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Abstract

The generic disassembler, produces symbolic relocatable disassembly of an object
file in Executable and Linking Format (ELF). It uses a processor model that con-
tains instruction set description of the processors in a language called Sim-nML.
Sim-nML is simple, elegant and powerful language to express the behavior of pro-
cessors at instruction level. It uses synthesized attributes to represent timing in-
formation, instruction semantics, assembly language syntax and binary representa-
tion of instructions. Generic Disassembler facilitates disassembly of programs in a
GNU-compatible format. For identifying the instructions, depth first search and
backtracking is used on a tree like structure of the Sim-nML instruction set descrip-
tion. Since the attributes of an instruction are scattered in various subtrees, syntax
for the instruction is collected from the subtrees selected during traversal. Different
parts of a single instruction may be matched with different subtrees. Symbolic and
relocatable disassembly is achieved by using relocation and symbol information from

the object file and analyzing the code to identify basic blocks.
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Chapter 1
Introduction

With development of an Application Specific Processor (ASP), specific tools e.g.
disassembler, assembler, simulator, compiler back end, etc. are also required. Such
tools provide an interface for application development on this processor. Non-
availability of such tools in time, may cause the whole design to fail. Problem gets
complicated in case many design alternatives are to be considered. In a traditional
approach, for every alternative design model, such tools are redesigned. Develop-
ment of these tools is a tedious and error-prone process. CARES project group at II'T
Kanpur is developing an interface that automates the process of tools development.
In our approach we use processor models containing instruction set description of
processors in Sim-nML. From these processor models we develop various tools us-
ing tool generators. Processor models of SPARC, Motorola 68HC11, PowerPC603,
MIPS R10000, ARM, ADSP2105, 8085 and a few other processors have been devel-
oped by us and used for the generation of various tools. Generic disassembler is one
of the tools in the tool chain developed at IIT Kanpur. Other developed tools are
Generic Assembler Generator[4], Functional Simulator Generator|5], Retargetable

Cache Simulator and Code Instrumentor[6] and Compiler back-end generator|7].

1.1 Related Work

There are various related works reported in the literature.



CBC/SIGH/SIM framework consists of a retargetable code generator CBC|8] for
C compilers and the instruction set simulator SIGH/SIM[9]. This framework uses
nML[3] language for processor models. nML permits concise, hierarchical processor
description in a behavioral style.

Aviv|[11] is a retargetable code generator which produces the optimized machine
code for target processors with various instruction set architectures. It uses Instruc-
tion Set Description Language (ISDL[10]) as a high level language for describing the
processor models.

Cycle accurate models of pipelined processor architectures require a pipeline-
accurate behavioral description. In nML or ISDL, the semantics of the language do
not provide means for describing the cycle accurate models.

EXPRESSION][12| language uses a mixed behavioral and structural representa-
tion approach for processor modeling. SIMPRESS|13], based on EXPRESSION, is a
retargetable simulator generator for processor-memory architectures and EXPRESS
is a retargetable compiler for embedded system-on-chip systems.

New Jersey Machine-Code toolkit|[15] helps programmers write applications that
process machine code e.g. assemblers, disassemblers, code generators, tracers, pro-
filers, and debuggers. It uses processor models written in Specification Language
for Encoding and Decoding (SLED[14]). SLED describes abstract, binary and as-
sembly language representations of machine instructions. With the help of toolkit
retargetable debugger, retargetable optimizing linker and disassembler for SPARC
have been developed.

BUILDABONG (Building Special Computer Architectures based on Architec-
ture and Compiler Co-Generation|[16]) discusses the automatic generation of instruc-
tion set simulators and the corresponding retargeted compilers. The methodology
is based on ASMs (Abstract State Machines) as the formal model for describing a
processor’s behavior. ASM is a mathematical model of computation based on the
concept of universes, functions and updates of functions. BUILDABONG project
group|31] aims at architecture synthesis and compiler generation for the architec-
tures. XASM|18] is ASM specification language. Gem-Mex|19] tool automatically

generate a debugging and simulation environment for a given XASM specification.



