
High Level Synthesis from Sim-nML ProessorSpei�ations
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

bySouvik Basu

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurAug, 2001

Certi�ateThis is to ertify that the work ontained in the thesis entitled \High LevelSynthesis from Sim-nML Proessor Spei�ations", by Souvik Basu, has been arriedout under my supervision and that this work has not been submitted elsewhere for adegree.
Aug, 2001 (Dr. Rajat Moona)Department of Computer Siene & Engineering,Indian Institute of Tehnology,Kanpur.

AbstratThe design of modern embedded systems require automated modeling tools forfaster design and for the study of various design trade-o�s. These tools put togetheronstitutes an integrated environment, where the designer an write the high leveldesign spei�ation and the tools will automatially generate the required hardwareand software for the embedded system. Sim-nML is one of these types of spei�ationbased development system, enirling whih several tools have been developed earlier.In this thesis, we have developed a high level synthesis system based on Sim-nMLproessor ISA spei�ation language. High level synthesis or behavioral synthesisdeals with the problem of transforming a behavioral spei�ation of a digital systemto register-transfer level (RTL) implementation. Tools have been developed for behav-ioral and strutural high level synthesis. Behavioral high level synthesis transformsSim-nML spei�ations of proessors to the orresponding behavioral Verilog mod-els. These behavioral Verilog models are suitable for fast funtional simulation usingstandard Verilog simulators. Strutural high level synthesis generates strutural syn-thesizable Verilog proessor models from the orresponding Sim-nML spei�ations.The strutural model is suitable for both funtional simulation and synthesis to lowlevel Verilog netlist. Arhiteture of the strutural design is non-pipelined and takesmultiple lok yles to exeute an instrution. The generated behavioral and stru-tural Verilog models are ompliant with the urrent industry standard simulation andsynthesis tools.

Contents
1 Introdution 11.1 Overview . 11.2 Goals Ahieved . 21.3 High Level Synthesis . 21.3.1 Input of High Level Synthesis System 31.3.2 High Level Synthesis Stages 31.4 ASIC/ASIP Design Flow . 61.5 Organization of The Thesis . 82 Related Works 92.1 Introdution . 92.2 High Level Synthesis from Proessor ISA Spei�ations 102.3 Other High Level Synthesis Systems 113 Design of the High Level Synthesis System 133.1 Introdution . 133.2 Design of the Front-end of High Level Synthesis System 143.3 Design of the Bak-end of Behavioral High Level Synthesis System . . 153.4 Design of the Bak-end of Strutural High Level Synthesis System . . 153.4.1 Overview of the Bak-end Design 153.4.2 Proessor Arhiteture of the Strutural Design 173.4.3 Optimizations of the Flattened Intermediate Representations . 183.4.4 Sheduling of the Optimized Instrutions 193.4.5 Resoure Alloation and Interonnetion Generation 223.4.6 Control Path Generation . 234 Implementation of High Level Synthesis System 24i

4.1 Introdution . 244.2 Implementation of Front-end of High Level Synthesis System 244.3 Implementation of Bak-end of Behavioral Synthesis System 254.4 Implementation of Bak-end of Strutural Synthesis System 274.4.1 Introdution . 274.4.2 Optimization of Flattened IR and Three Address Code Gener-ation . 284.4.3 Data Path Element Instantiation 294.4.4 Control Unit Generation . 334.4.5 Top-Level and Simulation Module Generation 345 Results and Conlusion 355.1 Results . 355.1.1 Result of Behavioral Synthesis System 355.1.2 Result of Strutural Synthesis System 365.2 Conlusion and Future Works . 38A Synopsys Design Compiler Con�guration Setup 47A.1 Design Compiler .synopsys d.setup File 47A.2 Design Compiler Compilation Sript 47A.3 Design Compiler Parameterized Library Spei�ation 48B Example of Strutural Datapath of a Hypothetial Proessor 54C Setion of Generated Verilog Behavioral Synthesis Code 58D Simulation Top Level Monitor File Sample 62

ii

List of Tables5.1 Behavioral Synthesis Run Statistis for Motorola 68HC11 355.2 Strutural Synthesis Run Statistis for PowerPC 603 subset 375.3 Total Cell Area for Synthesized PowerPC 603 subset 385.4 Total Cell Area for Synthesized PowerPC 603 subset after Clok TreeInsertion . 385.5 Total Cell Area by instantiated modules for Synthesized PowerPC 603subset . 395.6 Total Cell Area by instantiated gates for Synthesized PowerPC 603subset . 405.7 Total Cell Area for Hypothetial Proessor Data Path 405.8 Total Cell Area by instantiated ells for Hypothetial Proessor DataPath . 41

iii

List of Figures3.1 Overall Design of High Level Synthesis System 133.2 Front End of High Level Sysnthesis 143.3 Behavioral Design Bak-End . 153.4 Bak-End Design Flow . 163.5 Proessor Blok Diagram . 173.6 System Blok Diagram . 183.7 Sheduling Example Diagram . 214.1 Simulation Monitor Module . 284.2 Unit Connetion before Mux/Dmux 324.3 Unit Connetion after Mux/Dmux . 335.1 Simulation of Behavioral Verilog Code 365.2 Di�erent Levels of Synthesis . 37

iv

Chapter 1
Introdution
1.1 OverviewHigh level synthesis or behavioral synthesis deals with the problem of transforming abehavioral spei�ation of a digital system to register-transfer level (RTL) implemen-tation. The behavioral spei�ation of the digital system may be the system arhite-ture, or the algorithmi behavior of the system spei�ed in some high level language.As the Very Large Sale Integrated iruits (VLSI) tehnology is urrently providingspae for multiple million gates of random logi per hip, it is getting diÆult todesign suh large iruits using traditional apture-and-simulate design methodology.Also with the fast moving tehnology, time to market is one prime onern for thedesign along with hip area, power and speed. To shorten the produt developmentyle, newer desribe-and-synthesize methodology is gaining more importane.Desribe-and-synthesize methodology [10℄ essentially moves design automation onhigher levels of abstration whih makes design yle shorter and allows more designalternatives to explore. The eÆient synthesis tools an even out-perform averagehuman designers in meeting the design onstraints. Synthesis proess is similar toompiling programs written in high level languages like C or Pasal to assemblylanguage. Eah omponent in the generated lower level of abstration translates toomponents that provide a more detailed desription of the system. Thus, eah stagein synthesis is a design re�nement proess.Sim-nML [34℄ is a language that an be used to speify a programmable proessorat the level of its Instrution Set Arhiteture (ISA). The ISA spei�ation of the pro-essor inludes the assembly language syntax, binary image and semanti behaviorof the instrutions . A resoure usage model is urrently under development, whihaptures some of strutural onstruts of the proessor inluding omplex pipelininget. The Sim-nML proessor spei�ation is behavioral in nature. An integrated1

development environment enirling the Sim-nML proessor spei�ation languageis in the proess of development, whih inludes the generation of retargetable as-semblers [25℄, disassemblers [21℄, ompiler bak-ends [33℄, funtional simulators [4℄,retargetable ahe simulators [34℄, pro�lers [34℄ et. In this thesis, a tehnique is devel-oped to generate the strutural and behavioral model of a programmable proessorin Verilog HDL from its Sim-nML spei�ation. The strutural model is suitablefor both synthesis and simulation. Similarly, the behavioral model is suitable forfast simulation. As Sim-nML spei�es a programmable proessor at its ISA level,the hardware generation methodology is suitable for Appliation Spei� InstrutionProessor (ASIP) generation.1.2 Goals AhievedThe goals ahieved in the thesis are as follows.� From Sim-nML spei�ation, behavioral Verilog model of the proessor is gen-erated. The generated Verilog desription is a olletion of Verilog statementssuitable for fast funtional simulation.� A tehnique is developed to generate the strutural synthesizable Verilog modelof proessors from Sim-nML spei�ations to a partiular target arhiteture.The Verilog desription an be synthesized to get the netlist of hardware stru-tures.1.3 High Level SynthesisHigh Level Synthesis (HLS) is the transition from the algorithmi level spei�ationof behavior of a digital system to a Register-Transfer Level (RTL) struture thatimplements the behavior. The input to HLS an be desription of ISA or an algorithmwritten in some high level language. The output from a HLS is a onnetion of datapath elements and a Finite State Mahine (FSM) that implements the ontrol path.The RTL level data path for the proessor is omposed of three types of omponents- funtional units (e.g. ALUs, multipliers, and shifters), storage units (e.g. registersand memories) and interonnetion units (e.g. buses and multiplexors). The FSM ofthe ontrol path an be realized by a hardwired logi or by a miroprogrammed ontrolunit. The ontrol path triggers the appropriate data path elements in synhronizationwith lok thereby implementing the funtionality of the proessor.
2

1.3.1 Input of High Level Synthesis SystemThe input desription of a HLS an be behavioral spei�ation of a digital systemwritten in Verilog, VHDL, C or any suitable proedural language, proessor arhite-ture desription languages like Sim-nML [34℄, LISA [50℄, MIMOLA [27℄, ISDL [14℄,nML [9℄ or any other form. There are several other languages proposed for desribinghardware at varied level of abstrations, inluding some delarative languages andsome higher level of system level behavioral languages. Examples of these languagesinlude SystemC [45℄ and Esterel [48℄.1.3.2 High Level Synthesis StagesThe HLS is typially arried out in �ve stages - ompilation, transformation, shedul-ing, resoure alloation and binding.Input Desription CompilationThe input behavioral desription is ompiled into an internal representation suitablefor several high level transformations and optimizations employed in the subsequentHLS stages. The most used internal format is graph based representation where thedata and ontrol ow of the input (assuming proedural style of desription) is stored,preserving the dependeny and sequentiality of the input. The representation an bemade in Data Flow Graph (DFG) or in Control Flow Graph (CFG) or in ombinedControl-Data Flow Graph (CDFG). Other intermediate representations inlude petrinet and extensions of petri net[49℄ et.Transformation of Internal RepresentationThe transformation phase is one of the important stages, in whih several optimiza-tions are performed on the given input. The hardware performs operations in parallel.If the behavioral spei�ation do not express the parallelism, it should be extratedfrom the spei�ation. The objetive of transformation is generally to minimize thesilion area of the generated hip and maximize the speed. Some other objetivesould also be to optimize transformations for testability, low power onsumption andreliability. The transformations are similar to the regular ompiler optimizationsalong with some hardware spei� optimizations. The general transformations in-lude the following.� Temporary Variable Elimination : For ease of desription, the input be-havioral desription ontains several temporary variables. These variables resultin hardware registers, whih would mean that the resultant hardware oupies3

extra area. To be noted that, all temporary variables an't be removed due tounderlying arhitetural onstraints as explained in the later hapters.� Common Subexpression Elimination : The parts of the ode that arerepeated are fatored out. Thus, the hardware operations are needed to beperformed only one, whih redues area. However, this transformation anredue the speed of operation beause otherwise the operations an be done inparallel with additional resoures.� Dead Code elimination : Removing dead ode, i.e. ode that serves noomputational purpose, thus resulting in redution of unneessary hardware.� Expression Simpli�ation : Expressions are evaluated so that the operationsmay be done in a smaller number of steps. This transformation is done inompliane to the underlying arhiteture.� Constant Propagation : If some value of onstant is known then the valuesan be used to simplify the ow of the desription, there by reduing the numberof operations.� Loop Unrolling : This is an important transformation, as hardware struturean't support loop diretly. For input languages that support loops 1, the loopbody an be repliated and if possible, some optimizations an be performed inthe unrolled loop.� Hardware Spei� Transformations : These are optimizations not om-monly used in ompilers. These are however neessary in the hardware designs.One suh optimization is to hange the desription suh that it uses funtions,whih may be performed diretly by the hardware. An example is given below.The expression 0.3333 + 2.6664*X ould be simpli�ed to 0.33*(1 + 8*X). Inthe simpli�ed ase, the multipliation by eight an be done by shift and theaddition of one an be done using an inrement.As desribed above all the transformations are not target arhiteture indepen-dent. For example if the target arhiteture does not support multiply and aumu-late as a funtional unit then the multiply and aumulate operations must be dividedin two sub operations, inorporating a temporary variable to hold the intermediatevalue. Contrary to this if the target arhiteture supports multiply and aumulatefuntional unit, there is no need to inorporate temporary variables to hold thesevalues.1In our high level synthesis Sim-nML language does not support loop onstrut
4

