
12th April 2007

1

A daemon for secure smart card support in the
encrypted file system Transcrypt

A report submitted in partial
fulfillment of the requirements

for the degree of
Bachelor of Technology

by

Deeptanshu Shukla

Under the guidance of

Prof. Dheeraj Sanghi
Prof. Rajat Moona

to the

Department of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

April, 2007

12th April 2007

3

Abstract

Transcrypt[1] is an encrypted file system which uses a smart card to store unique
private parameters of users. This smart card is needed for all file operations by the
user of Transcrypt. For accessing the smart card, a user space daemon is used. This
daemon should be able to provide secure access to the smart card without
compromising the level of security which Transcrypt aims to achieve. Transcrypt
adopts a kernel space only approach and does not trust even the superuser. It
prevents against both online and offline attacks. This project aims to explore the
possible methods of developing this daemon and implementing the best case
possible.

12th April 2007

5

Contents

Certificate 2

Abstract 3

Acknowledgements 4

Contents 5

1. Introduction 6

2. Problem Statement 7

3. Motivation 8

4. Related Work 9

5. The Scheme 10

6. The implementation 13

a. Messaging/Communication 14
b. User Space Daemon 16
c. Authserver 16

7. Conclusion and future work 18

8. Bibliography 19

12th April 2007

6

Introduction

Transcrypt is an encrypted file system for Linux which assumes a minimum trust
model and provides a secure solution for data storage and sharing in an enterprise
environment. It adopts a kernel-space only approach and protects against a wide threat
model which includes both online and offline attacks. It does not even trust the superuser.
It utilizes a user-space smart card daemon for key management.

Each file has an encryption key (KPFK) associated with it which is generated during
file creation. The KPFK is needed during all file accesses. There is also a file system wide
key (KFSK). Each user has a key pair which is assigned to him during issuance of his/her
smart card. The smart card carries the user’s private key (KPr) while the user’s public key
(KPu) is used to create the token KPu(KFSK(KPFK)) which is stored as part of the file’s
ACL(Access Control List) entry corresponding to the user. The user’s public key can be
obtained from a public certificate. The ACL contains the list of users which have access
to a particular file , the kind of access that they have and their tokens.

All file operations require the KPFK. To obtain the KPFK from the token from the
file’s ACL entry corresponding to the user demanding access to the file, the public
private RSA key pair is needed along with the KFSK. The private key is not present on the
system but on the smart card and thus without it no file operations can take place.

12th April 2007

7

Problem Statement

The private key parameters of users are stored on smart cards that act as their
trusted tamper-proof hardware tokens. All computations involving the subject's private
key are executed within the smart card. In order to prevent malicious users from getting
access to encrypted files a secure mode of access to the smart card by the kernel must be
devised. In other words, the KPFK blinded by KFSK must be obtained securely from the
smart card.

The user’s public certificate must be acquired to obtain his/her public key required
for token creation. At the same time it must be ensured that the certificate used to obtain
the public key of the user which tries to gain access, is genuine i.e., it must be verified by
a certificate authority.

A valid token also needs to be created and stored in the file’s ACL entry each time
a new file is created.

The problem statement can thus be summarized as the development of a scheme of
performing the following operations securely.

 Blinded FEK acquisition
 Certificate acquisition
 Certificate validation
 Token Generation

For this, a decision about which of these could be undertaken in the user space
and which of these must be undertaken by the kernel needs to be made. The scheme
should ensure that there are no reply attacks and man-in-middle attacks. Denial of service
attacks are not a major concern in Transcrypt and beyond the scope of the current study.

It is later proved that the communication between the kernel and the smart card
can be easily performed with the help of a user space smart card daemon and thus the
main concern subsequently would be to come up with a schema of smart card access
through the daemon which is secure enough for Transcrypt.

12th April 2007

8

Motivation

There are two main kinds of operations which can be performed on files viz., file
access and file creation. Interaction with the smart card needs to take place only for file
access. In addition to this, smart card interaction is also needed when the owner of an
existing file gives access to some other user. The ACL entries for a file decide whether
the user has the read/write/execute access to the file(authorization) while the FEK
verification from token entry using smart cards is an exercise to ensure that the person
trying to access a file or grant its permissions to some other user is who he/she claims to
be(authentication).

