
Generation of GCC Bakend from Sim-nMLProessor Desription
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

bySoubhik Bhattaharya

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurJuly, 2001

Certi�ate
This is to ertify that the work ontained in the thesis entitled �Generation ofGCC Bakend from Sim-nML Proessor Desription�, by Soubhik Bhattaharya, hasbeen arried out under our supervision and that this work has not been submittedelsewhere for a degree.July, 2001
(Dr. Rajat Moona)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

(Dr. Sanjeev Kumar Aggarwal)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

AbstratInreasing importane of software in embedded systems led to the paradigm ofhardware-software odesign, whih advoates for early integration of hardware andsoftware, even before the hardware design is omplete. To support this paradigma set of tools are needed that an simulate the build and exeution environment ofhardware. The approah is developed in our group where a high-level spei�ation ofhardware is written and from whih the tools assembler, linker, ompiler, simulator,high-level synthesizer et. are generated automatially.In this thesis tehniques have been developed for analyzing a high-level desrip-tion of a proessor, written in Sim-nML [17℄ proessor spei�ation language, andextrating the semanti information needed for automati generation of GCC ma-hine desription. Using Sim-nML one an desribe instrutions of a proessor in aompat hierarhial form. The hierarhy is initially �attened to obtain a sequeneof C-like statements for eah instrution. A sequene desribes the semanti ationof an instrution. The ation sequenes are simpli�ed using the tehniques of tempo-rary removal and branh elimination and mathed against some standard patternsso that they an be identi�ed with one of the standard names used in GCC mahinedesriptions. Finally, this information is used to generate a partial GCC mahinedesription for the proessor.

AknowledgementsIt is my privilege to mention the names of Dr. Rajat Moona and Dr. Sanjeev Kumarin this page. Dr. Moona has driven this researh with his enthusiasm and agilitywhile Dr. Sanjeev Kumar's wise and experiened words helped me to avoid anypossibility of diversion. Together they played the roles of mentors and teahers. Iowe them a lot for what I have learnt through this researh experiene. I am thankfulto Dr. Deepak Gupta for his onstrutive partiipation in our group disussions. Ishould also express my gratitude to the Department of CSE and its faulty and stu�for the beatiful aademi environment that they have reated.This work is a part of an ongoing researh at Cadene Researh Center, IITKanpur. I am thankful to Cadene India Ltd. for their �nanial support.I am grateful to my fellow members of CARES, Rajiv, Souvik, Prithvi, Arvind,Anand, and Mayank. They have made this group a hub of intelletual ativities,stood by me at di�ult times, shared frustrations, and at the same time, boostedmy spirits. I should remember the past members of the group, Prashant and Sarika,who helped me during my early days. This, also, is an opportunity to bow my headbefore the great omradeship of MTeh99. I hope this spirit will live long.Finally, let me onede my huge debt to my parents and beloved ones. Withouttheir support and patiene this work would not have been possible.

Contents
1 Introdution 11.1 Motivation . 11.2 A Survey of Tehniques for Compiler Bakend Generation 31.2.1 Grammar Based Approahes 31.2.2 Approahes of Tree Pattern Mathing 41.2.3 Automati Code Generation from High Level Proessor Spe-i�ation . 41.2.4 Automati Code Generation from HDL 61.2.5 GCC Portable Compiler . 71.2.6 Our Approah . 71.3 Outline of the Thesis . 82 Sim-nML Proessor Spei�ation Language 102.1 Sim-nML Language . 102.1.1 General Charateristis . 102.1.2 Basi Data Types . 112.1.3 Storage and Funtional Units 112.1.4 Instrution Set . 122.1.5 Attribute Types . 132.2 An Example: Sim-nML Desription of UltraSparIIi Proessor 142.2.1 Windowed Register Set . 142.2.2 Delayed Transfer of Control 152.2.3 Branhes . 15ii

3 GCC and its Porting Mehanism 203.1 RTL Representation Basis . 203.1.1 RTL Expressions . 213.2 Internal Representation of a Program 223.3 Mahine Desription . 223.3.1 md File . 233.3.2 C Header and Program Files 263.4 The Translation Proess . 273.4.1 Parsing and RTL Generation 273.4.2 Optimization, Register Alloation, Reloading 273.4.3 Final Pass . 284 Generation of GCC Mahine Desription from Sim-nML Spei�a-tion 294.1 Preproessing . 294.1.1 Register Analysis . 314.1.2 Mode Rule Analysis . 314.2 Flattening of Ation Sequene . 324.3 Instrution Analysis . 334.3.1 Morphing Parameters . 334.3.2 Constrution of Control Flow Graph 334.3.3 Removal of Uses of Temporary variables 344.3.4 Instrution Splitting . 354.3.5 Constant Folding . 364.3.6 Branh Elimination . 364.3.7 Code Motion . 364.3.8 Removal of De�nitions of Temporary Variables 374.3.9 Mode Rule Synthesis . 374.3.10 Final Copy Propagation . 374.3.11 Deletion of PC Assignments 384.3.12 Instrution Reognition . 384.4 Mahine Desription Generation . 39iii

4.4.1 Generation of target.h and target. 404.4.2 Generation of target.md . 404.5 Summary . 435 Results and Future Work 455.1 GCC Port for Spar64 . 455.2 Future Diretions . 49A GCC Internals 55A.1 Components of GCC Compiler Suite 55A.2 A Grouping of RTL Expression Codes 56A.2.1 Operands . 56A.2.2 Operations . 57A.2.3 Side E�ets . 57A.2.4 Embedded Side E�ets . 58A.2.5 Insns . 58A.2.6 RTL Templates . 58A.2.7 De�nitions . 58A.3 A Grouping of Standard GCC Names 58A.3.1 Data Movement . 58A.3.2 Arithmeti-Bitwise Operations 59A.3.3 Type Conversions . 59A.3.4 Comparisons . 59A.3.5 String Operations . 59A.3.6 Control Transfers . 59A.3.7 Stak Operations . 60A.3.8 Others . 60A.4 Useful RTX Related Funtions and Maros 60A.5 Mahine Mode Related Maros . 61A.6 Funtions Related to Insns . 62A.7 Set of Built-in Prediates . 62A.8 Notion of an Address . 63iv

