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Abstract

Device drivers have always been complex software that are written at the operating
system level. They are knit with the rest of the operating system kernel and work by
interacting with it. Writing device drivers is a cumbersome task because writing and
debugging the kernel code is very difficult. It is thus desirable to have a mechanism
for implementing user level device drivers.

In this thesis we describe the design and implementation of the Userdev frame-
work that allows implementation of user level device drivers in Linux. The user
level device drivers written using this framework present exactly the same interface
to the applications as a kernel driver and thus existing applications that use the
device can be run without any change, re-compilation or even re-linking. We have
also developed prototype user level device drivers for a parallel port line printer, a
floppy drive and a RAM disk to demonstrate the feasibility of our model. Experi-
ments show that these user level device drivers perform almost as efficiently as their

kernel counterparts.
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Chapter 1
Introduction

Device drivers are usually a part of the operating system kernel and have complex
interactions with the kernel. Therefore writing and debugging a device driver is a
very cumbersome task. In this thesis we present the design and implementation of
the Userdev framework that allows implementation of device drivers as user level
processes. User level device drivers are clearly easier to write than the kernel drivers
since understanding of the kernel internals is not necessary for developing a user
level driver. Debugging is also easier since standard debugging tools can be used

and a crash of the driver does not bring down the system.

The disadvantage of user level device drivers is clearly a loss in performance due
to overheads of context switching etc. However for a fast and performance critical
device, a user level driver can be used as a quickly built prototype that can be later
ported to the kernel. For a slow device, the slight loss in performance is likely to be

acceptable.

User level device drivers can also be useful for providing drivers for “pseudo-
devices” such as pseudo terminals in Linux. Another interesting use of user level
drivers is to implement transparent access to remote devices. In this case the device
driver would implement the client side of some remote device access protocol. It is

clearly not desirable to implement such protocols in the kernel.



The rest of the thesis is organized as follows. Chapter 2 mentions some of the
work related to this thesis. Chapter 3 provides some background about Linux device
interface and the structure of the kernel device driver. Chapter 4 describes the
architecture of the Userdev framework and provides details about the Userdev driver
and the Userdev library. Next, chapter 5 gives a brief description of the prototype
drivers that have been implemented. Chapter 6 discusses the performance of user

level device drivers built using our model. And finally chapter 7 concludes the thesis.



Chapter 2

Related Work

Many techniques have been used to extend the operating system functionality at
the user level. In particular, several user level file system implementation techniques
have been proposed. For example, the Ufo file system implementation [1] has a
catcher process that uses the Solaris /proc interface to intercept system calls made
by an application process. Another simple approach to modify the behavior of
system calls is to replace the standard dynamically linked libraries by newer versions.
This approach is used by the Jade [9] and Prospero |7] file systems. WebFS [11]
and Linux Userfs [2] both implement kernel extensions that allow part of the file
system functionality to be implemented at the user level. In both these systems, a
loadable kernel module implements a file system that, instead of implementing the
file operations itself, simply relays the file requests to a user level server process and

returns its reply to the application.

Most operating systems, including Linux [3] and Windows [6] allow device drivers
to be implemented as loadable modules. This allows support for new devices to be
added to the system at run-time. However the driver code still executes in the kernel
mode in this model and therefore the development and testing of a device driver is
still very difficult.

Sprite allows user level drivers for pseudo-devices by transparently mapping oper-

ations on a pseudo-device into a request-response exchange with a server process [12].



Sprite uses pseudo-devices to implement its terminal drivers, the internet protocol

suite and the X-11 window system server at the user level.

Reference [4] describes a proxy driver for Windows NT which relays device access
requests to a user level server. Our approach is similar to this and the Sprite
approach. However since Linux allows privileged processes to directly access device

controllers, we are able to implement user level drivers for physical devices as well.

The WinDriver driver development tool kit from Jungo [5] is a commercial product
that allows user level implementation of device drivers for both Windows and Linux.
In this system a device driver is written as a library that has to be linked with the
application programs. The toolkit has a kernel module that provides low level device
access facilities to such a driver. For efficiency, some of the critical driver code can
be moved to the kernel. The main drawback of this system is that the application
interface for accessing a device with a user level driver is completely different from
the usual interface for devices. Also the kernel code cannot interact with a device
that has a user level driver. Thus, for instance it is not possible to mount and use

a file system residing on a block device that has a user level driver.



