
High Level Synthesis from Sim-nML Pro
essorSpe
i�
ations
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

bySouvik Basu

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurAug, 2001

Certi�
ateThis is to
ertify that the work
ontained in the thesis entitled \High LevelSynthesis from Sim-nML Pro
essor Spe
i�
ations", by Souvik Basu, has been
arriedout under my supervision and that this work has not been submitted elsewhere for adegree.
Aug, 2001 (Dr. Rajat Moona)Department of Computer S
ien
e & Engineering,Indian Institute of Te
hnology,Kanpur.

Abstra
tThe design of modern embedded systems require automated modeling tools forfaster design and for the study of various design trade-o�s. These tools put together
onstitutes an integrated environment, where the designer
an write the high leveldesign spe
i�
ation and the tools will automati
ally generate the required hardwareand software for the embedded system. Sim-nML is one of these types of spe
i�
ationbased development system, en
ir
ling whi
h several tools have been developed earlier.In this thesis, we have developed a high level synthesis system based on Sim-nMLpro
essor ISA spe
i�
ation language. High level synthesis or behavioral synthesisdeals with the problem of transforming a behavioral spe
i�
ation of a digital systemto register-transfer level (RTL) implementation. Tools have been developed for behav-ioral and stru
tural high level synthesis. Behavioral high level synthesis transformsSim-nML spe
i�
ations of pro
essors to the
orresponding behavioral Verilog mod-els. These behavioral Verilog models are suitable for fast fun
tional simulation usingstandard Verilog simulators. Stru
tural high level synthesis generates stru
tural syn-thesizable Verilog pro
essor models from the
orresponding Sim-nML spe
i�
ations.The stru
tural model is suitable for both fun
tional simulation and synthesis to lowlevel Verilog netlist. Ar
hite
ture of the stru
tural design is non-pipelined and takesmultiple
lo
k
y
les to exe
ute an instru
tion. The generated behavioral and stru
-tural Verilog models are
ompliant with the
urrent industry standard simulation andsynthesis tools.

Contents
1 Introdu
tion 11.1 Overview . 11.2 Goals A
hieved . 21.3 High Level Synthesis . 21.3.1 Input of High Level Synthesis System 31.3.2 High Level Synthesis Stages 31.4 ASIC/ASIP Design Flow . 61.5 Organization of The Thesis . 82 Related Works 92.1 Introdu
tion . 92.2 High Level Synthesis from Pro
essor ISA Spe
i�
ations 102.3 Other High Level Synthesis Systems 113 Design of the High Level Synthesis System 133.1 Introdu
tion . 133.2 Design of the Front-end of High Level Synthesis System 143.3 Design of the Ba
k-end of Behavioral High Level Synthesis System . . 153.4 Design of the Ba
k-end of Stru
tural High Level Synthesis System . . 153.4.1 Overview of the Ba
k-end Design 153.4.2 Pro
essor Ar
hite
ture of the Stru
tural Design 173.4.3 Optimizations of the Flattened Intermediate Representations . 183.4.4 S
heduling of the Optimized Instru
tions 193.4.5 Resour
e Allo
ation and Inter
onne
tion Generation 223.4.6 Control Path Generation . 234 Implementation of High Level Synthesis System 24i

4.1 Introdu
tion . 244.2 Implementation of Front-end of High Level Synthesis System 244.3 Implementation of Ba
k-end of Behavioral Synthesis System 254.4 Implementation of Ba
k-end of Stru
tural Synthesis System 274.4.1 Introdu
tion . 274.4.2 Optimization of Flattened IR and Three Address Code Gener-ation . 284.4.3 Data Path Element Instantiation 294.4.4 Control Unit Generation . 334.4.5 Top-Level and Simulation Module Generation 345 Results and Con
lusion 355.1 Results . 355.1.1 Result of Behavioral Synthesis System 355.1.2 Result of Stru
tural Synthesis System 365.2 Con
lusion and Future Works . 38A Synopsys Design Compiler Con�guration Setup 47A.1 Design Compiler .synopsys d
.setup File 47A.2 Design Compiler Compilation S
ript 47A.3 Design Compiler Parameterized Library Spe
i�
ation 48B Example of Stru
tural Datapath of a Hypotheti
al Pro
essor 54C Se
tion of Generated Verilog Behavioral Synthesis Code 58D Simulation Top Level Monitor File Sample 62

ii

List of Tables5.1 Behavioral Synthesis Run Statisti
s for Motorola 68HC11 355.2 Stru
tural Synthesis Run Statisti
s for PowerPC 603 subset 375.3 Total Cell Area for Synthesized PowerPC 603 subset 385.4 Total Cell Area for Synthesized PowerPC 603 subset after Clo
k TreeInsertion . 385.5 Total Cell Area by instantiated modules for Synthesized PowerPC 603subset . 395.6 Total Cell Area by instantiated gates for Synthesized PowerPC 603subset . 405.7 Total Cell Area for Hypotheti
al Pro
essor Data Path 405.8 Total Cell Area by instantiated
ells for Hypotheti
al Pro
essor DataPath . 41

iii

List of Figures3.1 Overall Design of High Level Synthesis System 133.2 Front End of High Level Sysnthesis 143.3 Behavioral Design Ba
k-End . 153.4 Ba
k-End Design Flow . 163.5 Pro
essor Blo
k Diagram . 173.6 System Blo
k Diagram . 183.7 S
heduling Example Diagram . 214.1 Simulation Monitor Module . 284.2 Unit Conne
tion before Mux/Dmux 324.3 Unit Conne
tion after Mux/Dmux . 335.1 Simulation of Behavioral Verilog Code 365.2 Di�erent Levels of Synthesis . 37

iv

Chapter 1
Introdu
tion
1.1 OverviewHigh level synthesis or behavioral synthesis deals with the problem of transforming abehavioral spe
i�
ation of a digital system to register-transfer level (RTL) implemen-tation. The behavioral spe
i�
ation of the digital system may be the system ar
hite
-ture, or the algorithmi
 behavior of the system spe
i�ed in some high level language.As the Very Large S
ale Integrated
ir
uits (VLSI) te
hnology is
urrently providingspa
e for multiple million gates of random logi
 per
hip, it is getting diÆ
ult todesign su
h large
ir
uits using traditional
apture-and-simulate design methodology.Also with the fast moving te
hnology, time to market is one prime
on
ern for thedesign along with
hip area, power and speed. To shorten the produ
t development
y
le, newer des
ribe-and-synthesize methodology is gaining more importan
e.Des
ribe-and-synthesize methodology [10℄ essentially moves design automation onhigher levels of abstra
tion whi
h makes design
y
le shorter and allows more designalternatives to explore. The eÆ
ient synthesis tools
an even out-perform averagehuman designers in meeting the design
onstraints. Synthesis pro
ess is similar to
ompiling programs written in high level languages like C or Pas
al to assemblylanguage. Ea
h
omponent in the generated lower level of abstra
tion translates to
omponents that provide a more detailed des
ription of the system. Thus, ea
h stagein synthesis is a design re�nement pro
ess.Sim-nML [34℄ is a language that
an be used to spe
ify a programmable pro
essorat the level of its Instru
tion Set Ar
hite
ture (ISA). The ISA spe
i�
ation of the pro-
essor in
ludes the assembly language syntax, binary image and semanti
 behaviorof the instru
tions . A resour
e usage model is
urrently under development, whi
h
aptures some of stru
tural
onstru
ts of the pro
essor in
luding
omplex pipelininget
. The Sim-nML pro
essor spe
i�
ation is behavioral in nature. An integrated1

development environment en
ir
ling the Sim-nML pro
essor spe
i�
ation languageis in the pro
ess of development, whi
h in
ludes the generation of retargetable as-semblers [25℄, disassemblers [21℄,
ompiler ba
k-ends [33℄, fun
tional simulators [4℄,retargetable
a
he simulators [34℄, pro�lers [34℄ et
. In this thesis, a te
hnique is devel-oped to generate the stru
tural and behavioral model of a programmable pro
essorin Verilog HDL from its Sim-nML spe
i�
ation. The stru
tural model is suitablefor both synthesis and simulation. Similarly, the behavioral model is suitable forfast simulation. As Sim-nML spe
i�es a programmable pro
essor at its ISA level,the hardware generation methodology is suitable for Appli
ation Spe
i�
 Instru
tionPro
essor (ASIP) generation.1.2 Goals A
hievedThe goals a
hieved in the thesis are as follows.� From Sim-nML spe
i�
ation, behavioral Verilog model of the pro
essor is gen-erated. The generated Verilog des
ription is a
olle
tion of Verilog statementssuitable for fast fun
tional simulation.� A te
hnique is developed to generate the stru
tural synthesizable Verilog modelof pro
essors from Sim-nML spe
i�
ations to a parti
ular target ar
hite
ture.The Verilog des
ription
an be synthesized to get the netlist of hardware stru
-tures.1.3 High Level SynthesisHigh Level Synthesis (HLS) is the transition from the algorithmi
 level spe
i�
ationof behavior of a digital system to a Register-Transfer Level (RTL) stru
ture thatimplements the behavior. The input to HLS
an be des
ription of ISA or an algorithmwritten in some high level language. The output from a HLS is a
onne
tion of datapath elements and a Finite State Ma
hine (FSM) that implements the
ontrol path.The RTL level data path for the pro
essor is
omposed of three types of
omponents- fun
tional units (e.g. ALUs, multipliers, and shifters), storage units (e.g. registersand memories) and inter
onne
tion units (e.g. buses and multiplexors). The FSM ofthe
ontrol path
an be realized by a hardwired logi
 or by a mi
roprogrammed
ontrolunit. The
ontrol path triggers the appropriate data path elements in syn
hronizationwith
lo
k thereby implementing the fun
tionality of the pro
essor.
2

1.3.1 Input of High Level Synthesis SystemThe input des
ription of a HLS
an be behavioral spe
i�
ation of a digital systemwritten in Verilog, VHDL, C or any suitable pro
edural language, pro
essor ar
hite
-ture des
ription languages like Sim-nML [34℄, LISA [50℄, MIMOLA [27℄, ISDL [14℄,nML [9℄ or any other form. There are several other languages proposed for des
ribinghardware at varied level of abstra
tions, in
luding some de
larative languages andsome higher level of system level behavioral languages. Examples of these languagesin
lude SystemC [45℄ and Esterel [48℄.1.3.2 High Level Synthesis StagesThe HLS is typi
ally
arried out in �ve stages -
ompilation, transformation, s
hedul-ing, resour
e allo
ation and binding.Input Des
ription CompilationThe input behavioral des
ription is
ompiled into an internal representation suitablefor several high level transformations and optimizations employed in the subsequentHLS stages. The most used internal format is graph based representation where thedata and
ontrol
ow of the input (assuming pro
edural style of des
ription) is stored,preserving the dependen
y and sequentiality of the input. The representation
an bemade in Data Flow Graph (DFG) or in Control Flow Graph (CFG) or in
ombinedControl-Data Flow Graph (CDFG). Other intermediate representations in
lude petrinet and extensions of petri net[49℄ et
.Transformation of Internal RepresentationThe transformation phase is one of the important stages, in whi
h several optimiza-tions are performed on the given input. The hardware performs operations in parallel.If the behavioral spe
i�
ation do not express the parallelism, it should be extra
tedfrom the spe
i�
ation. The obje
tive of transformation is generally to minimize thesili
on area of the generated
hip and maximize the speed. Some other obje
tives
ould also be to optimize transformations for testability, low power
onsumption andreliability. The transformations are similar to the regular
ompiler optimizationsalong with some hardware spe
i�
 optimizations. The general transformations in-
lude the following.� Temporary Variable Elimination : For ease of des
ription, the input be-havioral des
ription
ontains several temporary variables. These variables resultin hardware registers, whi
h would mean that the resultant hardware o

upies3

extra area. To be noted that, all temporary variables
an't be removed due tounderlying ar
hite
tural
onstraints as explained in the later
hapters.� Common Subexpression Elimination : The parts of the
ode that arerepeated are fa
tored out. Thus, the hardware operations are needed to beperformed only on
e, whi
h redu
es area. However, this transformation
anredu
e the speed of operation be
ause otherwise the operations
an be done inparallel with additional resour
es.� Dead Code elimination : Removing dead
ode, i.e.
ode that serves no
omputational purpose, thus resulting in redu
tion of unne
essary hardware.� Expression Simpli�
ation : Expressions are evaluated so that the operationsmay be done in a smaller number of steps. This transformation is done in
omplian
e to the underlying ar
hite
ture.� Constant Propagation : If some value of
onstant is known then the values
an be used to simplify the
ow of the des
ription, there by redu
ing the numberof operations.� Loop Unrolling : This is an important transformation, as hardware stru
ture
an't support loop dire
tly. For input languages that support loops 1, the loopbody
an be repli
ated and if possible, some optimizations
an be performed inthe unrolled loop.� Hardware Spe
i�
 Transformations : These are optimizations not
om-monly used in
ompilers. These are however ne
essary in the hardware designs.One su
h optimization is to
hange the des
ription su
h that it uses fun
tions,whi
h may be performed dire
tly by the hardware. An example is given below.The expression 0.3333 + 2.6664*X
ould be simpli�ed to 0.33*(1 + 8*X). Inthe simpli�ed
ase, the multipli
ation by eight
an be done by shift and theaddition of one
an be done using an in
rement.As des
ribed above all the transformations are not target ar
hite
ture indepen-dent. For example if the target ar
hite
ture does not support multiply and a

umu-late as a fun
tional unit then the multiply and a

umulate operations must be dividedin two sub operations, in
orporating a temporary variable to hold the intermediatevalue. Contrary to this if the target ar
hite
ture supports multiply and a

umulatefun
tional unit, there is no need to in
orporate temporary variables to hold thesevalues.1In our high level synthesis Sim-nML language does not support loop
onstru
t
4