A.8.1 RTXes used as Addresses . 63A.8.2 De�nition of a Valid Address 63A.9 Translation of C Level Data to Mahine Level 64A.9.1 Translation to Mahine Modes 66A.9.2 De�nitions of byte_mode, word_mode et 66A.9.3 Mapping to Hard Registers . 66A.9.4 Mapping to Memory Loations 68A.9.5 Translation of Constants . 68B genmd2 Maintainer's Guide 70B.1 Soure Files . 70B.2 Intermediate Dumps . 72B.3 A Grammar for Value Expressions . 73C genmd2 User's Manual 76C.1 System Requirements . 76C.2 Installation . 77C.3 Running the Tool . 77C.4 Con�guration File . 77C.4.1 PC Setion . 78C.4.2 CC Setion . 78C.4.3 SP Setion . 78C.4.4 Return Address Pointer Setion 79

v

List of Figures1.1 Outline of Our Approah . 93.1 Translation Proess of GCC . 274.1 Arhiteture of GCC Mahine Desription Generator 304.2 Flattened Ation for Mips SLL Instrution 384.3 Patterns for Adding Single Integers in the md File of PowerPC 603 . 424.4 Test and Branh-if-equal Patterns in the md File of Spar 44A.1 Translation of Data . 65

vi

Chapter 1Introdution
1.1 MotivationWe are witnessing a time when eletroni systems are being deployed in new andinnovative ways aross various aspets of our life and ivilization, e.g., industrialautomation, teleommuniation, media, automobile, onsumer eletronis, to namea few. Use of programmable proessors are no longer on�ned to general-purposePersonal Computers, servers, or multiproessors. These proessors are �nding theirways to appliation spei� eletroni systems, better known as embedded systems.Use of Appliation Spei� Instrution-set Proessor (ASIP), Appliation Spei�Integrated Ciruit (ASIC), and general-purpose ISA-based proessors, is also gain-ing popularity in the embedded systems. All these fats ontribute in inreasing theimportane of software in embedded systems. At the same time an inreasing num-ber of vendors are trying to push embedded systems in various appliation areas.To quikly meet the demands of an expanding market and to obtain an edge overompetitors, designer of embedded systems needs low turn-around time and oste�etiveness in the design. Eletroni Design Automation (EDA) tools are used tomeet these objetives. Existing EDA tools and methodologies, whih failitate de-sign of hardware to a great extent, however do not provide signi�ant aid in softwaredevelopment and hardware-software integration.Normally hardware design and software development of an embedded system1

begin nearly at the same time. However, they annot be integrated until a prototypeof the hardware an be built. Hardware/software odesign is a paradigm for designingembedded systems whih advoates early integration of hardware and software inthe design yle, even before the hardware design is ompleted. This prevents errorsfrom propagating through the design and redues the e�ort spent in traking and�xing them. This also allows the designer to evaluate performane of the systemearly and explore various design alternatives. To enable hardware/software odesignone needs a set of tools that an simulate the build and exeution environment ofthe hardware. A ommon approah is to start with a high-level spei�ation ofthe hardware, whih ontains enough information needed to develop software andexeute it on that hardware. Tools are used to automatially generate ompiler,assembler, linker from the high level spei�ation to enable software development.Simulators are built around this spei�ation to reate an exeution environmentfor the software. High-level synthesis tools are used to enable hardware design fromthis spei�ation.Sim-nML [17℄ is a high-level proessor spei�ation language, whih is powerfulenough to desribe any ISA based proessor. Tools have been developed to generateassembler [8℄, disassembler [7℄, funtion simulator [1℄, ahe simulator [19℄ et fromSim-nML spei�ations of proessors. A preliminary work for generation of ompilerfrom Sim-nML spei�ations has also been arried out [16℄.In this work tehniques have been developed for performing extensive semantianalysis of Sim-nML spei�ations and extrating information needed for generationof ompiler. A tool has been developed that reads a Sim-nML spei�ation inits intermediate form, and generates a partially omplete GCC (GNU CompilerColletion) mahine desription. GCC has been retargeted to Spar using the Sim-nML desription. We have hosen GCC beause it is a prodution quality optimizingompiler, whih an be retargeted by writing a desription of the target. However,GCC mahine desription is large and omplex. Our tool redues the e�ort needed toretarget GCC. The advantage is magni�ed by the fat that a Sim-nML spei�ationan also be used to generate many other tools for the proessor.
2

1.2 A Survey of Tehniques for Compiler BakendGenerationA ompiler translates a high-level language program to an equivalent assembly ormahine language program [23℄ [24℄. Broadly, it onsists of two omponents. Thefrontend is responsible for lexial analysis, parsing and onverting the program to anintermediate form. The bakend or the ode generator translates the intermediateform of the program to assembly or mahine language. Ideally, ompiler front endis spei� to the soure language and bakend, to the target proessor. This kindof design redues the work needed to port an existing ompiler to a new sourelanguage or target arhiteture.Approahes for automati generation of parts of the frontend from the spei�a-tions of the soure language are well known [23℄. Several attempts have been madeto automate the generation of ompiler bakend from the spei�ation of the targetmahine. We shall disuss some of them. At the end of this setion, an overview ofour approah will be given.1.2.1 Grammar Based ApproahesGrammar based approahes attempt to extend the tehnique of parser generationto bakend generation. A grammar for the intermediate form is spei�ed. Foreah grammar rule an ation is spei�ed whih onstruts and/or emits assemblyinstrutions as the rule is applied. A parser is generated from the grammar, whihparses the intermediate form and generates assembly output.Graham-Glanville [6℄ used a ontext free grammar to parse a Polish-Pre�x inter-mediate form. A register alloator was meshed with the parser. Ganapathi-Fisher[5℄ used the more powerful notations of attribute grammars and disambiguatingprediates. The ode generators generated by them were apable of doing somesimple optimizations also.
3

1.2.2 Approahes of Tree Pattern MathingThe approahes of tree pattern mathing work on an intermediate form that is asequene of trees. A set of tree-rewriting rules are spei�ed. A rule has a treepattern, whih is mathed within the intermediate form, a replaement node, whihreplaes the mathed pattern, and an ation to be performed on suessful mathing.A ost funtion is used to impose additional onditions for mathing. Ations areresponsible for emitting assembly ode. Dynami programming is used to determinean optimal over for the intermediate form using the patterns.Aho, Ganapathi and Tjiang developed a system alled twig based on this ap-proah [22℄. LCC [14℄ also uses this approah. A program alled lburg reads amahine spei�ation �le ontaining de�nitions of the tree rules and generates aode generator. In another work, a Redued Instrution Set Mahine (RISM), on-sisting of a set of simple instrutions apable of simulating all other instrutions, isautomatially extrated from a tree-based mahine desription [2℄. An RISM odegenerator is generated, whih onverts the intermediate form of the program, anabstrat syntax tree, to a sequene of RISM instrutions. An automatially gen-erated optimizer then merges simple RISM instrutions to more omplex mahineinstrutions and produes good quality assembly ode.1.2.3 Automati Code Generation from High Level ProessorSpei�ationA high level spei�ation for a proessor desribes its ISA and additionally, providessome strutural information. Unlike the grammar or tree rewriting rules, thesespei�ations are tool independent. The soure program is translated by a proes-sor independent fronted to a suitable intermediate form, normally a CDFG (ControlData Flow Graph). The proessor spei�ation is onverted to an internal datastruture so that instrutions an be represented by patterns whih an be mathedwithin the intermediate form of the program. Then attempts are made to over theprogram optimally using instrution patterns. Basi steps performed by the retar-getable ode generator are instrution seletion, resoure alloation, and instrution4

