
Userdev: A Framework For User Level Devi
eDrivers In Linux
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

byHari Krishna Vemuri

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurApril 2002

Certi�
ate
This is to
ertify that the work
ontained in the thesis entitled � Userdev: AFramework For User Level Devi
e Drivers In Linux �, by Hari Krishna Vemuri, hasbeen
arried out under my supervision and that this work has not been submittedelsewhere for a degree.

April 2002 (Dr. Deepak Gupta and Dr. Rajat Moona)Department of Computer S
ien
e & Engineering,Indian Institute of Te
hnology,Kanpur.

Abstra
tDevi
e drivers have always been
omplex software that are written at the operatingsystem level. They are knit with the rest of the operating system kernel and work byintera
ting with it. Writing devi
e drivers is a
umbersome task be
ause writing anddebugging the kernel
ode is very di�
ult. It is thus desirable to have a me
hanismfor implementing user level devi
e drivers.In this thesis we des
ribe the design and implementation of the Userdev frame-work that allows implementation of user level devi
e drivers in Linux. The userlevel devi
e drivers written using this framework present exa
tly the same interfa
eto the appli
ations as a kernel driver and thus existing appli
ations that use thedevi
e
an be run without any
hange, re-
ompilation or even re-linking. We havealso developed prototype user level devi
e drivers for a parallel port line printer, a�oppy drive and a RAM disk to demonstrate the feasibility of our model. Experi-ments show that these user level devi
e drivers perform almost as e�
iently as theirkernel
ounterparts.

A
knowledgementI take this opportunity to express my sin
ere gratitude to my supervisors Dr.Rajat Moona and Dr. Deepak Gupta for their invaluable guidan
e. It would nothave been possible for me to take this proje
t to
ompletion without their relentlesssupport and en
ouragement. I
onsider myself extremely fortunate to have had a
han
e to work under their supervision. It has been a very enlightening and enjoyableexperien
e to work under them.I also wish to thank all the fa
ulty members of the Department of ComputerS
ien
e and Engineering for imparting their invaluable knowledge in
ourse of myMte
h program. I also extend my thanks to the te
hni
al sta� of the departmentfor maintaining an ex
ellent working fa
ility.I would also like to thank my bat
hmates who have made my stay in IIT Kanpur,the most memorable one. It was as though i was a part of a big family, studying,working and enjoying together. The 'mte
h2000' mailing list was the most favouriteemail address whi
h hosted online dis
ussions on a wide range of topi
s. The weekendoutings whi
h provided the required break from studies, formed an unforgettablepart of my hostel life.Finally I would like to thank my parents and sister for providing the ne
essarysupport and en
ouragement for building a good
areer and a bright future.

i

Contents
1 Introdu
tion 12 Related Work 33 Linux Devi
e Drivers 54 The Userdev Framework 74.1 The Userdev Driver . 94.1.1 Support for Interrupts . 114.1.2 Support for Dire
t Memory A

ess: 114.1.3 The Signal Message . 124.2 The Userdev Library . 125 Prototype Drivers 145.1 Parallel Port Printer Driver . 145.2 RAM Disk Driver . 155.3 Floppy Disk Driver . 166 Performan
e 176.1 Performan
e of Floppy and RAM Disk Drivers 176.2 Interrupt Rate . 187 Con
lusions 20A List of Userdev Proto
ol Messages 21ii

B Userdev Library Interfa
e 23B.1 Userdev Operations . 23B.2 Library Routines . 25B.2.1 userdev_atta
h . 25B.2.2 userdev_deta
h . 25B.2.3 userdev_inform_poll_in . 25B.2.4 userdev_inform_poll_out . 25B.2.5 userdev_inform_fasyn
_io 26B.2.6 userdev_request_irq . 26B.2.7 userdev_free_irq . 26B.2.8 userdev_request_dma . 26B.2.9 userdev_free_dma . 27B.2.10 userdev_start_dma . 27B.2.11 userdev_
he
k_dma . 27B.2.12 userdev_
opy_dma . 27B.2.13 userdev_enable_dma . 27B.2.14 userdev_disable_dma . 28B.2.15 userdev_start . 28B.2.16 userdev_send_response . 28B.2.17 Utility fun
tions . 28Bibliography 34

iii

List of Tables6.1 Performan
e
omparison of user level and kernel level �oppy diskdrivers. A FAT �le system was used to measure the mount time. . . . 186.2 Performan
e
omparison of user level and kernel level RAM diskdrivers. An Ext2 �le system was used to measure the mount time. . . 18A.1 List of messages and their format . 22

iv

List of Figures4.1 System Ar
hite
ture . 8

v

Chapter 1Introdu
tionDevi
e drivers are usually a part of the operating system kernel and have
omplexintera
tions with the kernel. Therefore writing and debugging a devi
e driver is avery
umbersome task. In this thesis we present the design and implementation ofthe Userdev framework that allows implementation of devi
e drivers as user levelpro
esses. User level devi
e drivers are
learly easier to write than the kernel driverssin
e understanding of the kernel internals is not ne
essary for developing a userlevel driver. Debugging is also easier sin
e standard debugging tools
an be usedand a
rash of the driver does not bring down the system.The disadvantage of user level devi
e drivers is
learly a loss in performan
e dueto overheads of
ontext swit
hing et
. However for a fast and performan
e
riti
aldevi
e, a user level driver
an be used as a qui
kly built prototype that
an be laterported to the kernel. For a slow devi
e, the slight loss in performan
e is likely to bea

eptable.User level devi
e drivers
an also be useful for providing drivers for �pseudo-devi
es� su
h as pseudo terminals in Linux. Another interesting use of user leveldrivers is to implement transparent a

ess to remote devi
es. In this
ase the devi
edriver would implement the
lient side of some remote devi
e a

ess proto
ol. It is
learly not desirable to implement su
h proto
ols in the kernel.1

The rest of the thesis is organized as follows. Chapter 2 mentions some of thework related to this thesis. Chapter 3 provides some ba
kground about Linux devi
einterfa
e and the stru
ture of the kernel devi
e driver. Chapter 4 des
ribes thear
hite
ture of the Userdev framework and provides details about the Userdev driverand the Userdev library. Next,
hapter 5 gives a brief des
ription of the prototypedrivers that have been implemented. Chapter 6 dis
usses the performan
e of userlevel devi
e drivers built using our model. And �nally
hapter 7
on
ludes the thesis.

