
Development of an Operating System for SmartCards
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

byRavinder Shankesi

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurMay, 2002

Certi�ate
This is to ertify that the work ontained in the thesis entitled � Developmentof an Operating System for Smart Cards �, by Ravinder Shankesi, has been arriedout under our supervision and that this work has not been submitted elsewhere for adegree.May, 2002
(Dr. Deepak Gupta)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

(Dr. Rajat Moona)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

AbstratSmart ards are inreasingly getting used in various identi�ation and veri�ationappliations. Traditionally, smart ard operating systems were proprietary and ap-pliation spei�. This made it very di�ult to use the same operating system fordi�erent appliations or to use two ards with di�erent operating systems for thesame appliation.In this thesis we desribe the design and implementation of a standard (ompliantto ISO 7816 standard and SCOSTA standard) appliation-independent smart ardoperating system, Card Operating System. We have developed a linux port fortesting the operating system. We have ported the operating system to a few existingsmart ard hips.

AknowledgementsI take this opportunity to express my sinere gratitude and thanks to both ofmy supervisors Dr. Deepak Gupta and Dr. Rajat Moona. But for their patieneand guidane, I would never have ompleted the projet. Working under them wasa great learning experiene. I would also like to thank Dr. Manindra Agarwal whohas helped us immensly during various phases of our projet.I would like to thank MoST (Ministry of Surfae Transport), members of SCAFI(Smart Card Assoiation for India) and NIC (National Informatis Center) NewDelhi, for their assistane at various phases of the projet. In partiular, I wouldlike to thank Dr. B.K.Gairola of NIC for his support and guidane to the projet.I would like to thank Ankit Jalote and Marghoob Mohiyuddin who have imple-mented the seurity module of the Operating System. I would also like to thankKapileshwar Rao Bolisetti who has ported the Operating System to Linux.My bath here was really fun to be with. I would like to thank all of them fortheir help, for the irrelevant spam, for all the parties, for all the movies and for theKhajuraho trip. They had to put up with my laziness, absentmindedness and slightabsurdities at various oassions and yet were very helpful and generous towardsme. It was great being with all of you.At last, I would like to thank members of my family who were there to supportme at all times.

i

Contents
1 Introdution 11.1 History . 11.2 Introdution . 21.2.1 Di�erent lassi�ations of smart ards 21.2.2 Physial layout . 31.2.3 Standards . 41.2.4 Basi onepts . 51.3 Related Work . 72 System Design 92.1 Design goals . 92.2 File System layout . 102.2.1 Logial struture of the File system 102.2.2 Physial layout of the �le system 112.2.3 Meta Data and File Control Parameters 112.3 Basi Arhiteture . 123 Implementation 153.1 Main Command Header Handler . 153.2 Individual Command Handlers . 173.3 Support routines . 173.4 Seurity Arhiteture . 183.5 Anti-tearing protetion . 203.6 Current implementations of the Card Operating System 21ii

3.6.1 Linux port of the Card Operating System 213.7 Limitations . 224 Conlusion and Future Work 23A Terminology 24B Support Routines 26B.1 Routines for aessing meta data . 26B.2 Routines for aessing the File Control Parameters of a �le 26B.3 Routines for Aessing the data of the Elementary Files 28Bibliography 29

iii

List of Figures1.1 Physial interfae of smart ard . 31.2 File System on the Card . 52.1 Logial layout of the �le system in the EEPROM 102.2 physial layout of the �le system in the EEPROM 112.3 Major omponents of the Card Operating System 13

iv

Chapter 1IntrodutionSmart ards are ards with eletroni hips embedded inside them. They are usedin di�erent appliations like identi�ation, loyalty programs, SIM ards inside GSMphones et., Most of the modern smart ards have a miro-ontroller, non-volatilememory for storing user data, ROM for storing the operating system ode andRAM for use by the operating system. Some ards also have an extra rypto-o proessor for improving the speed-up of ryptographi algorithms used by theoperating system. Most smart ards have 8-bit miro ontrollers with a ROM size of4K to 32K, RAM size of 256 bytes to 1K and an EEPROM size of 4K to 8K. However,newer ards with 16-bit and 32-bit miro-ontrollers with better on�gurations arebeginning to appear in the market [1℄.It is obvious that in suh a resoure-onstrained environment, the operating sys-tem on the ard must be developed to utilise these resoures arefully. In this reportwe desribe our implementation of a portable Card Operating System ompliant toSCOSTA standard [2℄. The ports of this ard to a few arhitetures are also de-sribed.1.1 HistorySmart ards were intended as a solution to the short-omings of magneti ards.These short-omings inlude, small memory (around 220 bytes in 3 rows of magneti1

