


Implementation of Breakpoints in GDB for Sim-nML based
Architectures

CS499 Report

by

Amit Gaurav
Y3036

under the guidance of

Prof. Rajat Moona

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

May 2007



Acknowledgment

I would like to express my deep sense of gratitude to Prof. Rajat Moona, for his
invaluable support and guidance during the course of project. I am highly oblized
to him for constantly encouraging me by giving his critics on my work. I am also
very much thankful to Mr. Nitin Dahra, M. Tech Student, Department of Computer
Science and Engineering, for his constant support throughout the project.

Amit Gaurav
May 2007
Indian Institute of Technology, Kanpur

1



Abstract

In every processor model there is a need for generic debugging environment. For this
reason almost all the known processor architectures are interfaced with GDB (GNU
Debugger) to facilitate the debugging part. Sim-nML is a retargetable processor
description language used to develop processor modeling tools. In this project the
GDB is modified to debug for Sim-nML based architectures also.

This Project is aimed at including the support of Sim-nML generated processor
models in GDB. Currently GDB supports only known processor models. This debug-
ger can be used to support the architecture models generated by Sim-nML language
also. This requires porting of GDB as well as BFD (Binary File Descriptor) library
to Sim-nML generated processor models.

Porting GDB requires making changes in GDB for target architecture. In this part
of work we have implemented breakpoint handling in GDB and Simulator which is
one part of the porting. In this case we needed to implement functions according to
the Sim-nML based architecture model.



Introduction

In this Project, we have implemented breakpoints in GDB to the Sim-nML generated
processor models. The porting done is not a complete porting. It is done as to make
the GDB work with the Sim-nML support. This required porting of BFD libraries
also. This porting lets the user to select the processor models generated by Sim-nML
to be debugged by GDB with constrained functionalities. Earlier the Simulator was
only interfaced with GDB with the target architecture same as that of powerpc. The
main work includes implementing breakpoints in the GDB structures for the Sim-nML
based architectures.

Overview of Sim-nML

Sim-nML is a language for describing an arbitrary processor architecture. It pro-
vides processor description at an abstraction level of the instruction set. Sim-nML is
flexible, easy to use and is based on attribute grammar. It can be used to describe
processor architecture for various processor-centric tools, such as instruction-set sim-
ulator, assembler, disassembler in a retargetable manner. Sim-nML has been used as
a specification language for generation of various processor modeling tools.

Overview of GDB

GDB is a portable debugger and it supports a large number of target architectures.
GDB consists of three major parts: user interface, symbol handling (the symbol side),
and target system handling (the target side). The user interface consists of several
actual interfaces. The symbol side consists of object file readers, debugging info
interpreters, symbol table management, source language expression parsing, type and
value printing. The target side consists of execution control, stack frame analysis, and
physical target manipulation. An overview of GDB can be seen in the following figure.

Figure: Block Diagram of GDB

1



GDB Configuration

GDB runs with support from the three configurations which are host, target and
native. Host refers to the attributes of the system where GDB runs. Target refers to
the system where the program being debugged executes. If the host and the target
are the same machine then the configuration is native.
Defines and include files which are needed to build on the host system are called host
support files. Whereas the files required to handle the target format are called target
support files. some examples are the stack frame format, instruction set, breakpoint
instruction, registers. The native configuration needs different type of files for the
control of the system.

Working of GDB

GDB gains access to the target process with the help of the ptrace command. When-
ever GDB needs to execute a target binary it creates a new process through fork() and
exec the target binary. Since GDB should have full control over the child process or
in other words it needs to trace the child process, So the child process tells the parent
process to trace its execution through ptrace function. An elementary execution will
be like:

int pid = fork();

if (pid == 0) {

ptrace(PTRACE_TRACEME, 0, 0, 0);

execve(target, args, NULL);

}

else {

wait(&wait_val);

// Execution of the parent process.