2

Chapter 2Related WorkMany te
hniques have been used to extend the operating system fun
tionality atthe user level. In parti
ular, several user level �le system implementation te
hniqueshave been proposed. For example, the Ufo �le system implementation [1℄ has a
at
her pro
ess that uses the Solaris /pro
 interfa
e to inter
ept system
alls madeby an appli
ation pro
ess. Another simple approa
h to modify the behavior ofsystem
alls is to repla
e the standard dynami
ally linked libraries by newer versions.This approa
h is used by the Jade [9℄ and Prospero [7℄ �le systems. WebFS [11℄and Linux Userfs [2℄ both implement kernel extensions that allow part of the �lesystem fun
tionality to be implemented at the user level. In both these systems, aloadable kernel module implements a �le system that, instead of implementing the�le operations itself, simply relays the �le requests to a user level server pro
ess andreturns its reply to the appli
ation.Most operating systems, in
luding Linux [3℄ and Windows [6℄ allow devi
e driversto be implemented as loadable modules. This allows support for new devi
es to beadded to the system at run-time. However the driver
ode still exe
utes in the kernelmode in this model and therefore the development and testing of a devi
e driver isstill very di�
ult.Sprite allows user level drivers for pseudo-devi
es by transparently mapping oper-ations on a pseudo-devi
e into a request-response ex
hange with a server pro
ess [12℄.3

Sprite uses pseudo-devi
es to implement its terminal drivers, the internet proto
olsuite and the X-11 window system server at the user level.Referen
e [4℄ des
ribes a proxy driver for Windows NT whi
h relays devi
e a

essrequests to a user level server. Our approa
h is similar to this and the Spriteapproa
h. However sin
e Linux allows privileged pro
esses to dire
tly a

ess devi
e
ontrollers, we are able to implement user level drivers for physi
al devi
es as well.The WinDriver driver development tool kit from Jungo [5℄ is a
ommer
ial produ
tthat allows user level implementation of devi
e drivers for both Windows and Linux.In this system a devi
e driver is written as a library that has to be linked with theappli
ation programs. The toolkit has a kernel module that provides low level devi
ea

ess fa
ilities to su
h a driver. For e�
ien
y, some of the
riti
al driver
ode
anbe moved to the kernel. The main drawba
k of this system is that the appli
ationinterfa
e for a

essing a devi
e with a user level driver is
ompletely di�erent fromthe usual interfa
e for devi
es. Also the kernel
ode
annot intera
t with a devi
ethat has a user level driver. Thus, for instan
e it is not possible to mount and usea �le system residing on a blo
k devi
e that has a user level driver.

4

Chapter 3Linux Devi
e DriversUnder Linux, as in all other Unix variants, devi
es are
lassi�ed as
hara
ter andblo
k devi
es. Chara
ter devi
es handle data in the form of individual bytes whereasblo
k devi
es handle data in form of blo
ks. Ea
h distin
t devi
e is identi�ed using apair of numbers
alled the major and minor numbers. The major number representsthe
lass or type of the devi
e while the minor number represents the instan
e ofthe devi
e within the
lass. In Linux we
an have a total of 256
lasses of devi
es(major number) with ea
h of them having upto 256 instan
es (minor numbers). Alldevi
es with the same major number share the same driver
ode. As an examplelp0, lp1 and lp2 are three devi
es representing the three parallel ports on a Linuxsystem. All of them have the same major number 6, and thus share the same driver
ode (line printer driver), while the minor numbers are 0, 1, and 2 respe
tively.Linux provides a �le like interfa
e for all devi
es. Ea
h devi
e is represented by anode in the �le system and
an be a

essed using the usual open, read, write, et
.,system
alls. In addition, an io
tl system
all
an be used with devi
e �les to
ontrolthe behavior of the devi
e or of the devi
e driver. An io
tl
all takes a
ommandand optionally some data as arguments. Ea
h devi
e driver de�nes its set of io
tl
ommands spe
i�
 to the devi
e.A devi
e driver in Linux has to implement a standard set of interfa
e fun
tionsthat are
alled by the kernel �le system
ode. From version 2.4 onwards of the5

Linux kernel, this set of interfa
e fun
tions is di�erent for
hara
ter and blo
k devi
edrivers. A
hara
ter devi
e driver has to implement fun
tions to open and
lose thedevi
e, read, write, perform io
tl, poll et
. A blo
k devi
e driver does not needto implement fun
tions to read or write the devi
e. Instead it has to implementa request fun
tion that handles both read and write requests. In addition a blo
kdevi
e driver also has some fun
tions to
he
k for
hange in media, re-validate themedia et
. A detailed des
ription of Linux devi
e drivers
an be obtained in referen
e[10℄.

6

Chapter 4The Userdev FrameworkThe Userdev framework allows devi
e drivers to be implemented at the user level.Our primary goal for this framework was that the appli
ations should be able touse exa
tly the same interfa
e for a

essing a devi
e with a user level devi
e driveras for a

essing devi
es with the usual kernel resident drivers. This will ensure thatexisting appli
ations
an
ontinue to work without any modi�
ations, re-
ompilationor even relinking. Both
hara
ter and blo
k devi
es should be supported. Also itshould be easy to develop user level devi
e drivers so that drivers for new devi
es
an be easily developed.Figure 4.1 gives an overview of the Userdev framework. It
onsists of a generi
devi
e independent kernel driver
alled the Userdev driver, and a Userdev library.The Userdev driver implements the usual interfa
e expe
ted of a kernel devi
e driverand thus appears to the kernel as just another devi
e driver. The Userdev driverimplements the interfa
e for both
hara
ter and blo
k devi
es. In Linux there
anbe upto 256 minor numbers for a spe
i�
 major number. Thus the Userdev driver
an support user level devi
e drivers for upto 256 blo
k devi
es and 256
hara
terdevi
es.A
tual devi
e drivers are implemented in the Userdev framework as user levelpro
esses. A driver pro
ess �rst registers itself with the Userdev driver spe
ifying aminor number that it will handle. A single pro
ess
an register for multiple minor7

