
Generi Disassembler Using Proessor Models
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

byPrithvi Pal Singh Bisht

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurFebruary, 2002

Certi�ate
This is to ertify that the work ontained in the thesis entitled � Generi Dis-assembler Using Proessor Models �, by Prithvi Pal Singh Bisht, has been arriedout under my supervision and that this work has not been submitted elsewhere for adegree.

February, 2002 (Prof. Rajat Moona)Department of Computer Siene & Engineering,Indian Institute of Tehnology,Kanpur.

AbstratThe generi disassembler, produes symboli reloatable disassembly of an objet�le in Exeutable and Linking Format (ELF). It uses a proessor model that on-tains instrution set desription of the proessors in a language alled Sim-nML.Sim-nML is simple, elegant and powerful language to express the behavior of pro-essors at instrution level. It uses synthesized attributes to represent timing in-formation, instrution semantis, assembly language syntax and binary representa-tion of instrutions. Generi Disassembler failitates disassembly of programs in aGNU-ompatible format. For identifying the instrutions, depth �rst searh andbaktraking is used on a tree like struture of the Sim-nML instrution set desrip-tion. Sine the attributes of an instrution are sattered in various subtrees, syntaxfor the instrution is olleted from the subtrees seleted during traversal. Di�erentparts of a single instrution may be mathed with di�erent subtrees. Symboli andreloatable disassembly is ahieved by using reloation and symbol information fromthe objet �le and analyzing the ode to identify basi bloks.

AknowledgmentsMy sinere thanks goes to my thesis supervisor Prof. Rajat Moona. His stream-lined view and to-the-point approah is the bakbone of this work. In addition totehnial aspets, I obtained a strong sense of professionalism from him. In short,it was a rewarding experiene for me to work under him.Work done in this thesis is a part of the researh done under CARES projetin Cadene Researh Center at IIT Kanpur. Speial thanks to Dr. Sanjeev KumarAggarwal and Dr. Deepak Gupta for their ative involvements in CARES team.Mr Souvik Basu, senior student in CARES projet, did his best in helping mebegin my work in this area. I thank him for all the time he spent for me. I wouldlike to thank Mr R. Ravindran, PhD student, for his in-time helps.I am thankful to the MTeh 2000 and 2001 bathes for their signi�ant nearness.Speial thanks goes to Pijush, Asheesh and Jayadeep for giving "in-home" and"granted" feeling bak at hostel. Girish, Rajesh, Pradeep and Varada will holdseparate and important plaes in my memory.I am indebted to my parents, brothers and sisters for their love, are and un-derstanding in a hard and ruial phase of life. I express my deep gratitude to myelder brother Brijesh da for his love, understanding and inspirations. Without himI would have been washed o� to a di�erent land.Before losing this setion I would like to express my deep feelings for Vinod. Iwill always remember him for providing the reasons to go on.

i

Contents
1 Introdution 11.1 Related Work . 12 Sim-nML 52.1 Hierarhial Struture . 52.2 Sim-nML grammar . 62.3 Resoure Usage Model . 83 Generi Disassembler 103.1 Approah . 103.2 Algorithm . 103.2.1 Identi�ation of Code Bloks 133.2.2 Generation of Symboli Names 153.2.3 Disassembly . 154 Conlusions 18Bibliography 19A User's Manual 23A.1 IR Generation . 23A.2 Usage of Generi Disassembler . 24A.3 Con�guration �le . 24

ii

List of Figures2.1 OR-Rule and AND-Rule formats . 62.2 Addressing modes and �avor of add and branh instrutions in Sim-nML 73.1 Approah for Tool Design with Sim-nML 113.2 Identifying Code Bloks . 123.3 Algorithm for identifying objet and patterns in data setions 143.4 Algorithm for expressing reloation information 16

iii

Chapter 1IntrodutionWith development of an Appliation Spei� Proessor (ASP), spei� tools e.g.disassembler, assembler, simulator, ompiler bak end, et. are also required. Suhtools provide an interfae for appliation development on this proessor. Non-availability of suh tools in time, may ause the whole design to fail. Problem getsompliated in ase many design alternatives are to be onsidered. In a traditionalapproah, for every alternative design model, suh tools are redesigned. Develop-ment of these tools is a tedious and error-prone proess. CARES projet group at IITKanpur is developing an interfae that automates the proess of tools development.In our approah we use proessor models ontaining instrution set desription ofproessors in Sim-nML. From these proessor models we develop various tools us-ing tool generators. Proessor models of SPARC, Motorola 68HC11, PowerPC603,MIPS R10000, ARM, ADSP2105, 8085 and a few other proessors have been devel-oped by us and used for the generation of various tools. Generi disassembler is oneof the tools in the tool hain developed at IIT Kanpur. Other developed tools areGeneri Assembler Generator[4℄, Funtional Simulator Generator[5℄, RetargetableCahe Simulator and Code Instrumentor[6℄ and Compiler bak-end generator[7℄.1.1 Related WorkThere are various related works reported in the literature.1

