
Generi
 Disassembler Using Pro
essor Models
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

byPrithvi Pal Singh Bisht

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurFebruary, 2002

Certi�
ate
This is to
ertify that the work
ontained in the thesis entitled � Generi
 Dis-assembler Using Pro
essor Models �, by Prithvi Pal Singh Bisht, has been
arriedout under my supervision and that this work has not been submitted elsewhere for adegree.

February, 2002 (Prof. Rajat Moona)Department of Computer S
ien
e & Engineering,Indian Institute of Te
hnology,Kanpur.

Abstra
tThe generi
 disassembler, produ
es symboli
 relo
atable disassembly of an obje
t�le in Exe
utable and Linking Format (ELF). It uses a pro
essor model that
on-tains instru
tion set des
ription of the pro
essors in a language
alled Sim-nML.Sim-nML is simple, elegant and powerful language to express the behavior of pro-
essors at instru
tion level. It uses synthesized attributes to represent timing in-formation, instru
tion semanti
s, assembly language syntax and binary representa-tion of instru
tions. Generi
 Disassembler fa
ilitates disassembly of programs in aGNU-
ompatible format. For identifying the instru
tions, depth �rst sear
h andba
ktra
king is used on a tree like stru
ture of the Sim-nML instru
tion set des
rip-tion. Sin
e the attributes of an instru
tion are s
attered in various subtrees, syntaxfor the instru
tion is
olle
ted from the subtrees sele
ted during traversal. Di�erentparts of a single instru
tion may be mat
hed with di�erent subtrees. Symboli
 andrelo
atable disassembly is a
hieved by using relo
ation and symbol information fromthe obje
t �le and analyzing the
ode to identify basi
 blo
ks.

A
knowledgmentsMy sin
ere thanks goes to my thesis supervisor Prof. Rajat Moona. His stream-lined view and to-the-point approa
h is the ba
kbone of this work. In addition tote
hni
al aspe
ts, I obtained a strong sense of professionalism from him. In short,it was a rewarding experien
e for me to work under him.Work done in this thesis is a part of the resear
h done under CARES proje
tin Caden
e Resear
h Center at IIT Kanpur. Spe
ial thanks to Dr. Sanjeev KumarAggarwal and Dr. Deepak Gupta for their a
tive involvements in CARES team.Mr Souvik Basu, senior student in CARES proje
t, did his best in helping mebegin my work in this area. I thank him for all the time he spent for me. I wouldlike to thank Mr R. Ravindran, PhD student, for his in-time helps.I am thankful to the MTe
h 2000 and 2001 bat
hes for their signi�
ant nearness.Spe
ial thanks goes to Pijush, Asheesh and Jayadeep for giving "in-home" and"granted" feeling ba
k at hostel. Girish, Rajesh, Pradeep and Varada will holdseparate and important pla
es in my memory.I am indebted to my parents, brothers and sisters for their love,
are and un-derstanding in a hard and
ru
ial phase of life. I express my deep gratitude to myelder brother Brijesh da for his love, understanding and inspirations. Without himI would have been washed o� to a di�erent land.Before
losing this se
tion I would like to express my deep feelings for Vinod. Iwill always remember him for providing the reasons to go on.

i

Contents
1 Introdu
tion 11.1 Related Work . 12 Sim-nML 52.1 Hierar
hi
al Stru
ture . 52.2 Sim-nML grammar . 62.3 Resour
e Usage Model . 83 Generi
 Disassembler 103.1 Approa
h . 103.2 Algorithm . 103.2.1 Identi�
ation of Code Blo
ks 133.2.2 Generation of Symboli
 Names 153.2.3 Disassembly . 154 Con
lusions 18Bibliography 19A User's Manual 23A.1 IR Generation . 23A.2 Usage of Generi
 Disassembler . 24A.3 Con�guration �le . 24

ii

List of Figures2.1 OR-Rule and AND-Rule formats . 62.2 Addressing modes and �avor of add and bran
h instru
tions in Sim-nML 73.1 Approa
h for Tool Design with Sim-nML 113.2 Identifying Code Blo
ks . 123.3 Algorithm for identifying obje
t and patterns in data se
tions 143.4 Algorithm for expressing relo
ation information 16

iii

Chapter 1Introdu
tionWith development of an Appli
ation Spe
i�
 Pro
essor (ASP), spe
i�
 tools e.g.disassembler, assembler, simulator,
ompiler ba
k end, et
. are also required. Su
htools provide an interfa
e for appli
ation development on this pro
essor. Non-availability of su
h tools in time, may
ause the whole design to fail. Problem gets
ompli
ated in
ase many design alternatives are to be
onsidered. In a traditionalapproa
h, for every alternative design model, su
h tools are redesigned. Develop-ment of these tools is a tedious and error-prone pro
ess. CARES proje
t group at IITKanpur is developing an interfa
e that automates the pro
ess of tools development.In our approa
h we use pro
essor models
ontaining instru
tion set des
ription ofpro
essors in Sim-nML. From these pro
essor models we develop various tools us-ing tool generators. Pro
essor models of SPARC, Motorola 68HC11, PowerPC603,MIPS R10000, ARM, ADSP2105, 8085 and a few other pro
essors have been devel-oped by us and used for the generation of various tools. Generi
 disassembler is oneof the tools in the tool
hain developed at IIT Kanpur. Other developed tools areGeneri
 Assembler Generator[4℄, Fun
tional Simulator Generator[5℄, RetargetableCa
he Simulator and Code Instrumentor[6℄ and Compiler ba
k-end generator[7℄.1.1 Related WorkThere are various related works reported in the literature.1