MIMOLA (Machine Independent Microprogramming Language|20]) is a struc-
ture level description language. RECORD]|21] system based on MIMOLA aims at
automatic code generation for fixed point DSPs with a fixed instruction word length.

The PlayDoh[22] architecture of HP Laboratories is based on machine descrip-
tions specified in a high level textual language MDES|23|. It aims at developing
performance oriented compilers for the VLIW and super-scalar processors.

LISA[24] processor modeling language facilitates pipeline description and explicit
control specification. Lisa Processor Design Platform (LPDP[32]) tool-suit uses pro-
cessor models in LISA to generate software development tools including C-compiler,
assembler, linker, instruction set simulator and debugger front-end. RADL|25], an-
other specification language is derived from LISA, focuses on detailed pipeline be-
havior and is used to generate instruction set simulators.

CHESS/CHECKERS|26| environment consists of a C compiler called Chess, a
linker called Bridge, an instruction set simulator called Checkers and an assembler
and disassembler called Darts. Processor models are described using nML[3|. Chess
reads the nML description to generate binary code from a C program. Similarly,
Checkers uses the nML description to accept the binary code and simulate its exe-
cution on the target processor. Chess/Checkers is a retargetable environment.

The FlexWare|27| framework consists of a retargetable code generator CODESYN
and an instruction set simulator INSULIN. CODESYN takes one or more algorithms
expressed in a high-level language and maps them onto a user defined instruction
set to produce optimized machine code. It can be used to develop code for pro-
cessors including Application Specific Processors (ASPs). INSULIN is based on a
reconfigurable VHDL model of a generic instruction set processor.

CASTLE|28] is a co-design platform which provides a number of design tools for
configuring application specific design flows. The design flow starts with a C/C++
program and gradually derives a register-transfer level description of a processor
hardware, as well as the corresponding compiler for generating the processor opcode.

Visualization Based Micro-architecture Workbench (VMW|29]) facilitates speci-
fication of micro-architecture of processors and automatic generation of performance

simulators. It defines a set of machine description files. These machine description



files can be compiled into a working performance simulator for a specific target pro-
cessor. Visualization capabilities are incorporated to allow monitoring of simulation
process. With the help of VMW performance simulators for PowerPC 601 and 620,
DEC Alpha AXP 21064 and 21164 and IBM RS/6000 microprocessors have been

generated and executed.



Chapter 2

Sim-nML

Sim-nML is an extensible formalism designed to specify generic single processor mod-
els. It is a language used to describe the instruction set architecture of a processor
with the minimal knowledge about its micro-architecture. The design of Sim-nML
is highly influenced by that of the nML[3].

The processor models in Sim-nML are described using attribute grammar® in
a hierarchical manner. To facilitate this, Sim-nML defines two kind of primitive
rules, namely op-rules and mode-rules. Op rules are generally used for describing
the instructions while mode rules are used for describing the addressing modes.

The Sim-nML description given in figure 2.2 describes a simple processor with
four type of instructions - add, branch, load and store. In a pipelined processor,
several instructions may coexist at the same time. In such a processor, a single
register such as PC cannot specify the address of an instruction in flight. Sim-nML
supports a special token, $, which is used to denote the memory address of the

instruction in the definition of various attributes of an instruction.

2.1 Hierarchical Structure

In Sim-nML based descriptions, the instruction set is described in a hierarchical

manner with fragments of each of the attribute being distributed over the whole

!An attribute grammar is a context free grammar in which each non-terminal have a fixed set
of attributes and for each production a set of semantic rules is given.



Sample OR Rule

op ng= N1 [Ny [n3 [Ny

Sample AND Rule
opni (pr:ty,pa:ty, p3:ts, ..)
ay = €1, Qg = €2, A3 — €3, ...
where each n; is a non-terminal, each ¢; a token.
Each a; is an attribute name and e; their respective definitions.

Figure 2.1: OR-Rule and AND-Rule formats

specification tree. The common behavior of a class of instructions is captured at the
top level of the tree. The specialized behavior of the instructions is captured in the
subsequent lower levels.