stripe), risk of tampering, lak of any proessing logi. The earliest patent for smartards was �led as early as 1968 by two German inventors, Jurgen Dethlo� andHelmut Grotruppi [3℄, . Similar patents were �led by various other people later[4℄, [5℄. Smart ards started getting used more prevalently in Europe in the 1980s.For instane, the Frenh PTT(Postal and Teleommuniations servies) startedirulating millions of smart ards by 1986 after a suessful �eld trial in 1985.Currently smart ards are widely employed in �elds other than identi�ation like,payment ards, loyalty appliations, health ard appliations et., Certain innovativeuses of smart ards inlude Gaming for smart ards[6℄, Smart Flash Card [7℄.1.2 Introdution1.2.1 Di�erent lassi�ations of smart ardsSmart ards are ategorised in di�erent ways depending on di�erent riteria.� Aess Mehanism: Depending on the aess mehanism smart ards an belassi�ed as ontat-based ards and ontat-less ards. Contat-based ardsare physially onneted to the terminal for ommuniation to take plae. Con-tat less ards have ommuniation with the terminal using radio frequenies.Some ards have both these aess mehanisms embedded into them.� Funtional grouping: Depending on the funtionality provided smart ardsan be lassi�ed as memory ards or miro-proessor ards. Memory ardshave only memory present inside the ard. This might be read-only or read-write. Some times they have ertain extra logi for seurity like write-oneprotetion for memory. Miro-proessor ards have a miro-proessor embed-ded into the ard along with ROM, RAM and some non volatile memory.� Appliations present: Depending on the appliations present inside theard they are lassifed as single-appliation or multi-appliation ards. Single-appliation ards have only a single appliation present inside the ard. Multi-appliation ards have more than one appliation supported inside the ard.2

� Physial shape: Normal smart ards are shaped like redit-ards. There arealso SIM ards present inside GSM phones. There are also smart ards whihare present inside a ring [9℄.In the rest of the report we limit ourselves to miro-proessor based ontat smartards.1.2.2 Physial layoutThe physial interfae of the ontat-based smart ard is given in the ISO 7816standards [10, 11℄.
C5: CLK
C7: RFU

C3: RST
C1: V

C4: V
C2: GND

C6: I/O
C8: RFU

CC
PP

C1 C5

C6

C7

C8C4

C3

C2

Figure 1.1: Physial interfae of smart ardThe V pin is used to supply external voltage to the ard. The Gnd pin isonneted to the ground of the external terminal. The Vpp pin is used to supplyprogramming voltage to the ard. This was required beause programming theEEPROM required higher voltage than V. However, these days most ards ignorethis pin and generate programming voltage internally. The I/O pin is used for I/Oommuniation. This means that ommuniation between the smart ard and theterminal is always half-duplex. The RST pin is used by the terminal to send theReset signal to the ard.
3

1.2.3 StandardsThere are many standards desribing various aspets of smart ards. There arestandards whih are relevant to the behaviour of the ard and the ommands itmust support. There are also standards for standardizing the aess to the ard.Apart from these we also have standards relevant for partiular industries.The most basi of these standards are the ISO 7816 group of stanadards. There are10 of them ISO 7816-1 to ISO 7816-10. These desribe various things from physialandharahteristis of the ard [10, 11℄ to the appliation ommands [13, 18, 19℄ tobe used by appliation developers. There are also many standards for the SIM ardsused in GSM phones [20, 21℄.Europay, Masterard, Visa ame up with a standard for smart ards for paymentsystems alled EMV [32℄.The standards for writing terminal side appliations to transparently aess anyreader inlude PC/SC standard [29℄ and the Open Card Framework [30℄. Currentlyimplementations of PC/SC standard are mostly limited to the windows platform,although porting of the PC/SC standard for linux is also under way [31℄. The urrentimplementations of Open Card Framework are implemented in Java.A part from this there are also standards for implementing the smart ard oper-ating system like Java Card [25℄ and MULTOS [26℄IIT Kanpur and a tehnial sub-ommittee of SCAFI (Smart Card Forum of India)together have ome up with a standard for the development of smart ard operatingsystems whih is ompliant with the ISO 7816 group of standards alled, SmartCard Operating System for Transport Appliations (SCOSTA) standard [2℄. TheCard Operating System desribed in this report is ompliant to this standard.
4

1.2.4 Basi oneptsATRUpon reset the the ard returns a string to the terminal whih indiates to theterminal the transmission protools it supports and the protool parameters. Thisstring is alled the Answer to Reset, ATR. The terminal an deide whih protoolto use, if multiple protools are o�ered, by doing a Protool Parameter SeletionPPS [12℄.File SystemThe �le system in a Smart Card is organized as follows [13℄ The �le are organized