CBC/SIGH/SIM framework
onsists of a retargetable
ode generator CBC[8℄ forC
ompilers and the instru
tion set simulator SIGH/SIM[9℄. This framework usesnML[3℄ language for pro
essor models. nML permits
on
ise, hierar
hi
al pro
essordes
ription in a behavioral style.Aviv[11℄ is a retargetable
ode generator whi
h produ
es the optimized ma
hine
ode for target pro
essors with various instru
tion set ar
hite
tures. It uses Instru
-tion Set Des
ription Language (ISDL[10℄) as a high level language for des
ribing thepro
essor models.Cy
le a

urate models of pipelined pro
essor ar
hite
tures require a pipeline-a

urate behavioral des
ription. In nML or ISDL, the semanti
s of the language donot provide means for des
ribing the
y
le a

urate models.EXPRESSION[12℄ language uses a mixed behavioral and stru
tural representa-tion approa
h for pro
essor modeling. SIMPRESS[13℄, based on EXPRESSION, is aretargetable simulator generator for pro
essor-memory ar
hite
tures and EXPRESSis a retargetable
ompiler for embedded system-on-
hip systems.New Jersey Ma
hine-Code toolkit[15℄ helps programmers write appli
ations thatpro
ess ma
hine
ode e.g. assemblers, disassemblers,
ode generators, tra
ers, pro-�lers, and debuggers. It uses pro
essor models written in Spe
i�
ation Languagefor En
oding and De
oding (SLED[14℄). SLED des
ribes abstra
t, binary and as-sembly language representations of ma
hine instru
tions. With the help of toolkitretargetable debugger, retargetable optimizing linker and disassembler for SPARChave been developed.BUILDABONG (Building Spe
ial Computer Ar
hite
tures based on Ar
hite
-ture and Compiler Co-Generation[16℄) dis
usses the automati
 generation of instru
-tion set simulators and the
orresponding retargeted
ompilers. The methodologyis based on ASMs (Abstra
t State Ma
hines) as the formal model for des
ribing apro
essor's behavior. ASM is a mathemati
al model of
omputation based on the
on
ept of universes, fun
tions and updates of fun
tions. BUILDABONG proje
tgroup[31℄ aims at ar
hite
ture synthesis and
ompiler generation for the ar
hite
-tures. XASM[18℄ is ASM spe
i�
ation language. Gem-Mex[19℄ tool automati
allygenerate a debugging and simulation environment for a given XASM spe
i�
ation.2

MIMOLA (Ma
hine Independent Mi
roprogramming Language[20℄) is a stru
-ture level des
ription language. RECORD[21℄ system based on MIMOLA aims atautomati

ode generation for �xed point DSPs with a �xed instru
tion word length.The PlayDoh[22℄ ar
hite
ture of HP Laboratories is based on ma
hine des
rip-tions spe
i�ed in a high level textual language MDES[23℄. It aims at developingperforman
e oriented
ompilers for the VLIW and super-s
alar pro
essors.LISA[24℄ pro
essor modeling language fa
ilitates pipeline des
ription and expli
it
ontrol spe
i�
ation. Lisa Pro
essor Design Platform (LPDP[32℄) tool-suit uses pro-
essor models in LISA to generate software development tools in
luding C-
ompiler,assembler, linker, instru
tion set simulator and debugger front-end. RADL[25℄, an-other spe
i�
ation language is derived from LISA, fo
uses on detailed pipeline be-havior and is used to generate instru
tion set simulators.CHESS/CHECKERS[26℄ environment
onsists of a C
ompiler
alled Chess, alinker
alled Bridge, an instru
tion set simulator
alled Che
kers and an assemblerand disassembler
alled Darts. Pro
essor models are des
ribed using nML[3℄. Chessreads the nML des
ription to generate binary
ode from a C program. Similarly,Che
kers uses the nML des
ription to a

ept the binary
ode and simulate its exe-
ution on the target pro
essor. Chess/Che
kers is a retargetable environment.The FlexWare[27℄ framework
onsists of a retargetable
ode generator CODESYNand an instru
tion set simulator INSULIN. CODESYN takes one or more algorithmsexpressed in a high-level language and maps them onto a user de�ned instru
tionset to produ
e optimized ma
hine
ode. It
an be used to develop
ode for pro-
essors in
luding Appli
ation Spe
i�
 Pro
essors (ASPs). INSULIN is based on are
on�gurable VHDL model of a generi
 instru
tion set pro
essor.CASTLE[28℄ is a
o-design platform whi
h provides a number of design tools for
on�guring appli
ation spe
i�
 design �ows. The design �ow starts with a C/C++program and gradually derives a register-transfer level des
ription of a pro
essorhardware, as well as the
orresponding
ompiler for generating the pro
essor op
ode.Visualization Based Mi
ro-ar
hite
ture Workben
h (VMW[29℄) fa
ilitates spe
i-�
ation of mi
ro-ar
hite
ture of pro
essors and automati
 generation of performan
esimulators. It de�nes a set of ma
hine des
ription �les. These ma
hine des
ription3

�les
an be
ompiled into a working performan
e simulator for a spe
i�
 target pro-
essor. Visualization
apabilities are in
orporated to allow monitoring of simulationpro
ess. With the help of VMW performan
e simulators for PowerPC 601 and 620,DEC Alpha AXP 21064 and 21164 and IBM RS/6000 mi
ropro
essors have beengenerated and exe
uted.