For example in figure 2.2, two instructions, represented by addRtoR and addltoR,
have a common part of the syntax as "ADD". Similarly these instructions share a
common part of the image as "00000001". This common behavior of both the
instructions is captured by specification tree node addinst, the ancestor of addRToR
and addIToR nodes.

2.2 Sim-nML grammar

The root of the specification tree in the Sim-nML is represented by a fixed symbol
called instruction. There are two type of constructions supported in the Sim-nML
namely OR-Rule and AND-Rule, (figure 2.1). The and-rule constructions are used
for the terminal symbol definition and represent the leaf nodes in the specification
tree. The or-rules are non terminals which can expand to further and-rules or or-
rules or both. Both primitive rules, i.e. mode and op rules can be constructed
using Or or And constructions. The Sim-nML grammar predefines four attributes
- syntazr, image, action and uses. The syntax attribute describes the assembly
language format of the instruction while the image attribute describes the binary

coding of the corresponding instruction. Similarly, action attribute describes the



type word = card(16)

type byte = card(8)

reg R[4,word]

reg PC[1,word]

mem M[2**16,byte]
resource ifu, bu, alu[2], wb

/I Addressing modes

mode immediate(x:word)= x
syntax = format("%d",x)
image = format("%16b",x)
mode register(i: card (2)) =R[i]
syntax = format("R%d",i)
image = format("0%2b",i)
mode direct(addr:word)=M[addr]::M[addr+1]
uses = if "rand"() < 0.95 then#{1}
else #{10}
endif
syntax = format("%d",addr)
image = format("%216b",addr)

mode reg_indirect(i:card (2))=
MIRIi]]::M[R[i]+1]
uses = if "rand"() < 0.95 then#{1}
else #{10}
endif
syntax = format("(R%d)",i)
image = format("1%2b",i)
op instruction(x:inst_type)
uses = x.uses
syntax = x.syntax
image = x.image
action = { x.action ; }
op inst_type = add_inst | branch | load_store
op add_inst(x:addr_type)
syntax = format("ADD %s",x.syntax)
image = format("00000001%s",x.image)
uses = x.uses
action = { x.action ; }
op addr_type = addRToR | addIToR
op addRToR(R2:register,R3:register)
uses = ifu#{1}, alu#{1}, wb#{1}
syntax = format("%s,%s",R3.syntax,R2.syntax)
image = format("00%s%s",R2.image,R3.image

action = {
R3=R3 + R2;
PC=PC+2;

op addIToR(x:immediate,R:register)
uses = ifu#{2}, alu#{1}, wb#{1}
syntax = format("%s,%s",R.syntax,x.syntax)
image = format("01%s%s",R.image,x.image)

action = {
R=R+x;
PC=PC + 4,

}

op branch(x:branchtype)
uses = ifu#{2}, alu#{1}, bu#{1}, wb#{1}
syntax = format("JMP %s",x.syntax)
image = format("00000010%s",x.image)
action = { x.action ; }

op branchtype = branchrelative | branchabsolute

op branchrelative( target : card (16))
syntax = format("%d", target)
image = format("00000001%16b", $+target)
action = {
PC = target;
}

op branchabsolute( target : card (16 ) )
syntax = format("%d" target)
image = format("00000010%16b" target)
action={
PC = target;

op load_store = load | storevar tmp[1,word]
op load(r:register,l:loadmode)
uses = lL.uses
syntax = format("LOAD %s,%s",r.syntax,l.syntax)
image = format("00000011%s%s",r.image,l.imagel
action= {
l.action;
r=tmp;

op loadmode = load_direct | load_indirect
op load_direct(m:direct)
uses = ifu#{2}, m.uses, wb#{1}
syntax = format("%s",m.syntax)
image = format("01000%16b",m.image)
action = {
PC=PC + 4,
tmp =m;

og load_indirect(r:reg_indirect)
uses = ifu#{1}, r.uses, wb#{1}
syntax = format("%s",r.syntax)
image = format("00%s",r.image)

action = {
PC=PC +2;
tmp=r;