EF EF

MF

EFDF

EF EF DF

EF

DF

MF = Master File

DF = Dedicated File

EF = Elementary FileFigure 1.2: File System on the Cardinto Dediated Files (DFs) and Elementary Files(EFs). DFs are those �les whihontain other DFs or EFs. EFs ontain the atual appliation data that the userwant to store. Apart from Data Objets, at any DF we an also store Data Objetswhih an be aessed by its Tag.
5

Types of FilesEFs an be of many di�erent types.� Transparent� Linear Fixed Length Reord File� Linear Variable Length Reord File� Cyli Reord FileA transparent �le ontains set of data units whih an be aessed by their o�set.The o�set of a the �rst data unit in a �le is 0.A reord-oriented �le ontains data stored as reords. These reords an be a-essed by their reord numbers (starting from 01 to 254).A linear reord-oriented �le ontains reords stored in the order of their reation.Thus the most reently appended reord is the last reord of the �le. Thus the �rstwritten reord is reord number 1.A variable length reord-oriented �le allows reords to be of variable length untilthe length is less than the max reord length.In a yli reord �le, the reords are aessed in the opposite order of reation.Thus the most reently written reord overwrites the last reord of the �le an be-omes reord number 1.Seurity ArhitetureThe seurity of the smart ard an be guaranteed by various mehanisms. The usermight be required to prove the knowledge of a key or a password or possible bothfor some ommands to be exeuted. If the user proves the knowlege of a key ora password, that status (seurity status) is maintained until the user hanges thediretory or after reset. Any �le may be proteted against ertain ommands by6

giving some seurity attributes in the �le at the time of reation of the �le for thatommand. These attributes might speify, for instane, that the user has to performExternal Authentiation with Seurity Environment number 4.A Seurity Environment (SE) is a set of templates speifying what onditions needto be satis�ed for ertain operations to take plae. For instane, it might speifythat we need to external authentiate should be done with key number 5 or userauthentiate should be done with password number 6. At any point during theworking of a program there is always a urrent SE.1.3 Related WorkThere are many implmentations of smart ard operating systems. Many of the smartard operating systems are built for single appliations and are ustomized for thatappliation. These have a �xed �les system and a few ommands whih are relevantto that appliation. Most of the time they have proprietary ommands for theiroperation [22, 23℄. The TCOS operating system is a ISO 7816 ompliant operatingsystem whih supports multiple appliations [24℄.The above operating systems have a �xed ommand set whih is burned into theROM. As against these a number of implementations are present whih allow theuser to program the ard aording to his need. The BasiCard from Zeitontrol[33℄ allows users to program appliations in Basi and download them into theard. Keyord one marketed a smart ard alled OSSCA (Operating System forSmart Card Appliations) whih was programmable in Forth. A few vendors haveimplemented the Java Card standard whih would be programmable using the Javalanguage [27, 28℄The ost of suh generality is the extra proessing apability required on theard for implementing the Virtual Mahines for those languages. These ards aretypially 3 or more times ostlier than the ordinary ards.7

The Card Operating System desribed in this report is a �xed ommand setoperating system whih is not appliation spei�. Thus it is similar to the TCOSoperating system.

8

Chapter 2System DesignIn this hapter we desribe the various issues involved in the design of the CardOperating System. The physial and logial organization of the �les in EEPROMare explained. We also desribe the di�erent modules and their interation with oneanother.2.1 Design goalsThe following were the design goals while designing the Card Operating System.� Portability:The Card Operating System must be portable to di�erent arhi-tetures. This means that the operating system must be designed to use asmall interfae for handling the hardware dependent support required fromthe prooessor.� Compatness:The Card Operating System must �t into a small size. Thismeans perferring simpler algorithms over e�ient, but ompliated algorithms.� Maintainability:The Card Operating System must be easily maintainbale.This involves the use of modular programming tehniques.
9

2.2 File System layoutThe �le system stored in the EEPROM has the following properties:The representation of any �le in the EEPROM has the following 2 omponents.1. A header ontaining all the meta-data of the �le.2. An optional body ontaining the data stored in the �le. The data portion isnot present in the ase of Dediated Files.The header will ontain all the meta-data required for the �le system struture thatwe are maintaining and the File Control Parameters.2.2.1 Logial struture of the File systemThe File System maintaining by the Card Operating System has the following logiallayout.
DF

EF DF EF

Child Pointer
From DF to EF

Parent Pointer
From DF to DF

Sibling Sibling Sibling

BAD_PTR
Child = BAD_PTR
(No children present)

From EF to DF
Parent Pointer

From EF to DF
Parent Pointer

Figure 2.1: Logial layout of the �le system in the EEPROM
Every �le has a link to the next �le (sibling) present in the same diretory. Alsoeah �le has a link to the parent DF. The master �le's parent �le link points toitself.

