
Generation of GCC Ba
kend from Sim-nMLPro
essor Des
ription
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

bySoubhik Bhatta
harya

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurJuly, 2001

Certi�
ate
This is to
ertify that the work
ontained in the thesis entitled �Generation ofGCC Ba
kend from Sim-nML Pro
essor Des
ription�, by Soubhik Bhatta
harya, hasbeen
arried out under our supervision and that this work has not been submittedelsewhere for a degree.July, 2001
(Dr. Rajat Moona)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

(Dr. Sanjeev Kumar Aggarwal)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

Abstra
tIn
reasing importan
e of software in embedded systems led to the paradigm ofhardware-software
odesign, whi
h advo
ates for early integration of hardware andsoftware, even before the hardware design is
omplete. To support this paradigma set of tools are needed that
an simulate the build and exe
ution environment ofhardware. The approa
h is developed in our group where a high-level spe
i�
ation ofhardware is written and from whi
h the tools assembler, linker,
ompiler, simulator,high-level synthesizer et
. are generated automati
ally.In this thesis te
hniques have been developed for analyzing a high-level des
rip-tion of a pro
essor, written in Sim-nML [17℄ pro
essor spe
i�
ation language, andextra
ting the semanti
 information needed for automati
 generation of GCC ma-
hine des
ription. Using Sim-nML one
an des
ribe instru
tions of a pro
essor in a
ompa
t hierar
hi
al form. The hierar
hy is initially �attened to obtain a sequen
eof C-like statements for ea
h instru
tion. A sequen
e des
ribes the semanti
 a
tionof an instru
tion. The a
tion sequen
es are simpli�ed using the te
hniques of tempo-rary removal and bran
h elimination and mat
hed against some standard patternsso that they
an be identi�ed with one of the standard names used in GCC ma
hinedes
riptions. Finally, this information is used to generate a partial GCC ma
hinedes
ription for the pro
essor.

A
knowledgementsIt is my privilege to mention the names of Dr. Rajat Moona and Dr. Sanjeev Kumarin this page. Dr. Moona has driven this resear
h with his enthusiasm and agilitywhile Dr. Sanjeev Kumar's wise and experien
ed words helped me to avoid anypossibility of diversion. Together they played the roles of mentors and tea
hers. Iowe them a lot for what I have learnt through this resear
h experien
e. I am thankfulto Dr. Deepak Gupta for his
onstru
tive parti
ipation in our group dis
ussions. Ishould also express my gratitude to the Department of CSE and its fa
ulty and stu�for the beatiful a
ademi
 environment that they have
reated.This work is a part of an ongoing resear
h at Caden
e Resear
h Center, IITKanpur. I am thankful to Caden
e India Ltd. for their �nan
ial support.I am grateful to my fellow members of CARES, Rajiv, Souvik, Prithvi, Arvind,Anand, and Mayank. They have made this group a hub of intelle
tual a
tivities,stood by me at di�
ult times, shared frustrations, and at the same time, boostedmy spirits. I should remember the past members of the group, Prashant and Sarika,who helped me during my early days. This, also, is an opportunity to bow my headbefore the great
omradeship of MTe
h99. I hope this spirit will live long.Finally, let me
on
ede my huge debt to my parents and beloved ones. Withouttheir support and patien
e this work would not have been possible.

Contents
1 Introdu
tion 11.1 Motivation . 11.2 A Survey of Te
hniques for Compiler Ba
kend Generation 31.2.1 Grammar Based Approa
hes 31.2.2 Approa
hes of Tree Pattern Mat
hing 41.2.3 Automati
 Code Generation from High Level Pro
essor Spe
-i�
ation . 41.2.4 Automati
 Code Generation from HDL 61.2.5 GCC Portable Compiler . 71.2.6 Our Approa
h . 71.3 Outline of the Thesis . 82 Sim-nML Pro
essor Spe
i�
ation Language 102.1 Sim-nML Language . 102.1.1 General Chara
teristi
s . 102.1.2 Basi
 Data Types . 112.1.3 Storage and Fun
tional Units 112.1.4 Instru
tion Set . 122.1.5 Attribute Types . 132.2 An Example: Sim-nML Des
ription of UltraSpar
IIi Pro
essor 142.2.1 Windowed Register Set . 142.2.2 Delayed Transfer of Control 152.2.3 Bran
hes . 15ii

3 GCC and its Porting Me
hanism 203.1 RTL Representation Basi
s . 203.1.1 RTL Expressions . 213.2 Internal Representation of a Program 223.3 Ma
hine Des
ription . 223.3.1 md File . 233.3.2 C Header and Program Files 263.4 The Translation Pro
ess . 273.4.1 Parsing and RTL Generation 273.4.2 Optimization, Register Allo
ation, Reloading 273.4.3 Final Pass . 284 Generation of GCC Ma
hine Des
ription from Sim-nML Spe
i�
a-tion 294.1 Prepro
essing . 294.1.1 Register Analysis . 314.1.2 Mode Rule Analysis . 314.2 Flattening of A
tion Sequen
e . 324.3 Instru
tion Analysis . 334.3.1 Morphing Parameters . 334.3.2 Constru
tion of Control Flow Graph 334.3.3 Removal of Uses of Temporary variables 344.3.4 Instru
tion Splitting . 354.3.5 Constant Folding . 364.3.6 Bran
h Elimination . 364.3.7 Code Motion . 364.3.8 Removal of De�nitions of Temporary Variables 374.3.9 Mode Rule Synthesis . 374.3.10 Final Copy Propagation . 374.3.11 Deletion of PC Assignments 384.3.12 Instru
tion Re
ognition . 384.4 Ma
hine Des
ription Generation . 39iii

4.4.1 Generation of target.h and target.
 404.4.2 Generation of target.md . 404.5 Summary . 435 Results and Future Work 455.1 GCC Port for Spar
64 . 455.2 Future Dire
tions . 49A GCC Internals 55A.1 Components of GCC Compiler Suite 55A.2 A Grouping of RTL Expression Codes 56A.2.1 Operands . 56A.2.2 Operations . 57A.2.3 Side E�e
ts . 57A.2.4 Embedded Side E�e
ts . 58A.2.5 Insns . 58A.2.6 RTL Templates . 58A.2.7 De�nitions . 58A.3 A Grouping of Standard GCC Names 58A.3.1 Data Movement . 58A.3.2 Arithmeti
-Bitwise Operations 59A.3.3 Type Conversions . 59A.3.4 Comparisons . 59A.3.5 String Operations . 59A.3.6 Control Transfers . 59A.3.7 Sta
k Operations . 60A.3.8 Others . 60A.4 Useful RTX Related Fun
tions and Ma
ros 60A.5 Ma
hine Mode Related Ma
ros . 61A.6 Fun
tions Related to Insns . 62A.7 Set of Built-in Predi
ates . 62A.8 Notion of an Address . 63iv

A.8.1 RTXes used as Addresses . 63A.8.2 De�nition of a Valid Address 63A.9 Translation of C Level Data to Ma
hine Level 64A.9.1 Translation to Ma
hine Modes 66A.9.2 De�nitions of byte_mode, word_mode et
 66A.9.3 Mapping to Hard Registers . 66A.9.4 Mapping to Memory Lo
ations 68A.9.5 Translation of Constants . 68B genmd2 Maintainer's Guide 70B.1 Sour
e Files . 70B.2 Intermediate Dumps . 72B.3 A Grammar for Value Expressions . 73C genmd2 User's Manual 76C.1 System Requirements . 76C.2 Installation . 77C.3 Running the Tool . 77C.4 Con�guration File . 77C.4.1 PC Se
tion . 78C.4.2 CC Se
tion . 78C.4.3 SP Se
tion . 78C.4.4 Return Address Pointer Se
tion 79

v

List of Figures1.1 Outline of Our Approa
h . 93.1 Translation Pro
ess of GCC . 274.1 Ar
hite
ture of GCC Ma
hine Des
ription Generator 304.2 Flattened A
tion for Mips SLL Instru
tion 384.3 Patterns for Adding Single Integers in the md File of PowerPC 603 . 424.4 Test and Bran
h-if-equal Patterns in the md File of Spar
 44A.1 Translation of Data . 65

vi

Chapter 1Introdu
tion
1.1 MotivationWe are witnessing a time when ele
troni
 systems are being deployed in new andinnovative ways a
ross various aspe
ts of our life and
ivilization, e.g., industrialautomation, tele
ommuni
ation, media, automobile,
onsumer ele
troni
s, to namea few. Use of programmable pro
essors are no longer
on�ned to general-purposePersonal Computers, servers, or multipro
essors. These pro
essors are �nding theirways to appli
ation spe
i�
 ele
troni
 systems, better known as embedded systems.Use of Appli
ation Spe
i�
 Instru
tion-set Pro
essor (ASIP), Appli
ation Spe
i�
Integrated Cir
uit (ASIC), and general-purpose ISA-based pro
essors, is also gain-ing popularity in the embedded systems. All these fa
ts
ontribute in in
reasing theimportan
e of software in embedded systems. At the same time an in
reasing num-ber of vendors are trying to push embedded systems in various appli
ation areas.To qui
kly meet the demands of an expanding market and to obtain an edge over
ompetitors, designer of embedded systems needs low turn-around time and
oste�e
tiveness in the design. Ele
troni
 Design Automation (EDA) tools are used tomeet these obje
tives. Existing EDA tools and methodologies, whi
h fa
ilitate de-sign of hardware to a great extent, however do not provide signi�
ant aid in softwaredevelopment and hardware-software integration.Normally hardware design and software development of an embedded system1

begin nearly at the same time. However, they
annot be integrated until a prototypeof the hardware
an be built. Hardware/software
odesign is a paradigm for designingembedded systems whi
h advo
ates early integration of hardware and software inthe design
y
le, even before the hardware design is
ompleted. This prevents errorsfrom propagating through the design and redu
es the e�ort spent in tra
king and�xing them. This also allows the designer to evaluate performan
e of the systemearly and explore various design alternatives. To enable hardware/software
odesignone needs a set of tools that
an simulate the build and exe
ution environment ofthe hardware. A
ommon approa
h is to start with a high-level spe
i�
ation ofthe hardware, whi
h
ontains enough information needed to develop software andexe
ute it on that hardware. Tools are used to automati
ally generate
ompiler,assembler, linker from the high level spe
i�
ation to enable software development.Simulators are built around this spe
i�
ation to
reate an exe
ution environmentfor the software. High-level synthesis tools are used to enable hardware design fromthis spe
i�
ation.Sim-nML [17℄ is a high-level pro
essor spe
i�
ation language, whi
h is powerfulenough to des
ribe any ISA based pro
essor. Tools have been developed to generateassembler [8℄, disassembler [7℄, fun
tion simulator [1℄,
a
he simulator [19℄ et
 fromSim-nML spe
i�
ations of pro
essors. A preliminary work for generation of
ompilerfrom Sim-nML spe
i�
ations has also been
arried out [16℄.In this work te
hniques have been developed for performing extensive semanti
analysis of Sim-nML spe
i�
ations and extra
ting information needed for generationof
ompiler. A tool has been developed that reads a Sim-nML spe
i�
ation inits intermediate form, and generates a partially
omplete GCC (GNU CompilerColle
tion) ma
hine des
ription. GCC has been retargeted to Spar
 using the Sim-nML des
ription. We have
hosen GCC be
ause it is a produ
tion quality optimizing
ompiler, whi
h
an be retargeted by writing a des
ription of the target. However,GCC ma
hine des
ription is large and
omplex. Our tool redu
es the e�ort needed toretarget GCC. The advantage is magni�ed by the fa
t that a Sim-nML spe
i�
ation
an also be used to generate many other tools for the pro
essor.
2

1.2 A Survey of Te
hniques for Compiler Ba
kendGenerationA
ompiler translates a high-level language program to an equivalent assembly orma
hine language program [23℄ [24℄. Broadly, it
onsists of two
omponents. Thefrontend is responsible for lexi
al analysis, parsing and
onverting the program to anintermediate form. The ba
kend or the
ode generator translates the intermediateform of the program to assembly or ma
hine language. Ideally,
ompiler front endis spe
i�
 to the sour
e language and ba
kend, to the target pro
essor. This kindof design redu
es the work needed to port an existing
ompiler to a new sour
elanguage or target ar
hite
ture.Approa
hes for automati
 generation of parts of the frontend from the spe
i�
a-tions of the sour
e language are well known [23℄. Several attempts have been madeto automate the generation of
ompiler ba
kend from the spe
i�
ation of the targetma
hine. We shall dis
uss some of them. At the end of this se
tion, an overview ofour approa
h will be given.1.2.1 Grammar Based Approa
hesGrammar based approa
hes attempt to extend the te
hnique of parser generationto ba
kend generation. A grammar for the intermediate form is spe
i�ed. Forea
h grammar rule an a
tion is spe
i�ed whi
h
onstru
ts and/or emits assemblyinstru
tions as the rule is applied. A parser is generated from the grammar, whi
hparses the intermediate form and generates assembly output.Graham-Glanville [6℄ used a
ontext free grammar to parse a Polish-Pre�x inter-mediate form. A register allo
ator was meshed with the parser. Ganapathi-Fis
her[5℄ used the more powerful notations of attribute grammars and disambiguatingpredi
ates. The
ode generators generated by them were
apable of doing somesimple optimizations also.
3