}

In this way, when executed inside GDB, the GDB will start tracing the executable
program. In case the GDB wants to debug a running process, it uses the request
PTRACE ATTACH to connect to the process and after that the target process
becomes the child process of GDB virtually. GDB can see andchange the data
or the values in the registers using PTRACE PEEKDATA, PRACE POKEDATA,
PTRACE GETREGS, PTRACE SETREGS requests. These functions are very much
used in case of breakpoint handling when the data in the target process space needs
to be changed.
We are concerned with adding the target architecture definition in the GDB. GDB
target architecture defines what sort of machine language programs GDB can work
with and the way it works. The target architecture object which is implemented with
each target architecture is defined as a C structure

struct gdbarch *

The structure and its methods are generated using the script gdbarch.sh.

2



Registers and Memory

GDB assumes that machine has a set of registers with each register may have dif-
ferent size. To get an idea of which registers are used for which purpose i.e how the
regiters are used by the compiler. One need to define the registers in the macros
like REGISTER NAME etc. Similar is the idea that the machine contains a block of
memory. The Macros which can be used in the target machine are defines below.

struct type *register_type (gdbarch, reg)

If the register type is defined then return the type of register reg .

BREAKPOINT

Breakpoint is the location in the program, when reached triggers a temporary halt in
the execution. It is mainly used to check the status of the program in stages. Usually
trap instruction is used for a breakoint. The breakpoint should not be longer than
the shortest instruction of the architecture.

BREAKPOINT_FROM_PC

The program counter is the one to decide the content and size of the breakpoint
instruction

frame_align (address)

IT is needed to fulfill the alignment requirement for the start of the new stack frame.
Specifically if a new frame is created both the initial stack frame pointer and the
address of the return value are correctly aligned.

CORE_ADDR unwind_pc (struct frame_info *this_frame)

It returns the return address of the this frame . Basically it returns the instruction
address at which the execution which resume after this frame returns.

push_dummy_call (gdbarch, function, regcache, pc_addr, nargs, args, sp,

struct_return, struct_addr)

This function is used to push the frame’s call to some other function onto the stack.
In addition to pushing number of args, the code should push struct addr (when
struct return), and the return address (bp addr). It returns the updated top of the
stack pointer.

Adding a New Target

To add a new target architecture to GDB we need to add some files into the GDB
architecture.

gdb/config/arch/arch_name.mt

This file contains the information about the objects files needed by the target ar-
chitecture. It is defined by the tag TDEPFILES and TDEPLIBS. IF there exists a
header file with the object file then it is defined by TM FILE. In addition to these
variables there are some more specifications but they are deprecated.

3



gdb/arch-tdep.c

This is the main file required for the target machine. It contains functions and the
macros which are other wise defined in the header file. The functions conatain the
register naming, stack frame format, instruction format and other processor specific
methods if needed.

gdb/arch-tdep.h

This file describes the basic layout of the target processor chip. The layout of the
registers and the stack frames etc.

Porting the GDB

The target machine needs to be configured well to make GDB compiled on that ma-
chine. In this case we will name our target architecture as Sim-nML having an alias
simnml and full three part configuration as simnml-none-none. To port the GDB
following are the steps that are needed.

• The first thing is to make Sim-nML visible to GDB at the time of configuration. For
this we need to add the Sim-nML introduction in the config.sub file. This can be done
by adding the three part configuration to the list of supported architectures, vendors
and operating systems. It can be just appended at the last of each configuration.
Also adding the alias name simnml which map to simnml-none-none maps that alias
to this name. We can test the configuration by typing

./config.sub simnml

or

./config.sub simnml-none-none

which will return the three-part configuration. In case of any wrong configuration it
will return an error.

• To configure inside the GDB source directory first edit the gdb/configure.tgt file
and need to set the gdb target to simnml .

