
Userdev: A Framework For User Level DevieDrivers In Linux
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

byHari Krishna Vemuri

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurApril 2002

Certi�ate
This is to ertify that the work ontained in the thesis entitled � Userdev: AFramework For User Level Devie Drivers In Linux �, by Hari Krishna Vemuri, hasbeen arried out under my supervision and that this work has not been submittedelsewhere for a degree.

April 2002 (Dr. Deepak Gupta and Dr. Rajat Moona)Department of Computer Siene & Engineering,Indian Institute of Tehnology,Kanpur.

AbstratDevie drivers have always been omplex software that are written at the operatingsystem level. They are knit with the rest of the operating system kernel and work byinterating with it. Writing devie drivers is a umbersome task beause writing anddebugging the kernel ode is very di�ult. It is thus desirable to have a mehanismfor implementing user level devie drivers.In this thesis we desribe the design and implementation of the Userdev frame-work that allows implementation of user level devie drivers in Linux. The userlevel devie drivers written using this framework present exatly the same interfaeto the appliations as a kernel driver and thus existing appliations that use thedevie an be run without any hange, re-ompilation or even re-linking. We havealso developed prototype user level devie drivers for a parallel port line printer, a�oppy drive and a RAM disk to demonstrate the feasibility of our model. Experi-ments show that these user level devie drivers perform almost as e�iently as theirkernel ounterparts.

AknowledgementI take this opportunity to express my sinere gratitude to my supervisors Dr.Rajat Moona and Dr. Deepak Gupta for their invaluable guidane. It would nothave been possible for me to take this projet to ompletion without their relentlesssupport and enouragement. I onsider myself extremely fortunate to have had ahane to work under their supervision. It has been a very enlightening and enjoyableexperiene to work under them.I also wish to thank all the faulty members of the Department of ComputerSiene and Engineering for imparting their invaluable knowledge in ourse of myMteh program. I also extend my thanks to the tehnial sta� of the departmentfor maintaining an exellent working faility.I would also like to thank my bathmates who have made my stay in IIT Kanpur,the most memorable one. It was as though i was a part of a big family, studying,working and enjoying together. The 'mteh2000' mailing list was the most favouriteemail address whih hosted online disussions on a wide range of topis. The weekendoutings whih provided the required break from studies, formed an unforgettablepart of my hostel life.Finally I would like to thank my parents and sister for providing the neessarysupport and enouragement for building a good areer and a bright future.

i

Contents
1 Introdution 12 Related Work 33 Linux Devie Drivers 54 The Userdev Framework 74.1 The Userdev Driver . 94.1.1 Support for Interrupts . 114.1.2 Support for Diret Memory Aess: 114.1.3 The Signal Message . 124.2 The Userdev Library . 125 Prototype Drivers 145.1 Parallel Port Printer Driver . 145.2 RAM Disk Driver . 155.3 Floppy Disk Driver . 166 Performane 176.1 Performane of Floppy and RAM Disk Drivers 176.2 Interrupt Rate . 187 Conlusions 20A List of Userdev Protool Messages 21ii

B Userdev Library Interfae 23B.1 Userdev Operations . 23B.2 Library Routines . 25B.2.1 userdev_attah . 25B.2.2 userdev_detah . 25B.2.3 userdev_inform_poll_in . 25B.2.4 userdev_inform_poll_out . 25B.2.5 userdev_inform_fasyn_io 26B.2.6 userdev_request_irq . 26B.2.7 userdev_free_irq . 26B.2.8 userdev_request_dma . 26B.2.9 userdev_free_dma . 27B.2.10 userdev_start_dma . 27B.2.11 userdev_hek_dma . 27B.2.12 userdev_opy_dma . 27B.2.13 userdev_enable_dma . 27B.2.14 userdev_disable_dma . 28B.2.15 userdev_start . 28B.2.16 userdev_send_response . 28B.2.17 Utility funtions . 28Bibliography 34

iii

List of Tables6.1 Performane omparison of user level and kernel level �oppy diskdrivers. A FAT �le system was used to measure the mount time. . . . 186.2 Performane omparison of user level and kernel level RAM diskdrivers. An Ext2 �le system was used to measure the mount time. . . 18A.1 List of messages and their format . 22

iv

List of Figures4.1 System Arhiteture . 8

v

Chapter 1IntrodutionDevie drivers are usually a part of the operating system kernel and have omplexinterations with the kernel. Therefore writing and debugging a devie driver is avery umbersome task. In this thesis we present the design and implementation ofthe Userdev framework that allows implementation of devie drivers as user levelproesses. User level devie drivers are learly easier to write than the kernel driverssine understanding of the kernel internals is not neessary for developing a userlevel driver. Debugging is also easier sine standard debugging tools an be usedand a rash of the driver does not bring down the system.The disadvantage of user level devie drivers is learly a loss in performane dueto overheads of ontext swithing et. However for a fast and performane ritialdevie, a user level driver an be used as a quikly built prototype that an be laterported to the kernel. For a slow devie, the slight loss in performane is likely to beaeptable.User level devie drivers an also be useful for providing drivers for �pseudo-devies� suh as pseudo terminals in Linux. Another interesting use of user leveldrivers is to implement transparent aess to remote devies. In this ase the deviedriver would implement the lient side of some remote devie aess protool. It islearly not desirable to implement suh protools in the kernel.1

The rest of the thesis is organized as follows. Chapter 2 mentions some of thework related to this thesis. Chapter 3 provides some bakground about Linux devieinterfae and the struture of the kernel devie driver. Chapter 4 desribes thearhiteture of the Userdev framework and provides details about the Userdev driverand the Userdev library. Next, hapter 5 gives a brief desription of the prototypedrivers that have been implemented. Chapter 6 disusses the performane of userlevel devie drivers built using our model. And �nally hapter 7 onludes the thesis.