CBC/SIGH/SIM framework onsists of a retargetable ode generator CBC[8℄ forC ompilers and the instrution set simulator SIGH/SIM[9℄. This framework usesnML[3℄ language for proessor models. nML permits onise, hierarhial proessordesription in a behavioral style.Aviv[11℄ is a retargetable ode generator whih produes the optimized mahineode for target proessors with various instrution set arhitetures. It uses Instru-tion Set Desription Language (ISDL[10℄) as a high level language for desribing theproessor models.Cyle aurate models of pipelined proessor arhitetures require a pipeline-aurate behavioral desription. In nML or ISDL, the semantis of the language donot provide means for desribing the yle aurate models.EXPRESSION[12℄ language uses a mixed behavioral and strutural representa-tion approah for proessor modeling. SIMPRESS[13℄, based on EXPRESSION, is aretargetable simulator generator for proessor-memory arhitetures and EXPRESSis a retargetable ompiler for embedded system-on-hip systems.New Jersey Mahine-Code toolkit[15℄ helps programmers write appliations thatproess mahine ode e.g. assemblers, disassemblers, ode generators, traers, pro-�lers, and debuggers. It uses proessor models written in Spei�ation Languagefor Enoding and Deoding (SLED[14℄). SLED desribes abstrat, binary and as-sembly language representations of mahine instrutions. With the help of toolkitretargetable debugger, retargetable optimizing linker and disassembler for SPARChave been developed.BUILDABONG (Building Speial Computer Arhitetures based on Arhite-ture and Compiler Co-Generation[16℄) disusses the automati generation of instru-tion set simulators and the orresponding retargeted ompilers. The methodologyis based on ASMs (Abstrat State Mahines) as the formal model for desribing aproessor's behavior. ASM is a mathematial model of omputation based on theonept of universes, funtions and updates of funtions. BUILDABONG projetgroup[31℄ aims at arhiteture synthesis and ompiler generation for the arhite-tures. XASM[18℄ is ASM spei�ation language. Gem-Mex[19℄ tool automatiallygenerate a debugging and simulation environment for a given XASM spei�ation.2

MIMOLA (Mahine Independent Miroprogramming Language[20℄) is a stru-ture level desription language. RECORD[21℄ system based on MIMOLA aims atautomati ode generation for �xed point DSPs with a �xed instrution word length.The PlayDoh[22℄ arhiteture of HP Laboratories is based on mahine desrip-tions spei�ed in a high level textual language MDES[23℄. It aims at developingperformane oriented ompilers for the VLIW and super-salar proessors.LISA[24℄ proessor modeling language failitates pipeline desription and expliitontrol spei�ation. Lisa Proessor Design Platform (LPDP[32℄) tool-suit uses pro-essor models in LISA to generate software development tools inluding C-ompiler,assembler, linker, instrution set simulator and debugger front-end. RADL[25℄, an-other spei�ation language is derived from LISA, fouses on detailed pipeline be-havior and is used to generate instrution set simulators.CHESS/CHECKERS[26℄ environment onsists of a C ompiler alled Chess, alinker alled Bridge, an instrution set simulator alled Chekers and an assemblerand disassembler alled Darts. Proessor models are desribed using nML[3℄. Chessreads the nML desription to generate binary ode from a C program. Similarly,Chekers uses the nML desription to aept the binary ode and simulate its exe-ution on the target proessor. Chess/Chekers is a retargetable environment.The FlexWare[27℄ framework onsists of a retargetable ode generator CODESYNand an instrution set simulator INSULIN. CODESYN takes one or more algorithmsexpressed in a high-level language and maps them onto a user de�ned instrutionset to produe optimized mahine ode. It an be used to develop ode for pro-essors inluding Appliation Spei� Proessors (ASPs). INSULIN is based on areon�gurable VHDL model of a generi instrution set proessor.CASTLE[28℄ is a o-design platform whih provides a number of design tools foron�guring appliation spei� design �ows. The design �ow starts with a C/C++program and gradually derives a register-transfer level desription of a proessorhardware, as well as the orresponding ompiler for generating the proessor opode.Visualization Based Miro-arhiteture Workbenh (VMW[29℄) failitates spei-�ation of miro-arhiteture of proessors and automati generation of performanesimulators. It de�nes a set of mahine desription �les. These mahine desription3

�les an be ompiled into a working performane simulator for a spei� target pro-essor. Visualization apabilities are inorporated to allow monitoring of simulationproess. With the help of VMW performane simulators for PowerPC 601 and 620,DEC Alpha AXP 21064 and 21164 and IBM RS/6000 miroproessors have beengenerated and exeuted.