1.2.2 Approa
hes of Tree Pattern Mat
hingThe approa
hes of tree pattern mat
hing work on an intermediate form that is asequen
e of trees. A set of tree-rewriting rules are spe
i�ed. A rule has a treepattern, whi
h is mat
hed within the intermediate form, a repla
ement node, whi
hrepla
es the mat
hed pattern, and an a
tion to be performed on su

essful mat
hing.A
ost fun
tion is used to impose additional
onditions for mat
hing. A
tions areresponsible for emitting assembly
ode. Dynami
 programming is used to determinean optimal
over for the intermediate form using the patterns.Aho, Ganapathi and Tjiang developed a system
alled twig based on this ap-proa
h [22℄. LCC [14℄ also uses this approa
h. A program
alled lburg reads ama
hine spe
i�
ation �le
ontaining de�nitions of the tree rules and generates a
ode generator. In another work, a Redu
ed Instru
tion Set Ma
hine (RISM),
on-sisting of a set of simple instru
tions
apable of simulating all other instru
tions, isautomati
ally extra
ted from a tree-based ma
hine des
ription [2℄. An RISM
odegenerator is generated, whi
h
onverts the intermediate form of the program, anabstra
t syntax tree, to a sequen
e of RISM instru
tions. An automati
ally gen-erated optimizer then merges simple RISM instru
tions to more
omplex ma
hineinstru
tions and produ
es good quality assembly
ode.1.2.3 Automati
 Code Generation from High Level Pro
essorSpe
i�
ationA high level spe
i�
ation for a pro
essor des
ribes its ISA and additionally, providessome stru
tural information. Unlike the grammar or tree rewriting rules, thesespe
i�
ations are tool independent. The sour
e program is translated by a pro
es-sor independent fronted to a suitable intermediate form, normally a CDFG (ControlData Flow Graph). The pro
essor spe
i�
ation is
onverted to an internal datastru
ture so that instru
tions
an be represented by patterns whi
h
an be mat
hedwithin the intermediate form of the program. Then attempts are made to
over theprogram optimally using instru
tion patterns. Basi
 steps performed by the retar-getable
ode generator are instru
tion sele
tion, resour
e allo
ation, and instru
tion4

s
heduling [25℄, [26℄, [27℄, [23℄.CHESS [11℄ is a
ommer
ially available retargetable
ompiler based on nML [3℄ma
hine des
ription formalism. CHESS has been designed for embedded �xed pointDSPs (Digital Signal Pro
essors). nML ma
hine des
ription is internally
onvertedto an Instru
tion Set Graph, whi
h stores information about instru
tion set andresour
es of the pro
essor. Sour
e program written in DFL or C is translated to aCDFG. Then the
ompiler ba
kend performs
ode sele
tion, register allo
ation ands
heduling in sequen
e.CodeSyn [15℄
ompiler is a part of FlexWare [15℄ development environment forembedded systems. High-level program, written in C or C++, is translated to aCDFG. The
ode generator follows a rule-based approa
h. The ma
hine des
ription
ontains resour
e information (register sets, addressing modes et
) and a set of
odesele
tion rules, one for ea
h high level operation. When the operation mat
heswithin the CDFG, the rule is triggered. The
ompiler performs global s
heduling,register assignment, and
ode
ompa
tion in sequen
e.AVIV [20℄ retargetable
ompiler fo
uses on pro
essors exhibiting signi�
ant ILP(Instru
tion Level Parallelism) and VLIW ar
hite
tures. It uses SUIF (StanfordUniversity Intermediate Format) [28℄ and SPAM (Synopsys, Prin
eton, Aa
hen,MIT) [29℄
ompilers as its frontend. The
ode generator reads ISDL [4℄ ma
hinedes
ription and output of the frontend, whi
h is a set of basi
 blo
k DAGs (Dire
tedA
y
li
 Graphs)
onne
ted through
ontrol �ow information, and generates a Split-node DAG. A Split-node DAG represents a set of all possible ways the program
anbe exe
uted on the pro
essor. A heuristi
 bran
h and bound algorithm is used toprodu
e near optimal assembly
ode from the Split-node DAG. Unlike most otherapproa
hes AVIV performs instru
tion sele
tion, resour
e allo
ation and s
heduling
on
urrently.EXPRESSION [30℄ ma
hine spe
i�
ation language des
ribes ISA, some stru
-tural information and also the memory subsystem. Tools are used to automati-
ally generate tree patterns des
ribing instru
tions, a reservation table
ontainings
heduling information et
. EXPRESS [30℄ retargetable
ompiler makes use of theseinformation to generate
ode. 5

LISA [31℄ pro
essor design platform in
ludes a
ompiler generator. Along withLISA ma
hine des
ription, some additional semanti
 information and an ABI (Ap-pli
ation Binary Interfa
e) spe
i�
ation is provided to the
ompiler generator. The
ompiler generator then generates a ma
hine des
ription for LCC [14℄ whi
h is built,along with LCC frontend, to obtain an LCC port for the pro
essor.The Mes
al group is also working on a proje
t to develop a retargetable
ompilerfrom MAD spe
i�
ation language [32℄. However, this work is not
omplete and theyare yet to report any result.An earlier work [13℄ has been
arried out to generate LCC [14℄ ma
hine de-s
ription from nML [3℄. A tool has been developed that �attens an nML ma
hinespe
i�
ation to obtain a set of instru
tion patterns. Additional transformations areapplied to the instru
tions to synthesize an LCC ma
hine des
ription. The pro-gram lburg [14℄ then generates a ba
kend for LCC from the synthesized ma
hinedes
ription.1.2.4 Automati
 Code Generation from HDLDes
riptions written in HDL give a lower level view of the hardware than thosewritten in high-level spe
i�
ation languages. HDL des
riptions
an easily a

om-modate ar
hite
tural
hanges and they
an be dire
tly linked with hardware designtools. However, from the point of view of
ode generation, they
ontain unne
essarydetails about the hardware. The ISA, whi
h a
ts as an interfa
e between hardwareand software, is not apparent in these des
riptions. However, like the high-levelspe
i�
ation languages, they are also tool independent.A work has been
arried out to extra
t ISA from an HDL des
ription and gener-ating
ompiler ba
kend from these information. RECORD [27℄ retargetable
ompiler
onstru
ts a graph model,
onsisting of primitive pro
essor entities and their inter-
onne
tion, from an HDL des
ription. From the graph a set of instru
tion templatesis determined. With additional semanti
 knowledge of hardware operators, a treegrammar and a parser are generated. This parser works as a
ode sele
tor in the
ompiler ba
kend. RECORD
ompiler has reported to outperform (with respe
tto size of the generated
ode) native TI
ompiler on TMS320C25 DSP
hip, when6

tested with DSPstone [34℄ ben
hmark suite.1.2.5 GCC Portable CompilerGCC (GNU Compiler Colle
tion) is a highly optimizing produ
tion quality
om-piler whi
h has been ported to a number of pro
essors. GCC has its own ma
hinedes
ription format
onsisting of an md �le, a number of C header �les, and a Cprogram �le. The GCC frontend translates a sour
e program into an intermedi-ate form
alled RTL [21℄, whi
h has a LISP-like re
ursive stru
ture. The md �lespe
i�es a set of RTL templates and the ways to generate assembly instru
tionsfrom them. Additionally, some of the templates in the md �le are given standardnames, whi
h
onvey the semanti
s of the templates to GCC frontend. Frontenduses named templates to generate initial RTL intermediate form. The initial RTLform then undergoes a series of transformations for optimization, register allo
ationand s
heduling, and then they are mat
hed against templates de�ned in the md �leand assembly
ode is generated.GCC produ
es good quality
ode for pro
essors with homogeneous stru
tures.However, it is not very su

essful in the domain of ASIPs and DSPs, whi
h oftenhave heterogeneous register sets. Also, porting GCC to a new target often ne
es-sitates
hanges in the so-
alled `ma
hine independent' sour
es of GCC. So it is notretargetable, in the stri
test sense of the term [25℄.1.2.6 Our Approa
hWe propose to generate a GCC ma
hine des
ription from a Sim-nML spe
i�
ation ofa pro
essor, so that GCC
an be ported to the pro
essor with minimal e�ort. Sim-nML [17℄, whi
h is an extension of nML [3℄ ma
hine des
ription formalism, is a toolindependent high-level pro
essor spe
i�
ation language. It
aptures informationabout the ISA, registers, addressing modes, fun
tional units of a pro
essor in a
ompa
t and easily maintainable form. Several tools have been developed to supportsoftware development and exe
ution around the Sim-nML model of a pro
essor [8℄[7℄ [1℄ [9℄ [19℄. In this work we have attempted to
omplement Sim-nML te
hnology7

by adding the
ompiler-generation
apability to it.A preliminary work for GCC ma
hine des
ription generation from Sim-nML hasbeen
arried out earlier [16℄. A tool genmd has been developed whi
h generated aGCC ma
hine des
ription for Intel8085 pro
essor, sans
ontrol transfer instru
tions.However, the te
hniques used in this tool avoided many pra
ti
al
omplexities andso the tool failed to work with more
omplex pro
essor des
riptions. Also it didnot have the appropriate framework for dealing with
ontrol transfer instru
tions.Nevertheless, this work gave us some insight into the problem.Figure 1.1 outlines our approa
h. The tool irg parses the Sim-nML des
riptionand stores it into a �le
alled IR (Intermediate Representation). This IR is inputof our tool. Sin
e the des
ription is written in a
ompa
t hierar
hi
al form, it isinitially �attened to obtain a sequen
e of C-like statements for ea
h instru
tion. Thissequen
e of statements des
ribes the semanti
s of the instru
tion. Some simplifyingtransformations are made to remove temporaries, fold
onstants, eliminate bran
heset
. from the sequen
es. Then sequen
es are mat
hed against some prede�nedpatterns and identi�ed with standard GCC names. At this stage we have gatheredenough information for generation of a GCC ma
hine des
ription. Now it is possibleto write the GCC ma
hine des
ription of a pro
essor in a number of ways. Wehave implemented a simple and generi
 ma
hine des
ription generation strategy andgenerated a partial ma
hine des
ription. Finally, additional information are addedto
omplete the ma
hine des
ription and a GCC is built for the target pro
essor.The advantage of this approa
h is that we are using a well-trusted frontend andhigh quality optimization and
ode generation te
hniques of GCC. But the di�
ultyarises be
ause of a la
k of simple formal stru
ture in GCC ma
hine des
ription.Also, semanti
s of instru
tion patterns are to be
onveyed to GCC expli
itly byusing standard GCC names. This ne
essitates a rigorous semanti
 analysis of theSim-nML des
ription.1.3 Outline of the ThesisIn
hapter 2 we present an overview of the Sim-nML language.8

Sim−nML
IR

irgSim−nML
Specification of a

Processor

flattener

GCC Machine

Description

Machine description
generation strategy

Set of Instruction

Patterns

Patterns

Named Instruction

Additional
Information

simplifications

instruction
recognition

GCC
build processGCC Port for

the Processor

Figure 1.1: Outline of Our Approa
hIn
hapter 3 we dis
uss GCC and the me
hanism to port GCC to a target.In
hapter 4 we dis
uss the design and implementation of the tool that is de-veloped in this thesis to generate GCC ma
hine des
ription from Sim-nML. Finally,we present the results of our work and some future dire
tions in
hapter 5.

9

Chapter 2Sim-nML Pro
essor Spe
i�
ationLanguageIn this
hapter the formal stru
ture of Sim-nML language, along with an overviewof its syntax and semanti
s will be presented. To exemplify the expressibility ofthe language, Sim-nML des
ription of UltraSpar
IIi pro
essor will be dis
ussed.Detailed des
ription of the language
an be found in [17℄ [9℄ [10℄ [18℄.2.1 Sim-nML Language2.1.1 General Chara
teristi
sSim-nML pro
essor spe
i�
ation language is an extension of nML [3℄. It has thefollowing general
hara
teristi
s:� High Level of Abstra
tion: A Sim-nML programmer views a pro
essoras a ma
hine that exe
utes a set of instru
tions. For ea
h instru
tion in theinstru
tion set of the pro
essor, the binary image, assembly syntax, fun
tion-ality, resour
e usage and timing are spe
i�ed. Additionally, the ISA-spe
i�edregisters, memory and fun
tional units are des
ribed. The des
ription
ontainsenough information about the pro
essor to support software development andexe
ution around it. 10