2

Chapter 2Related WorkMany tehniques have been used to extend the operating system funtionality atthe user level. In partiular, several user level �le system implementation tehniqueshave been proposed. For example, the Ufo �le system implementation [1℄ has aather proess that uses the Solaris /pro interfae to interept system alls madeby an appliation proess. Another simple approah to modify the behavior ofsystem alls is to replae the standard dynamially linked libraries by newer versions.This approah is used by the Jade [9℄ and Prospero [7℄ �le systems. WebFS [11℄and Linux Userfs [2℄ both implement kernel extensions that allow part of the �lesystem funtionality to be implemented at the user level. In both these systems, aloadable kernel module implements a �le system that, instead of implementing the�le operations itself, simply relays the �le requests to a user level server proess andreturns its reply to the appliation.Most operating systems, inluding Linux [3℄ and Windows [6℄ allow devie driversto be implemented as loadable modules. This allows support for new devies to beadded to the system at run-time. However the driver ode still exeutes in the kernelmode in this model and therefore the development and testing of a devie driver isstill very di�ult.Sprite allows user level drivers for pseudo-devies by transparently mapping oper-ations on a pseudo-devie into a request-response exhange with a server proess [12℄.3

Sprite uses pseudo-devies to implement its terminal drivers, the internet protoolsuite and the X-11 window system server at the user level.Referene [4℄ desribes a proxy driver for Windows NT whih relays devie aessrequests to a user level server. Our approah is similar to this and the Spriteapproah. However sine Linux allows privileged proesses to diretly aess devieontrollers, we are able to implement user level drivers for physial devies as well.The WinDriver driver development tool kit from Jungo [5℄ is a ommerial produtthat allows user level implementation of devie drivers for both Windows and Linux.In this system a devie driver is written as a library that has to be linked with theappliation programs. The toolkit has a kernel module that provides low level devieaess failities to suh a driver. For e�ieny, some of the ritial driver ode anbe moved to the kernel. The main drawbak of this system is that the appliationinterfae for aessing a devie with a user level driver is ompletely di�erent fromthe usual interfae for devies. Also the kernel ode annot interat with a deviethat has a user level driver. Thus, for instane it is not possible to mount and usea �le system residing on a blok devie that has a user level driver.

4

Chapter 3Linux Devie DriversUnder Linux, as in all other Unix variants, devies are lassi�ed as harater andblok devies. Charater devies handle data in the form of individual bytes whereasblok devies handle data in form of bloks. Eah distint devie is identi�ed using apair of numbers alled the major and minor numbers. The major number representsthe lass or type of the devie while the minor number represents the instane ofthe devie within the lass. In Linux we an have a total of 256 lasses of devies(major number) with eah of them having upto 256 instanes (minor numbers). Alldevies with the same major number share the same driver ode. As an examplelp0, lp1 and lp2 are three devies representing the three parallel ports on a Linuxsystem. All of them have the same major number 6, and thus share the same driverode (line printer driver), while the minor numbers are 0, 1, and 2 respetively.Linux provides a �le like interfae for all devies. Eah devie is represented by anode in the �le system and an be aessed using the usual open, read, write, et.,system alls. In addition, an iotl system all an be used with devie �les to ontrolthe behavior of the devie or of the devie driver. An iotl all takes a ommandand optionally some data as arguments. Eah devie driver de�nes its set of iotlommands spei� to the devie.A devie driver in Linux has to implement a standard set of interfae funtionsthat are alled by the kernel �le system ode. From version 2.4 onwards of the5

Linux kernel, this set of interfae funtions is di�erent for harater and blok deviedrivers. A harater devie driver has to implement funtions to open and lose thedevie, read, write, perform iotl, poll et. A blok devie driver does not needto implement funtions to read or write the devie. Instead it has to implementa request funtion that handles both read and write requests. In addition a blokdevie driver also has some funtions to hek for hange in media, re-validate themedia et. A detailed desription of Linux devie drivers an be obtained in referene[10℄.

6

Chapter 4The Userdev FrameworkThe Userdev framework allows devie drivers to be implemented at the user level.Our primary goal for this framework was that the appliations should be able touse exatly the same interfae for aessing a devie with a user level devie driveras for aessing devies with the usual kernel resident drivers. This will ensure thatexisting appliations an ontinue to work without any modi�ations, re-ompilationor even relinking. Both harater and blok devies should be supported. Also itshould be easy to develop user level devie drivers so that drivers for new deviesan be easily developed.Figure 4.1 gives an overview of the Userdev framework. It onsists of a generidevie independent kernel driver alled the Userdev driver, and a Userdev library.The Userdev driver implements the usual interfae expeted of a kernel devie driverand thus appears to the kernel as just another devie driver. The Userdev driverimplements the interfae for both harater and blok devies. In Linux there anbe upto 256 minor numbers for a spei� major number. Thus the Userdev driveran support user level devie drivers for upto 256 blok devies and 256 haraterdevies.Atual devie drivers are implemented in the Userdev framework as user levelproesses. A driver proess �rst registers itself with the Userdev driver speifying aminor number that it will handle. A single proess an register for multiple minor7

