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Abstract 
 

Memory can be efficiently utilized if the memory demands can be analyzed at 
run-time and satisfied using dynamic memory switching. To provide a base for our 
implementation we first do static analysis of system’s performance versus amount of 
available memory. We also study the fragmentation of memory and usage of memory in 
certain systems. Then we implement a kernel thread to dynamically control availability of 
memory depending on system’s need. Further our implementation provides support for 
reducing power consumed by memory. We also give an approach to calculate the most 
suitable amount of memory for a given system given its performance requirements. 
 
 
1. INTRODUCTION 
 

This project studies the behavior of a given system (a system here is defined as: a 
fixed platform, OS, and applications) as regards to its memory requirements. Specifically, 
given some performance measure, we try to utilize memory efficiently. Performance 
measures can be defined in various ways, for example, either time taken to execute the 
program or benchmark, or it could be throughput in terms of number of bytes read, or it 
could as simple as the total number of page faults. We define our performance measure to 
be the page-cache hit ratio and power consumed by memory. 
 
1.1 Motivation 
 

We know that low memory hampers the performance of any system, but 
intuitively, memory above a certain point doesn’t increase the performance of the system 
by much. We want to test this intuition and understand the relationship between 
performance degradation versus savings, power.  

“If by giving extra memory to a process, the improvement in performance is 
marginal, it is better to power down the extra memory to conserve energy. Optimizing 
energy consumption of computing components has become important not only for 
mobile, wireless and embedded devices due to short battery life, but also for high-end 
systems to reduce electricity bills.”[8] 

It has been observed by previous studies [9, 10, 11, 12] that the memory 
subsystem is one of the dominant consumers of the overall system energy. “Recent 
measurements from real server systems show that memory consumes as much as 50% 
more power than processors.”[13] To address this problem, many modern memory 
modules support multiple low-power operating modes to conserve energy [14]. 
 
1.2 Work done 
 

In the first semester we did static analysis of the memory usage on Linux kernel. 
By static analysis we mean, changing the total memory available to the system at the boot 
time, and then plotting performance versus the total memory. We ran several benchmarks 
and also made bitmaps of the whole memory to aid to our understanding of the memory 
usage. 



As this static analysis is impractical for systems (i.e. we cannot reboot system to 
change memory while application is running), we want the system to be able to decide for 
itself its most suitable amount of memory.  

In the second semester we have implemented dynamic memory switching for 
Linux kernel (specifically 2.6.15). First of all we divide the whole memory into banks 
(contiguous segments of same size). Then using a page migration algorithm we can 
migrate pages from one bank to another. A kernel thread runs, which monitors the total 
memory usage of the system, if it finds reclaimable pages (PageCached and free) over a 
certain limit, it migrates pages such that a whole bank becomes free, and then it turns this 
bank off. This switched off bank is invisible to the system (i.e. this memory cannot be 
used for any purpose). If the system needs memory beyond what it already has, the kernel 
thread turns the switched off banks on, and this bank can be used as usual like free 
memory. On a longer run this thread can plot the number of page faults (or page cache hit 
ratio) versus the amount of memory available (number of banks which are on) from 
which we can extract the most suitable amount of memory for this system. 

 
 
2 Static Analysis 
  
 In this section we try to analyze systems behavior by statically observing the 
system and if necessary using reboot to change system memory. 
  
2.1 Memory Usage Patterns 
 

Before starting to implement dynamic memory we wanted to get an idea of how a 
system uses its memory, for that we studied the meminfo and vmstat files in /proc 
directory. These files give several parameters like total memory, free memory, buffers, 
cached, active, inactive, page faults etc of the system. We chose to monitor a few of 
these:  
MemTotal:  Total usable ram (i.e. Total RAM - few reserved bits - the kernel binary 
code)  
MemFree:  Total free ram (The sum of LowFree + HighFree)  
Buffers:  Mem used by BufferCache (Relatively temporary storage for raw disk 
blocks)  
Cached:  Cache for files read from the disk  
SwapCached:  Mem used by swap cache  
PageCached:  Buffers+Cached+SwapCached (This PageCached is reclaimable)  
Pgfault:  Faults (major+minor) 
 
We ran a program for 12 hours on few of the select systems, recording meminfo and 
vmstat every 5 secs. We then plotted the above parameters against time, and also 
calculated their average. These graphs and table give us an indication as how the systems 
use up their memory. 
 
