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Abstract

The design of modern embedded systems require automated modeling tools for
faster design and for the study of various design trade-offs. These tools put together
constitutes an integrated environment, where the designer can write the high level
design specification and the tools will automatically generate the required hardware
and software for the embedded system. Sim-nML is one of these types of specification
based development system, encircling which several tools have been developed earlier.

In this thesis, we have developed a high level synthesis system based on Sim-nML
processor ISA specification language. High level synthesis or behavioral synthesis
deals with the problem of transforming a behavioral specification of a digital system
to register-transfer level (RTL) implementation. Tools have been developed for behav-
ioral and structural high level synthesis. Behavioral high level synthesis transforms
Sim-nML specifications of processors to the corresponding behavioral Verilog mod-
els. These behavioral Verilog models are suitable for fast functional simulation using
standard Verilog simulators. Structural high level synthesis generates structural syn-
thesizable Verilog processor models from the corresponding Sim-nML specifications.
The structural model is suitable for both functional simulation and synthesis to low
level Verilog netlist. Architecture of the structural design is non-pipelined and takes
multiple clock cycles to execute an instruction. The generated behavioral and struc-
tural Verilog models are compliant with the current industry standard simulation and
synthesis tools.
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Chapter 1

Introduction

1.1 Overview

High level synthesis or behavioral synthesis deals with the problem of transforming a
behavioral specification of a digital system to register-transfer level (RTL) implemen-
tation. The behavioral specification of the digital system may be the system architec-
ture, or the algorithmic behavior of the system specified in some high level language.
As the Very Large Scale Integrated circuits (VLSI) technology is currently providing
space for multiple million gates of random logic per chip, it is getting difficult to
design such large circuits using traditional capture-and-simulate design methodology.
Also with the fast moving technology, time to market is one prime concern for the
design along with chip area, power and speed. To shorten the product development
cycle, newer describe-and-synthesize methodology is gaining more importance.

Describe-and-synthesize methodology [10] essentially moves design automation on
higher levels of abstraction which makes design cycle shorter and allows more design
alternatives to explore. The efficient synthesis tools can even out-perform average
human designers in meeting the design constraints. Synthesis process is similar to
compiling programs written in high level languages like C or Pascal to assembly
language. Each component in the generated lower level of abstraction translates to
components that provide a more detailed description of the system. Thus, each stage
in synthesis is a design refinement process.

Sim-nML [34] is a language that can be used to specify a programmable processor
at the level of its Instruction Set Architecture (ISA). The ISA specification of the pro-
cessor includes the assembly language syntax, binary image and semantic behavior
of the instructions . A resource usage model is currently under development, which
captures some of structural constructs of the processor including complex pipelining
etc. The Sim-nML processor specification is behavioral in nature. An integrated



development environment encircling the Sim-nML processor specification language
is in the process of development, which includes the generation of retargetable as-
semblers [25], disassemblers [21], compiler back-ends [33], functional simulators [4],
retargetable cache simulators [34], profilers [34] etc. In this thesis, a technique is devel-
oped to generate the structural and behavioral model of a programmable processor
in Verilog HDL from its Sim-nML specification. The structural model is suitable
for both synthesis and simulation. Similarly, the behavioral model is suitable for
fast simulation. As Sim-nML specifies a programmable processor at its ISA level,
the hardware generation methodology is suitable for Application Specific Instruction
Processor (ASIP) generation.

1.2 Goals Achieved

The goals achieved in the thesis are as follows.

e From Sim-nML specification, behavioral Verilog model of the processor is gen-
erated. The generated Verilog description is a collection of Verilog statements
suitable for fast functional simulation.

e A technique is developed to generate the structural synthesizable Verilog model
of processors from Sim-nML specifications to a particular target architecture.
The Verilog description can be synthesized to get the netlist of hardware struc-
tures.

1.3 High Level Synthesis

High Level Synthesis (HLS) is the transition from the algorithmic level specification
of behavior of a digital system to a Register-Transfer Level (RTL) structure that
implements the behavior. The input to HLS can be description of ISA or an algorithm
written in some high level language. The output from a HLS is a connection of data
path elements and a Finite State Machine (FSM) that implements the control path.
The RTL level data path for the processor is composed of three types of components
- functional units (e.g. ALUs, multipliers, and shifters), storage units (e.g. registers
and memories) and interconnection units (e.g. buses and multiplexors). The FSM of
the control path can be realized by a hardwired logic or by a microprogrammed control
unit. The control path triggers the appropriate data path elements in synchronization
with clock thereby implementing the functionality of the processor.



1.3.1 Input of High Level Synthesis System

The input description of a HLS can be behavioral specification of a digital system
written in Verilog, VHDL, C or any suitable procedural language, processor architec-
ture description languages like Sim-nML [34], LISA [50], MIMOLA [27], ISDL [14],
nML [9] or any other form. There are several other languages proposed for describing
hardware at varied level of abstractions, including some declarative languages and
some higher level of system level behavioral languages. Examples of these languages
include SystemC [45] and Esterel [48].

1.3.2 High Level Synthesis Stages

The HLS is typically carried out in five stages - compilation, transformation, schedul-
ing, resource allocation and binding.

8 Input Description Compilation

The input behavioral description is compiled into an internal representation suitable
for several high level transformations and optimizations employed in the subsequent
HLS stages. The most used internal format is graph based representation where the
data and control flow of the input (assuming procedural style of description) is stored,
preserving the dependency and sequentiality of the input. The representation can be
made in Data Flow Graph (DFG) or in Control Flow Graph (CFG) or in combined
Control-Data Flow Graph (CDFG). Other intermediate representations include petri
net and extensions of petri net[49] etc.

g8 Transformation of Internal Representation

The transformation phase is one of the important stages, in which several optimiza-
tions are performed on the given input. The hardware performs operations in parallel.
If the behavioral specification do not express the parallelism, it should be extracted
from the specification. The objective of transformation is generally to minimize the
silicon area of the generated chip and maximize the speed. Some other objectives
could also be to optimize transformations for testability, low power consumption and
reliability. The transformations are similar to the regular compiler optimizations
along with some hardware specific optimizations. The general transformations in-
clude the following.

e Temporary Variable Elimination : For ease of description, the input be-
havioral description contains several temporary variables. These variables result
in hardware registers, which would mean that the resultant hardware occupies



extra area. To be noted that, all temporary variables can’t be removed due to
underlying architectural constraints as explained in the later chapters.

e Common Subexpression Elimination : The parts of the code that are
repeated are factored out. Thus, the hardware operations are needed to be
performed only once, which reduces area. However, this transformation can
reduce the speed of operation because otherwise the operations can be done in
parallel with additional resources.

e Dead Code elimination : Removing dead code, i.e. code that serves no
computational purpose, thus resulting in reduction of unnecessary hardware.

e Expression Simplification : Expressions are evaluated so that the operations
may be done in a smaller number of steps. This transformation is done in
compliance to the underlying architecture.

e Constant Propagation : If some value of constant is known then the values
can be used to simplify the flow of the description, there by reducing the number
of operations.

e Loop Unrolling : This is an important transformation, as hardware structure
can’t support loop directly. For input languages that support loops !, the loop
body can be replicated and if possible, some optimizations can be performed in
the unrolled loop.

e Hardware Specific Transformations : These are optimizations not com-
monly used in compilers. These are however necessary in the hardware designs.
One such optimization is to change the description such that it uses functions,
which may be performed directly by the hardware. An example is given below.
The expression 0.3333 + 2.6664*X could be simplified to 0.33%(1 + 8*X). In
the simplified case, the multiplication by eight can be done by shift and the
addition of one can be done using an increment.

As described above all the transformations are not target architecture indepen-
dent. For example if the target architecture does not support multiply and accumu-
late as a functional unit then the multiply and accumulate operations must be divided
in two sub operations, incorporating a temporary variable to hold the intermediate
value. Contrary to this if the target architecture supports multiply and accumulate
functional unit, there is no need to incorporate temporary variables to hold these
values.

'In our high level synthesis Sim-nML language does not support loop construct



B Scheduling

Scheduling assigns the operations in behavioral description into control steps. A con-
trol step usually corresponds to a cycle in the system clock, the basic time unit of
the synchronous digital systems. The scheduling is constrained by the user according
to the available resources or the maximum delay (i.e the speed of the digital system)
or both. If no constraints are specified then it is possible to get the fastest hard-
ware implementation exploiting maximum parallelism and using as many numbers
of functional, storage and interconnection units. Such an implementation however
requires the maximum area with the constraints it would have been possible to gen-
erate hardware with small area, using minimum number of functional, storage and/or
interconnection units. The hardware implementation in this way may or may not
have any parallelism in the operations. The generated hardware may or may not be
the minimum area implementation, depending upon the area ratio of the functional
and interconnection units.

In scheduling the total number of control steps necessary, is dependent on the
constraints. If higher speed is required, less number of control steps are used and
more operations are scheduled in each control step. This results in large functional
units and silicon area of the hardware. If less area in the resultant hardware is
required then less number of functional units are available in the generated hardware.
Thus, less numbers of operations are performed in each control steps and low speed
hardware is generated. In this way, scheduling determines the tread off between
the design cost and performance. One important thing to remember that all the
pre-defined scheduling constraints in HLS may not satisfied in scheduling stages due
the architectural properties, available hardware components (will be allocated in next
stage) etc. In that case user has to provide new set of constraints or objective function
in the HLS and has to perform scheduling again to check the suitability of output
with the objective function.