• We need to add some target specific functions in the file simnml-tdep.c which define
the register and stack implementation. They are:

simnml_gdbarch_init

This function instantiates the GDB architecture along with the Sim-nML based ar-
chitecture. The default GDB functions which are used while debugging are overwrit-
ten by the functions which are Sim-nML specific. The GDB architecture is initial-
ized through struct gdbarch *gdbarch and the GDB target architecture is initialized
through struct gdbarch tdep *tdep . The main functions which are replaced for a
generic target architecture are:

void set_gdbarch_num_regs (struct gdbarch *gdbarch, int num_regs)

4



Set num regs that is the number of ARCH’s registers to the gdbarch. The related
macro is NUM REGS.

void set_gdbarch_register_type (struct gdbarch *gdbarch,

gdbarch_register_type_ftype *register_type)

Set gdbarch register type ftype type function to gdbarch. The set function uses
to return the type of register that number is regnr. These types are defined in
GDB/gdb/gdbtypes.c

void set_gdbarch_register_name (struct gdbarch *gdbarch,

gdbarch_register_name_ftype *register_name)

Set gdbarch register name ftype type function to gdbarch. The related macro is REG-
ISTER NAME. The set function uses to return the name of register that number is
regnr.

void frame_unwind_append_sniffer (struct gdbarch *gdbarch,

frame_unwind_sniffer_ftype *sniffer)

frame unwind sniffer ftype type function will call function GDB/gdb/frame.c:
frame pc unwind to get the address of current frame’s function. If the structure
frame unwind pointer that is related with the function accords with this address,
return the structure frame unwind pointer. Return NULL if not.

void set_gdbarch_unwind_pc (struct gdbarch *gdbarch,

gdbarch_unwind_pc_ftype *unwind_pc)

This function will call function GDB/gdb/frame.c:frame unwind register unsigned or
function get frame register signed (These functions will call function gdb/frame.c:
frame register unwind) to get a register’s value from stack. This value is the return
address of the function. To choice the register is according to the frame unwind
structure’s function that is called by frame register unwind. Such as some ARCHs
return the value of PC because place of PC in stack saves the return address of the
function.

void set_gdbarch_unwind_dummy_id (struct gdbarch *gdbarch,

gdbarch_unwind_dummy_id_ftype *unwind_dummy_id)

It calls function frame id build to get the frame id of the current frame. The first
parameter of frame id build is the current SP that is gotten from next frame. The
second parameter of frame id build is the current PC that is gotten from next frame.
The following is called process of the function dummy frame sniffer: the frame unwind
structure dummy frame unwinder that include the function dummy frame sniffer is
registered to list frame unwind data by function frame unwind init. Function
frame unwind init is called by initialize frame unwind. So when GDB call func-
tion frame unwind find by frame to get the frame unwind structure of a frame, the
dummy frame unwinder will be check first, then the function dummy frame sniffer
will be called first.
The function dummy frame sniffer uses to make sure if the current frame is dummy
frame. In this function, it will call set function pointer unwind dummy id to get the

5



current frame id. After that, it will compare this frame id with each frame id which
frame is set to list dummy frame stack by function dummy frame push. If a frames
frame id is equal with current frame id, Function frame unwind find by frame will
return the dummy frame unwinder. The reason is only dummy frame unwinder can
unwind the dummy frame.

GDB and Simulator

The GDB is connected to the Simulator through a set of functions which act as an
interface to both GDB and the Simulator itself. The functions are:
1) sim open ( SIM OPEN KIND kind, host callback *callback, struct bfd *abfd, char
**argv): This function starts the simulator through GDB. The IR (Intermediate Rep-
resentation) structure is generated at this stage. It can be done from an image file or
from nml file. Currently we are generating it from nml file.

2) sim load ( SIM DESC sd, char *prog, bfd *abfd, int from tty): This function
decodes the binary target given as argument and extracts the instructions, and other
data from it and puts it in data structures. The Binary format is assumed to be ELF
format and so the reading is based on ELF pattern only.

3) sim read (SIM DESC sd, SIM ADDR addr, unsigned char *buffer, int size) : This
function is used to read the data from the target memory space. The prototype of
the function is almost same as the read system call.