� Tool Independen
e: A Sim-nML des
ription is not spe
i�
 to a tool. Arange of tools, in
luding assembler [8℄, disassembler [7℄, fun
tion simulator [7℄,
a
he simulator [19℄ have been generated from it.� Generality: Sim-nML language is powerful enough to
apture any kind ofISA-based pro
essor. Sim-nML des
riptions have been written for di�erent
lasses of pro
essors in
luding RISC (Spar
, Mips, PowerPC, ARM), CISC(M68HC11, 8085), and DSP (ADSP) [33℄.� Compa
tness: Sim-nML allows the programmer to write a
ompa
t andhierar
hi
al des
ription by exploiting the
ommonality between instru
tions.2.1.2 Basi
 Data TypesSim-nML provides a set of built-in abstra
t types viz.
ard, int, �oat, range, boolet
. A near orthogonal set of operators is also provided. All the types used in thedes
ription are de�ned by the programmer and derived from the built-in types. Forexample,
ard(32) is a 32-bit unsigned integer type derived from the built-in type
ard.Basi
 data types are used in the following two di�erent
ontexts� To des
ribe data types supported by the pro
essor, e.g. to des
ribe types ofregisters, memories, or parameters of instru
tions.� To des
ribe data types needed for programming, e.g. to des
ribe types oftemporary variables used within the des
ription.In addition string literals are allowed in the de�nitions of assembly syntax andbinary images of instru
tions.2.1.3 Storage and Fun
tional UnitsThe keyword resour
e is used to de�ne a fun
tion unit or a pipeline stage. A storageunit may be a pro
essor resour
e or a temporary variable needed for programming.The keyword reg de
lares an ISA-spe
i�ed register. The keyword mem may de
lare11

a memory unit or a temporary variable. The keyword var is spe
i�
ally used tode
lare the temporary variable.2.1.4 Instru
tion SetIn Sim-nML, instru
tion set of the pro
essor is des
ribed as an S-attributed gram-mar. Ea
h senten
e derivable from the grammar
orresponds to a single ma
hineinstru
tion. Ea
h nonterminal symbol of the grammar is asso
iated with a set ofattributes. Ea
h produ
tion rule of the grammar is asso
iated with a set of at-tribute de�nitions. Ea
h attribute de�nition
omputes the value of an attribute ofthe left-hand side of the produ
tion as a fun
tion of the values of the attributes ofthe symbols appearing on the right-hand side.A set of produ
tions of the form:T : XT : Y.....T : Zwhere T, X, Y,, Z are nonterminal symbols, is represented in Sim-nML withan or rule of the form:op T = X | Y | | ZThe attribute de�nitions are impli
it in an or rule. All the attributes of the right-hand symbol are assigned to the
orresponding attributes of the left-hand symbolwhen a produ
tion of this form is applied.A single produ
tion of the form:T : X Y Zwhere T is a nonterminal and X, Y,, Z are terminal or nonterminal grammarsymbols, is represented in Sim-nML with an and rule of the form:op T (X, Y, ..., Z)X, Y, ..., Z are
alled parameters of the and rule. If a parameter is of a basi
 typethen it is treated as a terminal symbol of the grammar, whi
h is a parameter of ama
hine instru
tion. Otherwise, the parameter is treated as a nonterminal symbol,whi
h is a partial de�nition of a ma
hine instru
tion. Ea
h nonterminal symbol12

should appear on the left-hand side of exa
tly one Sim-nML rule. In an and ruleattributes are expli
itly de�ned. If an attribute is not de�ned then it is assumed tohave a null value.Sim-nML provides a set of attributes with a prede�ned semanti
s. When an in-stru
tion is derived from the grammar,
omplete de�nitions of all the attributes areobtained. The attribute syntax stores the syntax of the instru
tion. Likewise, the at-tributes image, a
tion, and uses store, respe
tively, the binary image, fun
tionality,and resour
e-usage of the instru
tion.A Sim-nML rule whose left-hand side is an addressing mode or a partial de�nitionof an addressing mode, is
alled a mode rule. All other rules are
alled op rules. Amode rule di�ers from an op rule be
ause it
an have a value. The value of a moderule is stored in a hidden attribute.It is intuitively obvious that the S-attributed grammar supported by Sim-nML
an be used to des
ribe any
ontext free grammar and hen
e, any instru
tion set.2.1.5 Attribute TypesThe attributes for assembly syntax and binary image are strings. The attributefor resour
e-usage follow a usage grammar. Attributes de�ning fun
tionality ofinstru
tions are sequen
es of C-like statements, often
alled a
tion sequen
es.Sim-nML provides a restri
ted programming model to de�ne fun
tionality ofinstru
tions. It supports built-in and user de�ned types, built-in operators, sequen
eof statements,
ontrol transfer, fun
tion
all et
. It also allows programmer to de�nevariables, whi
h are
alled temporaries, and have a global s
ope and in�nite lifetime.To support
ontrol transfer Sim-nML has an if-then-else-endif statement. How-ever, there is no
onstru
t for loops and goto-like jumps.Level of abstra
tion of an a
tion sequen
e is lower than that of a ma
hine instru
-tion be
ause an a
tion sequen
e is used to express fun
tionality of an instru
tion.It gives programmer a lot of freedom through bit-sele
tion and
on
atenation op-erators. Bit-sele
tion allows a programmer to view an arbitrary
hunk of bits of astorage unit as a single obje
t. Con
atenation allows programmer to form an obje
t13

by
ombining a number of obje
ts. In Sim-nML language, the smallest unit of stor-age that
an be viewed as an obje
t is a single bit. However, these low-level featuresmake appli
ation of traditional algorithms for data �ow analysis,
opy propagationet
. di�
ult, as will be observed in
hapter 4.2.2 An Example: Sim-nML Des
ription of Ultra-Spar
IIi Pro
essorUltraSpar
IIi is a 64-bit supers
alar RISC pro
essor [36℄ that implements Spar
 V9[35℄ ISA. In this se
tion we will dis
uss the ways in whi
h some of its interestingfeatures have been expressed using Sim-nML.2.2.1 Windowed Register SetSpar
 V9 supports the notion of a windowed register set. The mapping betweena register number generated by software and a
tual hard register number dependsupon the state of a spe
ial register,
alled window pointer register. Software gener-ated register numbers are partitioned into four
lasses viz., global, out, lo
al, and in,ea
h
ontaining eight registers.Following formulas show the relationship between software register numbers andhardware register numbers:hard_reg_no = global_reg_no + pstate.ag * 8hard_reg_no = out_reg_no +
wp * 16hard_reg_no = lo
al_reg_no +
wp * 16 + 8hard_reg_no = in_reg_no +
wp * 16 + 16Here pstate.ag is a single bit in a state register pstate.
wp is 5-bit
urrentwindow pointer register. Following is a Sim-nML mode rule de�ning an addressingmode for lo
al registers:mode lo
(x:
ard(3))=winreg[16*
wp + 8 + x℄syntax=format("%%l%d",x)image=format("%5b",x+16) 14

`winreg' has earlier been de
lared to be a register �le of 128 registers. Note thatthe index of the register �le is a fun
tion of a state register.2.2.2 Delayed Transfer of ControlIn Spar
 V9 all the
ontrol transfer instru
tions (
all, jump, bran
hes) are delayed.The delayed semanti
s has been expressed by introdu
ing a next-PC register, alongwith the normal PC. In the des
ription p
 refers to the normal PC and np
, to thenext PC register. All the non
ontrol transfer instru
tions exe
ute the following pairof statementsp
 = np
;np
 = np
 + 4;On the other hand a
all instru
tion, whi
h un
onditionally transfer
ontrol toa PC-relative target, exe
utes the following pair of statementstmp
 = p
;p
 = np
;np
 = tmp
 + 4*
oer
e(sxword, label);Here tmp
 is a temporary, label is a parameter, whi
h spe
i�es the target.
oer
eoperator sign-extends label to a signed 64-bit integer. The target is multiplied by 4to maintain alignment.2.2.3 Bran
hesIn Spar
 V9 there are 5
lasses of bran
h instru
tions viz., bpr, fbf

, fbpf

, bi

,and bp

. A
lass
ontains 24, 32 or 64 bran
h instru
tions. For example there aresix variations of bpr (bran
h on integer register
ondition with predi
tions)� Bran
h if zero� Bran
h if nonzero� Bran
h if less than zero� Bran
h if less than equal to zero 15

� Bran
h if greater than zero� Bran
h if greater than equal to zeroEa
h of these bran
hes
an be annulling or non annulling, and predi
t-taken orpredi
t-not-taken. So there are total 24 bran
hes in
lass bpr. Su
h a large numberof bran
hes have been des
ribed in Sim-nML in a very
ompa
t manner by intro-du
ing dummy mode rules. A mode rule normally
orresponds to an operand of theinstru
tion. A dummy mode rule, however, represents a
onstituent of the op
ode.In this des
ription dummy mode rules have been used to spe
ify the register
ondi-tion to be evaluated, the annul bit and the predi
tion bit of a bran
h instru
tion.Here is an example from the UltraSpar
IIi des
ription://'r
ond' field in 'bpr'//if equal to zeromode rz()=1syntax="z"image="001"//if less than equal to zeromode rlez()=2syntax="lez"image="010"//if less than zeromode rlz()=3syntax="lz"image="011"//if not zeromode rnz()=5syntax="nz"image="101"//if greater than zeromode rgz()=6syntax="gz" 16

image="110"//if greater than equal to zeromode rgez()=7syntax="gez"image="111"//one of the above
onditionsmode r
ond= rz | rlez | rlz | rnz | rgz | rgezNow instead of using 24 di�erent op rules, all the bran
hes of
lass bpr havebeen des
ribed using a single op rule, whi
h has a parameter of type r
ond. Withinthe a
tion, value of this parameter is
he
ked and register
ondition is evaluateda

ordingly. The a
tion of this op rule sets a temporary, taken, whi
h is examinedby another higher-level op rule and p
 and np
 are adjusted a

ordingly. Followingis the example of the op rule bpr (a and p are two dummy mode rules spe
ifyingannul and predi
tion bits, disp16 is a mode rule for a 16-bit displa
ement, gpr is amode rule for a general purpose register):op bpr(x:a, y:r
ond, z:disp16, w:p, u:gpr)syntax=format("br%s%s%s %s, %s", y.syntax, x.syntax, w.syntax, u.syntax,z.syntax)image=format("00%s0%s011%s%s%s%s", x.image, y.image, z.image<14..15>,w.image, u.image, z.image<0..13>)a
tion={annul=x; //save annul bit in a temporaryea=p
 + 4*
oer
e(sxword,z); //save target address in a temporary//evaluate register
onditionif y==1 //equal to zerothenif u==0thentaken=1;elsetaken=0; 17

endif;else if y==2 //less than equal to zerothenif
oer
e(sxword, u) <= 0thentaken=1;elsetaken=0;endif;else if y==3 //less than zerothenif
oer
e(sxword, u) < 0thentaken=1;elsetaken=0;endif;else if y==5 //not zerothenif u!=0thentaken=1;elsetaken=0;endif;else if y==6 //greater than zerothenif
oer
e(sxword, u) > 0thentaken=1;else 18

taken=0;endif;else if y==7 //greater than equal to zerothenif
oer
e(sxword, u) >= 0thentaken=1;elsetaken=0;endif;endif;endif;endif;endif;endif;endif;}

19

Chapter 3GCC and its Porting Me
hanismGCC is a free
ompiler, developed by the GNU
ommunity [37℄. It is availablefor a number of frontends, in
luding C, C++, Fortran, Java, Obje
tive-C, and anumber of pro
essors in
luding Intel x86, Spar
, Mips, Arm, Motorola 68HC11. Itis known to be a produ
tion quality
ompiler with high quality optimization and
ode generation te
hniques. GCC
an be ported to a new target by providing atarget des
ription in the form of an md �le, a number of C header �les, and aC program �le. GCC frontend produ
es
ode in an intermediate form, known asan RTL representation. RTL patterns also appear in the md �le of GCC ma
hinedes
ription.In this
hapter an introdu
tion to GCC RTL representation will be given. Also,GCC's internal representation of a program, and ma
hine des
ription will be dis-
ussed in brief. Finally, we shall present an overall pi
ture of the translation pro
e-dure. All the four topi
s, among others, have been dis
ussed at length in [21℄.3.1 RTL Representation Basi
sRTL has a LISP like re
ursive stru
ture. An RTL obje
t is the most fundamentalabstra
tion of an RTL representation. An RTL obje
t
an represent an operator,an operand, side-e�e
t (fun
tionality) of an instru
tion, an instru
tion, a de�nitionof an instru
tion et
. An RTL obje
t is one of the following20

� integer: C type int� wide integer: C type HOST_WIDE_INT, as de�ned in GCC's sour
e �les� string: C type
har *� expression of RTL obje
ts: a pointer to a stru
ture� ve
tor of RTL expressions: an arbitrary number of RTL expressions3.1.1 RTL ExpressionsInternally (within GCC sour
es) an RTL expression, also
alled an RTX, is a pointerto a stru
ture. Operands of the expression are members of the stru
ture, whi
h inturn, are RTL obje
ts. The stru
ture also has a member
alled
ode of the RTX.The
ode gives the expression a name and a semanti
 meaning, and de�nes thenumber and types of its operands. A list of RTX
odes
an be found in AppendixA. Another member of the stru
ture is ma
hine mode of the RTX. Ma
hine modede�nes the type and width of the value produ
ed by the RTX.An RTX has an external representation, whi
h appears in debugging dumps andmd �les. In this form, an RTX is en
losed within a pair of parentheses. Name ofthe RTX appears �rst, followed by the ma
hine mode and operands. Absen
e ofma
hine mode implies VOIDmode. Some of the examples of RTXes are as follows:An RTX representing register number 10 is written as (reg:SI 10) where regis the name of the RTX. SI stands for single integer ma
hine mode. A reg RTX hasonly one operand, whi
h is an integer RTL obje
t. The operand signi�es the registernumber.An RTX representing a
onstant integer 5 is written as (
onst_int 5). A
onst_int RTX does not have a ma
hine mode (or is equivalent to a ma
hine modeVOIDmode). The only operand of this RTX signi�es the value of the integer.An RTX representing result of the addition of register number 10 and a
onstantinteger 5 is written as (plus:SI (reg:SI 10) (
onst_int 5)). plus RTX hastwo operands, both of whi
h are RTXes. They signify the operands of an addition.The ma
hine mode of plus spe
i�es the type and width of the result of addition.21

3.2 Internal Representation of a ProgramAn insn is an RTX, whi
h is GCC's abstra
tion of an instru
tion. GCC frontendtranslates a
ompilation unit into a doubly linked
hain of insns. Translation is per-formed on a statement-by-statement basis during parsing. At the time of assemblyoutput generation, an insn is typi
ally
onverted into a sequen
e of one or moreassembly instru
tions. Some insns, however, are not real instru
tions, and representlabels or some de
larative information.Following are the RTX
odes that an insn
an haveinsn, jump_insn,
all_insn, note, barrier, and
ode_label.An insn has an operand of type RTX whi
h de�nes its fun
tionality or `side-e�e
t'. A side e�e
t typi
ally performs an arithmeti
/logi
 operation and stores theresult to a register, or moves between registers, or moves between a register and amemory lo
ation, or sets PC
onditionally to a target et
.Following is an example of an insn, that adds a register and an immediate
on-stant, and stores the result into another register:(insn10 7 11(set (reg:SI 9) (plus:SI (reg:SI 10) (
onst_int 5)))-1 (nil) (nil))The side-e�e
t of the insn is a set RTX, whose �rst operand signi�es the desti-nation of the assignment and the se
ond operand, sour
e. set does not produ
e avalue and so, does not have a ma
hine mode.Three numbers pre
eding the side-e�e
t expression represent, in order, uid (uniqueidentity) of the insn, uid of the previous insn, and uid of the next insn. Othersoperands of an insn are not important in this
ontext.3.3 Ma
hine Des
riptionGCC ma
hine des
ription
ontains the following information:22