S
hedulingS
heduling assigns the operations in behavioral des
ription into
ontrol steps. A
on-trol step usually
orresponds to a
y
le in the system
lo
k, the basi
 time unit ofthe syn
hronous digital systems. The s
heduling is
onstrained by the user a

ordingto the available resour
es or the maximum delay (i.e the speed of the digital system)or both. If no
onstraints are spe
i�ed then it is possible to get the fastest hard-ware implementation exploiting maximum parallelism and using as many numbersof fun
tional, storage and inter
onne
tion units. Su
h an implementation howeverrequires the maximum area with the
onstraints it would have been possible to gen-erate hardware with small area, using minimum number of fun
tional, storage and/orinter
onne
tion units. The hardware implementation in this way may or may nothave any parallelism in the operations. The generated hardware may or may not bethe minimum area implementation, depending upon the area ratio of the fun
tionaland inter
onne
tion units.In s
heduling the total number of
ontrol steps ne
essary, is dependent on the
onstraints. If higher speed is required, less number of
ontrol steps are used andmore operations are s
heduled in ea
h
ontrol step. This results in large fun
tionalunits and sili
on area of the hardware. If less area in the resultant hardware isrequired then less number of fun
tional units are available in the generated hardware.Thus, less numbers of operations are performed in ea
h
ontrol steps and low speedhardware is generated. In this way, s
heduling determines the tread o� betweenthe design
ost and performan
e. One important thing to remember that all thepre-de�ned s
heduling
onstraints in HLS may not satis�ed in s
heduling stages duethe ar
hite
tural properties, available hardware
omponents (will be allo
ated in nextstage) et
. In that
ase user has to provide new set of
onstraints or obje
tive fun
tionin the HLS and has to perform s
heduling again to
he
k the suitability of outputwith the obje
tive fun
tion.There are several approa
hes to solve all or parti
ular
lass of s
heduling prob-lems in HLS. In general, Integer Linear Programming (ILP) formulation is
orre
tfor resour
e-
onstrained and time-
onstrained s
heduling problems [20℄. But as op-timum s
heduling problems are NP
omplete, the exe
ution time of algorithms growexponentially with the number of variables and number of inequalities in the for-mulated ILP. Thus for large pra
ti
al problems heuristi
s have been developed thatrun eÆ
iently maintaining the s
heduling goals. Heuristi
 s
heduling algorithms areof two
lasses -
onstru
tive approa
h and iterative re�nement approa
h. There areseveral algorithms of ea
h
lasses, where ea
h of them di�ers in the input
riteriaand the next heuristi
 stage sele
tion. The simplest
onstru
tive approa
h is the AsSoon As Possible (ASAP) or eager s
heduling. First the operations are stored in alist a

ording to their topologi
al order. Then operations are taken from the list oneat a time and pla
ed in the earliest possible
ontrol step. Similar to this another
onstru
tive heuristi
 approa
h is As Last As Possible (ALAP) or lazy s
heduling. In5

this s
heduling, the operations are stored in the list, but s
heduler tries to s
hedulethe operation at the latest
ontrol stage. To make the hardware faster the delay inthe
riti
al path (the longest path in terms of
ontrol steps) is to be minimized. ASAPand ALAP s
heduling s
heme do not
onsider the
riti
al path in
hoosing the nextstep. List s
heduling whi
h is another
onstru
tive approa
h solves the
riti
al pathproblem by keeping a list of ea
h operation that has not yet been sele
ted at ea
h ofthe
ontrol step. The list ordering is maintained by a priority fun
tion, whi
h formsthe global s
heduling
riteria. The priority fun
tion in the list s
heduling
an be
ho-sen in several ways. Some examples of
hoosing priority fun
tions are mobility [31℄,whi
h is de�ned as the di�eren
e between the ASAP and ALAP s
heduled values ofan operation. Another example of priority fun
tion is urgen
y [11℄, whi
h is de�nedas the minimum number of
ontrol steps from the bottom at whi
h an operation
anbe s
heduled before the timing
onstraint is violated et
. There are other examplesof s
heduling su
h as For
e Dire
ted S
heduling (FDS) et
.Resour
e Allo
ation and BindingAfter s
heduling, the next operation is to allo
ate resour
es from the
omponentdatabase. The allo
ation is done a

ording to the s
heduling while maintaining thes
heduling order and preserving the
onstraints. The
omponent database librarymay
ontain several types of fun
tional units with di�erent area, speed, power
on-sumption, ar
hite
tural variations su
h as pipelining or non-pipelining, storage unitswith di�erent area, speed, power
onsumption and inter
onne
tion units. Resour
eallo
ator sear
hes the
omponent database and allo
ates suitable resour
e from it.The resour
e binding is �nal assignment of hardware resour
es to the s
heduled op-erations, from the allo
ated set of resour
e. At this level variables are assigned tostorage units. During this, variable lifetime is analyzed and resour
e binding is done.In optimized allo
ation and binding two variables may share the same storage re-sour
e if they are not a

essed or altered in the same
ontrol step, i.e. , the variablesare mutually ex
lusive. Operations are assigned to allo
ated fun
tional units. Ea
hfun
tional unit
an only exe
ute one operation in one
ontrol step. Inter
onne
tionbinding binds inter
onne
tions between storage and fun
tional units. Typi
al inter-
onne
tion units used are buses and multiplexers.1.4 ASIC/ASIP Design FlowThe design of an Appli
ation Spe
i�
 Integrated Cir
uit (ASIC) or Appli
ation Spe-
i�
 Instru
tion Pro
essor (ASIP) starts from the behavioral des
ription of the digitalsystem, whi
h in
ludes the algorithm for the ASIC or the instru
tion set ar
hite
tureof the ASIP. Our HLS methodology is suitable for the ASIP generation. In our6

methodology, the instru
tion set of the ASIP
an be spe
i�ed in Sim-nML language.The broad stages in the ASIC/ASIP design
ow in
lude the followings.� Behavioral Spe
i�
ation : The behavior of the digital system is des
ribedin a suitable language.� High Level Synthesis : Transformation of behavior to suitable hardwarear
hite
ture while performing Design Spa
e Exploration (DSE). In HLS, there
an be one or multiple target ar
hite
tures in whi
h the input behaviors
an betargeted to generate the stru
ture. This is also known as behavioral synthesis.� Simulation of HLS Generated RTL Netlist : The HLS generated netlistis simulated to verify the fun
tional
orre
tness for several test
ases.� Logi
 Synthesis : This is the next stage of synthesis where the ar
hite
ture ismore elaborated and several logi
 synthesis optimizations are performed. Thedesign is �nally mapped to a parti
ular te
hnology library provided by thesemi
ondu
tor vendor. The output gives a

urate measures of area, speed,power requirements et
.� Stati
 Timing Analysis : This is performed after inserting
lo
k tree and
lo
k bu�ers. The a

urate timing analysis is done to verify the timing require-ments.� Simulation of RTL Netlist : The netlist is simulated after the logi
 synthe-sis to verify the fun
tional equivalen
e with the high level synthesis generatednetlist.� Floorplanning, Pla
e & Route : The
hip
oorplan is designed and
hipmodules are pla
ed with proper routing, maintaining the timing and other fun
-tional
onstraints. Chip input/output guard rings et
. are also prepared forexternal interfa
ing.� Masking and Prototyping : From the pla
e & route data, layout masks areprepared and the
hip is taped out.Ea
h of the above mentioned stages are
olle
tions of several sub-stages and ea
hof them are quite
omplex in nature. Our methodology of ASIP generation is im-portant as this
an be extended to suitable
o-design methodology of both hardwareand software generation. This infers, from the instru
tion set des
ription in Sim-nML,several system software
an be automati
ally generated. For ASIP development thereare methodologies to automati
ally generate ISA after analyzing the parti
ular ap-pli
ation domain requirements [6℄ [12℄. These methodologies
an be integrated withour Sim-nML based methodologies for rapid
o-design of ASIP and related softwaredevelopments. 7

1.5 Organization of The ThesisOrganization of the rest of the thesis is as follows. A survey of the related resear
hesin this problem area is provided in Chapter 2. The design of our hardware generationsystem is given in Chapter 3 and the implementation is dis
ussed in Chapter 4. Finallyresults of the work are shown in Chapter 5 where we have also drawn the
on
lusion.The setup of Synopsys Design Compiler environment is provided in Appendix A.Appendix B gives the example of the stru
tural data path of a hypotheti
al pro
essor.Appendix C gives a se
tion of behavioral synthesis generated Verilog
ode of Motorola68HC11 pro
essor. Appendix D gives an example of the simulation top-level module.

8

Chapter 2
Related Works
2.1 Introdu
tionSeveral resear
h proje
ts have been
arried out in the area of High Level Synthesis(HLS) in the past and several proje
ts are ongoing. While all HLS systems generatethe hardware from high level spe
i�
ations, the obje
tive of two di�erent proje
tsmay be di�erent. Some proje
ts aim at the minimization of area, while some otheraim at the maximization of speed or minimization of power or a mix of these.In this
hapter, the resear
h proje
ts in HLS are broadly distinguished in twogroups, based on the types of input spe
i�
ations. The �rst group
omprises of HLSsystems that synthesize the hardware from spe
i�
ations of Instru
tion Set Ar
hite
-ture (ISA) of a programmable pro
essor. The se
ond group
omprises of the HLSsystems that synthesize the hardware from algorithmi
 spe
i�
ations of a digital sys-tem. Our approa
h of HLS from Sim-nML pro
essor spe
i�
ations falls in the �rstgroup. The Sim-nML pro
essor spe
i�
ations are also suitable for generating othersystem software as mentioned in Chapter 1.ASIC generation from the algorithmi
 spe
i�
ations of fun
tionality falls in these
ond group. The se
ond approa
h is
apable of synthesizing ASICs, ASIPs, DSPsand general purpose pro
essors. In that sense, the se
ond approa
h supports a broadrange of digital system HLS. However, it is not suitable for generating system softwareet
. from the input spe
i�
ations. Thus, this approa
h
an not provide an integratedmethodology like the �rst one.