4) sim write (SIM DESC sd, SIM ADDR addr, unsigned char *buffer, int size) :
Same as the sim read function but it is used to write in the memory space of the
target machine.

5) sim create inferior ( SIM DESC sd, struct bfd *abfd, char **argv, char **env)
: It actually starts the process by calling the init simulator() process which allocates
memory space for the target. Also it initializes all the variables for the execution like
program counter, stack pointer etc.

6) sim fetch register ( SIM DESC sd, int rn, unsigned char *memory, int length)
: This function fetches the register value from the target memory space. The register
contents are fetch one byte once and are stored in an array.

7) sim store register ( SIM DESC sd, int rn, unsigned char *memory, int length)
: This stores the register value from the data structure into the registers putting one
byte once.
The fetch and store register functions are for floating point numbers also with the
same function as for the General purpose registers.

8) sim stop ( SIM DESC sd) : This function sets the variable stop simulator as
1. This stops the simulator.

6



9) sim create breakpoint (unsigned long address) : It adds an entry into the break-
point structure where it stores the address where the breakpoint instruction has to
be put and the function which is present at that address.

10) sim insert breakpoint () : After the creation of the breakpoint, they are not
inserted into the main instruction set. instead we have a separate function for insert-
ing them. The breakpoints are inserted when we resume the execution.

11) sim remove breakpoint () : The breakpoints are removed by this function. When
the user wants to see the original instruction set, the breakpoint instructions are
removed from the set and it is displayed. When again at the time of resuming the
execution, breakpoints are inserted.

12) sim resume (int step, int signal) : This function invokes run simulator which
actually run the instructions given in exec tbl structure. It checks for the execution
after the breakpoint stop. Whenever the simulator is stopped due to breakpoint and
again it is resumed, this function executes the function in the buffer which was there
on behalf of the breakpoint instruction. And then it calls run simulator for the normal
execution thereafter.

Implementing Breakpoints

The breakpoints should be handled in a very different manner because in this case
of the simulator the instructions are not taken from the symbol table in the memory
but rather from a file structure. Thus in order to implement a breakpoint we need to
change the instructure in this structure. The GDB interface is used to facilitate the
address of the instruction whenever a brakpoint is addressed. This address from the
GDB is used in the simulator. The step by step procedure is :
1) When the GDB starts with the target executable as the argument, the GDB loads
this file by reading its symbol table. It uses BFD library to perform this operation.
Once it loads the file, it has the information about the instructions and the symbols.
By default we are assuming the file to be in the ELF format.
2) For normal execution the GDB transfers the control to the Simulator which then
takes the instructions from the instruction structure exec tbl and executes the in-
structions one by one. But when GDB gives the breakpoint instruction at certain
function or address. We need to replace exact address in the simulator instruction
set by the breakpoint instruction. To do this we extract the address from the symbol
table loaded in GDB and pass this address to Simulator. In Simulator there is a
structure BREAK ADDR as below:

struct BREAK_ADDR {

void (*func_ptr) ();

unsigned long address;

}

BREAK_ADDR[BREAK_POINTS];

7



This structure keeps an record of the breakpoints that have been assigned by the user
and the breakpoints are consecutively added into this array. It stores:
- The function pointer which points to the actual function which exists in the in-
struction set of the executable file.
- The address where the breakpoint has to be inserted.
After this, we have the list of breakpoints which are given by the user.
3) Whenever we resume or run the executable file all the breakpoints which are in
the structures are inserted into the actual instruction set and the functions there are
replaced with the breakpoint functions. A breakpoint function changes SIM STAT to
STOP which is RUN before. Removes breakpoints every where from the instruction
set. Buffers the function where the execution has stopped due to the breakpoint.
4) When we again continue the function after the stop due to the breakpoint, the
Simulator inserts the breakpoints again and calls the resume function. The resume
function then changes the Simulator status to RUN and executes the buffer function
stored before. Then it calls the run simulator function which then performs the nor-
mal execution.
5) In case of next and step instruction, the function information is necesary. For
next command, for a function the address of the return value of the function is taken
and is given to the simulator. Then the executable has a normal execution until that
address is reached. If it reaches then Simulator is stopped and the control is given
back to GDB. For a whole line, just the program counter which corresponds to the
next instruction is noted and execution is done until that address.

