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Abstract

Many tools exist to analyze the Linux Operating System but very few of them can be
used to analyze the Linux kernel. The existing tools are not fully capable of providing a
picture of the kernel level activity of the system to a user - some tools are inclined towards
a particular aspect of the kernel while others provide a more generic information without
going into details.

We propose and implement a centralized tracing framework for the Linux kernel. The
framework is based on the simple idea of giving a snapshot of the Linux kernel to the
user at the occurrence of certain pre-defined kernel events. The snapshot is provided in
terms of a set of kernel level variables. The key feature of the framework is that it is
easily extensible - the set of pre-defined events as well as the kernel level variables can be
enhanced without redesigning or modifying the existing code.

The tracing framework provides the funetionality to trace the entire system or a par-
ticular process. The framework also takes care of the security issue - a user can only trace

its own processes. Only the superuser has the privilege to trace any process.
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Chapter 1
Introduction

The ability to observe the system and to understand what is going on inside the system
is very useful for all the users. It is possible that different users may be interested in
different aspects of the system. For example, a system administrator may be interested
in finding out which system resource is acting as the bottleneck while a programmer may
want to find out where the application is spending most of its time. On the other hand,
a learner would like to know what is going on in the system just to understand it.

The kernel is assumed to be a black box of the operating system which drives the whole
system. But what actually happens in the kernel remains a mystery to most people. This
is not desirable since the kernel performs operations such as scheduling, disk I/0O, memory
management, system call invocation etc. which handle the system resources. It would be
better if somehow the factors that rule the performance of the kernel are exposed to the
users of the system. If a mechanism is available that can give a complete picture of the
kernel activity, it can be used to identify the resource usage in the system and handle the
performance bottlenecks.

The usually available statistics like CPU usage, memory usage etc. can identify which
resource is not being used judiciously. But just an overall system picture is not very
useful. There is no way the entire system activity can be reconstructed by using these
tools.

We attempt to build a framework which provides a detailed view of the kernel activities
of the system. The framework is known as Ktrace and is based on the notion of events and
variables. "Events" are certain occurrences in the operating system which the user might
be interested in. Whenever any event occurs, the current "system state" is recorded along
with the current time stamp. The system state is defined in terms of a set of "variables".
The values of these variables provide an insight into the kernel. For example, the "number
of free pages" can be recorded at each memory fault event. The variables in our work
may correspond to variables in the Linux kernel code or may be only virtual variables,
the values of which are computed each time they are to be recorded. The "event" always

corresponds to some point of execution inside the kernel.



Some salient features of Ktrace are the following.

e A centralized extensible framework : Ktrace acts as a central place for tracing and
is easily extensible. The basic set up has been developed with a certain set of events
and variables to provide the user with the tracing data. If at some point of time,
a need arises for adding a new event or a variable, it can be easily accomplished
without redesigning and without major modifications in the existing code.

e Security : A user can only trace his/her own processes. There is no way a user
can access the data of the processes owned by others. The superuser can trace all

processes.

e System or Process : The entire system can be put under tracing or a particular

process can be traced at a given time.

1.1 Related Work

Strace [1] is a tool that provides a complete picture of the system calls made and signals
received by a process. This provides a view of the interaction between user mode and
kernel mode. However this approach is only limited to system calls and signal behavior
of the system. Information about other kernel activities would also be very useful.

The Linux kernel debugger |2] provides a direct way to analyze the Linux kernel. But
the problem is that one needs to add explicit breakpoints to observe the kernel memory
and data structures at any point of execution.

DTrace [3]| is a comprehensive tracing framework for the Solaris Operating System
and it provides very good insight into the workings of Solaris kernel. But it can not be
directly ported to Linux because of the differences between Linux and Solaris kernels.

All of the above frameworks do not have the ability to reconstruct the kernel level
activity and provide the required information to the user. Yet, DTrace provided us with

many ideas for designing and implementing Ktrace.

1.2 Organization of the Thesis

The rest of the thesis is organized as follows.

In chapter 2, we discuss various existing works that provide the functionality to analyze
the Linux kernel. In chapter 3, we describe various design related issues encountered while
developing Ktrace. In chapter 4, we talk about the implementation details of Ktrace. In
chapter 5, we show how Ktrace can be applied to analyze the Linux kernel. In chapter
6, we summarize the work done and also list the possible ways in which this work can be

extended.



Chapter 2

Previous Work

2.1 The /proc Filesystem

The /proc filesystem [4] is a virtual filesystem which acts as an interface to the kernel
data structures. It is one of the most basic ways of making kernel data visible to the
users. Most of the user space based profilers like Top [5], Vmstat [6] are based on the
data provided by /proc.

/proc is not a true filesystem in the sense that it does not exist on the disk. In reality,
it is just a set of kernel memory data structures which provide important information
about the state of the system as a whole as well as about the individual processes. The

layout of the filesystem is built around two categories.

e Process Specific Info : /proc contains a directory for each running process on the
system. Some of the files in each process directory are - cmdline, fd, mem, stat,

status etc.

e System Specific Info : /proc contains a set of files which specify the overall system
state at this point of time. Some of the important files in this category are the

following.

— Devices : It contains a listing of all the devices of the system along with their

major numbers.

Diskstats : It contains statistics related to I/O for each disk device.

— Meminfo : It contains the total and free memory of the system.

Mounts : It contains the list of currently mounted file systems.

— Net : This is a directory and it contains a set of files specifying network sta-

tistics.

While /proc provides an extensive list of data related to each aspect of the system, it

only provides the information related to the final state of the system at any given time.



It does not have the capability to provide the information on the events that happened

en route to the system’s present state.

2.2 Strace

Strace 1] is a tool that provides a mechanism to trace system calls and signals. It executes
the specified command (taken as an option at run time) and prints the system calls made
by the corresponding process and the signals received by the process. For system calls,
the output consists of the name of each system call, its arguments and the return value.
In case of signals, the signal name is printed.

A subset of system calls or signals can be specified if one is not interested in tracing all
the system calls or signals. An already running process can also be traced by specifying
its pid as the command line option. A detailed description of Strace can be found in the

online manual page [1].

2.2.1 How does Strace work

Strace basically makes use of the ptrace system call. The ptrace [7] system call provides a
mechanism by which a process (tracing process) may observe and control the execution of
another process (traced process). Itis primarily used to implement breakpoint debugging
and system call tracing.

In the simplest case, the traced process can be a child process of the tracing process.
The traced process is stopped whenever a signal is delivered to it and the tracing process
is notified.

The ptrace system call takes as an argument a "request" field which determines the

action to be performed. The following are the possible values for this "request" field.

e PTRACE TRACEME : This is used by the traced process to enable tracing. The
common use of PTRACE _TRACEME option is when in a program, fork is called.
The child process (created by fork) enables the tracing prior to executing execve
system call, thereby enabling the tracing process to trace the execution of the con-

cerned program.

e PTRACE ATTACH : If the traced process is already running, then another process
owned by the same user can issue the ptrace system call with the PTRACE _ATTACH
option. In this case, the process with specified "pid" (which is the second argument

of ptrace) is "traced" by the calling process.

e PTRACE SYSCALL : If the tracing process uses the PITRACE _SYSCALL option,
the traced process is also stopped at the system call entry or exit and the tracing
process is notified. The tracing process can examine the traced process’ registers

and obtain the system call number, its arguments and the return value.