9

2.2 High Level Synthesis from Pro
essor ISA Spe
-i�
ationsSome of the HLS systems that take pro
essor ISA spe
i�
ations as input are des
ribedbelow.MIMOLA [27℄ hardware spe
i�
ation language, developed at University of Dort-mund, Germany
an be used to write stru
tural spe
i�
ations of a programmablepro
essor at low level, exposing several hardware details. Hardware is then synthe-sized from MIMOLA spe
i�
ations. MIMOLA being a low level spe
i�
ation, thehardware generation method is easier. MSS [28℄ is a MIMOLA based hardware syn-thesis system that
an also take behavioral VHDL spe
i�
ations as input.ISDL [14℄, developed at MIT LCS is another programmable pro
essor instru
tionset ar
hite
ture spe
i�
ation language, whi
h des
ribes the behavior of a pro
essorin attribute grammar notation. The language is suitable for general purpose pro-grammable pro
essor, but spe
ial emphasis has been given for VLIW ar
hite
turebased pro
essor spe
i�
ations. In ISDL, the parallelism is expli
itly spe
i�ed usingillegal instru
tion grouping and it is used for the generation of the parallel hardware.A synthesis tool HGEN has been developed that generates synthesizable Verilog forthe underlying VLIW ar
hite
ture from ISDL spe
i�
ations.nML [9℄ pro
essor instru
tion set spe
i�
ation language, developed at TU Berlinhas been used for hardware generation [8℄. From the attribute grammar based rep-resentation, hardware elements have been generated. The nML language is similarto the Sim-nML, but the design of the system to generate hardware is very di�erentfrom our work. In our work we have produ
ed the intermediate
attened Sim-nMLdes
ription and mapped it to �xed data path ar
hite
ture. In nML the hardwaremodules `HME's and `HMC's are generated from the non
attened representation ofthe pro
essor spe
i�
ations.LISA [50℄ pro
essor spe
i�
ation language, developed at Aa
hen University ofTe
hnology, Germany is used to spe
ify programmable pro
essors. The pro
essorspe
i�
ations
apture the instru
tion behavior along with several stru
tural informa-tion, like pipelining et
. Stru
tural information is spe
i�ed using reservation tablesand used in the hardware synthesis. VHDL hardware models have been synthesizedfrom LISA for four stage pipelined ICORE ar
hite
ture.There are many other languages to spe
ify pro
essor instru
tion set ar
hite
tures,like SLED [35℄, EXPRESSION [15℄ et
. Till date, no work has been published onHLS from these languages.
10

2.3 Other High Level Synthesis SystemsThere are other types of high level synthesis systems that take behavioral des
riptionof a hardware (programmable or non-programmable) in some des
ription languageand generate hardware models. The HLS systems perform several types of optimiza-tions and generate stru
tural hardware netlist a

ording to the obje
tive fun
tion.Some of these types of high level synthesis systems are des
ribed below.CMUDA [41℄, developed at Carnegie-Mellon University takes the des
ription writ-ten in ISPS [1℄ language and generates hardware from it. The System Ar
hite
t'sWorkben
h [39℄ is a later extension of the CMUDA HLS system.IMPACT [23℄, developed at Prin
eton University is a high level synthesis systemspe
ially designed for minimizing power
onsumption in
ontrol
ow intensive
ir
uits.TRS [18℄, developed at MIT LCS des
ribes hardware at mi
ro-ar
hite
ture level.TARC, Term Rewriting Ar
hite
ture Compiler takes
on
urrent TRS spe
i�
ationsand generates synthesizable Verilog
ode.Bedro
k [26℄, developed at University of Cornell takes input behavioral spe
i�-
ations in a language similar to Pas
al and generates FPGA synthesizable hardwaremodel. The input spe
i�
ation language is named HardwarePal.MAHA [32℄, developed at University of Southern California is a data path allo
a-tion system, whi
h uses the
riti
al path information for hardware synthesis. Severalheuristi
s are developed to get the optimized solutions.Olympus [5℄, developed at Stanford University uses HardwareC, a C like hardwarespe
i�
ation language for the design spe
i�
ations. The synthesis system has twotoolsets, Her
ules and Hebe. Her
ules takes HardwareC input and passes result toHebe, for s
heduling and binding.SPARK [47℄, under development at University of California, Irvine uses paralleliz-ing
ompiler te
hniques to synthesize behavioral ANSI-C fun
tionality spe
i�
ationsto generate synthesizable register-transfer level VHDL
ode.CATHEDRAL-III [37℄, developed at IMEC and ESAT, Belgium is a HLS tool forhigh throughput DSP appli
ations. The input spe
i�
ations are written in SILAGEand the system generates both behavioral and stru
tural synthesizable hardware mod-els.MMAlpha [7℄, developed at Irisa, Fran
e is a HLS tool used for synthesizinghardware for regular ar
hite
tures like systoli
 arrays, from Alpha language pro
essorspe
i�
ation. Alpha is a fun
tional language for des
ribing regular algorithms atbehavioral level.AMICAL [22℄, developed at TIMA Laboratory, Fran
e is a VHDL behavioralsynthesis system that reads VHDL behavioral spe
i�
ations and generates VHDLoutput. 11

CADDY-II [13℄, developed at FZI Resear
h Center, University of Karlsruhe Ger-many is a high level synthesis system that takes behavioral des
ription in VHDLor DSL and generates stru
tural VHDL netlist. It supports di�erent ar
hite
turalalternatives like multiplexers and buses, single phase or two phase
lo
k et
.BSS [19℄, developed at Te
hni
al University of Brauns
hweig, Germany takes be-havioral des
ription written in C as input and generates synthesizable Verilog netlist.The tool is a part of COSYMA hardware-software
o-design tool.NESCIO [17℄ and NEAT [16℄, developed at Eindhoven University of Te
hnology,Netherlands provides a framework for high level synthesis. NEAT is an obje
t orientedhigh level synthesis interfa
e and it is used by NESCIO HLS system.CAMAD [49℄, developed at Linkoping University, Sweden is a HLS system thattakes behavioral spe
i�
ations written in Pas
al like ADDL language,
onvert themto internal petri net stru
tures and generate VHDL RTL netlist.Rodin [46℄, developed at AITEC, Japan takes LSI behavioral spe
i�
ations asinput and generates logi
al
ir
uits at RT level.PICO-N system [36℄, developed at HP Labs automati
ally synthesizes embed-ded non-programmable a

elerators from the nested loops des
ribed in C. The loops,whi
h are the most time
onsuming part of program exe
ution are
onverted to syn-thesizable VHDL RTL level stru
ture. The output is synthesized as
o-pro
essor.The underlying ar
hite
ture of the PICO-N HLS system is VLIW in nature.DAA [24℄, developed at AT & T Bell Labs takes an expert system based approa
hto synthesize data path of general purpose pro
essors. Other high level synthesissystems developed at AT & T Bell Labs are BRIDGE [40℄, BECOME [43℄, Cherm[44℄ and CONES [38℄.Phideo [29℄, a
ronym for PHIlips viDEO
ompiler is developed at Philips resear
h
enter for high-throughput digital appli
ations, spe
ially for video pro
essing. It gen-erates parallel ar
hite
tures from the behavioral spe
i�
ations of the digital systems.CALLAS [3℄, developed at Siemens, Germany is a behavioral and logi
 synthesistool.Cyber [42℄, developed at NEC resear
h lab is a high level synthesis tool that takesthe spe
i�
ations written in C as its input.

12

Chapter 3
Design of the High Level SynthesisSystem
3.1 Introdu
tionIn this thesis work, the high level synthesis system is developed that generates bothbehavioral and stru
tural HDL models of pro
essors from Sim-nML pro
essor spe
i-�
ations. The outputs are Verilog pro
essor models, in whi
h the behavioral modelsare suitable for fast fun
tional simulation and the stru
tural models are suitable forboth fun
tional simulation and hardware synthesis. The generated Verilog stru
-tural des
riptions are fully
ompliant with Synopsys In
.'s industry standard DesignCompiler synthesis tool [2℄.

Front−End of High
Level Synthesis

Back−End of Behaviorial
High Level Synthesis

Back−End of Structural
High Level Synthesis

Figure 3.1: Overall Design of High Level Synthesis System13

The overall design of the high level synthesis system (�gure 3.1)
onsists of twoparts, the front-end and the ba
k-end. The front-end is same in both behavioral andstru
tural high level synthesis systems. The ba
k-end for the stru
tural synthesis ismore
omplex than the ba
k-end for the behavioral synthesis system.3.2 Design of the Front-end of High Level Synthe-sis SystemThe design of the front-end of the high level synthesis system is shown in the �gure3.2. It takes the Sim-nML pro
essor spe
i�
ations as input and produ
es their
Intermediate Representation (IR)

Sim−nML Description

Flattened IR

IR Generator

IR Flattener

Figure 3.2: Front End of High Level Sysnthesis
attened representation. In the �rst step, input Sim-nML pro
essor spe
i�
ations are
onverted to binary intermediate representations (IR) by an existing tool
alled `irg'[34℄. IR is suitable for subsequent analysis su
h as
attening et
. Sim-nML spe
i�esprogrammable pro
essors in attribute grammar form, where the information of ea
hma
hine level instru
tion is fragmented over an attribute grammar spe
i�
ation tree.The root node of the tree is named `instru
tion'. To get information about a parti
ularinstru
tion of the pro
essor, the path from the root node to the
orresponding leafnode is traversed, with proper parameter substitution at all levels. While
atteningthe internal representation, all su
h paths from root to the various leaf nodes aretraversed and information about all possible ma
hine instru
tions is obtained.14

3.3 Design of the Ba
k-end of Behavioral HighLevel Synthesis SystemThe design of the ba
k-end of the behavioral high level synthesis system is shownin the �gure 3.3. The ba
k-end for behavioral synthesis system employs no opti-
Sim−nML to Verilog

Translation

Top Level Simulation
Module Generation

Figure 3.3: Behavioral Design Ba
k-Endmizations for the input spe
i�
ations. The ba
k-end of behavioral synthesis systemtakes the
attened IR as input and for ea
h ma
hine instru
tion a
tion, generatesthe Verilog behavioral pro
essor model. The Verilog model is obtained as a simpletranslation from the IR. After generation of pro
essor Verilog fun
tional model, a toplevel simulation module is generated to fa
ilitate the fun
tional simulation pro
ess.3.4 Design of the Ba
k-end of Stru
tural High LevelSynthesis System3.4.1 Overview of the Ba
k-end DesignThe design
ow of the ba
k-end of our stru
tural high level synthesis system is shownin the �gure 3.4. It has four major steps, optimizations of the
attened intermediaterepresentations; s
heduling of the optimized spe
i�
ations; resour
e allo
ation and in-ter
onne
tion of resour
es; and
ontrol path generation. The data path is generatedin s
heduling and resour
e allo
ation steps. In the �rst step, optimizations are per-formed to improve the quality of the design (area minimization, speed enhan
ement15

Optimizations of
Flattened IR

Scheduling of
Flattened IR

Interconnectionand
AllocationResource

Generation
Data Path

Control Path
Generation

of Resources

Figure 3.4: Ba
k-End Design Flowet
.), while maintaining the fun
tionality or the semanti
 meaning of the Sim-nMLpro
essor spe
i�
ations.In the se
ond step, the operations used in the optimized spe
i�
ations are s
hed-uled into
ontrol steps. S
heduling is performed under several
onstraints (like thetypes of resour
es available, maximum numbers of resour
es of ea
h types, resour
ear
hite
tures, speed and power
onsumption of the generated hardware et
.) keepingone or multi-obje
tive s
heduling goal. In our implementation, the single obje
tive
hosen for optimization is area minimization.After s
heduling, the hardware resour
es are allo
ated. This step instantiatesthe hardware modules a

ording to the s
heduling. The s
heduling and resour
eallo
ation are both ar
hite
ture spe
i�
 and are performed with a target ar
hite
turein mind. The target ar
hite
ture for our approa
h is shown in the �gure 3.5. It is anon-pipelined ar
hite
ture, whi
h takes multiple
lo
k
y
les to exe
ute an instru
tion.The ar
hite
tural features put extra
onstraints in the pro
ess of s
heduling, resour
eallo
ation and inter
onne
tion of resour
e. For example, the number of ports on aregister �le will determine how many arguments
an be read for an instru
tion atthe same time. After instantiating the data path elements, inter
onne
tion elementsin
luding the multiplexers, de-multiplexers and wires are instantiated.After generation of data path by means of s
heduling and resour
e allo
ation, the16

External
Memory

Fetch
Unit

Write Back
Unit

Execution

Unit

FU1

FU2

FU3

Control
Unit

Control

Data

Signal

Processor
Boundary

Decode and
Register
Storage
Unit

FU := Function UnitFigure 3.5: Pro
essor Blo
k Diagram
ontroller is generated. The
ontroller generates
ontrol signals for the data pathelements as per the de
oded instru
tions and the s
hedule of the instru
tions.The ba
k-end of stru
tural high level synthesis is parameterized. Some of theparameters that are used are the width of the input output ports of the fun
tionaland storage units; and
orresponding wire widths. The parameters are spe
i�ed usingVerilog `parameter'
onstru
tion.3.4.2 Pro
essor Ar
hite
ture of the Stru
tural DesignThe synthesized pro
essor model is expe
ted to work with an external memory. Theoverall system blo
k diagram is shown in the �gure 3.6. Pro
essor sends address andread/write
ontrol signal to memory and the data is ex
hanged between memory andpro
essor. The pro
essor
ontains data path and
ontrol path elements. The datapath elements exe
ute the instru
tions under the
ontrol of the signals generated bythe
ontrol path elements. Control signals are generated a

ording to the de
odedinstru
tions and the
orresponding instru
tion s
heduling (�gure 3.6).17