� Pro
essor ar
hite
ture� fun
tional behavior, and optionally, resour
e-usage ofinstru
tions, endianness, memory addressability et
.� ABI� register usage, fun
tion-
alling
onventions et
.� Layout of sour
e language data types� sizes of int, float,
har et
.� Format of binary �les� format of obje
t and exe
utable �les, format of debug-ging information.� Compiler environment�
onventions for assembler, linker, libraries, lo
ation ofsystem's headers and libraries et
.The ma
hine des
ription
onsists of an md �le, a C program �le and a numberof C header �les.3.3.1 md FileAn md �le
an
ontain the following information:� De�nitions of RTL patterns whi
h
an appear as side-e�e
ts of insns. TheRTXes de�ne_expand and de�ne_insn are used to provide these information.� Ways to generate assembly instru
tions from insns. The RTXes de�ne_insnand de�ne_peephole are used for this purpose.� Ways to split a single insn into a sequen
e of insns. The RTX de�ne_split isused for this purpose.� Information about fun
tion units and laten
ies of instru
tions. The RTXesde�ne_delay and de�ne_fun
tion_unit are used for this purpose.Names of PatternsNames are given to RTL patterns de�ned using de�ne_expand and optionally, tothose de�ned using de�ne_insn. Two di�erent de�nitions
annot use same name.GCC provides a set of standard names whi
h
onvey the semanti
s of the patterns to23

GCC frontend. Standard names are used while translating the high-level languageprogram into an RTL intermediate form. GCC generates a gen_name fun
tion togenerate a pattern whose name is name and name does not begin with the
hara
ter`*'. A gen_name fun
tion a

epts the operands of the pattern as arguments. Thesefun
tions are often used in a ma
hine des
ription to expli
itly generate a pattern.A list of standard names
an be found in Appendix A.Templates Used in a PatternRTL templates are used to spe
ify a set of operands or operators that
an appear ina parti
ular position in the pattern. The following RTXes are used as RTL templatesmat
h_operand, mat
h_dup, mat
h_operator et
.mat
h_operand spe
i�es a set of operands. It has three operands. First operandis an integer RTL obje
t, spe
ifying operand number. Se
ond and third operands arestring RTL obje
ts, whi
h spe
ify a predi
ate and a set of
onstraints, respe
tively.A predi
ate spe
i�es a broad
lass for the operand, e.g. whether it is a register oran immediate operand. Constraint imposes stri
ter
onditions e.g. the exa
t
lassof registers or range of immediate operands. Two patterns whi
h di�er only in the
onstraints of their templates
annot be de�ned separately. A single de�nition isused for them with a set of alternative
onstraints.Here is an example of a mat
h_operand template(mat
h_operand:SI 0 "register_operand" "a")In an a
tual insn this template will be repla
ed by the operand number 0, whi
hmust be a register of
lass `a', with ma
hine mode SImode. There are a numberof built-in predi
ates provided by GCC. Additional predi
ates
an be de�ned inthe C program �le. A list of built-in predi
ates has been provided in Appendix A.Meanings of
onstraint letters are spe
i�ed in a C header �le within the ma
hinedes
ription.de�ne_expand Patternsde�ne_expands are only used during RTL generation i.e. during translation of the24

high-level program into RTL. They must have a name. de�ne_expand allows gen-erating a sequen
e of RTL patterns, ea
h to appear as a side-e�e
t of an insn in asequen
e of insns. Every pattern that may be generated by a de�ne_expand shouldalso be de�ned using a de�ne_insn. Using de�ne_expand one
an also spe
ify afragment of a C
ode to be exe
uted before the generation of the patterns. The
on-straints whi
h appear in an RTL template of a pattern are ignored by de�ne_expand.Here is an example of a de�ne_expand(define_expand "addsi3"(set(mat
h_operand:SI 0 "general_operand" "")(plus:SI(mat
h_operand:SI 1 "general_operand" "")(mat
h_operand:SI 2 "general_operand" "")))"""")First operand of de�ne_expand, "addsi3", is the name of the pattern. "addsi3"is a standard GCC name, meaning addition in single integer mode. Se
ond operandis the pattern. Note that mat
h_operand templates have o

upied the pla
es of realoperands. The predi
ate "general_operand" allows any general register, memory orimmediate
onstant as an operand. Third operand is a string, whi
h is supposed tospe
ify a
ondition to be tested before this de�ne_expand is used. Last operand isalso a string where one
an put a fragment of C
ode.de�ne_insn Patternsde�ne_insn may or may not have a name. Named de�ne_insns may be used duringRTL generation. de�ne_insns are also used at later stages of
ompilation. Usingde�ne_insn one
an spe
ify a single RTL pattern whi
h
an appear as a side-e�e
tof an insn. Using de�ne_insn one also spe
i�es the assembly
ode to be generated25

from the pattern or a fragment of a C program to be exe
uted to generate theassembly
ode.Here is an example of an unnamed de�ne_insn, whi
h de�nes a pattern thatmay be resulted from the de�ne_expand shown in the last example:(define_insn ""(set(mat
h_operand:SI 0 "register_operand" "a")(plus:SI(mat
h_operand:SI 1 "register_operand" "a")(mat
h_operand:SI 2 "register_operand" "a")))"""add %1, %2, %0")The �rst operand, whi
h spe
i�es the name, is an empty string. Se
ond operandis the pattern. Third operand spe
i�es a
ondition whi
h must be true when thispattern is used. Last operand spe
i�es an assembly instru
tion that will be generatedfrom this pattern.de�ne_peepholede�ne_peephole is used to de�ne ma
hine spe
i�
 peephole optimizations. GCCuses a de�ne_peephole optionally, only if optimizations are enabled. It allows one tospe
ify a sequen
e of patterns and an assembly
ode to be emitted for the sequen
e.3.3.2 C Header and Program FilesC header �les and the C program �le
ontain all the information needed by GCCwhi
h
annot be represented properly within an md �le. The header �les de�ne anumber of ma
ros and enum types, and de
lare some global variables and routines.The program �le de�nes some global variables and routines. These �les also
ontain26

C
Function

Doubly Linked
Chain of insns

Assembly
Representation

of Function

Parsing and
RTL Generation

Optimizations,
Register Allocation,
Reloading

Final
Pass

Figure 3.1: Translation Pro
ess of GCCsupport information, viz. ma
ros, variables, and routines, whi
h are used elsewherein the ma
hine des
ription. A list of some useful ma
ros
an be found in AppendixA.3.4 The Translation Pro
essFigure 3.1 outlines the way GCC translates a C fun
tion into an assembly
ode.Steps are dis
ussed below.3.4.1 Parsing and RTL GenerationThe C fun
tion is parsed and insns are generated on a statement-by-statement basis.At this stage GCC looks the md �le for a de�ne_expand or a de�ne_insn with somestandard name. If found, it
he
ks the
ondition (third operand of de�ne_expandor de�ne_insn) and the predi
ates of the templates used within the pattern. If allof them are satis�ed, then an insn or a sequen
e of insns is generated to express anoperation of the high-level language.3.4.2 Optimization, Register Allo
ation, ReloadingIn this phase GCC performs several optimizations e.g. jump optimizations, loopoptimizations, s
heduling. It also performs register allo
ation. Following things
an27

happen in this phase:� Deletion: An insn may be deleted.� Mat
hing: An insn may be mat
hed against a de�ne_insn pattern. Duringmat
hing predi
ates of the templates are
he
ked, but
onstraints are not.Mat
hing helps in assembly
ode generation.� S
heduling: An insnmay be mat
hed against a de�ne_delay or de�ne_fun
tion_unit.This mat
hing helps in delay slot s
heduling and instru
tion s
heduling.� Combination: A sequen
e of insns may be
ombined to form a single, more
omplex insn. Resulting
omplex insn should, of
ourse, mat
h a de�ne_insnpattern. This helps in ma
hine independent peephole optimization.� Splitting: An insn may be mat
hed against a de�ne_split and split into asequen
e of simpler insns. Ea
h simpler insn should mat
h a de�ne_insnpattern. Splitting is needed if a
omplex insn formed by insn
ombinationdoes not mat
h any de�ne_insn. Splitting also helps in delay slot s
hedulingand instru
tion s
heduling.� Constru
tion: A new insn may be
onstru
ted and added to the doublylinked list.� Reload: An insn, that does mat
h a de�ne_insn, may be invalidated be
ause
onstraints may not be satis�ed. So GCC generates extra move insns to ensurethat
onstraints are satis�ed.3.4.3 Final PassAt this stage GCC performs ma
hine spe
i�
 peephole optimizations, generatesassembly
ode for a fun
tion, generates fun
tion entry and exit
ode.If a sequen
e of insns mat
hes a de�ne_peephole then the sequen
e is repla
edby the
orresponding assembly
ode. Otherwise, assembly instru
tion for an insn isgenerated from the mat
hing de�ne_insn pattern.28

Chapter 4Generation of GCC Ma
hineDes
ription from Sim-nMLSpe
i�
ationIn this
hapter we shall dis
uss the te
hniques for automati
 generation of a partialGCC ma
hine des
ription from the Sim-nML spe
i�
ation. We have implementedthese te
hniques in the form of a tool.In
hapter 1 an outline of our approa
h was presented. A more detailed blo
kdiagram
an be found in �gure 4.1. GCC ma
hine des
ription generator reads aSim-nML IR and a
on�guration �le and generates the �les target.md, target.h,and target.
. In the rest of this
hapter individual
omponents of the tool will bedis
ussed.4.1 Prepro
essingAt prepro
essing stage the ma
hine des
ription generator parses its arguments, readsthe
on�guration �le and the Sim-nML IR. Sim-nML IR is an intermediate repre-sentation of a Sim-nML spe
i�
ation, generated by the tool irg[18℄. Con�guration�le
ontains additional information about the pro
essor, as needed by the tool. This
29

Configuration FileSim−nML IR

GCC Machine Description

Preprocessing

Flattening

Machine Description Generation

Analysis of each Instruction

Register Analysis

Mode Rule Analysis

Action Flattening

Syntax Flattening

Generation of C

Generation of
md file

Remove Uses of
Temporaries

Split Instruction

Constant Folding

Eliminate Branches

Code Motion

Remove Temporary
Definitions

Final Copy
Propagation

Recognize Instruction

Header and Program Files

Delete PC Assignments

Synthesize Mode Rules

Construct Flow Graph

Morph Parameters

Figure 4.1: Ar
hite
ture of GCC Ma
hine Des
ription Generator30

information in
ludes the name of the PC and other PC-
lass registers (e.g. next-PC), name of the sta
k pointer, return address pointer,
ondition
ode registers et
.The stru
ture of a
on�guration �le has been des
ribed in Appendix C.After reading the inputs the tool performs some analyses to gather informationabout the registers and addressing modes of the pro
essor.4.1.1 Register AnalysisAt register analysis phase a map of all the register of the pro
essor, as des
ribedin the Sim-nML spe
i�
ation, is
reated. Also spe
ial registers, as named in the
on�guration �le, are identi�ed.4.1.2 Mode Rule AnalysisA Sim-nML mode rule typi
ally des
ribes an addressing mode of the pro
essor.Mode rules are used to de�ne parameter types of instru
tion a
tions. Mode ruleanalysis is performed to gather the following information about ea
h mode rule� If the mode rule is an or rule then it is viewed as a set of alternative addressingmodes. Total number of alternatives and ea
h alternative are determined. A
hild of a mode or rule may be a mode and rule or a mode or rule. In theformer
ase, the
hild represents a single alternative. In the later, the
hilditself is a set of alternatives and so, alternatives represented by it are similarlydetermined.� If the mode rule is an and rule and it's value is an if-then-else-endif expressionthen also it is viewed as a set of alternative addressing modes and total numberof alternatives and ea
h alternative are similarly determined.� If a mode and rule represents a single addressing mode then it's value ex-pression is analyzed and the predi
ate
ode, ma
hine mode and
onstraint aredetermined.Value expression of a mode and rule is a pre�x expression with arithmeti
-logi
operators, index,
on
atenation, bit-sele
tion et
., and whose operands may be31

parameters of the mode and rule (basi
 type or another mode rule), immediate
onstants, registers or memories. A grammar for the value expressions thatis re
ognized by our tool is given in Appendix B. The re
ursive algorithm forevaluation of pre�x expressions has been used to analyze value expressions.A predi
ate
ode spe
i�es the broad
lass in whi
h an operand of an instru
tionbelongs to and is one of the register
ode, immediate
ode, memory
ode, andoperator
ode. Operator
ode is used to deal with
omplex mode rules wherethe value expression
ontain arithmeti
-logi
 operators. Analyses of this kindof mode rules yield additional se
ondary mode rules whi
h are operands of theoriginal mode rule.A ma
hine mode spe
i�es the type (integer or �oating point) and width of theoperand.For a register operand the
onstraint refers to a
lass of registers, whi
h is asubset of the register map
reated during register analysis. For an immedi-ate operand the
onstraint spe
i�es a range of immediate values while for amemory operand, the
onstraint spe
i�es the addressing mode.Additionally, mode rule analysis determines registers whi
h
an be used as baseregisters, index registers, window pointer registers et
. and a range of numberswhi
h
an be used as displa
ements.To some extent, mode rule analysis
an
he
k for semanti
 validity of the Sim-nML spe
i�
ation as well. For example, it
an be
he
ked by this analysis whetheran index used with a register is within the range or not.4.2 Flattening of A
tion Sequen
eA Sim-nML spe
i�
ation of a pro
essor
ontains a
ompa
t hierar
hi
al des
riptionof the instru
tions of the pro
essor. The hierar
hy of op rules is assumed to be atree. A path from the root of the tree to a leaf is viewed as a single instru
tion,whi
h
an have parameters of basi
 and mode rule types. By �attening we meantraversing all su
h paths to obtain de�nitions of a parti
ular attribute of all the32

instru
tions. In the
ontext of the
urrent work only syntax and a
tion attributesare relevant. A re
ursive algorithm has been used to traverse the tree and obtain
omplete syntax string, a
tion sequen
e and parameter list of ea
h instru
tion. Thealgorithm has been presented by [16℄.4.3 Instru
tion AnalysisThe �attened a
tion sequen
e of an instru
tion may be very
omplex with the pres-en
e of temporaries and spurious bran
hes. Therefore, it is di�
ult to re
ognizethe instru
tion from this des
ription. Simplifying transformations, whi
h
onstitutethe heart of GCC ma
hine des
ription generator,
onvert the a
tion sequen
e to aset of simple parallel statements. This simpler set
an be mat
hed against a smallset of simple patterns and the instru
tion
an be re
ognized. Following subse
tionsdes
ribe the simplifying transformations and instru
tion re
ognition.4.3.1 Morphing ParametersA parameter referen
e that appears in a statement within the �attened a
tion se-quen
e is the parameter number as assigned in the op and rule from whi
h thestatement is resulted. However, for validity of the following transformations a uni-form numbering s
heme for parameters is needed. So all parameter referen
es arerepla
ed by the parameter numbers as assigned in the parameter list of the instru
-tion.4.3.2 Constru
tion of Control Flow GraphThe basi
 blo
ks1 and
ontrol �ow ar
s
onne
ting the basi
 blo
ks are determined.Sin
e the a
tion sequen
e does not have any loop or un
onditional goto, the resulting
ontrol �ow graph is a Dire
ted A
y
li
 Graph (DAG). This graph
ontains infor-mation ne
essary for removal of uses of temporary variables and
opy propagation.1A sequen
e of statements with a single entry and a single exit point
33