4

Chapter 2Sim-nMLSim-nML is an extensible formalism designed to speify generi single proessor mod-els. It is a language used to desribe the instrution set arhiteture of a proessorwith the minimal knowledge about its miro-arhiteture. The design of Sim-nMLis highly in�uened by that of the nML[3℄.The proessor models in Sim-nML are desribed using attribute grammar1 ina hierarhial manner. To failitate this, Sim-nML de�nes two kind of primitiverules, namely op-rules and mode-rules. Op rules are generally used for desribingthe instrutions while mode rules are used for desribing the addressing modes.The Sim-nML desription given in �gure 2.2 desribes a simple proessor withfour type of instrutions - add, branh, load and store. In a pipelined proessor,several instrutions may oexist at the same time. In suh a proessor, a singleregister suh as PC annot speify the address of an instrution in �ight. Sim-nMLsupports a speial token, $, whih is used to denote the memory address of theinstrution in the de�nition of various attributes of an instrution.2.1 Hierarhial StrutureIn Sim-nML based desriptions, the instrution set is desribed in a hierarhialmanner with fragments of eah of the attribute being distributed over the whole1An attribute grammar is a ontext free grammar in whih eah non-terminal have a �xed setof attributes and for eah prodution a set of semanti rules is given.5

Sample OR Ruleop n0= n1 |n2 |n3 |n4Sample AND Ruleop n1 (p1 : t1, p2 : t2, p3 : t3, ...)a1 = e1, a2 = e2, a3 = e3, ...where eah ni is a non-terminal, eah ti a token.Eah ai is an attribute name and ei their respetive de�nitions.Figure 2.1: OR-Rule and AND-Rule formatsspei�ation tree. The ommon behavior of a lass of instrutions is aptured at thetop level of the tree. The speialized behavior of the instrutions is aptured in thesubsequent lower levels.For example in �gure 2.2, two instrutions, represented by addRtoR and addItoR,have a ommon part of the syntax as "ADD". Similarly these instrutions share aommon part of the image as "00000001". This ommon behavior of both theinstrutions is aptured by spei�ation tree node addinst, the anestor of addRToRand addIToR nodes.2.2 Sim-nML grammarThe root of the spei�ation tree in the Sim-nML is represented by a �xed symbolalled instrution. There are two type of onstrutions supported in the Sim-nMLnamely OR-Rule and AND-Rule, (�gure 2.1). The and-rule onstrutions are usedfor the terminal symbol de�nition and represent the leaf nodes in the spei�ationtree. The or-rules are non terminals whih an expand to further and-rules or or-rules or both. Both primitive rules, i.e. mode and op rules an be onstrutedusing Or or And onstrutions. The Sim-nML grammar prede�nes four attributes- syntax, image, ation and uses. The syntax attribute desribes the assemblylanguage format of the instrution while the image attribute desribes the binaryoding of the orresponding instrution. Similarly, ation attribute desribes the6

syntax = format("%d",addr)
image = format("%16b",addr)

uses = if "rand"() < 0.95 then
 else
 endif

 #{1}
 #{10}

syntax = format("%d",x)
image = format("%16b",x)

syntax = format("R%d",i)
image = format("0%2b",i)

uses = s.uses, wb#{2}
syntax = format("STORE %s,%s",r.syntax,s.syntax)
image = format("00000100",r.image,s.image)
action = {
 s.action;
 M[tmp] = r<7..0>;
 M[tmp+1] = r<15..8>;
}

uses = ifu#{1}, r.uses, wb#{1}
syntax = format("%s",r.syntax)
image = format("00010%s",r.image)
action = {
 PC = PC + 2;
 tmp = r;
}

uses = ifu#{2}, wb#{1}
syntax = format("%s",m.syntax)
image = format("00001%s",m.image)
action = {
 PC = PC + 4;
 tmp = m;
}

type byte = card(8)
reg R[4,word]
reg PC[1,word]
mem M[2**16,byte]
resource ifu, bu, alu[2], wb

// Addressing modes

mode immediate(x:word)= x

op inst_type = add_inst | branch | load_store

op addr_type = addRToR | addIToR

 M[R[i]]::M[R[i]+1]
mode reg_indirect(i : card (2)) =

mode direct(addr:word)=M[addr]::M[addr+1]

op instruction(x:inst_type)

op add_inst(x:addr_type)

op addRToR(R2:register,R3:register)

mode register(i : card (2)) =R[i]

op addIToR(x:immediate,R:register)

op branch(x:branchtype)

op branchtype = branchrelative | branchabsolute

op load_store = load | storevar tmp[1,word]

op loadmode = load_direct | load_indirect

op branchrelative(target : card (16))

op branchabsolute(target : card (16))

op load(r:register,l:loadmode)

op load_direct(m:direct)

uses = l.uses
syntax = format("LOAD %s,%s",r.syntax,l.syntax)

action= {
 l.action;
 r = tmp;
}

type word = card(16)

op load_indirect(r:reg_indirect)

uses = ifu#{2}, m.uses, wb#{1}
syntax = format("%s",m.syntax)
image = format("01000%16b",m.image)
action = {
 PC = PC + 4;
 tmp = m;
}

syntax = format("ADD %s",x.syntax)
image = format("00000001%s",x.image)
uses = x.uses
action = { x.action ; }

uses = x.uses
syntax = x.syntax
image = x.image
action = { x.action ; }

syntax = format("(R%d)",i)
image = format("1%2b",i)