4



e PTRACE CONT : When called by the tracing process, this option continues the

execution of the traced process that had been stopped because of trace event.

PTRACE ATTACH, PTRACE _SYSCALL and PTRACE _CONT are used by the
tracing process. In essence, tracing a process requires the traced process to make a call to
ptrace with PTRACE TRACEME or the tracing process to make a call to ptrace with
PTRACE _ATTACH. Subsequently, the tracing process can make calls to ptrace with
PTRACE SYSCALL and PTRACE _CONT.

This mechanism is not easily extensible. The ptrace system call does not have any
option to intercept any other events and record them. Also, this approach tinkers with
the natural scheduling of the processes - the traced process is suspended till the tracing
process issues a PTRACE _CONT. So it might not be very useful if one wants to study
the behavior of the scheduler.

2.3 DTrace

DTrace [3] is a comprehensive dynamic tracing framework for the Solaris Operating Sys-
tem. It provides the capability to execute user specified actions at the occurrence of

certain kernel level events. D7Trace has two major components.

e Kernel Instrumentation : This part is responsible for tracing the kernel code. The
Solaris kernel code is modified to execute certain specified actions on occurrence of

certain events.

e D language : DTrace provides a scripting language which provides a way for a user
to express what he wants to be traced.

A comprehensive overview of the architecture of DTrace is provided by Cantrill and
others [8]. A sample D script looks something like the following.

dtrace: : :BEGIN
{

scall = 0; sread = 0; swrit = O;

syscall:::entry { scall++; }
sysinfo:::sysread { sread++; }

sysinfo:::syswrite { swrit++; }

dtrace: ::END
{
printf ("%d %d %d\n", scall, sread, swrit);



A script consists of certain number of clauses - each clause made up of a relevant event
and the actions to be taken upon the occurrence of that particular event. Except for two
special events - BEGIN (start of trace) and END (end of trace), all other events correspond
to some point of execution within the kernel. Solaris Dynamic Tracing Guide [9] provides
details about writing D'Trace scripts.

The kernel has been instrumented at each place corresponding to all the events sup-
ported by DTrace. Whenever a relevant event occurs, the control is transferred to the
DTrace module to execute the actions specified by the user. The actions included in the
script are converted into some intermediate form.

A compiler is needed to convert a script into an intermediate form and check for the
errors in the script. Also, since any user can write the tracing script and the actions
are to be executed from within the kernel, the script needs to be validated. It needs to
be checked for conditions like illegal memory access etc. requiring significant amount of
processing.

Most of the actions allowed to be written in the D language are related to actual
formatting of the data. From the performance viewpoint, there is no need for such actions
to be executed in the kernel. The kernel can just provide the user with "raw" tracing data
and the user can process it any manner he/she wants to. The basic functionality that is
required from the kernel is to provide the notification of occurrence of certain events and

the values of different kernel variables at that point.



Chapter 3

Design of Ktrace

3.1 Overview

The aim of Ktrace is to provide the user with the "system state" (values of variables)
on the occurrence of specific events. There are two major components of Ktrace - a user
level module and a kernel level module. The kernel level module is the actual tracing
component. The user level module is more like a front-end of Ktrace. It is responsible for
passing various options to the kernel module and to process the trace data provided by

the kernel module in a human-readable format.

Ewvent mask, Wariable mask

Uzer level Kernel lewal

module module
Fead Data from buffer

[

Figure 3.1: Overview of Ktrace

3.2 User Module

The user module acts as a bridge between the user and the kernel module. The user
module provides the user interface. It interacts with the kernel module using a device
driver. It must pass the following information to the kernel module (through ioct! system
call).



e Event Mask : It is a mask for the list of events that the user wants to be traced.
This is a 32 bit integer that supports one bit for each event. Up to 32 events can
be specified to the kernel.

e Variable Mask : It is a mask for the list of variables that the user wants to be
traced. This is also a 32 bit integer, supporting up to 32 variables, one bit per
variable.

e Pid : It is the pid of an already running process which the user wants to be traced.

The event and variable masks can be computed by ORing the masks for individual
events or variables as listed in Tables 3.1 and 3.2. The events and variables listed in the
table below have been prepared after examining the execution flow of the Linux operating

system.

3.2.1 List of Events

The complete list of events (along with masks for each one of them) supported by Ktrace
is shown in Table 3.1.

Table-3.1: Table-of Events

Event Name Mask
Syscall Entry 0x1
Syscall Exit 0x2
Page Alloc Ox4
Page L'ree 0x8
Schedule In 0x10
Schedule Out 0x20
Lock Acquire 0x40
Lock Release 0x80
Signal Dispatch 0x100
Signal Handle 0x200
Socket Open 0x400
Send Packet 0x800
Receive Packet 0x1000
Mount Filesystem 0x2000
Unmount Filesystem | 0x4000

A brief description of the events is as follows.

e Syscall Entry : A system call is about to start execution in the kernel mode. The
Linux kernel contains a centralized mechanism to invoke system calls (using in-
terrupts through int $0z80 instruction) and this central point corresponds to the

system call entry event.



e Syscall Exit : A system call is about to return to the user mode. The return from a
system call also takes place through a central mechanism and it corresponds to the

system call exit event.

e Page Alloc : A page of memory is assigned by the Linux kernel. This event corre-
sponds to the beginning of the __alloc_pages function [10] of the kernel.

e Page Free : A page of memory is freed by the Linux kernel. This event corresponds
to the beginning of the free_ pages function [11] of the kernel.

e Schedule In : The scheduler is invoked by the Linux kernel. The actual point is the

beginning of the context_ switch function [12] in the Linux kernel.

e Schedule Out : The scheduler’s job is finished. The actual point is the end of the

context_ switch function [13] in the Linux kernel.
e Lock Acquire : A lock is acquired by the current process.
e Lock Release : A lock is released by the current process.
e Signal Dispatch : A signal is delivered to the current process.
e Signal Handle : A pending signal of the current process is handled.
e Socket Open : A socket is ereated using the socket system call.
e Send Packet : A TCP Packet is sent by the system.
e Receive Packet : A TCP Packet is received by the system.
e Mount Filesystem : A filesystem is mounted using the mount system call.

e Unmount Filesystem : A filesystem is dismounted using the umount system call.

3.2.2 List of Variables

The complete list of variables (along with masks) supported by Ktrace is shown in Ta-
ble 3.2.
A brief description of the variables is as follows.

e CPU Registers : It corresponds to the process specific set of CPU registers. We
update them only at the time of system call entry and system call exit. So they
always store the last issued system call on the system along with its arguments and

the return value.
e PID : It is the combination of the pid and wid of the current process.

e PPID : It refers to the pid of the parent of the current process.