ShedulingSheduling assigns the operations in behavioral desription into ontrol steps. A on-trol step usually orresponds to a yle in the system lok, the basi time unit ofthe synhronous digital systems. The sheduling is onstrained by the user aordingto the available resoures or the maximum delay (i.e the speed of the digital system)or both. If no onstraints are spei�ed then it is possible to get the fastest hard-ware implementation exploiting maximum parallelism and using as many numbersof funtional, storage and interonnetion units. Suh an implementation howeverrequires the maximum area with the onstraints it would have been possible to gen-erate hardware with small area, using minimum number of funtional, storage and/orinteronnetion units. The hardware implementation in this way may or may nothave any parallelism in the operations. The generated hardware may or may not bethe minimum area implementation, depending upon the area ratio of the funtionaland interonnetion units.In sheduling the total number of ontrol steps neessary, is dependent on theonstraints. If higher speed is required, less number of ontrol steps are used andmore operations are sheduled in eah ontrol step. This results in large funtionalunits and silion area of the hardware. If less area in the resultant hardware isrequired then less number of funtional units are available in the generated hardware.Thus, less numbers of operations are performed in eah ontrol steps and low speedhardware is generated. In this way, sheduling determines the tread o� betweenthe design ost and performane. One important thing to remember that all thepre-de�ned sheduling onstraints in HLS may not satis�ed in sheduling stages duethe arhitetural properties, available hardware omponents (will be alloated in nextstage) et. In that ase user has to provide new set of onstraints or objetive funtionin the HLS and has to perform sheduling again to hek the suitability of outputwith the objetive funtion.There are several approahes to solve all or partiular lass of sheduling prob-lems in HLS. In general, Integer Linear Programming (ILP) formulation is orretfor resoure-onstrained and time-onstrained sheduling problems [20℄. But as op-timum sheduling problems are NP omplete, the exeution time of algorithms growexponentially with the number of variables and number of inequalities in the for-mulated ILP. Thus for large pratial problems heuristis have been developed thatrun eÆiently maintaining the sheduling goals. Heuristi sheduling algorithms areof two lasses - onstrutive approah and iterative re�nement approah. There areseveral algorithms of eah lasses, where eah of them di�ers in the input riteriaand the next heuristi stage seletion. The simplest onstrutive approah is the AsSoon As Possible (ASAP) or eager sheduling. First the operations are stored in alist aording to their topologial order. Then operations are taken from the list oneat a time and plaed in the earliest possible ontrol step. Similar to this anotheronstrutive heuristi approah is As Last As Possible (ALAP) or lazy sheduling. In5

this sheduling, the operations are stored in the list, but sheduler tries to shedulethe operation at the latest ontrol stage. To make the hardware faster the delay inthe ritial path (the longest path in terms of ontrol steps) is to be minimized. ASAPand ALAP sheduling sheme do not onsider the ritial path in hoosing the nextstep. List sheduling whih is another onstrutive approah solves the ritial pathproblem by keeping a list of eah operation that has not yet been seleted at eah ofthe ontrol step. The list ordering is maintained by a priority funtion, whih formsthe global sheduling riteria. The priority funtion in the list sheduling an be ho-sen in several ways. Some examples of hoosing priority funtions are mobility [31℄,whih is de�ned as the di�erene between the ASAP and ALAP sheduled values ofan operation. Another example of priority funtion is urgeny [11℄, whih is de�nedas the minimum number of ontrol steps from the bottom at whih an operation anbe sheduled before the timing onstraint is violated et. There are other examplesof sheduling suh as Fore Direted Sheduling (FDS) et.Resoure Alloation and BindingAfter sheduling, the next operation is to alloate resoures from the omponentdatabase. The alloation is done aording to the sheduling while maintaining thesheduling order and preserving the onstraints. The omponent database librarymay ontain several types of funtional units with di�erent area, speed, power on-sumption, arhitetural variations suh as pipelining or non-pipelining, storage unitswith di�erent area, speed, power onsumption and interonnetion units. Resourealloator searhes the omponent database and alloates suitable resoure from it.The resoure binding is �nal assignment of hardware resoures to the sheduled op-erations, from the alloated set of resoure. At this level variables are assigned tostorage units. During this, variable lifetime is analyzed and resoure binding is done.In optimized alloation and binding two variables may share the same storage re-soure if they are not aessed or altered in the same ontrol step, i.e. , the variablesare mutually exlusive. Operations are assigned to alloated funtional units. Eahfuntional unit an only exeute one operation in one ontrol step. Interonnetionbinding binds interonnetions between storage and funtional units. Typial inter-onnetion units used are buses and multiplexers.1.4 ASIC/ASIP Design FlowThe design of an Appliation Spei� Integrated Ciruit (ASIC) or Appliation Spe-i� Instrution Proessor (ASIP) starts from the behavioral desription of the digitalsystem, whih inludes the algorithm for the ASIC or the instrution set arhitetureof the ASIP. Our HLS methodology is suitable for the ASIP generation. In our6

methodology, the instrution set of the ASIP an be spei�ed in Sim-nML language.The broad stages in the ASIC/ASIP design ow inlude the followings.� Behavioral Spei�ation : The behavior of the digital system is desribedin a suitable language.� High Level Synthesis : Transformation of behavior to suitable hardwarearhiteture while performing Design Spae Exploration (DSE). In HLS, therean be one or multiple target arhitetures in whih the input behaviors an betargeted to generate the struture. This is also known as behavioral synthesis.� Simulation of HLS Generated RTL Netlist : The HLS generated netlistis simulated to verify the funtional orretness for several test ases.� Logi Synthesis : This is the next stage of synthesis where the arhiteture ismore elaborated and several logi synthesis optimizations are performed. Thedesign is �nally mapped to a partiular tehnology library provided by thesemiondutor vendor. The output gives aurate measures of area, speed,power requirements et.� Stati Timing Analysis : This is performed after inserting lok tree andlok bu�ers. The aurate timing analysis is done to verify the timing require-ments.� Simulation of RTL Netlist : The netlist is simulated after the logi synthe-sis to verify the funtional equivalene with the high level synthesis generatednetlist.� Floorplanning, Plae & Route : The hip oorplan is designed and hipmodules are plaed with proper routing, maintaining the timing and other fun-tional onstraints. Chip input/output guard rings et. are also prepared forexternal interfaing.� Masking and Prototyping : From the plae & route data, layout masks areprepared and the hip is taped out.Eah of the above mentioned stages are olletions of several sub-stages and eahof them are quite omplex in nature. Our methodology of ASIP generation is im-portant as this an be extended to suitable o-design methodology of both hardwareand software generation. This infers, from the instrution set desription in Sim-nML,several system software an be automatially generated. For ASIP development thereare methodologies to automatially generate ISA after analyzing the partiular ap-pliation domain requirements [6℄ [12℄. These methodologies an be integrated withour Sim-nML based methodologies for rapid o-design of ASIP and related softwaredevelopments. 7

1.5 Organization of The ThesisOrganization of the rest of the thesis is as follows. A survey of the related researhesin this problem area is provided in Chapter 2. The design of our hardware generationsystem is given in Chapter 3 and the implementation is disussed in Chapter 4. Finallyresults of the work are shown in Chapter 5 where we have also drawn the onlusion.The setup of Synopsys Design Compiler environment is provided in Appendix A.Appendix B gives the example of the strutural data path of a hypothetial proessor.Appendix C gives a setion of behavioral synthesis generated Verilog ode of Motorola68HC11 proessor. Appendix D gives an example of the simulation top-level module.

8

Chapter 2
Related Works
2.1 IntrodutionSeveral researh projets have been arried out in the area of High Level Synthesis(HLS) in the past and several projets are ongoing. While all HLS systems generatethe hardware from high level spei�ations, the objetive of two di�erent projetsmay be di�erent. Some projets aim at the minimization of area, while some otheraim at the maximization of speed or minimization of power or a mix of these.In this hapter, the researh projets in HLS are broadly distinguished in twogroups, based on the types of input spei�ations. The �rst group omprises of HLSsystems that synthesize the hardware from spei�ations of Instrution Set Arhite-ture (ISA) of a programmable proessor. The seond group omprises of the HLSsystems that synthesize the hardware from algorithmi spei�ations of a digital sys-tem. Our approah of HLS from Sim-nML proessor spei�ations falls in the �rstgroup. The Sim-nML proessor spei�ations are also suitable for generating othersystem software as mentioned in Chapter 1.ASIC generation from the algorithmi spei�ations of funtionality falls in theseond group. The seond approah is apable of synthesizing ASICs, ASIPs, DSPsand general purpose proessors. In that sense, the seond approah supports a broadrange of digital system HLS. However, it is not suitable for generating system softwareet. from the input spei�ations. Thus, this approah an not provide an integratedmethodology like the �rst one.

9

2.2 High Level Synthesis from Proessor ISA Spe-i�ationsSome of the HLS systems that take proessor ISA spei�ations as input are desribedbelow.MIMOLA [27℄ hardware spei�ation language, developed at University of Dort-mund, Germany an be used to write strutural spei�ations of a programmableproessor at low level, exposing several hardware details. Hardware is then synthe-sized from MIMOLA spei�ations. MIMOLA being a low level spei�ation, thehardware generation method is easier. MSS [28℄ is a MIMOLA based hardware syn-thesis system that an also take behavioral VHDL spei�ations as input.ISDL [14℄, developed at MIT LCS is another programmable proessor instrutionset arhiteture spei�ation language, whih desribes the behavior of a proessorin attribute grammar notation. The language is suitable for general purpose pro-grammable proessor, but speial emphasis has been given for VLIW arhiteturebased proessor spei�ations. In ISDL, the parallelism is expliitly spei�ed usingillegal instrution grouping and it is used for the generation of the parallel hardware.A synthesis tool HGEN has been developed that generates synthesizable Verilog forthe underlying VLIW arhiteture from ISDL spei�ations.nML [9℄ proessor instrution set spei�ation language, developed at TU Berlinhas been used for hardware generation [8℄. From the attribute grammar based rep-resentation, hardware elements have been generated. The nML language is similarto the Sim-nML, but the design of the system to generate hardware is very di�erentfrom our work. In our work we have produed the intermediate attened Sim-nMLdesription and mapped it to �xed data path arhiteture. In nML the hardwaremodules `HME's and `HMC's are generated from the non attened representation ofthe proessor spei�ations.LISA [50℄ proessor spei�ation language, developed at Aahen University ofTehnology, Germany is used to speify programmable proessors. The proessorspei�ations apture the instrution behavior along with several strutural informa-tion, like pipelining et. Strutural information is spei�ed using reservation tablesand used in the hardware synthesis. VHDL hardware models have been synthesizedfrom LISA for four stage pipelined ICORE arhiteture.There are many other languages to speify proessor instrution set arhitetures,like SLED [35℄, EXPRESSION [15℄ et. Till date, no work has been published onHLS from these languages.
10

