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Abstract

The complexity, market demands and standards have been ever increasing in the domain
of embedded systems. This has led to the designers to use automated tool sets for rapid pro-
totyping and analysis. Given a processor description, these tools facilitate the automated
generation of the processor specific tools. Sim-nML is a processor description language
used to write processor models. Modelling a new processor using Sim-nML is not enough
in itself. One needs to evaluate the performance of the softwares aimed to be run on this
new processor model. For example, one might be interested in analyzing average memory
access per CPU cycle. Thus tools such as Debugger, Disassembler, Profiler etc. need to
be developed for such an architecture. These tools are processor centric tools. In case of
a processor architecture described using Sim-nML, we need to develop a generic tool, i.e.
the tool-architecture depends on the architecture of Sim-nML and does not depend on the
target processor architecture description.

In this work, we have developed a Profiling Tool which is used to evaluate the perfor-
mance of the benchmarks in target environment when run with simulators based on Sim-nML
description. The profiler architecture has been developed so as to keep it independent of the
instruction set description. This essentially required changes to be done in the Sim-nML
memory model and also changes in its language constructs so as to facilitate addition of
profiling information. After adding profiling support in Sim-nML, profiler architecture was
developed which consists of a data logging part and the Viewer part. Finally, profiles were
obtained for few test programs for functional simulation of PowerPC architecture written in
Sim-nML.
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1 Introduction

Instruction set simulators are indispensable tools in the present day scenario of architecture
design and processor manufacturing. Simulators take the target executable ( binary ) and ex-
ecute the instructions. They are the tools which actually let the designers to look into the
performance issues without the actual hardware available on chip. Simulator is a processor
centric tool. Some other processor centric tools are disassembler , debugger and profiler. They
all gather information which helps one assess a particular architectural design from the appli-
cation point of view. This type of analysis is a run time analysis also called as the dynamic
program analysis. Profiler gathers relevant information from the instructions being executed in
the binary. The size of the information collected depends primarily on the number of instruc-
tions executed, which could be very large in some cases. For collecting such a huge amount of
data, profilers use various techniques such as the hardware interrupts, code instrumentation,
operating system hooks, and performance counters.

Computer Architects need profilers to judge the behaviour of the application programs on the
newly designed architecture. Software designers use profilers to make their programs behave
efficiently up to a desired mark. Such an extensive and pervasive use of profilers in the ex-
isting hardware/software domain has been the motivation for this work. An example of one
such standard profiler is the GNU profiler gprof [6]. GNU gprof allows one to learn where the
program spent its time and which functions called which other functions while it was executing.
This information can show which piece of code must be optimized in order to achieve faster
execution. Also it would show which function is being called more or less than the expected,
eventually leading one to spot bugs in the code. Another example is Seamless [7], a proprietary
product from Mentor Graphics. It has many advanced features in addition to the simple pro-
filing features.

Sim-nML is a processor description language developed at IIT Kanpur. Apart from the pro-
cessor architecture description, it also provides construct to describe memory. A Sim-nML
developer is the one who would write a description of a processor architecture in Sim-nML.
The described processor architecture is called target architecture. This description would then
be converted into an intermediate representation (IR )[8] with the Sim-nML compiler. Tools
based on Sim-nML descritption for a given processor architecture take this IR as the input.
Disassembler and Functional Simulator are examples of such tools. In earlier works related to
Sim-nML, some major tools designed are disassembler[8], a retargetable functional simulator|[10]
, cache simulator[9] and Functional Simulator [3].

2 Profiler Design

Profiler should have certain desirable features as

e Profilers should be as efficient as possible. They should in themselves not become an
overhead for the simulation process which may lead the simulation to run for larger number
of hours.

e Typical simulation of benchmarks may take several days to execute. Normally, design-
ers do not want to wait for that duration and would want to continuosly monitor the
performance of the program during it’s execution rather than at the end.

Our profiler consists of two functionalities:

e Data Logging



e Log Viewing

We discuss the above two functionalities in detail along with the implementation issues.

2.1 Data Logging

Execution of a binary on a processsor could be abstracted as performing three basic tasks of
instruction fetch, instruction decode and instruction execution. The data logger part
of the profiler can log suitably during the execution of the binary so as to collect the data which
would be used to construct more meaningful parameters which ultimately help evaluate the
performance of the program on the processor architecture.

As discussed above, the log file is generated as the binary of a program is executed. Thus the
only inputs to the profiler are the architecture and the binary that is being executed. The
data contained in this log file could be used to reconstruct some meaningful parameters of the
program execution. The parameters are decided first and suitable data is logged. Our profiler
seeks to capture only the memory operations during the execution. We are mainly concerned
with the following events in the binary

1. Instruction Fetch
2. Data Read
3. Data Write

The data read /write may be a memory read/write or it may be cache read/write (if there is one).
The same is true for the instruction read/write. Such an information can be ultimately used to
construct metrics like number of read /write misses which are a measure of the performance for
the binary being executed.