When a user tries to access a file, first a check is made to find out whether the user
has an ACL entry for the file. In case the user doesn’t have it, access is denied. If the user
has an ACL entry, he/she needs to know KPFK . This is obtained from the token
corresponding to the user in the file’s ACL entry. The token is sent to the smart card via
the user space smart card daemon for decryption using the user’s private key KPr which is
stored on the user’s smart card. The blinded file encryption key KFSK(KPFK) is returned to
the kernel via the daemon. The kernel can obtain the KPFK from KFSK(KPFK) as it knows
KFSK which is stored in the file system’s superblock. In case the user is malicious, the
smart card will not have the correct KPr and the KPFK obtained will not be the correct one.
Therefore the user will not be able to the original file contents but will see junk data.

Similarly when an owner of a file, say A wants to give file access permissions to
some other user say B, A needs to have KFSK(KPFK) or KPFK in order to be able to create a
valid token for the B to be stored in the file ACL entry corresponding to B. For this, A’s
token is read from A’s ACL entry in the file under consideration and sent via the daemon,
to the smart card for decryption. The KFSK(KPFK) which is returned to the kernel via the
daemon, is then encrypted with B’s public key KPu to create his/her token KPu(KFSK(KPFK)
and stored in the file’s ACL entry corresponding to B.

During file creation and grant of file permissions by one user to another,
additional work needs to be done viz., getting the public key of the user from the
certificate which should be verified by a certificate authority and create a corresponding
token for the user to be stored in the file’s ACL.

Thus secure smart card access and certificate acquisition, certificate verification
and token generation schemes is vital for the security which Transcrypt aims to achieve.

12th April 2007

9

Related Work

This is not the first time smart cards are being used to store private user date for
authentication; a number of such schemes do exist. Notably among these is the remote
user authentication scheme using bilinear pairings suggested by Das, Saxena and
others[2]. The user's smart card generates a dynamic login request and sends it to the
remote system for login to the system. The login request is computed by the smart card
internally. The remote system does not maintain any password or verifier table for the
verification of user login request. Thus it allows the users to change their password freely
and can protect against ID-theft, replaying, forgery, guessing, insider, and stolen verifier
attacks. However Liao et al [3] have shown that some attacks are possible and have
proposed some modifications to remove the weakness. Their scheme enhances the
security and efficiency of Das et al without adding any computational costs. Another
authentication mechanism proposed by Liaw, Lin and Wu[4] also avoids the use of
verification tables and uses a similar mechanism for mutual authentication between the
user and the remote system.

12th April 2007

10

The Scheme

The four operations of concern are :
 Certificate acquisition
 Certificate validation
 Token Generation
 Blinded FEK acquisition

It must be decided which of these should be undertaken by the kernel and which in
the daemon without compromising the security.

Certificate acquisition is the process of acquiring a user’s certificate given his/her
userid. Since all certificates are ultimately verified by a trusted entity, this action can
safely be done by a user-space process.

Certificate validation is the verification of the authenticity of a user certificate and
must be performed before extracting the public key out of it to be used for token
generation. This is the most critical cryptographic operation. A malicious daemon can
trivially and illegally verify invalid certificates and extract an illegitimate public key that
would then be used to create an illegal token instead of a normal token for a user. If no
scheme can be found which ensures absolute authenticity of the daemon, it would be
safest to perform certificate validation in the kernel.

Token Generation is the production of user tokens to be stored in the file ACL.
The user’s public key must be known in order to create his/her token. Token generation
cannot be done in the user-space because a malicious user-space daemon can trivially use
an illegitimate public key to create a token to illegally grant access to an attacker when it
was supposed to be created for a different user. Hence, token generation can be done
securely only in the kernel.

Blinded key acquisition is the action of decrypting the token using the appropriate
user's private key and retrieving the blinded file encryption key from it. It requires the
user token to be sent to the smart card or authentication server for decryption and
returning the blinded key to the kernel. Because the actual decryption always takes place
on a trusted end point (smart card or auth server), the only role to be performed for this
activity is routing the token to the appropriate end point, provided an end-to-end
authenticated and encrypted session is established between the kernel and the other

12th April 2007

11

trusted end point. Hence, we can safely use an unauthenticated user-space daemon to act
as the conduit between the kernel and the smart card (or auth server). Clearly, this
requires a key pair (with certificate signed by any CA trusted by the organization) to be
associated with the kernel also. A certificate exchange based challenge-response protocol
must be used for mutual authentication between the kernel and the smart card (or auth
server) followed by session key establishment, such as the following:

1. Kernel sends its certificate to the smart card (along with certificate chain of the
intermediate CA hierarchy till the root CA), which verifies it.