Application 1

Application 2

File System Interface
Kernel Space

Response
Request

Response
Request
Read

Read

Write
Write

User Space

Driver

Userdev

Kernel

write

read
(minor = 5)

(minor = 7)

Userdev Library

Userdev Library

Driver
Process
(minor = 5)

(minor = 7)
Process
Driver

Figure 4.1: System Ar
hite
turenumbers. After this, the Userdev driver redire
ts all requests for any of these minornumbers to the driver pro
ess by sending messages on a pipe. The driver pro
esshandles the requests and returns the replies to the Userdev driver using anotherpipe. The Userdev library hides the details of this message passing and exports asimple interfa
e so that driver development is easier.In Linux, root pro
esses
an gain permission to dire
tly a

ess I/O
ontrollersusing the iopl and the ioperm system
alls. This fa
ility
an be used to build userlevel devi
e drivers for a
tual hardware devi
es. In order to a

ess memory mappeddevi
es, the existing /dev/mem devi
e
an be used. To avoid the overhead of system
alls to use /dev/mem, the appropriate region of this devi
e
an be mapped to theaddress spa
e of the driver pro
ess using the mmap system
all.The Userdev framework has been implemented for the Linux kernel version 2.4. Inthe following two se
tions, we des
ribe some implementation details of the Userdev8

driver and the Userdev library.4.1 The Userdev DriverThe Userdev driver is a generi
 redire
tion layer that passes requests for a

ess todevi
es to the user level drivers. The Userdev driver is a driver for both
hara
terand blo
k devi
es and thus implements the kernel interfa
es required for both kindsof drivers. The
urrent implementation of the Userdev driver uses major number248 for both
hara
ter and blo
k devi
es. A pair of unnamed pipes is used to
ommuni
ate with a user level driver pro
ess. Minor number 0 is treated as spe
ialand io
tl
alls on this minor number are used for driver registration and other down
alls from the user level drivers to the Userdev driver.Any driver pro
ess �rst needs to register with the kernel Userdev driver before it
an obtain requests for a

ess to the devi
e. This operation is
alled as the atta
hoperation. Similarly when the driver pro
ess wants to stop a

epting requests fromthe kernel Userdev driver, it
an unregister itself. This operation is
alled as thedeta
h operation. The driver pro
ess uses spe
i�
 io
tl
alls on minor number 0 ofthe kernel Userdev driver for both these operations.The information that the driver pro
ess needs to send to the kernel Userdev driverduring the atta
h operation in
ludes: the �le des
riptors for the kernel driver to readand write from, the name of the devi
e �le (thus indi
ating the minor number) forwhi
h the pro
ess would a

ept requests, a list of io
tls that are supported, a fun
tionmask indi
ating the interfa
e fun
tions supported by the driver and �nally optionaldata for spe
ifying devi
e
on�guration for blo
k devi
es.When a driver pro
ess
alls io
tl on minor number 0 of the Userdev driver toatta
h to a devi
e, the Userdev driver
he
ks if the minor number for whi
h thedriver pro
ess wants to a

ept requests is free. Then it
he
ks that the �le des
riptoron whi
h this io
tl
all is being made is open for writing. That is, write permissionon the devi
e �le
orresponding to minor number 0 of the Userdev driver is required9

by a pro
ess to a
t as a user level driver. If these
he
ks are passed, the Userdevdriver returns an id, termed as the Userdev id, to the driver pro
ess to identify thedriver pro
ess on subsequent io
tl
alls to the Userdev driver.When the driver pro
ess exits, it
an deta
h itself from the Userdev driver againusing an io
tl
all on minor 0. A
he
k is made by the Userdev driver to make surethat the deta
h
all is from the same pro
ess that earlier atta
hed to the devi
e. Theimplementation also automati
ally deta
hes a driver pro
ess that has terminatedwithout deta
hing itself.On
e a user level driver has atta
hed itself to a minor number, any
all to theUserdev driver from the kernel for that minor number is assembled into a requestmessage and is sent to the driver pro
ess using the �le des
riptor spe
i�ed at atta
htime. The pro
ess that made the
all sleeps in the kernel. When the reply is re
eived(on the se
ond pipe), this pro
ess wakes up and returns from its
all to the Userdevdriver.Multiple pro
esses
an simultaneously try to a

ess the same devi
e. In this
ase,the Userdev driver
an send another request to the driver pro
ess without waitingfor the responses to the previous ones. The driver pro
ess is also permitted to sendreplies in an order di�erent from the order in whi
h the requests were re
eived.This is done so that fast operations do not ne
essarily have to wait for previouslyinitiated slower operations to
omplete. In order that requests and replies
an be
orrelated with ea
h other, ea
h request message
arries a unique request id and the
orresponding reply must also
arry the same request id.Ea
h request and reply message
onsists of a �xed length header followed by avariable sized data portion. The header
ontains the operation
ode, the request id,and the size of the data part. The
ontents of the data part vary depending on theoperation. The list of messages and message formats
an be found in Appendix A.
10

The poll and fasyn
 interfa
e fun
tions of the Userdev driver have to be treateddi�erently sin
e these fun
tions are expe
ted to wakeup or signal respe
tively the
alling pro
ess whenever input or output is possible. To implement this fun
tionality,the driver pro
ess has to make an io
tl
all on minor number 0 whenever I/O ispossible and a poll or fasyn
 request was previously re
eived by it.4.1.1 Support for InterruptsMany I/O devi
es are interrupt driven. To enable implementation of drivers forsu
h devi
es at the user level, a me
hanism to
ommuni
ate interrupt o

urren
eevents to a user level pro
ess is required. Sin
e Unix signals behave very mu
hlike interrupts, it is natural to use signals for this
ommuni
ation. In the Userdevframework, a driver pro
ess
an request a

ess to a
ertain interrupt by making anio
tl
all on minor 0 of the Userdev driver spe
ifying the interrupt number and thenumber of the signal that should be delivered to the pro
ess when the interrupto