There are several approaches to solve all or particular class of scheduling prob-
lems in HLS. In general, Integer Linear Programming (ILP) formulation is correct
for resource-constrained and time-constrained scheduling problems [20]. But as op-
timum scheduling problems are NP complete, the execution time of algorithms grow
exponentially with the number of variables and number of inequalities in the for-
mulated ILP. Thus for large practical problems heuristics have been developed that
run efficiently maintaining the scheduling goals. Heuristic scheduling algorithms are
of two classes - constructive approach and iterative refinement approach. There are
several algorithms of each classes, where each of them differs in the input criteria
and the next heuristic stage selection. The simplest constructive approach is the As
Soon As Possible (ASAP) or eager scheduling. First the operations are stored in a
list according to their topological order. Then operations are taken from the list one
at a time and placed in the earliest possible control step. Similar to this another
constructive heuristic approach is As Last As Possible (ALAP) or lazy scheduling. In



this scheduling, the operations are stored in the list, but scheduler tries to schedule
the operation at the latest control stage. To make the hardware faster the delay in
the critical path (the longest path in terms of control steps) is to be minimized. ASAP
and ALAP scheduling scheme do not consider the critical path in choosing the next
step. List scheduling which is another constructive approach solves the critical path
problem by keeping a list of each operation that has not yet been selected at each of
the control step. The list ordering is maintained by a priority function, which forms
the global scheduling criteria. The priority function in the list scheduling can be cho-
sen in several ways. Some examples of choosing priority functions are mobility [31],
which is defined as the difference between the ASAP and ALAP scheduled values of
an operation. Another example of priority function is urgency [11], which is defined
as the minimum number of control steps from the bottom at which an operation can
be scheduled before the timing constraint is violated etc. There are other examples
of scheduling such as Force Directed Scheduling (FDS) etc.

8 Resource Allocation and Binding

After scheduling, the next operation is to allocate resources from the component
database. The allocation is done according to the scheduling while maintaining the
scheduling order and preserving the constraints. The component database library
may contain several types of functional units with different area, speed, power con-
sumption, architectural variations such as pipelining or non-pipelining, storage units
with different area, speed, power consumption and interconnection units. Resource
allocator searches the component database and allocates suitable resource from it.
The resource binding is final assignment of hardware resources to the scheduled op-
erations, from the allocated set of resource. At this level variables are assigned to
storage units. During this, variable lifetime is analyzed and resource binding is done.
In optimized allocation and binding two variables may share the same storage re-
source if they are not accessed or altered in the same control step, i.e. , the variables
are mutually exclusive. Operations are assigned to allocated functional units. Each
functional unit can only execute one operation in one control step. Interconnection
binding binds interconnections between storage and functional units. Typical inter-
connection units used are buses and multiplexers.

1.4 ASIC/ASIP Design Flow

The design of an Application Specific Integrated Circuit (ASIC) or Application Spe-
cific Instruction Processor (ASIP) starts from the behavioral description of the digital
system, which includes the algorithm for the ASIC or the instruction set architecture
of the ASIP. Our HLS methodology is suitable for the ASIP generation. In our



methodology, the instruction set of the ASIP can be specified in Sim-nML language.
The broad stages in the ASIC/ASIP design flow include the followings.

Behavioral Specification : The behavior of the digital system is described
in a suitable language.

High Level Synthesis : Transformation of behavior to suitable hardware
architecture while performing Design Space Exploration (DSE). In HLS, there
can be one or multiple target architectures in which the input behaviors can be
targeted to generate the structure. This is also known as behavioral synthesis.

Simulation of HLS Generated RTL Netlist : The HLS generated netlist
is simulated to verify the functional correctness for several test cases.

Logic Synthesis : This is the next stage of synthesis where the architecture is
more elaborated and several logic synthesis optimizations are performed. The
design is finally mapped to a particular technology library provided by the
semiconductor vendor. The output gives accurate measures of area, speed,
power requirements etc.

Static Timing Analysis : This is performed after inserting clock tree and
clock buffers. The accurate timing analysis is done to verify the timing require-
ments.

Simulation of RTL Netlist : The netlist is simulated after the logic synthe-
sis to verify the functional equivalence with the high level synthesis generated
netlist.

Floorplanning, Place & Route : The chip floorplan is designed and chip
modules are placed with proper routing, maintaining the timing and other func-
tional constraints. Chip input/output guard rings etc. are also prepared for
external interfacing.

Masking and Prototyping : From the place & route data, layout masks are
prepared and the chip is taped out.

Each of the above mentioned stages are collections of several sub-stages and each
of them are quite complex in nature. Our methodology of ASIP generation is im-
portant as this can be extended to suitable co-design methodology of both hardware
and software generation. This infers, from the instruction set description in Sim-nML,
several system software can be automatically generated. For ASIP development there
are methodologies to automatically generate ISA after analyzing the particular ap-
plication domain requirements [6] [12]. These methodologies can be integrated with
our Sim-nML based methodologies for rapid co-design of ASIP and related software
developments.



1.5 Organization of The Thesis

Organization of the rest of the thesis is as follows. A survey of the related researches
in this problem area is provided in Chapter 2. The design of our hardware generation
system is given in Chapter 3 and the implementation is discussed in Chapter 4. Finally
results of the work are shown in Chapter 5 where we have also drawn the conclusion.

The setup of Synopsys Design Compiler environment is provided in Appendiz A.
Appendiz B gives the example of the structural data path of a hypothetical processor.
Appendiz C gives a section of behavioral synthesis generated Verilog code of Motorola
68HC11 processor. Appendix D gives an example of the simulation top-level module.



Chapter 2

Related Works

2.1 Introduction

Several research projects have been carried out in the area of High Level Synthesis
(HLS) in the past and several projects are ongoing. While all HLS systems generate
the hardware from high level specifications, the objective of two different projects
may be different. Some projects aim at the minimization of area, while some other
aim at the maximization of speed or minimization of power or a mix of these.

In this chapter, the research projects in HLS are broadly distinguished in two
groups, based on the types of input specifications. The first group comprises of HLS
systems that synthesize the hardware from specifications of Instruction Set Architec-
ture (ISA) of a programmable processor. The second group comprises of the HLS
systems that synthesize the hardware from algorithmic specifications of a digital sys-
tem. Our approach of HLS from Sim-nML processor specifications falls in the first
group. The Sim-nML processor specifications are also suitable for generating other
system software as mentioned in Chapter 1.

ASIC generation from the algorithmic specifications of functionality falls in the
second group. The second approach is capable of synthesizing ASICs, ASIPs, DSPs
and general purpose processors. In that sense, the second approach supports a broad
range of digital system HLS. However, it is not suitable for generating system software
etc. from the input specifications. Thus, this approach can not provide an integrated
methodology like the first one.



2.2 High Level Synthesis from Processor ISA Spec-
ifications

Some of the HLS systems that take processor ISA specifications as input are described
below.

MIMOLA [27] hardware specification language, developed at University of Dort-
mund, Germany can be used to write structural specifications of a programmable
processor at low level, exposing several hardware details. Hardware is then synthe-
sized from MIMOLA specifications. MIMOLA being a low level specification, the
hardware generation method is easier. MSS [28] is a MIMOLA based hardware syn-
thesis system that can also take behavioral VHDL specifications as input.

ISDL [14], developed at MIT LCS is another programmable processor instruction
set architecture specification language, which describes the behavior of a processor
in attribute grammar notation. The language is suitable for general purpose pro-
grammable processor, but special emphasis has been given for VLIW architecture
based processor specifications. In ISDL, the parallelism is explicitly specified using
illegal instruction grouping and it is used for the generation of the parallel hardware.
A synthesis tool HGEN has been developed that generates synthesizable Verilog for
the underlying VLIW architecture from ISDL specifications.

nML [9] processor instruction set specification language, developed at TU Berlin
has been used for hardware generation [8]. From the attribute grammar based rep-
resentation, hardware elements have been generated. The nML language is similar
to the Sim-nML, but the design of the system to generate hardware is very different
from our work. In our work we have produced the intermediate flattened Sim-nML
description and mapped it to fixed data path architecture. In nML the hardware
modules ‘HME’s and ‘HMC'’s are generated from the non flattened representation of
the processor specifications.

LISA [50] processor specification language, developed at Aachen University of
Technology, Germany is used to specify programmable processors. The processor
specifications capture the instruction behavior along with several structural informa-
tion, like pipelining etc. Structural information is specified using reservation tables
and used in the hardware synthesis. VHDL hardware models have been synthesized
from LISA for four stage pipelined ICORE architecture.

There are many other languages to specify processor instruction set architectures,
like SLED [35], EXPRESSION [15] etc. Till date, no work has been published on
HLS from these languages.
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2.3 Other High Level Synthesis Systems

There are other types of high level synthesis systems that take behavioral description
of a hardware (programmable or non-programmable) in some description language
and generate hardware models. The HLS systems perform several types of optimiza-
tions and generate structural hardware netlist according to the objective function.
Some of these types of high level synthesis systems are described below.

CMUDA [41], developed at Carnegie-Mellon University takes the description writ-
ten in ISPS [1] language and generates hardware from it. The System Architect’s
Workbench [39] is a later extension of the CMUDA HLS system.

IMPACT [23], developed at Princeton University is a high level synthesis system
specially designed for minimizing power consumption in control flow intensive circuits.

TRS [18], developed at MIT LCS describes hardware at micro-architecture level.
TARC, Term Rewriting Architecture Compiler takes concurrent TRS specifications
and generates synthesizable Verilog code.