2.3 Other High Level Synthesis SystemsThere are other types of high level synthesis systems that take behavioral desriptionof a hardware (programmable or non-programmable) in some desription languageand generate hardware models. The HLS systems perform several types of optimiza-tions and generate strutural hardware netlist aording to the objetive funtion.Some of these types of high level synthesis systems are desribed below.CMUDA [41℄, developed at Carnegie-Mellon University takes the desription writ-ten in ISPS [1℄ language and generates hardware from it. The System Arhitet'sWorkbenh [39℄ is a later extension of the CMUDA HLS system.IMPACT [23℄, developed at Prineton University is a high level synthesis systemspeially designed for minimizing power onsumption in ontrol ow intensive iruits.TRS [18℄, developed at MIT LCS desribes hardware at miro-arhiteture level.TARC, Term Rewriting Arhiteture Compiler takes onurrent TRS spei�ationsand generates synthesizable Verilog ode.Bedrok [26℄, developed at University of Cornell takes input behavioral spei�-ations in a language similar to Pasal and generates FPGA synthesizable hardwaremodel. The input spei�ation language is named HardwarePal.MAHA [32℄, developed at University of Southern California is a data path alloa-tion system, whih uses the ritial path information for hardware synthesis. Severalheuristis are developed to get the optimized solutions.Olympus [5℄, developed at Stanford University uses HardwareC, a C like hardwarespei�ation language for the design spei�ations. The synthesis system has twotoolsets, Herules and Hebe. Herules takes HardwareC input and passes result toHebe, for sheduling and binding.SPARK [47℄, under development at University of California, Irvine uses paralleliz-ing ompiler tehniques to synthesize behavioral ANSI-C funtionality spei�ationsto generate synthesizable register-transfer level VHDL ode.CATHEDRAL-III [37℄, developed at IMEC and ESAT, Belgium is a HLS tool forhigh throughput DSP appliations. The input spei�ations are written in SILAGEand the system generates both behavioral and strutural synthesizable hardware mod-els.MMAlpha [7℄, developed at Irisa, Frane is a HLS tool used for synthesizinghardware for regular arhitetures like systoli arrays, from Alpha language proessorspei�ation. Alpha is a funtional language for desribing regular algorithms atbehavioral level.AMICAL [22℄, developed at TIMA Laboratory, Frane is a VHDL behavioralsynthesis system that reads VHDL behavioral spei�ations and generates VHDLoutput. 11

CADDY-II [13℄, developed at FZI Researh Center, University of Karlsruhe Ger-many is a high level synthesis system that takes behavioral desription in VHDLor DSL and generates strutural VHDL netlist. It supports di�erent arhiteturalalternatives like multiplexers and buses, single phase or two phase lok et.BSS [19℄, developed at Tehnial University of Braunshweig, Germany takes be-havioral desription written in C as input and generates synthesizable Verilog netlist.The tool is a part of COSYMA hardware-software o-design tool.NESCIO [17℄ and NEAT [16℄, developed at Eindhoven University of Tehnology,Netherlands provides a framework for high level synthesis. NEAT is an objet orientedhigh level synthesis interfae and it is used by NESCIO HLS system.CAMAD [49℄, developed at Linkoping University, Sweden is a HLS system thattakes behavioral spei�ations written in Pasal like ADDL language, onvert themto internal petri net strutures and generate VHDL RTL netlist.Rodin [46℄, developed at AITEC, Japan takes LSI behavioral spei�ations asinput and generates logial iruits at RT level.PICO-N system [36℄, developed at HP Labs automatially synthesizes embed-ded non-programmable aelerators from the nested loops desribed in C. The loops,whih are the most time onsuming part of program exeution are onverted to syn-thesizable VHDL RTL level struture. The output is synthesized as o-proessor.The underlying arhiteture of the PICO-N HLS system is VLIW in nature.DAA [24℄, developed at AT & T Bell Labs takes an expert system based approahto synthesize data path of general purpose proessors. Other high level synthesissystems developed at AT & T Bell Labs are BRIDGE [40℄, BECOME [43℄, Cherm[44℄ and CONES [38℄.Phideo [29℄, aronym for PHIlips viDEO ompiler is developed at Philips researhenter for high-throughput digital appliations, speially for video proessing. It gen-erates parallel arhitetures from the behavioral spei�ations of the digital systems.CALLAS [3℄, developed at Siemens, Germany is a behavioral and logi synthesistool.Cyber [42℄, developed at NEC researh lab is a high level synthesis tool that takesthe spei�ations written in C as its input.

12

Chapter 3
Design of the High Level SynthesisSystem
3.1 IntrodutionIn this thesis work, the high level synthesis system is developed that generates bothbehavioral and strutural HDL models of proessors from Sim-nML proessor spei-�ations. The outputs are Verilog proessor models, in whih the behavioral modelsare suitable for fast funtional simulation and the strutural models are suitable forboth funtional simulation and hardware synthesis. The generated Verilog stru-tural desriptions are fully ompliant with Synopsys In.'s industry standard DesignCompiler synthesis tool [2℄.

Front−End of High
Level Synthesis

Back−End of Behaviorial
High Level Synthesis

Back−End of Structural
High Level Synthesis

Figure 3.1: Overall Design of High Level Synthesis System13

The overall design of the high level synthesis system (�gure 3.1) onsists of twoparts, the front-end and the bak-end. The front-end is same in both behavioral andstrutural high level synthesis systems. The bak-end for the strutural synthesis ismore omplex than the bak-end for the behavioral synthesis system.3.2 Design of the Front-end of High Level Synthe-sis SystemThe design of the front-end of the high level synthesis system is shown in the �gure3.2. It takes the Sim-nML proessor spei�ations as input and produes their
Intermediate Representation (IR)

Sim−nML Description

Flattened IR

IR Generator

IR Flattener

Figure 3.2: Front End of High Level Sysnthesisattened representation. In the �rst step, input Sim-nML proessor spei�ations areonverted to binary intermediate representations (IR) by an existing tool alled `irg'[34℄. IR is suitable for subsequent analysis suh as attening et. Sim-nML spei�esprogrammable proessors in attribute grammar form, where the information of eahmahine level instrution is fragmented over an attribute grammar spei�ation tree.The root node of the tree is named `instrution'. To get information about a partiularinstrution of the proessor, the path from the root node to the orresponding leafnode is traversed, with proper parameter substitution at all levels. While atteningthe internal representation, all suh paths from root to the various leaf nodes aretraversed and information about all possible mahine instrutions is obtained.14

3.3 Design of the Bak-end of Behavioral HighLevel Synthesis SystemThe design of the bak-end of the behavioral high level synthesis system is shownin the �gure 3.3. The bak-end for behavioral synthesis system employs no opti-
Sim−nML to Verilog

Translation

Top Level Simulation
Module Generation

Figure 3.3: Behavioral Design Bak-Endmizations for the input spei�ations. The bak-end of behavioral synthesis systemtakes the attened IR as input and for eah mahine instrution ation, generatesthe Verilog behavioral proessor model. The Verilog model is obtained as a simpletranslation from the IR. After generation of proessor Verilog funtional model, a toplevel simulation module is generated to failitate the funtional simulation proess.3.4 Design of the Bak-end of Strutural High LevelSynthesis System3.4.1 Overview of the Bak-end DesignThe design ow of the bak-end of our strutural high level synthesis system is shownin the �gure 3.4. It has four major steps, optimizations of the attened intermediaterepresentations; sheduling of the optimized spei�ations; resoure alloation and in-teronnetion of resoures; and ontrol path generation. The data path is generatedin sheduling and resoure alloation steps. In the �rst step, optimizations are per-formed to improve the quality of the design (area minimization, speed enhanement15

Optimizations of
Flattened IR

Scheduling of
Flattened IR

Interconnectionand
AllocationResource

Generation
Data Path

Control Path
Generation

of Resources

Figure 3.4: Bak-End Design Flowet.), while maintaining the funtionality or the semanti meaning of the Sim-nMLproessor spei�ations.In the seond step, the operations used in the optimized spei�ations are shed-uled into ontrol steps. Sheduling is performed under several onstraints (like thetypes of resoures available, maximum numbers of resoures of eah types, resourearhitetures, speed and power onsumption of the generated hardware et.) keepingone or multi-objetive sheduling goal. In our implementation, the single objetivehosen for optimization is area minimization.After sheduling, the hardware resoures are alloated. This step instantiatesthe hardware modules aording to the sheduling. The sheduling and resourealloation are both arhiteture spei� and are performed with a target arhiteturein mind. The target arhiteture for our approah is shown in the �gure 3.5. It is anon-pipelined arhiteture, whih takes multiple lok yles to exeute an instrution.The arhitetural features put extra onstraints in the proess of sheduling, resourealloation and interonnetion of resoure. For example, the number of ports on aregister �le will determine how many arguments an be read for an instrution atthe same time. After instantiating the data path elements, interonnetion elementsinluding the multiplexers, de-multiplexers and wires are instantiated.After generation of data path by means of sheduling and resoure alloation, the16

External
Memory

Fetch
Unit

Write Back
Unit

Execution

Unit

FU1

FU2

FU3

Control
Unit

Control

Data

Signal

Processor
Boundary

Decode and
Register
Storage
Unit

FU := Function UnitFigure 3.5: Proessor Blok Diagramontroller is generated. The ontroller generates ontrol signals for the data pathelements as per the deoded instrutions and the shedule of the instrutions.The bak-end of strutural high level synthesis is parameterized. Some of theparameters that are used are the width of the input output ports of the funtionaland storage units; and orresponding wire widths. The parameters are spei�ed usingVerilog `parameter' onstrution.3.4.2 Proessor Arhiteture of the Strutural DesignThe synthesized proessor model is expeted to work with an external memory. Theoverall system blok diagram is shown in the �gure 3.6. Proessor sends address andread/write ontrol signal to memory and the data is exhanged between memory andproessor. The proessor ontains data path and ontrol path elements. The datapath elements exeute the instrutions under the ontrol of the signals generated bythe ontrol path elements. Control signals are generated aording to the deodedinstrutions and the orresponding instrution sheduling (�gure 3.6).17