 
 



 
 

a) Time versus Memory Usage           b) Time versus Memory Usage 
 

 

 
 
  c) Time versus Memory Usage           d) Time versus Memory Usage 
 

TABLE 1: This table gives the average of the above parameters over a 12 hour period 
(All figures are approximated to the nearest MB)  
 
 
Computer 
Name  

Total 
Mem  

Free 
Mem  

Used 
Mem  

PageCached  Used-
Pagecached 

cseserver1  4056  2800  1256  1090  166  
csews100  1999  791  1208  891  317  
csews102  1999  1525  474  221  253  
csews103  1999  1215  784  548  236  
csews106  1999  694  1305  995  310  
csews111  1999  1080  919  674  245  
csews112  1999  129  1870  1358  512  
csews12  1001  30  971  465  506  
csews14  1001  234  767  432  335  
csews15  1001  62  939  542  397  
csews16  1001  114  887  527  360  



2.2   Memory Bitmaps 
 

Memory bitmap is bitmap of memory taken per page, i.e. a bit in the bitmap 
shows status of a particular page in physical memory.  
 
The bitmap image is a grayscale image with one pixel per page stored in row major 
format. This is constructed by traversing the /proc entry and assigning the following color 
values:  
Free=White,      PageCache=Grey,      Slab or Reserved or Non-Free=Black  
Following are bitmaps of a machine with 1 GB ram at different times. 
 
 

  
 
 
2.3   Effect of changing memory on performance 
 

To see the effect of varying physical memory on the performance we ran some 
standard and synthetic benchmarks like HPL, TPCC, Quick Sort, Java Garbage 
Collection, Kernel Compilation etc on specific machines. We changed the amount of 
physical memory by giving a boot-time option in the grub boot-loader and ran 
benchmarks each time. Some of the benchmarks and there performance statistics are 
given below. 
 
2.3.1 HPL Benchmark 

HPL is a software package that solves a (random) dense linear system in double 
precision (64 bits) arithmetic on distributed-memory computers. It solves a linear system 
of order n: A x = b. 
Performance measure: Floating operations per second. 
Input: A fixed value for the rank of the linear equation, we chose it to be 9000(n = 9000). 
Platform: P4 2.8 GHz, 1 GB RAM, Kernel 2.6.5-1.358, Fedora Core 2. 
Following graphs give us Performance Measures versus Memory. Here we can see 
relation between performance and pagefaults.  



 
 
       a) Giga Floating point operations versus Memory   b) Time (minutes) versus Memory  

 
 
  c) Major Pagefaults versus Memory               d) Minor Pagefaults versus Memory 

 
 

2.3.2 TPCC Benchmark 
The TPC-C benchmark is a well-know benchmark used to measure the 

performance of high-end systems. TPC-C simulates the execution of a set of distributed, 
on-line transactions (OLTP), for a period between two and eight hours. 
Performance measure: TPC-C transactions per minute (tpmC). 
Input: 8 warehouses with 10 terminals per warehouse, measurement interval of 2 hours. 
Platform: AMD 64 1.8ghz, 1 GB ram, 2.6.15 kernel, FC5 

Following graph was obtained after plotting tpmC versus amount of memory. 



 
 

2.3.3 Quick-Sort 
The qsort() function is an implementation of C.A.R. Hoare's quick sort algorithm, 

a variant of partition-exchange sorting. It has O(nlogn) average performance; this 
implementation uses median selection to avoid the O(n^2) worst-case performance of 
quick sort 
Performance measure: The time to sort. 
Input: We used integer array of size ~750MB to perform quick sort. 
Platform: P4 2.8 GHz, 1 GB RAM, Kernel 2.6.5-1.358, Fedora Core 2 

Following graphs give us Performance Measures versus Memory: 
 

 
 

a) Time (minutes) versus Memory 
 
 



 
 
  b) Major Pagefaults versus Memory  c) Minor Pagefaults versus Memory 

 
 
 

2.3.4 Java Garbage Collection 
This is a synthetic benchmark. In this we take an array of linked list of some size. 

In a single iteration, we dump the linked list in every array index and make a new linked 
list at that index. This is repeated for a few iterations. This results in garbage at each step 
which has to be collected by the Java Garbage Collection.  
Performance measure: Time for execution (garbage collection). 
Platform: P4 2.8 GHz, 1 GB RAM, Kernel 2.6.5-1.358, Fedora Core 2 