10

In addition every DF will have a pointer to the �rst hild (if present). Thus givena DF, we an aess all the hildren (other DFs/EFs) by �rst looking at its hildpointer and then looking at all the siblings of the hild (if present). In ase no hildis present, or no sibling is present we store a onstant in its plae, BAD_PTR2.2.2 Physial layout of the �le system
File Data (for DF)
(meta−data)

Free Space

File Data (for EF)
(meta−data + data)

File Data (for EF)
(meta−data + data)

Figure 2.2: physial layout of the �le system in the EEPROMThe File system omprises of individual �les, stored as bloks (of variable length),laid out next to eah other in the EEPROM. The �les as part of their meta-dataontain the total length of the �le (inluding the header). Thus we an traverse theentire EEPROM to hek out the �les in the order they are stored in the EEPROM.This an be useful, for instane, when we are searhing for a �le with a given DFName in the entire �le system. It is also possible that we might have free spae inbetween two �les. We indiate that the urrent blok is free (by the �rst byte) andthe length of free spae (2 bytes).2.2.3 Meta Data and File Control ParametersEah �le ontains the following meta-data stored in the header of the �le.11

1. The FDB is the �rst byte. Its value is equal to the �le desriptor byte of the�le. It also stores whether a the urrent blok is free by storing a value whihis an invalid FDB.2. The length (the next 2 bytes). Its value is equal to the total length of the �le(meta-data and data of the �le).3. Every �le ontains the link to its sibling and parent.Apart from the meta-data for maintaining the logial struture, we also have FileControl Parameters like File Identi�er, Life Cyle Status Integer and Seurity-Attributes (variable length) at �xed o�sets from the �le starting. The seurityattributes are stored in their TLV format as given in the ISO 7816-9 doumentation[19℄.Depending on the �le desriptor byte, the �le spei� meta-data follows.� For a DF, we have a pointer to the �rst hild of this DF, File Id of a �leontaining SE templates (Invalid File Id, if none is spei�ed in the FCP) DFName.� For an EF, we have the Short File Identi�er, Data Coding byte. Dependingon the type of �le we have further meta-data like, for a transparent �le, thetotal no of bytes. No of reords, Max length of reords in ase of a Reordbased �le. If the �le is write one, we also have a bit-vetor indiating whetherthe given byte (in ase of transparent �le) or given reord (in ase of a reordoriented �le) is written to or not.Following the meta-data for a DF, we have blok of the next �le. In ase of an EF,we have the data for the given �le. This would be equal to total number of bytes(inase of transparent �le), Max.Reord Length * Max Number of Reord (inaseof reord based �le) of data.2.3 Basi ArhitetureThe following are the major omponents of the operating system.12

Header Handler
Main Command

Individual Command
Handlers

command
handler 1

command
handler n. . . .

Support
routines

Processor−specific
support routines

reset entry

Figure 2.3: Major omponents of the Card Operating System� Main Command Header Handler: The main ommand handler reeivesthe ontrol when the Reset is sent to the ard. It sends the ATR to the terminaland starts reeiving the individual ommands. After reeiving a ommand ,it alls the appropriate ommand handler in the module Command Handlers.After returning from the individual Command Handler, the response, if any,of the Command Handler along with the status bytes is sent to the terminal.� Individual Command Handlers: This module ontains the individual om-mand handlers for handling the individual ommands. Some ommand han-dlers handle multiple ommands.� Support Module: This module ontains the support routines used to aessthe data of the �le system. These routines inlude funtions to aess the FileControl Parameters of any �le and routines to aess the individual data of the13

�les. These routines make the internal layout of the �le system transparentto other entities, like, the ommand handlers. Thus we an later hange theinternal layout of the �le system with out hanging these routines.� Proessor spei� support module: This module ontains proessor spe-i� support for handling the arhiteture spei� routines. These routinesinlude terminal I/O, EEPROM reading and writing, timing, random numbergeneration and aessing the hip serial number.