Control
Path Path

Data

Processor Memory
Read/Write

Data

Address

Control

Data
Condition

Signal

Figure 3.6: System Blok DiagramThe di�erent units of the arhiteture as shown in the �gure 3.5 are, feth unit;deode and register storage unit; exeution unit and write-bak unit. Feth unit getsdata and instrutions from the memory. The write-bak unit writes the data bakinto the memory and registers, after ompletion of exeution in the exeution unit.Deode and register storage unit, deodes the instrutions and put operands to theexeution unit from registers. Exeution unit is a olletion of several funtional unitsas shown in the �gure 3.5.The target arhiteture of our design is simpler than pipelined arhitetures. Thisarhiteture is seleted to show the feasibility of high level synthesis from Sim-nMLspei�ations. Our aim was not to generate the arhiteture for eÆieny but just toshow the feasibility of the synthesis from Sim-nML spei�ations. More advaned highlevel synthesis systems an support one or more omplex arhitetures from wherethe user an selet the arhiteture of his hoie. Further there an be advanedinremental `design spae exploration' approahes in whih the design is transformedautomatially to one of the several alternative arhitetures to meet the desired ob-jetives.3.4.3 Optimizations of the Flattened Intermediate Represen-tationsThe Sim-nML spei�ations for a proessor an be written in an unoptimized way,whih makes the spei�ation writing easier and elegant looking. It is neessary tooptimize the spei�ations for area minimization and speed maximization. The opti-mizations on the attened input are similar to the ones used by the ompilers. The18

optimizations that are suitable for synthesizing hardware are for example, temporaryvariable elimination, dead ode elimination, ommon-subexpression elimination, ex-pression simpli�ation, onstant propagation and some hardware-spei� transforma-tions et. In our implementation, we perform only the temporary variable eliminationand the dead ode removal arising beause of temporary variable elimination.� Temporary Variable Elimination : Temporary variables used in Sim-nMLspei�ations are de�ned using `var' data types. There are other types of vari-ables in Sim-nML like `reg' and `mem' that speify registers and (external orinternal) memory in the proessor. The `var' data types do not orrespond toany physial storage units. Systemati optimizations performed around thesetemporary variables do not destroy the semantis of the instrution spei�a-tions. As the two other data types orresponds to physial storage units, removalof any de�nition of these variables through optimizations an violate the overallproessor ISA semantis. The removal of temporary variables eliminates theneed of the storage registers. However, some temporary variables an not beremoved from the design automatially. These remaining temporary variablesare instantiated as temporary registers, keeping the funtional onsisteny ofthe spei�ations.� Dead Code Elimination : The dead ode, i.e the ode that serves no ompu-tational purpose is eliminated. Only the dead odes that modify the `var' typetemporary variables are removed. This is beause, for `reg' and `mem' datatypes, the seemingly dead ode for one instrution an have semanti meaningassoiated with some other instrutions.3.4.4 Sheduling of the Optimized InstrutionsThe optimized instrutions require a series of operations to be performed. Dependingupon the dependeny, these operations are sheduled one after another in time. Fur-ther depending upon the availability of the resoures, some of these operations maybe done in parallel.Sheduling Constraints� Arhiteture of the Proessor : The non-pipelined multi-yle arhitetureof the proessor permits only one instrution to be exeuted at a time. Afteroptimization, one instrution of the proessor an use one or multiple funtionalunits to exeute the instrution. For eah instrution, aesses to multiplefuntional units are performed in non-pipelined manner.19

� Number of Funtional Units : Generally in a proessor, one or more thanone funtional units of the orresponding type are available. However, in ourimplementation, only one funtional unit of any type is instantiated. This on-straint is added to minimize area, whih is kept as a sheduling goal. Thus if aSim-nML spei�ation ontains a maximum of 10 additions over all instrutions,only one adder will be instantiated in the design.� Number of Data Port Resoures : Similar to the most real designs, thestorage units (registers, register �les and memory) have one input data port,one output data port and one multiplexed read/write address port. Thus inone lok yle either one read or one write operation an be performed in thestorage units. The funtional units in our implementation ontain two inputdata ports and one output data port. In addition, the funtional units areenapsulated inside one exeution unit. The input and output data ports ofthe funtional units are mapped to the input and output ports of the exeutionunit respetively. Thus in a lok yle only the ports orresponding to onefuntional unit are available.� Types of Funtional Units : In our implementation, one funtional unit anperform only one type of operation. Thus, no shared funtional units like `adder-subtrator', `multiplier-adder' et. are instantiated. This makes one to oneorrespondene between the operations and funtional units in the sheduling.Sheduling Goal� Minimization of Proessor Area : The primary goal for our work in highlevel strutural synthesis is to minimize area. A simple rule to ahieve this isto minimize the number of eah types of funtional unit instantiated. Howeverbeause of the minimization of funtional units there is a need of extra multi-plexers or multiplexers with large number of inputs. It may inrease the overallsize of the proessor.To generate sheduled operation sequenes of every instrution, the instrutionations are onverted to a sequene of three address operations. The three addressform is like `A = B + C', whih reads from the storage units B and C, performsoperation addition and writes bak in the storage unit A. In our design, this threeaddress form takes four lok yles to omplete the exeution. Two yles are neededto read from the storage units, one lok yle to perform the operation and one lokyle to write bak in the storage unit.We have shown some sheduling examples in the �gure 3.7. The example in the�gure 3.7A shows exeution of one three address operation R3 = R1 + R2 in fouryles. The redution of lok yle requirement to three lok yles is shown in20

R1

R2

R3

R4

R5

R6

Fig C

Fig A : One Basic Operation Performed in Four Clock Cycles

Clock 1

Clock 2

Clock 3

Clock 4

Clock 5

Clock 6

Clock 7

Clock 8

R1

R2

R3Clock 4

Clock 3

Clock 2

Clock 1

R3

R1 R2 Clock 1

Clock 2

Clock 3

Fig B : One Basic Operation Performed in Three Clock Cycles

Fig A Fig B

Fig C : Two Basic Operations Performed in Eight Clock CyclesFigure 3.7: Sheduling Example Diagramthe �gure 3.7B. If R1 and R2 are in a single register �le, with only one read port,then sheduling an not be performed in this way. In a more onservative way, wehave hosen sheduling of operations similar to one shown in the �gure 3.7A. Thesheduling of two three address ode operations are shown in the �gure 3.7C. It takeseight yles to omplete.An example of the sheduling is given below. Here an expression involving fouroperand is �rst onverted into two three address operations. A shedule of eight lokyles is then drawn as shown in the example.21

Sim-nML Instrution AtionA = B + C * DThree Address CodeT = C * DA = B + TSheduled OperationsClok1 Read CClok2 Read DClok3 Multiply C, DClok4 Write TClok5 Read TClok6 Read BClok7 Add B, TClok8 Write AOur sheduling is onservative and does not employ hardware parallelism. Thusthere is a lot of sope for improvement in this approah. In this sheduling step, newtemporary variables are generated beause of translation to the three address ode.3.4.5 Resoure Alloation and Interonnetion GenerationAfter sheduling, all operations are mapped to funtional units and all operands aremapped to storage units in the hardware model. During instantiation of the resoures,there an be arhitetural variations in the instantiated units. For example, an adderan be arry look ahead adder or ripple arry adder based on the sheduling goal. Asthe funtional and storage unit resoures are shared aross the instrutions, these re-soures have multiple soures and destinations. From amongst these multiple soures,one is seleted, depending upon the instrution and the lok yle. For this multi-plexers are used with appropriate ontrols. Similarly for the multiple destinations,appropriate de-multiplexers are instantiated.
22

3.4.6 Control Path GenerationAfter designing the data path, ontrol path elements are instantiated to design theontroller. Sequenes of ontrol signals are spei� to the instrutions as per the op-erations within the instrution and the sheduling of these operations. An instrutiondeoding unit is needed that deodes the instrutions from its binary pattern. Theontrol signals are then generated aording to the sheduling of the operations in theorresponding instrution. To generate ontrol signal for a sheduled `three address'operation, two read; one operation seletion and one write ontrol signals are gener-ated sequentially. Total number of lok yles needed to exeute an instrution isthe sum of the lok yles needed to perform all sheduled three address operations.In our implementation, the ontrol path is not synthesized ompletely. Some partof the ontrol path design is manually added after the synthesis.

23

Chapter 4
Implementation of High LevelSynthesis System
4.1 IntrodutionThe high level synthesis system is implemented in C that runs on the Linux platforms.The tool takes Sim-nML proessor spei�ations in intermediate format and generatesbehavioral and/or strutural Verilog desription of the programmable proessor.4.2 Implementation of Front-end of High Level Syn-thesis SystemAs explained earlier we used an intermediate representation of the Sim-nML proessorspei�ation as starting point of our approah. For this, we have used the intermediaterepresentation generator (irg) developed by Rajiv A. R. [34℄. It takes the input Sim-nML spei�ations and onverts them to internal binary tabular format.The intermediate representation is hierarhial in nature and is attened using atool. The attening tool is an extension of the earlier work of disassembler generator[21℄ and funtional simulator generator [4℄. After attening, all the mode and op rulesare merged and all possible mahine instrutions (with all possible variations in theaddressing modes) are retrieved. At this moment, the internal data strutures holdthe ations of all possible mahine instrutions with the expansion of appropriatemode rules. 24

4.3 Implementation of Bak-end of Behavioral Syn-thesis SystemThe bak-end of the behavioral synthesis system takes the attened intermediaterepresentations of the spei�ation and translates eah instrution ation into theorresponding Verilog ode. In the behavioral high level synthesis no optimizationis performed. All Sim-nML variables in the input spei�ations de�ned using `reg',`mem' and `var' data types, are onverted to Verilog variables. The salar variablesof Sim-nML are translated to Verilog reg data types while the Sim-nML arrays aretranslated to Verilog register arrays. Examples of variables translations are givenbelow. Salar Variables TranslationSim-nML : reg A[1,ard(32)℄Verilog : reg[0:31℄ AVetor Variables TranslationSim-nML : reg B[100,ard(32)℄Verilog : reg[0:31℄ B[0:99℄Deoder for the instrutions is implemented as Verilog `asex' statements. Theimage string to be deoded is stored in an intermediate register named `IR'. Anexample translation of a single Motorola 68HC11 miroproessor Sim-nML instrutionation to behavioral Verilog is given below.Sim-nML Ation Sequeneop LDAA_Imm(Sr : Imm8)syntax = format("ldaa %s", Sr.syntax)image = format("10000110%s", Sr.image)ation = {R = Sr;CCR<3..3> = R<7..7>;if R == 0 thenCCR<2..2> = 1;else 25

CCR<2..2> = 0;endif;CCR<1..1> = 0;A = R;}Behavioral Verilog Codealways �(posedge lok) beginasex (IR[0:31℄) 32'b10000110XXXXXXXX :beginR = IR[8:15℄;CCR[3:3℄ = R[7:7℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;endCCR[1:1℄ = 0;A = R;endIn the behavioral module, a simulation lok is added. All instrutions ations areexeuted in the single simulation lok, irrespetive of the number of basi operationsin the instrution ation. As shown in the earlier example, if the deode image stringlength is less than the spei�ed bit width, the Verilog simulator extends the string bypadding the zeros to the left. The array seletion, ontrol ow statements et. aresimilar for both Sim-nML and Verilog language.Sim-nML array seletion an take variables as their array seletion parameters, butVerilog array seletion does not support variables in array seletion. Thus, Sim-nMLspei�ations with variables used for array seletion an not be synthesized using theurrent behavioral synthesis tool. The following example of Sim-nML spei�ationan not be synthesized in our implementation.Part of Sim-nML Speifiationreg A[1,ard(32)℄reg T[1,ard(32)℄ 26

reg X[1,ard(16)℄X = A<(31-T)..(16-T)>After generation of the behavioral Verilog proessor model, the Verilog simulationmonitor module is added. The system tasks and funtions added in the monitormodule are like$monitor($time, " Clk=%b, IR=%h, A=%d, B=%d",Clk,IR,A,B);$readmemb("rom.mem",rom);$display($time, " Clk=%b, IR=%h, A=%d, B=%d",Clk,IR,A,B);$dumpfile("Proessor.vd");$dumpvars(0,Proessor);$dumpflush;The simulator monitor module ontinuously probes the various Verilog variablesthat represent the external signals on the pins or the internal signals (�gure 4.1).The monitor module also generates a VCD (Value Change Dump) �le and dumpsthe information about simulation time, sope, signal de�nition and signal valuehanges in that text �le [30℄. This �le is used for the post-proessing to observethe signals. We tested our Verilog module using Cadene Verilog-XL simulator [51℄.Simulation post proessing was performed using tools like Cadene SignalSan [51℄.In Appendix C, a part of generated Motorola 68HC11 Verilog desription is pre-sented. The orresponding top-level monitor module is shown in the Appendix D.4.4 Implementation of Bak-end of Strutural Syn-thesis System4.4.1 IntrodutionThe bak-end of the strutural synthesis system generates strutural synthesizableVerilog ode for the given Sim-nML proessor spei�ations. Our implementationgenerates the Verilog ode, whih is ompliant with the Synopsys Design Compiler.The generated Verilog ode is built upon the Design Ware Library [2℄ omponents thussaving e�ort in rebuilding our own library. The DesignWare Library omponents usedin the strutural synthesis are `DW03 reg s pl', `DW01 deode', `DW01 mux any',`DW01 add' and `DW01 sub' et. 27