Control
Path Path

Data

Processor Memory
Read/Write

Data

Address

Control

Data
Condition

Signal

Figure 3.6: System Blo
k DiagramThe di�erent units of the ar
hite
ture as shown in the �gure 3.5 are, fet
h unit;de
ode and register storage unit; exe
ution unit and write-ba
k unit. Fet
h unit getsdata and instru
tions from the memory. The write-ba
k unit writes the data ba
kinto the memory and registers, after
ompletion of exe
ution in the exe
ution unit.De
ode and register storage unit, de
odes the instru
tions and put operands to theexe
ution unit from registers. Exe
ution unit is a
olle
tion of several fun
tional unitsas shown in the �gure 3.5.The target ar
hite
ture of our design is simpler than pipelined ar
hite
tures. Thisar
hite
ture is sele
ted to show the feasibility of high level synthesis from Sim-nMLspe
i�
ations. Our aim was not to generate the ar
hite
ture for eÆ
ien
y but just toshow the feasibility of the synthesis from Sim-nML spe
i�
ations. More advan
ed highlevel synthesis systems
an support one or more
omplex ar
hite
tures from wherethe user
an sele
t the ar
hite
ture of his
hoi
e. Further there
an be advan
edin
remental `design spa
e exploration' approa
hes in whi
h the design is transformedautomati
ally to one of the several alternative ar
hite
tures to meet the desired ob-je
tives.3.4.3 Optimizations of the Flattened Intermediate Represen-tationsThe Sim-nML spe
i�
ations for a pro
essor
an be written in an unoptimized way,whi
h makes the spe
i�
ation writing easier and elegant looking. It is ne
essary tooptimize the spe
i�
ations for area minimization and speed maximization. The opti-mizations on the
attened input are similar to the ones used by the
ompilers. The18

optimizations that are suitable for synthesizing hardware are for example, temporaryvariable elimination, dead
ode elimination,
ommon-subexpression elimination, ex-pression simpli�
ation,
onstant propagation and some hardware-spe
i�
 transforma-tions et
. In our implementation, we perform only the temporary variable eliminationand the dead
ode removal arising be
ause of temporary variable elimination.� Temporary Variable Elimination : Temporary variables used in Sim-nMLspe
i�
ations are de�ned using `var' data types. There are other types of vari-ables in Sim-nML like `reg' and `mem' that spe
ify registers and (external orinternal) memory in the pro
essor. The `var' data types do not
orrespond toany physi
al storage units. Systemati
 optimizations performed around thesetemporary variables do not destroy the semanti
s of the instru
tion spe
i�
a-tions. As the two other data types
orresponds to physi
al storage units, removalof any de�nition of these variables through optimizations
an violate the overallpro
essor ISA semanti
s. The removal of temporary variables eliminates theneed of the storage registers. However, some temporary variables
an not beremoved from the design automati
ally. These remaining temporary variablesare instantiated as temporary registers, keeping the fun
tional
onsisten
y ofthe spe
i�
ations.� Dead Code Elimination : The dead
ode, i.e the
ode that serves no
ompu-tational purpose is eliminated. Only the dead
odes that modify the `var' typetemporary variables are removed. This is be
ause, for `reg' and `mem' datatypes, the seemingly dead
ode for one instru
tion
an have semanti
 meaningasso
iated with some other instru
tions.3.4.4 S
heduling of the Optimized Instru
tionsThe optimized instru
tions require a series of operations to be performed. Dependingupon the dependen
y, these operations are s
heduled one after another in time. Fur-ther depending upon the availability of the resour
es, some of these operations maybe done in parallel.S
heduling Constraints� Ar
hite
ture of the Pro
essor : The non-pipelined multi-
y
le ar
hite
tureof the pro
essor permits only one instru
tion to be exe
uted at a time. Afteroptimization, one instru
tion of the pro
essor
an use one or multiple fun
tionalunits to exe
ute the instru
tion. For ea
h instru
tion, a

esses to multiplefun
tional units are performed in non-pipelined manner.19

� Number of Fun
tional Units : Generally in a pro
essor, one or more thanone fun
tional units of the
orresponding type are available. However, in ourimplementation, only one fun
tional unit of any type is instantiated. This
on-straint is added to minimize area, whi
h is kept as a s
heduling goal. Thus if aSim-nML spe
i�
ation
ontains a maximum of 10 additions over all instru
tions,only one adder will be instantiated in the design.� Number of Data Port Resour
es : Similar to the most real designs, thestorage units (registers, register �les and memory) have one input data port,one output data port and one multiplexed read/write address port. Thus inone
lo
k
y
le either one read or one write operation
an be performed in thestorage units. The fun
tional units in our implementation
ontain two inputdata ports and one output data port. In addition, the fun
tional units areen
apsulated inside one exe
ution unit. The input and output data ports ofthe fun
tional units are mapped to the input and output ports of the exe
utionunit respe
tively. Thus in a
lo
k
y
le only the ports
orresponding to onefun
tional unit are available.� Types of Fun
tional Units : In our implementation, one fun
tional unit
anperform only one type of operation. Thus, no shared fun
tional units like `adder-subtra
tor', `multiplier-adder' et
. are instantiated. This makes one to one
orresponden
e between the operations and fun
tional units in the s
heduling.S
heduling Goal� Minimization of Pro
essor Area : The primary goal for our work in highlevel stru
tural synthesis is to minimize area. A simple rule to a
hieve this isto minimize the number of ea
h types of fun
tional unit instantiated. Howeverbe
ause of the minimization of fun
tional units there is a need of extra multi-plexers or multiplexers with large number of inputs. It may in
rease the overallsize of the pro
essor.To generate s
heduled operation sequen
es of every instru
tion, the instru
tiona
tions are
onverted to a sequen
e of three address operations. The three addressform is like `A = B + C', whi
h reads from the storage units B and C, performsoperation addition and writes ba
k in the storage unit A. In our design, this threeaddress form takes four
lo
k
y
les to
omplete the exe
ution. Two
y
les are neededto read from the storage units, one
lo
k
y
le to perform the operation and one
lo
k
y
le to write ba
k in the storage unit.We have shown some s
heduling examples in the �gure 3.7. The example in the�gure 3.7A shows exe
ution of one three address operation R3 = R1 + R2 in four
y
les. The redu
tion of
lo
k
y
le requirement to three
lo
k
y
les is shown in20

R1

R2

R3

R4

R5

R6

Fig C

Fig A : One Basic Operation Performed in Four Clock Cycles

Clock 1

Clock 2

Clock 3

Clock 4

Clock 5

Clock 6

Clock 7

Clock 8

R1

R2

R3Clock 4

Clock 3

Clock 2

Clock 1

R3

R1 R2 Clock 1

Clock 2

Clock 3

Fig B : One Basic Operation Performed in Three Clock Cycles

Fig A Fig B

Fig C : Two Basic Operations Performed in Eight Clock CyclesFigure 3.7: S
heduling Example Diagramthe �gure 3.7B. If R1 and R2 are in a single register �le, with only one read port,then s
heduling
an not be performed in this way. In a more
onservative way, wehave
hosen s
heduling of operations similar to one shown in the �gure 3.7A. Thes
heduling of two three address
ode operations are shown in the �gure 3.7C. It takeseight
y
les to
omplete.An example of the s
heduling is given below. Here an expression involving fouroperand is �rst
onverted into two three address operations. A s
hedule of eight
lo
k
y
les is then drawn as shown in the example.21

Sim-nML Instru
tion A
tionA = B + C * DThree Address CodeT = C * DA = B + TS
heduled OperationsClo
k1 Read CClo
k2 Read DClo
k3 Multiply C, DClo
k4 Write TClo
k5 Read TClo
k6 Read BClo
k7 Add B, TClo
k8 Write AOur s
heduling is
onservative and does not employ hardware parallelism. Thusthere is a lot of s
ope for improvement in this approa
h. In this s
heduling step, newtemporary variables are generated be
ause of translation to the three address
ode.3.4.5 Resour
e Allo
ation and Inter
onne
tion GenerationAfter s
heduling, all operations are mapped to fun
tional units and all operands aremapped to storage units in the hardware model. During instantiation of the resour
es,there
an be ar
hite
tural variations in the instantiated units. For example, an adder
an be
arry look ahead adder or ripple
arry adder based on the s
heduling goal. Asthe fun
tional and storage unit resour
es are shared a
ross the instru
tions, these re-sour
es have multiple sour
es and destinations. From amongst these multiple sour
es,one is sele
ted, depending upon the instru
tion and the
lo
k
y
le. For this multi-plexers are used with appropriate
ontrols. Similarly for the multiple destinations,appropriate de-multiplexers are instantiated.
22

3.4.6 Control Path GenerationAfter designing the data path,
ontrol path elements are instantiated to design the
ontroller. Sequen
es of
ontrol signals are spe
i�
 to the instru
tions as per the op-erations within the instru
tion and the s
heduling of these operations. An instru
tionde
oding unit is needed that de
odes the instru
tions from its binary pattern. The
ontrol signals are then generated a

ording to the s
heduling of the operations in the
orresponding instru
tion. To generate
ontrol signal for a s
heduled `three address'operation, two read; one operation sele
tion and one write
ontrol signals are gener-ated sequentially. Total number of
lo
k
y
les needed to exe
ute an instru
tion isthe sum of the
lo
k
y
les needed to perform all s
heduled three address operations.In our implementation, the
ontrol path is not synthesized
ompletely. Some partof the
ontrol path design is manually added after the synthesis.

23

Chapter 4
Implementation of High LevelSynthesis System
4.1 Introdu
tionThe high level synthesis system is implemented in C that runs on the Linux platforms.The tool takes Sim-nML pro
essor spe
i�
ations in intermediate format and generatesbehavioral and/or stru
tural Verilog des
ription of the programmable pro
essor.4.2 Implementation of Front-end of High Level Syn-thesis SystemAs explained earlier we used an intermediate representation of the Sim-nML pro
essorspe
i�
ation as starting point of our approa
h. For this, we have used the intermediaterepresentation generator (irg) developed by Rajiv A. R. [34℄. It takes the input Sim-nML spe
i�
ations and
onverts them to internal binary tabular format.The intermediate representation is hierar
hi
al in nature and is
attened using atool. The
attening tool is an extension of the earlier work of disassembler generator[21℄ and fun
tional simulator generator [4℄. After
attening, all the mode and op rulesare merged and all possible ma
hine instru
tions (with all possible variations in theaddressing modes) are retrieved. At this moment, the internal data stru
tures holdthe a
tions of all possible ma
hine instru
tions with the expansion of appropriatemode rules. 24

4.3 Implementation of Ba
k-end of Behavioral Syn-thesis SystemThe ba
k-end of the behavioral synthesis system takes the
attened intermediaterepresentations of the spe
i�
ation and translates ea
h instru
tion a
tion into the
orresponding Verilog
ode. In the behavioral high level synthesis no optimizationis performed. All Sim-nML variables in the input spe
i�
ations de�ned using `reg',`mem' and `var' data types, are
onverted to Verilog variables. The s
alar variablesof Sim-nML are translated to Verilog reg data types while the Sim-nML arrays aretranslated to Verilog register arrays. Examples of variables translations are givenbelow. S
alar Variables TranslationSim-nML : reg A[1,
ard(32)℄Verilog : reg[0:31℄ AVe
tor Variables TranslationSim-nML : reg B[100,
ard(32)℄Verilog : reg[0:31℄ B[0:99℄De
oder for the instru
tions is implemented as Verilog `
asex' statements. Theimage string to be de
oded is stored in an intermediate register named `IR'. Anexample translation of a single Motorola 68HC11 mi
ropro
essor Sim-nML instru
tiona
tion to behavioral Verilog is given below.Sim-nML A
tion Sequen
eop LDAA_Imm(Sr
 : Imm8)syntax = format("ldaa %s", Sr
.syntax)image = format("10000110%s", Sr
.image)a
tion = {R = Sr
;CCR<3..3> = R<7..7>;if R == 0 thenCCR<2..2> = 1;else 25