Following graph give us Time versus Memory: 

 
 

a)Time execution (garbage collection) versus Memory 
 
 
 
 
 
 
 
 



2.3.5 Kernel Compilation 
This is also a synthetic test. We measure the time taken to compile the linux 

kernel. 
Platform: Pentium D 1.8 GHz, 2 GB ram, 2.6.15 kernel, Fedora Core 5 
Following graph give us Compilation Time versus Memory 

 
a) Compilation Time versus Memory 

 
 
3 Implementing Dynamic Memory Switching 
 
The following steps constitute our whole process of implementing dynamic memory 
switching in a linux kernel. 
 
1. Introducing a new kernel zone, allocating kernel pages in it and making it dynamic.  
2. Implementing page migration.  
3. Creating banks & implementing bank turning off and on.  
4. Making a kernel daemon which automatically turns banks on/off. 
 
 
3.1      Introducing a new kernel zone 
 
Slab allocations are contiguous in memory (size more than page-size). So we cannot 
migrate slab pages using page migration based on single page. As we cannot reallocate 
slab objects we need to allocate them into some region of memory which we will never 
turn off. A simple solution lies in creating a new zone for allocation of kernel-pages 
(kernel-page is pages allocated using GFP_KERNEL flag).   
 

a. GFP-flags are used to allocate pages in potentially best region of memory. 
There are flags defined for each zone of memory. We introduced a new flag 
called __GFP_KERNEL corresponding to the new zone. 

b. To initialize the zone we need to define (or calculate) its size. It should be 
defined equal to maximum size of slab. We defined it to be 112 MB. So now 
memory is fragmented into following zones 



1. DMA   0-16 MB 
2. Kernel  16-128 MB 
3. Normal  128-896 MB 
4. Highmem  896-4 GB 

c. Now to allocate all kernel-pages in zone_kernel we add our zone flag to 
GFP_KERNEL. Now when a page is allocated using GFP_KERNEL flag it is 
situated either in zone_dma or zone_kernel i.e. below 128 MB limit. As all the 
non-migrating pages are below 128MB we can turn off memory above 
128MB. Zone_kernel can be made specific to only kernel-pages i.e. changes 
can be made so that only kernel-pages are allocated in zone_kernel. 

 
3.2 Implementing page migration 
 
The migration function takes pointers to source page and destination page. 
Implementation is based on migration algorithms for following cases. 

1. When page is pointed by one or more page table entries we need to change all 
of them to point to destination page. We use reverse mapping to find page 
table entries form page pointers. 

2. When page is in swap-cache or page-cache we delete it from cache and add 
destination page in respective cache. 

3. When page is in buffer-cache, we remove it from corresponding buffer_heads 
and add destination page into it. 

4. When page is in slab-cache or is in writeback or is locked we do nothing. 
 
We copy relevant page flags and other fields to destination page. Last step is to 

copy the source page data into the destination page. Note that the algorithm should be 
such that it either does it all or does nothing otherwise we will end up with two copies of 
same page. 
 
3.3 Creating banks and implementing bank_on, bank_off 
 
We divide memory into contiguous segments of same size. We call this a bank. Each 
bank is a struct which contains information about whether bank is on or off, bank range 
and number of free pages in it. Captured pages are those pages which can’t be allocated 
to anyone on request. So when the number of free pages goes to zero, bank is turned off. 
 Banks are stored in an array per node. For captured pages we use captured_area 
defined per zone. Captured_area is used to capture pages using buddy system (exactly 
similar to buddy allocator for free pages). This puts constraint on bank size to be multiple 
of 4MB. This implementation makes it easy to exchange captured and free pages. 
 
We have written two system calls, one for turn off and other for turn on. Both calls take 
bank as argument. 

a. Turn off: 
1. Capture all free pages from buddy which are in the bank. 



2. Hold zone lock and isolate all LRU pages (i.e. isolate pages in active     
list and inactive list that belongs to bank.) 
3. Try to migrate pages. If migration was successful, capture pages. 
4. Calculate number of captured pages in this bank. If it is equal to bank 
size, return success.  

b. Turn on: 
For each captured page in bank, free it. 
 