Processor RTL Desc

External Probing

Internal Probing

Internal Probing

External Probing
Top Level Verilog Module

S
im

ul
at

io
n

M
on

ito
r

M
od

ul
e

Figure 4.1: Simulation Monitor Module4.4.2 Optimization of Flattened IR and Three Address CodeGenerationOn the attened IR, we perform two optimizations - temporary variable eliminationand dead ode elimination. The temporary variable elimination algorithm is builtover two passes on the attened input. It removes Sim-nML `var' type temporaryvariables. However, some temporary variables an not be eliminated automatially asexplained later. The two pass algorithm for temporary variable elimination is givenbelow.Sim-nML Temporary Variable Elimination AlgorithmPass 1 : Find The Basi Bloks for eah Instrution AtionsPass 2 : Removal of Temporary Uses2.1 : For eah Instrution Ation2.2 : For eah Basi Blok find definition of Temporary Variables.2.3 : Replae the use of a Temporary Variable with the last28

orresponding definition of the Temporary Variable.2.4 : Remove the definitions of Replaed Temporary Variables.Following the temporary variable removal, we perform the dead ode elimination.A ode that is not reahed, and only updates the temporary variable is removed. Inaddition to this, the last assignment statements to the temporary variables, whih arenot used subsequently, are also removed. This is possible, as the temporary variablesare not assigned any storage. However, other odes suh as assignments to registerset. are retained as these are treated as side e�ets of the instrutions.After performing the optimizations, the instrution ations are onverted to `threeaddress' form. This form is suitable for sheduling as explained earlier. The `threeaddress' form is sequene of operations that involve upto three operands, suh as `A= B + C' or `A = B'. The algorithm to onvert `three address' form is simple and isarried out over two passes on the optimized attened ode.An example of temporary variable removal and three address ode generation isgiven below. After Temporary Variable Removal andBefore Three Address Code GenerationA = B + C * DAfter Three Address Code Generation(New Temporary Variables Generated)X = C * DA = B + XIt may be noted that during the three address ode generation, new temporaryvariables may be introdued that are not removed. For these newly generated tem-porary variables storage, registers and register �les are instantiated later.4.4.3 Data Path Element InstantiationThe data path generation essentially omprises of instantiation of the funtional andstorage units and the interonnetion between them. The data path implementationis done in four steps - instantiation of funtional units; instantiation of storage units;plaement of multiplexers and de-multiplexers and interonnetion of omponents. Inthe data path generation proess, one �le is generated for eah Verilog module.In the implementation, it is assumed that all the funtional units have two inputand one output ports. This establishes a one to one orrespondene to the `three29

address' ode and funtional unit operations. Funtional units input and outputports are onneted to the input and output ports of the exeution unit.The Sim-nML `reg' and `mem' types of salar variables are realized using registers.Similarly, the arrays of Sim-nML variables are realized using register �les. For thetemporary variables that are not removed, registers and register �les are instantiated.The storage for temporary variables is however shared aross the instrutions. Thus,if two instrutions use two and four temporary variables of same type, then fourtemporary variable storage units will be instantiated in the design. In that ase, the�rst instrution will use the two out of the four storage units.An example of the generated Verilog strutural register module is given below.Register �les are instantiated in similar way, with an extra multiplexed read/writeaddress port.module EA_Reg(Clk,WD, WE, Reset, RD);parameter width=32;parameter reset_value=0;input Clk;input Reset;input WE;input [width-1:0℄ WD;output [width-1:0℄ RD;DW03_reg_s_pl #(width , reset_value) R1(.d(WD), .lk(Clk),.reset_N(Reset), .enable(WE), .q(RD));endmoduleThe Verilog module `EA Reg' instantiates `R1' module of `DW03 reg s pl' type.`DW03 reg s pl' is DesignWare library module whih implements register with syn-hronous enable reset [52℄. The inputs to the `EA Reg' module are `Clk', `WD', `WE',`Reset' and `RD'. Among these inputs, the `WD' and `RD' are write data input andread data output respetively. `Reset' is the reset ontrol signal for the `EA Reg'module, whih is passed to the `R1' module. Upon reset, the value stored in theregister is set to `reset value', whih is equal to 0 in our ase. The `reset value' and`width' are onstants delared as Verilog parameters. Names of these parameters areprede�ned in the Design Compiler synthesis tool. The `width' parameter de�nes thewidths of the `d' and `q' ports of the `DW03 reg s pl' library module. In the imple-mented `EA Reg' register module, `WE' is the ontrol signal for write enable. `Clk'signal is added to pass the lok aross the module.An example of the generated Verilog strutural exeution unit module is givenbelow. In our implementation, the exeution unit ontains single instantiation of30

several neessary funtional units eah orresponding to the operation used by theinstrutions.module Exeution_Unit(ExIn0_Mux_O__Exeution_Unit_In0_I,ExIn1_Mux_O__Exeution_Unit_In1_I,Clk,Sel,Exeution_Unit_O__Exeution_Unit_Dmux_I);parameter width=32;input [width-1:0℄ ExIn0_Mux_O__Exeution_Unit_In0_I;input [width-1:0℄ ExIn1_Mux_O__Exeution_Unit_In1_I;input Clk;input [sel_width-1:0℄ Sel;output [width-1:0℄ Exeution_Unit_O__Exeution_Unit_Dmux_I;reg [width-1:0℄ Reg_In0;reg [width-1:0℄ Reg_In1;reg [width-1:0℄ Reg_Out;wire [width-1:0℄ Out_1;wire [width-1:0℄ Out_2;always �(posedge Clk) beginReg_In0=ExIn0_Mux_O__Exeution_Unit_In0_I;Reg_In1=ExIn1_Mux_O__Exeution_Unit_In1_I;endDW01_add #(width) Add1(.A(Reg_In0),.B(Reg_In1),.CI(),.SUM(Out_1),.CO());DW01_sub #(width) Sub1(.A(Reg_In0),.B(Reg_In1),.CI(),.DIFF(Out_2),.CO());ase(Sel)0 : Reg_Out <= Out_1;1 : Reg_Out <= Out_2;endaseassign Exeution_Unit_O__Exeution_Unit_Dmux_I = Reg_Out;endmoduleThe above example of exeution unit has two funtional units - `Add1' and `Sub1'of `DW01 add' and `DW01 sub' types respetively. The exeution unit ontainstwo input data ports `ExIn0 Mux O Exeution Unit In0 I' and `ExIn1 Mux O Exe-ution Unit In1 I' of widths equal to parameter `width'. These data ports are on-neted to the multiplexers at the inputs of exeution unit. The output data portis `Exeution Unit O Exeution Unit Dmux I' of width equal to `width'. The `Sel'ontrol signal selets the output ports of the `Add1' or `Sub1' funtional units. Theoperation of the exeution unit is as follows. At the positive lok yle, the data31

inputs are read to internal registers `Reg In0' and `Reg In1'. The register values arepassed to the funtional units and the outputs of the funtional units are storedin `Out 1' and `Out 2 wires during the lok yle. The wire values are put intothe output internal register `Reg Out' based on the `Sel' ontrol signal. At theend of the lok yle, the value of `Reg Out' is assigned to the output `Exeu-tion Unit O Exeution Unit Dmux I'.After generating the funtional and storage units, for eah data (read/write/address)port, the orresponding assoiated instrutions are identi�ed. This gives the infor-mation about the neessary multiplexing and de-multiplexing units needed in thedesign.For the funtional units, the assoiation between instrutions, input and outputdata ports in �nd out. Aordingly for seleting, the multiplexers and de-multiplexersare generated. At the same time the wire interonnetions are identi�ed and instan-tiated.
U1

U2

U3

U4

U5

U1_I = < U2_O , U3_O , U4_ O >
U1_O = < U4_I , U5_I >
U2_I = < >
U2_O = < U1_I , U4_I >
U3_I = < >

U4_I = < U5_O , U1_O >
U4_O = < U1_I >

U5_I = < U5_O , U1_O >
U5_O = < U5_I >
U3_O = < U1_I >

Unit Input Output Port ListFigure 4.2: Unit Connetion before Mux/DmuxAn example of the interonnetion is shown in the �gure 4.2 and 4.3. U1 toU5 in the �gure 4.2 and �gure 4.3 are funtional or storage units. In �gure 4.2 thefuntional unit wiring is shown with the ollisions. Foe example, input to U1 anbe from one of the three outputs, namely that of U2, U3 or U4. Aordingly themultiplexers are plaed as shown in the �gure 4.3 and re-wiring is done.An example of generated data path of a hypothetial small proessor with twoinput registers, one output register and an exeution unit is given in Appendix D.32

U1

U2

U3

U4

U5

D1

D2

M1

M2

M3

U1_I_M1_O
U1_O_D1_I
U2_O_D2_I
U3_O_M1_I

U4_I_M2_O
U4_O_M1_I
U5_I_M3_O
M5_O_M3_I

D2_O_M1_I
D2_O_M2_I
D1_O_M2_I
D1_O_M3_I

Wires Will Be

Unit to Mux/Dmux Between Mux/DmuxFigure 4.3: Unit Connetion after Mux/Dmux4.4.4 Control Unit GenerationControl unit takes the attened image stored in the instrution register and aord-ing to the bit pattern of the instrutions and the shedule of operations within theinstrution, generates the ontrol signals for the funtional and storage units. Controlpath generation proess is shown in an example below.op add(A:reg, B:reg, C:reg)syntax = format("add %s %s %s", A.syntax, B.syntax, C.syntax)image = format("1011%s10%s11%s00", A.image, B.image, C.image)ation = {A = B + C;}Image String with 0, 1 and Unknown bits1011xxxx10xxxx11xxxx00After deoding, the binary image segment selets the data path add operation.The unknown bits, after deoding selets the registers for input and output.33

In our implementation, only a small part of the ontrol iruit is generated, whilethe remaining is added manually.4.4.5 Top-Level and Simulation Module GenerationAfter generating the data paths and ontrol paths, the toplevel module is generated,whih instantiates the registers, register �les, multiplexers, de-multiplexers and in-teronnets them aording to the generated wires. The toplevel module is wrappedwith simulation module, whih is used for simulating the strutural synthesizableVerilog proessor model. The simulation module is similar as the simulation moduledesribed in the implementation of behavioral synthesis bak-end.

34

Chapter 5
Results and Conlusion
5.1 ResultsThe result of the high level synthesis system is tested on the Sim-nML spei�ations ofMotorola 68HC11, a subset of PowerPC 603 and another small hypothetial proessor.5.1.1 Result of Behavioral Synthesis SystemThe behavioral high level system tool is tested for Motorola 68HC11 miroproessorspei�ations (table 5.1). The size of the generated Verilog ode is about the sameSim-nML Desription Lines of Code 2947Total Number of Mahine Instrution 210Generated Behavioral Verilog Lines of Code 3708Table 5.1: Behavioral Synthesis Run Statistis for Motorola 68HC11order as that of the input Sim-nML spei�ation. An example of the simulation runusing the generated Verilog ode is shown in �gure 5.1.The simulation of the Verilog ode is performed using Cadene In.'s Verilog-XLsimulator [51℄. In the generated Verilog behavioral ode, the mahine instrutions areexeuted in one simulation lok yle, irrespetive of the number of basi operationsin the instrution. An example of the generated Motorola 68HC11 Verilog behavioralode is given in Appendix C.