urs. The Userdev driver then installs its own interrupt handler for this interrupt.This interrupt handler simply delivers the spe
i�ed signal to the driver pro
ess.The driver pro
ess
an install a signal handler for this signal and do the pro
essingrequired for servi
ing the interrupt in the signal handler.4.1.2 Support for Dire
t Memory A

ess:Dire
t Memory A

ess (DMA) is used to speed up bulk data transfers betweendevi
es and memory. Even though it is possible in Linux for a user level pro
essto dire
tly program the DMA
ontroller, this should not really be done sin
e kerneldrivers for other devi
es may also use the DMA
ontroller. Further some DMA
ontrollers
an a

ess only a limited range of the physi
al memory. For these reasons,the DMA
ontroller should only be programmed by the kernel
ode. To make theDMA fa
ility available to the user level devi
e drivers, the Userdev driver implements
ertain io
tl
alls on minor number 0. These io
tl
alls
an be used by a driverpro
ess to request for a given DMA
hannel, initiate a DMA operation, enquirethe status of an on-going DMA operation and free the DMA
hannel. The Userdev11

driver allo
ates a DMA bu�er when a DMA operation is initiated. This bu�er is usedfor the data transfer. In
ase of a read operation an additional io
tl on minor 0 isneeded to
opy the data read from the devi
e ba
k to the driver pro
ess. The driverpro
ess
an get to know when to issue this io
tl
all either through an interruptfrom the devi
e or by enquiring the status of the DMA operation.4.1.3 The Signal MessageIf a pro
ess that is blo
ked while a

essing a devi
e re
eives a signal, typi
ally theoperation is aborted and the pro
ess returns from the driver
ode with an error. Toa
hieve similar behavior in
ase of user level devi
e drivers, the Userdev driver sendsa signal message to the driver pro
ess when a pro
ess waiting for reply to a requestre
eives a signal. The signal message essentially requests the driver pro
ess to abortan ongoing operation. The request id
orresponding to the operation to be abortedis in
luded as data in the signal message. The driver pro
ess, on re
eiving thismessage, will usually abort the spe
i�ed operation and send a reply for the abortedrequest indi
ating an error
ondition. The signal message itself has no reply.4.2 The Userdev LibraryThe Userdev library forms the other part of the framework for writing user leveldevi
e drivers. It hides the details of the proto
ol to be followed with the kernelUserdev driver and thus redu
es the e�ort in
onstru
ting a user level devi
e driver.The library not only takes
are of the job of obtaining requests from the Userdevdriver but also provides wrapper fun
tions for the user level driver to intera
t withthe kernel Userdev driver.A user level devi
e driver written using the Userdev library needs to implementa set of interfa
e fun
tions that is similar to the set of fun
tions that a kerneldriver implements. The userdev_start fun
tion of the library implements the mainloop of the driver. It essentially waits
ontinuously for requests from the kerneland on re
eiving a request message
alls the appropriate fun
tion in the driver12

ode. This fun
tion is required to handle the request and send the response messageusing the userdev_send_response fun
tion of the library. We de
ided to require thedriver
ode to expli
itly send the response message sin
e this allows the driver todelay sending the response. Most drivers are expe
ted to be multi-threaded so thatmultiple requests
an be handled
on
urrently.The Userdev library also provides high level fun
tions
orresponding to the io
tl
alls available on minor number 0 of the Userdev driver. This in
ludes fun
tionsto atta
h to and deta
h from a minor number, to request noti�
ation of interrupts,DMA related fun
tions et
. The library also provides utility fun
tions that manydrivers require. These in
lude a mi
rose
ond delay loop, implementation of timerqueue, fun
tions to a

ess I/O ports dire
tly et
. The
omplete library interfa
e isgiven in Appendix B.

13

Chapter 5Prototype DriversTo demonstrate the feasibility of using the Userdev framework to develop userlevel devi
e drivers, we have developed three prototype drivers. These are driversfor a parallel port printer, �oppy disk drive, and RAM disk. The Linux kernelalready has drivers for all these three devi
es and we a
tually used the existingkernel
ode for implementing the parallel port printer and the �oppy disk drivers inthe Userdev framework. In this se
tion we brie�y des
ribe the implementation ofthese three user level devi
e drivers.5.1 Parallel Port Printer DriverThe kernel driver for the parallel port printer has a three layer ar
hite
ture
on-sisting of the lp driver module, the parport module and the parport_p
 module.The lp driver module implements the devi
e driver interfa
e while the a
tual workis done by parport and parport_p
 modules. The parport module is a generi
 unitthat multiplexes various kernel drivers over low-level drivers whi
h a

ess the paral-lel port hardware interfa
e. The upper layer drivers, su
h as the lp driver, registerwith the parport module that provides them the interfa
e for a

essing the devi
ewhile the a
tual operation is done by the low-level devi
e spe
i�
 drivers, su
h as theparport_p
 module, that register with the parport module. This ar
hite
ture allows
14

multiple drivers to operate on a single devi
e simultaneously with the
ontention be-ing resolved using a resour
e
laim-release me
hanism followed by the upper layerdrivers to avoid interferen
e with one another.The user level implementation of the parallel port printer driver has a similarar
hite
ture. Here the parport and parport_p
 modules are libraries. This allowseasy development of the drivers for other parallel port devi
es su
h as s
anners.Sin
e the line printer is not usually a

essed simultaneously by multiple pro
esses,the driver handles only one request at a time. It does not allowmore than one pro
essto have the devi
e open and thus enfor
es mutual ex
lusion. Similar to the kernelimplementation, our printer driver
an use either polling or interrupt driven I/O,based on a
ommand line option. In the interrupt mode, if the driver dete
ts missedinterrupts it automati
ally swit
hes to polling mode.The write operation of the printer driver is the only one that
an blo
k (in theinterrupt mode) or take a long time to
omplete (in polling mode). In order to abortthe write operation if a signal message is re
eived, the write operation is exe
utedby an independent thread while the main thread goes ba
k to waiting for requests.All other operations
omplete qui
kly without blo
king and are therefore exe
utedby the main thread itself.5.2 RAM Disk DriverA RAM disk driver is the simplest blo
k devi
e driver as the only operation in-volved is
opying bytes a
ross the memory. A portion of the main memory allo
atedby the driver is treated as a blo
k devi
e and operations are performed on it. Theuser level RAM disk driver built using the Userdev framework has dummy fun
tionsfor most of the driver interfa
e fun
tions, that is they just return su