3.4 Kernel daemon 
 
To implement dynamic memory switching in a linux kernel we have written a kernel 
daemon. We call it bmd (Bank Management Daemon). Its major functionality is to keep 
track of system’s need and availability of memory and take action according to them. 
Actions are  

1. If system needs more memory than available then turn part of memory on. 
2. If availability is more than system’s need then turn part of memory off. 
3. If need and availability are compatible with each other then do nothing. 
 
To understand systems memory requirement daemon needs to keep track of free 

memory and reclaimable memory. And as it can increase memory available to system we 
have to consider its effect and use in page reclamation algorithm. We implemented 
turning part of memory on and off using banks, so change in amount of memory will 
always be a multiple of bank size. Working of daemon can be explained in three steps. 

 
1. Memory requirement: 
 

Reclaimable pages are potential free pages as they can be reclaimed very easily 
and used as free pages (note that other pages in LRU lists can also be reclaimed but they 
will most likely cause disk write due to swapout). Reclaimable pages consist of 
PageCached pages (i.e. cached pages + buffer cache pages + swap cache pages). Even 
though all PageCached pages are potential free pages, it is not good to reclaim all 
PageCached pages as it might lead to a large PageCache miss ratio. Watermarks for 
allowable PageCached size can be defined using performance requirement of user and 
type of applications running on system. Similarly we have to define watermarks for free 
pages as too many free pages are not good for power and too few free pages are not good 
for performance. 

As PageCached pages are potential free pages, watermark for them are decided 
while considering them free pages. i.e. watermark is decided for number of PageCached 
pages (nr_cache)+ number of free pages (nr_free). These watermarks are called 
CACHE_FREE_HIGH and CACHE_FREE_LOW. Similarly two watermarks for number 
of free pages are FREE_HIGH and FREE_LOW. Now we define actions for daemon as 
follows. 
Action 1: If( nr_free + nr_cache < CACHE_FREE_LOW && nr_free < FREE_LOW) 

Turn smallest indexed bank on. 
Action 2: If( nr_free + nr_cache > CACHE_FREE_HIGH || nr_free > FREE_HIGH) 

Turn largest indexed bank off. 



 Condition for action 1 can be explained as: after turning bank on neither free 
pages nor potential free pages are more than certain limit. Condition for action 2 is either 
free pages or potential free pages are more than certain limit. So, allowable PageCached 
size is bounded by CACHE_FREE_HIGH. 

Note that to avoid clashing, difference between pair of watermarks should be 
greater than bank size i.e. FREE_HIGH should be greater than FREE_LOW + bank size. 
Otherwise as soon as we turn bank on (action 1) condition for turning bank off (action 2) 
is satisfied and vise versa.  

 
2. Page reclamation algorithm: 
 
 The daemon which implements page reclamation is called kswapd. As LRU lists 
are stored zonewise, kswapd also works per zone as it needs to scan LRU lists. But the all 
data-structures for implementing bmd are stored per node. So we need to somehow 
communicate changes done by bmd to kswapd.  

As the job of kswapd is to increase number of free pages in zone (above certain 
limit) it should call action 1 from our daemon if the condition is satisfied. Now action 2 
needs free pages and this need may wake up kswapd. Again if condition for action 1 is 
satisfied kswapd will call action 1. Now we are simultaneously turning bank on and off. 
To avoid this race condition we have to use locks per node.  
 
3. Other Parameters: 
  
 a. Timeout is time after which bmd will be rescheduled. It affects both 
performance and power. If timeout is too small bmd will be rescheduled much frequently. 
This will certainly increase load on system. It may also cause to turning memory on and 
off too frequently. As both this actions are quite heavy this will certainly decrease 
system’s performance. If timeout is too large effect of change in system’s memory 
requirement on power will be very late. Timeout should be decided considering how 
frequently system’s memory requirement changes and how much cpu-time a turning bank 
off operation needs. 
 b. Bank_size is size of a bank. If it is too small them it may cause too may bank 
turn on and off. If it is too large then precision to which we manage power will decrease. 
So it should be determined considering smallest block size on RAM that can be turned 
off and the frequency of turning bank off. (The Rambus rdram has memory with 
bank_size of 128MB, 32MB, 16MB [2,8]) 
 
 
3.5  Power Considerations 
 
Rambus RDRAM differs from the rest by allowing a finer-grained unit of control in 
power management, i.e. it has bank architecture and has support to change power to 
individual banks. 
 