4

Chapter 2Sim-nMLSim-nML is an extensible formalism designed to spe
ify generi
 single pro
essor mod-els. It is a language used to des
ribe the instru
tion set ar
hite
ture of a pro
essorwith the minimal knowledge about its mi
ro-ar
hite
ture. The design of Sim-nMLis highly in�uen
ed by that of the nML[3℄.The pro
essor models in Sim-nML are des
ribed using attribute grammar1 ina hierar
hi
al manner. To fa
ilitate this, Sim-nML de�nes two kind of primitiverules, namely op-rules and mode-rules. Op rules are generally used for des
ribingthe instru
tions while mode rules are used for des
ribing the addressing modes.The Sim-nML des
ription given in �gure 2.2 des
ribes a simple pro
essor withfour type of instru
tions - add, bran
h, load and store. In a pipelined pro
essor,several instru
tions may
oexist at the same time. In su
h a pro
essor, a singleregister su
h as PC
annot spe
ify the address of an instru
tion in �ight. Sim-nMLsupports a spe
ial token, $, whi
h is used to denote the memory address of theinstru
tion in the de�nition of various attributes of an instru
tion.2.1 Hierar
hi
al Stru
tureIn Sim-nML based des
riptions, the instru
tion set is des
ribed in a hierar
hi
almanner with fragments of ea
h of the attribute being distributed over the whole1An attribute grammar is a
ontext free grammar in whi
h ea
h non-terminal have a �xed setof attributes and for ea
h produ
tion a set of semanti
 rules is given.5

Sample OR Ruleop n0= n1 |n2 |n3 |n4Sample AND Ruleop n1 (p1 : t1, p2 : t2, p3 : t3, ...)a1 = e1, a2 = e2, a3 = e3, ...where ea
h ni is a non-terminal, ea
h ti a token.Ea
h ai is an attribute name and ei their respe
tive de�nitions.Figure 2.1: OR-Rule and AND-Rule formatsspe
i�
ation tree. The
ommon behavior of a
lass of instru
tions is
aptured at thetop level of the tree. The spe
ialized behavior of the instru
tions is
aptured in thesubsequent lower levels.For example in �gure 2.2, two instru
tions, represented by addRtoR and addItoR,have a
ommon part of the syntax as "ADD". Similarly these instru
tions share a
ommon part of the image as "00000001". This
ommon behavior of both theinstru
tions is
aptured by spe
i�
ation tree node addinst, the an
estor of addRToRand addIToR nodes.2.2 Sim-nML grammarThe root of the spe
i�
ation tree in the Sim-nML is represented by a �xed symbol
alled instru
tion. There are two type of
onstru
tions supported in the Sim-nMLnamely OR-Rule and AND-Rule, (�gure 2.1). The and-rule
onstru
tions are usedfor the terminal symbol de�nition and represent the leaf nodes in the spe
i�
ationtree. The or-rules are non terminals whi
h
an expand to further and-rules or or-rules or both. Both primitive rules, i.e. mode and op rules
an be
onstru
tedusing Or or And
onstru
tions. The Sim-nML grammar prede�nes four attributes- syntax, image, a
tion and uses. The syntax attribute des
ribes the assemblylanguage format of the instru
tion while the image attribute des
ribes the binary
oding of the
orresponding instru
tion. Similarly, a
tion attribute des
ribes the6

syntax = format("%d",addr)
image = format("%16b",addr)

uses = if "rand"() < 0.95 then
 else
 endif

 #{1}
 #{10}

syntax = format("%d",x)
image = format("%16b",x)

syntax = format("R%d",i)
image = format("0%2b",i)

uses = s.uses, wb#{2}
syntax = format("STORE %s,%s",r.syntax,s.syntax)
image = format("00000100",r.image,s.image)
action = {
 s.action;
 M[tmp] = r<7..0>;
 M[tmp+1] = r<15..8>;
}

uses = ifu#{1}, r.uses, wb#{1}
syntax = format("%s",r.syntax)
image = format("00010%s",r.image)
action = {
 PC = PC + 2;
 tmp = r;
}

uses = ifu#{2}, wb#{1}
syntax = format("%s",m.syntax)
image = format("00001%s",m.image)
action = {
 PC = PC + 4;
 tmp = m;
}

type byte = card(8)
reg R[4,word]
reg PC[1,word]
mem M[2**16,byte]
resource ifu, bu, alu[2], wb

// Addressing modes

mode immediate(x:word)= x

op inst_type = add_inst | branch | load_store

op addr_type = addRToR | addIToR

 M[R[i]]::M[R[i]+1]
mode reg_indirect(i : card (2)) =

mode direct(addr:word)=M[addr]::M[addr+1]

op instruction(x:inst_type)

op add_inst(x:addr_type)

op addRToR(R2:register,R3:register)

mode register(i : card (2)) =R[i]

op addIToR(x:immediate,R:register)

op branch(x:branchtype)

op branchtype = branchrelative | branchabsolute

op load_store = load | storevar tmp[1,word]

op loadmode = load_direct | load_indirect

op branchrelative(target : card (16))

op branchabsolute(target : card (16))

op load(r:register,l:loadmode)

op load_direct(m:direct)

uses = l.uses
syntax = format("LOAD %s,%s",r.syntax,l.syntax)

action= {
 l.action;
 r = tmp;
}

type word = card(16)

op load_indirect(r:reg_indirect)

uses = ifu#{2}, m.uses, wb#{1}
syntax = format("%s",m.syntax)
image = format("01000%16b",m.image)
action = {
 PC = PC + 4;
 tmp = m;
}

syntax = format("ADD %s",x.syntax)
image = format("00000001%s",x.image)
uses = x.uses
action = { x.action ; }

uses = x.uses
syntax = x.syntax
image = x.image
action = { x.action ; }

syntax = format("(R%d)",i)
image = format("1%2b",i)