uses = if "rand"() < 0.95 then
 else
 endif

 #{1}
 #{10}

syntax = format("%s,%s",R3.syntax,R2.syntax)
image = format("00%s%s",R2.image,R3.image)

uses = ifu#{1}, alu#{1}, wb#{1}

action = {
 R3 = R3 + R2;
 PC = PC + 2;
}

uses = ifu#{2}, alu#{1}, bu#{1}, wb#{1}
syntax = format("JMP %s",x.syntax)

action = { x.action ; }

uses = ifu#{2}, alu#{1}, wb#{1}
syntax = format("%s,%s",R.syntax,x.syntax)

action = {
 R = R + x;
 PC = PC + 4;
}

image = format("00000010%s",x.image)

image = format("00000011%s%s",r.image,l.image)

image = format("01%s%s",R.image,x.image)

}

syntax = format("%d", target)

action = {
 PC = target;

syntax = format("%d",target)

action={
 PC = target;
}

op storemode = store_direct | store_indirect

op store(r:register,s:storemode)

op store_direct(m:immediate)

op store_indirect(r:reg_indirect)

uses = ifu#{1}, r.uses, wb#{1}
syntax = format("%s",r.syntax)
image = format("00%s",r.image)
action = {
 PC = PC + 2;
 tmp = r;
}

image = format("00000001%16b", $+target)

image = format("00000010%16b",target)

Figure 2.2: Addressing modes and �avor of add and branh instrutions in Sim-nML7

semantis of the ation and the uses attribute desribes the resoure usage model.2.3 Resoure Usage ModelThe miro-arhiteture details of the proessor an be spei�ed using the resoureusage model. In Sim-nML spei�ation, the entities within the proessor suh asfuntional units, ALUs, pipeline stages, registers, ports et., onstitute a set ofresoures. Every instrution utilizes several resoures eah for an amount of timewhih may be onstant or dependent upon only the instrution. The resoure usagemodel is based on the assumption that at any instant, an instrution in exeutionholds a set of resoures and performs ertain ation. The next set of resoures mustbe aquired before performing the orresponding ation. The resoures held by theinstrution and the ation taken hange progressively.In this model instrutions ontend for resoures and wait, if the resoures are notavailable. Thus the �ow of the instrutions in the miro-arhiteture is essentiallya way of resolving resoure on�its. When two instrutions wait simultaneouslyfor a single resoure, the on�it is resolved in FIFO order of the instrutions. Theuses attribute in Sim-nML desriptions desribes the resoure usage model for aninstrution.An example model for a super-salar proessor is shown in �gure 2.2. All instru-tions are read by a resoure IFU (Instrution Feth Unit). The instrutions havevariable length (16 bits or 32 bits) and aordingly take one or two units of time atthe IFU. In addition there is a BU (Branh Unit), a resoure that is used by thebranh instrutions only. There are two ALUs, both alike, and are used by the ADDinstrution (and other ALU instrutions) and by the branh instrutions. Finallythere is a resoure alled WB (Write Bak) unit. It is used by the instrutions thatneed to write their results bak into the registers.In some ases, the resoure uses depends on a ondition. For example, time formemory aess depends on whether it was a hit in the ahe or not. The onditionaluse an be spei�ed by the if onstrution of uses attribute. For example, onstru-tion if "rand"() < 0.95 #{1} else #{10} represents that in ase of a ahe hit (hit8

ratio is 0.95), delay of 1 time unit ours while delay is of 10 time units in aseof a miss. This onditional onstrution also shows that in Sim-nML models, it ispossible to speify omponents of uses attribute without any resoure to representjust the time delay.In Sim-nML models, the arhitetural hanges are relatively easy to inorporate.For example a three way super-salar proessor with 3 ALU units an be obtainedby appropriately hanging the resoure delaration in �gure 2.2.

9

Chapter 3Generi Disassembler
3.1 ApproahThe approah for the generi disassembler is similar to the other tools based on Sim-nML proessor models (�gure 3.1). Sim-nML proessor models are �rst onvertedto a ompat IR (Intermediate Representation) by a tool IRG (IR-Generator). ThisIR along with the other required inputs is used by di�erent tools.IR aptures all the information in the Sim-nML desription and makes it easyto aess the information by various tools. In our approah, IR is a olletion oftables eah of �xed size reords. A `table of index' in the beginning of the IR �leprovides the size and loations of other tables in the �le. The generi disassembleruses a simple on�guration �le in addition to the IR to onvert an ELF binary toorresponding assembly language program.3.2 AlgorithmWhile disassembling an objet �le, the objet �le is �rst read in the memory. Theproess of disassembly for reloatable and exeutable objet �le di�ers only in theaspet that exeutable �le ontains absolute addresses while the reloatable �leontains the reloatable addresses. This di�erene is handled while onsidering thestart addresses of the various setions in the objet �le.10