35

0 Clk=0, IR=xxxxxxxx, rom[i℄=xxxxxxxx, A= x, M= x50 Clk=1, IR=xxxxxxxx, rom[i℄=000086f0, A= x, M= x100 Clk=0, IR=xxxxxxxx, rom[i℄=000086f0, A= x, M= x150 Clk=1, IR=000086f0, rom[i℄=0000eaf0, A= 0, M=169200 Clk=0, IR=000086f0, rom[i℄=0000eaf0, A= 0, M=169250 Clk=1, IR=0000eaf0, rom[i℄=00008af0, A= 0, M=234300 Clk=0, IR=0000eaf0, rom[i℄=00008af0, A= 0, M=234350 Clk=1, IR=00008af0, rom[i℄=0000aaf0, A= 4, M=138400 Clk=0, IR=00008af0, rom[i℄=0000aaf0, A= 4, M=138450 Clk=1, IR=0000aaf0, rom[i℄=0000baf0, A= 4, M=170500 Clk=0, IR=0000aaf0, rom[i℄=0000baf0, A= 4, M=170550 Clk=1, IR=0000baf0, rom[i℄=0000aaf0, A= 4, M=186600 Clk=0, IR=0000baf0, rom[i℄=0000aaf0, A= 4, M=186650 Clk=1, IR=0000aaf0, rom[i℄=0000aaf0, A= 0, M=169700 Clk=0, IR=0000aaf0, rom[i℄=0000aaf0, A= 0, M=169750 Clk=1, IR=0000aaf0, rom[i℄=0000aef0, A= 0, M=170800 Clk=0, IR=0000aaf0, rom[i℄=0000aef0, A= 0, M=170850 Clk=1, IR=0000aef0, rom[i℄=0000aa70, A= 0, M=174900 Clk=0, IR=0000aef0, rom[i℄=0000aa70, A= 0, M=174950 Clk=1, IR=0000aa70, rom[i℄=xxxxxxxx, A= 0, M=170Figure 5.1: Simulation of Behavioral Verilog Code5.1.2 Result of Strutural Synthesis SystemThe strutural high level synthesis system is tested on a subset of Sim-nML Pow-erPC 603 proessor spei�ation and on a small hypothetial proessor spei�ation.The subset of PowerPC 603 proessor spei�ation inludes general ALU instru-tions, branh instrutions and memory load-store instrutions. The generated Ver-ilog ode onsists of several Verilog �les, eah instantiating the storage, funtionaland multiplexing/de-multiplexing units. The ode that provides the interonnetionsamong all units is kept in a single �le. The ontrol signal ports are generated au-tomatially. However, the sheduled ontrol signal sequenes are added manually toget the omplete Verilog ode.The �gure 5.2 shows di�erent levels of synthesis ow. We have also synthesizedthe generated Verilog ode using logi synthesis tools, the Synopsys Design Com-piler [52℄ and Cadene Silion Ensemble [51℄. We used the Design Ware Library forDesignCompiler synthesis.From the synthesized netlist, the area and power requirements are estimated forthe proessor. The results are shown for the subset of PowerPC 603 spei�ation36

GDSII File

High Level Structural
Synthesis

Logic Synthesis

Behaviorial Description

RTL Level Netlist

Gate Level Netlist

Different Levels of Synthesis Flow

Physical Design

Sim−nML Structural
Synthesis Tool

Synopsys DesignCompiler

Cadence Silicon Ensemble

Figure 5.2: Di�erent Levels of Synthesisin the table 5.2. In the result statistis, there is no major di�erene in the numberof lines of odes between the Sim-nML spei�ation and the HLS generated Verilogode. Number of Lines in Sim-nML Spei�ation 508Number of Lines in HLS generated Verilog Code 656Number of Lines in Design Compiler generated Verilog Code 8478Time for Synthesis (without Clok Tree insertion) 220 SeTime for Synthesis (with Clok Tree insertion) 780 SeTable 5.2: Strutural Synthesis Run Statistis for PowerPC 603 subsetThe total ell area for synthesized PowerPC 603 subset is given in the table 5.3and 5.4. The smallest ell area is taken as of one unit and orresponding unit values37

are shown in the tables. The smallest ell area depends on the target tehnologylibrary based on whih the absolute values an be alulated. The total ell area of theproessor ore inludes ombinatorial and non-ombinatorial areas. After synthesizingArea UnitsCombinatorial Area 6102.00Non-ombinatorial Area 10878.00Total Cell Area 16980.00Table 5.3: Total Cell Area for Synthesized PowerPC 603 subsetthe strutural Verilog model, lok tree is inserted in the model to generate the loksignals. The total ell area inreases by nearly 5% after lok tree insertion.Area UnitsCombinatorial Area 6684.00Non-ombinatorial Area 10878.00Total Cell Area 17562.00Table 5.4: Total Cell Area for Synthesized PowerPC 603 subset after Clok TreeInsertionThe proessor ore is a olletion of several instantiated Verilog modules likeregisters, exeution units et. The ell area for the instantiated modules and for thegates used is shown in the tables 5.5 and 5.6.Similar results for a hypothetial proessor are shown in the tables 5.7 and 5.8.The proessor ontains only two input and one output registers and one exeutionunit. The design does not ontain multiplexers and de-multiplexers.5.2 Conlusion and Future WorksIn this thesis, we have developed tehniques to generate behavioral and struturalsynthesizable Verilog proessor model from the Sim-nML proessor spei�ation lan-guage. The method is suitable for ASIP and/or other programmable proessor gener-ation where the instrution set of the proessor is spei�ed in Sim-nML language. Thesimulation and synthesis proess of Sim-nML high level synthesis generated netlist isompliant with the urrent industry standard tools.38

Cell Area before Clok Area after ClokTree insertion Tree insertionCIA Reg 321 321EA Dmux 224 224EA WD Mux 87 90EA Reg 321 321ExIn0 Mux 250 260ExIn1 Mux 469 497ExeutionUnit Dmux 224 224ExeutionUnit 1527 1879GPR Dmux 224 224GPR RA Mux 83 84GPR WA Mux 83 84GPR WD Mux 42 42GPR RegFile 11511 11702IR Dmux 224 224IR Reg 321 321LR Reg 321 321NIA WD Mux 42 42NIA Reg 321 321Temp0 Reg 321 321Table 5.5: Total Cell Area by instantiated modules for Synthesized PowerPC 603subsetThe urrent design an be improved in several ways to support omplex arhite-tures. Support for VLIW, SuperSalar arhitetures, simple and omplex pipelinedarhitetures an be added. Overall better semi-automati design spae explorationmehanisms an be inorporated. The full resoure usage model of Sim-nML lan-guage an be utilized to generate better quality hardware. At hardware synthesismore number of optimizations an be performed to generate more optimized hard-ware struture. The sheduling of the proessor instrutions an be improved in amajor way. The total ow from Sim-nML to lowest level physial synthesis work anbe more explored to get the omplete ow of ASIP generation.
39

Before Clok Tree Insertion After Clok Tree InsertionGate Count Area Gate Count AreaAN2 89 2 AN2I 90 2NR8 32 6 FD1 1554 7AO2 70 2 IVDA 27 1FD1 1554 7 OR3 20 2AO5 20 3 NR3 18 2ND4 256 2 MUX21H 137 4IV 121 1 EON1 1216 3EON1 1222 3 IVI 359 1AO4 4 2 NR5 4 4MUX21H 160 4 OR2I 8 2NR5 4 4 IVDAP 3 2AN3 32 2 AOIP 6 2OR3 3 2 EN 8 3NR3 1 2 ND3 1 2NR2 93 1 B4IP 3 4EN 23 3 ND2 32 11ND3 19 2 NR16 717 1AO6 6 2 ND2I 106 1ND2 53 1 NR2I 240 3MUX31L 22 4 EO 31 3EO1 8 3 ENI 4 2EO 38 3 MUX21L 87 3NR4 3 2 MUX31L 3 4MUX21LP 34 4Total Area 16980 Total Area 17562Table 5.6: Total Cell Area by instantiated gates for Synthesized PowerPC 603 subsetArea UnitsCombinatorial Area 452.00Non-ombinatorial Area 168.00Total Cell Area 620.00Table 5.7: Total Cell Area for Hypothetial Proessor Data Path40

Call AreaEA Reg 85ExeutionUnit 369IR Reg 85NIA Reg 81Total Area 620Table 5.8: Total Cell Area by instantiated ells for Hypothetial Proessor Data Path

41

Bibliography[1℄ Barbai, M. "Instrution Set Proessor Spei�ations (ISPS): The Notion andits Appliations". IEEE Transations on Computer-Aided Design (Jan 1981).[2℄ Bhatnagar, H. "Advaned ASIC Chip Synthesis : Using Synopsys DesignCompiler and Primetime". Kluwer Aademi Publishers, 1999.[3℄ Biesenak, J. "The Siemens High Level Synthesis System: CALLAS". SixthInternational Workshop on High Level Synthesis (November 1992).[4℄ Chandra, Y. S. "Retargetable Funtional Simulator". Master's thesis, June1999. http://www.se.iitk.a.in/researh/mteh1997/9711121.html.[5℄ DeMiheli, G., Ku, D., Mailhot, F., and Truong, T. "The OlympusSynthesis System for Digital Design". IEEE Design and Test (Otober 1990),37{53.[6℄ Despian, M. A., and Huang, I. J. "Synthesis of Appliation Spei� Instru-tion Sets". IEEE Transations on Computer-Aided Design of Integrated Ciruitsand Systems (June 1995), 663{675.[7℄ Doran, K. W., and Oumarou, S. "Regular Array Synthesis Using Alpha".Rapport de Reherhe Irisa, No829 (May 1994). http://www.irisa.fr/osi/ALPHA/.[8℄ Fauth, A., Freeriks, M., and Knoll, A. "Generation of Hard-ware Mahine Models from Instrution Set Desriptions". Pro. IEEE Work-shop VLSI Signal Proessing, Veldhoven (Netherlands) (Ot 1993), 242{250.http://www.tehfak.uni-bielefeld.de/tehfak/ags/ti/forshung/publikationen/vlsi-93.ps .[9℄ Fauth, A., Praet, J. V., and Freeriks, M. "Desribing Instru-tion Sets Using nML (Extended Version).". Tehnial report, TehnisheUniversity at Berlin and IMEC, Berlin (Germany)/Leuven (Belgium) (1995).ftp://ftp.ime.be/pub/vsdm/reports/retargetable ode generation/af-edt95.ps.gz.[10℄ Gajski, D. D., Dutt, N. D., and Wu, A. C.-H. "High Level SynthesisIntrodution to Chip and Systems Design". Kluwer Aademi Publishers, 1992.42