Application 1

Application 2

File System Interface
Kernel Space

Response
Request

Response
Request
Read

Read

Write
Write

User Space

Driver

Userdev

Kernel

write

read
(minor = 5)

(minor = 7)

Userdev Library

Userdev Library

Driver
Process
(minor = 5)

(minor = 7)
Process
Driver

Figure 4.1: System Arhiteturenumbers. After this, the Userdev driver redirets all requests for any of these minornumbers to the driver proess by sending messages on a pipe. The driver proesshandles the requests and returns the replies to the Userdev driver using anotherpipe. The Userdev library hides the details of this message passing and exports asimple interfae so that driver development is easier.In Linux, root proesses an gain permission to diretly aess I/O ontrollersusing the iopl and the ioperm system alls. This faility an be used to build userlevel devie drivers for atual hardware devies. In order to aess memory mappeddevies, the existing /dev/mem devie an be used. To avoid the overhead of systemalls to use /dev/mem, the appropriate region of this devie an be mapped to theaddress spae of the driver proess using the mmap system all.The Userdev framework has been implemented for the Linux kernel version 2.4. Inthe following two setions, we desribe some implementation details of the Userdev8

driver and the Userdev library.4.1 The Userdev DriverThe Userdev driver is a generi rediretion layer that passes requests for aess todevies to the user level drivers. The Userdev driver is a driver for both haraterand blok devies and thus implements the kernel interfaes required for both kindsof drivers. The urrent implementation of the Userdev driver uses major number248 for both harater and blok devies. A pair of unnamed pipes is used toommuniate with a user level driver proess. Minor number 0 is treated as speialand iotl alls on this minor number are used for driver registration and other downalls from the user level drivers to the Userdev driver.Any driver proess �rst needs to register with the kernel Userdev driver before itan obtain requests for aess to the devie. This operation is alled as the attahoperation. Similarly when the driver proess wants to stop aepting requests fromthe kernel Userdev driver, it an unregister itself. This operation is alled as thedetah operation. The driver proess uses spei� iotl alls on minor number 0 ofthe kernel Userdev driver for both these operations.The information that the driver proess needs to send to the kernel Userdev driverduring the attah operation inludes: the �le desriptors for the kernel driver to readand write from, the name of the devie �le (thus indiating the minor number) forwhih the proess would aept requests, a list of iotls that are supported, a funtionmask indiating the interfae funtions supported by the driver and �nally optionaldata for speifying devie on�guration for blok devies.When a driver proess alls iotl on minor number 0 of the Userdev driver toattah to a devie, the Userdev driver heks if the minor number for whih thedriver proess wants to aept requests is free. Then it heks that the �le desriptoron whih this iotl all is being made is open for writing. That is, write permissionon the devie �le orresponding to minor number 0 of the Userdev driver is required9

by a proess to at as a user level driver. If these heks are passed, the Userdevdriver returns an id, termed as the Userdev id, to the driver proess to identify thedriver proess on subsequent iotl alls to the Userdev driver.When the driver proess exits, it an detah itself from the Userdev driver againusing an iotl all on minor 0. A hek is made by the Userdev driver to make surethat the detah all is from the same proess that earlier attahed to the devie. Theimplementation also automatially detahes a driver proess that has terminatedwithout detahing itself.One a user level driver has attahed itself to a minor number, any all to theUserdev driver from the kernel for that minor number is assembled into a requestmessage and is sent to the driver proess using the �le desriptor spei�ed at attahtime. The proess that made the all sleeps in the kernel. When the reply is reeived(on the seond pipe), this proess wakes up and returns from its all to the Userdevdriver.Multiple proesses an simultaneously try to aess the same devie. In this ase,the Userdev driver an send another request to the driver proess without waitingfor the responses to the previous ones. The driver proess is also permitted to sendreplies in an order di�erent from the order in whih the requests were reeived.This is done so that fast operations do not neessarily have to wait for previouslyinitiated slower operations to omplete. In order that requests and replies an beorrelated with eah other, eah request message arries a unique request id and theorresponding reply must also arry the same request id.Eah request and reply message onsists of a �xed length header followed by avariable sized data portion. The header ontains the operation ode, the request id,and the size of the data part. The ontents of the data part vary depending on theoperation. The list of messages and message formats an be found in Appendix A.
10

The poll and fasyn interfae funtions of the Userdev driver have to be treateddi�erently sine these funtions are expeted to wakeup or signal respetively thealling proess whenever input or output is possible. To implement this funtionality,the driver proess has to make an iotl all on minor number 0 whenever I/O ispossible and a poll or fasyn request was previously reeived by it.4.1.1 Support for InterruptsMany I/O devies are interrupt driven. To enable implementation of drivers forsuh devies at the user level, a mehanism to ommuniate interrupt ourreneevents to a user level proess is required. Sine Unix signals behave very muhlike interrupts, it is natural to use signals for this ommuniation. In the Userdevframework, a driver proess an request aess to a ertain interrupt by making aniotl all on minor 0 of the Userdev driver speifying the interrupt number and thenumber of the signal that should be delivered to the proess when the interruptours. The Userdev driver then installs its own interrupt handler for this interrupt.This interrupt handler simply delivers the spei�ed signal to the driver proess.The driver proess an install a signal handler for this signal and do the proessingrequired for serviing the interrupt in the signal handler.4.1.2 Support for Diret Memory Aess:Diret Memory Aess (DMA) is used to speed up bulk data transfers betweendevies and memory. Even though it is possible in Linux for a user level proessto diretly program the DMA ontroller, this should not really be done sine kerneldrivers for other devies may also use the DMA ontroller. Further some DMAontrollers an aess only a limited range of the physial memory. For these reasons,the DMA ontroller should only be programmed by the kernel ode. To make theDMA faility available to the user level devie drivers, the Userdev driver implementsertain iotl alls on minor number 0. These iotl alls an be used by a driverproess to request for a given DMA hannel, initiate a DMA operation, enquirethe status of an on-going DMA operation and free the DMA hannel. The Userdev11