Disassembler

Disassembled
Program

 IRG

Prcoessor Model
 in Sim−nML

Processor Model
intermediate form

Assembler
Generator

Functional
simulator generator

Functional
SimulatorAssembler

Assembler
program

ELF Binary

ELF Binary

Binary program

CONFIG file

Figure 3.1: Approah for Tool Design with Sim-nMLIn order to disassemble an instrution, the bit pattern from the objet �le isused to identify the assembly language instrution. Algorithm for identifying an in-strution is based on a ombination of depth �rst searh and baktraking. Startingfrom the root node instrution in the Sim-nML spei�ation tree, images of di�erentnodes are mathed with the given input bit string in depth �rst order. Sine theinstrution spei�ations may be distributed over the spei�ation tree, nodes ina path from the root to the leaf ontribute in de�ning an instrution. The imageformed by olleting the images of all suh nodes in a path should math in order toidentify the instrution. One suh a path is identi�ed, syntax attribute of all nodesin the path are used to get the syntax of the identi�ed instrution. The math isarried out using DFS and when it fails, baktraking is used to searh in anotherpath.The disassembler also analyzes the objet �le in various ways to make the disas-sembler output readable. In partiular the disassembler uses the symbol informationfrom the ELF �le and also generates symbols whenever needed. These symbols areused in plae of addresses in the instrutions. The proess of disassembly is divided11

1 from the binary ELF, extrat the addresses of various funtions;2 put these addresses in start_ode_blok list;3 i = 0;4 while start_ode_blok list is not empty {a. // take out the address from the list.address = listout(start_ode_blok);b. for j = 0 to i-1 { // if address is already traed, ignore it.if address � ode_blok_start[j℄ &&address � ode_blok_end[j℄ {goto step 4;}}. ode_blok_start[i℄ = address;d. follow binary till an instrution that hanges PC;e. if the instrution is unonditional branh {ode_blok_end[i℄ = address of the urrent instrution;append the target address in the start_ode_blok list;i = i + 1;goto step 4;}f. if the instrution is unonditional return {ode_blok_end[i℄ = address of the urrent instrution;i = i + 1;goto step 4;}g. if the instrution is some other PC hanging instrution {append the target address in the start_ode_blok list;goto step 4.d;}}5 merge the adjaent ode bloks;Figure 3.2: Identifying Code Bloks
12

into following steps.3.2.1 Identi�ation of Code BloksThe �rst kind of analysis on the objet �le is to �nd out the ode and data area. Thegeneri disassembler �rst �nds out the ode bloks (see the algorithm given in �gure3.2). The algorithm works as follows. From the ELF binary, addresses of variousfuntions in the program are read, if available. This information is stored in thesymbol table setion of the binary objet �le. Assuming that eah of these will bestarting/entry point of a ode blok, the ode is traed till a branh unonditionalor return unonditional instrution is found. Branh unonditional or return unon-ditional instrutions are used to denote the end of a ode blok. While traing theode bloks, if a all or onditional branh instrution is enountered, the target ad-dress of the instrution de�nes another ode blok. If the entry point for the targetaddress is already traed, traing is ontinued with other untraed starting points.The traing proess is repeated as long as an untraed starting point is there. Callinstrutions may refer to the system library funtions. Traing is not done for entrypoints orresponding to suh funtions. With the help of symbol table of the ELFbinary suh starting points are identi�ed and marked as untraeable. At the end ofode blok analysis, all the adjaent ode bloks are merged into one.For this analysis, the disassembler needs to know the type of the instrution(branh vs. non-branh). The instrution type is determined with the help of aon�guration �le. Instrutions an be one of the four types - branh, all, return andsimple. The on�guration �le ontains entries for the �rst three instrution types.Following line is taken from a sample on�guration �le. It spei�es that the subtreerooted at node with label branh_unond ontains all the branh unonditionalinstrutions.% BRANCH_UNCOND branh_unondAfter the ode blok analysis, data analysis is done. Data setions onsist ofdata objets de�ned in the program, strings et. used in the program. Symboltable of the ELF binary ontains information about the objets in data setions,if present. We need to identify the beginning of objets in data setions so that13

data_setion = ontents of the data setion from the ELF binary;o�set = 0;while o�set is not equal to the length of data setion {if an objet is found in the symbol table of the binary ELF for this o�set {get the size/objet_name/alignment information from the symbol table;o�set = o�set + size_of_objet;}if an objet is not found in the symbol table {if data_setion[o�set℄ is a non-printable harater {use pseudo op .byte for this o�set;o�set = o�set + 1;}if data_setion[o�set℄ is a printable harater {�nd length of the string of printable haraters starting at o�set;if the identi�ed string is NULL terminateduse pseudo op .asiz for the identi�ed string;if the identi�ed string is not NULL terminateduse pseudo op .asii for the identi�ed string;o�set = o�set + length_of_string ;}}} Figure 3.3: Algorithm for identifying objet and patterns in data setions
14