CCR<2..2> = 0;endif;CCR<1..1> = 0;A = R;}Behavioral Verilog Codealways �(posedge
lo
k) begin
asex (IR[0:31℄) 32'b10000110XXXXXXXX :beginR = IR[8:15℄;CCR[3:3℄ = R[7:7℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;endCCR[1:1℄ = 0;A = R;endIn the behavioral module, a simulation
lo
k is added. All instru
tions a
tions areexe
uted in the single simulation
lo
k, irrespe
tive of the number of basi
 operationsin the instru
tion a
tion. As shown in the earlier example, if the de
ode image stringlength is less than the spe
i�ed bit width, the Verilog simulator extends the string bypadding the zeros to the left. The array sele
tion,
ontrol
ow statements et
. aresimilar for both Sim-nML and Verilog language.Sim-nML array sele
tion
an take variables as their array sele
tion parameters, butVerilog array sele
tion does not support variables in array sele
tion. Thus, Sim-nMLspe
i�
ations with variables used for array sele
tion
an not be synthesized using the
urrent behavioral synthesis tool. The following example of Sim-nML spe
i�
ation
an not be synthesized in our implementation.Part of Sim-nML Spe
ifi
ationreg A[1,
ard(32)℄reg T[1,
ard(32)℄ 26

reg X[1,
ard(16)℄X = A<(31-T)..(16-T)>After generation of the behavioral Verilog pro
essor model, the Verilog simulationmonitor module is added. The system tasks and fun
tions added in the monitormodule are like$monitor($time, " Clk=%b, IR=%h, A=%d, B=%d",Clk,IR,A,B);$readmemb("rom.mem",rom);$display($time, " Clk=%b, IR=%h, A=%d, B=%d",Clk,IR,A,B);$dumpfile("Pro
essor.v
d");$dumpvars(0,Pro
essor);$dumpflush;The simulator monitor module
ontinuously probes the various Verilog variablesthat represent the external signals on the pins or the internal signals (�gure 4.1).The monitor module also generates a VCD (Value Change Dump) �le and dumpsthe information about simulation time, s
ope, signal de�nition and signal value
hanges in that text �le [30℄. This �le is used for the post-pro
essing to observethe signals. We tested our Verilog module using Caden
e Verilog-XL simulator [51℄.Simulation post pro
essing was performed using tools like Caden
e SignalS
an [51℄.In Appendix C, a part of generated Motorola 68HC11 Verilog des
ription is pre-sented. The
orresponding top-level monitor module is shown in the Appendix D.4.4 Implementation of Ba
k-end of Stru
tural Syn-thesis System4.4.1 Introdu
tionThe ba
k-end of the stru
tural synthesis system generates stru
tural synthesizableVerilog
ode for the given Sim-nML pro
essor spe
i�
ations. Our implementationgenerates the Verilog
ode, whi
h is
ompliant with the Synopsys Design Compiler.The generated Verilog
ode is built upon the Design Ware Library [2℄
omponents thussaving e�ort in rebuilding our own library. The DesignWare Library
omponents usedin the stru
tural synthesis are `DW03 reg s pl', `DW01 de
ode', `DW01 mux any',`DW01 add' and `DW01 sub' et
. 27

Processor RTL Desc

External Probing

Internal Probing

Internal Probing

External Probing
Top Level Verilog Module

S
im

ul
at

io
n

M
on

ito
r

M
od

ul
e

Figure 4.1: Simulation Monitor Module4.4.2 Optimization of Flattened IR and Three Address CodeGenerationOn the
attened IR, we perform two optimizations - temporary variable eliminationand dead
ode elimination. The temporary variable elimination algorithm is builtover two passes on the
attened input. It removes Sim-nML `var' type temporaryvariables. However, some temporary variables
an not be eliminated automati
ally asexplained later. The two pass algorithm for temporary variable elimination is givenbelow.Sim-nML Temporary Variable Elimination AlgorithmPass 1 : Find The Basi
 Blo
ks for ea
h Instru
tion A
tionsPass 2 : Removal of Temporary Uses2.1 : For ea
h Instru
tion A
tion2.2 : For ea
h Basi
 Blo
k find definition of Temporary Variables.2.3 : Repla
e the use of a Temporary Variable with the last28

orresponding definition of the Temporary Variable.2.4 : Remove the definitions of Repla
ed Temporary Variables.Following the temporary variable removal, we perform the dead
ode elimination.A
ode that is not rea
hed, and only updates the temporary variable is removed. Inaddition to this, the last assignment statements to the temporary variables, whi
h arenot used subsequently, are also removed. This is possible, as the temporary variablesare not assigned any storage. However, other
odes su
h as assignments to registerset
. are retained as these are treated as side e�e
ts of the instru
tions.After performing the optimizations, the instru
tion a
tions are
onverted to `threeaddress' form. This form is suitable for s
heduling as explained earlier. The `threeaddress' form is sequen
e of operations that involve upto three operands, su
h as `A= B + C' or `A = B'. The algorithm to
onvert `three address' form is simple and is
arried out over two passes on the optimized
attened
ode.An example of temporary variable removal and three address
ode generation isgiven below. After Temporary Variable Removal andBefore Three Address Code GenerationA = B + C * DAfter Three Address Code Generation(New Temporary Variables Generated)X = C * DA = B + XIt may be noted that during the three address
ode generation, new temporaryvariables may be introdu
ed that are not removed. For these newly generated tem-porary variables storage, registers and register �les are instantiated later.4.4.3 Data Path Element InstantiationThe data path generation essentially
omprises of instantiation of the fun
tional andstorage units and the inter
onne
tion between them. The data path implementationis done in four steps - instantiation of fun
tional units; instantiation of storage units;pla
ement of multiplexers and de-multiplexers and inter
onne
tion of
omponents. Inthe data path generation pro
ess, one �le is generated for ea
h Verilog module.In the implementation, it is assumed that all the fun
tional units have two inputand one output ports. This establishes a one to one
orresponden
e to the `three29

address'
ode and fun
tional unit operations. Fun
tional units input and outputports are
onne
ted to the input and output ports of the exe
ution unit.The Sim-nML `reg' and `mem' types of s
alar variables are realized using registers.Similarly, the arrays of Sim-nML variables are realized using register �les. For thetemporary variables that are not removed, registers and register �les are instantiated.The storage for temporary variables is however shared a
ross the instru
tions. Thus,if two instru
tions use two and four temporary variables of same type, then fourtemporary variable storage units will be instantiated in the design. In that
ase, the�rst instru
tion will use the two out of the four storage units.An example of the generated Verilog stru
tural register module is given below.Register �les are instantiated in similar way, with an extra multiplexed read/writeaddress port.module EA_Reg(Clk,WD, WE, Reset, RD);parameter width=32;parameter reset_value=0;input Clk;input Reset;input WE;input [width-1:0℄ WD;output [width-1:0℄ RD;DW03_reg_s_pl #(width , reset_value) R1(.d(WD), .
lk(Clk),.reset_N(Reset), .enable(WE), .q(RD));endmoduleThe Verilog module `EA Reg' instantiates `R1' module of `DW03 reg s pl' type.`DW03 reg s pl' is DesignWare library module whi
h implements register with syn-
hronous enable reset [52℄. The inputs to the `EA Reg' module are `Clk', `WD', `WE',`Reset' and `RD'. Among these inputs, the `WD' and `RD' are write data input andread data output respe
tively. `Reset' is the reset
ontrol signal for the `EA Reg'module, whi
h is passed to the `R1' module. Upon reset, the value stored in theregister is set to `reset value', whi
h is equal to 0 in our
ase. The `reset value' and`width' are
onstants de
lared as Verilog parameters. Names of these parameters areprede�ned in the Design Compiler synthesis tool. The `width' parameter de�nes thewidths of the `d' and `q' ports of the `DW03 reg s pl' library module. In the imple-mented `EA Reg' register module, `WE' is the
ontrol signal for write enable. `Clk'signal is added to pass the
lo
k a
ross the module.An example of the generated Verilog stru
tural exe
ution unit module is givenbelow. In our implementation, the exe
ution unit
ontains single instantiation of30

several ne
essary fun
tional units ea
h
orresponding to the operation used by theinstru
tions.module Exe
ution_Unit(ExIn0_Mux_O__Exe
ution_Unit_In0_I,ExIn1_Mux_O__Exe
ution_Unit_In1_I,Clk,Sel,Exe
ution_Unit_O__Exe
ution_Unit_Dmux_I);parameter width=32;input [width-1:0℄ ExIn0_Mux_O__Exe
ution_Unit_In0_I;input [width-1:0℄ ExIn1_Mux_O__Exe
ution_Unit_In1_I;input Clk;input [sel_width-1:0℄ Sel;output [width-1:0℄ Exe
ution_Unit_O__Exe
ution_Unit_Dmux_I;reg [width-1:0℄ Reg_In0;reg [width-1:0℄ Reg_In1;reg [width-1:0℄ Reg_Out;wire [width-1:0℄ Out_1;wire [width-1:0℄ Out_2;always �(posedge Clk) beginReg_In0=ExIn0_Mux_O__Exe
ution_Unit_In0_I;Reg_In1=ExIn1_Mux_O__Exe
ution_Unit_In1_I;endDW01_add #(width) Add1(.A(Reg_In0),.B(Reg_In1),.CI(),.SUM(Out_1),.CO());DW01_sub #(width) Sub1(.A(Reg_In0),.B(Reg_In1),.CI(),.DIFF(Out_2),.CO());
ase(Sel)0 : Reg_Out <= Out_1;1 : Reg_Out <= Out_2;end
aseassign Exe
ution_Unit_O__Exe
ution_Unit_Dmux_I = Reg_Out;endmoduleThe above example of exe
ution unit has two fun
tional units - `Add1' and `Sub1'of `DW01 add' and `DW01 sub' types respe
tively. The exe
ution unit
ontainstwo input data ports `ExIn0 Mux O Exe
ution Unit In0 I' and `ExIn1 Mux O Exe
-ution Unit In1 I' of widths equal to parameter `width'. These data ports are
on-ne
ted to the multiplexers at the inputs of exe
ution unit. The output data portis `Exe
ution Unit O Exe
ution Unit Dmux I' of width equal to `width'. The `Sel'
ontrol signal sele
ts the output ports of the `Add1' or `Sub1' fun
tional units. Theoperation of the exe
ution unit is as follows. At the positive
lo
k
y
le, the data31

inputs are read to internal registers `Reg In0' and `Reg In1'. The register values arepassed to the fun
tional units and the outputs of the fun
tional units are storedin `Out 1' and `Out 2 wires during the
lo
k
y
le. The wire values are put intothe output internal register `Reg Out' based on the `Sel'
ontrol signal. At theend of the
lo
k
y
le, the value of `Reg Out' is assigned to the output `Exe
u-tion Unit O Exe
ution Unit Dmux I'.After generating the fun
tional and storage units, for ea
h data (read/write/address)port, the
orresponding asso
iated instru
tions are identi�ed. This gives the infor-mation about the ne
essary multiplexing and de-multiplexing units needed in thedesign.For the fun
tional units, the asso
iation between instru
tions, input and outputdata ports in �nd out. A

ordingly for sele
ting, the multiplexers and de-multiplexersare generated. At the same time the wire inter
onne
tions are identi�ed and instan-tiated.
U1

U2

U3

U4

U5

U1_I = < U2_O , U3_O , U4_ O >
U1_O = < U4_I , U5_I >
U2_I = < >
U2_O = < U1_I , U4_I >
U3_I = < >

U4_I = < U5_O , U1_O >
U4_O = < U1_I >

U5_I = < U5_O , U1_O >
U5_O = < U5_I >
U3_O = < U1_I >

Unit Input Output Port ListFigure 4.2: Unit Conne
tion before Mux/DmuxAn example of the inter
onne
tion is shown in the �gure 4.2 and 4.3. U1 toU5 in the �gure 4.2 and �gure 4.3 are fun
tional or storage units. In �gure 4.2 thefun
tional unit wiring is shown with the
ollisions. Foe example, input to U1
anbe from one of the three outputs, namely that of U2, U3 or U4. A

ordingly themultiplexers are pla
ed as shown in the �gure 4.3 and re-wiring is done.An example of generated data path of a hypotheti
al small pro
essor with twoinput registers, one output register and an exe
ution unit is given in Appendix D.32

U1

U2

U3

U4

U5

D1

D2

M1

M2

M3

U1_I_M1_O
U1_O_D1_I
U2_O_D2_I
U3_O_M1_I

U4_I_M2_O
U4_O_M1_I
U5_I_M3_O
M5_O_M3_I

D2_O_M1_I
D2_O_M2_I
D1_O_M2_I
D1_O_M3_I

Wires Will Be

Unit to Mux/Dmux Between Mux/DmuxFigure 4.3: Unit Conne
tion after Mux/Dmux4.4.4 Control Unit GenerationControl unit takes the
attened image stored in the instru
tion register and a

ord-ing to the bit pattern of the instru
tions and the s
hedule of operations within theinstru
tion, generates the
ontrol signals for the fun
tional and storage units. Controlpath generation pro
ess is shown in an example below.op add(A:reg, B:reg, C:reg)syntax = format("add %s %s %s", A.syntax, B.syntax, C.syntax)image = format("1011%s10%s11%s00", A.image, B.image, C.image)a
tion = {A = B + C;}Image String with 0, 1 and Unknown bits1011xxxx10xxxx11xxxx00After de
oding, the binary image segment sele
ts the data path add operation.The unknown bits, after de
oding sele
ts the registers for input and output.33

In our implementation, only a small part of the
ontrol
ir
uit is generated, whilethe remaining is added manually.4.4.5 Top-Level and Simulation Module GenerationAfter generating the data paths and
ontrol paths, the toplevel module is generated,whi
h instantiates the registers, register �les, multiplexers, de-multiplexers and in-ter
onne
ts them a

ording to the generated wires. The toplevel module is wrappedwith simulation module, whi
h is used for simulating the stru
tural synthesizableVerilog pro
essor model. The simulation module is similar as the simulation moduledes
ribed in the implementation of behavioral synthesis ba
k-end.