 
 



Following tables give specifications of Rambus RDRAM: 
 
Power State/Transition  Power  Time Active Components 
Active  300mW  - Refresh, clock, row, col decoder 
Standby  180mW  - Refresh, clock, row decoder 
Nap  30mW  - Refresh, clock 
Powerdown  3mW  - Refresh 
Standby To Active  240mW  +6ns   
Nap To Active  160mW  +60ns   
Powerdown To Active  150mW  +6000ns   
 
 
Switching a bank off means that a bank is transitions from Active to Nap, similarly bank 
on means transition from Nap to Active. 
 
An Example: 

Now an example of how much power we can save. Consider all 2 GB machines in 
table 1. Average value of Used – PageCached is 310 MB. Now if we set watermark 
CACHE_FREE_HIGH = 200MB, we get bound on PageCached equal to 200MB (this 
will decrease some performance due to less cache hits). So, average total use of memory 
is bounded by 510 MB. This means on an average 3/4th of memory is switched off. So, 
total power consumed by memory will be 33% of original (considering nap and active 
modes instead of total on and off). 2GB RDRAM consumes approximately 16 W. Out of 
which we are saving 10 W. A general desktop pc uses approximately 150 W. Hence we 
may save approximately 7% of systems power. 

Note, here we are not claiming that we can save 7% of systems power in our cse 
lab. This claim would require much more data (probably duration of months) collected 
over different seasons on majority of cse machines. Again limiting value for PageCache 
chosen here is random. To get exact limit we need to have understanding of behavior of 
PageCache hit ratio depending on PageCache size and our expectation for performance. 
 
 
4. FUTURE WORK 
 

1. As slab pages can only be allocated below zone_kernel we need to keep some 
extra space so that in future all requests are satisfied. A better way to do this 
will be to make the boundary between zone_normal and zone_kernel 
dynamic. 

2. In page migration algorithm when a page is in only in cache (and its not dirty) 
and memory is almost full we should just delete it, instead of copying 
somewhere else as it would evoke page reclamation daemon and may cause a 
disk write. We also need to consider TLB-flushes for better implementation. 

3. Writing a /proc entry for changing the bank_on, bank_off watermarks. 
4. Finding PageCache hit ratio in the kernel. 



5. Writing a user level program which changes watermarks and scans PageCache          
hit ratio. 

6. Plotting PageCache hit ratio versus watermarks, active memory versus time. 
This active memory versus time graph gives us the most suitable amount of 
memory of the system. 

7. Extensive testing for the suitable values of various parameters. 
 

 
5. CONCLUSION 
 

These conclusions follow from our static analysis: 
 

1. Some of the memory in a typical system is used by the PageCached (which is 
reclaimable, i.e. even if it were not there the system will continue to function, 
although with a performance degradation), and relatively lesser amount of the 
total memory is being used by the processes. So there is scope that we should be 
able to reduce the total amount of memory without affecting the performance by 
much.  

 
2. Using memory bitmaps we found that the free pages are scattered around in the 
physical memory. Thus we have to migrate the free pages using some ‘page 
migration algorithm’ so that they become contiguous in the physical memory, to 
be able to switch (that bank) on/off.  

 
3. By running some benchmark tests we found that after a certain limit, increasing 
the size of physical memory does not improve the performance by a significant 
amount. The loss in performance when the memory is low can be accredited to 
the increase in major and minor page faults. Thus if the work to be done on a 
system in known from advance, we may assign that system suitable amount of 
memory according to its need. 

  
From dynamic memory switching we may conclude that using our 
implementation, for a given system, given sufficient time we can get suitable 
amount of memory for the system, as governed by the user’s requirements and the 
system applications. Also our implementation may be used to reduce the power 
consumption of the memory subsystem given the hardware support [14]. 
 
From the active memory versus time graph (here active memory means the total 
number of banks that are in on state at a given time) the user may deduce the most 
suitable amount of memory as he deems fit. Of course a user may change the 
watermarks if he feels that the PageCache hit ratio is less, thus affecting active 
memory. 
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