driver alloates a DMA bu�er when a DMA operation is initiated. This bu�er is usedfor the data transfer. In ase of a read operation an additional iotl on minor 0 isneeded to opy the data read from the devie bak to the driver proess. The driverproess an get to know when to issue this iotl all either through an interruptfrom the devie or by enquiring the status of the DMA operation.4.1.3 The Signal MessageIf a proess that is bloked while aessing a devie reeives a signal, typially theoperation is aborted and the proess returns from the driver ode with an error. Toahieve similar behavior in ase of user level devie drivers, the Userdev driver sendsa signal message to the driver proess when a proess waiting for reply to a requestreeives a signal. The signal message essentially requests the driver proess to abortan ongoing operation. The request id orresponding to the operation to be abortedis inluded as data in the signal message. The driver proess, on reeiving thismessage, will usually abort the spei�ed operation and send a reply for the abortedrequest indiating an error ondition. The signal message itself has no reply.4.2 The Userdev LibraryThe Userdev library forms the other part of the framework for writing user leveldevie drivers. It hides the details of the protool to be followed with the kernelUserdev driver and thus redues the e�ort in onstruting a user level devie driver.The library not only takes are of the job of obtaining requests from the Userdevdriver but also provides wrapper funtions for the user level driver to interat withthe kernel Userdev driver.A user level devie driver written using the Userdev library needs to implementa set of interfae funtions that is similar to the set of funtions that a kerneldriver implements. The userdev_start funtion of the library implements the mainloop of the driver. It essentially waits ontinuously for requests from the kerneland on reeiving a request message alls the appropriate funtion in the driver12

ode. This funtion is required to handle the request and send the response messageusing the userdev_send_response funtion of the library. We deided to require thedriver ode to expliitly send the response message sine this allows the driver todelay sending the response. Most drivers are expeted to be multi-threaded so thatmultiple requests an be handled onurrently.The Userdev library also provides high level funtions orresponding to the iotlalls available on minor number 0 of the Userdev driver. This inludes funtionsto attah to and detah from a minor number, to request noti�ation of interrupts,DMA related funtions et. The library also provides utility funtions that manydrivers require. These inlude a miroseond delay loop, implementation of timerqueue, funtions to aess I/O ports diretly et. The omplete library interfae isgiven in Appendix B.

13

Chapter 5Prototype DriversTo demonstrate the feasibility of using the Userdev framework to develop userlevel devie drivers, we have developed three prototype drivers. These are driversfor a parallel port printer, �oppy disk drive, and RAM disk. The Linux kernelalready has drivers for all these three devies and we atually used the existingkernel ode for implementing the parallel port printer and the �oppy disk drivers inthe Userdev framework. In this setion we brie�y desribe the implementation ofthese three user level devie drivers.5.1 Parallel Port Printer DriverThe kernel driver for the parallel port printer has a three layer arhiteture on-sisting of the lp driver module, the parport module and the parport_p module.The lp driver module implements the devie driver interfae while the atual workis done by parport and parport_p modules. The parport module is a generi unitthat multiplexes various kernel drivers over low-level drivers whih aess the paral-lel port hardware interfae. The upper layer drivers, suh as the lp driver, registerwith the parport module that provides them the interfae for aessing the deviewhile the atual operation is done by the low-level devie spei� drivers, suh as theparport_p module, that register with the parport module. This arhiteture allows
14

multiple drivers to operate on a single devie simultaneously with the ontention be-ing resolved using a resoure laim-release mehanism followed by the upper layerdrivers to avoid interferene with one another.The user level implementation of the parallel port printer driver has a similararhiteture. Here the parport and parport_p modules are libraries. This allowseasy development of the drivers for other parallel port devies suh as sanners.Sine the line printer is not usually aessed simultaneously by multiple proesses,the driver handles only one request at a time. It does not allowmore than one proessto have the devie open and thus enfores mutual exlusion. Similar to the kernelimplementation, our printer driver an use either polling or interrupt driven I/O,based on a ommand line option. In the interrupt mode, if the driver detets missedinterrupts it automatially swithes to polling mode.The write operation of the printer driver is the only one that an blok (in theinterrupt mode) or take a long time to omplete (in polling mode). In order to abortthe write operation if a signal message is reeived, the write operation is exeutedby an independent thread while the main thread goes bak to waiting for requests.All other operations omplete quikly without bloking and are therefore exeutedby the main thread itself.5.2 RAM Disk DriverA RAM disk driver is the simplest blok devie driver as the only operation in-volved is opying bytes aross the memory. A portion of the main memory alloatedby the driver is treated as a blok devie and operations are performed on it. Theuser level RAM disk driver built using the Userdev framework has dummy funtionsfor most of the driver interfae funtions, that is they just return suess, exeptfor iotl and request funtions. The iotl funtion handles HDIO_GETGEO andBLKGETSIZE iotl ommands to return a fake disk geometry and devie size re-spetively. These are mandatory iotls for any blok devie. The request funtion15