}

op store(r:register,s:storemode)
uses = s.uses, wb#{2}
syntax = format("STORE %s,%s",r.syntax,s.synta;
image = format("00000100",r.image,s.image)
action = {
s.action;
M[tmp] = r<7..0>;
M[tmp+1] = r<15..8>;
}
op storemode = store_direct | store_indirect
op store_direct(m:immediate)
uses = ifu#{2}, wb#{1}
syntax = format("%s",m.syntax)
image = format("00001%s",m.image)

action = {
PC=PC +4;
tmp =m;

}

op store_indirect(r:reg_indirect)
uses = ifu#{1}, r.uses, wb#{1}
syntax = format("%s",r.syntax)
image = format("00010%s",r.image)

action = {
PC=PC +2;
tmp=r;

}

Figure 2.2:

Addressing modes and flavor of add and branch instructions in Sim-nML



semantics of the action and the uses attribute describes the resource usage model.

2.3 Resource Usage Model

The micro-architecture details of the processor can be specified using the resource
usage model. In Sim-nML specification, the entities within the processor such as
functional units, ALUs, pipeline stages, registers, ports etc., constitute a set of
resources. Every instruction utilizes several resources each for an amount of time
which may be constant or dependent upon only the instruction. The resource usage
model is based on the assumption that at any instant, an instruction in execution
holds a set of resources and performs certain action. The next set of resources must
be acquired before performing the corresponding action. The resources held by the
instruction and the action taken change progressively.

In this model instructions contend for resources and wait, if the resources are not
available. Thus the flow of the instructions in the micro-architecture is essentially
a way of resolving resource conflicts. When two instructions wait simultaneously
for a single resource, the conflict is resolved in FIFO order of the instructions. The
uses attribute in Sim-nML descriptions describes the resource usage model for an
instruction.

An example model for a super-scalar processor is shown in figure 2.2. All instruc-
tions are read by a resource IFU (Instruction Fetch Unit). The instructions have
variable length (16 bits or 32 bits) and accordingly take one or two units of time at
the IFU. In addition there is a BU (Branch Unit), a resource that is used by the
branch instructions only. There are two ALUs, both alike, and are used by the ADD
instruction (and other ALU instructions) and by the branch instructions. Finally
there is a resource called WB (Write Back) unit. It is used by the instructions that
need to write their results back into the registers.

In some cases, the resource uses depends on a condition. For example, time for
memory access depends on whether it was a hit in the cache or not. The conditional
use can be specified by the if construction of uses attribute. For example, construc-
tion if "rand"() < 0.95 #{1} else #{10} represents that in case of a cache hit (hit



ratio is 0.95), delay of 1 time unit occurs while delay is of 10 time units in case
of a miss. This conditional construction also shows that in Sim-nML models, it is
possible to specify components of uses attribute without any resource to represent
just the time delay.

In Sim-nML models, the architectural changes are relatively easy to incorporate.
For example a three way super-scalar processor with 3 ALU units can be obtained

by appropriately changing the resource declaration in figure 2.2.



Chapter 3

(zeneric Disassembler

3.1 Approach

The approach for the generic disassembler is similar to the other tools based on Sim-
nML processor models (figure 3.1). Sim-nML processor models are first converted
to a compact IR (Intermediate Representation) by a tool IRG (IR-Generator). This
IR along with the other required inputs is used by different tools.

IR captures all the information in the Sim-nML description and makes it easy
to access the information by various tools. In our approach, IR is a collection of
tables each of fixed size records. A ‘table of index’ in the beginning of the IR file
provides the size and locations of other tables in the file. The generic disassembler
uses a simple configuration file in addition to the IR to convert an ELF binary to

corresponding assembly language program.

3.2 Algorithm

While disassembling an object file, the object file is first read in the memory. The
process of disassembly for relocatable and executable object file differs only in the
aspect that executable file contains absolute addresses while the relocatable file
contains the relocatable addresses. This difference is handled while considering the

start addresses of the various sections in the object file.