Chapter 3
Linux Device Drivers

Under Linux, as in all other Unix variants, devices are classified as character and
block devices. Character devices handle data in the form of individual bytes whereas
block devices handle data in form of blocks. Each distinct device is identified using a
pair of numbers called the major and minor numbers. The major number represents
the class or type of the device while the minor number represents the instance of
the device within the class. In Linux we can have a total of 256 classes of devices
(major number) with each of them having upto 256 instances (minor numbers). All
devices with the same major number share the same driver code. As an example
Ip0, Ip1 and Ip2 are three devices representing the three parallel ports on a Linux
system. All of them have the same major number 6, and thus share the same driver

code (line printer driver), while the minor numbers are 0, 1, and 2 respectively.

Linux provides a file like interface for all devices. Each device is represented by a
node in the file system and can be accessed using the usual open, read, write, etc.,
system calls. In addition, an octl system call can be used with device files to control
the behavior of the device or of the device driver. An ioctl call takes a command
and optionally some data as arguments. Each device driver defines its set of ioctl

commands specific to the device.

A device driver in Linux has to implement a standard set of interface functions

that are called by the kernel file system code. From version 2.4 onwards of the



Linux kernel, this set of interface functions is different for character and block device
drivers. A character device driver has to implement functions to open and close the
device, read, write, perform ioctl, poll etc. A block device driver does not need
to implement functions to read or write the device. Instead it has to implement
a request function that handles both read and write requests. In addition a block
device driver also has some functions to check for change in media, re-validate the
media etc. A detailed description of Linux device drivers can be obtained in reference
[10].



Chapter 4
The Userdev Framework

The Userdev framework allows device drivers to be implemented at the user level.
Our primary goal for this framework was that the applications should be able to
use exactly the same interface for accessing a device with a user level device driver
as for accessing devices with the usual kernel resident drivers. This will ensure that
existing applications can continue to work without any modifications, re-compilation
or even relinking. Both character and block devices should be supported. Also it
should be easy to develop user level device drivers so that drivers for new devices

can be easily developed.

Figure 4.1 gives an overview of the Userdev framework. It consists of a generic
device independent kernel driver called the Userdev driver, and a Userdev library.
The Userdev driver implements the usual interface expected of a kernel device driver
and thus appears to the kernel as just another device driver. The Userdev driver
implements the interface for both character and block devices. In Linux there can
be upto 256 minor numbers for a specific major number. Thus the Userdev driver
can support user level device drivers for upto 256 block devices and 256 character

devices.

Actual device drivers are implemented in the Userdev framework as user level
processes. A driver process first registers itself with the Userdev driver specifying a

minor number that it will handle. A single process can register for multiple minor
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numbers. After this, the Userdev driver redirects all requests for any of these minor
numbers to the driver process by sending messages on a pipe. The driver process
handles the requests and returns the replies to the Userdev driver using another
pipe. The Userdev library hides the details of this message passing and exports a

simple interface so that driver development is easier.

In Linux, root processes can gain permission to directly access I/O controllers
using the ‘opl and the joperm system calls. This facility can be used to build user
level device drivers for actual hardware devices. In order to access memory mapped
devices, the existing /dev/mem device can be used. To avoid the overhead of system
calls to use /dev/mem, the appropriate region of this device can be mapped to the

address space of the driver process using the mmap system call.

The Userdev framework has been implemented for the Linux kernel version 2.4. In

the following two sections, we describe some implementation details of the Userdev



driver and the Userdev library.

4.1 The Userdev Driver

The Userdev driver is a generic redirection layer that passes requests for access to
devices to the user level drivers. The Userdev driver is a driver for both character
and block devices and thus implements the kernel interfaces required for both kinds
of drivers. The current implementation of the Userdev driver uses major number
248 for both character and block devices. A pair of unnamed pipes is used to
communicate with a user level driver process. Minor number 0 is treated as special
and 7octl calls on this minor number are used for driver registration and other down

calls from the user level drivers to the Userdev driver.

Any driver process first needs to register with the kernel Userdev driver before it
can obtain requests for access to the device. This operation is called as the attach
operation. Similarly when the driver process wants to stop accepting requests from
the kernel Userdev driver, it can unregister itself. This operation is called as the
detach operation. The driver process uses specific ioctl calls on minor number 0 of

the kernel Userdev driver for both these operations.

The information that the driver process needs to send to the kernel Userdev driver
during the attach operation includes: the file descriptors for the kernel driver to read
and write from, the name of the device file (thus indicating the minor number) for
which the process would accept requests, a list of ioctls that are supported, a function
mask indicating the interface functions supported by the driver and finally optional

data for specifying device configuration for block devices.