Bedrock [26], developed at University of Cornell takes input behavioral specifi-
cations in a language similar to Pascal and generates FPGA synthesizable hardware
model. The input specification language is named HardwarePal.

MAHA [32], developed at University of Southern California is a data path alloca-
tion system, which uses the critical path information for hardware synthesis. Several
heuristics are developed to get the optimized solutions.

Olympus [5], developed at Stanford University uses HardwareC, a C like hardware
specification language for the design specifications. The synthesis system has two
toolsets, Hercules and Hebe. Hercules takes HardwareC input and passes result to
Hebe, for scheduling and binding.

SPARK [47], under development at University of California, Irvine uses paralleliz-
ing compiler techniques to synthesize behavioral ANSI-C functionality specifications
to generate synthesizable register-transfer level VHDL code.

CATHEDRAL-IITI [37], developed at IMEC and ESAT, Belgium is a HLS tool for
high throughput DSP applications. The input specifications are written in SILAGE
and the system generates both behavioral and structural synthesizable hardware mod-
els.

MMAlpha [7], developed at Irisa, France is a HLS tool used for synthesizing
hardware for regular architectures like systolic arrays, from Alpha language processor
specification. Alpha is a functional language for describing regular algorithms at
behavioral level.

AMICAL [22], developed at TIMA Laboratory, France is a VHDL behavioral
synthesis system that reads VHDL behavioral specifications and generates VHDL
output.

11



CADDY-II [13], developed at FZI Research Center, University of Karlsruhe Ger-
many is a high level synthesis system that takes behavioral description in VHDL
or DSL and generates structural VHDL netlist. It supports different architectural
alternatives like multiplexers and buses, single phase or two phase clock etc.

BSS [19], developed at Technical University of Braunschweig, Germany takes be-
havioral description written in C as input and generates synthesizable Verilog netlist.
The tool is a part of COSYMA hardware-software co-design tool.

NESCIO [17] and NEAT [16], developed at Eindhoven University of Technology,
Netherlands provides a framework for high level synthesis. NEAT is an object oriented
high level synthesis interface and it is used by NESCIO HLS system.

CAMAD [49], developed at Linkoping University, Sweden is a HLS system that
takes behavioral specifications written in Pascal like ADDL language, convert them
to internal petri net structures and generate VHDL RTL netlist.

Rodin [46], developed at AITEC, Japan takes LSI behavioral specifications as
input and generates logical circuits at RT level.

PICO-N system [36], developed at HP Labs automatically synthesizes embed-
ded non-programmable accelerators from the nested loops described in C. The loops,
which are the most time consuming part of program execution are converted to syn-
thesizable VHDL RTL level structure. The output is synthesized as co-processor.
The underlying architecture of the PICO-N HLS system is VLIW in nature.

DAA [24], developed at AT & T Bell Labs takes an expert system based approach
to synthesize data path of general purpose processors. Other high level synthesis
systems developed at AT & T Bell Labs are BRIDGE [40], BECOME [43], Cherm
[44] and CONES [38].

Phideo [29], acronym for PHIlips viDEO compiler is developed at Philips research
center for high-throughput digital applications, specially for video processing. It gen-
erates parallel architectures from the behavioral specifications of the digital systems.

CALLAS [3], developed at Siemens, Germany is a behavioral and logic synthesis
tool.

Cyber [42], developed at NEC research lab is a high level synthesis tool that takes
the specifications written in C as its input.

12



Chapter 3

Design of the High Level Synthesis
System

3.1 Introduction

In this thesis work, the high level synthesis system is developed that generates both
behavioral and structural HDL models of processors from Sim-nML processor speci-
fications. The outputs are Verilog processor models, in which the behavioral models
are suitable for fast functional simulation and the structural models are suitable for
both functional simulation and hardware synthesis. The generated Verilog struc-
tural descriptions are fully compliant with Synopsys Inc.’s industry standard Design
Compiler synthesis tool [2].

Front-End of High
Level Synthesis

i
! l

Back-End of Behaviorial Back-End of Structural
High Level Synthesis High Level Synthesis

Figure 3.1: Overall Design of High Level Synthesis System
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The overall design of the high level synthesis system (figure 3.1) consists of two
parts, the front-end and the back-end. The front-end is same in both behavioral and
structural high level synthesis systems. The back-end for the structural synthesis is
more complex than the back-end for the behavioral synthesis system.

3.2 Design of the Front-end of High Level Synthe-
sis System

The design of the front-end of the high level synthesis system is shown in the figure
3.2. It takes the Sim-nML processor specifications as input and produces their

Sim-nML Description

IR Generato

Intermediate Representation (IR)

IR Flattener

Flattened IR

Figure 3.2: Front End of High Level Sysnthesis

flattened representation. In the first step, input Sim-nML processor specifications are
converted to binary intermediate representations (IR) by an existing tool called ‘irg’
[34]. IR is suitable for subsequent analysis such as flattening etc. Sim-nML specifies
programmable processors in attribute grammar form, where the information of each
machine level instruction is fragmented over an attribute grammar specification tree.
The root node of the tree is named ‘instruction’. To get information about a particular
instruction of the processor, the path from the root node to the corresponding leaf
node is traversed, with proper parameter substitution at all levels. While flattening
the internal representation, all such paths from root to the various leaf nodes are
traversed and information about all possible machine instructions is obtained.
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3.3 Design of the Back-end of Behavioral High
Level Synthesis System

The design of the back-end of the behavioral high level synthesis system is shown
in the figure 3.3. The back-end for behavioral synthesis system employs no opti-

Sim-nML to Verilog
Translation

Top Level Simulation
Module Generation

Figure 3.3: Behavioral Design Back-End

mizations for the input specifications. The back-end of behavioral synthesis system
takes the flattened IR as input and for each machine instruction action, generates
the Verilog behavioral processor model. The Verilog model is obtained as a simple
translation from the IR. After generation of processor Verilog functional model, a top
level simulation module is generated to facilitate the functional simulation process.

3.4 Design of the Back-end of Structural High Level
Synthesis System

3.4.1 Overview of the Back-end Design

The design flow of the back-end of our structural high level synthesis system is shown
in the figure 3.4. It has four major steps, optimizations of the flattened intermediate
representations; scheduling of the optimized specifications; resource allocation and in-
terconnection of resources; and control path generation. The data path is generated
in scheduling and resource allocation steps. In the first step, optimizations are per-
formed to improve the quality of the design (area minimization, speed enhancement
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Figure 3.4: Back-End Design Flow

etc.), while maintaining the functionality or the semantic meaning of the Sim-nML
processor specifications.

In the second step, the operations used in the optimized specifications are sched-
uled into control steps. Scheduling is performed under several constraints (like the
types of resources available, maximum numbers of resources of each types, resource
architectures, speed and power consumption of the generated hardware etc.) keeping
one or multi-objective scheduling goal. In our implementation, the single objective
chosen for optimization is area minimization.

After scheduling, the hardware resources are allocated. This step instantiates
the hardware modules according to the scheduling. The scheduling and resource
allocation are both architecture specific and are performed with a target architecture
in mind. The target architecture for our approach is shown in the figure 3.5. It is a
non-pipelined architecture, which takes multiple clock cycles to execute an instruction.
The architectural features put extra constraints in the process of scheduling, resource
allocation and interconnection of resource. For example, the number of ports on a
register file will determine how many arguments can be read for an instruction at
the same time. After instantiating the data path elements, interconnection elements
including the multiplexers, de-multiplexers and wires are instantiated.

After generation of data path by means of scheduling and resource allocation, the

16



I
|
I
I
I
I
I
I
I
| I
| I
| |
I
| |
| Execution !
I
I
: FU1 !
I
} Decode and :
L External L Fetch N Register N N N _| Write Back | _
Memory ! Unit Storage Fu2 Unit }
! Unit }
I
FU3 !
| |
! ‘ Unit |
| I
| I
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
: Data ———* :
jControI—>y T T
! Signal ‘ l FU := Function Unit |

/

Figure 3.5: Processor Block Diagram

controller is generated. The controller generates control signals for the data path
elements as per the decoded instructions and the schedule of the instructions.

The back-end of structural high level synthesis is parameterized. Some of the
parameters that are used are the width of the input output ports of the functional
and storage units; and corresponding wire widths. The parameters are specified using
Verilog ‘parameter’ construction.

3.4.2 Processor Architecture of the Structural Design

The synthesized processor model is expected to work with an external memory. The
overall system block diagram is shown in the figure 3.6. Processor sends address and
read /write control signal to memory and the data is exchanged between memory and
processor. The processor contains data path and control path elements. The data
path elements execute the instructions under the control of the signals generated by
the control path elements. Control signals are generated according to the decoded
instructions and the corresponding instruction scheduling (figure 3.6).
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The different units of the architecture as shown in the figure 3.5 are, fetch unit;
decode and register storage unit; execution unit and write-back unit. Fetch unit gets
data and instructions from the memory. The write-back unit writes the data back
into the memory and registers, after completion of execution in the execution unit.
Decode and register storage unit, decodes the instructions and put operands to the
execution unit from registers. Execution unit is a collection of several functional units
as shown in the figure 3.5.

The target architecture of our design is simpler than pipelined architectures. This
architecture is selected to show the feasibility of high level synthesis from Sim-nML
specifications. Our aim was not to generate the architecture for efficiency but just to
show the feasibility of the synthesis from Sim-nML specifications. More advanced high
level synthesis systems can support one or more complex architectures from where
the user can select the architecture of his choice. Further there can be advanced
incremental ‘design space exploration’ approaches in which the design is transformed
automatically to one of the several alternative architectures to meet the desired ob-
jectives.