uses = if "rand"() < 0.95 then
 else
 endif

 #{1}
 #{10}

syntax = format("%s,%s",R3.syntax,R2.syntax)
image = format("00%s%s",R2.image,R3.image)

uses = ifu#{1}, alu#{1}, wb#{1}

action = {
 R3 = R3 + R2;
 PC = PC + 2;
}

uses = ifu#{2}, alu#{1}, bu#{1}, wb#{1}
syntax = format("JMP %s",x.syntax)

action = { x.action ; }

uses = ifu#{2}, alu#{1}, wb#{1}
syntax = format("%s,%s",R.syntax,x.syntax)

action = {
 R = R + x;
 PC = PC + 4;
}

image = format("00000010%s",x.image)

image = format("00000011%s%s",r.image,l.image)

image = format("01%s%s",R.image,x.image)

}

syntax = format("%d", target)

action = {
 PC = target;

syntax = format("%d",target)

action={
 PC = target;
}

op storemode = store_direct | store_indirect

op store(r:register,s:storemode)

op store_direct(m:immediate)

op store_indirect(r:reg_indirect)

uses = ifu#{1}, r.uses, wb#{1}
syntax = format("%s",r.syntax)
image = format("00%s",r.image)
action = {
 PC = PC + 2;
 tmp = r;
}

image = format("00000001%16b", $+target)

image = format("00000010%16b",target)

Figure 2.2: Addressing modes and �avor of add and bran
h instru
tions in Sim-nML7

semanti
s of the a
tion and the uses attribute des
ribes the resour
e usage model.2.3 Resour
e Usage ModelThe mi
ro-ar
hite
ture details of the pro
essor
an be spe
i�ed using the resour
eusage model. In Sim-nML spe
i�
ation, the entities within the pro
essor su
h asfun
tional units, ALUs, pipeline stages, registers, ports et
.,
onstitute a set ofresour
es. Every instru
tion utilizes several resour
es ea
h for an amount of timewhi
h may be
onstant or dependent upon only the instru
tion. The resour
e usagemodel is based on the assumption that at any instant, an instru
tion in exe
utionholds a set of resour
es and performs
ertain a
tion. The next set of resour
es mustbe a
quired before performing the
orresponding a
tion. The resour
es held by theinstru
tion and the a
tion taken
hange progressively.In this model instru
tions
ontend for resour
es and wait, if the resour
es are notavailable. Thus the �ow of the instru
tions in the mi
ro-ar
hite
ture is essentiallya way of resolving resour
e
on�i
ts. When two instru
tions wait simultaneouslyfor a single resour
e, the
on�i
t is resolved in FIFO order of the instru
tions. Theuses attribute in Sim-nML des
riptions des
ribes the resour
e usage model for aninstru
tion.An example model for a super-s
alar pro
essor is shown in �gure 2.2. All instru
-tions are read by a resour
e IFU (Instru
tion Fet
h Unit). The instru
tions havevariable length (16 bits or 32 bits) and a

ordingly take one or two units of time atthe IFU. In addition there is a BU (Bran
h Unit), a resour
e that is used by thebran
h instru
tions only. There are two ALUs, both alike, and are used by the ADDinstru
tion (and other ALU instru
tions) and by the bran
h instru
tions. Finallythere is a resour
e
alled WB (Write Ba
k) unit. It is used by the instru
tions thatneed to write their results ba
k into the registers.In some
ases, the resour
e uses depends on a
ondition. For example, time formemory a

ess depends on whether it was a hit in the
a
he or not. The
onditionaluse
an be spe
i�ed by the if
onstru
tion of uses attribute. For example,
onstru
-tion if "rand"() < 0.95 #{1} else #{10} represents that in
ase of a
a
he hit (hit8

ratio is 0.95), delay of 1 time unit o

urs while delay is of 10 time units in
aseof a miss. This
onditional
onstru
tion also shows that in Sim-nML models, it ispossible to spe
ify
omponents of uses attribute without any resour
e to representjust the time delay.In Sim-nML models, the ar
hite
tural
hanges are relatively easy to in
orporate.For example a three way super-s
alar pro
essor with 3 ALU units
an be obtainedby appropriately
hanging the resour
e de
laration in �gure 2.2.

9

Chapter 3Generi
 Disassembler
3.1 Approa
hThe approa
h for the generi
 disassembler is similar to the other tools based on Sim-nML pro
essor models (�gure 3.1). Sim-nML pro
essor models are �rst
onvertedto a
ompa
t IR (Intermediate Representation) by a tool IRG (IR-Generator). ThisIR along with the other required inputs is used by di�erent tools.IR
aptures all the information in the Sim-nML des
ription and makes it easyto a

ess the information by various tools. In our approa
h, IR is a
olle
tion oftables ea
h of �xed size re
ords. A `table of index' in the beginning of the IR �leprovides the size and lo
ations of other tables in the �le. The generi
 disassembleruses a simple
on�guration �le in addition to the IR to
onvert an ELF binary to
orresponding assembly language program.3.2 AlgorithmWhile disassembling an obje
t �le, the obje
t �le is �rst read in the memory. Thepro
ess of disassembly for relo
atable and exe
utable obje
t �le di�ers only in theaspe
t that exe
utable �le
ontains absolute addresses while the relo
atable �le
ontains the relo
atable addresses. This di�eren
e is handled while
onsidering thestart addresses of the various se
tions in the obje
t �le.10