ess, ex
eptfor io
tl and request fun
tions. The io
tl fun
tion handles HDIO_GETGEO andBLKGETSIZE io
tl
ommands to return a fake disk geometry and devi
e size re-spe
tively. These are mandatory io
tls for any blo
k devi
e. The request fun
tion15

translates the se
tor number present in the blo
k devi
e I/O request into a memoryaddress from whi
h the required number of bytes are
opied to the transfer addressgiven in the request or vi
e-versa depending on whether the request is for readingor writing data.5.3 Floppy Disk DriverThe �oppy disk driver is a
omplex multi-threaded blo
k devi
e driver. The kernel�oppy disk driver extensively uses kernel support utilities su
h as task queues andkernel timers to delegate work to another thread, and to delay an operation fora
ertain period of time respe
tively. The driver not only serves read and writerequests from the �le system bu�er
a
he, but also serves io
tl requests to
hangethe �oppy drive parameters, to get or set the disk geometry, format a given tra
k,et
.The user level �oppy disk driver has been implemented by porting the kernel �oppydisk driver to the user spa
e. The driver is written as a multi-threaded appli
ationusing the pthread user level thread pa
kage [8℄. The kernel task queues and timersused by the kernel driver are repla
ed by the
orresponding user level libraries. Inorder to implement the lo
king me
hanism for serializing the a

ess to the �oppydrive
ontroller, thread syn
hronization me
hanisms su
h as mutexes and
onditionvariables are used. Interrupts from the �oppy drive
ontroller are delegated to theuser level driver using the Userdev framework. All the driver interfa
e fun
tionsex
ept release,
an potentially blo
k, so a separate thread is
reated for exe
utingea
h of them.

16

Chapter 6Performan
eIn this se
tion we des
ribe the experiments
ondu
ted to measure the performan
e ofthe prototype drivers and the Userdev framework. For the �oppy drive and the RAMdisk drivers, the performan
e was
ompared with that of existing kernel drivers forthese devi
es. In addition, we performed an experiment to measure the maximuminterrupt rate that
an be handled by a user level devi
e driver. All experimentswere performed on a PC with a 233 MHz Pentium pro
essor and 128 MB RAM.The following se
tions des
ribe the experiments and their results.6.1 Performan
e of Floppy and RAM Disk DriversFor both �oppy disk and RAM disk drivers we measured the time taken to mounta �le system from the devi
e, and the read and write data rates. These �gureswere also measured for the existing kernel drivers for the �oppy drive and the RAMdisk. The results are shown in Table 6.1 and Table 6.2 respe
tively. The resultsshow that the data rates of the user level �oppy driver are only slightly lower thanthose of the
orresponding kernel driver. This is expe
ted sin
e the dominatingfa
tor in read and write time is the devi
e delay. The user level RAM disk driveron the other hand performs signi�
antly worse than the kernel RAM disk driver.Again this is expe
ted sin
e in this
ase there is no physi
al devi
e involved and thepenalty of extra data movement and
ontext swit
hing in
ase of the user level driver17

is signi�
ant. However the RAM disk driver performan
e is really the worst
ase.Most physi
al devi
es are orders of magnitude slower than the CPU and therefore thepenalties asso
iated with a user level driver would be signi�
antly lower in relativeterms for these devi
es. Surprisingly the mount time for the user level �oppy driver islower than that for the kernel driver. This is a repeatable observation but
urrentlywe
annot explain it.Parameter Kernel Spa
e Driver User Spa
e DriverMount Time 1.75 se
 1.57 se
Read Data Rate 5.74 KB/s 5.59 KB/sWrite Data Rate 7.46 KB/s 7.25 KB/sTable 6.1: Performan
e
omparison of user level and kernel level �oppy disk drivers.A FAT �le system was used to measure the mount time.
Parameter Kernel Spa
e Driver User Spa
e DriverMount Time 1 mse
 2.2 mse
Read Data Rate 2.57 MB/s 1.68 MB/sWrite Data Rate 2.57 MB/s 1.58 MB/sTable 6.2: Performan
e
omparison of user level and kernel level RAM disk drivers.An Ext2 �le system was used to measure the mount time.

6.2 Interrupt RateTo measure the maximum interrupt rate that
an be handled by a user leveldriver, we short-
ir
uited pins 9 and 10 of the parallel port interfa
e. Pin 9 is themost signi�
ant data bit and pin 10 is the a
knowledgement bit. The parallel port
ontroller raises an interrupt whenever the a
knowledgement bit falls to 0. We thenran a pro
ess that repeatedly wrote a byte of data to the parallel port with the mostsigni�
ant bit set to 0. The pro
ess dire
tly a

essed the parallel port
ontroller todo this and its rate of writing
ould be
ontrolled. Thus we were able to generate18

interrupts at any desired rate. We ran a dummy user level parallel port driverwhose interrupt handler simply in
remented the number of interrupts re
eived andexe
uted a delay loop to simulate interrupt pro
essing.Experiments showed that with a 20�se
 interrupt handling time, the dummydriver was able to handle about 11,000 interrupts per se
ond. This is greater thanthe a
tual interrupt rate from most devi
es. For example, data transfers in units of4 KB from a fully busy Ultra-2 SCSI disk with a bandwidth of 80 MBps and 50%bandwidth utilization, would result in about 10,000 interrupts per se
ond.