9



Table 3.2: Table of Variables

Variable Name | Mask
CPU Registers Ox1
PID 0x2
PPID 0x4
PGID 0x8
EFree Memory 0x10
Total Memory 0x20
Page Faults 0x40
Page Ins 0x80
Page Outs 0x100
Swap Ins 0x200
Swap Outs 0x400
Outgoing Process | 0x800
Incoming Process | 0x1000
Signal 0x2000

PGID : It stands for Process Group Id. This represents the process group to which
the current process belongs.

Free Memory : It denotes the amount of free memory of the entire system.
Total Memory : It denotes the total memory of the system.

Page Faults : This variable corresponds to the total number of page faults that have

happened so far in the system.

Page Ins : This variable stores the number of disk reads that have happened so far

in units of pages.

Page Outs : This variable stores the number of disk writes that have happened so

far in units of pages.

Swap Ins : This variable stores the number of swap ins that have happened so far
in units of pages.

Swap Outs : This variable stores the number of swap outs that have happened so
far in units of pages.

Outgoing Process : It corresponds to the pid of the last running process on the
system. This variable only makes sense at the time of "Schedule In" event.

Incoming Process : It corresponds to the pid of the process that is next going to
run on the system. This variable only makes sense at the time of "Schedule Out"

event.

10



e Signal : This variable denotes the last signal that has been delivered to the current

process.

3.3 Kernel Module

The kernel module is responsible for implementing tracing. It obtains the tracing options
from the user module through a device driver interface and can set up Ktrace accordingly.
At the occurrence of an event to be traced, the kernel module has to store the values of
all the required variables (as defined by the variable mask).

For the purpose of storing the values, the kernel module needs access to a memory
buffer. This memory buffer keeps the "system state" on the occurrence of events. But
this tracing data has to be transferred to the user module because it is the user module
which processes this data for the user.

The tracing is therefore implemented with a two way interaction between the user

module and the kernel module.

e The user module passes on the tracing options to the kernel module. This happens

only once for each user module.

e The data logged by the kernel module is continuously transferred to each user mod-

ule. This happens repeatedly during the time tracing is going on.

3.4 The Trace Buffer

The kernel module has access to a buffer to log the tracing data. This buffer is modified

by two operations.

e Data Logging : The data is written to the trace buffer upon occurrence of an
event specified by the event mask. There is a data logging function which is called

upon occurrence of the trace events.

e Data Reading : The data is transferred from the trace buffer to the user module.
There is a data reading function which is called when the user module issues the

read system call for the trace device.

These operations are implemented in the kernel module.

3.4.1 Synchronization Issues

The kernel module is the sole writer to the trace buffer but there can be multiple readers,
each reader corresponding to one user module. This appears to be a multiple reader-

writer problem which requires proper synchronization using locks etc. We consider only

11



single processor systems as synchronization issues become more complicated in case of
multi-processor systems.

There are two functions at work here - a reading function which acts on behalf of
the readers and a logging function which does the writer’s job. These functions are
implemented in the kernel trace module and hence both are kernel functions. As we
know, the Linux kernel is a non-preemptible kernel i.e. a user process executing inside
the kernel can not be forced to give up the CPU until its work is done. This means that
a process is not going to be scheduled out while either the reading or writing to the trace

buffer is taking place. By this simple design, synchronization has been ensured.

3.4.2 Trace Buffer Policy

The trace buffer is maintained as a circular buffer with a "write pointer" indicating the
next place to write the data. There are several "read pointers", one for each reader. The
kernel module keeps on writing into the buffer in a circular manner. Such mechanism may
overwrite the previous stored data (which becomes obsolete). The reason for this policy
is that different readers will move at different rates and not writing when the buffer is full
means we are limiting all the readers to the speed of the slowest reader which is not fair
to all other readers.

An alternative view of this scenario is shown in Figure 3.2. The trace buffer can be
considered to be of infinite size but there is a window of fixed size which corresponds
to the current active region. This window will contain the data to be read by the user
modules. All the data logged before this window is obsolete and can be thought of as
ancient forgotten history (as it is no longer available in the trace buffer) and space ahead

can be thought of as belonging to the future.

Forgotten
History

Current
Arctive
Window

Future

Figure 3.2: Trace Buffer Policy View Point
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The kernel module writes at the end of the current active window leading into the
future space. The reader can only read data from the current active window (as only
that data is relevant). If some reader lags behind, its "read" pointer is brought into the

current active window at the time of its next read.

3.4.3 Data Organization

Since the trace buffer data has to be transferred between two entities (between the user
and kernel modules), a protocol needs to be established which will determine the encoding
and decoding of the data. The data inside the trace buffer is organized in the form of
TLV triplets i.e. Tag, Length and Value. Each event and variable is assigned a unique
numerical tag. The length field stores the space taken by the value of the corresponding
tag. The wvalue field stores the data - the actual value in case of variables and the time
stamp in case of events.

The mapping from data to a TLV triplet is determined by the Basic Encoding Rules
used in ASN.1 [14]. ASN.1 stands for Abstract Syntax Notation One - a standard for
representing, encoding, transmitting and decoding data. ASN.1 provides few encoding
rules and we use the Basic Encoding Rule Set to encode and decode our data. The

detailed mapping according to the rules is described in Appendix A.

3.5 Global Event and Variable Masks

There can be multiple user level trace modules running at the same time - each user
module corresponding to a separate trace invocation. Each user level module might be
possibly interested in different sets of events and variables, which it can convey to the
kernel module.

Naturally the question now arises - what events and variables the kernel module is
going to log into the trace buffer at the occurrence of an event. So the concept of a
"global event mask" and a "global variable mask" comes into the picture. The "global
event mask" is the union of all the event masks specified by all the currently active user

level modules (same holds for the global variable mask).

3.5.1 Data Logging

The kernel module is only concerned with the global event and variable masks at the
time of logging the data. Only those variables are logged which are present in the global

variable mask and logging is done only if the event is part of the global event mask.

13



3.5.2 Data Reading

The concept of global event and variable masks also affects the data reading procedure
(which transfers the tracing data from the trace buffer to each individual user module).
The trace buffer contains data corresponding to the global masks. However a user module
expects data according to its own specifications of event and variable masks. The reading

function therefore is designed to transfer only the relevant data to each user module.

3.6 Tracing a Process

The user might be interested in tracing a particular process only rather than the entire
system. There are two possibilities.

One way is that the user may want to trace a process which is already running on the
system. In this case, the user passes the pid of the concerned process to the user module
which passes it onto the kernel module. The issue with this approach is that since the
process is already running, the events leading up to the starting of the trace can not be
traced.

The second possibility is that the user can also pass the path of the executable which
it wants to be traced. In this case, the user level module executes the executable (as a
child process), obtains its pid and passes it onto the kernel module.

The trace buffer may contain data corresponding to other processes (because of other
user module preferences). The reading function again has to take care to provide the user
module with only the relevant data (of the conceined process).

3.7 User Access to Tracing

Security is one of the important issues that always needs to be addressed in case of tracing
the system. Care has to be taken that any user can only see the tracing results of its own
processes. In no way should the data of processes owned by other users be made available
to the third party. Only the superuser has the right to trace all the processes.

In our case also, the trace buffer may contain data corresponding to other users and
the reading function therefore arranges for the required data only.
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Chapter 4
Implementation of Ktrace

Ktrace has been implemented on the Linux Operating System. Linux kernel version 2.6.18
has been used as the base for implementation. In this chapter, we look at the details of

implementation.

