, we know the path to DF.CIA to be used. We go inside this DF.CIA
and search for the given key identi�er. We don't have to search all the directories.
Very often we know apriori whether we are looking for a public key or private key by

7



the operation intended. For instance, if the operation is to encrypt data or external
authentication, then we can look only in Public Key Directory.

Once the location of key is discovered and all the checks are made, then we can use
this key to perform the actual cryptographic operation.

5.2 PKC Subsystem
In this section, we shall see what are the di�erent sub-components in PKI and how do we
�t them in the existing SCOSTA architecture.

5.2.1 About P5CD036 microcontroller

Public key algorithms are computationally more intensive than algorithms that use sym-
metric keys. Given the limited computational capabilities of smart card processors, trying
to implement them completely at the software layer takes us nowhere. They simply take
too much time to complete. To facilitate the use of public key algorithms, modern day
smart cards come with inbuilt coprocessors specialised in performing complex calculations
faster. The P5CD036 microcontroller from NXP semiconductors is one such processor.
This processor is equipped with 36 Kbytes of EEPROM, 160 Kbytes of ROM, and 4608
bytes of RAM which includes 1280 bytes of special purpose FXRAM usable by FameXE
coprocessor[7]. The FameXE coprocessor can execute in parallel with the main processor
and provides several instructions for doing all the basic mathematical operations required
for public key algorithms.

5.2.2 High level design

Figure 3 describes the main sub-components of PKI in a layered structure. Layered
structure is preferred to other designs because of it's portability. The arrows indicate the
�ow of command and response as observed from the user outside. As the �gure indicates,
there are three layers into which whole PKC subsystem can be divided into -

Command Interface Layer This layer takes in user commands and inputs and calls the
appropriate routines from the Encoding/Decoding layer. This is the layer that
interacts with the key storage subsystem to fetch the key that is referred to in the
command.

Encoding/Decoding Layer This layer performs the actual encryption or decryption, sign-
ing or veri�cation of the data. It performs necessary padding before passing the

8



Figure 3: PKC subsystem - Design

padded message blocks to primitive mathematical functions at hardware abstrac-
tion layer. Also, it decodes a decrypted message to extract out the original message
and returns it as output to the applications.

Hardware Abstraction Layer This constitutes a major part of the implementation. It con-
sists of two parts - the Processor Speci�c Package(PSP) and Hardware dependant
cryptographic functions(HDCF)(like modular exponentiation). The PSP is com-
posed of functions for Input/Output using UART, functions for EEPROM access,
random number generator, functions for getting chip serial number etc. While the
HDCF consists of functions like Modular Exponentiation, Modular exponentiation
using CRT, SHA1 hashing algorithm, etc. This is where processor speci�c code is
written.

The following chapter explains in detail, the speci�cs of each of these layers and modules
present in them.

9



6 Individual Modules

6.1 Hardware Abstraction Layer
HAL can be visualized as an interface between actual hardware and middle layer. It pro-
vides a set of interfaces that the middle layer functions can call and access the underlying
hardware. The resources that are managed by HAL typically include EEPROM, I/O and
Random Number Generator. HAL is also responsible for initializing the card when it
is �rst reset. The set of functions mentioned until now, constitute a Processor Speci�c
Package(PSP) in terminology used by SCOSTA. These are the minimum functionalities
any HAL should provide. So, We need to implement a PSP for P5CD036 platform. That
is not all, however. Since we want to use FameXE coprocessor to perform calculations, we
need to implement a set of routines that help realizing these functionalities. For exam-
ple, we want to have a routine for doing Modular Exponentiation which is common step
in many public key calculations. The discussion about implementation of each of these
Hardware dependant Cryptographic functions follow.

6.1.1 Modular Exponentiation

Modular Exponentiation is a key operation in many asymmetric key algorithms including
RSA. The operation can be described by the so called Basic Equation (BEQ):

C = M e mod N (1)

N is called modulus, M the message, and e, the exponent. In case of Encryption, e is
called public exponent while in decryption it is the secret exponent. Modular Exponenti-
ation can be performed using what is called a "Straight forward method" or "Square and
Multiply algorithm". The algorithm is given below.

SquareAndMultiply (M, e, N)
initialize r = 1
From lsb(e) to msb(e)

if b == 1 then r = r ∗M mod N

M = M ∗M mod N

end
end

10



The FameXE coprocessor provides methods for basic calculations like mul-
tiplication with reduction, and squaring with reduction etc. So, we can use
these methods to implement the modular exponentiation. However, there is
a problem here. We need the following background to understand it.