19

Chapter 7Con
lusionsIn this thesis, we have des
ribed the design and implementation of the Userdevframework that allows devi
e drivers to be implemented at the user level in Linux.We have also implemented user level drivers for the parallel port printer, the �oppydrive and the RAM disk. Experiments show that the performan
e of user leveldrivers is only slightly worse than that of kernel level drivers. For performan
e
riti
al devi
es, the Userdev framework
an be used to qui
kly develop and test auser level driver whi
h
an later be ported to the kernel. For slow devi
es, a userlevel driver may be all that is ever required. The Userdev framework also allowssupport for remote devi
es or �pseudo-devi
es� for whi
h modifying the kernel maynot be appropriate.Our future plans in
lude gaining more experien
e with the Userdev frameworkby writing more user level devi
e drivers, in
luding drivers to transparently a

essremote terminals and s
anners.The
urrent implementation of the Userdev framework and the prototype drivers
an be downloaded from http://www.
se.iitk.a
.in/users/deepak/userdev
20

Appendix AList of Userdev Proto
ol MessagesThe proto
ol messages that are ex
hanged between the Userdev driver and thedriver pro
ess
onsist of a �xed length header �eld and a variable length data �eld.The header �eld
onsists of:� operation
ode: denoting the operation in question� request id: shared by request and response messages for
o-relation� size of the data �eld to followThe
ontents of the data �eld for various operations is given in the table below:

21

Operation Request Pa
ket Response Pa
ketread - amount to be read - number of bytes read- operation �ags - data read from devi
e- position on devi
e - new position on devi
ewrite - amount to be written - number of bytes written- position on devi
e - new position on devi
e- data to be written- operation �agspoll - poll operation resultio
tl - io
tl
ommand - result of operation- io
tl data (SET) - io
tl data (GET)- size of data - size of dataopen - �le open �ags - result of operation- mode of operation�ush - result of operation
lose - result of operationfsyn
 - datasyn
 �ag - result of operationfasyn
 - result of operation
he
k_media_
hange - result of operationrevalidate - result of operationmedia
tl - result of operationreadv same as read same as readwritev same as write same as writesignal - type of messagemessage - request id of pending request- optional data- size of datarequest -
ommand
ode - result of operationfun
tion - se
tor number - size of data re
eived- transfer length - data re
eived for read-
luster size- data being sent for write- size of data being sentTable A.1: List of messages and their format
22

Appendix BUserdev Library Interfa
eThe interfa
e between the Userdev library and the user level devi
e driver
onsistsof a set of fun
tions known as Userdev operations that the devi
e driver
an imple-ment to serve requests from the Userdev kernel driver. The library also providesfun
tions for intera
ting with the Userdev kernel driver and other utility routinesthat many drivers require.B.1 Userdev OperationsUserdev operations forms the set of fun
tions of the user level devi
e driver that
an be
alled by the Userdev library to serve requests from the Userdev kernel driver.It is similar to the �le operations stru
ture of the kernel, used for
ommuni
atingthe list of fun
tions implemented by the kernel devi
e driver to the rest of the kernel.When the library obtains a pa
ket from the Userdev kernel driver, it looks into theUserdev operations set to
he
k if the driver has implemented the
orrespondingfun
tion, in whi
h
ase the fun
tion is
alled passing the
onstituents of the pa
ket.The Userdev operations is represented by a stru
ture
onsists of the pointers tofun
tions
orresponding to ea
h operation the Userdev kernel driver
an request,as shown below. The driver �lls in ea
h �eld of the stru
ture with the name ofthe fun
tion serving the request or NULL if the fun
tion has not implemented and23

ommuni
ates the stru
ture to the library along with the
all to userdev_atta
hlibrary fun
tion.stru
t userdev_operations{ int devtype;void (*read)(int id, unsigned int size, int flags, long long off,int reqid);void (*write)(int id, int len, long long off,
har* data,int flags, int reqid);void (*poll)(int id, int reqid);void (*io
tl)(int id, int
ommand, void* data, int size,int reqid);void (*open)(int id, unsigned int flags, mode_t mode,int reqid);void (*flush)(int id, int reqid);void (*
lose)(int id, int reqid);void (*fsyn
)(int id, int datasyn
, int reqid);void (*fasyn
)(int id, int reqid);void (*
he
k_media_
hange)(int id, int reqid);void (*revalidate)(int id, int reqid);void (*media
tl)(int id, int op, int optarg, int reqid);void (*message)(int id, int type, int reqid, void *data,int size);void (*request)(int id, int
ommand, long se
tor, int length,int
lustersize, void* data, int datasize, int reqid);};The arguments to the fun
tions in the above stru
ture
orrespond to the
ontentsof the data �eld of the
orresponding request message, in addition to the Userdevid (id) and request id (reqid). 24

B.2 Library RoutinesThe various routines provided by the library to intera
t with the Userdev kerneldriver are:B.2.1 userdev_atta
hThis fun
tion is
alled to atta
h a user level driver pro
ess to the Userdev kerneldriver. It takes the devi
e �lename to atta
h to, an array of io
tl data elementsspe
ifying the list of allowed io
tl numbers and maximum length of data handled byea
h, the number of io
tl data elements, a pointer to the driver's Userdev operationsstru
ture and an optional data parameter used for blo
k devi
es. The Userdevoperations stru
ture is stored in the library's internal data stru
ture, maintained forea
h atta
hed driver pro
ess, for use by other routines of the library. The fun
tionreturns the Userdev id of the driver pro
ess in
ase the atta
h operation had beensu

essful and an error number in
ase an error was en
ountered.B.2.2 userdev_deta
hThis fun
tion is
alled to deta
h the driver pro
ess from Userdev kernel driver,identifying it using the Userdev id given as the fun
tion argument. The result ofthe deta
h operation is returned.B.2.3 userdev_inform_poll_inThis fun
tion is
alled to ask the Userdev kernel driver to inform the availabilityof data to anybody polling the devi
e for input data. The Userdev id, passed asthe fun
tion argument is used to identify the atta
hed driver pro
ess. The valuereturned by the fun
tion is the result of the operation.B.2.4 userdev_inform_poll_outThis fun
tion is
alled to ask the Userdev kernel driver to inform the availabilityof the devi
e for output to anybody polling the devi
e for output. The Userdev id25

passed as the fun
tion argument is used to identify the atta
hed driver pro
ess. Theresult of the operation is the return value of the fun
tion.B.2.5 userdev_inform_fasyn
_ioThis fun
tion is
alled to ask the Userdev kernel driver to inform the availability ofdata to anyone using asyn
hronous I/O and waiting for some I/O a
tivity to takepla
e. The Userdev id is passed as the fun
tion for identifying the atta
hed driverpro
ess and the result of the operation is returned ba
k to the
aller of the fun
tion.B.2.6 userdev_request_irqThis fun
tion is
alled to request the Userdev kernel driver to inform about theo

urren
e of interrupts on a given IRQ line using a signal. The arguments to thefun
tion are the IRQ line number, the signal number
orresponding to it, pointer tothe signal handler fun
tion and lastly the Userdev id of the atta
hed driver pro
ess.The result of the operation is returned ba
k to the
aller.B.2.7 userdev_free_irqThis fun
tion is used to ask the Userdev kernel driver to stop signalling the o

ur-ren
e of an interrupt. The result of the operation is returned ba
k to the
aller. Thefun
tion also resets the signal disposition of the signal
orresponding to an interrupton the IRQ line to the default value.B.2.8 userdev_request_dmaThis fun
tion is used to request for a DMA
hannel from the kernel. The argumentsof the fun
tion are the DMA
hannel number and the Userdev id of the driverpro
ess. The result of the operation is returned to the
aller.
26