4.3.3 Removal of Uses of Temporary variablesA temporary variable represents a state that is not spe
i�ed in the ISA but is usedin the Sim-nML spe
i�
ation to simplify the des
ription. Temporary variables areusually de�ned using the var keyword in the Sim-nML des
ription. All temporaryvariables should be removed from the a
tion sequen
e before the instru
tion
an bere
ognized.To remove a use of a temporary variable, it is repla
ed by its most re
ent de�ni-tion. However, if a state appearing on the right hand side of the de�nition
hangesbefore the use of the temporary variable then this transformation
annot be applied.In su
h a
ase we view the resulting statements as parallel statements i.e. all thestates are read before any one of them is written [16℄.Consider the following example of sequential statementstmp
 = p
;p
 = np
;np
 = tmp
+4;Above sequen
e of statements updates PC and NPC registers within the a
tionsequen
e of a non
ontrol transfer instru
tion of UltraSpar
 pro
essor with delayedtransfer of
ontrol. The �rst statement de�nes the temporary variable tmp
, these
ond statement writes to the p
 register, whi
h appears on the right hand sideof the de�nition of temporary variable, and third statement uses tmp
 to de�nenp
 register. After transformation these statements
an be written as the followingparallel statements:p
out = np
in;np
out = p
in + 4;There are some additional
omplexities present in this phase be
ause of thepossible uses of bit-sele
tion and
on
atenation operators in the a
tion sequen
e.This for
es one to keep tra
k of virtually every single bit of every temporary variable.Following is a pair of de�nitions of temporary variable temp in presen
e of bit-sele
tion, where the later nulli�es the e�e
t of the former:temp<2..8> = ...;temp<4..12> = ...; 34

The following is another example where it is not possible to say whether the �rststatement is nulli�ed or whether the e�e
t of the �rst statement is visible after these
ond statement.temp1::temp2 = ...;temp2 = ...;In su
h a
ase we have
hosen to ignore the instru
tion.There may be situations where it may be very di�
ult to determine the mostre
ent de�nition of a temporary variable. Here is an example:temp<4..12> = ...;x = temp<3..7>;Here is another similar example:temp1::temp2 = ...;x = temp1;In su
h s
enarios we have
hosen to ignore the instru
tion.4.3.4 Instru
tion SplittingIf an instru
tion's behavior depends upon the value of a parameter that is not apart of the pro
essor state, then we view it as a
ompa
t representation of a numberof alternative instru
tions. Su
h an instru
tion is split into a number of alternativeinstru
tions and the original instru
tion is ignored.In parti
ular, if an a
tion sequen
e has an if-then-else-endif statement whi
h teststhe value of a parameter of immediate type, then only one of the two paths will beexe
uted and the exa
t path of exe
ution
an be known at the time when
ompilergenerates this instru
tion. Su
h an instru
tion is split into two instru
tions, one forea
h of the two paths of exe
ution.Here is an example taken from the a
tion of Store Byte Update instru
tion ofPowerPC 603if ra == 0 thenEA = d;elseEA = GPR[ra℄+d; 35

endif;The above statements
ompute an e�e
tive address, whi
h is a sum of a registerand a displa
ement, d. GPR is a general-purpose register �le and ra is an immediatetype parameter of this instru
tion whi
h indexes this register �le. However, GPR[0℄is hardwired to 0 and should always read as 0. So the e�e
tive address, EA, hastwo de�nitions, depending upon whether ra is 0 or nonzero. Splitting yields twoinstru
tions, in one of whi
h ra is always 0 and e�e
tive address is
omputed by thefollowing single statementEA = d;In the other instru
tion ra is always nonzero and e�e
tive address is
omputedby the statementEA = GPR[ra℄+d;4.3.5 Constant FoldingRemoval of the uses of temporary variables often
reates
onstant expressions. Weevaluate
onstant expressions and repla
e them by their values.4.3.6 Bran
h EliminationThe if-then-else-endif statements whose out
omes are known (as a result of
onstantfolding) are eliminated. All the statements in the `false' path are deleted.4.3.7 Code MotionThe statements whi
h follow an if-then-else-endif statement are moved to the endof the then and else bran
hes.After this step it is
he
ked whether there are any uses of temporary variablesleft in the a
tion sequen
e. In su
h a
ase the
ontrol �ow graph is
onstru
ted on
eagain and the above steps are iterated.
36

4.3.8 Removal of De�nitions of Temporary VariablesOn
e all the uses of temporary variables are removed from the a
tion sequen
ethe statements whi
h de�ne temporary variables are also deleted. From this pointonwards the a
tion sequen
e is free of all the temporary variables.4.3.9 Mode Rule SynthesisIn general, an operand of an instru
tion is a fun
tion of the parameters of theinstru
tion. For example, an instru
tion may a

ess a register operand indexed byan immediate type parameter, as shown in the following
odeGPR[i℄ = GPR[j℄ + GPR[k℄;Here GPR is a general-purpose register �le, indexed using parameters i, j and k, ofimmediate type.We synthesize new mode rules for su
h operand fun
tions. This way a uniformrepresentation of operands is used that helps in �nal
opy propagation, as well as,in instru
tion re
ognition.4.3.10 Final Copy PropagationIn this phase all the uses of register and memory operands are repla
ed by theirmost re
ent de�nitions. A
opy propagation involving temporary variables wasperformed during removal of uses of temporary variables, whi
h ne
essitated us toview the a
tion sequen
e as a set of parallel statements. Final
opy propagation isneeded to truly
onvert the a
tion sequen
e to a set of parallel statements.It is important to note that a single register or memory operand is a
tually amode rule and
an represent a set of states. Therefore following are the possibles
enarios� De�nition of a variable x is live at a statement that uses x. The solution is torepla
e the use of x by the most re
ent de�nition of it.� De�nition of a variable x is live at a statement that uses a variable y, and xand y are di�erent variables and the sets of states represented by them do not37

TMP_WORD = TMP_WORD << para_no_2;
GPR[para_no_1] = TMP_WORD;

TMP_WORD = para_no_0 <31..0>;

Figure 4.2: Flattened A
tion for Mips SLL Instru
tioninterse
t. In su
h a
ase no repla
ement
an be performed.� De�nition of a variable x is live at a statement that uses a variable y, x andy are di�erent variables and the sets of states represented by them interse
t.In su
h a
ase x and y are for
ed to be same variable and use of y is repla
edby the most re
ent de�nition of x.4.3.11 Deletion of PC AssignmentsAn a
tion sequen
e
ontains a set of statements for updating the PC and other PC-
lass registers (e.g. next-PC). In a non
ontrol transfer instru
tion su
h statementsdo not
arry any useful information and so, are deleted.4.3.12 Instru
tion Re
ognitionAfter simpli�
ations, attempts are made to identify the simpli�ed parallel a
tionof an instru
tion with a standard GCC name. There is no exhaustive strategy forinstru
tion re
ognition. We have followed a heuristi
 approa
h by mat
hing thea
tion against a set of known patterns and
he
king for some additional
onditions(For example, whether the lvalue of an assignment is a PC-
lass register). If themat
hing su

eeds and
onditions are satis�ed then the instru
tion is identi�ed witha standard GCC name.As an example, �gure 4.2 shows the �attened a
tion sequen
e of Mips SLL (ShiftLeft Logi
al) instru
tion. para_no_0 is a mode rule type parameter representinga 64-bit general-purpose register. para_no_1 and para_no_2 are of basi

ardinal38

type. TMP_WORD is a temporary variable and GPR is a general-purpose 64-bitregister �le. After the simpli�
ation the statement gets
onverted to operand_0 =operand_1 � operand_2;Here operand_0 and operand_1 are mode rule type operands, whi
h represent in-dexed 64-bit general purpose registers. operand_2 is a basi

ardinal type. Thesimpli�ed a
tion readily mat
hes the typi
al pattern for left shift.Now the
ondition that, the lvalue is not a PC-
lass register, is tested. Sin
eoperand_0 is not a PC-
lass register the
ondition is satis�ed and the instru
tion isidenti�ed as a shift-left instru
tion.As another example,
onsider the simpli�ed a
tion sequen
e for UltraSpar
IIiinstru
tion Bran
h if Register Zero:if x == 0 thennp
 = np
 + d;elseendif;This sequen
e mat
hes the following pattern:if operand1 == 0 thenoperand2 = operand2 + operand0;elseendif;Additionally the
onditions that operand0 is an immediate operand, operand1 is aregister operand and operand2 is a PC-
lass register are tested and the instru
tionis re
ognized as a bran
h-if-equal instru
tion.4.4 Ma
hine Des
ription GenerationThe instru
tion analysis phase gathers enough information about the pro
essor forgeneration of GCC ma
hine des
ription. In parti
ular, it determines a set of namedinstru
tions and their operands, and a set of mode rules that are `true operands',i.e., used in named instru
tions. This information, along with the information aboutregisters gathered during register analysis and mode rule analysis, is utilized in39

generation of the �les target.h, target.
 and target.md.4.4.1 Generation of target.h and target.
In this phase the ma
ros and enumeration types that de�ne the general properties ofthe pro
essor, register
lasses, ranges of immediate
onstants and addressing modesare generated in target.h. Table 4.1 shows the information generated in the header�le. De�nitions of variables that are used in the md and header �le, are generatedin target.
.4.4.2 Generation of target.mdFinally, the instru
tion patterns are generated in the �le target.md. Now, it ispossible to des
ribe a given instru
tion set in a number of ways. We have adopteda ma
hine des
ription generation strategy keeping simpli
ity in mind.A single named de�ne_expand pattern is generated for ea
h group of instru
tionswith same op
ode and ma
hine mode. Then an unnamed de�ne_insn pattern is gen-erated for ea
h subgroup of instru
tions whose patterns di�er only in the
onstraintsof their operands. With bran
h patterns additional tst patterns are generated whi
h
ompare a register operand with
onstant 0 and stores the result in
ondition
oderegister.Figure 4.3 shows two patterns for addition, taken from the generated md �le forPowerPC 603. The �rst one is a named de�ne_expand pattern, whi
h is used atthe time of RTL generation. The se
ond pattern is an unnamed de�ne_insn, whi
his used later for mat
hing and generation of assembly instru
tion. This patternspe
i�es two alternative assembly instru
tions for addition. It also
aptures the fa
tthat addition is a
ommutative operation.Figure 4.4 shows two named de�ne_expand patterns, taken from the generatedmd �le for Spar
. The �rst one is for
omparing a register with zero and setting the
ondition
ode a

ordingly. The se
ond one reads the
ondition
ode and de
ideswhether to bran
h to a target. GCC ensures that a tst pattern and a bran
h patternare always used one after another during RTL generation. It is noteworthy that40

Category General Properties of Pro
essorFIRST_PSEUDO_REGISTERFIXED_REGISTERSBITS_PER_UNITBITS_BIG_ENDIANBYTES_BIG_ENDIANWORDS_BIG_ENDIANCategory Register Classesenum reg_
lassGENERAL_REGSN_REG_CLASSESREG_CLASS_NAMESREG_CLASS_CONTENTSREGNO_REG_CLASSREG_CLASS_FROM_LETTERCategory Ranges of Immediate ConstantsCONST_OK_FOR_LETTER_PCategory Addressing ModesBASE_REG_CLASSINDEX_REG_CLASSREGNO_OK_FOR_BASE_PREGNO_OK_FOR_INDEX_PREG_OK_FOR_BASE_PREG_OK_FOR_INDEX_PGO_IF_LEGITIMATE_ADDRESSCONSTANT_ADDRESS_PEXTRA_CONSTRAINTTable 4.1: Ma
ros and enum Types Generated in target.h
41

(define_expand "addsi3"
[
(set
(match_operand:SI 0 "general_operand" "")
(plus:SI
(match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")
)
)
]
""
"̈"
)

(define_insn ""
[
(set

(plus:SI
(match_operand:SI 1 "register_operand" "%a,a")

(match_operand:SI 0 "register_operand" "=a,a")

(match_operand:SI 2 "register_operand" "a,a")
)
)
]
""
"@
add %0,%1,%2
addc %0,%1,%2"
)Figure 4.3: Patterns for Adding Single Integers in the md File of PowerPC 603

42

the �rst de�ne_expand does not a
tually generate the tst pattern. It only stores itsoperand in a global variable. The bran
h pattern a
tually does the work of bothtest and bran
hing and so, it uses this global variable.4.5 SummaryWe have developed te
hniques for rigorous semanti
 analysis of a Sim-nML pro-
essor spe
i�
ation and automati
 generation of GCC ma
hine des
ription from it.The generated ma
hine des
ription is partially
omplete. Some of the reasons forin
ompleteness in the generated ma
hine des
ription are as follows.� A Sim-nML spe
i�
ation of the pro
essor des
ribes the instru
tion of the pro-
essor. But as noted in
hapter 3, GCC needs some additional information,whi
h are not present in it. In parti
ular, information about the ABI,
ompilerenvironment et
. are not present in the Sim-nML spe
i�
ation and so, are tobe added manually to the generated ma
hine des
ription.� In
ompleteness of the ma
hine des
ription
an, in part, be attributed to thelimitations of the tool. During instru
tion analysis some
omplex a
tion se-quen
es had to be ignored, as noted in se
tion 4.3. Also, instru
tion re
ognitionis heuristi
 in nature and
annot identify all possible and
omplex instru
tiona
tions.