Disassembler

Disassembled
Program

 IRG

Prcoessor Model
 in Sim−nML

Processor Model
intermediate form

Assembler
Generator

Functional
simulator generator

Functional
SimulatorAssembler

Assembler
program

ELF Binary

ELF Binary

Binary program

CONFIG file

Figure 3.1: Approa
h for Tool Design with Sim-nMLIn order to disassemble an instru
tion, the bit pattern from the obje
t �le isused to identify the assembly language instru
tion. Algorithm for identifying an in-stru
tion is based on a
ombination of depth �rst sear
h and ba
ktra
king. Startingfrom the root node instru
tion in the Sim-nML spe
i�
ation tree, images of di�erentnodes are mat
hed with the given input bit string in depth �rst order. Sin
e theinstru
tion spe
i�
ations may be distributed over the spe
i�
ation tree, nodes ina path from the root to the leaf
ontribute in de�ning an instru
tion. The imageformed by
olle
ting the images of all su
h nodes in a path should mat
h in order toidentify the instru
tion. On
e su
h a path is identi�ed, syntax attribute of all nodesin the path are used to get the syntax of the identi�ed instru
tion. The mat
h is
arried out using DFS and when it fails, ba
ktra
king is used to sear
h in anotherpath.The disassembler also analyzes the obje
t �le in various ways to make the disas-sembler output readable. In parti
ular the disassembler uses the symbol informationfrom the ELF �le and also generates symbols whenever needed. These symbols areused in pla
e of addresses in the instru
tions. The pro
ess of disassembly is divided11

1 from the binary ELF, extra
t the addresses of various fun
tions;2 put these addresses in start_
ode_blo
k list;3 i = 0;4 while start_
ode_blo
k list is not empty {a. // take out the address from the list.address = listout(start_
ode_blo
k);b. for j = 0 to i-1 { // if address is already tra
ed, ignore it.if address �
ode_blo
k_start[j℄ &&address �
ode_blo
k_end[j℄ {goto step 4;}}
.
ode_blo
k_start[i℄ = address;d. follow binary till an instru
tion that
hanges PC;e. if the instru
tion is un
onditional bran
h {
ode_blo
k_end[i℄ = address of the
urrent instru
tion;append the target address in the start_
ode_blo
k list;i = i + 1;goto step 4;}f. if the instru
tion is un
onditional return {
ode_blo
k_end[i℄ = address of the
urrent instru
tion;i = i + 1;goto step 4;}g. if the instru
tion is some other PC
hanging instru
tion {append the target address in the start_
ode_blo
k list;goto step 4.d;}}5 merge the adja
ent
ode blo
ks;Figure 3.2: Identifying Code Blo
ks
12

into following steps.3.2.1 Identi�
ation of Code Blo
ksThe �rst kind of analysis on the obje
t �le is to �nd out the
ode and data area. Thegeneri
 disassembler �rst �nds out the
ode blo
ks (see the algorithm given in �gure3.2). The algorithm works as follows. From the ELF binary, addresses of variousfun
tions in the program are read, if available. This information is stored in thesymbol table se
tion of the binary obje
t �le. Assuming that ea
h of these will bestarting/entry point of a
ode blo
k, the
ode is tra
ed till a bran
h un
onditionalor return un
onditional instru
tion is found. Bran
h un
onditional or return un
on-ditional instru
tions are used to denote the end of a
ode blo
k. While tra
ing the
ode blo
ks, if a
all or
onditional bran
h instru
tion is en
ountered, the target ad-dress of the instru
tion de�nes another
ode blo
k. If the entry point for the targetaddress is already tra
ed, tra
ing is
ontinued with other untra
ed starting points.The tra
ing pro
ess is repeated as long as an untra
ed starting point is there. Callinstru
tions may refer to the system library fun
tions. Tra
ing is not done for entrypoints
orresponding to su
h fun
tions. With the help of symbol table of the ELFbinary su
h starting points are identi�ed and marked as untra
eable. At the end of
ode blo
k analysis, all the adja
ent
ode blo
ks are merged into one.For this analysis, the disassembler needs to know the type of the instru
tion(bran
h vs. non-bran
h). The instru
tion type is determined with the help of a
on�guration �le. Instru
tions
an be one of the four types - bran
h,
all, return andsimple. The
on�guration �le
ontains entries for the �rst three instru
tion types.Following line is taken from a sample
on�guration �le. It spe
i�es that the subtreerooted at node with label bran
h_un
ond
ontains all the bran
h un
onditionalinstru
tions.% BRANCH_UNCOND bran
h_un
ondAfter the
ode blo
k analysis, data analysis is done. Data se
tions
onsist ofdata obje
ts de�ned in the program, strings et
. used in the program. Symboltable of the ELF binary
ontains information about the obje
ts in data se
tions,if present. We need to identify the beginning of obje
ts in data se
tions so that13

data_se
tion =
ontents of the data se
tion from the ELF binary;o�set = 0;while o�set is not equal to the length of data se
tion {if an obje
t is found in the symbol table of the binary ELF for this o�set {get the size/obje
t_name/alignment information from the symbol table;o�set = o�set + size_of_obje
t;}if an obje
t is not found in the symbol table {if data_se
tion[o�set℄ is a non-printable
hara
ter {use pseudo op .byte for this o�set;o�set = o�set + 1;}if data_se
tion[o�set℄ is a printable
hara
ter {�nd length of the string of printable
hara
ters starting at o�set;if the identi�ed string is NULL terminateduse pseudo op .as
iz for the identi�ed string;if the identi�ed string is not NULL terminateduse pseudo op .as
ii for the identi�ed string;o�set = o�set + length_of_string ;}}} Figure 3.3: Algorithm for identifying obje
t and patterns in data se
tions
14