B.2.9 userdev_free_dmaThis fun
tion is used to free the DMA
hannel a
quired by the driver pro
ess to thekernel resour
e pool. The argument passed to the fun
tion is the Userdev id of thedriver pro
ess. The result of the operation is returned to the
aller.B.2.10 userdev_start_dmaThis fun
tion is used to start a DMA operation on the DMA
hannel a
quired by thedriver pro
ess. The arguments to the fun
tion are the mode of the DMA operation,the data bu�er, the data transfer length and of
ourse the Userdev id to identify thedriver pro
ess. The return value of the fun
tion is the result of the operation.B.2.11 userdev_
he
k_dmaThis fun
tion is used to obtain the status of an ongoing DMA operation. TheUserdev id is passed as the fun
tion argument to identify the driver pro
ess andthe result of the operation, that is the number of bytes remaining in the transfer isreturned to the
aller.B.2.12 userdev_
opy_dmaThis fun
tion is used to
opy the
ontents of the kernel DMA bu�er into the bu�erpassed as the fun
tion argument. The Userdev id of the driver pro
ess forms theother argument of the fun
tion. The fun
tion returns the result of the
opy operationobtained from the kernel.B.2.13 userdev_enable_dmaThis fun
tion enables a DMA operation in
ase one has been suspended. The Userdevid is passed as the fun
tion argument to identify the driver pro
ess sending therequest. The return value of the fun
tion is the result of the operation returned bythe kernel. 27

B.2.14 userdev_disable_dmaThis fun
tion disables a DMA operation in
ase one is in progress. The Userdev id ispassed as the fun
tion argument to identify the driver pro
ess sending the request.The return value of the fun
tion is the result of the operation returned by the kernel.B.2.15 userdev_startThis fun
tion is the work horse fun
tion of the library and is
alled on
e all initial-izations have been
ompleted and the driver pro
ess is ready to serve requests fromthe Userdev kernel driver. This fun
tion does not return to the
aller unless an erroris en
ountered. It
ontinuously obtains requests from the Userdev kernel driver and
alls the
orresponding fun
tion of the Userdev operations stru
ture spe
i�ed duringthe
all to the userdev_atta
h fun
tion.B.2.16 userdev_send_responseThis fun
tion is used to send the response to a request, obtained from the Userdevkernel driver, by the driver fun
tion that was
alled to serve the request. Thearguments of the fun
tion are the Userdev id of the driver pro
ess, the request id ofthe request, the operation
ode, the result of the operation, the size of data to besent in the response and the data itself. The fun
tion has no return value.B.2.17 Utility fun
tionsThe various utility fun
tions that are provided by the Userdev library
an be
las-si�ed into following
ategories:Blo
k Devi
e Request QueueSimulates the request queue me
hanism for blo
k devi
es where in a request queue
an be de�ned and blo
k devi
e requests
an be enqueued and dequeued from it.The fun
tions available are: 28

1. userdev_add_request: fun
tion to add a request to the request queue giventhe userdev id,
ommand, starting se
tor number, transfer length,
luster size,data to be transferred in
ase of read operation, the size of the data and therequest id. The fun
tion returns a pointer to a userdev_blk_request stru
tureadded to the request queue on su

ess and NULL otherwise.2. userdev_end_request: fun
tion to remove a request from the front of the re-quest queue and to signal any threads waiting on the
ondition variable of therequest. The fun
tion argument is dummy and is used to keep the signaturesimilar to the kernel fun
tion.3. userdev_blk_requestq_
leanup: fun
tion to remove all the requests in the re-quest queue.Signal ListDe�nes a list to store the signal messages that have arrived for various pendingrequests and provides fun
tions to add a message to the list, remove a message fromit and of
ourse
he
k if a signal message has arrived for a given request (identi�edby the request id). The fun
tions available are:1. userdev_add_sig_list: fun
tion to add an item with the given request id tothe signal list2. userdev_del_sig_list: fun
tion to remove all items in the signal list for thegiven request id3. userdev_
he
k_sig_list: fun
tion to
he
k if a signal message has arrived forthe given request id. The fun
tion returns 1 in
ase an item is found and 0otherwise.Task QueueSimulates the task queue me
hanism of the kernel wherein a task queue
an bede�ned and tasks
an be added to it whi
h are exe
uted by a task thread that runsin parallel and repeatedly s
ans the task queue. The fun
tions available are:29

1. userdev_queue_task: fun
tion to add the given task to the given task queue.2. userdev_run_task_queue: fun
tion to
reate the task thread for the giventask queue and assign the given fun
tion as the initialization fun
tion of thetask thread.3. userdev_task_queue_
leanup: fun
tion to set the stop �ag of the given taskqueue in order to stop the task thread from polling the task queue.Timer QueueSimulates the kernel timer me
hanism wherein a task
an be added to the timerqueue spe
ifying the time in ji�es at whi
h it must be exe
uted. A thread runsthrough the timer queue whi
h is sorted by task expiry time, and exe
utes the tasksas and when their timer expires. The fun
tions available are:1. userdev_add_timer: fun
tion to add the given timer task to the timer queuewhile keeping the queue sorted by the expiry times of the tasks.2. userdev_del_timer: fun
tion to remove the given timer task from the timerqueue. The fun
tion returns 1 if the task was found in the timer queue and 0otherwise.3. userdev_mod_timer: fun
tion to modify the expiry time of the given timertask if it is present in the timer queue. The fun
tion returns 1 if the expirytime of the timer task has been modi�ed and 0 otherwise.4. userdev_timer_pending: fun
tion to
he
k if the given timer task is still to beexe
uted that is, it is still present in the timer queue. The fun
tion returns 1if the timer task has been found and 0 otherwise.5. userdev_get_ji�es: fun
tion that returns the
urrent time in 100th of a se
ondsin
e epo
h. This fun
tion is used for spe
ifying the expiry time of the timertasks.
30