sheduling [25℄, [26℄, [27℄, [23℄.CHESS [11℄ is a ommerially available retargetable ompiler based on nML [3℄mahine desription formalism. CHESS has been designed for embedded �xed pointDSPs (Digital Signal Proessors). nML mahine desription is internally onvertedto an Instrution Set Graph, whih stores information about instrution set andresoures of the proessor. Soure program written in DFL or C is translated to aCDFG. Then the ompiler bakend performs ode seletion, register alloation andsheduling in sequene.CodeSyn [15℄ ompiler is a part of FlexWare [15℄ development environment forembedded systems. High-level program, written in C or C++, is translated to aCDFG. The ode generator follows a rule-based approah. The mahine desriptionontains resoure information (register sets, addressing modes et) and a set of odeseletion rules, one for eah high level operation. When the operation matheswithin the CDFG, the rule is triggered. The ompiler performs global sheduling,register assignment, and ode ompation in sequene.AVIV [20℄ retargetable ompiler fouses on proessors exhibiting signi�ant ILP(Instrution Level Parallelism) and VLIW arhitetures. It uses SUIF (StanfordUniversity Intermediate Format) [28℄ and SPAM (Synopsys, Prineton, Aahen,MIT) [29℄ ompilers as its frontend. The ode generator reads ISDL [4℄ mahinedesription and output of the frontend, whih is a set of basi blok DAGs (DiretedAyli Graphs) onneted through ontrol �ow information, and generates a Split-node DAG. A Split-node DAG represents a set of all possible ways the program anbe exeuted on the proessor. A heuristi branh and bound algorithm is used toprodue near optimal assembly ode from the Split-node DAG. Unlike most otherapproahes AVIV performs instrution seletion, resoure alloation and shedulingonurrently.EXPRESSION [30℄ mahine spei�ation language desribes ISA, some stru-tural information and also the memory subsystem. Tools are used to automati-ally generate tree patterns desribing instrutions, a reservation table ontainingsheduling information et. EXPRESS [30℄ retargetable ompiler makes use of theseinformation to generate ode. 5

LISA [31℄ proessor design platform inludes a ompiler generator. Along withLISA mahine desription, some additional semanti information and an ABI (Ap-pliation Binary Interfae) spei�ation is provided to the ompiler generator. Theompiler generator then generates a mahine desription for LCC [14℄ whih is built,along with LCC frontend, to obtain an LCC port for the proessor.The Mesal group is also working on a projet to develop a retargetable ompilerfrom MAD spei�ation language [32℄. However, this work is not omplete and theyare yet to report any result.An earlier work [13℄ has been arried out to generate LCC [14℄ mahine de-sription from nML [3℄. A tool has been developed that �attens an nML mahinespei�ation to obtain a set of instrution patterns. Additional transformations areapplied to the instrutions to synthesize an LCC mahine desription. The pro-gram lburg [14℄ then generates a bakend for LCC from the synthesized mahinedesription.1.2.4 Automati Code Generation from HDLDesriptions written in HDL give a lower level view of the hardware than thosewritten in high-level spei�ation languages. HDL desriptions an easily aom-modate arhitetural hanges and they an be diretly linked with hardware designtools. However, from the point of view of ode generation, they ontain unneessarydetails about the hardware. The ISA, whih ats as an interfae between hardwareand software, is not apparent in these desriptions. However, like the high-levelspei�ation languages, they are also tool independent.A work has been arried out to extrat ISA from an HDL desription and gener-ating ompiler bakend from these information. RECORD [27℄ retargetable ompileronstruts a graph model, onsisting of primitive proessor entities and their inter-onnetion, from an HDL desription. From the graph a set of instrution templatesis determined. With additional semanti knowledge of hardware operators, a treegrammar and a parser are generated. This parser works as a ode seletor in theompiler bakend. RECORD ompiler has reported to outperform (with respetto size of the generated ode) native TI ompiler on TMS320C25 DSP hip, when6

tested with DSPstone [34℄ benhmark suite.1.2.5 GCC Portable CompilerGCC (GNU Compiler Colletion) is a highly optimizing prodution quality om-piler whih has been ported to a number of proessors. GCC has its own mahinedesription format onsisting of an md �le, a number of C header �les, and a Cprogram �le. The GCC frontend translates a soure program into an intermedi-ate form alled RTL [21℄, whih has a LISP-like reursive struture. The md �lespei�es a set of RTL templates and the ways to generate assembly instrutionsfrom them. Additionally, some of the templates in the md �le are given standardnames, whih onvey the semantis of the templates to GCC frontend. Frontenduses named templates to generate initial RTL intermediate form. The initial RTLform then undergoes a series of transformations for optimization, register alloationand sheduling, and then they are mathed against templates de�ned in the md �leand assembly ode is generated.GCC produes good quality ode for proessors with homogeneous strutures.However, it is not very suessful in the domain of ASIPs and DSPs, whih oftenhave heterogeneous register sets. Also, porting GCC to a new target often nees-sitates hanges in the so-alled `mahine independent' soures of GCC. So it is notretargetable, in the stritest sense of the term [25℄.1.2.6 Our ApproahWe propose to generate a GCC mahine desription from a Sim-nML spei�ation ofa proessor, so that GCC an be ported to the proessor with minimal e�ort. Sim-nML [17℄, whih is an extension of nML [3℄ mahine desription formalism, is a toolindependent high-level proessor spei�ation language. It aptures informationabout the ISA, registers, addressing modes, funtional units of a proessor in aompat and easily maintainable form. Several tools have been developed to supportsoftware development and exeution around the Sim-nML model of a proessor [8℄[7℄ [1℄ [9℄ [19℄. In this work we have attempted to omplement Sim-nML tehnology7

by adding the ompiler-generation apability to it.A preliminary work for GCC mahine desription generation from Sim-nML hasbeen arried out earlier [16℄. A tool genmd has been developed whih generated aGCC mahine desription for Intel8085 proessor, sans ontrol transfer instrutions.However, the tehniques used in this tool avoided many pratial omplexities andso the tool failed to work with more omplex proessor desriptions. Also it didnot have the appropriate framework for dealing with ontrol transfer instrutions.Nevertheless, this work gave us some insight into the problem.Figure 1.1 outlines our approah. The tool irg parses the Sim-nML desriptionand stores it into a �le alled IR (Intermediate Representation). This IR is inputof our tool. Sine the desription is written in a ompat hierarhial form, it isinitially �attened to obtain a sequene of C-like statements for eah instrution. Thissequene of statements desribes the semantis of the instrution. Some simplifyingtransformations are made to remove temporaries, fold onstants, eliminate branheset. from the sequenes. Then sequenes are mathed against some prede�nedpatterns and identi�ed with standard GCC names. At this stage we have gatheredenough information for generation of a GCC mahine desription. Now it is possibleto write the GCC mahine desription of a proessor in a number of ways. Wehave implemented a simple and generi mahine desription generation strategy andgenerated a partial mahine desription. Finally, additional information are addedto omplete the mahine desription and a GCC is built for the target proessor.The advantage of this approah is that we are using a well-trusted frontend andhigh quality optimization and ode generation tehniques of GCC. But the di�ultyarises beause of a lak of simple formal struture in GCC mahine desription.Also, semantis of instrution patterns are to be onveyed to GCC expliitly byusing standard GCC names. This neessitates a rigorous semanti analysis of theSim-nML desription.1.3 Outline of the ThesisIn hapter 2 we present an overview of the Sim-nML language.8