When a driver process calls ioctl on minor number 0 of the Userdev driver to
attach to a device, the Userdev driver checks if the minor number for which the
driver process wants to accept requests is free. Then it checks that the file descriptor
on which this ioctl call is being made is open for writing. That is, write permission

on the device file corresponding to minor number 0 of the Userdev driver is required



by a process to act as a user level driver. If these checks are passed, the Userdev
driver returns an id, termed as the Userdev id, to the driver process to identify the

driver process on subsequent ioctl calls to the Userdev driver.

When the driver process exits, it can detach itself from the Userdev driver again
using an ioctl call on minor 0. A check is made by the Userdev driver to make sure
that the detach call is from the same process that earlier attached to the device. The
implementation also automatically detaches a driver process that has terminated

without detaching itself.

Once a user level driver has attached itself to a minor number, any call to the
Userdev driver from the kernel for that minor number is assembled into a request
message and is sent to the driver process using the file descriptor specified at attach
time. The process that made the call sleeps in the kernel. When the reply is received
(on the second pipe), this process wakes up and returns from its call to the Userdev

driver.

Multiple processes can simultaneously try to access the same device. In this case,
the Userdev driver can send another request to the driver process without waiting
for the responses to the previous ones. The driver process is also permitted to send
replies in an order different from the order in which the requests were received.
This is done so that fast operations do not necessarily have to wait for previously
initiated slower operations to complete. In order that requests and replies can be
correlated with each other, each request message carries a unique request id and the

corresponding reply must also carry the same request id.

Each request and reply message consists of a fixed length header followed by a
variable sized data portion. The header contains the operation code, the request id,
and the size of the data part. The contents of the data part vary depending on the

operation. The list of messages and message formats can be found in Appendix A.
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The poll and fasync interface functions of the Userdev driver have to be treated
differently since these functions are expected to wakeup or signal respectively the
calling process whenever input or output is possible. To implement this functionality,
the driver process has to make an ioctl call on minor number 0 whenever I/0O is

possible and a poll or fasync request was previously received by it.

4.1.1 Support for Interrupts

Many I/O devices are interrupt driven. To enable implementation of drivers for
such devices at the user level, a mechanism to communicate interrupt occurrence
events to a user level process is required. Since Unix signals behave very much
like interrupts, it is natural to use signals for this communication. In the Userdev
framework, a driver process can request access to a certain interrupt by making an
ioctl call on minor 0 of the Userdev driver specifying the interrupt number and the
number of the signal that should be delivered to the process when the interrupt
occurs. The Userdev driver then installs its own interrupt handler for this interrupt.
This interrupt handler simply delivers the specified signal to the driver process.
The driver process can install a signal handler for this signal and do the processing

required for servicing the interrupt in the signal handler.

4.1.2 Support for Direct Memory Access:

Direct Memory Access (DMA) is used to speed up bulk data transfers between
devices and memory. Even though it is possible in Linux for a user level process
to directly program the DMA controller, this should not really be done since kernel
drivers for other devices may also use the DMA controller. Further some DMA
controllers can access only a limited range of the physical memory. For these reasons,
the DMA controller should only be programmed by the kernel code. To make the
DMA facility available to the user level device drivers, the Userdev driver implements
certain ioctl calls on minor number 0. These ioctl calls can be used by a driver
process to request for a given DMA channel, initiate a DMA operation, enquire

the status of an on-going DMA operation and free the DMA channel. The Userdev

11



driver allocates a DMA buffer when a DMA operation is initiated. This buffer is used
for the data transfer. In case of a read operation an additional ioctl on minor 0 is
needed to copy the data read from the device back to the driver process. The driver
process can get to know when to issue this ioctl call either through an interrupt

from the device or by enquiring the status of the DMA operation.

4.1.3 The Signal Message

If a process that is blocked while accessing a device receives a signal, typically the
operation is aborted and the process returns from the driver code with an error. To
achieve similar behavior in case of user level device drivers, the Userdev driver sends
a signal message to the driver process when a process waiting for reply to a request
receives a signal. The signal message essentially requests the driver process to abort
an ongoing operation. The request id corresponding to the operation to be aborted
is included as data in the signal message. The driver process, on receiving this
message, will usually abort the specified operation and send a reply for the aborted

request indicating an error condition. The signal message itself has no reply.