43

(define_expand "tstdi"
[
(set (cc0)
(match_operand:DI 0 "register_operand" "")
)
]
""
"
{
target_cmp_op0 = operands[0];
target_cmp_op1 = const0_rtx;
DONE;
}
"
)

(define_expand "beq"
[
(parallel [
(set (pc)
(if_then_else
(eq (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)
)
)
(use (match_dup 1))
])
]
"̈"
"
{

}
"
)

operands[1] = target_cmp_op0;

Figure 4.4: Test and Bran
h-if-equal Patterns in the md File of Spar
44

Chapter 5Results and Future WorkIn this work we have developed te
hniques for extensive semanti
 analysis of a Sim-nML pro
essor spe
i�
ation, whi
h led to automati
 generation of a part of GCCma
hine des
ription from Sim-nML. GCC ma
hine des
ription generator has beentested extensively with the Sim-nML spe
i�
ation of UltraSPARC IIi. The generateddes
ription of SPARC has been integrated with GCC frontend and a minimal portfor Spar
64 has been built. We have also generated ma
hine des
riptions of MIPSR10000, and PowerPC 603, whi
h, though, have not been integrated with GCCfrontend.5.1 GCC Port for Spar
64We have generated the �les target.md, target.h and target.
 from the Sim-nML spe
-i�
ation of UltraSPARC IIi. With some additional human e�ort the ma
hine de-s
ription has been
ompleted and a minimal GCC port for Spar
64 has been built.Generated md �le has the patterns for instru
tions of arithmeti
-logi
 type (e.g.add, sub, div, udiv, and, xor), data movement type (mov),
ontrol transfer type (e.g.beq, bne, bgt, ble), and
omparison type (tst). The C header �le
ontains de�nitionsof ma
ros and enum types for the set of allo
atable registers, addressability andendianness of memory, register
lasses, ranges of immediate
onstants, addressingmodes et
., as noted in
hapter 4. The C program �le de�nes variables used in the45

File Name Status Lines of Codetarget.md Generated 1922target.md Generated + Hand-
oded 2694target.h Generated 261target.
 Generated 260spar
.h Hand-
oded 3617spar
.
 Hand-
oded 1489sol2.h Reused 185sysv4.h Reused 221svr4.h Reused 980Table 5.1: Summary of the E�ort Needed to Port Spar
64generated md and header �les.All the three generated �les together
onsist of 2434 lines of
ode. To
ompletethe port we have manually added the �les spar
.h, spar
.
, sol2.h, sysv4.h and svr4.hand edited target.md1. The size of the
omplete port is 9707 lines. However, some ofthe additional �les are spe
i�
 to target families and so, have been reused. The table5.1 summarises the total human e�ort spent to obtain the port. Our experien
eshows that it is possible for a person, with reasonable exposure to GCC portingme
hanism, to build a port in 10 days using this tool. It is worth noting here thatthe GCC 2.8.1 port for spar
-sun-sunos5.5 has 16718 lines of
ode. However, thisport des
ribes several versions of SPARC
pu viz. V7, V8, V9, SuperSPARC et
.,
ontains resour
e-usage information, supports sophisti
ated optimizations, position-independent
ode generation et
.GCC port for Spar
64 that we have built supports a subset of C language
onsist-ing of integer arithmeti
-logi
, data movement, and
ontrol transfer. In unoptimized
ompilation the quality of the produ
ed
ode is
omparable with that produ
ed bythe manually ported GCC.We show an example of the
ompilation pro
ess through a simple C programthat have been su

essfully
ompiled with the GCC port that we have built1spar
.h in
ludes generated target.h and spar
.
 in
ludes generated target.
46

int main(void){ int i=0, j;j = i+2;if (j > 0)i++;elsei--;return 0;}The SPARC V9 assembly version of the program, as produ
ed by our GCCport is shown below. We did not use any option ex
ept that for the generationof assembly language output (-S). In our runtime system %i6 is the frame pointerregister. The variables i and j have been assigned sta
k slots (%i6 - 24) and (%i6- 32) respe
tively. C type int has been mapped to a 64-bit word. Register %i0 isthe return value register in the
allee's window.

47

g

2_
ompiled.:.se
tion ".text".align 4.global main.type main,#fun
tion.pro
 03main:!#PROLOGUE# 0save %sp,-224,%sp!#PROLOGUE# 1st %i0,[%fp+-36℄add %i6, -24, %g1xor %g0, 0, %i4stx %i4, [%g1℄add %i6, -24, %g1ldx [%g1℄, %i4add %i4, 2, %i4add %i6, -32, %g1stx %i4, [%g1℄add %i6, -32, %g2ldx [%g2℄, %g1brgz,pt %g1, .LL2nopba .LL1nop

48

.LL2:add %i6, -24, %g1ldx [%g1℄, %i4add %i4, 1, %i4add %i6, -24, %g1stx %i4, [%g1℄ba .LL3nop.LL1:add %i6, -24, %g1ldx [%g1℄, %i4add %i4, -1, %i4add %i6, -24, %g1stx %i4, [%g1℄.LL3:xor %g0, 0, %i0retrestoreretrestore.LLfe1:.size main,.LLfe1-main.ident "GCC: (GNU) 2.8.1"5.2 Future Dire
tionsSome of the possible dire
tions to whi
h the work presented in this thesis
an beextended are given below.� Work
an be
arried out to make generated ma
hine des
ription more
ompleteso that the total e�ort needed to obtain a GCC port is further redu
ed andto improve the quality of the generated des
ription so that the GCC port
an49

produ
e better
ode.Resour
e usage information available in a Sim-nML spe
i�
ation
an be ana-lyzed to generate the de�nitions de�ne_fun
tion_unit, de�ne_delay and de-�ne_attribute, whi
h will allow GCC to perform instru
tion s
heduling anddelay slot s
heduling.Instru
tion analysis
an be made more powerful so that bit-sele
tion and
on-
atenation
an be handled elegantly.Heuristi
s of instru
tion re
ognition
an be improved so that
omplex a
tionsequen
es that normally appear in des
riptions of CISC ar
hite
tures
an bere
ognized.Simple ma
hine des
ription generation strategy adopted by us
an be repla
edby a more mature one so that more
ompa
t des
riptions
an be generatedand sophisti
ated optimizations
an be supported.� Another possibility is to develop a new retargetable ba
kend, that
an be inte-grated with an existing frontend. Te
hniques are to be developed for instru
-tion sele
tion, resour
e allo
ation, and instru
tion s
heduling. Informationgathered during instru
tion analysis phase
an be used in instru
tion sele
-tion. Further analysis of resour
e-usage is needed for resour
e allo
ation andinstru
tion s
heduling.

50

Bibliography[1℄ S. Chandra and R. Moona. Retargetable fun
tional simulator using high level pro-
essor models. In Pro
eedings of the 13th International Conferen
e on VLSI Design,Cal
utta, India., January 2000.[2℄ Sanjeev Kumar and V. M. Malhotra. Automati
 Retargetable Code Generation:A New Te
hnique. Foundations of Software Te
hnology and Theoriti
al ComputerS
ien
e, Le
ture Notes in Computer S
ien
e, vol. 241, Springer-Verlag, 1986.[3℄ Fauth A., Praet Vwn J. , and M. Freeri
ks Des
ribing In-stru
tion Sets Using nML (Extended Version). Available at:ftp://ftp.ime
.be/pub/vsdm/reports/retargetable_
ode_generation/af-edt
95.ps.gz,1995.[4℄ S. D. G. Hadjiyiannis, Silvina Hanono. ISDL: An instru
tion set des
ription languagefor retargetability. In Pro
eedings of the 34th DAC, June 1997.[5℄ M. Ganapathi and C. N. Fis
her. A�x grammer driven
ode generation. ACMTOPLAS, 7(4), O
tober 1985.[6℄ R. S. Glanville and S. L. Graham. A new method for
ompiler
ode generation.In Fifth ACM Symposium on Prin
iples of Programming Languages, pages 231�240,1978.[7℄ N. C. Jain. Disassembler using high level pro
essor models. Mas-ter's thesis, Dept. of Computer S
ien
e and Engg., IIT Kanpur, India,http://www.
se.iitk.a
.in/resear
h/mte
h1997/9711113.html, January 1999.[8℄ S. Kumari. An automati
 assembler generator for sim-nml des
ription lan-guage. Master's thesis, Dept. of Computer S
ien
e and Engg., IIT Kanpur, India,http://www.
se.iitk.a
.in/resear
h/mte
h1998/9811119.html, Mar
h 2000.[9℄ Rajesh V. A Generi
 Approa
h to Performan
e Modeling and its Appli
ation toSimulator Generator. Master's thesis, Dept. of Computer S
ien
e and Engg., IITKanpur. Available at: http://www.
se.iitk.a
.in/sim-nml/index.
gi.51

[10℄ Subhash Chandra Y. Retargetable Fun
tional Simulator. Master's the-sis, Dept. of Computer S
ien
e and Engg., IIT Kanpur. Available at:http://www.
se.iitk.a
.in/sim-nml/index.
gi.[11℄ Lanneer D., Praet J. V., Ki�i A., S
hoofs K., Geurts W., Thoen F. and Goossens G.CHESS: Retargetable Code Generation for Embedded DSP Pro
essors. In Code Gen-eration for Embedded Systems. Kluwer A
ademi
 Publishers, 1995.[12℄ P. Marwedel. The MIMOLA Design System: Tools for the design of digital pro
essors.In Pro
eedings of the 21st DAC, pages 587�593, 1984.[13℄ S. Mondal. Compiler ba
k-end generation using nml ma
hine des
ription.Master's thesis, Dept. of Computer S
ien
e and Engg., IIT Kanpur, India,http://www.
se.iitk.a
.in/resear
h/mte
h1997/9711117.html, June 1999.[14℄ Hanson D., Fraser C. W. and Proebsting T. Engineer-ing a simple, e�
ient
ode generator generator. Available at:http://sunsite.org.uk/Mirrors/ftp.
s.prin
eton.edu/pub/l

/
ontrib.[15℄ Paulin. Flexware: A �exible �rmware development environment for embedded sys-tems. In Code Generation for Embedded Systems. Kluwer A
ademi
 Publishers, 1995.[16℄ P. Pogde. Retargettable
ode generation using sim-nml ma
hine des
ription.Master's thesis, Dept. of Computer S
ien
e and Engg., IIT Kanpur, India,http://www.
se.iitk.a
.in/resear
h/mte
h1998/9811114.html, May 2000.[17℄ V. Rajesh and R. Moona. Pro
essor modeling for hardware software
o design. In Pro-
eedings of the 12th International Conferen
e on VLSI Design, Goa, India., January1999.[18℄ R. Ravindran. Retargetable pro�ling tools and their appli
ation in
a
he simulationand
ode instrumentation. Master's thesis, Dept. of Computer S
ien
e and Engg.,IIT Kanpur, India, http://www.
se.iitk.a
.in/resear
h/mte
h1998/9811116.html, De
1999.[19℄ R. Ravindran and R. Moona. Retargetable
a
he simulation using high level pro
es-sor models. In Pro
eedings of the 6th Australasian Computer Systems Ar
hite
tureConferen
e, Gold Coast, Australia, January 2001.[20℄ S. D. Silvina Hanono. Instru
tion sele
tion, resour
e allo
ation and s
heduling in theaviv retargetable
ode generator. In Pro
eedings of the DAC, June 1998.[21℄ R. M. Stallman. Using and Porting GNU CC.http://g