4.1 Kernel Module

The kernel module needs to satisfy the following requirements (as discussed in chapter 3).

e A kernel level trace buffer to log the data.
e A mechanism to obtain the tracing options from the user level modules.

e A mechanism to filter the trace buffer and pass relevant data to the user level

modules.

We implement these mechanisms using a device driver implementation. All require-

ments are easily satisfied by a device driver as described below.

e Being a kernel level module, a device driver can allocate a trace buffer by using the

kmalloc kernel function.

e A memory based device driver supports the ioct! system call which allows user level

programs to pass certain options to the kernel device driver.

e A memory based device driver also supports the read system call by which kernel
data can be transferred to the user level programs after appropriate filtering as

described in chapter 3.

A pseudo device name has been created as /dev/trace and the kernel module acts as

a driver for this device.
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4.1.1 The Trace Device Driver

The trace device driver is implemented as a loadable device driver. Therefore the device

driver has to implement the following additional functions.

e trace init : This function is called by the kernel when the device driver is first
loaded into the system (by using the insmod command [15]). This function mainly
deals with two things - memory is assigned to the trace buffer associated with
the driver and the device driver is registered with the kernel by using the major
number and minor number of the device. According to the convention with the
newer kernels, the device requests some major number from the kernel. The kernel
assigns the major number depending upon the availability and the module then gets
inserted into the kernel. The device name entry ( /dev/trace) should then be created

by reading the major number of the corresponding device driver from /proc/modules.

e trace exit : This function is called when the device driver is finally unloaded
from the kernel (by using the rmmod command [16]). The main work done here
includes freeing up trace buffer and any other memory areas allocated, deregistering

the driver from the kernel etc.

Apart from the above mandatory functions; the device driver implements the following

functions.

e open : This function is called when a process issues the open system call to open
the /dev/trace device.

e close : This function is called when the close system call is used with the file

descriptor of the /dev/trace as argument.

e read : This function is called when the read system call is issued to read from

Jdev/trace device (i.e. from the trace buffer).

e write : This function is called when the write system call is used to write to the
/dev/trace device. This function is not implemented by the trace device driver as

the trace device is a read-only device that provides the trace data.

e ioctl : This function is called when a process uses ioctl system call to configure

certain options of the /dev/trace device.

These functions are internally called by the operating system when a process makes
the corresponding system call. A detailed description of device driver implementation can

be found in Linux Device Drivers [17].
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4.2 User Module

The user module has to accomplish the following things.

e [t passes various tracing options to the kernel module - event mask, variable mask
and pid of the relevant process to be traced. This is accomplished using the ioctl()

system call provided by the trace device.

e The second aim of the user module is to obtain the data logged in the trace buffer.

The read system call is used for this purpose.

Uzer level

module

ioctli

¥

read()

[ 3

Kernel lewal

module

Figure 4.1: Interaction between User level and Kernel level modules

The user module first uses the open() system call to obtain a file descriptor for the
trace device. It then calls ioctl() to pass options regarding event and variable masks and
pid of the traced process to the kernel module. The kernel module then starts logging the

data into its trace buffer. When the user module wants to exit, it can use close() system

call.

4.3 The Trace Buffer

The kernel module allocates a fixed size trace buffer by using the kmalloc kernel function.

Whenever a trace event is encountered, the following information is logged in the trace

buffer.

e A pseudo variable to indicate the type of event encountered.

e The current time stamp.

e All variables that have changed since the previous recording.
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The trace buffer is of limited size and can potentially overflow. There is a need to
optimize the size needed for data being written into the trace buffer. We reduced the size
needed for the buffer by recording the values of only those variables into the trace buffer

which have changed since the last recording.

4.4 Data Logging

The kernel module implements a function which logs the data into the trace buffer. This
function is called when a relevant event takes place inside the kernel. It takes the event
type as a parameter. The definition of this function is the following.

void trace_dump(long event}
{
if (event is in global_event_mask)

store variables whose values have changed

The Linux kernel source has been modified to call this function whenever any traceable
event takes place (i.e. an event that is supported by the tracing system). Calling this
function is not straightforward as it involves some issues. These issues will be discussed

later in section 4.8.

4.4.1 Extensibility of Ktrace

This section discusses how the logging of data leads to an easy extensibility of Ktrace.
Each "variable" has the following fields.

e A Pointer to the current value (ptr) of the variable inside the kernel. This value is

continuously updated inside the kernel as the execution proceeds.
e The last logged value of the variable (last_value).
The implementation of trace_ dump function uses these information as follows.

void trace_dump(long event}
{
if (event is in global_event_mask)
for i =1ton
if (variable[i] is in global_variable_mask &&
(xptr[i] '= last_valuel[il))
last_value[i] = *ptr[il;

record last_valuel[i] in trace buffer;
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The pointers to the actual values of the variables are set up at the time of the initializa-
tion of the program. For the variables which exist directly in the kernel such as totalram
(that stores the total memory of the system), setting up the pointer is straightforward as
in ptrfi] = &totalram. In other cases, a new variable is introduced and the pointer is set
up accordingly.

If need arises to introduce a new variable, it can be easily accomplished by following

two steps.

e First, the pointer of the new variable needs to be set up.

e Secondly, the upper limit of the for loop in the code needs to be incremented by

one.

4.5 Data Reading

The user module issues the read() system call for reading the data. This read is redirected
by the Linux kernel to the read() function implemented by the trace device driver.

The kernel module obtains the data available in the trace buffer, filters it for the
appropriate values and passes it over to the user module. A "read" pointer is maintained
for each reader.

ssize_t read(..... )
{
str = get filtered data from buffer;

copy_to_user(str);

return length(str);

There can be multiple active readers at the same time. Therefore, a list of "reader"
structures is maintained. The structure of the list is discussed in section 4.7. A user
module can start (using open) or exit (using close) at any time and hence traversal,
insertion and deletion operations are performed on this list. However, we expect only a
limited number of user modules running a trace at the same time. We use a linked list

data structure for this purpose.

4.5.1 Extensibility of Ktrace

The reading function is the second reason for the easy extensibility of Ktrace. The read
function simply transfers the data available in the trace buffer to the user level module.
Since the data corresponding to the new variables is available in the trace buffer (due to
trace_ dump), it is transferred to the user module. Here also, nothing extra needs to be

done for incorporating new variables.
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4.6 Data Filtering

Data is logged in the trace buffer in a compact form - only those variables are recorded
whose values have changed since the last recording.

The procedure to read implements filtering and other aspects as discussed earlier and
described here. The data inside the trace buffer needs to filtered at the time of read and

the criteria for filtering is based on the following.

e Event: The data logged at the time of writing corresponds to global event mask
while a specific process is interested in only a subset of these events as specified in
its event mask. Hence the data needs to be filtered depending on the event mask of

the reader.

e Pid: The user module might be interested in only the data of a particular process.
Therefore, the data needs to be filtered according to the specified pid.

e Uid: Only the data of user owned processes are provided to a particular user which
involves filtering depending on the wid of the reader process.