[11℄ Girzy, E. F., Bhur, R. J. A., and Knight, J. P. "Appliation of aSubset of Ada as an Algorithmi Hardware Desription Language for GraphBased Hardware Compilation.". IEEE Transations on Computer-Aided Designof Integrated Ciruits and Systems (April 1985).[12℄ Gshwind, M. "Instrution Set Seletion for ASIP Design.". Pro. of theSeventh International Workshop on Hardware/Software Co-Design (May 1999),7{11.[13℄ Gutberlet, P., Muller, J., Kramer, H., and Rosensite, W. "Shedul-ing Between Basi Bloks in the CADDY Synthesis System". Pro. of the Eu-ropian Design Automotion Conferene (1992). http://www.fzi.de/sim/Caddy/ .[14℄ Hadjiyiannis, G., Hanono, S., and Devadas, S. "ISDL: An InstrutionSet Desription Language for Retargetability". In Proeedings of the 34th DesignAutomation Conferene (June 1997), 299{302.[15℄ Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., and Nio-lau, A. "EXPRESSION: A Language for Arhiteture Exploration throughCompiler/Simulator Retargetability". Pro. of the Design, Automation and Testin Europe (1999).[16℄ Heijligers, M. "NEAT: an Objet Oriented High Level Synthesis Interfae".Pro. IEEE ISCAS, 1994. (1994). ftp://ftp.is.ele.tue.nl/pub/papers/hls/ISCAS94.ps.gz.[17℄ Hilderink, H. "NESCIO: An Interative High Level Synthesis Framework".Pro. of the Workshop on Ciruits, Systems and Signal Proessing (Marh 1994).ftp://ftp.is.ele.tue.nl/pub/papers/hls/NESCIO-94.ps.gz.[18℄ Hoe, J. C., and Arvind. "Hardware Synthesis from Term Rewriting Systems".Pro. of VLSI'99" (Deember 1999). ftp://sg-ftp.ls.mit.edu/pub/papers/sgmemo/memo-421a.ps.gz .[19℄ Holtmann, U. "High-Level Synthesis System BSS". http://www.s.tu-bs.de/eis/english/researh/oldies/e9520BSS.htm.[20℄ Hwang, C. T., Lee, J., and Hsu, Y. C. "A Formal Approh to the Shedul-ing Problem in High Level Synthesis". IEEE Transations on Computer-AidedDesign of Integrated Ciruits and Systems (April 1991), 464{475.[21℄ Jain, N. C. "Disassembler Using High-Level Proessor Models". Master's thesis,January 1999. http://www.se.iitk.a.in/researh/mteh1997/9711113.html.[22℄ Jerraya, A. A., Park, I., and O'Brien, K. "AMICAL: An Interative HighLevel Synthesis Environment". Pro. of European CAD Conferene (Feb 1993).http://tima-mp.imag.fr/tima/sls/amial/amial.html.43

[23℄ Khouri, S. K., Lakshminarayana, G., and Jha, N. K. "IMPACT: AHigh-Level Synthesis System for Low Power Control-Flow Intensive Ciruits".Pro. of the 1998 Design Automation and Test in Europe (DATE '98) (1998).[24℄ Kowalski, T. J., and Thomas, D. E. "The VLSI Design Automotion As-sistant : Prototype System". Pro. 20th Design Automotion Conf (June 1983),479{489.[25℄ Kumari, S. "An Automati Assembler Generator for Sim-nML Desription Language". Master's thesis, Marh 2000.http://www.se.iitk.a.in/researh/mteh1998/9811119.html.[26℄ Leeser, M., Chapman, R., Aagaard, M., Linderman, M., and Meier,S. "High Level Synthesis and Generating FPGAs with the BEDROC system".Journal of VLSI Signal Proessing (1993), 191{214.[27℄ Marwedel, P. "The MIMOLA Design system : Tools for the Design of DigitalProessors". Pro. of the 21th Design Automotion Conferene (1984), 53{58.[28℄ Marwedel, P. "Mathing System and Component Behaviour in MIMOLASynthesis Tools". Pro. of the European Design Automation Conferene (EDAC)(1990).[29℄ Meerbergen, J., Lippens, P., Verhaegh, W., and Werf,A. V. D. "PHIDEO: High Level Synthesis for High Through-put Appliations". Journal of VLSI Signal Proessing (May 1995).http://www.researh.philips.om/pressmedia/releases/e14.html.[30℄ Palnitkar, S. "Verilog HDL A Guide to Digital Design and Synthesis". Pren-tie Hall, Upper Saddle River, NJ, 1996.[31℄ Pangrle, B. M., and Gajski, D. D. "Design Tools for Intelligent SilionCompilation". IEEE Transations on Computer-Aided Design of Integrated Cir-uits and Systems (Nov 1987), 1098{1112.[32℄ Parker, A. C., Mlinar, M., and Pizarro, J. "MAHA: A Program for DataPath Synthesis". Pro. of 23rd Design Automotion Conferene (June 1986), 461{466.[33℄ Pogde, P. "Retargettable Code Generation using Sim-nML Mahine Desrip-tion". Master's thesis, May 2000. http://www.se.iitk.a.in/researh/mteh1998/9811114.html.[34℄ Rajiv, A. R. "Retargetable Pro�ling Tools and their Appliation in CaheSimulation and Code Instrumentation". Master's thesis, Deember 1999.http://www.se.iitk.a.in/researh/mteh1998/9811117.html.44

[35℄ Raksey, N., and Fernandez. "Speifying Representations of Mahine In-strutions". ACM Transation on Programming Langauges and Systems (May1997). http://www.s.virginia.edu/ nr/pubs/speifying-abstrat.html.[36℄ Shreiber, R., Aditya, S., and Rau, B. e. "High-Level Synthesis of Non-programmable Hardware Aelerators". HP Labs Tehnial Reports (HPL-2000-31) (2000). http://www.hpl.hp.om/tehreports/2000/HPL-2000-31.html.[37℄ S.Note, W.Geurts, F.Catthoor, and Man, H. "Cathedral-III: Arhi-teture Driven High-Level Synthesis for High Throughput DSP Appliations".Pro. 28th ACM/IEEE Design Automation Conf (1991), 597{602.[38℄ Stroud, C. "CONES: A System for Automated Synthesis of VLSI and Pro-grammable Logi from Bbehavioral Models". Pro. of IEEE ICCAD, Santa Clara(Nov 1986).[39℄ Thomas, D. E., Dirkes, E. M., Walker, R. A., Rajan, J. V., Nestor,J. A., and Blakburn, R. L. "The System Arhitet's Workbenh". 337{343.[40℄ Tseng. "Bridge: A Versatile Behavioral Synthesis System". Pro. of 25thACM/IEEE Design Automation Conferene (1988), 415{420.[41℄ Tseng, C. J., and Siewiorek, D. P. "Automated Synthesis of Data Pathsin Digital Systems". IEEE Transations on Computer Aided Design (July 1986).[42℄ Wakabayashi, K. "C-Based High-Level Synthesis System, Cyber-Design Ex-periene". .[43℄ Wei, R.-S. "BECOME: Behavior Level Ciruit Synthesis Based on StrutureMapping". Pro. of 25th ACM/IEEE Design Automation Conferene (1988),409{414.[44℄ Woo, N.-S. "A Global, Dynami Register Alloation and Binding for a DataPath Synthesis System". Pro. of the 27th Design Automotion Conferene (June1990), 505{510.[45℄ "An Introdution to System-Level Modelling in SystemC 2.0".http://www.system.org/papers/SystemC WP20.pdf.[46℄ "High Level Synthesis System: RODIN". Pro. of Fifth Generation ComputerSystems (1992). http://www.iot.or.jp/ARCHIVE/Museum/IFS/abst/070.html.[47℄ "SPARK: Synthesis using Parallelizing Compiler Tehniques".http://www.es.ui.edu/ spark/index.shtml.[48℄ "The Esterel Language Primer, version v5 91".ftp://ftp.esterel.org/esterel/pub/papers/primer.ps.45

[49℄ Zebo, P., and Krzysztof, K. "Automated Transformation of Algorithms intoRegister-Transfer Level Implementations". IEEE Transations on Computer-Aided Design of Integrated Ciruits and Systems (Feb 1994), 150{166.[50℄ Zivojnovi, V., Pees, S., and Meyr, H. "LISA - Mahine DesriptionLanguage and Generi Mahine Model for HW/SW Co-Design". In Proeedingsof 1996 IEEE Workshop on VLSI Signal Proessing (1996). http://www.ert.rwth-aahen.de/Projekte/Tools/LISA/lisa.html.[51℄ "OpenBook Referene Manual". Cadene In..[52℄ "DesignWare Library Manual". Synopsys In..

46

Appendix A
Synopsys Design CompilerCon�guration Setup
A.1 Design Compiler .synopsys d.setup FileFollowing is the Synopsys Design Compiler (DC) setup �le .synopsys d.setup whihis neessey to aess all the DC Basi and Foundation Library omponents duringthe synthesis proess.ompany = "IIT Kanpur";designer = "CARES";tehnology = "0.35 miron";searh_path = searh_path + { "." ,"/spae/synopsys/syn_sim99.10/libraries/" };target_library = {lass.db};syntheti_library = {dw01.sldb dw02.sldb,dw03.sldb,dw04.sldb,dw06.sldb};link_library = target_library + syntheti_library;symbol_library = {lass.sdb};
A.2 Design Compiler Compilation SriptFolowing is the Synopsys DC Compilation Sript. The sript reads syntheti library`synthesis.sl' and produes internal `.sldb' �le. After that it ompiles all sub modules47

and writes low level verilog netlist aording to the target library `lass.db' as de�nedin `.synopsys de.setup'. At the next stage lok tree is inserted with period 50Hz inthe port `Clk' and the design is re-ompiled to get the total area, power and otherreports.read_lib synthesis.slwrite_lib synthesis.sldbsub_modules = {NIA_Reg, EA_Reg, IR_Reg, ExeutionUnit, TopLevel}foreah(module,sub_modules){read -format verilog module + ".v"if(d_shell_status != 1){sh eho 'error ' modulequit;}ompilewrite -format verilog -hierarhy module}report_area > area_before_CTset_wire_load LARGE -mode enlosedset_operating_ondition WORSTreate_lok -period 50 -waveform { 0 25 } Clkset_lok_skew -delay 2.0 -minus_unertainty 3.0 Clkset_input_delay 2.0 -lok Clk -max all_inputs()set_max_area 0ompilewrite -hierarhy -output netlist.dbreport_area > area_after_CTquit
A.3 Design Compiler Parameterized Library Spe-i�ationFollowing is the Synopsys DC Syntheti Library `synthesis.sl' whih is used for param-eterized implementation of Design Ware Library omponents. Without this the DC48

omponents like `DW03 reg s pl' an't be used parametrially. This �le also spei�esthe implementation arhiteture of the modules during synthesis proess. If for anymodule implementation is not spei�ed, DC will hoose a partiulat implementationfrom the internal DC database.library("synthesis.sldb") {module(DW03_reg_s_pl) {design_library : "DW03_reg_s_pl.db";parameter(width) {hdl_parameter : TRUE;}parameter(reset_value) {hdl_parameter : TRUE;}implementation(sim){}pin(d) {diretion : input;bit_width : "width";}pin(lk) {diretion : input;bit_width : "1";}pin(reset_N) {diretion : input;bit_width : "1";}pin(enable) {diretion : input;bit_width : "1";}pin(q) {diretion : output;bit_width : "width";}}module(DW01_deode) {design_library : "DW01_deode.db";parameter(width) {hdl_parameter : TRUE;49

}parameter(de_width) {hdl_parameter : TRUE;}pin(A) {diretion : input;bit_width : "width";}pin(B) {diretion : output;bit_width : "de_width";}}module(DW01_mux_any) {design_library : "DW01_mux.db";parameter(A_width) {hdl_parameter : TRUE;}parameter(SEL_width) {hdl_parameter : TRUE;}parameter(MUX_width) {hdl_parameter : TRUE;}pin(A) {diretion : "input";bit_width : "A_width";}pin(SEL) {diretion : "input";bit_width : "SEL_width";}pin(MUX) {diretion : "output";bit_width : "MUX_width";}}module(DW01_add) {design_library : "DW01_add.db";parameter(width) {hdl_parameter : TRUE;50