14

Chapter 3ImplementationIn this hapter we give a brief desription of the software developed to implementthe design proposed in the previous hapter. The software implements a SCOSTAompliant smart ard operating system whih is largely arhiteture independent.We desribe the various modules present and give details about their implemen-tation. We also desribe the existing ports of the operating system for di�erentarhitetures.3.1 Main Command Header HandlerAfter reset, the �rst thing performed by the Card OS is to initialize the variables thatit requires. This onsists of both hardware dependent and hardware independentinitialization. The hardware independent initialization onsists of setting the ur-rentFile, urrentDF to point to Master File and learing the seurity status. Thena funtion, initparam() is alled whih does the hardware dependent initialization.These inlude, setting the appropriate values in I/O ontrol registers, setting thetimer register with appropriate values and any other proessor spei� initializationrequired.After initialization is done, the ard must return the ATR. We assume that theard has Master File and ATR �le pre-present in the EEPROM. We read the ATR�le and return the ATR string present in it. Currently the Card Operating System15

returns an ATR whih is non-negotiable. This means that it does not support anyprotool parameter seletion as de�ned in ISO 7816-3 [12℄.After sending the ATR, it heks the life yle status of the Master File. If theMaster File is terminated, it goes into an in�nite loop and beome unresponsive.Otherwise, it enters into the ommand header handling loop.Command Header handling loopFor every ommand, it �rst reads the ommand header of 5 bytes. If the lassbyte is wrong, or Instrution byte is not found in the ommand table then it returnsthe appropriate error. The ommand table ontains Instrution byte, the fun-tion pointer of the funtion whih handles that instrution and a �eld whih tellswhether the ommand needs input data and/or sends output data. If the lengthof input/output is greater than the maximum bu�er length (whih is ompile timeon�gurable) then the error Wrong Length is returned and we go bak to beginningof the ommand-handling loop.If the ommand, requires some input data to be read then an ACK (whih is thesame as INS byte) is sent bak and all the input data is read and stored in a bu�er(inputBu�er).The values of sendLength (length of the output to be returned by the ommand)and the status bytes are initialized to their most ommon values (0 in ase ofsendLength, 90, 00 for status bytes).The appropriate funtion, whih handles this ommand, is alled. Upon returningfrom the funtion it ommits the hanges made by the ommand handler to theEEPROM. The output, if any, to be sent is stored by the ommand handler funtionin a global bu�er (sendBu�er, whih is the same as inputBu�er). This output issent to the terminal.
16

The status bytes are set by ommand handler in the global variables bSw1, bSw2.These are sent to the terminal and the ontrol goes bak to the starting of theommand header handling loop.3.2 Individual Command HandlersAll the ommand handlers written follow a ertain protool.If the ommand handler funtion is handling an output ommand and it needsto send some output, it stores the output in a bu�er (sendBu�er). Then it setsthe value of sendLength to indiate the total number of bytes available for sending(exluding the status bytes).If the ommand handler funtion is an input ommand then it already has theommand data given in inputBu�er.If the ommand handler funtion requires both input and output (Case 4 om-mand), then it already has the input in inputBu�er when it is alled. If it needs tosend some output, it stores the output to be sent in a global bu�er (storeBu�er forretrieval by a an immediately followed GetResponse ommand. It also indiates thelength of data stored (in storeLength).Every ommand-handler should set the value of the status bytes it needs to sendin the global status variables (bSw1, bSw2), before returning. (Exept, when theresponse is normal ending, ie.,when the status bytes are 0x90, 0x00). The ommandhandler use the support routines for doing the �le spei� operations that it requires.3.3 Support routinesThe ommand-handlers use these support routines to aess the �le system datatransparently to the ommand handler. This makes the ommand handler funtionimmune to hanges in the �le system layout.17

These inlude routines that an aess the meta-data (required for maintainingthe �le system), �le ontrol parameters and the data of the �le. For instane wehave routines to aess and modify the meta-data like the Total length of the �le(header + data), the Sibling of the �le, the parent of the �le et.We also have routines to aess/modify the �le ontrol parameters like File De-sriptor byte, Data Coding Bytes, Short File Identi�er, Seurity Attributes, DFName, Max Reord Length, Maximum Number of reords File Id of the �le ontain-ing SE template �les.We also have routines to aess/modify the atual data like read/write given rangeof bytes (for a transparent �le), read or write given reord (for a reord-oriented �le),read or write the length of a given reord (for variable length reord-oriented �le).3.4 Seurity ArhitetureThe seurity arhiteture of the operating system was implemented by AnkitJalote and Marghoob Mohiyuddin [34℄. It is inluded here for ompleteness' sake.The ard at, any point, maintains the seurity status for every �le in the pathfrom the Master File to the urrently seleted �le. The seurity status of the MasterFile is always present.Every DF has a respetive password and key �le [2℄. A maximum of 32 pass-words/keys are possible for eah depth. Thus eah bit in the 4 bytes for pass-word/key status represents a unique password/key. If Verify/External Authentiatesueeds, the orresponding password/key status bit is set indiating that the par-tiular password/key has been authentiated.When a diretory is hanged the Current Seurity Status is leared on the pathstarting from the lowest ommon anestor of the urrent and previous diretory tillthe previous diretory. 18