4.2 The Userdev Library

The Userdev library forms the other part of the framework for writing user level
device drivers. It hides the details of the protocol to be followed with the kernel
Userdev driver and thus reduces the effort in constructing a user level device driver.
The library not only takes care of the job of obtaining requests from the Userdev
driver but also provides wrapper functions for the user level driver to interact with

the kernel Userdev driver.

A user level device driver written using the Userdev library needs to implement
a set of interface functions that is similar to the set of functions that a kernel
driver implements. The userdev_start function of the library implements the main
loop of the driver. It essentially waits continuously for requests from the kernel

and on receiving a request message calls the appropriate function in the driver

12



code. This function is required to handle the request and send the response message
using the userdev_send_response function of the library. We decided to require the
driver code to explicitly send the response message since this allows the driver to
delay sending the response. Most drivers are expected to be multi-threaded so that

multiple requests can be handled concurrently.

The Userdev library also provides high level functions corresponding to the ioctl
calls available on minor number 0 of the Userdev driver. This includes functions
to attach to and detach from a minor number, to request notification of interrupts,
DMA related functions etc. The library also provides utility functions that many
drivers require. These include a microsecond delay loop, implementation of timer
queue, functions to access 1/O ports directly etc. The complete library interface is

given in Appendix B.

13



Chapter 5
Prototype Drivers

To demonstrate the feasibility of using the Userdev framework to develop user
level device drivers, we have developed three prototype drivers. These are drivers
for a parallel port printer, floppy disk drive, and RAM disk. The Linux kernel
already has drivers for all these three devices and we actually used the existing
kernel code for implementing the parallel port printer and the floppy disk drivers in
the Userdev framework. In this section we briefly describe the implementation of

these three user level device drivers.

5.1 Parallel Port Printer Driver

The kernel driver for the parallel port printer has a three layer architecture con-
sisting of the Ip driver module, the parport module and the parport pc module.
The Ip driver module implements the device driver interface while the actual work
is done by parport and parport pc modules. The parport module is a generic unit
that multiplexes various kernel drivers over low-level drivers which access the paral-
lel port hardware interface. The upper layer drivers, such as the lp driver, register
with the parport module that provides them the interface for accessing the device
while the actual operation is done by the low-level device specific drivers, such as the

parport _pc module, that register with the parport module. This architecture allows

14



multiple drivers to operate on a single device simultaneously with the contention be-
ing resolved using a resource claim-release mechanism followed by the upper layer

drivers to avoid interference with one another.

The user level implementation of the parallel port printer driver has a similar
architecture. Here the parport and parport pc modules are libraries. This allows

easy development of the drivers for other parallel port devices such as scanners.

Since the line printer is not usually accessed simultaneously by multiple processes,
the driver handles only one request at a time. It does not allow more than one process
to have the device open and thus enforces mutual exclusion. Similar to the kernel
implementation, our printer driver can use either polling or interrupt driven I/O,
based on a command line option. In the interrupt mode, if the driver detects missed

interrupts it automatically switches to polling mode.

The write operation of the printer driver is the only one that can block (in the
interrupt mode) or take a long time to complete (in polling mode). In order to abort
the write operation if a signal message is received, the write operation is executed
by an independent thread while the main thread goes back to waiting for requests.
All other operations complete quickly without blocking and are therefore executed
by the main thread itself.

5.2 RAM Disk Driver

A RAM disk driver is the simplest block device driver as the only operation in-
volved is copying bytes across the memory. A portion of the main memory allocated
by the driver is treated as a block device and operations are performed on it. The
user level RAM disk driver built using the Userdev framework has dummy functions
for most of the driver interface functions, that is they just return success, except
for ioctl and request functions. The ioctl function handles HDIO GETGEO and
BLKGETSIZE ioctl commands to return a fake disk geometry and device size re-

spectively. These are mandatory ioctls for any block device. The request function

15



translates the sector number present in the block device I/0O request into a memory
address from which the required number of bytes are copied to the transfer address
given in the request or vice-versa depending on whether the request is for reading

or writing data.

5.3 Floppy Disk Driver

The floppy disk driver is a complex multi-threaded block device driver. The kernel
floppy disk driver extensively uses kernel support utilities such as task queues and
kernel timers to delegate work to another thread, and to delay an operation for
a certain period of time respectively. The driver not only serves read and write
requests from the file system buffer cache, but also serves ioctl requests to change
the floppy drive parameters, to get or set the disk geometry, format a given track,

etc.