3.4.3 Optimizations of the Flattened Intermediate Represen-
tations

The Sim-nML specifications for a processor can be written in an unoptimized way,
which makes the specification writing easier and elegant looking. It is necessary to
optimize the specifications for area minimization and speed maximization. The opti-
mizations on the flattened input are similar to the ones used by the compilers. The
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optimizations that are suitable for synthesizing hardware are for example, temporary
variable elimination, dead code elimination, common-subexpression elimination, ex-
pression simplification, constant propagation and some hardware-specific transforma-
tions etc. In our implementation, we perform only the temporary variable elimination
and the dead code removal arising because of temporary variable elimination.

e Temporary Variable Elimination : Temporary variables used in Sim-nML
specifications are defined using ‘var’ data types. There are other types of vari-
ables in Sim-nML like ‘reg” and ‘mem’ that specify registers and (external or
internal) memory in the processor. The ‘var’ data types do not correspond to
any physical storage units. Systematic optimizations performed around these
temporary variables do not destroy the semantics of the instruction specifica-
tions. As the two other data types corresponds to physical storage units, removal
of any definition of these variables through optimizations can violate the overall
processor ISA semantics. The removal of temporary variables eliminates the
need of the storage registers. However, some temporary variables can not be
removed from the design automatically. These remaining temporary variables
are instantiated as temporary registers, keeping the functional consistency of
the specifications.

e Dead Code Elimination : The dead code, i.e the code that serves no compu-
tational purpose is eliminated. Only the dead codes that modify the ‘war’ type
temporary variables are removed. This is because, for ‘reg’ and ‘mem’ data
types, the seemingly dead code for one instruction can have semantic meaning
associated with some other instructions.

3.4.4 Scheduling of the Optimized Instructions

The optimized instructions require a series of operations to be performed. Depending
upon the dependency, these operations are scheduled one after another in time. Fur-
ther depending upon the availability of the resources, some of these operations may
be done in parallel.

B Scheduling Constraints

e Architecture of the Processor : The non-pipelined multi-cycle architecture
of the processor permits only one instruction to be executed at a time. After
optimization, one instruction of the processor can use one or multiple functional
units to execute the instruction. For each instruction, accesses to multiple
functional units are performed in non-pipelined manner.

19



e Number of Functional Units : Generally in a processor, one or more than
one functional units of the corresponding type are available. However, in our
implementation, only one functional unit of any type is instantiated. This con-
straint is added to minimize area, which is kept as a scheduling goal. Thus if a
Sitm-nML specification contains a maximum of 10 additions over all instructions,
only one adder will be instantiated in the design.

e Number of Data Port Resources : Similar to the most real designs, the
storage units (registers, register files and memory) have one input data port,
one output data port and one multiplexed read/write address port. Thus in
one clock cycle either one read or one write operation can be performed in the
storage units. The functional units in our implementation contain two input
data ports and one output data port. In addition, the functional units are
encapsulated inside one execution unit. The input and output data ports of
the functional units are mapped to the input and output ports of the execution
unit respectively. Thus in a clock cycle only the ports corresponding to one
functional unit are available.

e Types of Functional Units : In our implementation, one functional unit can
perform only one type of operation. Thus, no shared functional units like ‘adder-
subtractor’, ‘multiplier-adder’ etc. are instantiated. This makes one to one
correspondence between the operations and functional units in the scheduling.

B Scheduling Goal

e Minimization of Processor Area : The primary goal for our work in high
level structural synthesis is to minimize area. A simple rule to achieve this is
to minimize the number of each types of functional unit instantiated. However
because of the minimization of functional units there is a need of extra multi-
plexers or multiplexers with large number of inputs. It may increase the overall
size of the processor.

To generate scheduled operation sequences of every instruction, the instruction
actions are converted to a sequence of three address operations. The three address
form is like ‘A = B + (", which reads from the storage units B and C, performs
operation addition and writes back in the storage unit A. In our design, this three
address form takes four clock cycles to complete the execution. Two cycles are needed
to read from the storage units, one clock cycle to perform the operation and one clock
cycle to write back in the storage unit.

We have shown some scheduling examples in the figure 3.7. The example in the
figure 3.7A shows execution of one three address operation R3 = R1 + R2 in four
cycles. The reduction of clock cycle requirement to three clock cycles is shown in
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Figure 3.7: Scheduling Example Diagram

the figure 3.7B. If R1 and R2 are in a single register file, with only one read port,
then scheduling can not be performed in this way. In a more conservative way, we
have chosen scheduling of operations similar to one shown in the figure 3.7A. The
scheduling of two three address code operations are shown in the figure 3.7C. It takes
eight cycles to complete.

An example of the scheduling is given below. Here an expression involving four
operand is first converted into two three address operations. A schedule of eight clock
cycles is then drawn as shown in the example.
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Sim-nML Instruction Action

A=B+C=*D
Three Address Code
T=C=x*xD

A=B+T

Scheduled Operations

Clock1 Read C

Clock2 Read D

Clock3 Multiply C, D
Clock4 Write T
Clockb Read T

Clock6 Read B

Clock7 Add B, T
Clock8 Write A

Our scheduling is conservative and does not employ hardware parallelism. Thus
there is a lot of scope for improvement in this approach. In this scheduling step, new
temporary variables are generated because of translation to the three address code.

3.4.5 Resource Allocation and Interconnection Generation

After scheduling, all operations are mapped to functional units and all operands are
mapped to storage units in the hardware model. During instantiation of the resources,
there can be architectural variations in the instantiated units. For example, an adder
can be carry look ahead adder or ripple carry adder based on the scheduling goal. As
the functional and storage unit resources are shared across the instructions, these re-
sources have multiple sources and destinations. From amongst these multiple sources,
one is selected, depending upon the instruction and the clock cycle. For this multi-
plexers are used with appropriate controls. Similarly for the multiple destinations,
appropriate de-multiplexers are instantiated.
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3.4.6 Control Path Generation

After designing the data path, control path elements are instantiated to design the
controller. Sequences of control signals are specific to the instructions as per the op-
erations within the instruction and the scheduling of these operations. An instruction
decoding unit is needed that decodes the instructions from its binary pattern. The
control signals are then generated according to the scheduling of the operations in the
corresponding instruction. To generate control signal for a scheduled ‘three address’
operation, two read; one operation selection and one write control signals are gener-
ated sequentially. Total number of clock cycles needed to execute an instruction is
the sum of the clock cycles needed to perform all scheduled three address operations.

In our implementation, the control path is not synthesized completely. Some part
of the control path design is manually added after the synthesis.
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Chapter 4

Implementation of High Level
Synthesis System

4.1 Introduction

The high level synthesis system is implemented in C that runs on the Linux platforms.
The tool takes Stm-nML processor specifications in intermediate format and generates
behavioral and/or structural Verilog description of the programmable processor.

4.2 Implementation of Front-end of High Level Syn-
thesis System

As explained earlier we used an intermediate representation of the Sim-nML processor
specification as starting point of our approach. For this, we have used the intermediate
representation generator (irg) developed by Rajiv A. R. [34]. It takes the input Sim-
nML specifications and converts them to internal binary tabular format.

The intermediate representation is hierarchical in nature and is flattened using a
tool. The flattening tool is an extension of the earlier work of disassembler generator
[21] and functional simulator generator [4]. After flattening, all the mode and op rules
are merged and all possible machine instructions (with all possible variations in the
addressing modes) are retrieved. At this moment, the internal data structures hold
the actions of all possible machine instructions with the expansion of appropriate
mode rules.
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4.3 Implementation of Back-end of Behavioral Syn-

thesis System

The back-end of the behavioral synthesis system takes the flattened intermediate
representations of the specification and translates each instruction action into the
corresponding Verilog code. In the behavioral high level synthesis no optimization
is performed. All Sim-nML variables in the input specifications defined using ‘reg’,
‘mem’ and ‘var’ data types, are converted to Verilog variables. The scalar variables
of Sim-nML are translated to Verilog reg data types while the Sim-nML arrays are
translated to Verilog register arrays. Examples of variables translations are given

below.

Scalar Variables Translation
Sim-nML : reg A[1,card(32)]
Verilog : regl0:31] A

Vector Variables Translation
Sim-nML : reg B[100,card(32)]
Verilog : reg[0:31] B[0:99]

Decoder for the instructions is implemented as Verilog ‘casex’ statements. The
image string to be decoded is stored in an intermediate register named ‘IR’ An
example translation of a single Motorola 68HC11 microprocessor Sim-nML instruction

action to behavioral Verilog is given below.

Sim-nML Action Sequence

op LDAA_TImm(Src : Imm8)

syntax = format('"ldaa %s", Src.syntax)
image = format("10000110%s", Src.image)
action = {

R = Src;

CCR<3..3> = R<7..7>;
if R == 0 then
CCR<2..2> = 1;

else
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CCR<2..2> = 0;

endif;

CCR<1..1> = 0;

A = R;
}
Behavioral Verilog Code
always Q@(posedge clock) begin
casex (IR[0:31]) 32’°b10000110XXXXXXXX :
begin

R = IR[8:15];

CCR[3:3] = R[7:7];

if( (R == 0) ) begin

CCR[2:2] = 1;
end
else begin
CCR[2:2] = 0;
end
CCR[1:1] = 0;
A = R;

end

In the behavioral module, a simulation clock is added. All instructions actions are
executed in the single simulation clock, irrespective of the number of basic operations
in the instruction action. As shown in the earlier example, if the decode image string
length is less than the specified bit width, the Verilog simulator extends the string by
padding the zeros to the left. The array selection, control flow statements etc. are
similar for both Sim-nML and Verilog language.