2.2 Log Viewing

Viewer is that part of the profiler which would take as input the log file generated by the data
logger and would then construct performance parameters for the binary in the form of graphs
and statistical data. For example, it could tell the total percentage of memory reads/writes
for a particular region of execution. If this percentage is highly undesirable, the binary could
then be optimized for desired percentage level. Infact, if this percentage is highly unexpected,
then a possible bug like memory leak might be detected. A graphical representation makes it
convenient to analyse the performance issues.

3 Tools based on Sim-nML

As discussed earlier, major processor centric tools like Disassembler and Functional Simulators
have been generated using Sim-nML. Profiler is one such tool to be generated using a target
Sim-nML description. Since the data logging part of profiler works at the time of simulation of
the target binary, Functional Simulator is the tool of our interest.

3.1 Functional Simulator

Fuctional Simulator tool was developed in the work done by Surendra Vishnoi [3]. Functional
Simulator simulates the execution of a program on the target architecture. The host architecture
is the one on which the simulator executes. So apart from the IR, we have another input i.e.
the binary of the program for the target architecture. The type of simulation done by the



Functional Simulator is compiled simulation. That is, it decodes the binary for it’s instructions
prior to the start of the execution. The advantage here is that the same instruction need not
be decoded again and again if it is executed more than once. Finally the Functional Simulator
simulates the execution of the binary. Functional simulator provides memory management and
system call handling for the simulation of the binary, as discussed in the next section.

In short, functional simulation requires the following three stages

e Conversion of the Sim-nML description to Intermediate Representation . This generates
the C-code corresponding to the target architecture instructions.

e Decoding the ELF[11] binary and reading the ELF sections. The ELF information is then
dumped into a different set of files which would be required by the next stage. Currently,
the Functional Simulator supports decoding of only ELF binaries.

e Simulating the binary. This is done by reading the information that has been generated
in the last two stages.

4 Memory Model

As stated earlier, Functional Simulator provides memory management and system call handling
to simulate the execution of the target binary. The system calls from the target are redirected to
the host operating system. To provide memory management support, various memory models
could be implemented. One such model is a linear fixed sized array. This, however has following
disadvantages:

1. It is always not possible to know the memory usage of the target binary prior to execution.
One cannot declare an array of the size of the target address space which would be typically
232 bytes for a 32 bit processor architecture. Thus some value for the size of the target
memory has to be fixed. This could lead to both wastage of space in case the value is too
large or memory exhaustion in case the value is too small.

2. This model requires relocation of target address to the memory index. Thus the processor
instructions call the memory read and write with the relocated address and not the real
address which is not correct. In Sim-nML, the relocation is done using a value called
DATA BASE which is the starting address of the ELF sections. Thus a byte at address
EA was stored in memory at M[EA - DATA _BASE], where M is the name of the memory
array.

Another efficient memory model is a trie based organization. This is the model that has been
implemented currently in the Functional Simulator. The description of this implementation in
the Functional Simulator can be found in the work done by Rishabh Uppal [5]. In this model,
the simulator manages the virtual address space of the target using a trie of memory pages.
Fach memory page is a 4KB block. This model is more efficient than the linear model as it
allocates memory dynamically and the allocation depends on memory requirement of the binary.
When the simulation starts, the virtual address space of the target has to be initialized with
the data that must be present before the execution of binary. This data is precisely obtained
from the decoding stage. One of the tasks of decoding of the binary is to read and store the
data of the various ELF sections store in a memory image file in the Intel Hex format[4]. When
the simulation starts, the data is read from the memory image file into the trie at exact virtual
address of the target.



4.1 Generation of Memory Image

The functional simulator decodes all the instructions in the target binary prior to execution.
Presently it can decode binaries which are in ELF format only. It reads all the ELF sections
present in the target binary and stores them as a sequence of intel hex records. A general intel
hex record format is as follows:

The type of intel hex records being used in the present implementation are Extended Lin-
ear Address Record, Data Record, End of File Record and the Start Linear Address
Record. The Start Linear Address Record stores the address of the first instruction to be
executed.

4.2 Trie

As discussed earlier, the current memory model implementation in Functional Simulator is a
trie based organization . The trie has following three interface operations

Initialize Memory intialize ( MemDesc, image file ): MemDesc is the descriptor of the ad-
dress space. It reads the data in the intel hex format from the image file and writes into
the target space.

Memory Read getmem ( MemDesc, address, size, data ) : address is the target space ad-
dress from which size bytes have to be read in to the buffer data.