Reduction method of J.J Quisquater:[9]
Reduction operation can be written as

X mod N = X −
⌊
X

N

⌋
.N (2)

where z =
⌊
X
N

⌋
is called the reduction factor. J.J. Quisquater proposed an

e�cient implementation of reduction operation. Assuming N to be very close
to nth power of 2, an estimate of reduction factor can be obtained:
z1 =

⌊
X
2n

⌋
where N < 2n.

Now this z1 can be calculated very e�ciently since division by a power of 2
is nothing but a series of bit shift operations. Performing reduction with z1

instead of z introduces an error in our calculation:

X mod N = X − z.N = X − z1.N − (z − z1).N (3)

This error (z−z1).N can be subtracted from the obtained result (X−z1.N)

to derive the desired result. But the main advantage of using quisquater
method is that typically this error elimination is only done after large number
of operations using N in a �nal one time post processing step. If N is chosen
to be su�ciently close to a power of 2, then z − z1 can be made to 1 and
hence the post processing step of eliminating this error reduces to a single
subtraction X −N [8].

The FameXE coprocessor uses this technique for e�ciency. Hence, before
giving instructions to FameXE to do multiplication or squaring, we need to
make sure that N is su�ciently close to power of 2. This is called Normal-

11



ization operation. In Quisquater's method, the reduction is given by[10]:

X mod N = X −
⌊

X

2n+64

⌋
.

2n+64

N

 .N (4)

So the normalized modulus is given by

N ′ =

2n+64

N

 .N (5)

But FameXE demands this normalized modulus in it's 2's complement form.
So, the modulus we have to give to FameXE for calculations is

N ′ = 2n+64 −N ′ = 2n+64 mod N (6)

where n is the number of bits in N.
So we need to do this normalisation to modulus N before the beginning

of square and multiply algorithm. Also giving normalized modulus intead of
original modulus forces another step at the end of modular exponentiation -
the Denormalization. This is achieved by the following two steps[8]:

R′′ = d.R′ mod N (7)

and
R =

R′′

d
(8)

where d is the denormalization factor obtained at the beginning while calcu-
lating N ′ and is given by

d =
2n+64

N
(9)

Now the square and multiply algorithm itself is performed by using mem-
ory in FXRAM. The following subsection explains the memory layout we
used:

12



6.1.2 Memory Layout of FXRAM for Modular Exponentiation

P5CD036 has 1280 bytes of dedicated memory space for FameXE calcula-
tions. We divide this space into 4 chunks each of size 320 bytes and use them
repeatedly to save both time and memory from general purpose RAM. The
following table illustrates the usage of chunks in FXRAM.

Chunk 4
Temporary space for calculations

Chunk 3
Intermediate result

Chunk 2
Message
Chunk 1

Normalized modulus

We place the intermediate result r in each iteration in chunk 3. The �nal
result will also be in chunk 3 after all the iterations are complete. Since
neither the multiplication and squaring cannot occur in-place, temporary
space is needed to store the result of both the operations temporarily before
shifting it to it's original place.

6.1.3 Modular Exponentiation using Chinese Remainder Theorem (CRT)

Modular Exponentiation can also be done using chinese remainder theorem
if the key (private key) is provided in the required format. In fact, PKCS#1-
v2.1[5] requires it to be done using CRT if the key is provided in this for-
mat. So, we implemented Modular exponentiation using CRT as well. The
memory layout for this operation is similar to that of square and multiply
algorithm. Hence we skip the details here. Please refer to PKCS#1-v2.1[5]
for the algorithm that uses chinese remainder theorem to calculate modular
exponentiation.

13



6.1.4 Hashing algorithm

Any standard PKI should have at least one hashing algorithm implemented
in it's arsenal. We use hashing as part of Computation of digital signature
and also as part of encoding in PKCS#1-v2.1[5] encryption and decryption.
Hence we implemented SHA1 algorithm. It take arbitrarily large amount of
data and gives out �xed length output (160 bit).

6.1.5 Processor Dependant Cryptographic functions for linux

From the beginning of the scosta project, there has been a HAL implementa-
tion for linux. That is, a virtual card program in linux acts as smart card and
interacts with SCOSTA just as a real card does. It is called SCOSTA.Linux.
It is useful for robust testing of upper layers which are processor independent
since testing on linux is much faster and straight forward when compared to
testing on real card emulators. So, to continue this, we also implemented
the Modular exponentiation for linux. This is achieved by using GNU Mul-
tiprecision Library (GMP) (http://gmplib.org/)using which we can do mul-
tiplications of numbers of arbitrary size.