Sim-nML array selection can take variables as their array selection parameters, but
Verilog array selection does not support variables in array selection. Thus, Sim-nML
specifications with variables used for array selection can not be synthesized using the
current behavioral synthesis tool. The following example of Sim-nML specification

can not be synthesized in our implementation.

Part of Sim-nML Specification
reg A[l,card(32)]
reg TI[1,card(32)]
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reg X[1,card(16)]
X = A<(31-T)..(16-T)>

After generation of the behavioral Verilog processor model, the Verilog simulation
monitor module is added. The system tasks and functions added in the monitor

module are like

$monitor ($time, " Clk=%b, IR=%h, A=Yd, B=%)d",Clk,IR,A,B);
$readmemb ("rom.mem" ,rom) ;

$display($time, " Clk=%b, IR=%h, A=%d, B=%d",Clk,IR,A,B);
$dumpfile ("Processor.vcd");

$dumpvars (0,Processor) ;

$dumpflush;

The simulator monitor module continuously probes the various Verilog variables
that represent the external signals on the pins or the internal signals (figure 4.1).

The monitor module also generates a VCD (Value Change Dump) file and dumps
the information about simulation time, scope, signal definition and signal value
changes in that text file [30]. This file is used for the post-processing to observe
the signals. We tested our Verilog module using Cadence Verilog-XL simulator [51].
Simulation post processing was performed using tools like Cadence SignalScan [51].

In Appendiz C, a part of generated Motorola 68HC11 Verilog description is pre-
sented. The corresponding top-level monitor module is shown in the Appendiz D.

4.4 Implementation of Back-end of Structural Syn-

thesis System

4.4.1 Introduction

The back-end of the structural synthesis system generates structural synthesizable
Verilog code for the given Sim-nML processor specifications. Our implementation
generates the Verilog code, which is compliant with the Synopsys Design Compiler.
The generated Verilog code is built upon the Design Ware Library [2] components thus
saving effort in rebuilding our own library. The DesignWare Library components used
in the structural synthesis are ‘DW03_reg_s_pl’, ‘DW01_decode’, ‘DW01_muz_any’,
‘DW01_add’ and ‘DW01_sub’ etc.
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Figure 4.1: Simulation Monitor Module

4.4.2 Optimization of Flattened IR and Three Address Code
Generation

On the flattened IR, we perform two optimizations - temporary variable elimination
and dead code elimination. The temporary variable elimination algorithm is built
over two passes on the flattened input. It removes Sim-nML ‘var’ type temporary
variables. However, some temporary variables can not be eliminated automatically as
explained later. The two pass algorithm for temporary variable elimination is given
below.

Sim-nML Temporary Variable Elimination Algorithm

Pass 1 : Find The Basic Blocks for each Instruction Actions

Pass 2 : Removal of Temporary Uses

2.1 : For each Instruction Action
2.2 : For each Basic Block find definition of Temporary Variables.
2.3 : Replace the use of a Temporary Variable with the last

28



corresponding definition of the Temporary Variable.

2.4 : Remove the definitions of Replaced Temporary Variables.

Following the temporary variable removal, we perform the dead code elimination.
A code that is not reached, and only updates the temporary variable is removed. In
addition to this, the last assignment statements to the temporary variables, which are
not used subsequently, are also removed. This is possible, as the temporary variables
are not assigned any storage. However, other codes such as assignments to registers
etc. are retained as these are treated as side effects of the instructions.

After performing the optimizations, the instruction actions are converted to ‘three
address’ form. This form is suitable for scheduling as explained earlier. The ‘three
address’ form is sequence of operations that involve upto three operands, such as ‘A
= B+ (C’or ‘A = B’. The algorithm to convert ‘three address’ form is simple and is
carried out over two passes on the optimized flattened code.

An example of temporary variable removal and three address code generation is
given below.

After Temporary Variable Removal and
Before Three Address Code Generation

A=B+C=x*xD

After Three Address Code Generation
(New Temporary Variables Generated)
X=C=x*xD
A=B+X

It may be noted that during the three address code generation, new temporary
variables may be introduced that are not removed. For these newly generated tem-
porary variables storage, registers and register files are instantiated later.

4.4.3 Data Path Element Instantiation

The data path generation essentially comprises of instantiation of the functional and
storage units and the interconnection between them. The data path implementation
is done in four steps - instantiation of functional units; instantiation of storage units;
placement of multiplexers and de-multiplexers and interconnection of components. In
the data path generation process, one file is generated for each Verilog module.

In the implementation, it is assumed that all the functional units have two input
and one output ports. This establishes a one to one correspondence to the ‘three
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address’ code and functional unit operations. Functional units input and output
ports are connected to the input and output ports of the execution unit.

The Sim-nML ‘reg’ and ‘mem’ types of scalar variables are realized using registers.
Similarly, the arrays of Sim-nML variables are realized using register files. For the
temporary variables that are not removed, registers and register files are instantiated.
The storage for temporary variables is however shared across the instructions. Thus,
if two instructions use two and four temporary variables of same type, then four
temporary variable storage units will be instantiated in the design. In that case, the
first instruction will use the two out of the four storage units.

An example of the generated Verilog structural register module is given below.
Register files are instantiated in similar way, with an extra multiplexed read/write

address port.

module EA_Reg(Clk,WD, WE, Reset, RD);

parameter width=32;
parameter reset_value=0;
input Clk;

input Reset;

input WE;

input [width-1:0] WD;

output [width-1:0] RD;

DWO3_reg_s_pl #(width , reset_value) R1( .d(WD), .clk(Clk),
.reset_N(Reset), .enable(WE), .q(RD) );

endmodule

The Verilog module ‘FA_Reg’ instantiates ‘R1’ module of ‘DW03_reg_s_pl’ type.
‘DW03_reg_s_pl’ is DesignWare library module which implements register with syn-
chronous enable reset [52]. The inputs to the ‘EA_Reg’ module are ‘Clk’, ‘WD’, ‘WE’,
‘Reset’ and ‘RD’. Among these inputs, the ‘WD’ and ‘RD’ are write data input and
read data output respectively. ‘Reset’ is the reset control signal for the ‘EA_Reg’
module, which is passed to the ‘R1’ module. Upon reset, the value stored in the
register is set to ‘reset_value’, which is equal to 0 in our case. The ‘reset_value’ and
‘width’ are constants declared as Verilog parameters. Names of these parameters are
predefined in the Design Compiler synthesis tool. The ‘width’ parameter defines the
widths of the ‘d” and ‘¢’ ports of the ‘DW03_reg_s_pl’ library module. In the imple-
mented ‘EA_Reg’ register module, ‘WE’ is the control signal for write enable. ‘Clk’
signal is added to pass the clock across the module.

An example of the generated Verilog structural execution unit module is given
below. In our implementation, the execution unit contains single instantiation of
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several necessary functional units each corresponding to the operation used by the
instructions.

module Execution_Unit (ExInO_Mux_0__Execution_Unit_InO_I,ExIni_Mux_0_

_Execution_Unit_Inl_I,Clk,Sel,Execution_Unit_0__Execution_Unit_Dmux_I);

parameter width=32;

input [width-1:0] ExInO_Mux_0__Execution_Unit_InO_I;
input [width-1:0] ExInl Mux_0__Execution_Unit_Inl_T;
input Clk;

input [sel_width-1:0] Sel;

output [width-1:0] Execution_Unit_0__Execution_Unit_Dmux_I;
reg [width-1:0] Reg_InO;

reg [width-1:0] Reg_Inl;

reg [width-1:0] Reg_Out;

wire [width-1:0] OQut_1;

wire [width-1:0] Out_2;

always @(posedge Clk) begin
Reg_InO=ExInO_Mux_0__Execution_Unit_InO_I;
Reg_Inl=ExInl_Mux_0__Execution_Unit_Inl_I;
end
DWO1_add #(width) Add1(.A(Reg_In0O),.B(Reg_Inl),.CI(),.SUM(Out_1),.C00));
DWO1_sub #(width) Subl(.A(Reg_In0O),.B(Reg_Inl),.CI(),.DIFF(Out_2),.C00));
case(Sel)
0 : Reg_Out <= QOut_1;
1 : Reg_Out <= Out_2;
endcase
assign Execution_Unit_0__Execution_Unit_Dmux_I = Reg_0Out;

endmodule

The above example of execution unit has two functional units - ‘Add1’ and ‘Sub1’
of ‘DW01_add’ and ‘DW01_sub’ types respectively. The execution unit contains
two input data ports ‘ExIn0_Muz_O__Ezecution_Unit_In0_I’ and ‘Fxinil_Mux_O__Ezec-
ution_Unit_In1_I" of widths equal to parameter ‘width’. These data ports are con-
nected to the multiplexers at the inputs of execution unit. The output data port
is ‘Frecution_Unit_O__FExecution_Unit_Dmuz_I’ of width equal to ‘width’. The ‘Sel’
control signal selects the output ports of the ‘Add1’ or ‘Subl’ functional units. The
operation of the execution unit is as follows. At the positive clock cycle, the data
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inputs are read to internal registers ‘Reg_In0’ and ‘Reg_In1’. The register values are
passed to the functional units and the outputs of the functional units are stored
in ‘Out_1” and ‘Out_2 wires during the clock cycle. The wire values are put into
the output internal register ‘Reg_Out’ based on the ‘Sel’ control signal. At the
end of the clock cycle, the value of ‘Reg_Out’ is assigned to the output ‘Frecu-
tion_Unit_O__FExecution_Unit_Dmuz_I".