Memory Write storemem ( MemDesc, address, size, data ) : It writes size bytes from buffer
data to the target space address address.

These trie functions are called whenever memory read or write has to take place. The data
stored in the trie is always in the target endianity. However, the processor does not directly call
these functions getmem or storemem for reading and writing into the memory. The processor
uses it’s own version of read and write functions as follows:

Memory Read readMem ( MemDesc, address, size, data, flag ):flag is a boolean value which
tells the manner in which data obtained has to be stored into the target memory. Normally,
the first byte of data is stored at address, second at address + 1 , and so on and last byte
at adddress + size - 1. If the flag is reversed, the first byte of data is stored at address +
size -1, first at address + size - 2 and so on till the last byte at address. readMem calls
getMem with appropriate arguments internally.

Memroy Write writeMem ( MemDesc, address, size, data, flag ): flag means the same as in
readMem. writeMem calls storemem with appropriate arguments internally.

readMem and the writeMem are seen by the application. Any other interacting agents like the
interactive debugger, system call redirection would call getmem and storemem for reading and
writing from/into memory. Thus profiler must collect it’s data within the readMem and the
writeMem functions.

5 Memory Profiling in Sim-nML

With Sim-nML an arbitrary processor architecture can be described. Sim-nML has no con-
structs to identify the type of the instruction, ie. one cannot know from the bit pattern of the
instruction what the instruction does. The following shows part of the action of a load word
instruction in Sim-nML for a PowerPC architecture.



GPR [ rd 1<31..24> =M [ EA ];

GPR [ rd 1<23..16> =M [ EA + 1 ];
GPR [ rd 1<15..8> =M [ EA + 2 ];
GPR [ rd 1<7..0> =M [ EA + 3 1];

This instruction has not been marked as a memory read instruction but the semantics of the
instruction shows that it is infact doing memory read. This also amounts to the fact that during
the simulation of the binary one cannot identify a memory read/write instruction by looking at
the binary string of the instruction. But to do memory profiling we must identify the memory
read/write instruction. One way to do this was to identify them during the compilation of the
Sim-nML description in the Intermediate Representation generation.

Second issue was that of the multiple byte memory read/write instructions. A sample code
generated for the integer load word instruction is as follows.

{

int64 T_RANG;

(T_RANG=M[EA-DATA_BASE]);

(GPR[ rd ]1=(RANGE_ONR_FUNC_I32(GPR[ rd ], 31, 24, T_RANG)));

}

{

int64 T_RANG;

(T_RANG=M[((Oxffffffff&(uint64)EA)+1)-DATA_BASE]);

(GPR [ rd ]1=(RANGE_ONR_FUNC_I32( GPR[ rd ], 23, 16, T_RANG)));

}

{

int64 T_RANG;

(T_RANG=M[((Oxffffffff&(uint64)EA)+2)-DATA_BASE]);

(GPR[ rd ]=(RANGE_ONR_FUNC_I32(GPR [ rd ], 15, 8, T_RANG)));

}

{

int64 T_RANG;

(T_RANG=M[((Oxffffffff&(uint64)EA)+3)-DATA_BASE]);

(GPR[ rd ]=(RANGE_ONR_FUNC_I32(GPR[ rd 1, 7, 0, T_RANG)));

}

Several instructions like the load word in the figure above is reading multiple bytes from the
memory into the processor registers. With the earlier description as shown above, the processor
is generating four one byte memory reads rather than one four byte memory read. Thus a con-
struct of the language was modified to identify such multiple byte memory operation. Taking
both the issues related to memory profiling in account, the modified Sim-nML description for
the same instruction is

GPR [ rd ]<31..0>=M [EA ] :: M [ EA + 1] :: ML EA + 2] :: M[ EA + 3];



We use the concatenation operator ( :: ) to concatenate all the bytes that have to be read in
the same cycle rather than reading one by one. The corresponding code generated is

int32 T_CON ;
readMem( getMemDesc( "M"), (EA),4, (uint8*) (&T_CON), 1 );
GPR[ rd ]=RANGE_ONR_FUNC_I32(GPR[ rd 1,31, 0,T_CON);

6 Implementation of Data Logging

With the readMem and the writeMem instructions, we have identified the memory read and
the write instructions respectively. Thus logging for the information needed for the profile can
be done in these instructions. Following assumptions have been made for the profile:

1. Each Memory read and write requires one cycle. Thus cycle counter is increased by one
after every read or write operation.

2. Each instruction fetch operation requires one cycle. Once again, cycle counter in increased
by one after the instruction fetch operation.