appropriate information (size, sope, label et.) an be written with data ontentsof the data objets. Algorithm used for identifying objets and patterns is givenin �gure 3.3. It works as follows. For every o�set of the data setion, a searh ismade in the symbol table, to hek if it is the beginning of an objet. If an objetis found, symbol table is used to get the objet sope (global/loal), label and sizeinformation. In ase no objet is found, depending upon the aess pattern of thedata it is de�ned as follows. Array of bytes (.byte pseudo op), if data is a sequeneof non-printable haraters or a string of printable haraters (.asii/.asiz pseudoop). If the string of printable haraters terminate with a NULL, .asiz pseudo opis used otherwise .asii pseudo op is used. O�set is inreased by the size of objetsidenti�ed in symbol table or the patterns identi�ed by the disassembler internally.3.2.2 Generation of Symboli NamesIn the seond part of objet �le analysis, an assoiation is made between the uniquesymboli names and the addresses of the instrutions referred to by other instru-tions. The generi disassembler generates symboli names for the starting addressesof new ode bloks, if the orresponding symboli name is not already available inthe symbol table of the ELF binary. These generated symboli names are enteredin a symbol table maintained by the generi disassembler. The symbol table isinitialized with the symbol table information read from the ELF binary.The symbol table thus generated is used in the proess of disassembly as de-sribed in the next setion. In our approah, the unique symbols are generated as.L0, .L1, .L2 et. (i.e. by pre�xing a string ".L" to a ounter value).3.2.3 DisassemblyThe �nal part of the objet ode analysis onsists of generation of the assemblylanguage program from the ELF binary. At this point symboli names and odeblok information is available. This step starts with writing general information inthe output suh as the soure �le name from whih objet �le has been generated(.�le pseudo op). 15

for i = 0 to total_relo_entries � 1 {if relo_table[i℄.o�set is equal to target_address {reloated_symbol = relo_table[i℄.symbol ;reloation_type = relo_table[i℄.type;if operator is determined for reloation_typewrite reloation information with operator and reloated_symbol;if operator is not determined for reloation_typewrite �Relo(reloated_symbol,reloation_type);}} Figure 3.4: Algorithm for expressing reloation informationLabels are written for the �rst instrution of eah ode blok, in the beginning ofits disassembly. The symboli label for the address is obtained from the symbol tablemaintained by the generi disassembler. If the instrution is the �rst instrution ofa funtion then orresponding to its label, other pseudo instrutions suh as .type,.align, .size, .globl or .loal are also written.After generation of the label, the instrution is disassembled as per the algo-rithm given earlier. The disassembled instrution may ontain numeri addresses.In our approah, we onvert these numeri addresses to the symbols. Symbolinames orresponding to numeri addresses are found in the symbol table main-tained by the generi disassembler. The target address of an instrution mightbe reloatable. If the target address is found in the reloation table, algorithmgiven in �gure 3.4 is used to express the reloation information. Reloation tableentry for the target address determines the reloation type and the reloated sym-bol. Reloation type is spei� to a proessor. Target proessors an be uniquelyidenti�ed with the information present in the header struture of the ELF binary.The reloation information is expressed using an operator on the reloated symbol.For example, with reloation type R_PPC_ADD16_HA and reloated symbol .L0for PowerPC603, the information is written as .L0�ha where �ha is the opera-tor on the symbol .L0. If the orresponding operator annot be determined for16

a reloation type, disassembler writes reloation information in the generi format�Relo(reloated_symbol,reloation type).Finally, the ontents of data setions are written to the output. In the earliersteps information like objets, patterns et. is already olleted. For eah objetfound in the symbol table, information suh as its setion, alignment, size, sope,label et. is written before the ontents, using appropriate pseudo-ops. This infor-mation is taken from the symbol table of the binary ELF. For the patterns identi�edby the generi disassembler, pseudo ops suh as .byte/.asiz/.asii are written alongwith the ontents.

17

Chapter 4ConlusionsThe generi disassembler is tested for PowerPC603, Motorola 68HC11 and MIPSR10000 proessor models. Output produed by the generi disassembler is ompat-ible to the GNU assemblers and semantially similar to the output produed by theGNU C ompilers. The output di�ers from the g-ompiled assembly program inthe names of the labels. In addition, depending upon the spei�ations, alternateinstrutions are generated by the generi disassembler. For example, in plae of theinstrution m�r 0 produed by the GNU C ompiler for PowerPC603, the generidisassembler produes a semantially equivalent instrution mfpr 0,256. Similarly,instrutions in the pairs suh as mfspr 0,256 and m�r 0; ori 0,0,0 and nop; addi0,0,0 and li 0,0; or 31,1,1 and mr 31,1 et. are semantially equivalent and havethe same mahine oding.In the output produed by the native ompiler, redundant labels are generatedthat are not referred to by any instrution. All suh redundant labels are notpresent in the disassembly produed by the generi disassembler. Sine the generidisassembler generates the labels by ode analysis, these labels are di�erent in theompiler generated assembly program. The labels are however positioned at thesame loation. Therefore, though the labels are di�erent, e�et is the same.
18