The urrent seurity status is used by VerifySE() funtion to tell whih ommandsan be exeuted under the urrent seurity status. Thus before preforming theoperating, the ommand handler alls this funtion to hek if the seurity onditionsorresponding to this ommand are satis�ed.In our implementation, we are handling only the Cryptographi Cheksum Tem-plate (CCT), Con�dentiality Template (CT) and the Authentiation Template (AT).The SEs an be stored as reords (and aessed by their number) in the SETemplate �les in DFs or in the FCP of the urrent DF. SE is a onatenation of allthe omponents (CRTs) present in the SE Template. The urrent SE (enoded inthe variable urrentSE) ontains the SE as a onatenation of CRTs.An SE is modi�ed expliitly through the MANAGE SECURITY ENVIRON-MENT (MSE) ommand (set, restore, erase, store SE). In ase of `set' in the MSEommand, all the omponents (DOs) in the new value of the CRT spei�ed in thedata �eld, should already be present in the urrent SE. Furthermore, the lengths ofthe DOs in the data �eld should also math with the lengths of the orrespondingDOs in the urrent SE. Only when these onditions are satis�ed, the urrent SEwill be hanged. In the implementation of the MSE 'restore' ommand, we load thereord with the mathing SE number from the SE Template �le in the urrent DF.MSE 'store' is similarly implemented by opying the urrent SE into a reord inthe SE Template �le. MSE 'erase' results in the deletion of the reord for the SEnumber being deleted from the SE Template �le.Whenever, the urrent SE hanges or a omponent of the urrent SE hanges,we look at the SE to generate the session key (if required). The data requiredto generate the session key (also known as the derived key) is given as part of aomponent of the SE. The session key mehanism is spei�ed in the SE whih isused to generate it and keep it in the RAM as long as it is valid.Only 3DES is being used in all the ryptographi algorithms. The urrent SE isaessed when seurity operations like enipher, deipher, ryptographi heksum,19

authentiation are performed.The use of the SE in di�erent ontexts is desribed below:� Authentiation: The AT in the SE spei�es the key referene (tags 83 and84) and whether the key is to be used diretly or for generating a session key,the algorithm referene (tag 80) (3DES is used by default), data for omputingthe session key (tag 94). The key referene is mandatory while the rest areoptional. The CRT usage quali�er DO in the AT gives further informationabout the appliability of the CRT (whether it an be used for external au-thentiation, internal authentiation). If the key is to be used diretly then itis diretly used to authentiate. If the use is for omputing a session key, thenall referenes to this key impliitly mean that the session key is to be used.� Con�dentiality: The CT in the SE spei�es the key referene (tag 83 and84) and whether the key is to be used diretly or for generating a sessionkey, the algorithm referene (tag 80) (3DES is used by default), the mode ofoperation and data for omputing the session key (tag 94). The key refereneis mandatory while the rest are optional. 3DES in hained blok mode is usedfor enryption/deryption. As in AT, the CRT usage quali�er DO in the CTgives information about the appliability of the CRT (whether it an be usedfor enryption, deryption). The use of the session key is same as mentionedin authentiation. Furthermore, only CT-sym is being supported.� Cryptographi Cheksum: The CCT in this ase gives the required infor-mation whih is the same as in Con�dentiality ase.3.5 Anti-tearing protetionAnti-tearing protetion refers to the mehanisms used by the ard operating systemto ensure that the data stored inside the �les of the ard is not inonsistent beause ofabnormal interruptions in the funtioning of the ard like power-o�, forible removalof the ard from the terminal. 20

When ever a ommand has to write into a �le or in the EEPROM the data iswritten in a temporary ahe instead of the EEPROM. A �ag is assoiated withthe ahe data, whih is invalid before the ommand starts exeution. When theommand ompletes exeution, we set the �ag in the ahe to valid. The data in theahe is written into the orresponding EEPROM loation by the main ommandloop. The ahe is heked for the availability of the required data during a read fromEEPROM and if found then data is read from the ahe instead of the EEPROM.Thus when a ommand doesn't omplete and the Operating System resets due tosome possible error (ard taken away from the reader, power lost et.,), the datawritten by the ommand is not updated in the EEPROM. However, if the ommandompletes and then as the valid bit is left set, upon the next power up the EEPROMis updated. This preserves the onsisteny of the data in the Smart ard.3.6 Current implementations of the Card OperatingSystemThe Card Operating System is urrently ported for three di�erent arhitetures.The �rst implementation is on a linux platform, where the ard operating systemworks as a program ommuniating with other programs through the standard inputand standard output.3.6.1 Linux port of the Card Operating SystemThe Card Operating System is ported on Linux by implementing the proessordependent part of the OS in Linux. The initializations orresponding to Linux aredone in initparam() funtion. External reset is handled as a signal to the OS proess.The signal handler restarts the working of OS one it reeives a signal.The hardware spei� routines that are required by the Card Operating Systemare handled as follows.
21