7 The structure of Profiler Log File

The design of the log file has been adopted from done by Luvish Satija[2]. A brief description,
along with current implementation details, is as follows:

The Profiler log file consists of a sequence of records. A record can be a Register Record
(RR) or a Memory Record (MR).The log file structure is as follows:

RRi RRj RRk MR MR MR

Register Records Memory Records

Figure 1: Log File Structure|[2]

7.1 Register Record

The purpose of a register record is to reduce the storage size by not storing the same information
twice, i.e. to store when the information changes.

A Register value is an N bit value. In the current implementation, N is a 32 bit value. There
are 7 registers each of which store information of one of the two: Cycle Counter or the Memory
Address.

The first 3 bits of the register record are 0. Next 3 bits tell the number of the register for
which this record has been written. Len field is the length of the value in bytes. It is assumed
that value is 2°" bytes. In the current implementation, memory address is a 32 bit value and



0 0 0 Num Len Value

3 bits 3 bits 2 bits Len bytes

Figure 2: Register Record|[2]

we are storing most significant 19 bits of the memory address in the value field of register record.
The rest 13 bits are stored in the corresponding memory record. The same is true of the cycle
counter too.

7.2 Memory Record

A Memory Record holds the actual log information. Following is the structure of a Memory
Record.

Cycle Counter Meiviory Acc Info Data
Address
2 bytes 2 bytes 1 byte N bytes

Figure 3: Memory Record|[2]

CycleCounter

This field keeps the information about the cycle counter. Cycle Counter is a sequencing infor-
mation of the memory records. It is stored in 2 bytes in the following pattern.

Reg Num Offset

3 bits 13 bits

Figure 4: Cycle Counter or Memory Address|2]

The first 3 bits are for the register number which keeps the base value, ie. the first ( N-13
) most significant bits for a N bit value. Thus first 3 bits can never be zero as the register
numbering starts from 1 to 7. Thus the first 3 bits of a record tell whether it is a register record
or a memory record. Register Record has the first 3 bits as 0. The next 13 bits are the offset



value for the cycle counter. Consequently, knowing the register number and this offset value,
the actual value can be obtained by concatenation.
Memory Address

Memory Address is the address of the memory which was accessed. For instruction fetch, it is
the value of the program counter. The value is stored exactly in the same way as is stored for
the cycle counter.

Access Information

The Access Information field is a one byte value containing the access information of the memory
access. Access information is broken as follows:

Size Type

3 bits 5 bits

Figure 5: Memory Access Information|2]

The size denotes the number of bytes of memory accessed. In the current implementation,
1, 2, 4, 8, 16, 32, 64, and 128 byte memory read, memory write and instruction fetch are
supported. The type field keeps information about the access type. With the current Functional
Simulator implementation, only Memory Read, Memory Write and Instruction Fetch
type of access are supported.

Data

The data field is the actual data that was accessed. In case of memory read it is the data that
was read. In case of write, it the data that was written. For instruction fetch, it is the binary
image of the instruction. For all the three, data is stored in the target endianity, ie, endianity
of the target processor.

7.3 Register Allocation Algorithm

The cycle counter and the memory addresses keep their base values in registers. Every time a
new memory record has to be written, we have to first find register numbers that will store the
base values of this cycle counter and the memory addresses. Register allocation is done in the
same manner for both the cycle counter and memory address. First a register with ( N-13 )
most significant bits same as the value to be stored is sought for. In case we get such a register,
this is allcoated. If such a register is not found, we have to replace a register. The register taken
for replacement is the least recently used register. The register is updated and this updated
value is stored as a register record in the log file.



8 Implementation of Profile Viewer

Profile Viewer is developed to project the logged data in a required fashion. The Viewer draws
a graph of percentage memory access against the memory bus cycles for all the three types of
accesses. This essentially projects the behaviour of the memory access as the program moves
ahead. The type of graph obtained depends on the logging policy. Currently, the memory
records are being logged with consecutive numbers for the cycle counter and thus the sum of
percentage access for read, write and fetch is always 100 for any set of consecutive cycles. Also
because of such a logging policy, we do not have areas where bus load is zero. However, viewer
algorithm is such that it would show gaps (areas of no memory access ) in case the cycle counters
in the log file are not consecutive. This is done so as to incorporate future changes to the logging
model. The Profile viewer has facility to zoom in between any portion of the profile to get more
exact information about the memory accesses. Following are some profiles obtained using the
profiler.
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9 Future Work

In the current implementation for the profiler, the data logging is done by incrementing the
cycle counter by one after every read/write/fetch operation. A construct can be added to Sim-
nML where user can specify the exact number of cycles taken in a read/write/fetch operation.
Profiler design could be enhanced to view the profile as the simulation goes on. This would
prove extremely useful for simulations that have very large execution time. Also design of the
Profile Viewer could be enhanced to provide more information like line number and other source
code information of target binary from the profile.
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