Sim−nML
IR

irgSim−nML
Specification of a

Processor

flattener

GCC Machine

Description

Machine description
generation strategy

Set of Instruction

Patterns

Patterns

Named Instruction

Additional
Information

simplifications

instruction
recognition

GCC
build processGCC Port for

the Processor

Figure 1.1: Outline of Our ApproahIn hapter 3 we disuss GCC and the mehanism to port GCC to a target.In hapter 4 we disuss the design and implementation of the tool that is de-veloped in this thesis to generate GCC mahine desription from Sim-nML. Finally,we present the results of our work and some future diretions in hapter 5.

9

Chapter 2Sim-nML Proessor Spei�ationLanguageIn this hapter the formal struture of Sim-nML language, along with an overviewof its syntax and semantis will be presented. To exemplify the expressibility ofthe language, Sim-nML desription of UltraSparIIi proessor will be disussed.Detailed desription of the language an be found in [17℄ [9℄ [10℄ [18℄.2.1 Sim-nML Language2.1.1 General CharateristisSim-nML proessor spei�ation language is an extension of nML [3℄. It has thefollowing general harateristis:� High Level of Abstration: A Sim-nML programmer views a proessoras a mahine that exeutes a set of instrutions. For eah instrution in theinstrution set of the proessor, the binary image, assembly syntax, funtion-ality, resoure usage and timing are spei�ed. Additionally, the ISA-spei�edregisters, memory and funtional units are desribed. The desription ontainsenough information about the proessor to support software development andexeution around it. 10

� Tool Independene: A Sim-nML desription is not spei� to a tool. Arange of tools, inluding assembler [8℄, disassembler [7℄, funtion simulator [7℄,ahe simulator [19℄ have been generated from it.� Generality: Sim-nML language is powerful enough to apture any kind ofISA-based proessor. Sim-nML desriptions have been written for di�erentlasses of proessors inluding RISC (Spar, Mips, PowerPC, ARM), CISC(M68HC11, 8085), and DSP (ADSP) [33℄.� Compatness: Sim-nML allows the programmer to write a ompat andhierarhial desription by exploiting the ommonality between instrutions.2.1.2 Basi Data TypesSim-nML provides a set of built-in abstrat types viz. ard, int, �oat, range, boolet. A near orthogonal set of operators is also provided. All the types used in thedesription are de�ned by the programmer and derived from the built-in types. Forexample, ard(32) is a 32-bit unsigned integer type derived from the built-in typeard.Basi data types are used in the following two di�erent ontexts� To desribe data types supported by the proessor, e.g. to desribe types ofregisters, memories, or parameters of instrutions.� To desribe data types needed for programming, e.g. to desribe types oftemporary variables used within the desription.In addition string literals are allowed in the de�nitions of assembly syntax andbinary images of instrutions.2.1.3 Storage and Funtional UnitsThe keyword resoure is used to de�ne a funtion unit or a pipeline stage. A storageunit may be a proessor resoure or a temporary variable needed for programming.The keyword reg delares an ISA-spei�ed register. The keyword mem may delare11

a memory unit or a temporary variable. The keyword var is spei�ally used todelare the temporary variable.2.1.4 Instrution SetIn Sim-nML, instrution set of the proessor is desribed as an S-attributed gram-mar. Eah sentene derivable from the grammar orresponds to a single mahineinstrution. Eah nonterminal symbol of the grammar is assoiated with a set ofattributes. Eah prodution rule of the grammar is assoiated with a set of at-tribute de�nitions. Eah attribute de�nition omputes the value of an attribute ofthe left-hand side of the prodution as a funtion of the values of the attributes ofthe symbols appearing on the right-hand side.A set of produtions of the form:T : XT : Y.....T : Zwhere T, X, Y,, Z are nonterminal symbols, is represented in Sim-nML withan or rule of the form:op T = X | Y | | ZThe attribute de�nitions are impliit in an or rule. All the attributes of the right-hand symbol are assigned to the orresponding attributes of the left-hand symbolwhen a prodution of this form is applied.A single prodution of the form:T : X Y Zwhere T is a nonterminal and X, Y,, Z are terminal or nonterminal grammarsymbols, is represented in Sim-nML with an and rule of the form:op T (X, Y, ..., Z)X, Y, ..., Z are alled parameters of the and rule. If a parameter is of a basi typethen it is treated as a terminal symbol of the grammar, whih is a parameter of amahine instrution. Otherwise, the parameter is treated as a nonterminal symbol,whih is a partial de�nition of a mahine instrution. Eah nonterminal symbol12

should appear on the left-hand side of exatly one Sim-nML rule. In an and ruleattributes are expliitly de�ned. If an attribute is not de�ned then it is assumed tohave a null value.Sim-nML provides a set of attributes with a prede�ned semantis. When an in-strution is derived from the grammar, omplete de�nitions of all the attributes areobtained. The attribute syntax stores the syntax of the instrution. Likewise, the at-tributes image, ation, and uses store, respetively, the binary image, funtionality,and resoure-usage of the instrution.A Sim-nML rule whose left-hand side is an addressing mode or a partial de�nitionof an addressing mode, is alled a mode rule. All other rules are alled op rules. Amode rule di�ers from an op rule beause it an have a value. The value of a moderule is stored in a hidden attribute.It is intuitively obvious that the S-attributed grammar supported by Sim-nMLan be used to desribe any ontext free grammar and hene, any instrution set.2.1.5 Attribute TypesThe attributes for assembly syntax and binary image are strings. The attributefor resoure-usage follow a usage grammar. Attributes de�ning funtionality ofinstrutions are sequenes of C-like statements, often alled ation sequenes.Sim-nML provides a restrited programming model to de�ne funtionality ofinstrutions. It supports built-in and user de�ned types, built-in operators, sequeneof statements, ontrol transfer, funtion all et. It also allows programmer to de�nevariables, whih are alled temporaries, and have a global sope and in�nite lifetime.To support ontrol transfer Sim-nML has an if-then-else-endif statement. How-ever, there is no onstrut for loops and goto-like jumps.Level of abstration of an ation sequene is lower than that of a mahine instru-tion beause an ation sequene is used to express funtionality of an instrution.It gives programmer a lot of freedom through bit-seletion and onatenation op-erators. Bit-seletion allows a programmer to view an arbitrary hunk of bits of astorage unit as a single objet. Conatenation allows programmer to form an objet13