6.2 Encoding/Decoding Layer

The Encoding/Decoding Layer is independent of any speci�c hardware ar-
chitecture. It consists of a set of routines that are used by the Command
Interface (the �rst layer) and it uses the primitives we de�ned in the HAL.
The following is the list of routines implemented at this layer:

• RSAES-OAEP-Encrypt

• RSAES-OAEP-Decrypt

• RSAES-PKCS1-v15-Encrypt

• RSAES-PKCS1-v15-Decrypt

14



• RSASSA-PSS-Sign

• RSASSA-PSS-Verify

• EMSA-PSS-Encode

• EMSA-PSS-Verify

RSAES-OAEP-Encrypt and RSAES-OAEP-Decrypt call modular exponen-
tiation after properly padding the input message or removing the padding
respectively. The padding mechanism also requires a Hash function and a
Mask Generation function. A random seed is used in padding to prevent the
chance of two encryptions of the same message being same.

RSAES-PKCS1-v15-Encrypt and RSAES-PKCS1-v15-Decrypt are the older
counterparts of above mentioned routines. They also use Modular exponen-
tiation but the padding mechanism is much simpler.

RSASSS-PSS-Sign and RSASSA-PSS-Verify perform computation and ver-
i�cation of signatures. Again, at a basic level, these routines too use modular
exponentiation. The encoding and decoding mechanisms of the message be-
fore signing or verifying are implemented in EMSA-PSS-Encode and EMSA-
PSS-Verify respectively.

6.3 Command Interface layer

This is the upper most layer and is directly interacting with outside entity
(a reader). The following table lists all the commands related to PKI we
implemented, their inputs, outputs and the middle layer functions they will
be using.

15



Operation Inputs Outputs Middle layer function
ENCIPHER plain text cipher text RSAES-OAEP-Encrypt or

RSAES-PKCS1-v15-Encrypt
DECIPHER cipher text plain text RSAES-OAEP-Decrypt or

RSAES-PKCS1-v15-Decrypt
SIGN Hash value to sign signature RSASSA-PSS-Sign

VERIFY Hash value and YES or NO RSASSA-PSS-Verify
its signature

EXT-AUTH encrypted YES or NO RSAES-OAEP-Decrypt or
challenge RSAES-PKCS1-v15-Decrypt

INT-AUTH challenge Encrypted RSAES-OAEP-Encrypt or
challenge RSAES-PKCS1-v15-Encrypt

In addition to just calling the middle layer functions, these routines have a
lot of error checking to do. They have to check that input size is not beyond
acceptable bounds, they have to contact the key storage subsystem to fetch
the location of the keys required for the operation, they have to check that
the security attributes mentioned in the key are satis�ed by the operation.
That is they have to make sure that this key can be used to do this operation.

7 Testing SCOSTA

A smart card operating system can never crash - the stakes are too high. If
the system crashes while a money transaction is in progress, there can be
unexpected results. Hence SCOSTA must be robust, and bug free. To facil-
itate this, we needed to speed up testing. Conventional methods of testing
by giving individual commands is not enough because there are simply too
many things to check for. Hence we used the following two strategies for
testing:

• Test Processor independent parts by using SCOSTA.Linux

16



• Use STTool in conjuntion with Card reader interface board provided by
philips.

7.1 Testing with SCOSTA.Linux

This kind of testing is not so e�cient in the sense that it takes lot of time
to recover bugs because we have to manually type all the commands for our-
selves. But this is useful in quickly testing processor independent part of
any speci�c command in the initial stages of debugging. Implementation of
Processor speci�c implementations of complex operations like Modular expo-
nentiation is di�cult and time taking. So, once we implement the processor
independent part(PIP), we don't have to wait for PSP to get completed be-
fore testing the PIP. Writing processor speci�c code for linux is trivial.

7.2 Testing with STTool

STTool is a testing software developed especially for SCOSTA. Figure 4 il-
lustrates how STTool works:

Figure 4: STTool components

17



The input �le to STTool is a script �le containing commands written in
easily understandable language. The frontend is basically a compiler that
converts the commands written in the scrip �le into function calls with ap-
propriate arguments. So, the output of frontend is a c source �le. This
�le is then compiled and linked against the backend which contains actual
implementation of these functions - translate these function calls into array
of bytes that can be sent to the card and actually sends them to the card
through smart card library (libpcsclite in linux and winscard.lib in windows).
The tool also indicates the status of each command executed and properly
logs all the commands and their components into an output �le. It indicates
if there are any failures. A failure in the log �le means there is something
wrong with SCOSTA that needs to be corrected.