After generating the functional and storage units, for each data (read/write/address)
port, the corresponding associated instructions are identified. This gives the infor-
mation about the necessary multiplexing and de-multiplexing units needed in the
design.

For the functional units, the association between instructions, input and output
data ports in find out. Accordingly for selecting, the multiplexers and de-multiplexers
are generated. At the same time the wire interconnections are identified and instan-

tiated.
U2 U4 J

Ul +——

Ul_I=<U2.0,U3_.0,U4_0>U4_I=<U50,U1_O >

1UL_O0=<U4,U51> U4_ O=<Ul_l>
pu2l=<> U5 I=<U5_0,U1 0>
lU2 0=<U11l,U4 > U5 O=<U5 | > !
1usl=<> U3 0=<U1_l>

Unit Input Output Port List

Figure 4.2: Unit Connection before Mux/Dmux

An example of the interconnection is shown in the figure 4.2 and 4.3. U1 to
U5 in the figure 4.2 and figure 4.3 are functional or storage units. In figure 4.2 the
functional unit wiring is shown with the collisions. Foe example, input to Ul can
be from one of the three outputs, namely that of U2, U3 or U4. Accordingly the
multiplexers are placed as shown in the figure 4.3 and re-wiring is done.

An example of generated data path of a hypothetical small processor with two
input registers, one output register and an execution unit is given in Appendiz D.
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4.4.4 Control Unit Generation

Control unit takes the flattened image stored in the instruction register and accord-
ing to the bit pattern of the instructions and the schedule of operations within the
instruction, generates the control signals for the functional and storage units. Control

path generation process is shown in an example below.

op add(A:reg, B:reg, C:reg)

syntax = format("add %s %s %s", A.syntax, B.syntax, C.syntax)
image = format("1011%s10%s11%s00", A.image, B.image, C.image)
{

A =B + C;

action

Image String with O, 1 and Unknown bits

1011xxxx10xxxx11xx%xx00

After decoding, the binary image segment selects the data path add operation.

The unknown bits, after decoding selects the registers for input and output.
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In our implementation, only a small part of the control circuit is generated, while
the remaining is added manually.

4.4.5 Top-Level and Simulation Module Generation

After generating the data paths and control paths, the toplevel module is generated,
which instantiates the registers, register files, multiplexers, de-multiplexers and in-
terconnects them according to the generated wires. The toplevel module is wrapped
with simulation module, which is used for simulating the structural synthesizable
Verilog processor model. The simulation module is similar as the simulation module
described in the implementation of behavioral synthesis back-end.
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Chapter 5

Results and Conclusion

5.1 Results

The result of the high level synthesis system is tested on the Sim-nML specifications of
Motorola 68HC11, a subset of PowerPC 603 and another small hypothetical processor.

5.1.1 Result of Behavioral Synthesis System

The behavioral high level system tool is tested for Motorola 68HC11 microprocessor
specifications (table 5.1). The size of the generated Verilog code is about the same

Sim-nML Description Lines of Code 2947
Total Number of Machine Instruction 210
Generated Behavioral Verilog Lines of Code | 3708

Table 5.1: Behavioral Synthesis Run Statistics for Motorola 68HC11

order as that of the input Sim-nML specification. An example of the simulation run
using the generated Verilog code is shown in figure 5.1.

The simulation of the Verilog code is performed using Cadence Inc.’s Verilog-XL
simulator [51]. In the generated Verilog behavioral code, the machine instructions are
executed in one simulation clock cycle, irrespective of the number of basic operations
in the instruction. An example of the generated Motorola 68HC11 Verilog behavioral
code is given in Appendiz C.
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0 Clk=0, IR=xxxxxxxXx, rom[i]=xxxxxxxx, A= x, M= X
50 Clk=1, IR=xxxxxxxx, rom[i]=000086f0, A= x, M= x
100 Clk=0, IR=xxxxxxxx, rom[i]=000086f0, A= x, M= x
150 Clk=1, IR=000086f0, rom[i]=0000eaf0, A= 0, M=169
200 Clk=0, IR=000086f0, rom[i]=0000eaf0, A= 0, M=169
250 Clk=1, IR=0000eaf0, rom[i]=00008af0, A= 0, M=234
300 Clk=0, IR=0000eafO, rom[i]=00008af0, A= 0, M=234
350 Clk=1, IR=00008af0, rom[i]=0000aaf0, A= 4, M=138
400 Clk=0, IR=00008af0, rom[i]=0000aaf0, A= 4, M=138
450 Clk=1, IR=0000aaf0, rom[i]=0000baf0, A= 4, M=170
500 Clk=0, IR=0000aaf0, rom[i]=0000baf0, A= 4, M=170
550 Clk=1, IR=0000baf0, rom[i]=0000aaf0, A= 4, M=186
600 Clk=0, IR=0000baf0, rom[i]=0000aaf0, A= 4, M=186
650 Clk=1, IR=0000aaf0, rom[i]=0000aaf0, A= 0, M=169
700 Clk=0, IR=0000aaf0, rom[i]=0000aaf0, A= 0, M=169
750 Clk=1, IR=0000aaf0, rom[i]=0000aef0, A= 0, M=170
800 Clk=0, IR=0000aaf0, rom[i]=0000aef0, A= 0, M=170
850 Clk=1, IR=0000aef0, rom[i]=0000aa70, A= 0, M=174
900 Clk=0, IR=0000aef0, rom[i]=0000aa70, A= 0, M=174
950 Clk=1, IR=0000aa70, rom[i]=xxxxxxxx, A= 0, M=170

Figure 5.1: Simulation of Behavioral Verilog Code

5.1.2 Result of Structural Synthesis System

The structural high level synthesis system is tested on a subset of Sim-nML Pow-
erPC 603 processor specification and on a small hypothetical processor specification.
The subset of PowerPC 603 processor specification includes general ALU instruc-
tions, branch instructions and memory load-store instructions. The generated Ver-
ilog code consists of several Verilog files, each instantiating the storage, functional
and multiplexing/de-multiplexing units. The code that provides the interconnections
among all units is kept in a single file. The control signal ports are generated au-
tomatically. However, the scheduled control signal sequences are added manually to
get the complete Verilog code.

The figure 5.2 shows different levels of synthesis flow. We have also synthesized
the generated Verilog code using logic synthesis tools, the Synopsys Design Com-
piler [52] and Cadence Silicon Ensemble [51]. We used the Design Ware Library for
DesignCompiler synthesis.

From the synthesized netlist, the area and power requirements are estimated for
the processor. The results are shown for the subset of PowerPC 603 specification
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Behaviorial Description

High Level Structural . {~~.
Synthesis

Sim—-nML Structural
Synthesis Tool

RTL Level Netlist

Logic Synthesis s /,Synopsys DesignCompiler

Gate Level Netlist

Physical Design P /,Cadence Silicon Ensemble

GDiII File

Different Levels of Synthesis Flow
Figure 5.2: Different Levels of Synthesis

in the table 5.2. In the result statistics, there is no major difference in the number
of lines of codes between the Sim-nML specification and the HLS generated Verilog
code.

Number of Lines in Sim-nML Specification 508
Number of Lines in HLS generated Verilog Code 656
Number of Lines in Design Compiler generated Verilog Code | 8478
Time for Synthesis (without Clock Tree insertion) 220 Sec
Time for Synthesis (with Clock Tree insertion) 780 Sec

Table 5.2: Structural Synthesis Run Statistics for PowerPC 603 subset

The total cell area for synthesized PowerPC 603 subset is given in the table 5.3
and 5.4. The smallest cell area is taken as of one unit and corresponding unit values
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are shown in the tables. The smallest cell area depends on the target technology
library based on which the absolute values can be calculated. The total cell area of the
processor core includes combinatorial and non-combinatorial areas. After synthesizing

‘ Area ‘ Units ‘

Combinatorial Area 6102.00
Non-combinatorial Area | 10878.00
| Total Cell Area | 16980.00 |

Table 5.3: Total Cell Area for Synthesized PowerPC 603 subset

the structural Verilog model, clock tree is inserted in the model to generate the clock
signals. The total cell area increases by nearly 5% after clock tree insertion.

‘ Area ‘ Units ‘

Combinatorial Area 6684.00
Non-combinatorial Area | 10878.00
| Total Cell Area | 17562.00 |

Table 5.4: Total Cell Area for Synthesized PowerPC 603 subset after Clock Tree
Insertion

The processor core is a collection of several instantiated Verilog modules like
registers, execution units etc. The cell area for the instantiated modules and for the
gates used is shown in the tables 5.5 and 5.6.

Similar results for a hypothetical processor are shown in the tables 5.7 and 5.8.
The processor contains only two input and one output registers and one execution
unit. The design does not contain multiplexers and de-multiplexers.