appropriate information (size, s
ope, label et
.)
an be written with data
ontentsof the data obje
ts. Algorithm used for identifying obje
ts and patterns is givenin �gure 3.3. It works as follows. For every o�set of the data se
tion, a sear
h ismade in the symbol table, to
he
k if it is the beginning of an obje
t. If an obje
tis found, symbol table is used to get the obje
t s
ope (global/lo
al), label and sizeinformation. In
ase no obje
t is found, depending upon the a

ess pattern of thedata it is de�ned as follows. Array of bytes (.byte pseudo op), if data is a sequen
eof non-printable
hara
ters or a string of printable
hara
ters (.as
ii/.as
iz pseudoop). If the string of printable
hara
ters terminate with a NULL, .as
iz pseudo opis used otherwise .as
ii pseudo op is used. O�set is in
reased by the size of obje
tsidenti�ed in symbol table or the patterns identi�ed by the disassembler internally.3.2.2 Generation of Symboli
 NamesIn the se
ond part of obje
t �le analysis, an asso
iation is made between the uniquesymboli
 names and the addresses of the instru
tions referred to by other instru
-tions. The generi
 disassembler generates symboli
 names for the starting addressesof new
ode blo
ks, if the
orresponding symboli
 name is not already available inthe symbol table of the ELF binary. These generated symboli
 names are enteredin a symbol table maintained by the generi
 disassembler. The symbol table isinitialized with the symbol table information read from the ELF binary.The symbol table thus generated is used in the pro
ess of disassembly as de-s
ribed in the next se
tion. In our approa
h, the unique symbols are generated as.L0, .L1, .L2 et
. (i.e. by pre�xing a string ".L" to a
ounter value).3.2.3 DisassemblyThe �nal part of the obje
t
ode analysis
onsists of generation of the assemblylanguage program from the ELF binary. At this point symboli
 names and
odeblo
k information is available. This step starts with writing general information inthe output su
h as the sour
e �le name from whi
h obje
t �le has been generated(.�le pseudo op). 15

for i = 0 to total_relo
_entries � 1 {if relo
_table[i℄.o�set is equal to target_address {relo
ated_symbol = relo
_table[i℄.symbol ;relo
ation_type = relo
_table[i℄.type;if operator is determined for relo
ation_typewrite relo
ation information with operator and relo
ated_symbol;if operator is not determined for relo
ation_typewrite �Relo
(relo
ated_symbol,relo
ation_type);}} Figure 3.4: Algorithm for expressing relo
ation informationLabels are written for the �rst instru
tion of ea
h
ode blo
k, in the beginning ofits disassembly. The symboli
 label for the address is obtained from the symbol tablemaintained by the generi
 disassembler. If the instru
tion is the �rst instru
tion ofa fun
tion then
orresponding to its label, other pseudo instru
tions su
h as .type,.align, .size, .globl or .lo
al are also written.After generation of the label, the instru
tion is disassembled as per the algo-rithm given earlier. The disassembled instru
tion may
ontain numeri
 addresses.In our approa
h, we
onvert these numeri
 addresses to the symbols. Symboli
names
orresponding to numeri
 addresses are found in the symbol table main-tained by the generi
 disassembler. The target address of an instru
tion mightbe relo
atable. If the target address is found in the relo
ation table, algorithmgiven in �gure 3.4 is used to express the relo
ation information. Relo
ation tableentry for the target address determines the relo
ation type and the relo
ated sym-bol. Relo
ation type is spe
i�
 to a pro
essor. Target pro
essors
an be uniquelyidenti�ed with the information present in the header stru
ture of the ELF binary.The relo
ation information is expressed using an operator on the relo
ated symbol.For example, with relo
ation type R_PPC_ADD16_HA and relo
ated symbol .L0for PowerPC603, the information is written as .L0�ha where �ha is the opera-tor on the symbol .L0. If the
orresponding operator
annot be determined for16

a relo
ation type, disassembler writes relo
ation information in the generi
 format�Relo
(relo
ated_symbol,relo
ation type).Finally, the
ontents of data se
tions are written to the output. In the earliersteps information like obje
ts, patterns et
. is already
olle
ted. For ea
h obje
tfound in the symbol table, information su
h as its se
tion, alignment, size, s
ope,label et
. is written before the
ontents, using appropriate pseudo-ops. This infor-mation is taken from the symbol table of the binary ELF. For the patterns identi�edby the generi
 disassembler, pseudo ops su
h as .byte/.as
iz/.as
ii are written alongwith the
ontents.

17

Chapter 4Con
lusionsThe generi
 disassembler is tested for PowerPC603, Motorola 68HC11 and MIPSR10000 pro
essor models. Output produ
ed by the generi
 disassembler is
ompat-ible to the GNU assemblers and semanti
ally similar to the output produ
ed by theGNU C
ompilers. The output di�ers from the g

-
ompiled assembly program inthe names of the labels. In addition, depending upon the spe
i�
ations, alternateinstru
tions are generated by the generi
 disassembler. For example, in pla
e of theinstru
tion m�r 0 produ
ed by the GNU C
ompiler for PowerPC603, the generi
disassembler produ
es a semanti
ally equivalent instru
tion mfpr 0,256. Similarly,instru
tions in the pairs su
h as mfspr 0,256 and m�r 0; ori 0,0,0 and nop; addi0,0,0 and li 0,0; or 31,1,1 and mr 31,1 et
. are semanti
ally equivalent and havethe same ma
hine
oding.In the output produ
ed by the native
ompiler, redundant labels are generatedthat are not referred to by any instru
tion. All su
h redundant labels are notpresent in the disassembly produ
ed by the generi
 disassembler. Sin
e the generi
disassembler generates the labels by
ode analysis, these labels are di�erent in the
ompiler generated assembly program. The labels are however positioned at thesame lo
ation. Therefore, though the labels are di�erent, e�e
t is the same.
18