by ombining a number of objets. In Sim-nML language, the smallest unit of stor-age that an be viewed as an objet is a single bit. However, these low-level featuresmake appliation of traditional algorithms for data �ow analysis, opy propagationet. di�ult, as will be observed in hapter 4.2.2 An Example: Sim-nML Desription of Ultra-SparIIi ProessorUltraSparIIi is a 64-bit supersalar RISC proessor [36℄ that implements Spar V9[35℄ ISA. In this setion we will disuss the ways in whih some of its interestingfeatures have been expressed using Sim-nML.2.2.1 Windowed Register SetSpar V9 supports the notion of a windowed register set. The mapping betweena register number generated by software and atual hard register number dependsupon the state of a speial register, alled window pointer register. Software gener-ated register numbers are partitioned into four lasses viz., global, out, loal, and in,eah ontaining eight registers.Following formulas show the relationship between software register numbers andhardware register numbers:hard_reg_no = global_reg_no + pstate.ag * 8hard_reg_no = out_reg_no + wp * 16hard_reg_no = loal_reg_no + wp * 16 + 8hard_reg_no = in_reg_no + wp * 16 + 16Here pstate.ag is a single bit in a state register pstate. wp is 5-bit urrentwindow pointer register. Following is a Sim-nML mode rule de�ning an addressingmode for loal registers:mode lo(x:ard(3))=winreg[16*wp + 8 + x℄syntax=format("%%l%d",x)image=format("%5b",x+16) 14

`winreg' has earlier been delared to be a register �le of 128 registers. Note thatthe index of the register �le is a funtion of a state register.2.2.2 Delayed Transfer of ControlIn Spar V9 all the ontrol transfer instrutions (all, jump, branhes) are delayed.The delayed semantis has been expressed by introduing a next-PC register, alongwith the normal PC. In the desription p refers to the normal PC and np, to thenext PC register. All the non ontrol transfer instrutions exeute the following pairof statementsp = np;np = np + 4;On the other hand a all instrution, whih unonditionally transfer ontrol toa PC-relative target, exeutes the following pair of statementstmp = p;p = np;np = tmp + 4*oere(sxword, label);Here tmp is a temporary, label is a parameter, whih spei�es the target. oereoperator sign-extends label to a signed 64-bit integer. The target is multiplied by 4to maintain alignment.2.2.3 BranhesIn Spar V9 there are 5 lasses of branh instrutions viz., bpr, fbf, fbpf, bi,and bp. A lass ontains 24, 32 or 64 branh instrutions. For example there aresix variations of bpr (branh on integer register ondition with preditions)� Branh if zero� Branh if nonzero� Branh if less than zero� Branh if less than equal to zero 15

� Branh if greater than zero� Branh if greater than equal to zeroEah of these branhes an be annulling or non annulling, and predit-taken orpredit-not-taken. So there are total 24 branhes in lass bpr. Suh a large numberof branhes have been desribed in Sim-nML in a very ompat manner by intro-duing dummy mode rules. A mode rule normally orresponds to an operand of theinstrution. A dummy mode rule, however, represents a onstituent of the opode.In this desription dummy mode rules have been used to speify the register ondi-tion to be evaluated, the annul bit and the predition bit of a branh instrution.Here is an example from the UltraSparIIi desription://'rond' field in 'bpr'//if equal to zeromode rz()=1syntax="z"image="001"//if less than equal to zeromode rlez()=2syntax="lez"image="010"//if less than zeromode rlz()=3syntax="lz"image="011"//if not zeromode rnz()=5syntax="nz"image="101"//if greater than zeromode rgz()=6syntax="gz" 16

image="110"//if greater than equal to zeromode rgez()=7syntax="gez"image="111"//one of the above onditionsmode rond= rz | rlez | rlz | rnz | rgz | rgezNow instead of using 24 di�erent op rules, all the branhes of lass bpr havebeen desribed using a single op rule, whih has a parameter of type rond. Withinthe ation, value of this parameter is heked and register ondition is evaluatedaordingly. The ation of this op rule sets a temporary, taken, whih is examinedby another higher-level op rule and p and np are adjusted aordingly. Followingis the example of the op rule bpr (a and p are two dummy mode rules speifyingannul and predition bits, disp16 is a mode rule for a 16-bit displaement, gpr is amode rule for a general purpose register):op bpr(x:a, y:rond, z:disp16, w:p, u:gpr)syntax=format("br%s%s%s %s, %s", y.syntax, x.syntax, w.syntax, u.syntax,z.syntax)image=format("00%s0%s011%s%s%s%s", x.image, y.image, z.image<14..15>,w.image, u.image, z.image<0..13>)ation={annul=x; //save annul bit in a temporaryea=p + 4*oere(sxword,z); //save target address in a temporary//evaluate register onditionif y==1 //equal to zerothenif u==0thentaken=1;elsetaken=0; 17

endif;else if y==2 //less than equal to zerothenif oere(sxword, u) <= 0thentaken=1;elsetaken=0;endif;else if y==3 //less than zerothenif oere(sxword, u) < 0thentaken=1;elsetaken=0;endif;else if y==5 //not zerothenif u!=0thentaken=1;elsetaken=0;endif;else if y==6 //greater than zerothenif oere(sxword, u) > 0thentaken=1;else 18

taken=0;endif;else if y==7 //greater than equal to zerothenif oere(sxword, u) >= 0thentaken=1;elsetaken=0;endif;endif;endif;endif;endif;endif;endif;}

19

Chapter 3GCC and its Porting MehanismGCC is a free ompiler, developed by the GNU ommunity [37℄. It is availablefor a number of frontends, inluding C, C++, Fortran, Java, Objetive-C, and anumber of proessors inluding Intel x86, Spar, Mips, Arm, Motorola 68HC11. Itis known to be a prodution quality ompiler with high quality optimization andode generation tehniques. GCC an be ported to a new target by providing atarget desription in the form of an md �le, a number of C header �les, and aC program �le. GCC frontend produes ode in an intermediate form, known asan RTL representation. RTL patterns also appear in the md �le of GCC mahinedesription.In this hapter an introdution to GCC RTL representation will be given. Also,GCC's internal representation of a program, and mahine desription will be dis-ussed in brief. Finally, we shall present an overall piture of the translation proe-dure. All the four topis, among others, have been disussed at length in [21℄.3.1 RTL Representation BasisRTL has a LISP like reursive struture. An RTL objet is the most fundamentalabstration of an RTL representation. An RTL objet an represent an operator,an operand, side-e�et (funtionality) of an instrution, an instrution, a de�nitionof an instrution et. An RTL objet is one of the following20