4.6.1 Data Consistency

The filtering of data in the trace buffer may lead to inconsistency of data. The issue
is explained with an example. Assume that there are two readers and both of them are
interested in the same two variables - "v1" and "v2". But the first reader is only interested
in event "el" and the second is interested in event "e2". At some stage, the trace buffer
might look like as shown in Figure 4.2.

Eeaderl
el | #1 ez | vl Ve el | +2
a b 1 1 ke 1 tn

Figure 4.2: Trace Buffer snapshot at some time

Let us examine the first reader (readerl) when the "read pointer" is at location "a"

(the first occurrence of el). The value of vl is transferred to readerl along with el.

"1". Since readerl is not

After some time, the read pointer reaches the location marked
interested in event e2, the values of vl and v2 are not transferred to readerl. When the
read pointer reaches location marked "1" (the second occurrence of el), value of v2 is
transferred to readerl. From readerl’s perspective, the situation looks like the following

after data transfer.
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Current Event | State of Variables
el vl
el v2

The readerl will interpret that the value of v1 remains the same even after the second
occurrence of el, which is clearly not true. This leads to a data inconsistency between

the trace buffer and the reader.

4.6.2 State of Variables

To solve the problem of data inconsistency, a "state of variables" needs to be maintained
for each active reader. For every user module, the kernel module stores the values of all
the variables that the reader is interested in (i.e. included in variable mask). It maintains
a list with the following two fields.

e The last value of each variable that has been seen by the corresponding user module

while traversing the trace buffer.

e A flag indicating whether the stored value is the same as the value that has been

transferred to the user module.

The list is updated as the trace buffer is traversed at the time of reading by the
corresponding user module.

Let us go back to the scenario shown in Figure 4.2. There are two readers - the kernel
module will maintain two separate lists of variables. We focus on readerl again. After
the first occurrence of event el, the list corresponding to readerl (let us say listl) will
store the value of vl and this data will also be transferred to readerl. The flag at this
stage will be set to false for v1 because the transferred value is the same as the last stored
value. When the "read pointer" reaches e2, no data will be transferred to readerl but the
list1 will still be updated. After e2 has been traversed, list1 will store the changed values
of vl and v2 and the corresponding flags will be set to true. Listl has been updated but
no data has been transferred to readerl because it is not interested in e2. When el is
encountered again, value of v2 is updated in listl and transferred (its flag switches to a
false value). But at this stage, flag of v1 is also true and therefore the value of v1 is also
transferred to readerl.

Thus, by maintaining a "state of variables" along with a "read pointer" per user
module, we achieve data consistency. The trace buffer data needs further processing
before being transferred to the user module because it also contains data corresponding

to different processes and different users.
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4.6.3 Filtering Mechanism

The case of filtering data on the basis of pid is discussed in this section. The other filtering
is similar with minor differences.

The trace buffer contains several occurrences of the pid variable (whenever pid’s value
changes, it is logged into the buffer if any event is enabled to be traced as per the global
event mask). A separate list is maintained corresponding to each occurrence of pid variable
in the trace buffer. Each entry of the list stores the indez of occurrence of the pid variable

and its actual value. This list is sorted with respect to the index field.

Process 2
Process 1 f‘ Tead Pointers
¥
F Y Fy [y [y
Fid List

Figure 4.3: A Snapshot of Trace Buffer at some point of Time

Each time a user module calls read, the data is read from the current position of its
read pointer. This data can only be transferred to the user module if the process which
logged this data is the same as the process which the user module is interested in tracing.
We already know in which process the user module is interested (from the trace_pid field
of the "reader" structure of the current user module). But we need a way to find out
the "owner" process of the data where the read pointer is currently located. This can be
easily deciphered from the trace buffer - the last logged value of the pid variable in the
trace buffer is the actual owner of the data. One way to do this is to move backwards
through the trace buffer and locate the last occurrence of the pid variable.

A much quicker way is to maintain a list of occurrences of pids in the trace buffer
and look for the previous pid by going through this list rather than going through the
entire trace buffer. So, we find the pid under whose scope the data comes by using the
"pid list" and the read pointer for that user module. For example in Figure 4.3, the read

pointer of the first process comes under the scope of the first entry in the "pid list" while
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the read pointer of the second process corresponds to the third entry of the "pid list". At
this point of reading, the data will be returned to the first user module only if first entry
of the "pid list" is the same as the pid it is interested in tracing.

Similarly for event and wid filtering, separate lists are maintained for the occurrence
of events and the uid variables in the trace buffer and the corresponding data is filtered

out.

4.6.3.1 Operations on the Sorted List

The sorted lists for filtering have to support the following operations.

e Insert : Whenever an event, pid or uid is encountered in the trace buffer for the
first time, they are inserted into the corresponding lists. Care has to be taken that
each such insertion takes place only once because these variables are encountered

multiple times, once for each reading process.

e Look Up: The sorted list needs to provide the index under whose scope the currently
read data comes. This function takes as argument the current read pointer and

returns the corresponding index.

e Delete : The entries also have to be deleted from the lists. The deletions occur when

the read pointer of each reading process goes beyond the scope of that entry.

The above operations enable the filtering of data and hence only the relevant data is

returned to the user.

4.7 Global Event and Variable Masks

As discussed in section 3.5, the kernel module is only concerned with global event and
variable masks at the time of data logging.

As mentioned earlier, when an event is encountered by the kernel, it is checked for
relevancy, that is whether the event is included in the global event mask or not. When
the event is relevant, all variables included in the global variable mask are recorded in the
trace buffer if they have changed since the previous recording. This is implemented by

trace_ dump function as shown below.

void trace_dump(long event}

{
if (event & global_event_mask != 0)
for i = 0 to numVariables
if (variable[i] .mask & global_variable_mask != 0)
store variable[i] //if value changed
}
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On the reader side, the kernel trace device driver provides data from the trace buffer
to the reader processes. The trace buffer contains data corresponding to all the user level
modules. Therefore at the time of reading, the data needs to be filtered according to the
specifications of each user level module. A list of "reader" structures is maintained by the

kernel module for this purpose.

4.7.1 Reader Data Structure

Each "reader" contains the following fields.

e Pid: The pid of the reader process. This field is set up at the time of opening the

trace device.

¢ Event Mask: The mask of the events this particular reader is interested in. This
field is set up by doctl() call.

e Variable Mask: The mask of the variables this reader is interested in. This field
is also set up by zoctl() call.

e Trace Pid: This field is also setup by the user module using the zoct/ system call.
If the user wants to trace a particular process, this field refers to the pid of that
process.

e Read Pointer: The read pointer of this reader process. This field is updated
regularly in read() system call.

During the read procedure, the kernel module looks up the reader structure corre-
sponding to the current process (based on the pid field) and uses the event mask, variable
mask and pid to return the appropriate data to the user.

The actual mechanism of filtering the data is described in section 4.6.

The user level module can start tracing (using open and ioctl) or exit (using close) at
any time. Therefore, the global event and variable masks are updated at every invocation
of toctl and close. At the time of octl, one can just do a bit-wise OR to update the
global masks. At the time of close by a reader, the entire list of readers is traversed to

recalculate the global masks.