Bibliography[1℄ Exeutable and Linking Format (ELF). Tools Interfae Standard (TIS), PortableFormats Spei�ations. Unix System Laboratories, Version1.1.[2℄ V. Rajesh and R. Moona. Proessor modeling for Software Hardware o-design.In Pro. of Int. Conf. on VLSI Design, pp. 132-137, Jan. 1999, Goa, India.[3℄ M. Freerik. The nML Mahine Desription Formalism. Teh. Rep. 1991/15, TUBerlin, Fahbereih Informatik, 1991, Berlin.[4℄ Sarika Kumari. Generation of Assemblers using High Level Proessor Models.MTeh Thesis, Department of CSE, Indian Institute of Tehnology Kanpur, Feb.2000, Kanpur[5℄ Subhash Chandra and Rajat Moona. Retargetable Funtional Simulator UsingHigh Level Proessor Models. In Pro. of 13th Int. Conf. on VLSI Design, pp.424-429, Jan. 3-7, 2000, Calutta, India.[6℄ Rajiv A. R. and R. Moona. Retargetable Cahe Simulation Using High LevelProessor Models. In Pro. of 6th Australasian Computer Syst. Arhiteture Conf.2001, pp. 114-121, Jan. 29-30, 2001, GoldCoast, Australia[7℄ Shishir Mondal. Compiler Bak End Generation from nML Mahine Desription.MTeh Thesis, Department of CSE, Indian Institute of Tehnology Kanpur, Jun.1999, Kanpur.[8℄ A. Fauth, A. Knoll. Automated Generation of DSP Program Development ToolsUsing a Mahine Desription Formalism. In Pro. IEEE ICASSP-93, pp. 457-460,Apr., 1993, Minneapolis. 19

[9℄ F. Lohr, A. Fauth, M. Freeriks SIGH/SIM - An Environment for RetargetableInstrution Set Simulation. Teh. Rep. 1993/43, TU Berlin, Fehbereih Infor-matik, Berlin, 1993.[10℄ G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An Instrution Set De-sription Language for Retargetability. in Pro. of the 34th Design AutomationConf., pp. 299-302, Jun. 9-13, 1997, Anaheim, California, USA.[11℄ Silvina Zimi Hanono. Aviv: A Retargetable Code Generator for Embedded Pro-essors. PhD Thesis, Department of EECS, MIT, Jun. 1999, USA.[12℄ A. Halambi, P. Grun, et al. EXPRESSION: A Language for arhiteture explo-ration through ompiler/simulator retargetability. In Pro. of the European Conf.on Design, Automation and Test (DATE), pp. 485-490, Mar. 9-12, 1999, Munih,Germany.[13℄ Asheesh Khare. SIMPRESS: A Simulator Generation Environment for System-On-Chip Exploration. MS Thesis, Department of Information and Computer Si-ene, University of California Irvine, 1999, Irvine.[14℄ Norman Ramsey and Mary F. Fernandez. Speifying representation of mahineinstrutions. ACM Trans. Program. Lang. Syst., volume 19, number 3, pp. 492-524, Jan. 1997.[15℄ Norman Ramsey and Mary F. Fernandez. The New Jersey Mahine-CodeToolkit. In Pro. of the Usenix Tehnial Conf. 1995, 1995, pp. 289-301, Jan.16-20, 1995, New Orleans, Louisiana.[16℄ J. Teih, R. Weper, D. Fisher, and S. Trinkert. BUILDABONG: A RapidPrototyping Environment for ASIPs. In Pro. DSP-Deutshland, pp. 153-162,Ot. 2000, Munih, Germany.[17℄ Y. Gurevih. Evolving Algeras 1993: Lipari Guide Spei�ation and ValidationMethods, Oxford University Press, pp. 9-36, 1995.
20

[18℄ M. Analau�. XASM: An Extensible, omponent-based abstrat state mahinelanguage. In Pro. of Int. Workshop on Abstrat State Mahines ASM 2000, Le-ture Notes on Computer Siene, Volume 1912, pp. 69-90, Mar. 19-24, 2000,Springer.[19℄ M. Anlau�, P. Kutter, and A. Pierantonio. Formal aspets of and developmentenvironments for Montages. In 2nd Int. Workshop on the Theory and Pratie ofAlgebrai Spei�ations, Workshops in Computing, Sep. 25-26, 1997, Springer-Verlag, Amsterdam, The Netherlands.[20℄ S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Nenmann,and D. Vogenaner. The MIMOLA Language - Version4.1. Teh. Rep., LehrstuhlInformatik XII, University of Dortmund, Sep., 1994.[21℄ R. Leupers. Retargetable Code Generation for Digital Signal Proessors. Jun.,1997, First Edition, Kluwer Aademi Publishers, Dordreht, Netherlands[22℄ V Kathail, M. Shlansker, and B. Rau. HPL PlayDoh Arhiteture Spei�ation:Version 1.0. Teh. Rep. HPL-93-80, HP laboratories, Mar. 1994.[23℄ The MDES User Manual http://www.trimaran.org/dos/mdes_manual.pdf.Trimaran Release, 1998.[24℄ V. Zivojnovi, S. Pees, and H. Meyr. LISA: mahine desription language andgeneri mahine model for HW/SW o-design. In Pro. of IEEE Workshop onVLSI Signal Proessing, pp. 127-136, Ot., 1996, San Franiso, California.[25℄ C. Siska. A Proessor Desription Language Supporting Retargetable Multi-Pipeline DSP program Development Tools. In Pro. on 11th Int. Symposium onSyst. Synthesis, pp. 31-36, De. 2-4, 1998, Taiwan, China.[26℄ D. Lanneer, J. Van Praet, A. Ki�, K. Shoofs, W. Geurts, F. Thoen, and G.Goossens. Chess: Retargetable Code Generation for embedded DSP proessors. InP. Marwedel, G. Goossens Code Generation for Embedded Proessors, pp. 85-102,Kluwer Aademi Publishers, 1995. 21