The user level floppy disk driver has been implemented by porting the kernel floppy
disk driver to the user space. The driver is written as a multi-threaded application
using the pthread user level thread package [8]. The kernel task queues and timers
used by the kernel driver are replaced by the corresponding user level libraries. In
order to implement the locking mechanism for serializing the access to the floppy
drive controller, thread synchronization mechanisms such as mutexes and condition
variables are used. Interrupts from the floppy drive controller are delegated to the
user level driver using the Userdev framework. All the driver interface functions
except release, can potentially block, so a separate thread is created for executing

each of them.

16



Chapter 6
Performance

In this section we describe the experiments conducted to measure the performance of
the prototype drivers and the Userdev framework. For the floppy drive and the RAM
disk drivers, the performance was compared with that of existing kernel drivers for
these devices. In addition, we performed an experiment to measure the maximum
interrupt rate that can be handled by a user level device driver. All experiments
were performed on a PC with a 233 MHz Pentium processor and 128 MB RAM.

The following sections describe the experiments and their results.

6.1 Performance of Floppy and RAM Disk Drivers

For both floppy disk and RAM disk drivers we measured the time taken to mount
a file system from the device, and the read and write data rates. These figures
were also measured for the existing kernel drivers for the floppy drive and the RAM
disk. The results are shown in Table 6.1 and Table 6.2 respectively. The results
show that the data rates of the user level floppy driver are only slightly lower than
those of the corresponding kernel driver. This is expected since the dominating
factor in read and write time is the device delay. The user level RAM disk driver
on the other hand performs significantly worse than the kernel RAM disk driver.
Again this is expected since in this case there is no physical device involved and the

penalty of extra data movement and context switching in case of the user level driver

17



is significant. However the RAM disk driver performance is really the worst case.
Most physical devices are orders of magnitude slower than the CPU and therefore the
penalties associated with a user level driver would be significantly lower in relative
terms for these devices. Surprisingly the mount time for the user level floppy driver is
lower than that for the kernel driver. This is a repeatable observation but currently

we cannot explain it.

‘ Parameter ‘ Kernel Space Driver ‘ User Space Driver ‘
Mount Time 1.75 sec 1.57 sec
Read Data Rate 5.74 KB/s 5.59 KB/s
Write Data Rate 7.46 KB/s 7.25 KB/s

Table 6.1: Performance comparison of user level and kernel level floppy disk drivers.
A FAT file system was used to measure the mount time.

‘ Parameter ‘ Kernel Space Driver ‘ User Space Driver ‘
Mount Time 1 msec 2.2 msec
Read Data Rate 2.57 MB/s 1.68 MB/s
Write Data Rate 2.57 MB/s 1.58 MB/s

Table 6.2: Performance comparison of user level and kernel level RAM disk drivers.
An Ext2 file system was used to measure the mount time.

6.2 Interrupt Rate

To measure the maximum interrupt rate that can be handled by a user level
driver, we short-circuited pins 9 and 10 of the parallel port interface. Pin 9 is the
most significant data bit and pin 10 is the acknowledgement bit. The parallel port
controller raises an interrupt whenever the acknowledgement bit falls to 0. We then
ran a process that repeatedly wrote a byte of data to the parallel port with the most
significant bit set to 0. The process directly accessed the parallel port controller to

do this and its rate of writing could be controlled. Thus we were able to generate

18



interrupts at any desired rate. We ran a dummy user level parallel port driver
whose interrupt handler simply incremented the number of interrupts received and

executed a delay loop to simulate interrupt processing.

Experiments showed that with a 20usec interrupt handling time, the dummy
driver was able to handle about 11,000 interrupts per second. This is greater than
the actual interrupt rate from most devices. For example, data transfers in units of
4 KB from a fully busy Ultra-2 SCSI disk with a bandwidth of 80 MBps and 50%

bandwidth utilization, would result in about 10,000 interrupts per second.
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Chapter 7
Conclusions

In this thesis, we have described the design and implementation of the Userdev
framework that allows device drivers to be implemented at the user level in Linux.
We have also implemented user level drivers for the parallel port printer, the floppy
drive and the RAM disk. Experiments show that the performance of user level
drivers is only slightly worse than that of kernel level drivers. For performance
critical devices, the Userdev framework can be used to quickly develop and test a
user level driver which can later be ported to the kernel. For slow devices, a user
level driver may be all that is ever required. The Userdev framework also allows
support for remote devices or “pseudo-devices” for which modifying the kernel may

not be appropriate.

Our future plans include gaining more experience with the Userdev framework
by writing more user level device drivers, including drivers to transparently access

remote terminals and scanners.