5.2 Conclusion and Future Works

In this thesis, we have developed techniques to generate behavioral and structural
synthesizable Verilog processor model from the Sim-nML processor specification lan-
guage. The method is suitable for ASIP and/or other programmable processor gener-
ation where the instruction set of the processor is specified in Sim-nML language. The
simulation and synthesis process of Sim-nML high level synthesis generated netlist is
compliant with the current industry standard tools.
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Cell Area before Clock | Area after Clock
Tree insertion Tree insertion

CIA_Reg 321 321
EA_Dmux 224 224
EA_WD_Mux 87 90
EA Reg 321 321
ExIn0_Mux 250 260
ExInl_Mux 469 497
ExecutionUnit_Dmux 224 224
ExecutionUnit 1527 1879
GPR_Dmux 224 224
GPR_RA_Mux 83 84
GPR_WA _Mux 83 84
GPR_WD_Mux 42 42

GPR_RegFile 11511 11702
IR_Dmux 224 224
IR _Reg 321 321
LR_Reg 321 321
NIA_WD_Mux 42 42
NTA _Reg 321 321
TempO_Reg 321 321

Table 5.5: Total Cell Area by instantiated modules for Synthesized PowerPC 603
subset

The current design can be improved in several ways to support complex architec-
tures. Support for VLIW, SuperScalar architectures, simple and complex pipelined
architectures can be added. Overall better semi-automatic design space exploration
mechanisms can be incorporated. The full resource usage model of Sim-nML lan-
guage can be utilized to generate better quality hardware. At hardware synthesis
more number of optimizations can be performed to generate more optimized hard-
ware structure. The scheduling of the processor instructions can be improved in a
major way. The total flow from Sim-nML to lowest level physical synthesis work can
be more explored to get the complete flow of ASIP generation.
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Before Clock Tree Insertion | After Clock Tree Insertion
Gate ‘ Count ‘ Area Gate ‘ Count ‘ Area
AN2 &9 2 AN2I 90 2
NRS8 32 6 FD1 1554 7
AO2 70 2 IVDA 27 1
FD1 1554 7 OR3 20 2
AO5 20 3 NR3 18 2
ND4 256 2 MUX21H 137 4

v 121 1 EON1 1216 3
EONI1 1222 3 IVI 359 1
AO4 4 2 NRb5 4 4

MUX21H 160 4 OR2I 8 2
NR5 4 4 IVDAP 3 2
AN3 32 2 AOIP 6 2
OR3 2 EN 8 3
NR3 1 2 ND3 1 2
NR2 93 1 B4IP 3 4
EN 23 3 ND2 32 11
ND3 19 2 NR16 717 1
AO6 6 2 ND2I 106 1
ND2 53 1 NR2I 240 3

MUX31L 22 4 EO 31 3
EO1 8 3 ENI 4 2
EO 38 3 MUX21L 87 3
NR4 3 2 MUX31L 3 4

MUX21LP 34 4
|  Total Area | 16980 | Total Area | 17562 |

Table 5.6: Total Cell Area by instantiated gates for Synthesized PowerPC 603 subset

‘ Area ‘ Units ‘

Combinatorial Area 452.00
Non-combinatorial Area | 168.00
| Total Cell Area | 620.00 |

Table 5.7: Total Cell Area for Hypothetical Processor Data Path
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‘ Call ‘ Area ‘

EA _Reg 85
ExecutionUnit | 369
IR _Reg 85
NIA_Reg 81

‘ Total Area ‘620‘

Table 5.8: Total Cell Area by instantiated cells for Hypothetical Processor Data Path
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Appendix A

Synopsys Design Compiler
Configuration Setup

A.1 Design Compiler .synopsys_dc.setup File

Following is the Synopsys Design Compiler (DC) setup file .synopsys_dc.setup which
is necessey to access all the DC Basic and Foundation Library components during
the synthesis process.

company = "IIT Kanpur";

designer = "CARES";

technology = "0.35 micron";

search_path = search_path + { "." |
"/space/synopsys/syn_sim99.10/libraries/" };

target_library = {class.db};

synthetic_library = {dw01.sldb dw02.sldb,dw03.sldb,dw04.sldb,dw06.sldb};

link_library = target_library + synthetic_library;

symbol_library = {class.sdb};

A.2 Design Compiler Compilation Script

Folowing is the Synopsys DC Compilation Script. The script reads synthetic library
‘synthesis.sl” and produces internal ‘.sldb’ file. After that it compiles all sub_modules
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and writes low level verilog netlist according to the target_library ‘class.db’ as defined
in ‘.synopsys_de.setup’. At the next stage clock tree is inserted with period 50Hz in
the port ‘Clk’ and the design is re-compiled to get the total area, power and other
reports.

read_1lib synthesis.sl
write_lib synthesis.sldb
sub_modules = {NIA_Reg, EA_Reg, IR_Reg, ExecutionUnit, TopLevel}
foreach(module,sub_modules){

read -format verilog module + ".v"

if (dc_shell_status != 1){

sh echo ’error ’ module
quit;

}

compile

write -format verilog -hierarchy module
}
report_area > area_before_CT
set_wire_load LARGE -mode enclosed
set_operating_condition WORST
create_clock -period 50 -waveform { 0 25 } Clk
set_clock_skew -delay 2.0 —-minus_uncertainty 3.0 Clk
set_input_delay 2.0 -clock Clk -max all_inputs()
set_max_area 0
compile
write -hierarchy -output netlist.db
report_area > area_after_CT

quit

A.3 Design Compiler Parameterized Library Spec-
ification

Following is the Synopsys DC Synthetic Library ‘synthesis.sl” which is used for param-
eterized implementation of Design Ware Library components. Without this the DC
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components like ‘DWO03_reg_s_pl’ can’t be used parametrically. This file also specifies
the implementation architecture of the modules during synthesis process. If for any
module implementation is not specified, DC will choose a particulat implementation
from the internal DC database.

library("synthesis.sldb") {
module (DW03_reg_s_pl) {
design_library : "DWO3_reg_s_pl.db";
parameter (width) {
hdl_parameter : TRUE;
}
parameter (reset_value) {

hdl_parameter : TRUE;

3

implementation (sim){

}

pin(d) {
direction : input;
bit_width : "width";

}

pin(clk) {
direction : input;
bit_width : "1";

}

pin(reset_N) {
direction : input;
bit_width : "1";

}

pin(enable) {
direction : input;

bit_width : "1";

}
pin(q) {
direction : output;
bit_width : "width";
1}

module (DWO1_decode) {
design_library : "DWO1_decode.db";
parameter (width) {

hdl_parameter : TRUE;
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}

parameter (dec_width) {

hdl_parameter : TRUE;
3
pin(A) {
direction : input;
bit_width : "width";
3
pin(B) {
direction : output;
bit_width : "dec_width";
1}
module (DWO1_mux_any) {
design_library : "DWO1l_mux.db";
parameter (A_width) {
hdl_parameter : TRUE;
3
parameter (SEL_width) {
hdl_parameter : TRUE;
3
parameter (MUX_width) {
hdl_parameter : TRUE;
}
pin(A) {
direction : "input";
bit_width : "A_width";
}
pin(SEL) {
direction : "input";
bit_width : "SEL_width";
}
pin(MUX) {
direction : "output";
bit_width : "MUX_width";
1}
module(DWO1_add) {
design_library : "DWO1_add.db";
parameter (width) {
hdl_parameter : TRUE;
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}

pin(A) {
direction : "input";
bit_width : "width";
}
pin(B) {
direction : "input";
bit_width : "width";
}
pin(CI) {
direction : "input";
bit_width : "1";
}
pin(SUM) {
direction : "output";
bit_width : "width";
3
pin(C0) {
direction : "output";
bit_width : "1";
1}
module (DWO1_sub) {
design_library : "DWO1l_sub.db";

parameter (width) {

hdl_parameter : TRUE;
}
pin(A) {
direction : "input";
bit_width : "width";
}
pin(B) {
direction : "input";
bit_width : "width";
}
pin(CI) {
direction : "input";
bit_width : "1";
}

pin(DIFF) {
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direction : "output";

bit_width : "width";

}

pin(C0O) {
direction : "output";
bit_width : "1";

1}

module (DWO1_absval) {

design_library : "DWO1l_absval";

parameter (width) {
hdl_parameter : TRUE;

3
pin(A){
direction : "input";
bit_width : "width";
3

pin(ABSVAL) {
direction : "output";
bit_width : "width";
1}
module(DWO1_ash) {
design_library : "DWO1_ash";
parameter (A_width) {
hdl_parameter : TRUE;
3
parameter (SH_width) {
hdl_parameter : TRUE;

3
pin(A) {
direction : "input";
bit_width : "A_width";
3

pin(DATA_TC) {
direction : "input";
bit_width : "1";

3

pin(SH) {
direction : "input";

bit_width : "SH_width";
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}
pin(SH_TC) {

direction :
bit_width :
}
pin(B) {
direction :
bit_width :
31}

"input";

||1||;

"output";
"A_width";
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Appendix B

Example of Structural Datapath of

a Hypothetical Processor

The structural Verilog description of a hypothetical processor is given below. The
hypothetical processor contains three registers and one execution unit, which contains
four functional units - adder, subtractor, shifter and absolute value calculator.

module TopLevel(Clk,EA_Reset,IR_Reset,NIA_Reset,EA_WE,IR_WE,NIA_WE,Ex_Sel);

parameter Width = 8;

input Clk;

input EA_Reset;

input IR_Reset;

input NIA_Reset;

input EA_WE;

input IR_WE;

input NIA_WE;

input [1:0] Ex_Sel;

wire [Width-1 : 0] EA_RD_QOut;

wire [Width-1 : 0] IR_RD_QOut;

wire [Width-1 : 0] EX_Out;

EA_Reg EA_Reg_inst(.Clk(Clk), .WD(), .WE(EA_WE), .Reset(EA_Reset),
.RD(EA_RD_Out) );

IR_Reg IR_Reg_inst(.Clk(Clk), .WD(), .WE(IR_WE), .Reset(IR_Reset),
.RD(IR_RD_QOut) );
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ExecutionUnit ExecutionUnit_inst(.A(EA_RD_Out), .B(IR_RD_QOut),
.Clk(Clk), .Sel(Ex_Sel), .C(EX_QOut) );