� integer: C type int� wide integer: C type HOST_WIDE_INT, as de�ned in GCC's soure �les� string: C type har *� expression of RTL objets: a pointer to a struture� vetor of RTL expressions: an arbitrary number of RTL expressions3.1.1 RTL ExpressionsInternally (within GCC soures) an RTL expression, also alled an RTX, is a pointerto a struture. Operands of the expression are members of the struture, whih inturn, are RTL objets. The struture also has a member alled ode of the RTX.The ode gives the expression a name and a semanti meaning, and de�nes thenumber and types of its operands. A list of RTX odes an be found in AppendixA. Another member of the struture is mahine mode of the RTX. Mahine modede�nes the type and width of the value produed by the RTX.An RTX has an external representation, whih appears in debugging dumps andmd �les. In this form, an RTX is enlosed within a pair of parentheses. Name ofthe RTX appears �rst, followed by the mahine mode and operands. Absene ofmahine mode implies VOIDmode. Some of the examples of RTXes are as follows:An RTX representing register number 10 is written as (reg:SI 10) where regis the name of the RTX. SI stands for single integer mahine mode. A reg RTX hasonly one operand, whih is an integer RTL objet. The operand signi�es the registernumber.An RTX representing a onstant integer 5 is written as (onst_int 5). Aonst_int RTX does not have a mahine mode (or is equivalent to a mahine modeVOIDmode). The only operand of this RTX signi�es the value of the integer.An RTX representing result of the addition of register number 10 and a onstantinteger 5 is written as (plus:SI (reg:SI 10) (onst_int 5)). plus RTX hastwo operands, both of whih are RTXes. They signify the operands of an addition.The mahine mode of plus spei�es the type and width of the result of addition.21

3.2 Internal Representation of a ProgramAn insn is an RTX, whih is GCC's abstration of an instrution. GCC frontendtranslates a ompilation unit into a doubly linked hain of insns. Translation is per-formed on a statement-by-statement basis during parsing. At the time of assemblyoutput generation, an insn is typially onverted into a sequene of one or moreassembly instrutions. Some insns, however, are not real instrutions, and representlabels or some delarative information.Following are the RTX odes that an insn an haveinsn, jump_insn, all_insn, note, barrier, and ode_label.An insn has an operand of type RTX whih de�nes its funtionality or `side-e�et'. A side e�et typially performs an arithmeti/logi operation and stores theresult to a register, or moves between registers, or moves between a register and amemory loation, or sets PC onditionally to a target et.Following is an example of an insn, that adds a register and an immediate on-stant, and stores the result into another register:(insn10 7 11(set (reg:SI 9) (plus:SI (reg:SI 10) (onst_int 5)))-1 (nil) (nil))The side-e�et of the insn is a set RTX, whose �rst operand signi�es the desti-nation of the assignment and the seond operand, soure. set does not produe avalue and so, does not have a mahine mode.Three numbers preeding the side-e�et expression represent, in order, uid (uniqueidentity) of the insn, uid of the previous insn, and uid of the next insn. Othersoperands of an insn are not important in this ontext.3.3 Mahine DesriptionGCC mahine desription ontains the following information:22

� Proessor arhiteture� funtional behavior, and optionally, resoure-usage ofinstrutions, endianness, memory addressability et.� ABI� register usage, funtion-alling onventions et.� Layout of soure language data types� sizes of int, float, har et.� Format of binary �les� format of objet and exeutable �les, format of debug-ging information.� Compiler environment� onventions for assembler, linker, libraries, loation ofsystem's headers and libraries et.The mahine desription onsists of an md �le, a C program �le and a numberof C header �les.3.3.1 md FileAn md �le an ontain the following information:� De�nitions of RTL patterns whih an appear as side-e�ets of insns. TheRTXes de�ne_expand and de�ne_insn are used to provide these information.� Ways to generate assembly instrutions from insns. The RTXes de�ne_insnand de�ne_peephole are used for this purpose.� Ways to split a single insn into a sequene of insns. The RTX de�ne_split isused for this purpose.� Information about funtion units and latenies of instrutions. The RTXesde�ne_delay and de�ne_funtion_unit are used for this purpose.Names of PatternsNames are given to RTL patterns de�ned using de�ne_expand and optionally, tothose de�ned using de�ne_insn. Two di�erent de�nitions annot use same name.GCC provides a set of standard names whih onvey the semantis of the patterns to23

GCC frontend. Standard names are used while translating the high-level languageprogram into an RTL intermediate form. GCC generates a gen_name funtion togenerate a pattern whose name is name and name does not begin with the harater`*'. A gen_name funtion aepts the operands of the pattern as arguments. Thesefuntions are often used in a mahine desription to expliitly generate a pattern.A list of standard names an be found in Appendix A.Templates Used in a PatternRTL templates are used to speify a set of operands or operators that an appear ina partiular position in the pattern. The following RTXes are used as RTL templatesmath_operand, math_dup, math_operator et.math_operand spei�es a set of operands. It has three operands. First operandis an integer RTL objet, speifying operand number. Seond and third operands arestring RTL objets, whih speify a prediate and a set of onstraints, respetively.A prediate spei�es a broad lass for the operand, e.g. whether it is a register oran immediate operand. Constraint imposes striter onditions e.g. the exat lassof registers or range of immediate operands. Two patterns whih di�er only in theonstraints of their templates annot be de�ned separately. A single de�nition isused for them with a set of alternative onstraints.Here is an example of a math_operand template(math_operand:SI 0 "register_operand" "a")In an atual insn this template will be replaed by the operand number 0, whihmust be a register of lass `a', with mahine mode SImode. There are a numberof built-in prediates provided by GCC. Additional prediates an be de�ned inthe C program �le. A list of built-in prediates has been provided in Appendix A.Meanings of onstraint letters are spei�ed in a C header �le within the mahinedesription.de�ne_expand Patternsde�ne_expands are only used during RTL generation i.e. during translation of the24

high-level program into RTL. They must have a name. de�ne_expand allows gen-erating a sequene of RTL patterns, eah to appear as a side-e�et of an insn in asequene of insns. Every pattern that may be generated by a de�ne_expand shouldalso be de�ned using a de�ne_insn. Using de�ne_expand one an also speify afragment of a C ode to be exeuted before the generation of the patterns. The on-straints whih appear in an RTL template of a pattern are ignored by de�ne_expand.Here is an example of a de�ne_expand(define_expand "addsi3"(set(math_operand:SI 0 "general_operand" "")(plus:SI(math_operand:SI 1 "general_operand" "")(math_operand:SI 2 "general_operand" "")))"""")First operand of de�ne_expand, "addsi3", is the name of the pattern. "addsi3"is a standard GCC name, meaning addition in single integer mode. Seond operandis the pattern. Note that math_operand templates have oupied the plaes of realoperands. The prediate "general_operand" allows any general register, memory orimmediate onstant as an operand. Third operand is a string, whih is supposed tospeify a ondition to be tested before this de�ne_expand is used. Last operand isalso a string where one an put a fragment of C ode.de�ne_insn Patternsde�ne_insn may or may not have a name. Named de�ne_insns may be used duringRTL generation. de�ne_insns are also used at later stages of ompilation. Usingde�ne_insn one an speify a single RTL pattern whih an appear as a side-e�etof an insn. Using de�ne_insn one also spei�es the assembly ode to be generated25