2. Smart card sends its certificate (the user's certificate) to the kernel (along with
intermediate CA certificate chain) which verifies it and ensures that it is the same
certificate as expected for the current user context.

3. Kernel sends a challenge (random nonce encrypted with public key extracted from
smart card's certificate) to the smart card.

4. Smart card decrypts the challenge and sends back its response (the plain random
nonce) back to kernel, along with its own challenge (random nonce encrypted with
public key extracted from kernel's certificate).

5. Kernel sees the response from smart card and if satisfied (successful authentication of
smart card, implying that is indeed a genuine user with a genuine smart card) decrypts
the smart card's challenge and sends back its response (the plain random nonce
generated by the smart card), along with a random session key SK encrypted with the
public key of the smart card (user).

6. The smart card verifies the kernel's response (to complete the mutual authentication)
and if satisfied decrypts the random session key SK. Both the kernel and the smart
card use this SK for encrypting all communication henceforth.

Thus, a mutually authenticated and encrypted secure channel has been established
between the kernel and the smart card (or auth server) which can be used to send the
token to the other end point to be decrypted and get back the blinded FEK. This removes
man-in-middle attacks as the session key is known only at the ends and any intermediate
entity cannot listen to the conversion as it doesn’t have the session key and cannot obtain
the same. Also there are no replay attacks as the key is temporary for a session. So any
messages which are logged by a malicious daemon become useless in the next session
(next access attempt on the same file).

A number of other schemes to be followed for secure communication between
kernel and smart card were also explored, all of which have possible loopholes in
security.

12th April 2007

12

The use of timestamps was explored so that replay attacks by the daemon can be
prevented. For this a timestamp had to be added with the per file key each time each time
it is obtained from the blinded FEK. This is then encrypted with the file system key and
then the user’s public key to form the new token. Hence each time a file access takes
place, a new token is generated which has a timestamp embedded into it. Thus replay
attacks are avoided. However this scheme fails during grant of file permission.

It was also suggested that in order to validate the authenticity of the daemon, a
hash of its binary could be taken and then signed with a private key which is known only
to the kernel. This private should then be discarded. Whenever the daemon is loaded, the
kernel can verify its authenticity by decrypting the signed hash using its public key which
will be encoded into the kernel itself. This scheme however totally ignores run-time
attacks on the daemon. By signing only the hash of the daemon’s binary, all that is being
prevented is that the binary doesn't change from below after installation. Man-in-middle
and other run-time attacks on the daemon are still possible. These being trivial for an
attacker with superuser privileges. Any superuser can trivially subvert any userspace
process at runtime (which includes such things as modifying memory space, variables,
inserting breakpoints, etc).

Another scheme was discussed where the daemon and kernel share a public and
private keypair based security association so that all certificate verification can be
performed by the daemon which then sends a modified temporary certificate signed by
itself to be then verified by the kernel. However, this scheme is also insecure because it
requires the daemon to be trusted which is not possible because it can be easily subverted
to do malicious actions at runtime.

Because of the wide range of attacks and ease with which user-space processes
can be completely subverted, such schemes were identified to be insecure.

It was thus later decided that certificate verification take place in the kernel itself
to avoid the need for an authenticated daemon. Thus in the final scheme, the daemon
need not be authenticated as it was realized that the worst a malicious daemon could do
(provided we have a secure end to end session and only the intermediary i.e., the daemon
is corrupt) was denial of service which is beyond the scope of security which Transcrypt
offers. It cannot in any case get access to data it is not authorized to.

12th April 2007

13

The Implementation

The communication between the user space and kernel space has been
implemented using netlink sockets.

For the communication to take place, both the daemon and the kernel must know
whom to talk to. The daemon knows the process id (pid) of the kernel which is always 0,
but the kernel doesn’t know which process to talk to. For this reason the messaging was
previously implemented as user space/daemon initiated unicast communication . As soon
as the daemon is started, it sends a hello message to the kernel saying “I am the daemon
and this is my pid, now you can talk to me”. Having known the pid of the daemon
process, the kernel can now communicate with the daemon (send the token, etc). This pid
needs to be remembered. Once the daemon has informed the kernel about its pid, all
further communications are kernel initiated; this is because, whenever a file is created or
accessed, a portion of the kernel code is executed and it is this code which contact’s the
user process.