34

Chapter 5
Results and Con
lusion
5.1 ResultsThe result of the high level synthesis system is tested on the Sim-nML spe
i�
ations ofMotorola 68HC11, a subset of PowerPC 603 and another small hypotheti
al pro
essor.5.1.1 Result of Behavioral Synthesis SystemThe behavioral high level system tool is tested for Motorola 68HC11 mi
ropro
essorspe
i�
ations (table 5.1). The size of the generated Verilog
ode is about the sameSim-nML Des
ription Lines of Code 2947Total Number of Ma
hine Instru
tion 210Generated Behavioral Verilog Lines of Code 3708Table 5.1: Behavioral Synthesis Run Statisti
s for Motorola 68HC11order as that of the input Sim-nML spe
i�
ation. An example of the simulation runusing the generated Verilog
ode is shown in �gure 5.1.The simulation of the Verilog
ode is performed using Caden
e In
.'s Verilog-XLsimulator [51℄. In the generated Verilog behavioral
ode, the ma
hine instru
tions areexe
uted in one simulation
lo
k
y
le, irrespe
tive of the number of basi
 operationsin the instru
tion. An example of the generated Motorola 68HC11 Verilog behavioral
ode is given in Appendix C.

35

0 Clk=0, IR=xxxxxxxx, rom[i℄=xxxxxxxx, A= x, M= x50 Clk=1, IR=xxxxxxxx, rom[i℄=000086f0, A= x, M= x100 Clk=0, IR=xxxxxxxx, rom[i℄=000086f0, A= x, M= x150 Clk=1, IR=000086f0, rom[i℄=0000eaf0, A= 0, M=169200 Clk=0, IR=000086f0, rom[i℄=0000eaf0, A= 0, M=169250 Clk=1, IR=0000eaf0, rom[i℄=00008af0, A= 0, M=234300 Clk=0, IR=0000eaf0, rom[i℄=00008af0, A= 0, M=234350 Clk=1, IR=00008af0, rom[i℄=0000aaf0, A= 4, M=138400 Clk=0, IR=00008af0, rom[i℄=0000aaf0, A= 4, M=138450 Clk=1, IR=0000aaf0, rom[i℄=0000baf0, A= 4, M=170500 Clk=0, IR=0000aaf0, rom[i℄=0000baf0, A= 4, M=170550 Clk=1, IR=0000baf0, rom[i℄=0000aaf0, A= 4, M=186600 Clk=0, IR=0000baf0, rom[i℄=0000aaf0, A= 4, M=186650 Clk=1, IR=0000aaf0, rom[i℄=0000aaf0, A= 0, M=169700 Clk=0, IR=0000aaf0, rom[i℄=0000aaf0, A= 0, M=169750 Clk=1, IR=0000aaf0, rom[i℄=0000aef0, A= 0, M=170800 Clk=0, IR=0000aaf0, rom[i℄=0000aef0, A= 0, M=170850 Clk=1, IR=0000aef0, rom[i℄=0000aa70, A= 0, M=174900 Clk=0, IR=0000aef0, rom[i℄=0000aa70, A= 0, M=174950 Clk=1, IR=0000aa70, rom[i℄=xxxxxxxx, A= 0, M=170Figure 5.1: Simulation of Behavioral Verilog Code5.1.2 Result of Stru
tural Synthesis SystemThe stru
tural high level synthesis system is tested on a subset of Sim-nML Pow-erPC 603 pro
essor spe
i�
ation and on a small hypotheti
al pro
essor spe
i�
ation.The subset of PowerPC 603 pro
essor spe
i�
ation in
ludes general ALU instru
-tions, bran
h instru
tions and memory load-store instru
tions. The generated Ver-ilog
ode
onsists of several Verilog �les, ea
h instantiating the storage, fun
tionaland multiplexing/de-multiplexing units. The
ode that provides the inter
onne
tionsamong all units is kept in a single �le. The
ontrol signal ports are generated au-tomati
ally. However, the s
heduled
ontrol signal sequen
es are added manually toget the
omplete Verilog
ode.The �gure 5.2 shows di�erent levels of synthesis
ow. We have also synthesizedthe generated Verilog
ode using logi
 synthesis tools, the Synopsys Design Com-piler [52℄ and Caden
e Sili
on Ensemble [51℄. We used the Design Ware Library forDesignCompiler synthesis.From the synthesized netlist, the area and power requirements are estimated forthe pro
essor. The results are shown for the subset of PowerPC 603 spe
i�
ation36

GDSII File

High Level Structural
Synthesis

Logic Synthesis

Behaviorial Description

RTL Level Netlist

Gate Level Netlist

Different Levels of Synthesis Flow

Physical Design

Sim−nML Structural
Synthesis Tool

Synopsys DesignCompiler

Cadence Silicon Ensemble

Figure 5.2: Di�erent Levels of Synthesisin the table 5.2. In the result statisti
s, there is no major di�eren
e in the numberof lines of
odes between the Sim-nML spe
i�
ation and the HLS generated Verilog
ode. Number of Lines in Sim-nML Spe
i�
ation 508Number of Lines in HLS generated Verilog Code 656Number of Lines in Design Compiler generated Verilog Code 8478Time for Synthesis (without Clo
k Tree insertion) 220 Se
Time for Synthesis (with Clo
k Tree insertion) 780 Se
Table 5.2: Stru
tural Synthesis Run Statisti
s for PowerPC 603 subsetThe total
ell area for synthesized PowerPC 603 subset is given in the table 5.3and 5.4. The smallest
ell area is taken as of one unit and
orresponding unit values37

are shown in the tables. The smallest
ell area depends on the target te
hnologylibrary based on whi
h the absolute values
an be
al
ulated. The total
ell area of thepro
essor
ore in
ludes
ombinatorial and non-
ombinatorial areas. After synthesizingArea UnitsCombinatorial Area 6102.00Non-
ombinatorial Area 10878.00Total Cell Area 16980.00Table 5.3: Total Cell Area for Synthesized PowerPC 603 subsetthe stru
tural Verilog model,
lo
k tree is inserted in the model to generate the
lo
ksignals. The total
ell area in
reases by nearly 5% after
lo
k tree insertion.Area UnitsCombinatorial Area 6684.00Non-
ombinatorial Area 10878.00Total Cell Area 17562.00Table 5.4: Total Cell Area for Synthesized PowerPC 603 subset after Clo
k TreeInsertionThe pro
essor
ore is a
olle
tion of several instantiated Verilog modules likeregisters, exe
ution units et
. The
ell area for the instantiated modules and for thegates used is shown in the tables 5.5 and 5.6.Similar results for a hypotheti
al pro
essor are shown in the tables 5.7 and 5.8.The pro
essor
ontains only two input and one output registers and one exe
utionunit. The design does not
ontain multiplexers and de-multiplexers.5.2 Con
lusion and Future WorksIn this thesis, we have developed te
hniques to generate behavioral and stru
turalsynthesizable Verilog pro
essor model from the Sim-nML pro
essor spe
i�
ation lan-guage. The method is suitable for ASIP and/or other programmable pro
essor gener-ation where the instru
tion set of the pro
essor is spe
i�ed in Sim-nML language. Thesimulation and synthesis pro
ess of Sim-nML high level synthesis generated netlist is
ompliant with the
urrent industry standard tools.38

Cell Area before Clo
k Area after Clo
kTree insertion Tree insertionCIA Reg 321 321EA Dmux 224 224EA WD Mux 87 90EA Reg 321 321ExIn0 Mux 250 260ExIn1 Mux 469 497Exe
utionUnit Dmux 224 224Exe
utionUnit 1527 1879GPR Dmux 224 224GPR RA Mux 83 84GPR WA Mux 83 84GPR WD Mux 42 42GPR RegFile 11511 11702IR Dmux 224 224IR Reg 321 321LR Reg 321 321NIA WD Mux 42 42NIA Reg 321 321Temp0 Reg 321 321Table 5.5: Total Cell Area by instantiated modules for Synthesized PowerPC 603subsetThe
urrent design
an be improved in several ways to support
omplex ar
hite
-tures. Support for VLIW, SuperS
alar ar
hite
tures, simple and
omplex pipelinedar
hite
tures
an be added. Overall better semi-automati
 design spa
e explorationme
hanisms
an be in
orporated. The full resour
e usage model of Sim-nML lan-guage
an be utilized to generate better quality hardware. At hardware synthesismore number of optimizations
an be performed to generate more optimized hard-ware stru
ture. The s
heduling of the pro
essor instru
tions
an be improved in amajor way. The total
ow from Sim-nML to lowest level physi
al synthesis work
anbe more explored to get the
omplete
ow of ASIP generation.
39

Before Clo
k Tree Insertion After Clo
k Tree InsertionGate Count Area Gate Count AreaAN2 89 2 AN2I 90 2NR8 32 6 FD1 1554 7AO2 70 2 IVDA 27 1FD1 1554 7 OR3 20 2AO5 20 3 NR3 18 2ND4 256 2 MUX21H 137 4IV 121 1 EON1 1216 3EON1 1222 3 IVI 359 1AO4 4 2 NR5 4 4MUX21H 160 4 OR2I 8 2NR5 4 4 IVDAP 3 2AN3 32 2 AOIP 6 2OR3 3 2 EN 8 3NR3 1 2 ND3 1 2NR2 93 1 B4IP 3 4EN 23 3 ND2 32 11ND3 19 2 NR16 717 1AO6 6 2 ND2I 106 1ND2 53 1 NR2I 240 3MUX31L 22 4 EO 31 3EO1 8 3 ENI 4 2EO 38 3 MUX21L 87 3NR4 3 2 MUX31L 3 4MUX21LP 34 4Total Area 16980 Total Area 17562Table 5.6: Total Cell Area by instantiated gates for Synthesized PowerPC 603 subsetArea UnitsCombinatorial Area 452.00Non-
ombinatorial Area 168.00Total Cell Area 620.00Table 5.7: Total Cell Area for Hypotheti
al Pro
essor Data Path40

Call AreaEA Reg 85Exe
utionUnit 369IR Reg 85NIA Reg 81Total Area 620Table 5.8: Total Cell Area by instantiated
ells for Hypotheti
al Pro
essor Data Path

41

Bibliography[1℄ Barba

i, M. "Instru
tion Set Pro
essor Spe
i�
ations (ISPS): The Notion andits Appli
ations". IEEE Transa
tions on Computer-Aided Design (Jan 1981).[2℄ Bhatnagar, H. "Advan
ed ASIC Chip Synthesis : Using Synopsys DesignCompiler and Primetime". Kluwer A
ademi
 Publishers, 1999.[3℄ Biesena
k, J. "The Siemens High Level Synthesis System: CALLAS". SixthInternational Workshop on High Level Synthesis (November 1992).[4℄ Chandra, Y. S. "Retargetable Fun
tional Simulator". Master's thesis, June1999. http://www.
se.iitk.a
.in/resear
h/mte
h1997/9711121.html.[5℄ DeMi
heli, G., Ku, D., Mailhot, F., and Truong, T. "The OlympusSynthesis System for Digital Design". IEEE Design and Test (O
tober 1990),37{53.[6℄ Despian, M. A., and Huang, I. J. "Synthesis of Appli
ation Spe
i�
 Instru
-tion Sets". IEEE Transa
tions on Computer-Aided Design of Integrated Cir
uitsand Systems (June 1995), 663{675.[7℄ Doran, K. W., and Oumarou, S. "Regular Array Synthesis Using Alpha".Rapport de Re
her
he Irisa, No829 (May 1994). http://www.irisa.fr/
osi/ALPHA/.[8℄ Fauth, A., Freeri
ks, M., and Knoll, A. "Generation of Hard-ware Ma
hine Models from Instru
tion Set Des
riptions". Pro
. IEEE Work-shop VLSI Signal Pro
essing, Veldhoven (Netherlands) (O
t 1993), 242{250.http://www.te
hfak.uni-bielefeld.de/te
hfak/ags/ti/fors
hung/publikationen/vlsi-93.ps .[9℄ Fauth, A., Praet, J. V., and Freeri
ks, M. "Des
ribing Instru
-tion Sets Using nML (Extended Version).". Te
hni
al report, Te
hnis
heUniversity at Berlin and IMEC, Berlin (Germany)/Leuven (Belgium) (1995).ftp://ftp.ime
.be/pub/vsdm/reports/retargetable
ode generation/af-edt
95.ps.gz.[10℄ Gajski, D. D., Dutt, N. D., and Wu, A. C.-H. "High Level SynthesisIntrodu
tion to Chip and Systems Design". Kluwer A
ademi
 Publishers, 1992.42