from the pattern or a fragment of a C program to be exeuted to generate theassembly ode.Here is an example of an unnamed de�ne_insn, whih de�nes a pattern thatmay be resulted from the de�ne_expand shown in the last example:(define_insn ""(set(math_operand:SI 0 "register_operand" "a")(plus:SI(math_operand:SI 1 "register_operand" "a")(math_operand:SI 2 "register_operand" "a")))"""add %1, %2, %0")The �rst operand, whih spei�es the name, is an empty string. Seond operandis the pattern. Third operand spei�es a ondition whih must be true when thispattern is used. Last operand spei�es an assembly instrution that will be generatedfrom this pattern.de�ne_peepholede�ne_peephole is used to de�ne mahine spei� peephole optimizations. GCCuses a de�ne_peephole optionally, only if optimizations are enabled. It allows one tospeify a sequene of patterns and an assembly ode to be emitted for the sequene.3.3.2 C Header and Program FilesC header �les and the C program �le ontain all the information needed by GCCwhih annot be represented properly within an md �le. The header �les de�ne anumber of maros and enum types, and delare some global variables and routines.The program �le de�nes some global variables and routines. These �les also ontain26

C
Function

Doubly Linked
Chain of insns

Assembly
Representation

of Function

Parsing and
RTL Generation

Optimizations,
Register Allocation,
Reloading

Final
Pass

Figure 3.1: Translation Proess of GCCsupport information, viz. maros, variables, and routines, whih are used elsewherein the mahine desription. A list of some useful maros an be found in AppendixA.3.4 The Translation ProessFigure 3.1 outlines the way GCC translates a C funtion into an assembly ode.Steps are disussed below.3.4.1 Parsing and RTL GenerationThe C funtion is parsed and insns are generated on a statement-by-statement basis.At this stage GCC looks the md �le for a de�ne_expand or a de�ne_insn with somestandard name. If found, it heks the ondition (third operand of de�ne_expandor de�ne_insn) and the prediates of the templates used within the pattern. If allof them are satis�ed, then an insn or a sequene of insns is generated to express anoperation of the high-level language.3.4.2 Optimization, Register Alloation, ReloadingIn this phase GCC performs several optimizations e.g. jump optimizations, loopoptimizations, sheduling. It also performs register alloation. Following things an27

happen in this phase:� Deletion: An insn may be deleted.� Mathing: An insn may be mathed against a de�ne_insn pattern. Duringmathing prediates of the templates are heked, but onstraints are not.Mathing helps in assembly ode generation.� Sheduling: An insnmay be mathed against a de�ne_delay or de�ne_funtion_unit.This mathing helps in delay slot sheduling and instrution sheduling.� Combination: A sequene of insns may be ombined to form a single, moreomplex insn. Resulting omplex insn should, of ourse, math a de�ne_insnpattern. This helps in mahine independent peephole optimization.� Splitting: An insn may be mathed against a de�ne_split and split into asequene of simpler insns. Eah simpler insn should math a de�ne_insnpattern. Splitting is needed if a omplex insn formed by insn ombinationdoes not math any de�ne_insn. Splitting also helps in delay slot shedulingand instrution sheduling.� Constrution: A new insn may be onstruted and added to the doublylinked list.� Reload: An insn, that does math a de�ne_insn, may be invalidated beauseonstraints may not be satis�ed. So GCC generates extra move insns to ensurethat onstraints are satis�ed.3.4.3 Final PassAt this stage GCC performs mahine spei� peephole optimizations, generatesassembly ode for a funtion, generates funtion entry and exit ode.If a sequene of insns mathes a de�ne_peephole then the sequene is replaedby the orresponding assembly ode. Otherwise, assembly instrution for an insn isgenerated from the mathing de�ne_insn pattern.28

Chapter 4Generation of GCC MahineDesription from Sim-nMLSpei�ationIn this hapter we shall disuss the tehniques for automati generation of a partialGCC mahine desription from the Sim-nML spei�ation. We have implementedthese tehniques in the form of a tool.In hapter 1 an outline of our approah was presented. A more detailed blokdiagram an be found in �gure 4.1. GCC mahine desription generator reads aSim-nML IR and a on�guration �le and generates the �les target.md, target.h,and target.. In the rest of this hapter individual omponents of the tool will bedisussed.4.1 PreproessingAt preproessing stage the mahine desription generator parses its arguments, readsthe on�guration �le and the Sim-nML IR. Sim-nML IR is an intermediate repre-sentation of a Sim-nML spei�ation, generated by the tool irg[18℄. Con�guration�le ontains additional information about the proessor, as needed by the tool. This
29

Configuration FileSim−nML IR

GCC Machine Description

Preprocessing

Flattening

Machine Description Generation

Analysis of each Instruction

Register Analysis

Mode Rule Analysis

Action Flattening

Syntax Flattening

Generation of C

Generation of
md file

Remove Uses of
Temporaries

Split Instruction

Constant Folding

Eliminate Branches

Code Motion

Remove Temporary
Definitions

Final Copy
Propagation

Recognize Instruction

Header and Program Files

Delete PC Assignments

Synthesize Mode Rules

Construct Flow Graph

Morph Parameters

Figure 4.1: Arhiteture of GCC Mahine Desription Generator30

information inludes the name of the PC and other PC-lass registers (e.g. next-PC), name of the stak pointer, return address pointer, ondition ode registers et.The struture of a on�guration �le has been desribed in Appendix C.After reading the inputs the tool performs some analyses to gather informationabout the registers and addressing modes of the proessor.4.1.1 Register AnalysisAt register analysis phase a map of all the register of the proessor, as desribedin the Sim-nML spei�ation, is reated. Also speial registers, as named in theon�guration �le, are identi�ed.4.1.2 Mode Rule AnalysisA Sim-nML mode rule typially desribes an addressing mode of the proessor.Mode rules are used to de�ne parameter types of instrution ations. Mode ruleanalysis is performed to gather the following information about eah mode rule� If the mode rule is an or rule then it is viewed as a set of alternative addressingmodes. Total number of alternatives and eah alternative are determined. Ahild of a mode or rule may be a mode and rule or a mode or rule. In theformer ase, the hild represents a single alternative. In the later, the hilditself is a set of alternatives and so, alternatives represented by it are similarlydetermined.� If the mode rule is an and rule and it's value is an if-then-else-endif expressionthen also it is viewed as a set of alternative addressing modes and total numberof alternatives and eah alternative are similarly determined.� If a mode and rule represents a single addressing mode then it's value ex-pression is analyzed and the prediate ode, mahine mode and onstraint aredetermined.Value expression of a mode and rule is a pre�x expression with arithmeti-logioperators, index, onatenation, bit-seletion et., and whose operands may be31