4.8 Integrating trace dump with the Kernel

We implement the tracing functionality using a loadable module. In addition, the kernel
is modified to make a call to trace_ dump function at all the events of interest.

The problem is that the trace dump function is not available till the tracing module
is loaded to the kernel. Therefore, the trace_dump function can not be directly called
as the module will not be loaded at all times the system is running. The trace_ dump
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function is only meaningful as long as the trace device driver is loaded into the kernel.
We make use of a function pointer to solve this problem.

A function pointer is declared and initialized to a dummy trace function and is set to
the trace_ dump function when the module is loaded. It is again set to the dummy_trace
function when the module is unloaded. The dummy trace is just a dummy function

having same prototype as trace_ dump but it does not do anything.
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Chapter 5

Results and Discussion

5.1 Introduction

In this chapter, we discuss how Ktrace can be applied to Linux applications to learn about
their kernel activity. First, Ktrace is compared with existing work - /proc and Strace.
Then we give examples of certain applications which we traced using Ktrace and we were
able to come up with solutions that can improve their performance. These applications
include Top, a Linux command line utility which provides a dynamic real time view of
a running system, and Xmag, a program which allows one to magnify portions of an X

screen.

5.2 Comparison with /proc

Most of the user space based profilers like Top, Vmstat etc. rely on the data provided by
the kernel in /proc directory. These user space profilers process the relevant data available
in /proc and display it in a particular format.

/proc provides information like - memory usage, network statistics, disk statistics,
process specific information etc. Let’s consider an application that uses /proc to provide
memory usage of the system.

/proc provides the memory usage of the system in a file named /proc/meminfo. Any
user space based profiler can be implemented by reading this file at fixed intervals of time.

The memory usage of the system can be observed by Ktrace by invoking the trace

with the following masks.

e Event Mask : Two events are required - page allocation and page freeing.

e Variable Mask : Two variables are required - free memory of the system and total

memory of the system.

The following graph was obtained by one such invocation of the tracer.
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Figure 5.1: Memory Usage of the System with Time

Ktrace enables us to observe the memory usage every time memory is allocated or
freed by the system. On the other hand, information provided by /proc is only refreshed
after regular intervals of time and it-can not-tell us about the events that were responsible

for change in memory usage.

5.3 Comparison with Strace

Strace gives a list of all the system calls made by the process along with the arguments
and the return value for each system call. The functionality provided by Strace can be
achieved by Ktrace as it supports both the system call entry and exit events.

Ktrace needs to be invoked with following masks.

e Event Mask : Two events are required - system call entry and system call exit.

e Variable Mask : Only one variable is required - CPU_ Registers. It stores the
CPU registers of the process at the time of system call entry and system call exit.
The CPU registers provide the arguments of the system call (at the time of entry)

as well as the return value (at the time of exit).

The tracer can be invoked with the relevant event and variable masks to obtain the

trace data. In addition, by tracing a particular process (by giving pid as argument), the
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behavior of Strace can be emulated. Figure 5.2 shows a sample output from Ktrace. The

trace data has been processed to make it look like the output of Strace.

open (134544512 0 438) = &
fstated (6 3237449404) = 0

map? (0 4096 3 34) = 3103576064
read (& 3103576064 1024) = 569
socketoall (1 3237449588) = 7
ioetl (7 35093 32374496876) = 0
ioetl (7 35111 3237449676) = 0
socketoall (1 3237449476) = 8
ioetl (8 35123 3237449554) = 0
close () = 0

socketoall (1 3237449216) = &
ioctl (8 35142 3237449555) = 0
close () = 0

close (7)) = 0

socketoall (1 32374405688 = 7
ioetl (7 35093 323744387&) = 157
write (2 3237437632 64) = 64
ioetl (7 35111 3237449676) = 0
socketoall (1 3237449476) = 8
ioetl (8 35123 3237449554) = 0

Figure 5.2: System Call Tracing for all Applications by Ktrace

Each line in the sample output describes one system call. The name of the system call
is followed by arguments (at the time of execution) and then the return value is listed
after the "=" sign. The arguments and the return value have very large numbers at times
when they provide addresses.

But as discussed before, Strace functionality is limited to system call tracing only

while Ktrace can trace many more events and variables at the same time.
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5.4 'Tracing Applications

The system call mechanism provides the interface for the programs to request services
from the kernel. Each system call invocation requires a certain amount of overhead as it
involves a transition from user mode to the kernel mode and back again. Also, system calls
are the most common events occurring inside the Linux kernel. So our major experiments
are concerned with the tracing of system calls.

In this section, we discuss results obtained by tracing system calls made by certain

applications using Ktrace.

5.4.1 Top Utility

Top |5] provides a dynamic view of the system - displaying a summary of entire system
state followed by a list of all the current processes. Top updates this information after a
fixed interval of time which can be specified as an option at the command line. All this
information is made available by the kernel in the /proc directory and Top reads it from
there. /proc has certain files which specify overall system "state". Besides this, /proc has
one directory for each process and the process specific information in contained within
these directories.

We decided to examine the system calls made by 7Top. The tracer was invoked with
event and variable masks to trace the system calls (as described in section 5.3). Since
we want to trace Top exclusively; the user module was invoked with a third parameter :
process = top (the name of the executable which we want to trace). Some snapshots of
the trace data are shown in the Figures 5.3 and 5.4. Figure 5.3 shows the first few system
calls made by Top while Figure 5.4 shows the system calls made by Top after execution
has been going on for some time. Asexplained in section 5.3, Figures 5.3 and 5.4 show the
system calls made by Top along with their arguments and return values. After Top has
been executing for some time, it shows a pattern in the system calls it issues. Figure 5.4
tries to capture the pattern by showing the system calls that Top issues repeatedly.

A summary of the trace data is shown in Table 5.1.

5.4.1.1 Analysis of Trace Data

As one can see in Figure 5.4, a read system call is preceded by an open system call and
followed by a close system call. Table 5.1 also shows the fact that open, read and close
system calls are much larger in number as compared to the others. This makes sense as
Top has to go through every process specific directory in the /proc directory to collect all
the relevant information. So, Top takes the straightforward way of opening the specific
files, reading the data and closing them as soon as the work is done. This would have
been fine if Top had to do this only once. But being a dynamic picture of the system,
Top has to refresh the information after a fixed interval and hence it has to repeat the
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brk (0) = 134575176
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access (4962352 4) = 254

open (4971342 0 0) = 3

fstated (3 3236742652) = 0

map (3236742620 Z55) = 3103334400

close (3] = 0

open (3103374563 0 0) = 3

Figure 5.3: Initial System calls made by Top

open-read-close cycle again and again.

This shows where Top spends most of its time. Now, how can we improve this? During
every refresh cycle, reading every process specific directory is mandatory because the data
might have changed and the previously read data might have become obsolete.

During every refresh cycle, Top -makes repeated calls to open and close system calls.
This can be a major overhead if the process is present across multiple refresh cycles
because then we are making unnecessary open and close system calls. The default refresh
cycle of Top is 3s which is lower than the lifetime of many processes. This performance
issue has been reported by others as well [18}.and we have been able to identify this with
Ktrace. We implement the solution provided by Gregg [18] to overcome this problem.