Bibliography[1℄ Exe
utable and Linking Format (ELF). Tools Interfa
e Standard (TIS), PortableFormats Spe
i�
ations. Unix System Laboratories, Version1.1.[2℄ V. Rajesh and R. Moona. Pro
essor modeling for Software Hardware
o-design.In Pro
. of Int. Conf. on VLSI Design, pp. 132-137, Jan. 1999, Goa, India.[3℄ M. Freeri
k. The nML Ma
hine Des
ription Formalism. Te
h. Rep. 1991/15, TUBerlin, Fa
hberei
h Informatik, 1991, Berlin.[4℄ Sarika Kumari. Generation of Assemblers using High Level Pro
essor Models.MTe
h Thesis, Department of CSE, Indian Institute of Te
hnology Kanpur, Feb.2000, Kanpur[5℄ Subhash Chandra and Rajat Moona. Retargetable Fun
tional Simulator UsingHigh Level Pro
essor Models. In Pro
. of 13th Int. Conf. on VLSI Design, pp.424-429, Jan. 3-7, 2000, Cal
utta, India.[6℄ Rajiv A. R. and R. Moona. Retargetable Ca
he Simulation Using High LevelPro
essor Models. In Pro
. of 6th Australasian Computer Syst. Ar
hite
ture Conf.2001, pp. 114-121, Jan. 29-30, 2001, GoldCoast, Australia[7℄ Shishir Mondal. Compiler Ba
k End Generation from nML Ma
hine Des
ription.MTe
h Thesis, Department of CSE, Indian Institute of Te
hnology Kanpur, Jun.1999, Kanpur.[8℄ A. Fauth, A. Knoll. Automated Generation of DSP Program Development ToolsUsing a Ma
hine Des
ription Formalism. In Pro
. IEEE ICASSP-93, pp. 457-460,Apr., 1993, Minneapolis. 19

[9℄ F. Lohr, A. Fauth, M. Freeri
ks SIGH/SIM - An Environment for RetargetableInstru
tion Set Simulation. Te
h. Rep. 1993/43, TU Berlin, Fe
hberei
h Infor-matik, Berlin, 1993.[10℄ G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An Instru
tion Set De-s
ription Language for Retargetability. in Pro
. of the 34th Design AutomationConf., pp. 299-302, Jun. 9-13, 1997, Anaheim, California, USA.[11℄ Silvina Zimi Hanono. Aviv: A Retargetable Code Generator for Embedded Pro-
essors. PhD Thesis, Department of EECS, MIT, Jun. 1999, USA.[12℄ A. Halambi, P. Grun, et al. EXPRESSION: A Language for ar
hite
ture explo-ration through
ompiler/simulator retargetability. In Pro
. of the European Conf.on Design, Automation and Test (DATE), pp. 485-490, Mar. 9-12, 1999, Muni
h,Germany.[13℄ Asheesh Khare. SIMPRESS: A Simulator Generation Environment for System-On-Chip Exploration. MS Thesis, Department of Information and Computer S
i-en
e, University of California Irvine, 1999, Irvine.[14℄ Norman Ramsey and Mary F. Fernandez. Spe
ifying representation of ma
hineinstru
tions. ACM Trans. Program. Lang. Syst., volume 19, number 3, pp. 492-524, Jan. 1997.[15℄ Norman Ramsey and Mary F. Fernandez. The New Jersey Ma
hine-CodeToolkit. In Pro
. of the Usenix Te
hni
al Conf. 1995, 1995, pp. 289-301, Jan.16-20, 1995, New Orleans, Louisiana.[16℄ J. Tei
h, R. Weper, D. Fis
her, and S. Trinkert. BUILDABONG: A RapidPrototyping Environment for ASIPs. In Pro
. DSP-Deuts
hland, pp. 153-162,O
t. 2000, Muni
h, Germany.[17℄ Y. Gurevi
h. Evolving Algeras 1993: Lipari Guide Spe
i�
ation and ValidationMethods, Oxford University Press, pp. 9-36, 1995.
20

[18℄ M. Analau�. XASM: An Extensible,
omponent-based abstra
t state ma
hinelanguage. In Pro
. of Int. Workshop on Abstra
t State Ma
hines ASM 2000, Le
-ture Notes on Computer S
ien
e, Volume 1912, pp. 69-90, Mar. 19-24, 2000,Springer.[19℄ M. Anlau�, P. Kutter, and A. Pierantonio. Formal aspe
ts of and developmentenvironments for Montages. In 2nd Int. Workshop on the Theory and Pra
ti
e ofAlgebrai
 Spe
i�
ations, Workshops in Computing, Sep. 25-26, 1997, Springer-Verlag, Amsterdam, The Netherlands.[20℄ S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Nenmann,and D. Vogenaner. The MIMOLA Language - Version4.1. Te
h. Rep., LehrstuhlInformatik XII, University of Dortmund, Sep., 1994.[21℄ R. Leupers. Retargetable Code Generation for Digital Signal Pro
essors. Jun.,1997, First Edition, Kluwer A
ademi
 Publishers, Dordre
ht, Netherlands[22℄ V Kathail, M. S
hlansker, and B. Rau. HPL PlayDoh Ar
hite
ture Spe
i�
ation:Version 1.0. Te
h. Rep. HPL-93-80, HP laboratories, Mar. 1994.[23℄ The MDES User Manual http://www.trimaran.org/do
s/mdes_manual.pdf.Trimaran Release, 1998.[24℄ V. Zivojnovi
, S. Pees, and H. Meyr. LISA: ma
hine des
ription language andgeneri
 ma
hine model for HW/SW
o-design. In Pro
. of IEEE Workshop onVLSI Signal Pro
essing, pp. 127-136, O
t., 1996, San Fran
is
o, California.[25℄ C. Siska. A Pro
essor Des
ription Language Supporting Retargetable Multi-Pipeline DSP program Development Tools. In Pro
. on 11th Int. Symposium onSyst. Synthesis, pp. 31-36, De
. 2-4, 1998, Taiwan, China.[26℄ D. Lanneer, J. Van Praet, A. Ki�, K. S
hoofs, W. Geurts, F. Thoen, and G.Goossens. Chess: Retargetable Code Generation for embedded DSP pro
essors. InP. Marwedel, G. Goossens Code Generation for Embedded Pro
essors, pp. 85-102,Kluwer A
ademi
 Publishers, 1995. 21