The current implementation of the Userdev framework and the prototype drivers

can be downloaded from http://www.cse.iitk.ac.in/users/deepak /userdev
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Appendix A

List of Userdev Protocol Messages

The protocol messages that are exchanged between the Userdev driver and the
driver process consist of a fixed length header field and a variable length data field.
The header field consists of:

e operation code: denoting the operation in question
e request id: shared by request and response messages for co-relation
e size of the data field to follow

The contents of the data field for various operations is given in the table below:

21



| Operation Request Packet | Response Packet
read - amount to be read - number of bytes read
- operation flags - data read from device
- position on device - new position on device
write - amount to be written - number of bytes written
- position on device - new position on device
- data to be written
- operation flags
poll - poll operation result
ioctl - ioctl command - result of operation
- ioctl data (SET) - ioctl data (GET)
- size of data - size of data
open - file open flags - result of operation
- mode of operation
flush - result of operation
close - result of operation
fsync - datasync flag - result of operation
fasync - result of operation

check media change

- result of operation

revalidate

- result of operation

transfer length
cluster size

- data being sent for write
- size of data being sent

mediactl - result of operation
readv same as read same as read
writev same as write same as write
signal - type of message
message - request id of pending request
- optional data
- size of data
request - command code - result of operation
function - sector number - size of data received

- data received for read

Table A.1: List of messages and their format
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Appendix B

Userdev Library Interface

The interface between the Userdev library and the user level device driver consists
of a set of functions known as Userdev operations that the device driver can imple-
ment to serve requests from the Userdev kernel driver. The library also provides
functions for interacting with the Userdev kernel driver and other utility routines

that many drivers require.

B.1 Userdev Operations

Userdev operations forms the set of functions of the user level device driver that
can be called by the Userdev library to serve requests from the Userdev kernel driver.
It is similar to the file operations structure of the kernel, used for communicating
the list of functions implemented by the kernel device driver to the rest of the kernel.
When the library obtains a packet from the Userdev kernel driver, it looks into the
Userdev operations set to check if the driver has implemented the corresponding

function, in which case the function is called passing the constituents of the packet.

The Userdev operations is represented by a structure consists of the pointers to
functions corresponding to each operation the Userdev kernel driver can request,
as shown below. The driver fills in each field of the structure with the name of

the function serving the request or NULL if the function has not implemented and
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communicates the structure to the library along with the call to userdev attach

library function.

struct userdev_operations

{

int devtype;

void (*read) (int id, unsigned int size, int flags, long long off,
int reqid);

void (*write) (int id, int len, long long off, charx data,
int flags, int reqid);

void (*poll) (int id, int reqid);

void (*ioctl) (int id, int command, void* data, int size,
int reqid);

void (*open) (int id, unsigned int flags, mode_t mode,
int reqid);

void (*flush) (int id, int reqid);

void (*close) (int id, int reqid);

void (*fsync) (int id, int datasync, int reqid);

void (*fasync) (int id, int reqid);

void (*check_media_change) (int id, int reqid);

void (*revalidate) (int id, int reqid);

void (*mediactl) (int id, int op, int optarg, int reqid);

void (*message) (int id, int type, int reqid, void *data,
int size);

void (*request) (int id, int command, long sector, int length,
int clustersize, void* data, int datasize, int reqid);

};

The arguments to the functions in the above structure correspond to the contents

of the data field of the corresponding request message, in addition to the Userdev
id (id) and request id (reqid).
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B.2 Library Routines

The various routines provided by the library to interact with the Userdev kernel

driver are:

B.2.1 userdev_attach

This function is called to attach a user level driver process to the Userdev kernel
driver. It takes the device filename to attach to, an array of ioctl data elements
specifying the list of allowed ioctl numbers and maximum length of data handled by
each, the number of ioctl data elements, a pointer to the driver’s Userdev operations
structure and an optional data parameter used for block devices. The Userdev
operations structure is stored in the library’s internal data structure, maintained for
each attached driver process, for use by other routines of the library. The function
returns the Userdev id of the driver process in case the attach operation had been

successful and an error number in case an error was encountered.

B.2.2 userdev_detach

This function is called to detach the driver process from Userdev kernel driver,
identifying it using the Userdev id given as the function argument. The result of

the detach operation is returned.

B.2.3 userdev inform poll in

This function is called to ask the Userdev kernel driver to inform the availability
of data to anybody polling the device for input data. The Userdev id, passed as
the function argument is used to identify the attached driver process. The value

returned by the function is the result of the operation.