An alternate approach was later adopted in which the messaging was a kernel
initiated multicast communication. In this case there is no need for the daemon to inform
the kernel about its pid. The daemon is registered as a member of a group which listens to
kernel’s messages specific to file creation/access. The kernel sends all relevant messages
to this group only.

It must be noted that the daemon process starts immediately after the kernel boots
up and must be running all the time in order to enable file accesses. In case the user tries
to access a file before the daemon starts (which is not a common scenario) access will be
denied.

To simulate a smart card an auth server has been used. The auth server has been
designed in a way that would make the shift to a smart card handler program least
painful.

Openssl library has been used to implement the various cryptographic operations
performed at the auth server. 128 bit RSA has been used as the assymetric encryption
algorithm for encryption-decryption with the user public-private key pair, while 128 bit

12th April 2007

14

AES has been used as the symmetric encryption algorithm for encryption-decryption with
session key.
The implementation can be described under three topics:

1. Messaging/Communication

a. Kernel space and user space daemon
b. User space daemon and auth server

2. User space daemon
3. Auth server

The exact implementation details being standard netlink socket communication are
not described in this report for brevity.

Messaging/Communication

Message Structures
A number of different kinds of messages need to be exchanged between kernel,

daemon and the authserver. A generic message structure for all such messages was
designed.

The message structure is illustrated below:

ID identifies the kind of message, LENGTH gives the total size of the message, PID is
the process id (this will have to be changed to something more unique for each request,
for example a file pointer) and DATA is the message payload.

ID,LENGTH and PID fields are of 2 bytes each while the DATA field can be as
large as 1600 bytes.

As mentioned earlier, instead of having a daemon initiated unicast communication
between the daemon and the kernel, a kernel initiated multicast communication is now
being used and thus the hello message (described below) is deprecated.

12th April 2007

15

The following packets are being used.
1. dpkt_hello [deprecated]

Hello packet with id TCPT_PKT_HELLO from daemon to kernel to initiate
communication.

2. dpkt_cert_acq
Certificate acquisition request packet with id TCPT_PKT_GET_CERT from kernel
to authserver (via daemon) requesting user certificate with userid as the payload.

3. drpkt_cert_resp
Certificate acquisition response packet with id TCPT_PKT_REPLY_CERT from
authserver to kernel (via daemon) with the user certificate as the payload

4. dpkt_est_sess
Session establishment packet with id TCPT_PKT_EST_SESS from kernel to
authserver (via daemon) with a random session key as the payload.

5. drpkt_ack_sess
Session established acknowledgement packet with id TCPT_PKT_ACK_SESS from
authserver to kernel (via daemon)

6. dpkt_challenge_auth
Packet initiating challenge-response to verify the authenticity of the authserver with id
TCPT_PKT_CHALLENGE_AUTH from kernel to authserver (via daemon) with a
random number (challenge) as the payload

7. drpkt_response_auth
Response packet for the challenge, with id TCPT_PKT_RESPONSE_AUTH from
authserver to kernel (via daemon) with challenge+1(response) as the payload

8. dpkt_key_acq
Key acquisition request packet with id TCPT_PKT_KEY_ACQ from kernel to
authserver (via daemon) with the session key encrypted token as the payload

9. drpkt_key_resp

12th April 2007

16

Key acquisition response packet with id TCPT_PKT_KEY_RESP from authserver
to kernel (via daemon) with the session key encrypted blinded FEK as the payload.

User Space Daemon

The daemon forwards all messages from the kernel to the authserver and vice
versa. An exception being the certificate acquisition packet which is not forwarded.
Instead a reply packet is sent to the kernel with the user certificate as the message data.
Communication between kernel and daemon uses multicast netlink while the
communication between daemon and authserver takes place using the common c sockets.

Methods to detect a daemon death and take appropriate action were explored.
Time outs could be used to resolve this issue. The kernel could wait for a fixed time
duration after sending each message within which it expects to receive a reply. However
this might sometimes lead to wrong prediction of the daemon’s death in case the delays
are either at the authserver or due to congestion. It must also be noted that netlink not
being a reliable protocol, some packets might even be dropped. Another method using a
cron daemon was also explored but finally it was decided to create an entry into the
/etc/inittab file (used to schedule processes periodically and take appropriate action when
the process gets killed) so that the daemon can be respawned on death. It must be noted
that we need not be concerned about a malicious daemon as it can only lead to denial of
service attacks which are not our concern. However since we have ensured that the
daemon will be restarted the service denial cannot last long. Thus even denial of service
attack is taken care of unless the malicious daemon process somehow gets hold of
superuser privileges and changes the entry in /etc/inittab.