10



Prcoessor Model
in Sim-nML

Processor Model

ELF Binary intermediate fori Binary program

l

Functional
simulator generato

CONFIG file

Disassembler} { Assembler }

Generator

Assembler
program
. Functional
Disassembled Assembler Simulator
Program

ELF Binary

Figure 3.1: Approach for Tool Design with Sim-nML

In order to disassemble an instruction, the bit pattern from the object file is
used to identify the assembly language instruction. Algorithm for identifying an in-
struction is based on a combination of depth first search and backtracking. Starting
from the root node instruction in the Sim-nML specification tree, images of different
nodes are matched with the given input bit string in depth first order. Since the
instruction specifications may be distributed over the specification tree, nodes in
a path from the root to the leaf contribute in defining an instruction. The image
formed by collecting the images of all such nodes in a path should match in order to
identify the instruction. Once such a path is identified, syntax attribute of all nodes
in the path are used to get the syntax of the identified instruction. The match is
carried out using DF'S and when it fails, backtracking is used to search in another
path.

The disassembler also analyzes the object file in various ways to make the disas-
sembler output readable. In particular the disassembler uses the symbol information
from the ELF file and also generates symbols whenever needed. These symbols are

used in place of addresses in the instructions. The process of disassembly is divided

11



1 from the binary ELF, extract the addresses of various functions;
2 put these addresses in start _code block list;
31=0;
4 while start _code block list is not empty {
a. // take out the address from the list.
address = listout(start _code_block);
b. for j = 0 to i-1 { // if address is already traced, ignore it.
if address > code_block _start|j] &&
address < code_block end|j] {
goto step 4;

}

. code_block start[i] = address;
. follow binary till an instruction that changes PC;
. if the instruction is unconditional branch {
code_block end[i] = address of the current instruction;
append the target address in the start code block list;
i=1+1;
goto step 4;
}
f. if the instruction is unconditional return {
code_block end[i] = address of the current instruction;
i=1+1;
goto step 4;
1
g. if the instruction is some other PC changing instruction {
append the target address in the start code block list;
goto step 4.d;

}
}

5 merge the adjacent code blocks;

D OO =

Figure 3.2: Identifying Code Blocks

12



into following steps.

3.2.1 Identification of Code Blocks

The first kind of analysis on the object file is to find out the code and data area. The
generic disassembler first finds out the code blocks (see the algorithm given in figure
3.2). The algorithm works as follows. From the ELF binary, addresses of various
functions in the program are read, if available. This information is stored in the
symbol table section of the binary object file. Assuming that each of these will be
starting/entry point of a code block, the code is traced till a branch unconditional
or return unconditional instruction is found. Branch unconditional or return uncon-
ditional instructions are used to denote the end of a code block. While tracing the
code blocks, if a call or conditional branch instruction is encountered, the target ad-
dress of the instruction defines another code block. If the entry point for the target
address is already traced, tracing is continued with other untraced starting points.
The tracing process is repeated as long as an untraced starting point is there. Call
instructions may refer to the system library functions. Tracing is not done for entry
points corresponding to such functions. With the help of symbol table of the ELF
binary such starting points are identified and marked as untraceable. At the end of
code block analysis, all the adjacent code blocks are merged into one.

For this analysis, the disassembler needs to know the type of the instruction
(branch vs. non-branch). The instruction type is determined with the help of a
configuration file. Instructions can be one of the four types - branch, call, return and
simple. The configuration file contains entries for the first three instruction types.
Following line is taken from a sample configuration file. It specifies that the subtree
rooted at node with label branch _wuncond contains all the branch unconditional
instructions.