translates the setor number present in the blok devie I/O request into a memoryaddress from whih the required number of bytes are opied to the transfer addressgiven in the request or vie-versa depending on whether the request is for readingor writing data.5.3 Floppy Disk DriverThe �oppy disk driver is a omplex multi-threaded blok devie driver. The kernel�oppy disk driver extensively uses kernel support utilities suh as task queues andkernel timers to delegate work to another thread, and to delay an operation fora ertain period of time respetively. The driver not only serves read and writerequests from the �le system bu�er ahe, but also serves iotl requests to hangethe �oppy drive parameters, to get or set the disk geometry, format a given trak,et.The user level �oppy disk driver has been implemented by porting the kernel �oppydisk driver to the user spae. The driver is written as a multi-threaded appliationusing the pthread user level thread pakage [8℄. The kernel task queues and timersused by the kernel driver are replaed by the orresponding user level libraries. Inorder to implement the loking mehanism for serializing the aess to the �oppydrive ontroller, thread synhronization mehanisms suh as mutexes and onditionvariables are used. Interrupts from the �oppy drive ontroller are delegated to theuser level driver using the Userdev framework. All the driver interfae funtionsexept release, an potentially blok, so a separate thread is reated for exeutingeah of them.

16

Chapter 6PerformaneIn this setion we desribe the experiments onduted to measure the performane ofthe prototype drivers and the Userdev framework. For the �oppy drive and the RAMdisk drivers, the performane was ompared with that of existing kernel drivers forthese devies. In addition, we performed an experiment to measure the maximuminterrupt rate that an be handled by a user level devie driver. All experimentswere performed on a PC with a 233 MHz Pentium proessor and 128 MB RAM.The following setions desribe the experiments and their results.6.1 Performane of Floppy and RAM Disk DriversFor both �oppy disk and RAM disk drivers we measured the time taken to mounta �le system from the devie, and the read and write data rates. These �gureswere also measured for the existing kernel drivers for the �oppy drive and the RAMdisk. The results are shown in Table 6.1 and Table 6.2 respetively. The resultsshow that the data rates of the user level �oppy driver are only slightly lower thanthose of the orresponding kernel driver. This is expeted sine the dominatingfator in read and write time is the devie delay. The user level RAM disk driveron the other hand performs signi�antly worse than the kernel RAM disk driver.Again this is expeted sine in this ase there is no physial devie involved and thepenalty of extra data movement and ontext swithing in ase of the user level driver17

is signi�ant. However the RAM disk driver performane is really the worst ase.Most physial devies are orders of magnitude slower than the CPU and therefore thepenalties assoiated with a user level driver would be signi�antly lower in relativeterms for these devies. Surprisingly the mount time for the user level �oppy driver islower than that for the kernel driver. This is a repeatable observation but urrentlywe annot explain it.Parameter Kernel Spae Driver User Spae DriverMount Time 1.75 se 1.57 seRead Data Rate 5.74 KB/s 5.59 KB/sWrite Data Rate 7.46 KB/s 7.25 KB/sTable 6.1: Performane omparison of user level and kernel level �oppy disk drivers.A FAT �le system was used to measure the mount time.
Parameter Kernel Spae Driver User Spae DriverMount Time 1 mse 2.2 mseRead Data Rate 2.57 MB/s 1.68 MB/sWrite Data Rate 2.57 MB/s 1.58 MB/sTable 6.2: Performane omparison of user level and kernel level RAM disk drivers.An Ext2 �le system was used to measure the mount time.

6.2 Interrupt RateTo measure the maximum interrupt rate that an be handled by a user leveldriver, we short-iruited pins 9 and 10 of the parallel port interfae. Pin 9 is themost signi�ant data bit and pin 10 is the aknowledgement bit. The parallel portontroller raises an interrupt whenever the aknowledgement bit falls to 0. We thenran a proess that repeatedly wrote a byte of data to the parallel port with the mostsigni�ant bit set to 0. The proess diretly aessed the parallel port ontroller todo this and its rate of writing ould be ontrolled. Thus we were able to generate18

interrupts at any desired rate. We ran a dummy user level parallel port driverwhose interrupt handler simply inremented the number of interrupts reeived andexeuted a delay loop to simulate interrupt proessing.Experiments showed that with a 20�se interrupt handling time, the dummydriver was able to handle about 11,000 interrupts per seond. This is greater thanthe atual interrupt rate from most devies. For example, data transfers in units of4 KB from a fully busy Ultra-2 SCSI disk with a bandwidth of 80 MBps and 50%bandwidth utilization, would result in about 10,000 interrupts per seond.

19

Chapter 7ConlusionsIn this thesis, we have desribed the design and implementation of the Userdevframework that allows devie drivers to be implemented at the user level in Linux.We have also implemented user level drivers for the parallel port printer, the �oppydrive and the RAM disk. Experiments show that the performane of user leveldrivers is only slightly worse than that of kernel level drivers. For performaneritial devies, the Userdev framework an be used to quikly develop and test auser level driver whih an later be ported to the kernel. For slow devies, a userlevel driver may be all that is ever required. The Userdev framework also allowssupport for remote devies or �pseudo-devies� for whih modifying the kernel maynot be appropriate.Our future plans inlude gaining more experiene with the Userdev frameworkby writing more user level devie drivers, inluding drivers to transparently aessremote terminals and sanners.The urrent implementation of the Userdev framework and the prototype driversan be downloaded from http://www.se.iitk.a.in/users/deepak/userdev
20