� EEPROM: EEPROM is implemented as a memory mapped �le in Linuximplementation. The �le name and the size of EEPROM is known by look-ing at a on�gruration �le whose name is stored in the environment variableSCOSTACONF. The on�guration �le ontains two variables EEPROMFILEand EEPROMSIZE. Memory is mapped to the EEPROMFILE with EEP-ROMSIZE of memory. Any update to the EEPROM is done by assigning thevalues to memory loations that is re�eted in orresponding byte in the �leto whih memory is mapped as EEPROM.� Random No:In Linux implementation random number is generated by read-ing a byte from /dev/random whih gives random bytes. The funtion ge-tRandomByte() is implemented by reading a single byte from /dev/randomand returning the byte.� Input/Output: Input and output between the external world Card OS isdone by terminal I/O. The Card Operating System reads the input bytes fromthe standard input and writes the output to standard output.� Chip Serial No: The hip serial number in ase of the linux implementationis the onatenation of its IP address (4 bytes) and the inode number of the�le whih is mapped to the EEPROM.3.7 LimitationsThe following are some of the limitations of our ode.Currently only the T=0 protool with the default parameters is supported.There is a limit on the depth of the �le system supported. This is stored in theompile-time on�gurable onstant MAX_DEPTHThe maximum size of a �le, whih we an allow is 64K. The total EEPROM sizeis also assumed to �t in this size. 22

Chapter 4Conlusion and Future WorkIn this report, we have desribed the design and implementation of a SCOSTA-ompliant operating system for smart ards. We have also desribed the implemen-tation of our operating system on the linux platform. We have observed that veryfew hanges needed to be made to the original ode to port it to another arhiteture.Future work will be in the diretion of porting the operating system for di�erentarhitetures as well as adding to the basi funtionality of the operating system byimplementing more funtionality to support payment appliations et.,

23

Appendix ATerminologyThis appendix desribes the terminology used in the report. Further desriptions ofthese terms are present in the ISO standards [12, 13, 18, 19℄� ATR: Answer to Reset� PPS: Protool Parameters Seletion� CRT: Control Referene Template� AT: Authentiation Template� CT-sym: Cryptographi Template, symmetri� CCT: Cryptgraphi Cheksum Template� DF: Dediated File� EF: Elementary File� SE: Seurity Environment� SIM: Subsriber Identity Module� CLA: Class byte� INS: Instrution byte 24

� FDB: File Desriptor byte� LCSI: Life Cyle Status Integer� SFI: Short File Identi�er

25

Appendix BSupport RoutinesThe following are the important support routines present in the support module.B.1 Routines for aessing meta data� GetLength: Gets the total length of the given �le� SetLength: Sets the total length of the given �le� GetParent: Gets the parent DF of the given �le� SetParent: Sets the parent DF of the given �le� GetSibling: Gets the sibling of the urrent �le� SetSibling: Sets the sibling of the urrent �le� GetChild: Gets the hild of a DF, if present.� SetChild: Sets the hild of a DF to the given �leB.2 Routines for aessing the File Control Param-eters of a �le� GetFDB: Gets the �le desriptor byte of a �le26

� SetFDB: Sets the �le desriptor byte of a �le� GetLCSI: Gets the Life Cyle Status Integer of a �le� SetLCSI: Sets the Life Cyle Status Integer of a �le� GetSETemplateId: Gets the File Identi�er of the �le whih ontains the SEtemplate for a DF� SetSETemplateId: Sets the SE Template Identi�er of a DF to the given value� GetDFNameLength: Gets the length of the DF Name for a DF� SetDFNameLength: Sets the length of the DF Name for a DF� GetSeurityAttrLength: Gets the length of the seurity attributes of a �le� SetSeurityAttrLength: Sets the length of the seurity attributes of a �le tothe given value� GetSeurityAttrAddr: Gets the address of the beginning of the Seurity At-tributes� GetSFI: Gets the Short File Identi�er of the given EF� SetSFI: Sets the SFI of the EF to the given value� GetDCB: Gets the Data Coding byte of the given EF� SetDCB: Sets the Data Coding byte of the given EF� GetDataLength: Gets the length of the data of a Transparent EF� SetDataLength: Sets the length of the data of a Transparent EF� GetMNR: Gets the Maximum Number of Reords of a reord-oriented EF� SetMNR: Sets the Maximum Number of Reords of a reord-oriented EF
27