% BRANCH_UNCOND branch_ uncond

After the code block analysis, data analysis is done. Data sections consist of
data objects defined in the program, strings etc. used in the program. Symbol
table of the ELF binary contains information about the objects in data sections,

if present. We need to identify the beginning of objects in data sections so that

13



data_section — contents of the data section from the ELF binary;
offset = 0;
while offset is not equal to the length of data section {
if an object is found in the symbol table of the binary ELF for this offset {
get the size/object name/alignment information from the symbol table;
offset = offset + size_of object;
}
if an object is not found in the symbol table {
if data_section|offset] is a non-printable character {
use pseudo op .byte for this offset;
offset — offset + 1;
}
if data_section|offset] is a printable character {
find length of the string of printable characters starting at offset;
if the identified string is NULL terminated
use pseudo op .asciz for the identified string;
if the identified string is not NULL terminated
use pseudo op .ascii for the identified string;
offset = offset + length of string ;

Figure 3.3: Algorithm for identifying object and patterns in data sections

14



appropriate information (size, scope, label etc.) can be written with data contents
of the data objects. Algorithm used for identifying objects and patterns is given
in figure 3.3. It works as follows. For every offset of the data section, a search is
made in the symbol table, to check if it is the beginning of an object. If an object
is found, symbol table is used to get the object scope (global/local), label and size
information. In case no object is found, depending upon the access pattern of the
data it is defined as follows. Array of bytes (.byte pseudo op), if data is a sequence
of non-printable characters or a string of printable characters (.ascii/.asciz pseudo
op). If the string of printable characters terminate with a NULL, .asciz pseudo op
is used otherwise .ascii pseudo op is used. Offset is increased by the size of objects

identified in symbol table or the patterns identified by the disassembler internally.

3.2.2 Generation of Symbolic Names

In the second part of object file analysis, an association is made between the unique
symbolic names and the addresses of the instructions referred to by other instruc-
tions. The generic disassembler generates symbolic names for the starting addresses
of new code blocks, if the corresponding symbolic name is not already available in
the symbol table of the ELF binary. These generated symbolic names are entered
in a symbol table maintained by the generic disassembler. The symbol table is
initialized with the symbol table information read from the ELF binary.

The symbol table thus generated is used in the process of disassembly as de-
scribed in the next section. In our approach, the unique symbols are generated as

L0, .L1, .2 etc. (i.e. by prefixing a string ".L." to a counter value).

3.2.3 Disassembly

The final part of the object code analysis consists of generation of the assembly
language program from the ELF binary. At this point symbolic names and code
block information is available. This step starts with writing general information in

the output such as the source file name from which object file has been generated

(.file pseudo op).

15



for i = 0 to total reloc_entries — 1 {
if reloc_table[i].offset is equal to target address {
relocated symbol = reloc_tableli|.symbol ;
relocation_type = reloc_ table[i].type;
if operator is determined for relocation type
write relocation information with operator and relocated symbol;
if operator is not determined for relocation type
write @Reloc(relocated symbol,relocation type);

Figure 3.4: Algorithm for expressing relocation information

Labels are written for the first instruction of each code block, in the beginning of
its disassembly. The symbolic label for the address is obtained from the symbol table
maintained by the generic disassembler. If the instruction is the first instruction of
a function then corresponding to its label, other pseudo instructions such as .type,
.align, .size, .globl or .local are also written.

After generation of the label, the instruction is disassembled as per the algo-
rithm given earlier. The disassembled instruction may contain numeric addresses.
In our approach, we convert these numeric addresses to the symbols. Symbolic
names corresponding to numeric addresses are found in the symbol table main-
tained by the generic disassembler. The target address of an instruction might
be relocatable. If the target address is found in the relocation table, algorithm
given in figure 3.4 is used to express the relocation information. Relocation table
entry for the target address determines the relocation type and the relocated sym-
bol. Relocation type is specific to a processor. Target processors can be uniquely
identified with the information present in the header structure of the ELF binary.
The relocation information is expressed using an operator on the relocated symbol.
For example, with relocation type R_PPC_ADD16_HA and relocated symbol .L0
for PowerPC603, the information is written as .L0O@ha where @ha is the opera-

tor on the symbol .L0. If the corresponding operator cannot be determined for

16



a relocation type, disassembler writes relocation information in the generic format
@Reloc(relocated_ symbol,relocation type).