In this solution, each process specifie directory and its children files are opened only
once as long as the process is alive. The corresponding file descriptors are stored for
further read system calls. When the process exits, the close system call is issued to free
the file descriptors. This approach requires clever managing of file descriptors as opposed
to the current approach where one can manage with a single file descriptor.

Another issue with this ideal approach is that every time the files have to be read from
the start, so if the file is opened only once - then each call to read will increment the file
offset (from where the data will be read next time). Then the lseek system call needs to
be used to bring the file pointer to the beginning of the file again. This implies the use of
another system call, the very issue we were trying to avoid. Fortunately, there is a work
around to this problem also. The kernel provides a pread system call which takes the file
offset (from where to read the data) as an argument. So, one can always use pread (with
offset 0) rather than read.

Ktrace has helped us in understanding what does the process do. By looking at the
trace data, we also have been able to come up with a solution that has the potential to
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open (6275554 0 0y = 4
read (4 6232014 1023) = 133
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cloze [(4) = 0
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open (6275554 0 0y = 4

read (4 6232014 1023) = 133

cloze [(4) = 0

open (6275554 0 0y = 4

read (4 6232014 1023) = |3

cloze [(4) = 0

stated (1345853994 3Z236741350) il il
open (6275554 0 0y = 4

read (4 6232014 1023) = 13:

cloze [(4) = 0

open (6275554 0 0y = 4

read (4 6232014 1023) = 14

cloze [(4) = 0

Figure 5.4: Repeated System calls made by Top
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Table 5.1: Summary of System Calls made by Top

System Call | No of Invocations
open 3699
fstat64 42
close 3693
read 4113
stat64 1817
ioctl 43
rt_sigaction 682
gettimeofday 19
fentl64 835
getdents64 38
newselect 18
alarm 1010
write 43

improve the performance. We know that system calls involve a significant overhead due
to change from user mode to kernel mode and back again. But we wanted to get some
estimate on how much performance gain can be obtained in this case. So we went ahead

and implemented the alternative approach to evaluate the performance gain.

5.4.1.2 Improved Implementation

Top as a whole utility is not a very small application as far as source code is concerned
and is not very easy to rewrite. We are more concerned with measuring the overhead of
system calls rather than other aspects of Zop.

We first wrote a small program which replicates the system call behavior of Top i.e.
it processes the /proc directory and opens the status file in each of the process specific
directories. This program does not attempt to display any meaningful data to the user.
It merely iterates through the /proc, opening the status file of each process, reading it

and then closing it. The pseudo-code of the program is shown below.

proc = opendir("/proc");

while(1)
{

entry = readdir(proc);

while(entry != NULL)
{

fd = open status file within entry if its a process directory
read(fd, str);
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close(£fd);

entry = readdir(proc);
}
sleep(1);

Next, we implemented a program which tries to avoid repeated opening and closing
of files as long as the process is alive. A list of open files is maintained along with their
file descriptors. Every time, /proc is scanned, the list is searched to see if the file is
already open. If it is, then the existing file descriptors can be reused. Otherwise, the file
is opened and its file descriptor is stored in the list. The list is also cleaned to close the
file descriptors of the processes which have exited. The pseudo-code of the program is

shown below.

proc = opendir("/proc");
while (1)
{

entry = readdir(proc);

while(entry != NULL)

{
this_fd = check if fd- is present in list of open files;
this_fd = if already not open, open status file and store
fd;
pread(this_fd, str, ..., 0);
}
clean(list of open files);//if process finished, close fd
sleep(1);

We ran both the programs to compare their CPU usages using the Top utility. The
results are shown in Figure 5.5. As is evident in the graph, the improved implementation

consumes considerably less amount of CPU.

5.4.2 Xmag Utility

The Xmag utility [19] allows one to magnify portions of an X screen. The region that
is to be magnified can be selected at runtime and it is displayed in a separate graphical

window.
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Figure 5.5: CPU Usage Comparison between two Implementations

We decided to do system call tracing on the Xmag program. The data obtained from
the tracing is shown in Figure 5.6. Xmag also issues a set of system calls repeatedly after
the initialization phase is over.

A summary of the trace data is shown in-Table 5.2.

Figure 5.6 shows that the program is repeatedly issuing a certain set of system calls
- select, read, write, toctl, gettimeofday. Table 5.2 also supports the fact as number of
invocations of these system calls are much more than the rest of the system calls. To find

the answer to this, we need to do some analysis of the code.

5.4.2.1 Trace Data Analysis

Xmag is a graphical program built using X Toolkit Library and the Athena Widget Set,
both of which are in turn based on the Xlib package. The Athena Widget set deals with
the graphical items such as buttons, menus etc. The X Toolkit Library is the one which
is responsible for the basic underlying display and the handling of the events.

A program specifies the events it is interested in, sets up necessary event handlers and
then waits for the events to happen. The X Toolkit Library keeps track of the various
events and passes the relevant events to the program. To accomplish this, the program
calls a library function - XtAppMainLoop.

This function is implemented by the library - the function sits in a loop waiting for
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newselect (4 3231276788 3231276916 3231277044) F ;i

iomtl (3 21531 32312766320 = 0

read (3 3231274452 32) = 32

ioctl (3 21531 3231277336) = 0O

write (3 134584568 52) = &2

iomtl (3 21531 3231277336) = 0

gettimeofday (3231277304 0) = 0

newselect (4 3231276788 3231276916 3231277044) = 2
iomtl (3 21531 32312766320 = 0

read (3 3231274452 128) = 123

iomtl (3 21531 3231276760) .= 0

iomtl (3 21531 3231277336) o= O

write (3 1345645658 4380) = 4380

iomtl (3 21531 32312773360 =0

gettimeofday (3231277304 O Sl

newselect (4 3231276738 3231276916 3231277044) £
iomtl (3 21531 32312766320 = 0

read (3 3231274452 32) = 32

ioctl (3 21531 3231277336 = 0O

iomtl (3 21531 3231277336) = 0

Figure 5.6: Repeated System calls made by Xmag
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Table 5.2: Summary of System Calls made by Xmag

System Call | No of Invocations
read 2683
open 322
fstat64 82
close 82
fentlod 1
newselect 1594
write 1510
stat64 2
gettimeofday 1405
ioctl 3792

the events to happen and keeps passing them onto the program. This loop also calls
gettimeofday in every iteration. This seems to be a bit strange. It turns out that the X
Toolkit library provides a TimeOut feature. A program can also add certain timeouts
and ask the library to be notified when the timeout expires. The library implements this
feature by repeatedly checking in the loop whether any timeouts have occurred.

This clearly is not a very appropriate way to implement this scenario as system calls

are being issued unnecessarily.

5.4.2.2 Alternative Approach

There is a need to notify a process when a certain timeout occurs. The sleep system
call can be an alternative but the process might not necessarily want to go to sleep. The
process might want to process certain events and then do something else when the timeout
expires. So sleep is also not feasible.