[27℄ P. Paulin, C. Liem, T. May, and S. Sutarwala. FlexWare: A Flexible �rmwaredevelopment environment for embedded systems. In P. Marwedel, G. Goossens,Code Generation for Embedded Proessors, pp. 67-84, Kluwer Aademi Publish-ers, 1995.[28℄ M. Theissinger, P. Stravers, and H. Veit CASTLE: An Interative Environmentfor HW-SW Co-Design . In Pro. of the 3rd Int. Workshop on Hardware-SoftwareCo-design, pp. 203-209, Sep. 5-9, 1994, Grenoble, Frane.[29℄ Trung A. D. and John Paul S. VMW: A Visualization based Miro-arhitetureWorkbenh. IEEE Computer, Volume 28, Number 12, pp. 57-64, De. 1995.[30℄ Rajat Moona. Proessor Models for Retargetable Tools. In Pro. of 11th IEEEInt. Workshop on Rapid Systems Prototyping (RSP 2000), pp. 34-39, Jun. 21-23,2000, Paris, Frane.[31℄ The BUILDABONG Projet.http://www-date.upb.de/RESEARCH/BUILDABONG/buildabong.html.[32℄ Lisa Proessor Design Platform.http://klaus.ert.rwth-aahen.de/lisa/lpdp.html.

22

Appendix AUser's ManualSim-nML spei�ation of the target proessor is �rst hanged to Intermediate Rep-resentation with the help of IR-Generator tool.A.1 IR GenerationIR-Generator tool is available with the soure ode of disassembler tool. Usage ofIR-Generator are as followsUse : irg [-d level℄ [-h℄ [-w℄ -o ir_�le Sim-nML_�le-d : To get debug information in debug.tmp at di�erent levels (1..4) of detailValue 1 means minimum detailed information and 4 means maximum detailedinformation-h : to get this message-o : Intermediate ode will be in �le ir_�le otherwise default �le name is IR-w : to get warning messages. Default is no warning.Sim-nML_�le : input �le having Sim-nML spei�ation of target proessor
23

A.2 Usage of Generi DisassemblerDisassembler tool is ompiled with make in the soure diretory. Usage of the dis-assembler tool are as followsUse : Disassembler_exe [-h℄ [-o output℄ -i ir_�le - on�g obj�le-h : to get this help message-o : Disassembler writes the disassembly to the �le output.If the output �le name is not spei�ed disassembler appends _symdis.s to ob-jet �le name to produe the output �le name. e.g. if objet �le name is 8q.o andoutput �le has not been spei�ed, output is written to �le 8q_symdis.s.-i : ir_�le is generated with the Sim-nML spei�ation of the target proessor.- : on�g is the on�guration �le for proessor spei�ation in ir_�le. This�le ontains information spei� to Sim-nML proessor spei�ation. It helps indetermining the instrution type and identifying the immediate modes.obj_�le : It is the ELF objet �le to be disassembled.Disassembler_exe is the exeutable �le for the disassembler tool. With the helpof make�le generator sript genmake, available with disassembler tool, tool namean be on�gured aording to the target proessor e.g. for PowerPC603, exeutabledisassembler tool �le is named ppdisa.For Elf �le, native ompiler for the target proessor is required. Objet �le isprodued with the help of ompiler, using appropriate ompilation �ags.A.3 Con�guration �leSim-nML spei�ation is again used for produing the on�guration �le. SampleCon�guration �le for PowerPC603 Sim-nML desription is given below.%IMM_MODE IMM16, IMM24, SIMM, UIMM16%BRANCH_UNCOND branh_unond%BRANCH_COND branh_ond 24

%CALL_UNCOND all_unond%CALL_COND all_ond%RETURN_UNCOND bran_ond_lr%RETURN_COND ret_ondHere branh_unond is the label of the subtree whih ontains all the branhunonditional instrutions. All the labels should be written, omma separated, inase instrutions for one ategory are in di�erent subtrees. For writing a new on-�guration �le, hierarhy of the Sim-nML proessor spei�ation should be analyzed.Labels of all the subtrees, whih ontain instrutions for a partiular type should bewritten, omma separated, in front of that instrution type. One an also write theopodes of instrutions in plae of subtree labels.

25