Porting the BFD

We are not completely porting BFD but we are just porting it to make the GDB
structure work. To port BFD first thing is to edit the config.bfd file.

In the config.sub file we need to add the target architecture as bfd simnml arch
in the list of all supported architectures. Also we need to define the default vector
for the simnml generated target. It is defined by the keyword targ defvec . Also in
addition to it we also define whether underscores are used or not.

The second file that needs editing is archures.c . BFD keeps one atom in BFD
describing the architecture of the data attached to the BFD. So we need to define Sim-
nML architecture the same way. It is define in the enum bfd architecture . Within the
BFD the information about the architectures is also contained in a structure called
bfd arch info . We need to initialize the Sim-nML based architecture here also. For
various architecture information about them is defined in this file like that of mips,
sparc etc. But since Sim-nML is not certain architecture specific so we left the addi-
tion at the time of execution only.

The targets.c lists all the vector for the target architectures. For running purpose
we define the default vector for the Sim-nML based architecture to be elf32 . Thus
we need to have an entry of simnml here also.

8



We need to create a file cpu-simnml.c which contains the information about the
target architecture. To make this porting work we have included the default generic
information about the Sim-nMl generated architecture models. Every information
is put up in the structure bfd arch info type which is already instantiated in the
archures.c file. It contains various parameters some of them are:

No. of bits in a word - In this case we kept it 32.
No. of bits in an address - It is 32 in case of Sim-nML based architecture.
No. of bits in a byte - Keeping it generic it is 8.
Name of the BFD architecture of the target architecture - bfd arch simnml.
No. of Machines associated with this architecture - By machines it specifies whether
its a 32-bit machine or a 64-bit machine etc. it is 1 in this case which is 32-bit.

The other file which we need to create is elf32-simnml.c , the vector file for the
target architecture. In case of the Sim-nML based architecture we have kept it as
32-bit elf target. In this we define some macros which are:

ELF_ARCH

ELF_MACHINE_CODE

ELF_MAX_PAGESIZE

bfd_elf32_bfd_reloc_type_lookup

bfd_elf32_bfd_get_relocated_section_contents

Lastly we need to add the Sim-nML description in the configure.in file so that the
architecture can be added during the compilation of the source. In configure file
it basically mentions the files required to produce target binary in each case listed
alphabetically.

Result

The GDB architecture is now recognizing the Sim-nML generated architectures mod-
els with some default functionality. The compilation with target as simnml is done
successfully. We used only static library of the GDB with no dynamic linking. The
execution of the binary targets with Sim-nML as target architecture definition can be
run with the GDB support. The debugging of the Simulator with the GDB support
for the executables of certain architectures is done with breakpoint handling support.

Conclusion

In this section of work, we have implemented breakpoint handling in the GDB to
support the Sim-nML based architecture models. This was needed as to provide
a decent debugging environment. We have also ported the BFD configuration to
support the architecture aforesaid. The porting of the GDB is not complete as it
needs other information like registers etc. In our case we used only one binary file
format which is elf32 .

9



Bibliography

[1] BFD Library URL: http://www.gnu.org/software/binutils/manual/bfd-
2.9.1/bfd.html.

[2] Surendra Kumar Vishnoi. Functional Simulation Using Sim-nML. Master’s Thesis
Department of Computer Science and Engineering, IIT Kanpur, May 2006.

[3] GDB Internals URL: http://sources.redhat.com/gdb/current/onlinedocs/gdbint.html

[4] Sim-nML Specifications URL: http://www.cse.iitk.ac.in/users/simnml/docs/simnml.pdf

[5] The GNU Project Debugger URL: http://www.gnu.org/software/gdb/

10