The alarm system call sends a SIGALARM signal to the process after a specified
number of seconds have elapsed. So a proper alternative can be to install a signal handler
(which will inform the process that a timeout has occurred) for the SIGALARM signal.
Then a call to alarm can be issued for the next timeout. This way, the process will be
notified when a time out has occurred and busy waiting can be avoided.

This will get rid of a lot of unnecessary gettimeofday calls and can lead to an improve-

ment in performance.

5.4.2.3 Other System Calls

In the above section, we have accounted for gettimeofday system calls, but there were a
set of other system calls which were being called repeatedly - select, write, read and zoctl.

Select is being called from within the same waiting loop. It is used by the X Toolkit
Library to wait for events to happen and then pass them on to the graphical program.
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This has to be done and we can not think of another alternative.

The remaining system calls - read. write and ioctl are not called directly by either the
Xmag program itself or the X Toolkit Library or the Athena Widget Set library. If one
looks at the first argument of each of these system calls, it remains the same - 3 which
is the first open file descriptor. The only possibility left is that these system calls are
employed by the underlying Xlib package to communicate with the XServer and the first
open file descriptor might have to do something with the display.

If that is the case, then this behavior should be common across all the graphical
programs implemented using the X Toolkit library. We traced the system calls made by
a couple of other such graphical programs - XCalc, Xgc. The data obtained was quite
similar to the earlier trace data - the same loop kept repeating again and again. Every
time some event occurred like a button was pressed or mouse was rolled over some button,
the same system calls were issued.

We however did not do any further analysis on this.

5.5 Memory Related Examples

In the previous section, we focussed exclusively on the system calls and how their tracing
can be useful. In this section, we examine certain memory aspects using the tracing
system - namely how rapid allocation of memory leads to page faults in the system.
First, we traced a normally running system for number of page faults happening with
time. Apart from the normal processes running on a PC, only the tracing was active.

The following data was obtained.
Total Page Faults = 1297 (over Iminute 26.5seconds)

This gives a rate of of about 15 page faults per second. The tracing was done under
the time command.

Next time the tracing was started, several additional graphical applications were fired
up which included Web Browser, Konqueror, Terminal and KSysGuard. The tracing was
stopped as soon as all these applications were up and running. The number of page faults

were again counted and results were as follows.
Total Page Faults 72040 (over 39.1seconds)

This gives a rate of of about 1847 page faults per second which is about a 100 times
more than that of the normal system. The increase makes sense because X applications are
"memory hungry" and hence the sum of the size of virtual memories of the applications
will be much more than the total physical memory leading to a large number of page

faults.
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The idea behind stopping the tracing as soon as the applications were up is that page
faults should increase dramatically when the application starts execution because it is
during this time that most of the memory allocations will be done. Once the applications
are up, memory would have been allocated and rate of change of page faults should return
back to normal.

After this, we wrote a small program which repeatedly called malloc without any calls
to free. Such a program is killed by the kernel after some time due to insufficient memory.
The tracing was started, the program was executed and the tracing was stopped when

the programm was killed. The results were as follows.

Total Page Faults 180661 (over lminute 24.7seconds)

This gives a rate of of about 2140 page faults per second upholding the fact that page
faults are dramatically affected by memory hungry programs.

To see if there were any after effects on the system, we again measured the rate of
change of page faults on a normal system (where only the tracing was active). The results
showed no such after effects.

Total Page Faults 1245 (over lminute 11.1seconds)

This gives a rate of of about 17 page faunlts per second. The system seemed to have

returned to normal state.

38



Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have devised and implemented a mechanism to observe the Linux kernel. The tracing
framework implemented as a part of the thesis provides a way to reconstruct the entire
system activity during the time tracing is active. By examining the trace data, one can
determine what events happened and what were their effects on the system. Ktrace can
not only do the work of existing trace facilities on Linux like /proc, Strace but can do
more than that.

Ktrace was successfully applied to observe two applications - Top and Xmag. We were
able to understand what the applications were doing at the kernel level and we were also
able to come up with certain solutions which would help in improving the performance of
the applications.

The thesis has been able to show that understanding the kernel workings can be
very useful in optimally designing an application. Various applications have to request
the kernel for certain services and it is only through proper examination of the kernel

proceedings that one can figure out how to optimize the code.

6.2 Future Work

The system has been developed with a limited number of events and variables. It needs
to be augmented with more events and variables to bring the kernel under complete
observation. Finding more relevant events and variables will require closer scrutiny of
the kernel source code. The existing sets of events and variables cover broader aspects
of system calls, memory, signals, network statistics etc. but there is a need to delve into
the deeper details. Certain parts of the kernel like interrupts, modules have not been
covered at all while other areas like network, I/O etc need to examined for more events
and variables.

Secondly, more applications can be traced using Ktrace to examine their kernel level
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behavior. We have examined some applications in this thesis to show how Ktrace can
be used to identify performance issues in an application. Next step can be to trace a
significantly complex application like OpenOffice and observe the results. The tracing
will require considerable work as the application is quite complex and might be doing

multiple things simultaneously.
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Appendix A

Encoding Rules for Buffer Data

A.1 Introduction

As we have discussed in this thesis, the data is logged in the kernel buffer in the form of
Tag, Length and Value triplets. The mapping of data into the corresponding triplets is
governed by the Basic Encoding Rules of ASN standard.

Tag [ield | Length Field | Variable Field

A.1.1 Encoding of the Tag Field

Each entity is assigned a unique tag. The tag field is encoded in the following way.
If tag <= 30, then the encoding is described in Figure A.1.

Type Tag

A
¥
&
¥

3 bits | 5 bits
Figure A.1: Tag Encoding - Case 1

ASN provides the abstraction to divide the data into several classes - universal, appli-
cation, private etc. The 3 bits are used to determine what class the data belongs to. So,
effectively only 5 bits are available for tag encoding. But if tag >= 31, then the encoding
is described in Figure A.2.

3Bits 1Bit 1Bit
- -+
looo | 111220 T o | 1m0 | ... o | T
-4 L +4 L o,
First Octet second Octet Last Octet

Figure A.2: Tag Encoding - Case 2
and Tag = T1 + T2 + ..... + Tk.
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A.1.2 Encoding of the Length Field

Let the length of the data be L octets. If L < 128, then the encoding is as shown in
Figure A.3.

1Bit

“—r
| 0 | L | Contents

ail-
-

il
Ll |

1 Cctet L Owtats

¥

Figure A.3: Length Encoding - Case 1

If L > 128, then the corresponding encoding is shown in Figure A.4.

1 Eit
-
1 K L Contents
- - o
First Octet E Oetets L Octats

Figure A.4: Length Encoding - Case 2
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Appendix B

Inserting the Trace Module

This section describes how to get the trace module up and running. The insmod command

needs to be issued from the source directory of the trace module.
$$ insmod trace.ko

The trace module uses a kernel assigned major number (which is the convention in the
newer kernels). The /proc/devices file needs to be examined to find what major number

has been assigned to the trace module. This can be done as shown below.
$$ MAJOR=‘grep trace /proc/devices | awk ?{print $1}°¢

Now, the trace device can be created with the mknod command.
$$ mknod /dev/trace ¢ $MAJOR O

The tracing can be started by using the user level module as described in the thesis.
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