B.2.4 userdev inform poll out

This function is called to ask the Userdev kernel driver to inform the availability

of the device for output to anybody polling the device for output. The Userdev id

25



passed as the function argument is used to identify the attached driver process. The

result of the operation is the return value of the function.

B.2.5 userdev_inform fasync io

This function is called to ask the Userdev kernel driver to inform the availability of
data to anyone using asynchronous I/O and waiting for some I1/O activity to take
place. The Userdev id is passed as the function for identifying the attached driver

process and the result of the operation is returned back to the caller of the function.

B.2.6 wuserdev_request irq

This function is called to request the Userdev kernel driver to inform about the
occurrence of interrupts on a given IRQ line using a signal. The arguments to the
function are the IRQ line number, the signal number corresponding to it, pointer to
the signal handler function and lastly the Userdev id of the attached driver process.

The result of the operation is returned back to the caller.

B.2.7 wuserdev_free irq

This function is used to ask the Userdev kernel driver to stop signalling the occur-
rence of an interrupt. The result of the operation is returned back to the caller. The
function also resets the signal disposition of the signal corresponding to an interrupt
on the IRQ line to the default value.

B.2.8 wuserdev_request dma

This function is used to request for a DMA channel from the kernel. The arguments
of the function are the DMA channel number and the Userdev id of the driver

process. The result of the operation is returned to the caller.
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B.2.9 userdev_free dma

This function is used to free the DMA channel acquired by the driver process to the
kernel resource pool. The argument passed to the function is the Userdev id of the

driver process. The result of the operation is returned to the caller.

B.2.10 userdev_start dma

This function is used to start a DMA operation on the DMA channel acquired by the
driver process. The arguments to the function are the mode of the DMA operation,
the data buffer, the data transfer length and of course the Userdev id to identify the

driver process. The return value of the function is the result of the operation.

B.2.11 userdev_check dma

This function is used to obtain the status of an ongoing DMA operation. The
Userdev id is passed as the function argument to identify the driver process and
the result of the operation, that is the number of bytes remaining in the transfer is

returned to the caller.

B.2.12 userdev_copy dma

This function is used to copy the contents of the kernel DMA buffer into the buffer
passed as the function argument. The Userdev id of the driver process forms the
other argument of the function. The function returns the result of the copy operation

obtained from the kernel.

B.2.13 userdev_enable dma

This function enables a DMA operation incase one has been suspended. The Userdev
id is passed as the function argument to identify the driver process sending the
request. The return value of the function is the result of the operation returned by

the kernel.
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B.2.14 userdev_disable dma

This function disables a DMA operation incase one is in progress. The Userdev id is
passed as the function argument to identify the driver process sending the request.

The return value of the function is the result of the operation returned by the kernel.

B.2.15 userdev_start

This function is the work horse function of the library and is called once all initial-
izations have been completed and the driver process is ready to serve requests from
the Userdev kernel driver. This function does not return to the caller unless an error
is encountered. It continuously obtains requests from the Userdev kernel driver and
calls the corresponding function of the Userdev operations structure specified during

the call to the userdev attach function.

B.2.16 userdev_send response

This function is used to send the response to a request, obtained from the Userdev
kernel driver, by the driver function that was called to serve the request. The
arguments of the function are the Userdev id of the driver process, the request id of
the request, the operation code, the result of the operation, the size of data to be

sent in the response and the data itself. The function has no return value.

B.2.17 Utility functions

The various utility functions that are provided by the Userdev library can be clas-

sified into following categories:

B Block Device Request Queue

Simulates the request queue mechanism for block devices where in a request queue
can be defined and block device requests can be enqueued and dequeued from it.

The functions available are:
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1. userdev_add_ request: function to add a request to the request queue given
the userdev id, command, starting sector number, transfer length, cluster size,
data to be transferred in case of read operation, the size of the data and the
request id. The function returns a pointer to a userdev_ blk_request structure

added to the request queue on success and NULL otherwise.

2. userdev_end_request: function to remove a request from the front of the re-
quest queue and to signal any threads waiting on the condition variable of the
request. The function argument is dummy and is used to keep the signature

similar to the kernel function.