Finally, the contents of data sections are written to the output. In the earlier
steps information like objects, patterns etc. is already collected. For each object
found in the symbol table, information such as its section, alignment, size, scope,
label etc. is written before the contents, using appropriate pseudo-ops. This infor-
mation is taken from the symbol table of the binary ELF. For the patterns identified
by the generic disassembler, pseudo ops such as .byte/.asciz/.ascii are written along

with the contents.
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Chapter 4
Conclusions

The generic disassembler is tested for PowerPC603, Motorola 68HC11 and MIPS
R10000 processor models. Output produced by the generic disassembler is compat-
ible to the GNU assemblers and semantically similar to the output produced by the
GNU C compilers. The output differs from the gcc-compiled assembly program in
the names of the labels. In addition, depending upon the specifications, alternate
instructions are generated by the generic disassembler. For example, in place of the
instruction mfir 0 produced by the GNU C compiler for PowerPC603, the generic
disassembler produces a semantically equivalent instruction mfpr 0,256. Similarly,
instructions in the pairs such as mfspr 0,256 and mfir 0; ori 0,0,0 and nop; addi
0,0,0 and i 0,0; or 31,1,1 and mr 31,1 etc. are semantically equivalent and have
the same machine coding.

In the output produced by the native compiler, redundant labels are generated
that are not referred to by any instruction. All such redundant labels are not
present in the disassembly produced by the generic disassembler. Since the generic
disassembler generates the labels by code analysis, these labels are different in the
compiler generated assembly program. The labels are however positioned at the

same location. Therefore, though the labels are different, effect is the same.
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Appendix A
User’s Manual

Sim-nML specification of the target processor is first changed to Intermediate Rep-

resentation with the help of IR-Generator tool.

A.1 IR Generation

IR-Generator tool is available with the source code of disassembler tool. Usage of

IR-Generator are as follows

Use : irg |-d level] |-h] [-w] -0 ir_file Sim-nML _ file
-d : To get debug information in debug.tmp at different levels (1..4) of detail
Value 1 means minimum detailed information and 4 means maximum detailed
information
-h : to get this message
-0 : Intermediate code will be in file ir_ file otherwise default file name is IR
-w : to get warning messages. Default is no warning.

Sim-nML _file : input file having Sim-nML specification of target processor

23



A.2 Usage of Generic Disassembler

Disassembler tool is compiled with make in the source directory. Usage of the dis-

assembler tool are as follows

Use : Disassembler exe |-h| [-o output] -i ir_file -¢ config objfile

-h @ to get this help message

-0 : Disassembler writes the disassembly to the file output.

If the output file name is not specified disassembler appends _symdis.s to ob-
ject file name to produce the output file name. e.g. if object file name is 8q.0 and
output file has not been specified, output is written to file 8¢ symdis.s.

-i:ir_file is generated with the Sim-nML specification of the target processor.

-c : config is the configuration file for processor specification in ir_file. This
file contains information specific to Sim-nML processor specification. It helps in
determining the instruction type and identifying the immediate modes.

obj _file : It is the ELF object file to be disassembled.

Disassembler exe is the executable file for the disassembler tool. With the help
of makefile generator script genmake, available with disassembler tool, tool name
can be configured according to the target processor e.g. for PowerPC603, executable
disassembler tool file is named ppcdisa.

For FEIf file, native compiler for the target processor is required. Object file is

produced with the help of compiler, using appropriate compilation flags.

A.3 Configuration file

Sim-nML specification is again used for producing the configuration file. Sample

Configuration file for PowerPC603 Sim-nML description is given below.

%IMM _MODE IMM16, IMM24, SIMM, UIMM16
%BRANCH _UNCOND branch _uncond
%BRANCH _COND branch _cond
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%CALL_UNCOND call _uncond
%CALL_COND call _cond
%RETURN_UNCOND bran_cond _Ir
%RETURN _COND ret__cond

Here branch_uncond is the label of the subtree which contains all the branch
unconditional instructions. All the labels should be written, comma separated, in
case instructions for one category are in different subtrees. For writing a new con-
figuration file, hierarchy of the Sim-nML processor specification should be analyzed.
Labels of all the subtrees, which contain instructions for a particular type should be
written, comma separated, in front of that instruction type. One can also write the

opcodes of instructions in place of subtree labels.
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