}pin(A) {diretion : "input";bit_width : "width";}pin(B) {diretion : "input";bit_width : "width";}pin(CI) {diretion : "input";bit_width : "1";}pin(SUM) {diretion : "output";bit_width : "width";}pin(CO) {diretion : "output";bit_width : "1";}}module(DW01_sub) {design_library : "DW01_sub.db";parameter(width) {hdl_parameter : TRUE;}pin(A) {diretion : "input";bit_width : "width";}pin(B) {diretion : "input";bit_width : "width";}pin(CI) {diretion : "input";bit_width : "1";}pin(DIFF) { 51

diretion : "output";bit_width : "width";}pin(CO) {diretion : "output";bit_width : "1";}}module(DW01_absval) {design_library : "DW01_absval";parameter(width) {hdl_parameter : TRUE;}pin(A){ diretion : "input";bit_width : "width";}pin(ABSVAL) {diretion : "output";bit_width : "width";}}module(DW01_ash) {design_library : "DW01_ash";parameter(A_width) {hdl_parameter : TRUE;}parameter(SH_width) {hdl_parameter : TRUE;}pin(A) {diretion : "input";bit_width : "A_width";}pin(DATA_TC) {diretion : "input";bit_width : "1";}pin(SH) {diretion : "input";bit_width : "SH_width";52

}pin(SH_TC) {diretion : "input";bit_width : "1";}pin(B) {diretion : "output";bit_width : "A_width";}}}

53

Appendix B
Example of Strutural Datapath ofa Hypothetial ProessorThe strutural Verilog desription of a hypothetial proessor is given below. Thehypothetial proessor ontains three registers and one exeution unit, whih ontainsfour funtional units - adder, subtrator, shifter and absolute value alulator.module TopLevel(Clk,EA_Reset,IR_Reset,NIA_Reset,EA_WE,IR_WE,NIA_WE,Ex_Sel);parameter Width = 8;input Clk;input EA_Reset;input IR_Reset;input NIA_Reset;input EA_WE;input IR_WE;input NIA_WE;input [1:0℄ Ex_Sel;wire [Width-1 : 0℄ EA_RD_Out;wire [Width-1 : 0℄ IR_RD_Out;wire [Width-1 : 0℄ EX_Out;EA_Reg EA_Reg_inst(.Clk(Clk), .WD(), .WE(EA_WE), .Reset(EA_Reset),.RD(EA_RD_Out));IR_Reg IR_Reg_inst(.Clk(Clk), .WD(), .WE(IR_WE), .Reset(IR_Reset),.RD(IR_RD_Out));54

ExeutionUnit ExeutionUnit_inst(.A(EA_RD_Out), .B(IR_RD_Out),.Clk(Clk), .Sel(Ex_Sel), .C(EX_Out));NIA_Reg NIA_Reg_inst(.Clk(Clk), .WD(EX_Out), .WE(NIA_WE),.Reset(NIA_Reset), .RD());endmodulemodule ExeutionUnit(A,B,Clk,Sel,C);parameter width = 8;parameter SH_width = 3;parameter A_width = 8;parameter B_width = 8;parameter Sel_width = 2;parameter C_width = 8;input [A_width - 1 : 0 ℄ A;input [B_width - 1 : 0 ℄ B;output [C_width - 1 : 0 ℄ C;input Clk;input [Sel_width - 1 : 0 ℄ Sel;reg [C_width - 1 : 0 ℄ C;wire [2 : 0℄ B_Sh;wire [A_width-1 : 0℄ Out1;wire [A_width-1 : 0℄ Out2;wire [A_width-1 : 0℄ Out3;wire [A_width-1 : 0℄ Out4;wire CI_inst;assign B_Sh = 3'b010;assign CI_inst = 0;DW01_add #(width) Add1(.A(A), .B(B), .CI(CI_inst), .SUM(Out1), .CO());DW01_sub #(width) Sub1(.A(A), .B(B), .CI(CI_inst), .DIFF(Out2), .CO());DW01_ash #(A_width, SH_width) Shift1(.A(A), .DATA_TC(CI_inst),.SH(B_Sh), .SH_TC(CI_inst), .B(Out3));DW01_absval #(width) Abs1(.A(A), .ABSVAL(Out4));always �(Sel or Out1 or Out2 or Out3 or Out4) beginase(Sel) // synopsys full_ase parallel_ase55

2'b00 : C = Out1;2'b01 : C = Out2;2'b10 : C = Out3;2'b11 : C = Out4;endaseendendmodulemodule IR_Reg(Clk,WD, WE, Reset, RD);parameter width = 8;parameter reset_value = 5;input Clk;input Reset;input WE;input [width-1 : 0 ℄ WD;output [width-1 : 0 ℄ RD;reg Enable;always � (Clk) beginEnable = WE;$display($time,"IR_WE = %b, IR_Reset = %b, IR_RD = %b",WE,Reset, RD);endDW03_reg_s_pl #(width , reset_value) R1(.d(WD), .lk(Clk),.reset_N(Reset), .enable(Enable), .q(RD));endmodulemodule EA_Reg(Clk,WD, WE, Reset, RD);parameter width = 8;parameter reset_value = 10;input Clk;input Reset;input WE;input [width - 1 : 0 ℄ WD;output [width - 1 : 0 ℄ RD;reg Enable; 56

always �(Clk) beginEnable = WE;$display($time,"EA_WE = %b, EA_Reset = %b, EA_RD = %b",WE, Reset, RD);endDW03_reg_s_pl #(width , reset_value) R1(.d(WD), .lk(Clk),.reset_N(Reset), .enable(Enable), .q(RD));endmodulemodule NIA_Reg(Clk,WD, WE, Reset, RD);parameter width = 8;parameter reset_value = 0;input Clk;input Reset;input WE;input [width - 1 : 0 ℄ WD;output [width - 1 : 0 ℄ RD;reg Enable;DW03_reg_s_pl #(width , reset_value) R1(.d(WD), .lk(Clk),.reset_N(Reset), .enable(Enable), .q(RD));endmodule

57

Appendix C
Setion of Generated VerilogBehavioral Synthesis CodeFollowing is the setion of generated Verilog behavioral synthesis ode of MotorolaMC68HC11 miroproessor. The lines of ode in Sim-nML spei�ation is 2947.The attened desription ontains 210 mahine instrutions. The ation setion ofthe mahine instrutions are translated to generate behavioral Verilog ode of theorresponding miroontroller. Total lines of generated Verilog ode is 3708.module Proessor(lok);reg [0:31℄ IR;reg [0:7℄ M[0:1000℄;reg [0:15℄ D;reg [0:7℄ A;reg [0:7℄ B;reg [0:7℄ CCR;reg [0:15℄ IX;reg [0:15℄ IY;reg [0:31℄ SP;reg [0:31℄ PC;reg [0:31℄ NPC;reg [0:7℄ TmpSr;reg [0:7℄ R;reg [0:31℄ LR;reg [0:0℄ TmpBit;input lok;always �(posedge lok) begin 58

asex (IR[0:31℄) //synthesis parallel ase32'h10000110XXXXXXXX :begin R = IR[8:15℄;CCR[3:3℄ = R[7:7℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;endCCR[1:1℄ = 0;A = R;end///////////// End of Instrution 0 //////////////32'h10010110XXXXXXXX :begin R = M[IR[8:23℄℄;CCR[3:3℄ = R[7:7℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;endCCR[1:1℄ = 0;A = R;end///////////// End of Instrution 1 //////////////32'h10110110XXXXXXXXXXXXXXXX :begin R = M[IR[8:15℄℄;CCR[3:3℄ = R[7:7℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;end 59

CCR[1:1℄ = 0;A = R;end///////////// End of Instrution 2 //////////////32'h11111100XXXXXXXXXXXXXXXX :begin LR[0:7℄ = M[IR[8:15℄℄;LR[8:15℄ = M[(IR[8:15℄ + 1)℄;CCR[3:3℄ = LR[15:15℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;endCCR[1:1℄ = 0;D = LR;end///////////// End of Instrution 12 //////////////32'h10111001XXXXXXXXXXXXXXXX :begin R = ((A + M[IR[8:15℄℄) + CCR[0:0℄);CCR[5:5℄ = (((A[3:3℄ & TmpSr[3:3℄) | (TmpSr[3:3℄ &R[3:3℄)) | (R[3:3℄ & A[3:3℄));CCR[3:3℄ = R[7:7℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;endCCR[1:1℄ = ((A[7:7℄ & TmpSr[7:7℄) & (!(R[7:7℄ |(!(A[7:7℄ & (!(TmpSr[7:7℄ & R[7:7℄)))))));CCR[0:0℄ = ((A[7:7℄ & TmpSr[7:7℄) | (TmpSr[7:7℄& (!(R[7:7℄ | (!(R[7:7℄ & A[7:7℄))))));A = R;end///////////// End of Instrution 45 //////////////32'h00100011XXXXXXXX : 60

begin if(((CCR[0:0℄ + CCR[2:2℄) == 1)) beginNPC = ((PC + IR[8:15℄) + 2);endelse beginNPC = (PC + 2);endend///////////// End of Instrution 194 //////////////32'h00101101XXXXXXXX :begin if((CCR[1:1℄ ^ (CCR[3:3℄ == 0))) beginNPC = ((PC + IR[8:15℄) + 2);endelse beginNPC = (PC + 2);endend///////////// End of Instrution 195 //////////////endaseendendmodule

61

Appendix D
Simulation Top Level Monitor FileSampleA sample ode of simulation top level module whih probes the module input/outputpins and/or the internal reg/wire of the proessor module. Simulation data is storedin `Proessor.vd' �le. The post suimulation data stored in `Proessor.vd' �le anbe analyzed using post simulation data analysis tool as Cadene SignalSan et.module Proessor ;reg Clk;reg EA_Reset;reg IR_Reset;reg NIA_Reset;reg EA_WE;reg IR_WE;reg NIA_WE;reg [1:0℄ Ex_Sel;reg [6:0℄ rom[20:0℄;integer i;initial// Monitors several external and internal registers and wires.$monitor($time, " Clk = %b, EA_WE = %b, IR_WE = %b,NIA_WE = %b, Ex_Sel = %b C = %d", Clk, EA_WE, IR_WE,NIA_WE, Ex_Sel[1:0℄, TopLevel_inst.ExeutionUnit_inst.C);TopLevel TopLevel_inst(.Clk(Clk), .EA_Reset(EA_Reset),62

.IR_Reset(IR_Reset), .NIA_Reset(NIA_Reset),.EA_WE(EA_WE), .IR_WE(IR_WE), .NIA_WE(NIA_WE), .Ex_Sel(Ex_Sel));initial //Clok Generation Modulebegin Clk = 1'b0;forever #50 Clk = ~Clk;endinitialbegin $readmemb("rom.mem",rom);i = 0;endalways �(posedge Clk) beginassign {EA_Reset, IR_Reset, EA_WE, IR_WE, NIA_WE, Ex_Sel} = rom[i℄;$display($time, "EA_Reset = %b, IR_Reset = %b,EA_WE = %b, IR_WE = %b, NIA_WE = %b, Ex_Sel = %b",EA_Reset, IR_Reset, EA_WE, IR_WE, NIA_WE,Ex_Sel);i = i + 1;endinitialbegin $dumpfile("Proessor.vd");$dumpvars(0,Proessor);#550;$dumpflush;endinitialbegin #550 $finish;endendmodule
63