6. userdev_timer_queue_
leanup: fun
tion to set the timerq_stop �ag inorderto stop the timer queue thread.7. userdev_init_timer_queue: fun
tion to initialize the timer queue,
reate atimer queue thread, install a signal handler for the alarm signal used to keeptra
k of time when exe
uting the tasks. The fun
tion argument is a pointerto the initialization fun
tion to be exe
uted when the timer thread begins.Mi
rose
ond Delay LoopProvides the fa
ility of busy waiting for a
ertain number of mi
ro se
onds. A loop
alibrated for number of iterations required to get a mi
rose
ond delay is used toprodu
e the required delay. The fun
tions available are:1. userdev_
alibrate_delay: fun
tion to
alibrate a loop to �nd the number of it-erations required for a delay of 1 mi
rose
ond. This fun
tion needs to be
alledbefore the userdev_udelay fun
tion
an be used. The value of loops_per_use

annot be determined ahead as it is dependent on the speed of operation ofthe pro
essor, the load on the system et
.2. userdev_udelay: fun
tion to be
alled to obtain a delay of given number ofmi
rose
onds.I/O Address spa
eSimulates the kernel me
hanism of registering I/O addresses so that two devi
edrivers do not simultaneously use a given address. The registration is re
orded ina �le so that it is e�e
tive a
ross pro
ess boundaries and
an prevent two driverpro
esses from writing to the same I/O address spa
e. The fun
tions available are:1. userdev_
he
k_ioregion: fun
tion to
he
k if the I/O address spa
e, spe
i�edby the given starting address and number of addresses is free. The fun
tionreturns 0 if the region is free and negative number otherwise.
31

2. userdev_request_ioregion: fun
tion to reserve the I/O address spa
e, spe
i�edby the given starting address and number of addresses under the given devi
ename. The fun
tion returns 0 on su

ess and a negative number otherwise.3. userdev_release_ioregion: fun
tion to release the I/O address spa
e, spe
i�edby the given starting address and number of addresses. The fun
tion returns0 on su

ess and a negative number otherwise.I/O port a

essProvides fun
tions for setting and resetting permissions on the given I/O port andalso wrapper fun
tions for ea
h of the port a

ess fun
tions. The fun
tions availableare:1. userdev_set_ioperm: fun
tion to set the I/O permission for the
urrent pro-
ess on the given port number. The fun
tion returns 0 on su

ess and anegative error number otherwise.2. userdev_reset_ioperm: fun
tion to reset the I/O permission for the
urrentpro
ess on the given port number. The fun
tion returns 0 on su

ess and anegative error number otherwise.3. userdev_inportb: fun
tion to read a byte from the spe
i�ed port. The valueread is returned by the fun
tion.4. userdev_outportb: fun
tion to write a byte to the spe
i�ed port number.5. userdev_inportw: fun
tion to read a word from the spe
i�ed port. The valueread is returned by the fun
tion.6. userdev_outportw: fun
tion to write a word to the spe
i�ed port number.7. userdev_inportd: fun
tion to read a double word from the spe
i�ed port. Thevalue read is returned by the fun
tion.8. userdev_outportd: fun
tion to write a double word to the spe
i�ed port num-ber. 32

9. userdev_reset_all_perms: fun
tion to reset all the I/O permissions a
quiredby the
urrent pro
ess.

33

Bibliography[1℄ Alexandrov, A. D., Ibel, M., S
hauser, K. E., and S
heiman, C. J.Extending the operating system at the user-level: the ufo global �lesystem. InUSENIX Annual Te
hni
al Conferen
e (Anaheim, CA, 1997), pp. 77�90.[2℄ Fitzhardinge, J. Userfs: A user �le system for linux.ftp://sunsite.un
.edu/pub/Linux/ALPHA/userfs, 1997.[3℄ Henderson, B. Linux loadable kernel module how to.http://www.tldp.org/HOWTO/Module-HOWTO/index.html, August 2001.[4℄ Hunt, G. C. Creating user-mode devi
e drivers with a proxy. In 1st USENIXWindows NT Workshop (Seattle,WA, August 1997), pp. 55�59.[5℄ Jungo. Windriver for linux. http://www.jungo.
om/linux.html.[6℄ Mi
rosoft. The driver development kit. http://www.mi
rosoft.
om/ddk/.[7℄ Neuman, B. C. The prospero �le system: A global system based on the virtualsystem model. In Computing Systems (Fall 1992), pp. 5(4):407�432.[8℄ Ni
hols, B., Buttlar, D., and Farrell, J. P. Pthreads Programming: APOSIX Standard for Better Multipro
essing, 1 ed. O'Reilly & Asso
iates, In
,September 1996. http://www.oreilly.
om/
atalog/pthread/.[9℄ Rao, H. C., and Peterson, L. L. A

essing �les in an internet: thejade �le system. In IEEE Transa
tions on Software Engineering (June 1993),pp. 19(6):613�624. 34

[10℄ Rubini, A., and Corbet, J. Linux Devi
e Drivers,2 ed. O'Reilly & Asso
iates, In
, June 2001.http://linux.interpuntonet.it/do
/linuxdriver2/index.html.[11℄ Vahdat, A., Eastham, P., Yoshokawa, C., Belani, E., Anderson, T.,D.Culler, and Dahlin, M. Webos: Operating system servi
es for wide areaappli
ations. Te
h. Rep. CSD-97-938, Dept of EECS, U. C. Berkeley, June1997.[12℄ Wel
h, B. B., and Ousterhoust, J. Pseudo-devi
es: User-level extensionsto the sprite �le system. In Summer USENIX Conferen
e (June 1988).

35