[11℄ Gir
zy
, E. F., Bhur, R. J. A., and Knight, J. P. "Appli
ation of aSubset of Ada as an Algorithmi
 Hardware Des
ription Language for GraphBased Hardware Compilation.". IEEE Transa
tions on Computer-Aided Designof Integrated Cir
uits and Systems (April 1985).[12℄ Gs
hwind, M. "Instru
tion Set Sele
tion for ASIP Design.". Pro
. of theSeventh International Workshop on Hardware/Software Co-Design (May 1999),7{11.[13℄ Gutberlet, P., Muller, J., Kramer, H., and Rosensite, W. "S
hedul-ing Between Basi
 Blo
ks in the CADDY Synthesis System". Pro
. of the Eu-ropian Design Automotion Conferen
e (1992). http://www.fzi.de/sim/Caddy/ .[14℄ Hadjiyiannis, G., Hanono, S., and Devadas, S. "ISDL: An Instru
tionSet Des
ription Language for Retargetability". In Pro
eedings of the 34th DesignAutomation Conferen
e (June 1997), 299{302.[15℄ Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., and Ni
o-lau, A. "EXPRESSION: A Language for Ar
hite
ture Exploration throughCompiler/Simulator Retargetability". Pro
. of the Design, Automation and Testin Europe (1999).[16℄ Heijligers, M. "NEAT: an Obje
t Oriented High Level Synthesis Interfa
e".Pro
. IEEE ISCAS, 1994. (1994). ftp://ftp.i
s.ele.tue.nl/pub/papers/hls/ISCAS94.ps.gz.[17℄ Hilderink, H. "NESCIO: An Intera
tive High Level Synthesis Framework".Pro
. of the Workshop on Cir
uits, Systems and Signal Pro
essing (Mar
h 1994).ftp://ftp.i
s.ele.tue.nl/pub/papers/hls/NESCIO-94.ps.gz.[18℄ Hoe, J. C., and Arvind. "Hardware Synthesis from Term Rewriting Systems".Pro
. of VLSI'99" (De
ember 1999). ftp://
sg-ftp.l
s.mit.edu/pub/papers/
sgmemo/memo-421a.ps.gz .[19℄ Holtmann, U. "High-Level Synthesis System BSS". http://www.
s.tu-bs.de/eis/english/resear
h/oldies/e9520BSS.htm.[20℄ Hwang, C. T., Lee, J., and Hsu, Y. C. "A Formal Appro
h to the S
hedul-ing Problem in High Level Synthesis". IEEE Transa
tions on Computer-AidedDesign of Integrated Cir
uits and Systems (April 1991), 464{475.[21℄ Jain, N. C. "Disassembler Using High-Level Pro
essor Models". Master's thesis,January 1999. http://www.
se.iitk.a
.in/resear
h/mte
h1997/9711113.html.[22℄ Jerraya, A. A., Park, I., and O'Brien, K. "AMICAL: An Intera
tive HighLevel Synthesis Environment". Pro
. of European CAD Conferen
e (Feb 1993).http://tima-
mp.imag.fr/tima/sls/ami
al/ami
al.html.43

[23℄ Khouri, S. K., Lakshminarayana, G., and Jha, N. K. "IMPACT: AHigh-Level Synthesis System for Low Power Control-Flow Intensive Cir
uits".Pro
. of the 1998 Design Automation and Test in Europe (DATE '98) (1998).[24℄ Kowalski, T. J., and Thomas, D. E. "The VLSI Design Automotion As-sistant : Prototype System". Pro
. 20th Design Automotion Conf (June 1983),479{489.[25℄ Kumari, S. "An Automati
 Assembler Generator for Sim-nML Des
ription Language". Master's thesis, Mar
h 2000.http://www.
se.iitk.a
.in/resear
h/mte
h1998/9811119.html.[26℄ Leeser, M., Chapman, R., Aagaard, M., Linderman, M., and Meier,S. "High Level Synthesis and Generating FPGAs with the BEDROC system".Journal of VLSI Signal Pro
essing (1993), 191{214.[27℄ Marwedel, P. "The MIMOLA Design system : Tools for the Design of DigitalPro
essors". Pro
. of the 21th Design Automotion Conferen
e (1984), 53{58.[28℄ Marwedel, P. "Mat
hing System and Component Behaviour in MIMOLASynthesis Tools". Pro
. of the European Design Automation Conferen
e (EDAC)(1990).[29℄ Meerbergen, J., Lippens, P., Verhaegh, W., and Werf,A. V. D. "PHIDEO: High Level Synthesis for High Through-put Appli
ations". Journal of VLSI Signal Pro
essing (May 1995).http://www.resear
h.philips.
om/pressmedia/releases/e14.html.[30℄ Palnitkar, S. "Verilog HDL A Guide to Digital Design and Synthesis". Pren-ti
e Hall, Upper Saddle River, NJ, 1996.[31℄ Pangrle, B. M., and Gajski, D. D. "Design Tools for Intelligent Sili
onCompilation". IEEE Transa
tions on Computer-Aided Design of Integrated Cir-
uits and Systems (Nov 1987), 1098{1112.[32℄ Parker, A. C., Mlinar, M., and Pizarro, J. "MAHA: A Program for DataPath Synthesis". Pro
. of 23rd Design Automotion Conferen
e (June 1986), 461{466.[33℄ Pogde, P. "Retargettable Code Generation using Sim-nML Ma
hine Des
rip-tion". Master's thesis, May 2000. http://www.
se.iitk.a
.in/resear
h/mte
h1998/9811114.html.[34℄ Rajiv, A. R. "Retargetable Pro�ling Tools and their Appli
ation in Ca
heSimulation and Code Instrumentation". Master's thesis, De
ember 1999.http://www.
se.iitk.a
.in/resear
h/mte
h1998/9811117.html.44

[35℄ Raksey, N., and Fernandez. "Spe
ifying Representations of Ma
hine In-stru
tions". ACM Transa
tion on Programming Langauges and Systems (May1997). http://www.
s.virginia.edu/ nr/pubs/spe
ifying-abstra
t.html.[36℄ S
hreiber, R., Aditya, S., and Rau, B. e. "High-Level Synthesis of Non-programmable Hardware A

elerators". HP Labs Te
hni
al Reports (HPL-2000-31) (2000). http://www.hpl.hp.
om/te
hreports/2000/HPL-2000-31.html.[37℄ S.Note, W.Geurts, F.Catthoor, and Man, H. "Cathedral-III: Ar
hi-te
ture Driven High-Level Synthesis for High Throughput DSP Appli
ations".Pro
. 28th ACM/IEEE Design Automation Conf (1991), 597{602.[38℄ Stroud, C. "CONES: A System for Automated Synthesis of VLSI and Pro-grammable Logi
 from Bbehavioral Models". Pro
. of IEEE ICCAD, Santa Clara(Nov 1986).[39℄ Thomas, D. E., Dirkes, E. M., Walker, R. A., Rajan, J. V., Nestor,J. A., and Bla
kburn, R. L. "The System Ar
hite
t's Workben
h". 337{343.[40℄ Tseng. "Bridge: A Versatile Behavioral Synthesis System". Pro
. of 25thACM/IEEE Design Automation Conferen
e (1988), 415{420.[41℄ Tseng, C. J., and Siewiorek, D. P. "Automated Synthesis of Data Pathsin Digital Systems". IEEE Transa
tions on Computer Aided Design (July 1986).[42℄ Wakabayashi, K. "C-Based High-Level Synthesis System, Cyber-Design Ex-perien
e". .[43℄ Wei, R.-S. "BECOME: Behavior Level Cir
uit Synthesis Based on Stru
tureMapping". Pro
. of 25th ACM/IEEE Design Automation Conferen
e (1988),409{414.[44℄ Woo, N.-S. "A Global, Dynami
 Register Allo
ation and Binding for a DataPath Synthesis System". Pro
. of the 27th Design Automotion Conferen
e (June1990), 505{510.[45℄ "An Introdu
tion to System-Level Modelling in SystemC 2.0".http://www.system
.org/papers/SystemC WP20.pdf.[46℄ "High Level Synthesis System: RODIN". Pro
. of Fifth Generation ComputerSystems (1992). http://www.i
ot.or.jp/ARCHIVE/Museum/IFS/abst/070.html.[47℄ "SPARK: Synthesis using Parallelizing Compiler Te
hniques".http://www.
e
s.u
i.edu/ spark/index.shtml.[48℄ "The Esterel Language Primer, version v5 91".ftp://ftp.esterel.org/esterel/pub/papers/primer.ps.45

[49℄ Zebo, P., and Krzysztof, K. "Automated Transformation of Algorithms intoRegister-Transfer Level Implementations". IEEE Transa
tions on Computer-Aided Design of Integrated Cir
uits and Systems (Feb 1994), 150{166.[50℄ Zivojnovi
, V., Pees, S., and Meyr, H. "LISA - Ma
hine Des
riptionLanguage and Generi
 Ma
hine Model for HW/SW Co-Design". In Pro
eedingsof 1996 IEEE Workshop on VLSI Signal Pro
essing (1996). http://www.ert.rwth-aa
hen.de/Projekte/Tools/LISA/lisa.html.[51℄ "OpenBook Referen
e Manual". Caden
e In
..[52℄ "DesignWare Library Manual". Synopsys In
..

46

Appendix A
Synopsys Design CompilerCon�guration Setup
A.1 Design Compiler .synopsys d
.setup FileFollowing is the Synopsys Design Compiler (DC) setup �le .synopsys d
.setup whi
his ne
essey to a

ess all the DC Basi
 and Foundation Library
omponents duringthe synthesis pro
ess.
ompany = "IIT Kanpur";designer = "CARES";te
hnology = "0.35 mi
ron";sear
h_path = sear
h_path + { "." ,"/spa
e/synopsys/syn_sim99.10/libraries/" };target_library = {
lass.db};syntheti
_library = {dw01.sldb dw02.sldb,dw03.sldb,dw04.sldb,dw06.sldb};link_library = target_library + syntheti
_library;symbol_library = {
lass.sdb};
A.2 Design Compiler Compilation S
riptFolowing is the Synopsys DC Compilation S
ript. The s
ript reads syntheti
 library`synthesis.sl' and produ
es internal `.sldb' �le. After that it
ompiles all sub modules47

and writes low level verilog netlist a

ording to the target library `
lass.db' as de�nedin `.synopsys de.setup'. At the next stage
lo
k tree is inserted with period 50Hz inthe port `Clk' and the design is re-
ompiled to get the total area, power and otherreports.read_lib synthesis.slwrite_lib synthesis.sldbsub_modules = {NIA_Reg, EA_Reg, IR_Reg, Exe
utionUnit, TopLevel}forea
h(module,sub_modules){read -format verilog module + ".v"if(d
_shell_status != 1){sh e
ho 'error ' modulequit;}
ompilewrite -format verilog -hierar
hy module}report_area > area_before_CTset_wire_load LARGE -mode en
losedset_operating_
ondition WORST
reate_
lo
k -period 50 -waveform { 0 25 } Clkset_
lo
k_skew -delay 2.0 -minus_un
ertainty 3.0 Clkset_input_delay 2.0 -
lo
k Clk -max all_inputs()set_max_area 0
ompilewrite -hierar
hy -output netlist.dbreport_area > area_after_CTquit
A.3 Design Compiler Parameterized Library Spe
-i�
ationFollowing is the Synopsys DC Syntheti
 Library `synthesis.sl' whi
h is used for param-eterized implementation of Design Ware Library
omponents. Without this the DC48

omponents like `DW03 reg s pl'
an't be used parametri
ally. This �le also spe
i�esthe implementation ar
hite
ture of the modules during synthesis pro
ess. If for anymodule implementation is not spe
i�ed, DC will
hoose a parti
ulat implementationfrom the internal DC database.library("synthesis.sldb") {module(DW03_reg_s_pl) {design_library : "DW03_reg_s_pl.db";parameter(width) {hdl_parameter : TRUE;}parameter(reset_value) {hdl_parameter : TRUE;}implementation(sim){}pin(d) {dire
tion : input;bit_width : "width";}pin(
lk) {dire
tion : input;bit_width : "1";}pin(reset_N) {dire
tion : input;bit_width : "1";}pin(enable) {dire
tion : input;bit_width : "1";}pin(q) {dire
tion : output;bit_width : "width";}}module(DW01_de
ode) {design_library : "DW01_de
ode.db";parameter(width) {hdl_parameter : TRUE;49