3. userdev_blk_requestq cleanup: function to remove all the requests in the re-

quest queue.

m Signal List

Defines a list to store the signal messages that have arrived for various pending
requests and provides functions to add a message to the list, remove a message from
it and of course check if a signal message has arrived for a given request (identified

by the request id). The functions available are:

1. userdev_add_sig list: function to add an item with the given request id to

the signal list

2. userdev_del_sig list: function to remove all items in the signal list for the

given request id

3. userdev_check_sig_list: function to check if a signal message has arrived for
the given request id. The function returns 1 in case an item is found and 0

otherwise.

B Task Queue

Simulates the task queue mechanism of the kernel wherein a task queue can be
defined and tasks can be added to it which are executed by a task thread that runs

in parallel and repeatedly scans the task queue. The functions available are:

29



1. userdev_ queue_ task: function to add the given task to the given task queue.

2. userdev_run_ task_queue: function to create the task thread for the given
task queue and assign the given function as the initialization function of the
task thread.

3. userdev_task queue_ cleanup: function to set the stop flag of the given task

queue in order to stop the task thread from polling the task queue.

B Timer Queue

Simulates the kernel timer mechanism wherein a task can be added to the timer
queue specifying the time in jiffies at which it must be executed. A thread runs
through the timer queue which is sorted by task expiry time, and executes the tasks

as and when their timer expires. The functions available are:

1. userdev_add_ timer: function to add the given timer task to the timer queue

while keeping the queue sorted by the expiry times of the tasks.

2. userdev_del_timer: function to remove the given timer task from the timer
queue. The function returns 1 if the task was found in the timer queue and 0

otherwise.

3. userdev_mod_ timer: function to modify the expiry time of the given timer
task if it is present in the timer queue. The function returns 1 if the expiry

time of the timer task has been modified and 0 otherwise.

4. userdev_timer _pending: function to check if the given timer task is still to be
executed that is, it is still present in the timer queue. The function returns 1

if the timer task has been found and 0 otherwise.

5. userdev_get_jiffies: function that returns the current time in 100th of a second
since epoch. This function is used for specifying the expiry time of the timer
tasks.
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6. userdev_timer queue_ cleanup: function to set the timerq stop flag inorder

to stop the timer queue thread.

7. userdev_init_timer queue: function to initialize the timer queue, create a
timer queue thread, install a signal handler for the alarm signal used to keep
track of time when executing the tasks. The function argument is a pointer

to the initialization function to be executed when the timer thread begins.

B Microsecond Delay Loop

Provides the facility of busy waiting for a certain number of micro seconds. A loop
calibrated for number of iterations required to get a microsecond delay is used to

produce the required delay. The functions available are:

1. userdev_ calibrate delay: function to calibrate a loop to find the number of it-
erations required for a delay of 1 microsecond. This function needs to be called
before the userdev _udelay function can be used. The value of loops per wusec
cannot be determined ahead as it is dependent on the speed of operation of

the processor, the load on the system etc.

2. userdev_udelay: function to be called to obtain a delay of given number of

microseconds.

B I/O Address space

Simulates the kernel mechanism of registering I/O addresses so that two device
drivers do not simultaneously use a given address. The registration is recorded in
a file so that it is effective across process boundaries and can prevent two driver

processes from writing to the same I/O address space. The functions available are:

1. userdev_ check ioregion: function to check if the I/O address space, specified
by the given starting address and number of addresses is free. The function

returns 0 if the region is free and negative number otherwise.
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2. userdev_request_ioregion: function to reserve the I/O address space, specified
by the given starting address and number of addresses under the given device

name. The function returns 0 on success and a negative number otherwise.

3. userdev_release_ioregion: function to release the I/O address space, specified
by the given starting address and number of addresses. The function returns

0 on success and a negative number otherwise.

B 1/O port access

Provides functions for setting and resetting permissions on the given 1/O port and
also wrapper functions for each of the port access functions. The functions available

are:

1. userdev_set_ioperm: function to set the I/O permission for the current pro-
cess on the given port number. The function returns 0 on success and a

negative error number otherwise.

2. userdev_reset_ioperm: function to reset the I/O permission for the current
process on the given port number. The function returns 0 on success and a

negative error number otherwise.

3. userdev_inportb: function to read a byte from the specified port. The value

read is returned by the function.
4. userdev_outportb: function to write a byte to the specified port number.

5. userdev_inportw: function to read a word from the specified port. The value

read is returned by the function.
6. userdev_outportw: function to write a word to the specified port number.

7. userdev_inportd: function to read a double word from the specified port. The

value read is returned by the function.

8. wuserdev_outportd: function to write a double word to the specified port num-
ber.
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9. userdev_reset_all_perms: function to reset all the I/O permissions acquired

by the current process.
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