NIA_Reg NIA_Reg_inst(.Clk(Clk), .WD(EX_Out), .WE(NIA_WE),
.Reset (NIA_Reset), .RDQ) );

endmodule

module ExecutionUnit(A,B,Clk,Sel,C);
parameter width = 8;

parameter SH_width = 3;

parameter A_width

)

8
parameter B_width = 8;
parameter Sel_width = 2;
parameter C_width = 8;
input [A_width - 1 : 0 ] A;
input [B_width - 1 : 0 ] B;
output [C_width - 1 : 0 ] C;
input Clk;
input [Sel_width - 1 : 0 ] Sel;
reg [C_width - 1 : 0 ] C;
wire [2 : 0] B_Sh;
wire [A_width-1 : 0] Outl;
wire [A_width-1 : 0] Out2;
wire [A_width-1 : 0] Out3;
wire [A_width-1 : 0] Out4;
wire CI_inst;
assign B_Sh = 3’b010;
assign CI_inst = O;

DWO1_add #(width) Add1(.A(A), .B(B), .CI(CI_inst), .SUM(Outl), .CO0Q));

DWO1_sub #(width) Sub1(.A(A), .B(B), .CI(CI_inst), .DIFF(Out2), .C0(Q));

DWO1_ash #(A_width, SH_width) Shift1(.A(A), .DATA_TC(CI_inst),
.SH(B_Sh), .SH_TC(CI_inst), .B(Out3));

DWO1_absval #(width) Abs1(.A(A), .ABSVAL(Qut4));

always @(Sel or Outl or Out2 or Out3 or Out4) begin

case(Sel) // synopsys full_case parallel_case

)



2°b00 : C = Quti;
2’b01 : C = Qut2;
2°b10 : C = Qut3;
2°b11 : C = Qut4;

endcase

end

endmodule

module IR_Reg(Clk,WD, WE, Reset, RD);
parameter width = 8;

parameter reset_value = 5;

input Clk;

input Reset;

input WE;

input [ width-1 : 0 ] WD;

output [ width-1 : O ] RD;

reg Enable;
always @ (Clk) begin
Enable = WE;

$display($time,"IR_WE = %b, IR_Reset = %b, IR_RD = %b",WE,Reset, RD);
end
DWO3_reg_s_pl #(width , reset_value) R1( .d(WD), .clk(Clk),
.reset_N(Reset), .enable(Enable), .q(RD) );

endmodule

module EA_Reg(Clk,WD, WE, Reset, RD);
parameter width = 8;

parameter reset_value = 10;

input Clk;

input Reset;

input WE;

input [ width - 1 : 0 ] WD;

output [ width - 1 : 0 ] RD;

reg Enable;
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always Q@(Clk) begin
Enable = WE;
$display($time,"EA_WE = %b, EA_Reset = %b, EA_RD = /b",WE, Reset, RD);
end
DWO3_reg_s_pl #(width , reset_value) R1( .d(WD), .clk(Clk),
.reset_N(Reset), .enable(Enable), .q(RD) );

endmodule

module NIA_Reg(Clk,WD, WE, Reset, RD);

parameter width = 8;

parameter reset_value = 0;

input Clk;

input Reset;

input WE;

input [ width - 1 : 0 ] WD;

output [ width - 1 : 0 ] RD;

reg Enable;

DWO3_reg_s_pl #(width , reset_value) R1( .d(WD), .clk(Clk),
.reset_N(Reset), .enable(Enable), .q(RD) );

endmodule
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Appendix C

Section of Generated Verilog

Behavioral Synthesis Code

Following is the section of generated Verilog behavioral synthesis code of Motorola

MC68HC11 microprocessor.

the machine instructions are translated to generate behavioral Verilog code of the
corresponding microcontroller. Total lines of generated Verilog code is 3708.

module

reg [0O:
reg [0:
reg [0:
reg [0O:
reg [0O:
reg [0:
reg [0:
reg [0O:
reg [0O:
reg [0:
reg [0:
reg [0O:
reg [0O:
reg [0:
reg [0:

input

always

31]
7]
15]
7]
7]
7]
15]
15]
31]
31]
31]
7]
7]
31]
0]

The lines of code in Sim-nML specification is 2947.
The flattened description contains 210 machine instructions. The action section of

Processor(clock);

IR;
M[0:1000];

PC;
NPC;
TmpSrc;
R;

LR;
TmpBit;

clock;

Q@(posedge clock)

begin
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casex (IR[0:31]) //synthesis parallel case
32°h10000110XXXXXXXX
begin
R = IR[8:15];
CCR[3:3] = R[7:7];
if( (R == 0) ) begin
CCR[2:2] = 1;
end
else begin
CCR[2:2] = 0;
end
CCR[1:1] = 0;
A = R;
end
//1/////7///// End of Instruction O //////////////
32°h10010110XXXXXXXX
begin
R = M[IR[8:23]];
CCR[3:3] = R[7:7];
if( (R == 0) ) begin

CCR[2:2] = 1;
end
else begin
CCR[2:2] = 0;
end
CCR[1:1] = 0;
A =R;

end
//////1////// End of Instruction 1 //////////////
32’h10110110XXXXXXXXXXXXXXXX
begin
R = M[IR[8:15]];
CCR[3:3] = R[7:71;
if( (R == 0) ) begin
CCR[2:2] = 1;
end
else begin
CCR[2:2] = 0;

end
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CCR[1:1] = 0;
A = R;
end
//1////////// End of Instruction 2 //////////////
32°h11111100XXXXXXXXXXXXXXXX
begin
LR[0:7] = M[IR[8:15]];
LR[8:15] = M[(IR[8:15] + 1)];
CCR[3:3] = LR[15:15];
if( (R == 0) ) begin
CCR[2:2] = 1;
end
else begin
CCR[2:2] = 0;
end
CCR[1:1] = 0;
D = LR;
end
///////////// End of Instruction 12 //////////////
32°h10111001XXXXXXXXXXXXXXXX
begin
R = ((A + M[IR[8:15]]) + CCR[0:0]);
CCR[5:5] = (((A[3:3] & TmpSrc[3:3]) | (TmpSrc[3:3] &
R[3:31)) | (R[3:3] & A[3:31));
CCR[3:3] = R[7:7];
if( (R == 0) ) begin
CCR[2:2] = 1;
end
else begin
CCR[2:2] = 0;
end
CCR[1:1] = ((A[7:7] & TmpSrc([7:7]) & ('(R[7:7] |
(V(A[7:7] & (' (TmpSrcl7:71 & R[7:71)))))));
CCR[0:0] = ((A[7:7] & TmpSrc[7:7]1) | (TmpSrcl7:7]
& C@L7:71 | (V(RI7:7]1 & AL[7:71))))));
A = R;
end
///////////// End of Instruction 45 //////////////
327h00100011XXXXXXXX
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begin
if( ((CCR[0:0] + CCR[2:2]) == 1) ) begin
NPC = ((PC + IR[8:15]) + 2);
end
else begin
NPC = (PC + 2);
end
end
///////////// End of Instruction 194 //////////////
32’h00101101XXXXXXXX
begin
if ( (CCR[1:1] ~ (CCR[3:3] == 0)) ) begin
NPC = ((PC + IR[8:15]) + 2);
end
else begin
NPC = (PC + 2);
end
end
///////////// End of Instruction 195 //////////////
endcase
end

endmodule
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Appendix D

Simulation Top Level Monitor File

Sample

A sample code of simulation top level module which probes the module input/output
pins and/or the internal reg/wire of the processor module. Simulation data is stored
in ‘Processor.ved’ file. The post suimulation data stored in ‘Processor.ved’ file can
be analyzed using post simulation data analysis tool as Cadence SignalScan etc.

module Processor ;
reg Clk;

reg EA_Reset;

reg IR_Reset;

reg NIA_Reset;

reg EA_VE;

reg IR_VWE;

reg NIA_WE;

reg [1:0] Ex_Sel;
reg [6:0] rom[20:0];
integer i

initial

// Monitors several external and internal registers and wires.
$monitor ($time, " Clk = %b, EA_WE = %b, IR_WE = %b,
NIA_WE = b, Ex_Sel = /b C = %d", Clk, EA_WE, IR_WE,
NIA_WE, Ex_Sel[1:0], TopLevel_inst.ExecutionUnit_inst.C);
TopLevel TopLevel_inst(.Clk(Clk), .EA_Reset(EA_Reset),
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.IR_Reset (IR_Reset), .NIA_Reset(NIA_Reset),

.EA_WE(EA_WE), .IR_WE(IR_WE),

initial //Clock Generation Module
begin
Clk = 1°b0;
forever #50 Clk = “Clk;
end
initial
begin

$readmemb ("rom.mem" ,rom) ;
i= 0;
end

always Q@(posedge Clk) begin

assign {EA_Reset, IR_Reset, EA_WE, IR_WE, NIA_WE, Ex_Sel}
%b, IR_Reset
%b, NIA_WE = %b, Ex_Sel = %b",
EA_Reset, IR_Reset, EA_WE, IR_WE, NIA_WE,Ex_Sel);

$display($time, "EA_Reset
EA_WE = %b, IR_WE

i=1+1;
end
initial
begin
$dumpfile ("Processor.vcd");
$dumpvars (0,Processor) ;
#550;
$dumpflush;
end
initial
begin
#550 $finish;
end
endmodule
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.NIA_WE(NIA_WE),

hb,

.Ex_Sel(Ex_Sel) );

rom[i];