}parameter(de
_width) {hdl_parameter : TRUE;}pin(A) {dire
tion : input;bit_width : "width";}pin(B) {dire
tion : output;bit_width : "de
_width";}}module(DW01_mux_any) {design_library : "DW01_mux.db";parameter(A_width) {hdl_parameter : TRUE;}parameter(SEL_width) {hdl_parameter : TRUE;}parameter(MUX_width) {hdl_parameter : TRUE;}pin(A) {dire
tion : "input";bit_width : "A_width";}pin(SEL) {dire
tion : "input";bit_width : "SEL_width";}pin(MUX) {dire
tion : "output";bit_width : "MUX_width";}}module(DW01_add) {design_library : "DW01_add.db";parameter(width) {hdl_parameter : TRUE;50

}pin(A) {dire
tion : "input";bit_width : "width";}pin(B) {dire
tion : "input";bit_width : "width";}pin(CI) {dire
tion : "input";bit_width : "1";}pin(SUM) {dire
tion : "output";bit_width : "width";}pin(CO) {dire
tion : "output";bit_width : "1";}}module(DW01_sub) {design_library : "DW01_sub.db";parameter(width) {hdl_parameter : TRUE;}pin(A) {dire
tion : "input";bit_width : "width";}pin(B) {dire
tion : "input";bit_width : "width";}pin(CI) {dire
tion : "input";bit_width : "1";}pin(DIFF) { 51

dire
tion : "output";bit_width : "width";}pin(CO) {dire
tion : "output";bit_width : "1";}}module(DW01_absval) {design_library : "DW01_absval";parameter(width) {hdl_parameter : TRUE;}pin(A){ dire
tion : "input";bit_width : "width";}pin(ABSVAL) {dire
tion : "output";bit_width : "width";}}module(DW01_ash) {design_library : "DW01_ash";parameter(A_width) {hdl_parameter : TRUE;}parameter(SH_width) {hdl_parameter : TRUE;}pin(A) {dire
tion : "input";bit_width : "A_width";}pin(DATA_TC) {dire
tion : "input";bit_width : "1";}pin(SH) {dire
tion : "input";bit_width : "SH_width";52

}pin(SH_TC) {dire
tion : "input";bit_width : "1";}pin(B) {dire
tion : "output";bit_width : "A_width";}}}

53

Appendix B
Example of Stru
tural Datapath ofa Hypotheti
al Pro
essorThe stru
tural Verilog des
ription of a hypotheti
al pro
essor is given below. Thehypotheti
al pro
essor
ontains three registers and one exe
ution unit, whi
h
ontainsfour fun
tional units - adder, subtra
tor, shifter and absolute value
al
ulator.module TopLevel(Clk,EA_Reset,IR_Reset,NIA_Reset,EA_WE,IR_WE,NIA_WE,Ex_Sel);parameter Width = 8;input Clk;input EA_Reset;input IR_Reset;input NIA_Reset;input EA_WE;input IR_WE;input NIA_WE;input [1:0℄ Ex_Sel;wire [Width-1 : 0℄ EA_RD_Out;wire [Width-1 : 0℄ IR_RD_Out;wire [Width-1 : 0℄ EX_Out;EA_Reg EA_Reg_inst(.Clk(Clk), .WD(), .WE(EA_WE), .Reset(EA_Reset),.RD(EA_RD_Out));IR_Reg IR_Reg_inst(.Clk(Clk), .WD(), .WE(IR_WE), .Reset(IR_Reset),.RD(IR_RD_Out));54

Exe
utionUnit Exe
utionUnit_inst(.A(EA_RD_Out), .B(IR_RD_Out),.Clk(Clk), .Sel(Ex_Sel), .C(EX_Out));NIA_Reg NIA_Reg_inst(.Clk(Clk), .WD(EX_Out), .WE(NIA_WE),.Reset(NIA_Reset), .RD());endmodulemodule Exe
utionUnit(A,B,Clk,Sel,C);parameter width = 8;parameter SH_width = 3;parameter A_width = 8;parameter B_width = 8;parameter Sel_width = 2;parameter C_width = 8;input [A_width - 1 : 0 ℄ A;input [B_width - 1 : 0 ℄ B;output [C_width - 1 : 0 ℄ C;input Clk;input [Sel_width - 1 : 0 ℄ Sel;reg [C_width - 1 : 0 ℄ C;wire [2 : 0℄ B_Sh;wire [A_width-1 : 0℄ Out1;wire [A_width-1 : 0℄ Out2;wire [A_width-1 : 0℄ Out3;wire [A_width-1 : 0℄ Out4;wire CI_inst;assign B_Sh = 3'b010;assign CI_inst = 0;DW01_add #(width) Add1(.A(A), .B(B), .CI(CI_inst), .SUM(Out1), .CO());DW01_sub #(width) Sub1(.A(A), .B(B), .CI(CI_inst), .DIFF(Out2), .CO());DW01_ash #(A_width, SH_width) Shift1(.A(A), .DATA_TC(CI_inst),.SH(B_Sh), .SH_TC(CI_inst), .B(Out3));DW01_absval #(width) Abs1(.A(A), .ABSVAL(Out4));always �(Sel or Out1 or Out2 or Out3 or Out4) begin
ase(Sel) // synopsys full_
ase parallel_
ase55

2'b00 : C = Out1;2'b01 : C = Out2;2'b10 : C = Out3;2'b11 : C = Out4;end
aseendendmodulemodule IR_Reg(Clk,WD, WE, Reset, RD);parameter width = 8;parameter reset_value = 5;input Clk;input Reset;input WE;input [width-1 : 0 ℄ WD;output [width-1 : 0 ℄ RD;reg Enable;always � (Clk) beginEnable = WE;$display($time,"IR_WE = %b, IR_Reset = %b, IR_RD = %b",WE,Reset, RD);endDW03_reg_s_pl #(width , reset_value) R1(.d(WD), .
lk(Clk),.reset_N(Reset), .enable(Enable), .q(RD));endmodulemodule EA_Reg(Clk,WD, WE, Reset, RD);parameter width = 8;parameter reset_value = 10;input Clk;input Reset;input WE;input [width - 1 : 0 ℄ WD;output [width - 1 : 0 ℄ RD;reg Enable; 56

always �(Clk) beginEnable = WE;$display($time,"EA_WE = %b, EA_Reset = %b, EA_RD = %b",WE, Reset, RD);endDW03_reg_s_pl #(width , reset_value) R1(.d(WD), .
lk(Clk),.reset_N(Reset), .enable(Enable), .q(RD));endmodulemodule NIA_Reg(Clk,WD, WE, Reset, RD);parameter width = 8;parameter reset_value = 0;input Clk;input Reset;input WE;input [width - 1 : 0 ℄ WD;output [width - 1 : 0 ℄ RD;reg Enable;DW03_reg_s_pl #(width , reset_value) R1(.d(WD), .
lk(Clk),.reset_N(Reset), .enable(Enable), .q(RD));endmodule

57

Appendix C
Se
tion of Generated VerilogBehavioral Synthesis CodeFollowing is the se
tion of generated Verilog behavioral synthesis
ode of MotorolaMC68HC11 mi
ropro
essor. The lines of
ode in Sim-nML spe
i�
ation is 2947.The
attened des
ription
ontains 210 ma
hine instru
tions. The a
tion se
tion ofthe ma
hine instru
tions are translated to generate behavioral Verilog
ode of the
orresponding mi
ro
ontroller. Total lines of generated Verilog
ode is 3708.module Pro
essor(
lo
k);reg [0:31℄ IR;reg [0:7℄ M[0:1000℄;reg [0:15℄ D;reg [0:7℄ A;reg [0:7℄ B;reg [0:7℄ CCR;reg [0:15℄ IX;reg [0:15℄ IY;reg [0:31℄ SP;reg [0:31℄ PC;reg [0:31℄ NPC;reg [0:7℄ TmpSr
;reg [0:7℄ R;reg [0:31℄ LR;reg [0:0℄ TmpBit;input
lo
k;always �(posedge
lo
k) begin 58

asex (IR[0:31℄) //synthesis parallel
ase32'h10000110XXXXXXXX :begin R = IR[8:15℄;CCR[3:3℄ = R[7:7℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;endCCR[1:1℄ = 0;A = R;end///////////// End of Instru
tion 0 //////////////32'h10010110XXXXXXXX :begin R = M[IR[8:23℄℄;CCR[3:3℄ = R[7:7℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;endCCR[1:1℄ = 0;A = R;end///////////// End of Instru
tion 1 //////////////32'h10110110XXXXXXXXXXXXXXXX :begin R = M[IR[8:15℄℄;CCR[3:3℄ = R[7:7℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;end 59

CCR[1:1℄ = 0;A = R;end///////////// End of Instru
tion 2 //////////////32'h11111100XXXXXXXXXXXXXXXX :begin LR[0:7℄ = M[IR[8:15℄℄;LR[8:15℄ = M[(IR[8:15℄ + 1)℄;CCR[3:3℄ = LR[15:15℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;endCCR[1:1℄ = 0;D = LR;end///////////// End of Instru
tion 12 //////////////32'h10111001XXXXXXXXXXXXXXXX :begin R = ((A + M[IR[8:15℄℄) + CCR[0:0℄);CCR[5:5℄ = (((A[3:3℄ & TmpSr
[3:3℄) | (TmpSr
[3:3℄ &R[3:3℄)) | (R[3:3℄ & A[3:3℄));CCR[3:3℄ = R[7:7℄;if((R == 0)) beginCCR[2:2℄ = 1;endelse beginCCR[2:2℄ = 0;endCCR[1:1℄ = ((A[7:7℄ & TmpSr
[7:7℄) & (!(R[7:7℄ |(!(A[7:7℄ & (!(TmpSr
[7:7℄ & R[7:7℄)))))));CCR[0:0℄ = ((A[7:7℄ & TmpSr
[7:7℄) | (TmpSr
[7:7℄& (!(R[7:7℄ | (!(R[7:7℄ & A[7:7℄))))));A = R;end///////////// End of Instru
tion 45 //////////////32'h00100011XXXXXXXX : 60

begin if(((CCR[0:0℄ + CCR[2:2℄) == 1)) beginNPC = ((PC + IR[8:15℄) + 2);endelse beginNPC = (PC + 2);endend///////////// End of Instru
tion 194 //////////////32'h00101101XXXXXXXX :begin if((CCR[1:1℄ ^ (CCR[3:3℄ == 0))) beginNPC = ((PC + IR[8:15℄) + 2);endelse beginNPC = (PC + 2);endend///////////// End of Instru
tion 195 //////////////end
aseendendmodule

61

Appendix D
Simulation Top Level Monitor FileSampleA sample
ode of simulation top level module whi
h probes the module input/outputpins and/or the internal reg/wire of the pro
essor module. Simulation data is storedin `Pro
essor.v
d' �le. The post suimulation data stored in `Pro
essor.v
d' �le
anbe analyzed using post simulation data analysis tool as Caden
e SignalS
an et
.module Pro
essor ;reg Clk;reg EA_Reset;reg IR_Reset;reg NIA_Reset;reg EA_WE;reg IR_WE;reg NIA_WE;reg [1:0℄ Ex_Sel;reg [6:0℄ rom[20:0℄;integer i;initial// Monitors several external and internal registers and wires.$monitor($time, " Clk = %b, EA_WE = %b, IR_WE = %b,NIA_WE = %b, Ex_Sel = %b C = %d", Clk, EA_WE, IR_WE,NIA_WE, Ex_Sel[1:0℄, TopLevel_inst.Exe
utionUnit_inst.C);TopLevel TopLevel_inst(.Clk(Clk), .EA_Reset(EA_Reset),62

.IR_Reset(IR_Reset), .NIA_Reset(NIA_Reset),.EA_WE(EA_WE), .IR_WE(IR_WE), .NIA_WE(NIA_WE), .Ex_Sel(Ex_Sel));initial //Clo
k Generation Modulebegin Clk = 1'b0;forever #50 Clk = ~Clk;endinitialbegin $readmemb("rom.mem",rom);i = 0;endalways �(posedge Clk) beginassign {EA_Reset, IR_Reset, EA_WE, IR_WE, NIA_WE, Ex_Sel} = rom[i℄;$display($time, "EA_Reset = %b, IR_Reset = %b,EA_WE = %b, IR_WE = %b, NIA_WE = %b, Ex_Sel = %b",EA_Reset, IR_Reset, EA_WE, IR_WE, NIA_WE,Ex_Sel);i = i + 1;endinitialbegin $dumpfile("Pro
essor.v
d");$dumpvars(0,Pro
essor);#550;$dumpflush;endinitialbegin #550 $finish;endendmodule
63