The original code for STTool was developed many years ago. But we
added many signi�cant changes. Most signi�cant of all, is the ability to
provide expected data along with the commands. For those commands, which
return some data, STTool shall now compare the actual output with the
expected output and indicates if there is a mismatch. Also, earlier there
were two di�erent versions each for windows and linux. Now, we re�ned and
modularised the code a bit in linux, and ported the same code to windows.
So now the tool is made portable.

8 Results

At the end of this project, in summary, we have the following results:

• A working implementation of Key Storage subsystem.

• A working implementation of Modular exponentiation both for linux
and P5CD036 platforms.

• A working implementation of SHA1 hashing algorithm for P5CD036.

18



• A working implementation of Middle layer - a set of routines as described
in PKCS#1-v2.1 standard[5].

• A working implementation of command interface to the following com-
mands:

� ENCIPHER

� DECIPHER

� EXTERNAL AUTHENTICATION

� INTERNAL AUTHENTICATION

� COMPUTE DIGITAL SIGNATURE

� VERIFY DIGITAL SIGNATURE

• A working implementation of improved STTool both for windows and
linux

The following may be cited as advantages of our implementation over other
existing ones:

• Completely modular and layered code. Easy maintainence.

• Custom implementations of primitives without using any external li-
braries gives extreme control over minute details like memory usage and
speed.

• Since all the development is done in the context of SCOSTA, it merges
extremely well with the existing architecture of SCOSTA and preserves
all the good attributes of SCOSTA.

• SCOSTA is about to be deployed in most challenging applications. Our
PKI implementation gives SCOSTA the power to deal with these up-
coming applications.

19



9 Future work

The following items are either incomplete or needs improvement in future
when compared with our original goals:

• The key storage subsystem is partially incompliant to ISO/IEC 7816-15
standard[4]. The algorithm identi�ers and some small details are not
standardised yet.

• We could not complete the implementation for storage and veri�cation
of digital certi�cates.

• The implementation of Modular Exponentiation on P5CD036 have been
constrained keeping less memory usage in mind and hence, takes little
more time than it should have taken. With the whole PKI, compiled
into the code, maximum RAM usage at any time is only 1/3rd of the
total available RAM. So, this trade o� can be utilized to obtain a better
balance between speed and memory usage.

10 Conclusion

We started out to implement Public Key Infrastructure in SCOSTA. Our
major source of motivation was to make SCOSTA usable for large variety
of applications that require PKIs built into OS. We divided the task into
components and sub-components and identi�ed individual modules to be
implemented. We identi�ed which primitive algorithms we need to implement
and we have taken into consideration, the constraints we have - memory and
speed limitations - in implementing those primitives. We were able to achieve
almost all of our goals. Ultimately, we have a working PKI implementation
in SCOSTA. We hope this work shall be embedded in future releases of
SCOSTA and thus shall be put to use in many thousands of smart cards.

20



References

[1] ISO/IEC 7816-4:1995(E), Information Technology � Identi�cation cards
� Integrated circuit(s) cards with contacts � Part 4: Interindustry com-
mands for interchange. First Edition. 1995-09-01.

[2] ISO/IEC 7816-8:1999(E), Identi�cation cards � Integrated circuit(s)
cards with contacts � Part 8: Security related industry commands. First
Edition. 1999-10-01.

[3] ISO/IEC 7816-9:2000(E), Identi�cation cards � Integrated circuit(s)
cards with contacts � Part 9: Additional interindustry commands and se-
curity attributes. First Edition. 2000-09-01.

[4] ISO/IEC 7816-15:2004(E), Identi�cation cards � Integrated circuit(s)
cards with contacts � Part 15: Cryptographic information applicaion.

[5] RSA Laboratories, PKCS#1 v2.1: RSA Cryptography Standard. June 14,
2002.

[6] RSA Laboratories, PKCS#15 v1.1: Cryptographic Token Information
Syntax Standard. June 6, 2000.

[7] NXP Semiconductors, P5CD036 Secure Dual Interface PKI smart card
microcontroller - Product Datasheet. Edition 3.0.

[8] NXP Semiconductors, User Manual, HSIS/UM0001 Secured Crypto Li-
brary for P8WE50XX Smart Card Controller Family. Edition 1.0.

[9] J. J. Quisquater and C. Couvreur, Fast Decipherment algorithm for RSA
public key cryptosystem. Electronics Letters. 18(21):905-907. October 1982.

[10] Jean-Francois DHEM, Design of an e�cient public key cryptography
library for RISC-based smart cards. PhD thesis. Université Catholique de
Louvain. 1998.

21



[11] Speci�cations for smart card operating system for transport applications
(SCOSTA). 2002.

22


	Report1.pdf
	Report2.pdf
	Report3.pdf