Appendix AList of Userdev Protool MessagesThe protool messages that are exhanged between the Userdev driver and thedriver proess onsist of a �xed length header �eld and a variable length data �eld.The header �eld onsists of:� operation ode: denoting the operation in question� request id: shared by request and response messages for o-relation� size of the data �eld to followThe ontents of the data �eld for various operations is given in the table below:

21

Operation Request Paket Response Paketread - amount to be read - number of bytes read- operation �ags - data read from devie- position on devie - new position on deviewrite - amount to be written - number of bytes written- position on devie - new position on devie- data to be written- operation �agspoll - poll operation resultiotl - iotl ommand - result of operation- iotl data (SET) - iotl data (GET)- size of data - size of dataopen - �le open �ags - result of operation- mode of operation�ush - result of operationlose - result of operationfsyn - datasyn �ag - result of operationfasyn - result of operationhek_media_hange - result of operationrevalidate - result of operationmediatl - result of operationreadv same as read same as readwritev same as write same as writesignal - type of messagemessage - request id of pending request- optional data- size of datarequest - ommand ode - result of operationfuntion - setor number - size of data reeived- transfer length - data reeived for read- luster size- data being sent for write- size of data being sentTable A.1: List of messages and their format
22

Appendix BUserdev Library InterfaeThe interfae between the Userdev library and the user level devie driver onsistsof a set of funtions known as Userdev operations that the devie driver an imple-ment to serve requests from the Userdev kernel driver. The library also providesfuntions for interating with the Userdev kernel driver and other utility routinesthat many drivers require.B.1 Userdev OperationsUserdev operations forms the set of funtions of the user level devie driver thatan be alled by the Userdev library to serve requests from the Userdev kernel driver.It is similar to the �le operations struture of the kernel, used for ommuniatingthe list of funtions implemented by the kernel devie driver to the rest of the kernel.When the library obtains a paket from the Userdev kernel driver, it looks into theUserdev operations set to hek if the driver has implemented the orrespondingfuntion, in whih ase the funtion is alled passing the onstituents of the paket.The Userdev operations is represented by a struture onsists of the pointers tofuntions orresponding to eah operation the Userdev kernel driver an request,as shown below. The driver �lls in eah �eld of the struture with the name ofthe funtion serving the request or NULL if the funtion has not implemented and23

ommuniates the struture to the library along with the all to userdev_attahlibrary funtion.strut userdev_operations{ int devtype;void (*read)(int id, unsigned int size, int flags, long long off,int reqid);void (*write)(int id, int len, long long off, har* data,int flags, int reqid);void (*poll)(int id, int reqid);void (*iotl)(int id, int ommand, void* data, int size,int reqid);void (*open)(int id, unsigned int flags, mode_t mode,int reqid);void (*flush)(int id, int reqid);void (*lose)(int id, int reqid);void (*fsyn)(int id, int datasyn, int reqid);void (*fasyn)(int id, int reqid);void (*hek_media_hange)(int id, int reqid);void (*revalidate)(int id, int reqid);void (*mediatl)(int id, int op, int optarg, int reqid);void (*message)(int id, int type, int reqid, void *data,int size);void (*request)(int id, int ommand, long setor, int length,int lustersize, void* data, int datasize, int reqid);};The arguments to the funtions in the above struture orrespond to the ontentsof the data �eld of the orresponding request message, in addition to the Userdevid (id) and request id (reqid). 24

B.2 Library RoutinesThe various routines provided by the library to interat with the Userdev kerneldriver are:B.2.1 userdev_attahThis funtion is alled to attah a user level driver proess to the Userdev kerneldriver. It takes the devie �lename to attah to, an array of iotl data elementsspeifying the list of allowed iotl numbers and maximum length of data handled byeah, the number of iotl data elements, a pointer to the driver's Userdev operationsstruture and an optional data parameter used for blok devies. The Userdevoperations struture is stored in the library's internal data struture, maintained foreah attahed driver proess, for use by other routines of the library. The funtionreturns the Userdev id of the driver proess in ase the attah operation had beensuessful and an error number in ase an error was enountered.B.2.2 userdev_detahThis funtion is alled to detah the driver proess from Userdev kernel driver,identifying it using the Userdev id given as the funtion argument. The result ofthe detah operation is returned.B.2.3 userdev_inform_poll_inThis funtion is alled to ask the Userdev kernel driver to inform the availabilityof data to anybody polling the devie for input data. The Userdev id, passed asthe funtion argument is used to identify the attahed driver proess. The valuereturned by the funtion is the result of the operation.B.2.4 userdev_inform_poll_outThis funtion is alled to ask the Userdev kernel driver to inform the availabilityof the devie for output to anybody polling the devie for output. The Userdev id25

passed as the funtion argument is used to identify the attahed driver proess. Theresult of the operation is the return value of the funtion.B.2.5 userdev_inform_fasyn_ioThis funtion is alled to ask the Userdev kernel driver to inform the availability ofdata to anyone using asynhronous I/O and waiting for some I/O ativity to takeplae. The Userdev id is passed as the funtion for identifying the attahed driverproess and the result of the operation is returned bak to the aller of the funtion.B.2.6 userdev_request_irqThis funtion is alled to request the Userdev kernel driver to inform about theourrene of interrupts on a given IRQ line using a signal. The arguments to thefuntion are the IRQ line number, the signal number orresponding to it, pointer tothe signal handler funtion and lastly the Userdev id of the attahed driver proess.The result of the operation is returned bak to the aller.B.2.7 userdev_free_irqThis funtion is used to ask the Userdev kernel driver to stop signalling the our-rene of an interrupt. The result of the operation is returned bak to the aller. Thefuntion also resets the signal disposition of the signal orresponding to an interrupton the IRQ line to the default value.B.2.8 userdev_request_dmaThis funtion is used to request for a DMA hannel from the kernel. The argumentsof the funtion are the DMA hannel number and the Userdev id of the driverproess. The result of the operation is returned to the aller.
26