.gnu.org/onlinedo
s/g

.html.52

[22℄ Aho Alfred V., M. Ganapathi, and S. Tjiang. Code generation using tree patternmat
hing and dynami
 programming. ACM TOPLAS, 11(4), O
tober 1989.[23℄ Aho Alfred V., Sethi Ravi, and Ullman Je�rey D. Compilers: Prin
iples, Te
hniques,and Tools. Addison-Wesley, 1999.[24℄ Mu
hni
k Steven S. Advan
ed Compiler Design and Implementation. Morgan Kauf-mann Publishers, 1997.[25℄ Marwedel P. Compilers for Embedded Pro
essors. Available at: http://ls12-www.
s.uni-dortmund.de/publi
ations/global_index.html[26℄ Malik S. Optimal Code Generation For Embedded Memory Nonhomogeneous RegisterAr
hite
tures. In 8th International Symposium on System Synthesis (ISSS), 1995.[27℄ Leupers R., Marwedel P. Retargetable Generation of Code Sele
-tors from HDL Pro
essor Models. Available at: http://ls12-www.
s.uni-dortmund.de/publi
ations/global_index.html[28℄ Stanford Compiler Group. The SUIF Library. 1.0 edition, 1994. Available athttp://suif.stanford.edu.[29℄ SPAM Resear
h Group. SPAM Compiler User's Manual. 1.0 edition, 1997. Availableat: www.ee.prin
eton.edu/spam/[30℄ Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt andAlex Ni
olau. EXPRESSION: A Language for Ar
hite
ture Exploration through Com-piler/Simulator Retargetability. Available at: http://www.
e
s.u
i.edu/[31℄ S. Pees, A. Ho�mann, V. Zivojnovi
, and H. Meyr. LISA - Ma
hine Des
riptionLanguage for Cy
le-A

urate Models of Programmable DSP Ar
hite
tures Availableat: http://www.ert.rwth-aa
hen.de/Projekte/Tools/LISA/index.html[32℄ Mes
al (Modern Embedded Systems: Compilers, Ar
hite
tures, and Languages).http://www.gigas
ale.org/mes
al/index.html[33℄ Sim-nML Pro
essor Des
ription Language. http://www.
se.iitk.a
.in/sim-nml/index.
gi.[34℄ Ziovojnovi
 V., Tjiang S., and Meyr H. DSPstone: A DSP-oriented Ben
hmark-ing Methodology. In International Conferen
e on Signal Pro
essing Appli
ations andTe
hnology (ICSPAT), 1994.[35℄ Weaver D. L. and Germond T. The SPARC Ar
hite
ture Manual, Version 9. SPARCInternational, In
., 1994.[36℄ Sun Mi
rosystems. UltraSPARC - IIi User's Manual. Available at:http://www.sun.
om/mi
roele
troni
s/UltraSPARC/index.html.53

[37℄ GNU Compiler Colle
tion. http://g

.gnu.org

54

Appendix AGCC InternalsIn this appendix we present some useful information about GCC internals. Em-phasis will be given on a
omprehensive organization. Mu
h of the informationprovided here are available at http://g

.gnu.org/onlinedo
s/g

.html [21℄. Somemore information is gathered from GCC 2.8.1 sour
es and is presented here.A.1 Components of GCC Compiler SuiteFollowing are the software
omponents needed for the fun
tioning of GCC. Some ofthese
ome with GCC, while others are provided by the system or one third partysoftware.� Prepro
essor (
pp,

p).� Compiler proper (

1,

1plus,

1obj, f771).� Assembler (e.g. as, provided by the system).� Linker and a linker frontend (ld,
olle
t2).� Headers (GCC spe
i�
 headers are sear
hed in prefix/g

-lib/target-name/g

-version/in
lude and system headers are sear
hed in lo
al-prefix/in
lude.`pre�x' defaults to /usr/lo
al/lib/ and lo
al-pre�x defaults to /usr/lo
al/).55

� Library (GCC provides the following libraries: libg

, libg

1, libg2
,libobj
, libstd
++).� Start up �les (e.g.
rtbegin.o,
rtend.o et
).� Compiler driver (g

, g++, g77).A.2 A Grouping of RTL Expression CodesIn this se
tion we
lassify the RTX
odes on the basis of their uses.A.2.1 OperandsFollowing RTL expressions
an appear as operands in the side-e�e
ts of insns.ConstantsRTX
odes representing
onstant operands are as follows.
onst_int,
onst_double,
onst_string, symbol_ref, label_ref,
onst, high.Registers and MemoryRTX
odes representing register and memory operands are as follows.reg, subreg, s
rat
h,

0, p
, mem, addressof.Bit FieldsFollowing RTX
odes represent bit-�elds within a register or memory lo
ation.sign_extra
t, zero_extra
t.Type ConversionsFollowing RTX
odes are used for
onverting types of operands.sign_extend, zero_extend, �oat_extend, trun
ate, �oat_trun
ate, �oat, un-signed_�oat, �x, unsigned_�x. 56

De
larationThe following RTX is used to de
lare that only lower half of the operand will bemodi�ed.stri
t_low_part.A.2.2 OperationsIn this subse
tion we group the RTX
odes used to represent operations in a side-e�e
t of an insn.Arithmeti
-Logi
Following RTX
odes represent arithmeti
-logi
 operations. These RTXes produ
evalues, whi
h are same as the result of the operation.plus, lo_sum, minus,
ompare, neg, mult, div, udiv, mod, umod, smin, umin,smax, umax, not, and, ior, xor, ashift, lshiftrt, ashiftrt, rotate, rotatert, abs, sqrt,�s. ComparisonFollowing RTXes represent
omparison operations. These RTXes
an be used to
ompare two registers, or a register and a
onstant, or a
ondition
ode and (
onst_int0). eq, ne, le, leu, lt, ltu, ge, geu, gt, gtu, if_then_else,
ond.A.2.3 Side E�e
tsFollowing RTXes represent fun
tionality of an insn. They do not produ
e any value.But they may modify a pro
essor state.set, return,
all, trap_if,
lobber, use, parallel, sequen
e, asm_input, asm_output,unspe
, unspe
_volatile, addr_ve
, addr_di�_ve
.
57

A.2.4 Embedded Side E�e
tsThese are spe
ial side-e�e
ts whi
h may be asso
iated with memory addresses.pre_de
, pre_in
, post_de
, post_in
.A.2.5 InsnsFollowing is a list of RTX
odes for insns.insn,
all_insn, jump_insn, note, barrier,
ode_label.A.2.6 RTL TemplatesFollowing is a list of RTXes whi
h are used as pla
e-holders for operands or opera-tions within a pattern in the md �le.mat
h_operand, mat
h_s
rat
h, mat
h_dup, mat
h_operator, mat
h_parallel,mat
h_op_dup, mat
h_par_dup, address.A.2.7 De�nitionsFollowing RTX
odes are used to de�ne various things, for example, instru
tions,fun
tional units, et
., inside an md �le.de�ne_expand, de�ne_insn, de�ne_peephole, de�ne_split, de�ne_
ombine1,de�ne_delay, de�ne_fun
tion_unit, de�ne_attr.A.3 A Grouping of Standard GCC NamesIn this se
tion we present a
lassi�
ation of standard pattern names used in GCCma
hine des
ription.A.3.1 Data MovementFollowing names are used for instru
tion patterns whi
h move data between tworegisters, or between a register and a memory lo
ation et
.1unused in GCC 2.8.1 58

movmode, reload_inmode, reload_outmode, movstri
tmode, load_multiple, store_multiple,movemode

.A.3.2 Arithmeti
-Bitwise OperationsFollowing names represent instru
tions whi
h perform arithmeti
-logi
 operationson their operands and store the result.addmode3, submode3, mulmode3, divmode3, udivmode3, modmode3, umodmode3,sminmode3, uminmode3, smaxmode3, umaxmode3, mulhisi3, mulqihi3, mulsidi3,umulhisi3, umulqihi3, umulsidi3, mul3_hipart, umul3_hipart, divmodmode3, udiv-modmode3, negmode2, absmode2, sqrtmode2.andmode3, iormode3, xormode3, ashlmode3, ashrmode3, lshrmode3, rotlmode3,rotrmode3, one_
mplmode2, �smode2, insv, extv, extzv.A.3.3 Type ConversionsFollowing names are used for instru
tions whi
h
onvert the type of data.�oatmn2, �oatunsmn2, �xmn2, �xunsmn2, ftrun
mode2, �x_trun
mn2, �x_unstrun
mn2,trun
mn2, extendmn2, zero_extendmn2.A.3.4 ComparisonsThese are names for instru
tions whi
h
ompare their operands and store the resultin a
ondition
ode or any ordinary register.
mpmode, tstmode, s
ond.A.3.5 String OperationsInstru
tions with following names perform operations on string.movstr,
lrstr,
mpstr, strlen.A.3.6 Control TransfersInstru
tions with following names are responsible for
onstrol transfer.59

b
ond, indire
t_jump, jump,
all,
all_value,
all_pop,
all_value_pop, un-typed_
all, return, untyped_return,
asesi, tablejump, nonlo
al_goto, nonlo
al_goto_re
eiver,ex
eption_re
eiver, builtin_setjmp_re
eiver.A.3.7 Sta
k OperationsFollowing names are for instru
tions that a

ess and manipulate sta
k.save_sta
k_blo
k, restore_sta
k_blo
k, save_sta
k_fun
tion, restore_sta
k_fun
tion,save_sta
k_nonlo
al, restore_sta
k_nonlo
al, allo
ate_sta
k, probe,
he
k_sta
k.A.3.8 OthersNames whi
h do not �t into any of the above
ategories are listed here.nop,
anoni
alize_fun
ptr_for_
ompare.A.4 Useful RTX Related Fun
tions and Ma
rosSeveral fun
tions and ma
ros are de�ned in the sour
e �les of GCC, whi
h are usedto read and manipulate RTL expressions. These ma
ros are often used in the GCCma
hine des
riptions. In this se
tion we present a list of these ma
ros. The exa
tde�nitions
an be found in the
orresponding sour
e �les.Ma
ros De�ned in rtl.hGET_CODE(),PUT_CODE(),GET_RTX(),LENGTH(),GET_RTX_FORMAT(),GET_RTX_CLASS(),XEXP(),XINT(),XWINT(), 60

XSTR(),XVEC(),XVECLEN(),XVECEXP(),GEN_INT().Fun
tions De�ned in rtl.
read_rtx().Fun
tions De�ned in emit-rtl.
gen_rtx(), gen_reg_rtx(), gen_label_rtx().Fun
tions De�ned in print-rtl.
print_rtx(), print_rtl().A.5 Ma
hine Mode Related Ma
rosA list of ma
ros de�ned in di�ernt sour
e �les of GCC, whi
h are used to a

essma
hine modes, are presented below.Ma
ros De�ned in rtl.hGET_MODE(),PUT_MODE().Ma
ros De�ned in ma
hmode.hGET_MODE_NAME(),GET_MODE_CLASS(),INTEGRAL_MODE_P(),FLOAT_MODE_P(), 61

GET_MODE_SIZE(),GET_MODE_UNIT_SIZE(),GET_MODE_NUNITS(),GET_MODE_BITSIZE(),GET_MODE_MASK(),GET_MODE_WIDER_MODE(),GET_MODE_ALIGNMENT(),GET_CLASS_NARROWEST_MODE().A.6 Fun
tions Related to InsnsIn this se
tion we list the fun
tions whi
h are responsible for emitting insns. Thesefun
tions are sometimes used in ma
hine des
riptions to expli
itly
ontrol the gen-eration of insns.Fun
tions De�ned in emit-rtl.hemit_insn(), emit_
all_insn(), emit_jump_insn().A.7 Set of Built-in Predi
atesA set of basi
 predi
ates are de�ned in the sour
es of GCC. Here we present a listof them.rtl.
 de�nes a set of useful predi
atesgeneral_operand, register_operand, immediate_operand,
onst_int_operand,
onst_double_operand, non_immediate_operand,memory_operand, nonmemory_operand, indire
t_operand,push_operand, address_operand,
omparison_operator.
62

A.8 Notion of an AddressThere is a notion of an address of a memory lo
ation within GCC. The memorylo
ation may
ontain data or may be target of a
ontrol transfer. For example, the�rst operand of a mem RTX is the address of a memory lo
ation. Similarly, the�rst operand of an indire
t_jump or jump pattern is an address, whi
h spe
i�es thetarget of the jump.A.8.1 RTXes used as AddressesThese are the RTXes whi
h may be used as addresses.
onst_int,
onst_double, symbol_ref, label_ref, high,
onst, RTXes for arith-meti
 operations and
onversion (see A.2.1 and A.2.2), addressof, s
rat
h, reg, mem(a mem RTX may refer to the
ontents of a memory lo
ation, whi
h may in turn bean address. A mem RTX may also refer to the address of a memory lo
ation, forexample, in the
ase, when
onstraint letter `p' is used.).A.8.2 De�nition of a Valid AddressFollowing ma
ros, predi
ates and
onstraints are used to de�ne the notion of a validaddress:Ma
ros De�ned in target.hCONSTANT_ADDRESS_P,GO_IF_LEGITIMATE_ADDRESS,REG_OK_FOR_BASE_P,REG_OK_FOR_INDEX_P,GO_IF_MODE_DEPENDENT_ADDRESS,REG_MODE_OK_FOR_BASE_P,MAX_REGS_PER_ADDRESS,HAVE_POST_INCREMENT,HAVE_PRE_INCREMENT, 63

HAVE_POST_DECREMENT,HAVE_PRE_DECREMENT,LEGITIMIZE_ADDRESS,EXTRA_CONSTRAINTS,BASE_REG_CLASS,INDEX_REG_CLASS,REGNO_OK_FOR_BASE_P,REGNO_OK_FOR_INDEX_P,REGNO_MODE_OK_FOR_BASE_P,PRINT_OPERAND_ADDRESS.Predi
ates De�ned in re
og.
address_operand, memory_operand, indire
t_operand, general_operand.Constraint Letters De�ned in
onstrain_operands() in re
og.
m: allows a memory operand with any kind of addresso: allows a memory operand, but only if the address is o�settableV: aloows a memory operand, only if its address is not o�esttable<: allows a memory operand with autode
rement addressing (both prede
rementand postde
rement are allowed)>: allows a memory operand with autoin
rement addressing (both prein
rementand postin
rement are allowed)p: represents an operand that is a valid memory addressA.9 Translation of C Level Data to Ma
hine LevelFigure A.1 shows the way GCC translates C level data to hard registers, or memorylo
ations, or immediate
onstants. Information needed in ea
h step are presentedbelow.
64

char, short, int, long,
float, double, long double,

pointers

QI, HI, SI, PSI, DI, PDI, TI, OI,

QF, HF, TQF, SF, DF, XF, TF,
VOID

Basic C Types:

Machine Modes:

byte_mode,
word_mode,

ptr_mode, Pmode
Hard Registers Memory Locations ConstantsFigure A.1: Translation of Data

65

A.9.1 Translation to Ma
hine ModesIn this subse
tion we present a list of ma
ros and de�nitions whi
h
ontain theinformation needed for translating basi
 C types to GCC ma
hine modes.1. De�nitions of ma
hine modes (in terms of number of units per mode) in ma
h-mode.def2. Ma
ros de�ned in target.h:BITS_PER_UNIT,INT_TYPE_SIZE,SHORT_TYPE_SIZE,LONG_TYPE_SIZE,CHAR_TYPE_SIZE,FLOAT_TYPE_SIZE,DOUBLE_TYPE_SIZE,LONG_DOUBLE_SIZE,MAX_FIXED_MODE_SIZE.A.9.2 De�nitions of byte_mode, word_mode et
Following are the ma
ros whi
h
ontain the information needed for de�ning thevariables byte_mode and word_mode.1. Ma
ros de�ned in target.hBITS_PER_WORD,UNITS_PER_WORD,POINTER_SIZE,Pmode,POINTER_EXTENDED_UNSIGNED.A.9.3 Mapping to Hard RegistersFollowing ma
ros help in mapping high-level language operands to registers of thema
hine.1. Ma
ros and enum types de�ned in target.h66

FIRST_PSEUDO_REGISTER,REGISTER_NAMES,FIXED_REGISTERS,CALL_USED_REGISTERS,HARD_REGNO_NREGS,HARD_REGNO_MODE_OK,MODES_TIEABLE_P,BITS_BIG_ENDIAN,BYTES_BIG_ENDIAN,WORDS_BIG_ENDIAN,FLOAT_WORDS_BIG_ENDIAN,PROMOTE_MODE,PROMOTE_FUNCTION_ARGS,PROMOTE_FUNCTION_RETURN,PROMOTE_FOR_CALL_ONLY,TARGET_FLOAT_FORMAT,REG_CLASS_FROM_LETTER,N_REG_CLASSES,enum reg_
lass,REG_CLASS_NAMES,REG_CLASS_CONTENTS,PREFERRED_RELOAD_CLASS,PREFERRED_OUTPUT_RELOAD_CLASS,SECONDARY_INPUT_RELOAD_CLASS,SECONDARY_OUTPUT_RELOAD_CLASS,SECONDARY_MEMORY_NEEDED,CLASS_MAX_NREGS, EXTRA_CONSTRAINT.2. Predi
ates de�ned in re
og.
general_operand, register_operand.
67

A.9.4 Mapping to Memory Lo
ationsFollowingma
ros
ontain information needed for mapping high-level language operandsto memory lo
ations.1. Ma
ros de�ned in target.hBITS_BIG_ENDIAN,BYTES_BIG_ENDIAN,WORDS_BIG_ENDIAN,PARM_BOUNDARY,BIGGEST_ALIGNMENT,MINIMUM_ATOMIC_ALIGNMENT,BIGGEST_FIELD_ALIGNMENT,DATA_ALIGNMENT,STRICT_ALIGNMENT,ADJUST_FIELD_ALIGN,EMPTY_FIELD_BOUNDARY,STRUCTURE_SIZE_BOUNDARY,PCC_BITFIELD_TYPE_MATTERS,GO_IF_LEGITIMATE_ADDRESS.2. Predi
ates de�ned in re
og.
general_operand, memory_operand,indire
t_operand, address_operand.A.9.5 Translation of ConstantsConstants or literals that appear in a high-level language program are translatedto immediate operands of instru
tions or memory obje
ts. The following ma
ros
ontain information needed for this translation.1. Ma
ros de�ned in target.hLEGITIMATE_CONSTANT_P,CONSTANT_ALIGNMENT,REAL_VALUE_TYPE,TARGET_FLOAT_FORMAT, 68

CHECK_FLOAT_VALUE,REAL_VALUE_TO_TARGET_SINGLE,REAL_VALUE_TO_TARGET_DOUBLE,REAL_VALUE_TO_TARGET_LONG_DOUBLE,REAL_VALUE_TO_DECIMAL,ASM_OUTPUT_ASCII,ASM_OUTPUT_BYTE,ASM_OUTPUT_CHAR,ASM_OUTPUT_SHORT,ASM_OUTPUT_INT,ASM_OUTPUT_DOUBLE_INT,ASM_OUTPUT_QUADRUPLE_INT,ASM_OUTPUT_BYTE_FLOAT,ASM_OUTPUT_SHORT_FLOAT,ASM_OUTPUT_THREE_QUARTER_FLOAT,ASM_OUTPUT_FLOAT,ASM_OUTPUT_DOUBLE,ASM_OUTPUT_LONG_DOUBLE,PRINT_OPERAND.2. A ma
ro de�ned in rtl.hCONSTANT_P.3. Predi
ates de�ned in re
og.
general_operand, immediate_operand,
onst_int_operand,
onst_double_operand.

69

Appendix Bgenmd2 Maintainer's GuideThis appendix
ontains some information useful for maintaining the tool genmd2.This tool implements the te
hniques for generating GCC ma
hine des
ription fromSim-nML. This appendix
omplements the
omments asso
iated with the sour
e�les.B.1 Sour
e FilesSour
e �les are stored inside a CVS repository and all the versions of the �les
anbe retrieved from the repository. Log messages asso
iated with the versions may beuseful in tra
king past
hanges.Following �les and dire
tories
an be found in the root of the distribution ofgenmd2.� genba
kend.
: The toplevel module that
ontains the main() fun
tion. Itdrives all the phases of the ba
kend generator in order as dis
ussed earlier.Further it also parses the
ommand line arguments and reads the
on�guration�le.� irview.
: Reads the Sim-nML IR.� registers.
: Contains
ode for the register analysis and generation of target.hand target.
. 70

� �attenModes.
: Contains
ode for the mode rule analysis.� analyze-mode.
: This
ode is used for register analysis, mode rule analysisand mode rule synthesis.� �atten.
: a
tion �attener.� �atten_syntax.
: syntax �attener.� analyze-insn.
: Instru
tion analysis. Does some work asso
iated with �at-tening.� re
og.
: Instru
tion re
ognition. Also assigns
onstraint letters to `trueoperand' mode rules.� emit_insn.
: Generates target.md.� in
lude: A dire
tory
ontaining header and de�nition �les.� in
lude/systypes.h: De�nes some system spe
i�
 types used within thesour
es.� in
lude/de
ls.h: De
larations of global variables and fun
tions.� in
lude/tables.h: Data stru
tures for Sim-nML IR.� in
lude/operands.h: Data stru
tures for mode tables and register analysis.� in
lude/instru
tions.h: Data stru
tures for instru
tion table.� in
lude/syntax.h: Data stru
tures for syntax table.� in
lude/md_operands.h: Data stru
tures for named instru
tion patterns.� in
lude/op
odes.def: De�nes the op
odes used within standard GCC names.� in
lude/modi�ers.def: De�nes the RTXes used as modi�ers of values oroperands.� Make�le: Make �le. 71

� test: Working dire
tory. `make' generates the binary exe
utable of the toolin this dire
tory.� test/template.
onf: A template for a
on�guration �le.B.2 Intermediate Dumpsgenmd2 produ
es intermediate dump �les at several phases. These �les are usefulfor debugging the tool.� meminfo.table: Produ
ed by register analysis.� mode.table: Dump of mode table, produ
ed by mode rule analysis.� se
mode.table: Dump of se
ondary mode table, produ
ed by mode ruleanalysis.� base_index_disp.table: Maps of base, index, and window pointer registersand range of valid displa
ement. It is produ
ed after mode rule analysis.� instr.table: Intermediate version of instru
tion table, produ
ed during a
tion�attening. May
ontain some extra instru
tions and may not show some validinstru
tions.� syntax.table: Syntax table, whi
h is produ
ed after syntax �attening.� instr1.table: Instru
tion table, whi
h is produ
ed after �attening is
omplete.� par_stmt1.table: Instru
tion table, whi
h is produ
ed after morphing ofparameters.� par_stmt2.table: Instru
tion table, whi
h is produ
ed after all temporariesare removed.� par_stmt3.table: Instru
tion table, whi
h is produ
ed after PC assignmentsare deleted. 72

� syntax1.table: Syntax table, whi
h is produ
ed after instru
tion analysis is
omplete.� third_mode.table: Mode table, whi
h is produ
ed after instru
tion analysisis
omplete.� fourth_mode.table: Se
ondary mode table, whi
h is produ
ed after instru
-tion analysis is
omplete.� base_index_disp1.table: Maps of base, index, and window pointer regis-ters and range of valid displa
ement. It is produ
ed after instru
tion analysis.B.3 A Grammar for Value ExpressionsFollowing is a partial spe
i�
ation of the grammar used by our tool for a re
ur-sive analysis of the pre�x expressions whi
h
an appear as values of mode andrules. This grammar is a subset of the Sim-nML grammar for expressions whi
h
an appear as a value. The original Sim-nML grammar is too general, too
omplexand often,
an result in value expressions that are impra
ti
al. The names of ter-minal symbols (all
apitalized)
onform to the names of OPERATOR_TYPE andBYTE_TYPE enumeration
onstants, as de�ned in in
lude/tables.h. ValIndexExprrepresents an expression whi
h
an be used as an index of a register or a memorylo
ation. ValCondExpr represents an expression that
an be used as a
ondition inan if-then-else-endif expression.ValExpr :ID| COERCE ValTypeExpr CARDINAL_CONSTANT CARDINAL_CONSTANT ValExpr| . ID ID| DCOLON ValExpr ValExpr| INDX ID ValIndexExpr| BITLR INDX ID ValIndexExpr ValBitExpr ValBitExpr| BITLR ID ValBitExpr ValBitExpr| + ValExpr ValExpr 73

| - ValExpr ValExpr| * ValExpr ValExpr| / ValExpr ValExpr| % ValExpr ValExpr| EXP ValExpr ValExpr| LSFT ValExpr ValExpr| RSFT ValExpr ValExpr| RLFT ValExpr ValExpr| RRHT ValExpr ValExpr| < ValExpr ValExpr| > ValExpr ValExpr| LEQ ValExpr ValExpr| GEQ ValExpr ValExpr| EQ ValExpr ValExpr| NEQ ValExpr ValExpr| LAND ValExpr ValExpr| LOR ValExpr ValExpr| LXOR ValExpr ValExpr| BUNOT ValExpr| AND ValExpr ValExpr| OR ValExpr ValExpr| ! ValExpr| FIXED_CONSTANT| CARDINAL_CONSTANT| BINARY_CONSTANT| HEX_CONSTANT| IF ValCondExpr ValExpr OptValExprValTypeExpr :BOOL| CARD| INT 74

| FIX| FLOAT| RANGE| ENUMValBitExpr :CARDINAL_CONSTANTOptValExpr :NULL| ValExpr

75

Appendix Cgenmd2 User's Manualgenmd2 is the tool that implements the te
hniques for GCC ma
hine des
riptiongeneration from Sim-nML, as outlined in this thesis. The inputs to the tool area Sim-nML IR �le and a
on�guration �le. The tool generates the �les target.h,target.
 and target.md.C.1 System RequirementsThe tool has been su

essfully tested under the following
onditions. The tool isexpe
ted to work in any
ompatible systems.� Pro
essor: Intel Pentium III, 32 bit, Little Endian� OS Kernel: Linux 2.2.15-mdk� Compiler: GCC 2.95.3 19991030 (prerelease), used for building the tool.� Libraries: GNU C Library Version 2.1 Beta, used for building the tool.� Binary Utilities: GNU Binary Utilities Version 2.9.5, used for building thetool.
76

C.2 InstallationA make �le is provided along with the sour
e of genmd2. The tool
an be builtusing this make �le by giving the following the following
ommand at the root ofthe sour
e treemakeThe tool will be built and stored as a binary exe
utable �le test/genmd2. The
ompiled binary
an be moved to any dire
tory.C.3 Running the ToolFollowing is the
omand line spe
i�
ation for the tool:genmd2 ir_file_name [OPTIONS℄ [-

onfig_file_name℄genmd2 is the name of the binary exe
utable �le for the tool.ir_file_name is the name of the Sim-nML IR �le.The tool genmd2 supports the following
ommand line options:-s SP_REG : Spe
i�es the sta
k pointer register name.-f FLAG_REG : Spe
i�es the
ondition
ode regsiter name.-p PC_REG : Spe
i�es the name of the program
ounter.The user
an optionally spe
ify a
on�guration �le whi
h is a �exible and power-ful way to provide additional information about the pro
essor. On a
on�i
t betweenthe information provided through a
ommand line option and the
on�guaration �lethe information from the
ommand line is ignored.C.4 Con�guration FileThe
on�guration �le
onsists of a number of se
tions. Ea
h se
tion
an have zeroor more entries. A se
tion with zero entries
an be omitted.An entry in a se
tion refers to a single register and is a single line of the followingformregister_file_name:index_in_the_register_file77

If the register being referred to is not in a register �le then the regsiter_�le_nameis same as the name of the register and the index is 0.A
on�guration �le ends with the following line:/endA template for a
on�guration �le is provided along with the sour
e in test/template.
onf�le.C.4.1 PC Se
tionPC se
tion begins with the linep
 and ends with the line/p
Its entries refer to PC-
lass registers e.g. PC, next-PC et
.C.4.2 CC Se
tionCC se
tion begins with the line

 and ends with the line/

Its entries refer to the
ondition
ode registers.C.4.3 SP Se
tionSP se
tion begins with the linesp and ends with the line/spIt has an entry for the sta
k pointer register.
78

C.4.4 Return Address Pointer Se
tionReturn address pointer se
tion begins with the linerapand ends with the line/rapIt has an entry for the return address pointer register.

79