[27℄ P. Paulin, C. Liem, T. May, and S. Sutarwala. FlexWare: A Flexible �rmwaredevelopment environment for embedded systems. In P. Marwedel, G. Goossens,Code Generation for Embedded Pro
essors, pp. 67-84, Kluwer A
ademi
 Publish-ers, 1995.[28℄ M. Theissinger, P. Stravers, and H. Veit CASTLE: An Intera
tive Environmentfor HW-SW Co-Design . In Pro
. of the 3rd Int. Workshop on Hardware-SoftwareCo-design, pp. 203-209, Sep. 5-9, 1994, Grenoble, Fran
e.[29℄ Trung A. D. and John Paul S. VMW: A Visualization based Mi
ro-ar
hite
tureWorkben
h. IEEE Computer, Volume 28, Number 12, pp. 57-64, De
. 1995.[30℄ Rajat Moona. Pro
essor Models for Retargetable Tools. In Pro
. of 11th IEEEInt. Workshop on Rapid Systems Prototyping (RSP 2000), pp. 34-39, Jun. 21-23,2000, Paris, Fran
e.[31℄ The BUILDABONG Proje
t.http://www-date.upb.de/RESEARCH/BUILDABONG/buildabong.html.[32℄ Lisa Pro
essor Design Platform.http://klaus.ert.rwth-aa
hen.de/lisa/lpdp.html.

22

Appendix AUser's ManualSim-nML spe
i�
ation of the target pro
essor is �rst
hanged to Intermediate Rep-resentation with the help of IR-Generator tool.A.1 IR GenerationIR-Generator tool is available with the sour
e
ode of disassembler tool. Usage ofIR-Generator are as followsUse : irg [-d level℄ [-h℄ [-w℄ -o ir_�le Sim-nML_�le-d : To get debug information in debug.tmp at di�erent levels (1..4) of detailValue 1 means minimum detailed information and 4 means maximum detailedinformation-h : to get this message-o : Intermediate
ode will be in �le ir_�le otherwise default �le name is IR-w : to get warning messages. Default is no warning.Sim-nML_�le : input �le having Sim-nML spe
i�
ation of target pro
essor
23

A.2 Usage of Generi
 DisassemblerDisassembler tool is
ompiled with make in the sour
e dire
tory. Usage of the dis-assembler tool are as followsUse : Disassembler_exe [-h℄ [-o output℄ -i ir_�le -

on�g obj�le-h : to get this help message-o : Disassembler writes the disassembly to the �le output.If the output �le name is not spe
i�ed disassembler appends _symdis.s to ob-je
t �le name to produ
e the output �le name. e.g. if obje
t �le name is 8q.o andoutput �le has not been spe
i�ed, output is written to �le 8q_symdis.s.-i : ir_�le is generated with the Sim-nML spe
i�
ation of the target pro
essor.-
 :
on�g is the
on�guration �le for pro
essor spe
i�
ation in ir_�le. This�le
ontains information spe
i�
 to Sim-nML pro
essor spe
i�
ation. It helps indetermining the instru
tion type and identifying the immediate modes.obj_�le : It is the ELF obje
t �le to be disassembled.Disassembler_exe is the exe
utable �le for the disassembler tool. With the helpof make�le generator s
ript genmake, available with disassembler tool, tool name
an be
on�gured a

ording to the target pro
essor e.g. for PowerPC603, exe
utabledisassembler tool �le is named pp
disa.For Elf �le, native
ompiler for the target pro
essor is required. Obje
t �le isprodu
ed with the help of
ompiler, using appropriate
ompilation �ags.A.3 Con�guration �leSim-nML spe
i�
ation is again used for produ
ing the
on�guration �le. SampleCon�guration �le for PowerPC603 Sim-nML des
ription is given below.%IMM_MODE IMM16, IMM24, SIMM, UIMM16%BRANCH_UNCOND bran
h_un
ond%BRANCH_COND bran
h_
ond 24

%CALL_UNCOND
all_un
ond%CALL_COND
all_
ond%RETURN_UNCOND bran_
ond_lr%RETURN_COND ret_
ondHere bran
h_un
ond is the label of the subtree whi
h
ontains all the bran
hun
onditional instru
tions. All the labels should be written,
omma separated, in
ase instru
tions for one
ategory are in di�erent subtrees. For writing a new
on-�guration �le, hierar
hy of the Sim-nML pro
essor spe
i�
ation should be analyzed.Labels of all the subtrees, whi
h
ontain instru
tions for a parti
ular type should bewritten,
omma separated, in front of that instru
tion type. One
an also write theop
odes of instru
tions in pla
e of subtree labels.

25