B.2.9 userdev_free_dmaThis funtion is used to free the DMA hannel aquired by the driver proess to thekernel resoure pool. The argument passed to the funtion is the Userdev id of thedriver proess. The result of the operation is returned to the aller.B.2.10 userdev_start_dmaThis funtion is used to start a DMA operation on the DMA hannel aquired by thedriver proess. The arguments to the funtion are the mode of the DMA operation,the data bu�er, the data transfer length and of ourse the Userdev id to identify thedriver proess. The return value of the funtion is the result of the operation.B.2.11 userdev_hek_dmaThis funtion is used to obtain the status of an ongoing DMA operation. TheUserdev id is passed as the funtion argument to identify the driver proess andthe result of the operation, that is the number of bytes remaining in the transfer isreturned to the aller.B.2.12 userdev_opy_dmaThis funtion is used to opy the ontents of the kernel DMA bu�er into the bu�erpassed as the funtion argument. The Userdev id of the driver proess forms theother argument of the funtion. The funtion returns the result of the opy operationobtained from the kernel.B.2.13 userdev_enable_dmaThis funtion enables a DMA operation inase one has been suspended. The Userdevid is passed as the funtion argument to identify the driver proess sending therequest. The return value of the funtion is the result of the operation returned bythe kernel. 27

B.2.14 userdev_disable_dmaThis funtion disables a DMA operation inase one is in progress. The Userdev id ispassed as the funtion argument to identify the driver proess sending the request.The return value of the funtion is the result of the operation returned by the kernel.B.2.15 userdev_startThis funtion is the work horse funtion of the library and is alled one all initial-izations have been ompleted and the driver proess is ready to serve requests fromthe Userdev kernel driver. This funtion does not return to the aller unless an erroris enountered. It ontinuously obtains requests from the Userdev kernel driver andalls the orresponding funtion of the Userdev operations struture spei�ed duringthe all to the userdev_attah funtion.B.2.16 userdev_send_responseThis funtion is used to send the response to a request, obtained from the Userdevkernel driver, by the driver funtion that was alled to serve the request. Thearguments of the funtion are the Userdev id of the driver proess, the request id ofthe request, the operation ode, the result of the operation, the size of data to besent in the response and the data itself. The funtion has no return value.B.2.17 Utility funtionsThe various utility funtions that are provided by the Userdev library an be las-si�ed into following ategories:Blok Devie Request QueueSimulates the request queue mehanism for blok devies where in a request queuean be de�ned and blok devie requests an be enqueued and dequeued from it.The funtions available are: 28

1. userdev_add_request: funtion to add a request to the request queue giventhe userdev id, ommand, starting setor number, transfer length, luster size,data to be transferred in ase of read operation, the size of the data and therequest id. The funtion returns a pointer to a userdev_blk_request strutureadded to the request queue on suess and NULL otherwise.2. userdev_end_request: funtion to remove a request from the front of the re-quest queue and to signal any threads waiting on the ondition variable of therequest. The funtion argument is dummy and is used to keep the signaturesimilar to the kernel funtion.3. userdev_blk_requestq_leanup: funtion to remove all the requests in the re-quest queue.Signal ListDe�nes a list to store the signal messages that have arrived for various pendingrequests and provides funtions to add a message to the list, remove a message fromit and of ourse hek if a signal message has arrived for a given request (identi�edby the request id). The funtions available are:1. userdev_add_sig_list: funtion to add an item with the given request id tothe signal list2. userdev_del_sig_list: funtion to remove all items in the signal list for thegiven request id3. userdev_hek_sig_list: funtion to hek if a signal message has arrived forthe given request id. The funtion returns 1 in ase an item is found and 0otherwise.Task QueueSimulates the task queue mehanism of the kernel wherein a task queue an bede�ned and tasks an be added to it whih are exeuted by a task thread that runsin parallel and repeatedly sans the task queue. The funtions available are:29

1. userdev_queue_task: funtion to add the given task to the given task queue.2. userdev_run_task_queue: funtion to reate the task thread for the giventask queue and assign the given funtion as the initialization funtion of thetask thread.3. userdev_task_queue_leanup: funtion to set the stop �ag of the given taskqueue in order to stop the task thread from polling the task queue.Timer QueueSimulates the kernel timer mehanism wherein a task an be added to the timerqueue speifying the time in ji�es at whih it must be exeuted. A thread runsthrough the timer queue whih is sorted by task expiry time, and exeutes the tasksas and when their timer expires. The funtions available are:1. userdev_add_timer: funtion to add the given timer task to the timer queuewhile keeping the queue sorted by the expiry times of the tasks.2. userdev_del_timer: funtion to remove the given timer task from the timerqueue. The funtion returns 1 if the task was found in the timer queue and 0otherwise.3. userdev_mod_timer: funtion to modify the expiry time of the given timertask if it is present in the timer queue. The funtion returns 1 if the expirytime of the timer task has been modi�ed and 0 otherwise.4. userdev_timer_pending: funtion to hek if the given timer task is still to beexeuted that is, it is still present in the timer queue. The funtion returns 1if the timer task has been found and 0 otherwise.5. userdev_get_ji�es: funtion that returns the urrent time in 100th of a seondsine epoh. This funtion is used for speifying the expiry time of the timertasks.
30