.

Authserver

The Authserver replies to the messages sent to it from the kernel through the
daemon according to the message type. It strips the message and reads the ID to know the
message type. It then takes the appropriate action accordingly. It implements the various
cryptographic operations which need to be performed at the smart card. This includes
decryption of the token using private key accessible to it using RSA and encrypting the
reply message data with the session key using AES. In case of unrecognized packet type,
it sends an error packet.

12th April 2007

17

Three kinds of packets are handled at the Authserver:

dpkt_challenge_auth
Packet initiating challenge-response to verify the authenticity of the authserver with a
random number (challenge) as the payload. The response packet drpkt_response_auth
with challenge+1(response) as the payload is sent back to the daemon which forwards
it to the kernel.

dpkt_est_sess
Session establishment packet with a random session key as the payload. Session
established acknowledgement packet drpkt_ack_sess is sent back to the daemon.
Session key maintenance is implemented at the Authserver using a two dimensional
array having the session keys alongwith the PID of the process (to be changed later to
file pointer which is unique to each request) and UID of the user accessing the file.
The array is indexed on request number, a number which is incremented each time a
certificate is acquired. Each time a new request for key acquisition arrives, a check is
made to find out whether a session key was established for the PID by searching
through the array starting from the current request number (This increases the
efficiency of the search as in most cases the key acquisition request will be just
preceded by a certificate acquisition request).

dpkt_key_acq
Key acquisition request packet with the session key encrypted token as the payload.
Key acquisition response packet drpkt_key_resp with the session key encrypted
blinded FEK as the payload is sent back to the daemon. The session key used for
encryption is read from the table of session keys.

A new packet “dpkt_session_end” was also introduced later as a clean way to end a
session. The action performed by the authserver on receipt of this packet is to delete the
session key entry corresponding to the request from the session key table(array).

12th April 2007

18

Future Work and Conclusion

Currently, though the authserver has been implemented to take care of multiple
requests, the daemon does not have any such provision. Thus multiple file accesses at the
same time would give an error. Multiple requests can be handled in a number of ways.
Two of which are :

 Use of threads
 Use of a multiple (but limited number) of sockets

The daemon must remember which socket sent which kind of packet and send the reply
obtained from authserver to the appropriate socket. Thus a mapping between socket
descriptor and the packet received at it will have to be maintained in the form of a table.
These sockets can either all be open during daemon start or may be opened on demand (if
there are never more than two requests, only two sockets will be open). The latter was
decided upon the as the scheme which should be implemented. The implementation was
started but as with all software implementations, has its share of issues which couldn’t be
resolved due to time constraints.

The proposed scheme for communication between kernel and smart card
(authserver) has been tested to be free from security loopholes and does not in any way
reduce the level of security provided by Transcrypt. The end to end session key
establishment method can in general also be applied to similar applications which require
a secure access to some device by the kernel without the overhead of having the
implementation inside the kernel.

12th April 2007

19

Bibliography

[1] Satyam Sharma, “TransCrypt: Design of a Secure and Transparent Encrypting File
 System”, MTech Thesis, Department of Computer Science and Engineering , IIT
 Kanpur, 2006.

[2] Manik Lal Das, Ashutosh Saxena, and Ved P. Gulati, “A Dynamic ID-based Remote
 User Authentication Scheme,” IEEE Transactions on Consumer Electronics, vol. 50,
 no. 2, pp. 629–631, 2004.

[3] I-En Liao, C. C. Lee, and M. S. Hwang, “Security Enhancement for a Dynamic ID-
 based Remote User Authentication Scheme,” IEEE CS Press, International
 Conference on Next Generation Web Services Practices (NWeSP'05), pp.437
 440,Seoul,Korea, 2005.

[4] H.T. Liaw, J.F. Lin, W.C. Wu. “An Efficient and Complete Remote User
 Authentication Scheme using Smart Cards”. Article “Mathematical and Computer
 Modeling”, Volume 44, Issue 1-2, pp 223-228, 2006.