B.3 Routines for Aessing the data of the Elemen-tary Files� GetFileBytes:Gets given number of bytes from the Transparent File, startingfrom an o�set.� WriteFileBytes: Writes the given number of bytes in the transparent �le,starting from an o�set. The type of write behaviour is determined by theDCB of the �le.� UpdateFileBytes: Updates the given number of bytes in the transparent �le,startingfrom an o�set.� EraseFileBytes: Erases the given number of bytes in the transparent �le, start-ing from an o�set.� GetIthReord: Gets the reord number given from a Reord Oriented File� WriteIthReord: Writes the reord number given to a Reord Oriented File.The type of write behaviour is determined by the DCB of the �le.� UpdateIthReord: Updates the reord number given to a Reord OrientedFile.

28

Bibliography[1℄ Gemplus R&D Topis page http://www.gemplus.om/smart/enews/st3/32bit.html[2℄ The SCOSTA standards page http://www.se.iitk.a.in/ moona/sosta/[3℄ Jurgen Dethlo�, Helmut Grottrup "Identi�kanden/Identi�kationsshalter",German Patent, DE 19 45 777 C2, February 1969.[4℄ Ellinboe Jules, "Ative Element Card", US Patent, US 3,637,944, January 1972.[5℄ Paul Castrui, "Information Card", US Patent, US 3,702,464, November 1972.[6℄ Gaming for smart ards, home page of Kaos. http://www.kaos.om/[7℄ The SmartFlash Cards page http://www.britneyspears.om/smart�ashard/index.php[8℄ The respironis home page http://www.respironis.om/[9℄ The IButton introdution page http://www.ibutton.om/ibuttons/[10℄ ISO/IEC 7816-1:1998 Identi�ation ards � Integrated iruit(s) ards withontats � Part 1: Physial harateristis[11℄ ISO/IEC 7816-2:1999 Information tehnology � Identi�ation ards � Integratediruit(s) ards with ontats � Part 2: Dimensions and loation of the ontats[12℄ ISO/IEC 7816-3:1997 Information tehnology � Identi�ation ards � Integratediruit(s) ards with ontats � Part 3: Eletroni signals and transmissionprotools 29

[13℄ ISO/IEC 7816-4:1995 Information tehnology � Identi�ation ards � Integratediruit(s) ards with ontats � Part 4: Interindustry ommands for interhange[14℄ ISO/IEC 7816-4:1995/Amd 1:1997 seure messaging on the strutures of APDUmessages[15℄ ISO/IEC 7816-6:1996 Identi�ation ards � Integrated iruit(s) ards withontats � Part 6: Interindustry data elements[16℄ ISO/IEC 7816-6:1996/Cor 1:1998[17℄ ISO/IEC 7816-6:1996/Amd 1:2000 IC manufaturer registration[18℄ ISO/IEC 7816-8:1999 Identi�ation ards � Integrated iruit(s) ards withontats � Part 8: Seurity related interindustry ommands[19℄ ISO/IEC 7816-9:2000 Identi�ation ards � Integrated iruit(s) ards withontats � Part 9: Additional interindustry ommands and seurity attributes.[20℄ Digital ellular teleommuniations system (Phase 2+); Subsriber IdentityModule Appliation Programming Interfae (SIM API); Servie desription;Stage 1[21℄ Digital ellular teleommuniations system (Phase 2+); Seurity mehanismsfor the SIM appliation toolkit; Stage 1[22℄ Shlumbeger MiroPay�ex ard http://www.ardstore.slb.om/[23℄ Gemplus GemSafe ards home page http://www.gemsafe.om/[24℄ Deutshe Telekom Multifuntion Card TCOS Cryptographi Cardhttp://www.telese.de/[25℄ The Java Card Management Spei�ations Version 1.0bhttp://www.javaardforum.org/Douments/Jms10.PDF[26℄ The MULTOS home page http://www.multos.om/[27℄ The Shlumberger's Cyber�ex ard home page http://www.ardstore.slb.om30

[28℄ The Gemplus GemXpresso RAD 211 http://www.gemplus.om/[29℄ The ps work group home page http://www.psworkgroup.om/[30℄ The open ard group home page http://www.openard.org/[31℄ The M.U.S.C.L.E home page http://www.linuxnet.om/[32℄ The EMV home page http://www.emvo.org/[33℄ The BasiCard from ZeitControl home page http://www.basiard.om/[34℄ Ankit Jalote and Marghoob Mohiyuddin "Implementing the Seurity Module ofa Smart Card Operating System", BTP 2002, Department of CSE, IIT Kanpur.http://www.se.iitk.a.in/researh/btp2002/sosta.ps.gz

31