6. userdev_timer_queue_leanup: funtion to set the timerq_stop �ag inorderto stop the timer queue thread.7. userdev_init_timer_queue: funtion to initialize the timer queue, reate atimer queue thread, install a signal handler for the alarm signal used to keeptrak of time when exeuting the tasks. The funtion argument is a pointerto the initialization funtion to be exeuted when the timer thread begins.Miroseond Delay LoopProvides the faility of busy waiting for a ertain number of miro seonds. A loopalibrated for number of iterations required to get a miroseond delay is used toprodue the required delay. The funtions available are:1. userdev_alibrate_delay: funtion to alibrate a loop to �nd the number of it-erations required for a delay of 1 miroseond. This funtion needs to be alledbefore the userdev_udelay funtion an be used. The value of loops_per_useannot be determined ahead as it is dependent on the speed of operation ofthe proessor, the load on the system et.2. userdev_udelay: funtion to be alled to obtain a delay of given number ofmiroseonds.I/O Address spaeSimulates the kernel mehanism of registering I/O addresses so that two deviedrivers do not simultaneously use a given address. The registration is reorded ina �le so that it is e�etive aross proess boundaries and an prevent two driverproesses from writing to the same I/O address spae. The funtions available are:1. userdev_hek_ioregion: funtion to hek if the I/O address spae, spei�edby the given starting address and number of addresses is free. The funtionreturns 0 if the region is free and negative number otherwise.
31

2. userdev_request_ioregion: funtion to reserve the I/O address spae, spei�edby the given starting address and number of addresses under the given deviename. The funtion returns 0 on suess and a negative number otherwise.3. userdev_release_ioregion: funtion to release the I/O address spae, spei�edby the given starting address and number of addresses. The funtion returns0 on suess and a negative number otherwise.I/O port aessProvides funtions for setting and resetting permissions on the given I/O port andalso wrapper funtions for eah of the port aess funtions. The funtions availableare:1. userdev_set_ioperm: funtion to set the I/O permission for the urrent pro-ess on the given port number. The funtion returns 0 on suess and anegative error number otherwise.2. userdev_reset_ioperm: funtion to reset the I/O permission for the urrentproess on the given port number. The funtion returns 0 on suess and anegative error number otherwise.3. userdev_inportb: funtion to read a byte from the spei�ed port. The valueread is returned by the funtion.4. userdev_outportb: funtion to write a byte to the spei�ed port number.5. userdev_inportw: funtion to read a word from the spei�ed port. The valueread is returned by the funtion.6. userdev_outportw: funtion to write a word to the spei�ed port number.7. userdev_inportd: funtion to read a double word from the spei�ed port. Thevalue read is returned by the funtion.8. userdev_outportd: funtion to write a double word to the spei�ed port num-ber. 32

9. userdev_reset_all_perms: funtion to reset all the I/O permissions aquiredby the urrent proess.

33

Bibliography[1℄ Alexandrov, A. D., Ibel, M., Shauser, K. E., and Sheiman, C. J.Extending the operating system at the user-level: the ufo global �lesystem. InUSENIX Annual Tehnial Conferene (Anaheim, CA, 1997), pp. 77�90.[2℄ Fitzhardinge, J. Userfs: A user �le system for linux.ftp://sunsite.un.edu/pub/Linux/ALPHA/userfs, 1997.[3℄ Henderson, B. Linux loadable kernel module how to.http://www.tldp.org/HOWTO/Module-HOWTO/index.html, August 2001.[4℄ Hunt, G. C. Creating user-mode devie drivers with a proxy. In 1st USENIXWindows NT Workshop (Seattle,WA, August 1997), pp. 55�59.[5℄ Jungo. Windriver for linux. http://www.jungo.om/linux.html.[6℄ Mirosoft. The driver development kit. http://www.mirosoft.om/ddk/.[7℄ Neuman, B. C. The prospero �le system: A global system based on the virtualsystem model. In Computing Systems (Fall 1992), pp. 5(4):407�432.[8℄ Nihols, B., Buttlar, D., and Farrell, J. P. Pthreads Programming: APOSIX Standard for Better Multiproessing, 1 ed. O'Reilly & Assoiates, In,September 1996. http://www.oreilly.om/atalog/pthread/.[9℄ Rao, H. C., and Peterson, L. L. Aessing �les in an internet: thejade �le system. In IEEE Transations on Software Engineering (June 1993),pp. 19(6):613�624. 34

[10℄ Rubini, A., and Corbet, J. Linux Devie Drivers,2 ed. O'Reilly & Assoiates, In, June 2001.http://linux.interpuntonet.it/do/linuxdriver2/index.html.[11℄ Vahdat, A., Eastham, P., Yoshokawa, C., Belani, E., Anderson, T.,D.Culler, and Dahlin, M. Webos: Operating system servies for wide areaappliations. Teh. Rep. CSD-97-938, Dept of EECS, U. C. Berkeley, June1997.[12℄ Welh, B. B., and Ousterhoust, J. Pseudo-devies: User-level extensionsto the sprite �le system. In Summer USENIX Conferene (June 1988).

35