parameters of the mode and rule (basi type or another mode rule), immediateonstants, registers or memories. A grammar for the value expressions thatis reognized by our tool is given in Appendix B. The reursive algorithm forevaluation of pre�x expressions has been used to analyze value expressions.A prediate ode spei�es the broad lass in whih an operand of an instrutionbelongs to and is one of the register ode, immediate ode, memory ode, andoperator ode. Operator ode is used to deal with omplex mode rules wherethe value expression ontain arithmeti-logi operators. Analyses of this kindof mode rules yield additional seondary mode rules whih are operands of theoriginal mode rule.A mahine mode spei�es the type (integer or �oating point) and width of theoperand.For a register operand the onstraint refers to a lass of registers, whih is asubset of the register map reated during register analysis. For an immedi-ate operand the onstraint spei�es a range of immediate values while for amemory operand, the onstraint spei�es the addressing mode.Additionally, mode rule analysis determines registers whih an be used as baseregisters, index registers, window pointer registers et. and a range of numberswhih an be used as displaements.To some extent, mode rule analysis an hek for semanti validity of the Sim-nML spei�ation as well. For example, it an be heked by this analysis whetheran index used with a register is within the range or not.4.2 Flattening of Ation SequeneA Sim-nML spei�ation of a proessor ontains a ompat hierarhial desriptionof the instrutions of the proessor. The hierarhy of op rules is assumed to be atree. A path from the root of the tree to a leaf is viewed as a single instrution,whih an have parameters of basi and mode rule types. By �attening we meantraversing all suh paths to obtain de�nitions of a partiular attribute of all the32

instrutions. In the ontext of the urrent work only syntax and ation attributesare relevant. A reursive algorithm has been used to traverse the tree and obtainomplete syntax string, ation sequene and parameter list of eah instrution. Thealgorithm has been presented by [16℄.4.3 Instrution AnalysisThe �attened ation sequene of an instrution may be very omplex with the pres-ene of temporaries and spurious branhes. Therefore, it is di�ult to reognizethe instrution from this desription. Simplifying transformations, whih onstitutethe heart of GCC mahine desription generator, onvert the ation sequene to aset of simple parallel statements. This simpler set an be mathed against a smallset of simple patterns and the instrution an be reognized. Following subsetionsdesribe the simplifying transformations and instrution reognition.4.3.1 Morphing ParametersA parameter referene that appears in a statement within the �attened ation se-quene is the parameter number as assigned in the op and rule from whih thestatement is resulted. However, for validity of the following transformations a uni-form numbering sheme for parameters is needed. So all parameter referenes arereplaed by the parameter numbers as assigned in the parameter list of the instru-tion.4.3.2 Constrution of Control Flow GraphThe basi bloks1 and ontrol �ow ars onneting the basi bloks are determined.Sine the ation sequene does not have any loop or unonditional goto, the resultingontrol �ow graph is a Direted Ayli Graph (DAG). This graph ontains infor-mation neessary for removal of uses of temporary variables and opy propagation.1A sequene of statements with a single entry and a single exit point
33

4.3.3 Removal of Uses of Temporary variablesA temporary variable represents a state that is not spei�ed in the ISA but is usedin the Sim-nML spei�ation to simplify the desription. Temporary variables areusually de�ned using the var keyword in the Sim-nML desription. All temporaryvariables should be removed from the ation sequene before the instrution an bereognized.To remove a use of a temporary variable, it is replaed by its most reent de�ni-tion. However, if a state appearing on the right hand side of the de�nition hangesbefore the use of the temporary variable then this transformation annot be applied.In suh a ase we view the resulting statements as parallel statements i.e. all thestates are read before any one of them is written [16℄.Consider the following example of sequential statementstmp = p;p = np;np = tmp+4;Above sequene of statements updates PC and NPC registers within the ationsequene of a non ontrol transfer instrution of UltraSpar proessor with delayedtransfer of ontrol. The �rst statement de�nes the temporary variable tmp, theseond statement writes to the p register, whih appears on the right hand sideof the de�nition of temporary variable, and third statement uses tmp to de�nenp register. After transformation these statements an be written as the followingparallel statements:pout = npin;npout = pin + 4;There are some additional omplexities present in this phase beause of thepossible uses of bit-seletion and onatenation operators in the ation sequene.This fores one to keep trak of virtually every single bit of every temporary variable.Following is a pair of de�nitions of temporary variable temp in presene of bit-seletion, where the later nulli�es the e�et of the former:temp<2..8> = ...;temp<4..12> = ...; 34

The following is another example where it is not possible to say whether the �rststatement is nulli�ed or whether the e�et of the �rst statement is visible after theseond statement.temp1::temp2 = ...;temp2 = ...;In suh a ase we have hosen to ignore the instrution.There may be situations where it may be very di�ult to determine the mostreent de�nition of a temporary variable. Here is an example:temp<4..12> = ...;x = temp<3..7>;Here is another similar example:temp1::temp2 = ...;x = temp1;In suh senarios we have hosen to ignore the instrution.4.3.4 Instrution SplittingIf an instrution's behavior depends upon the value of a parameter that is not apart of the proessor state, then we view it as a ompat representation of a numberof alternative instrutions. Suh an instrution is split into a number of alternativeinstrutions and the original instrution is ignored.In partiular, if an ation sequene has an if-then-else-endif statement whih teststhe value of a parameter of immediate type, then only one of the two paths will beexeuted and the exat path of exeution an be known at the time when ompilergenerates this instrution. Suh an instrution is split into two instrutions, one foreah of the two paths of exeution.Here is an example taken from the ation of Store Byte Update instrution ofPowerPC 603if ra == 0 thenEA = d;elseEA = GPR[ra℄+d; 35

endif;The above statements ompute an e�etive address, whih is a sum of a registerand a displaement, d. GPR is a general-purpose register �le and ra is an immediatetype parameter of this instrution whih indexes this register �le. However, GPR[0℄is hardwired to 0 and should always read as 0. So the e�etive address, EA, hastwo de�nitions, depending upon whether ra is 0 or nonzero. Splitting yields twoinstrutions, in one of whih ra is always 0 and e�etive address is omputed by thefollowing single statementEA = d;In the other instrution ra is always nonzero and e�etive address is omputedby the statementEA = GPR[ra℄+d;4.3.5 Constant FoldingRemoval of the uses of temporary variables often reates onstant expressions. Weevaluate onstant expressions and replae them by their values.4.3.6 Branh EliminationThe if-then-else-endif statements whose outomes are known (as a result of onstantfolding) are eliminated. All the statements in the `false' path are deleted.4.3.7 Code MotionThe statements whih follow an if-then-else-endif statement are moved to the endof the then and else branhes.After this step it is heked whether there are any uses of temporary variablesleft in the ation sequene. In suh a ase the ontrol �ow graph is onstruted oneagain and the above steps are iterated.
36

4.3.8 Removal of De�nitions of Temporary VariablesOne all the uses of temporary variables are removed from the ation sequenethe statements whih de�ne temporary variables are also deleted. From this pointonwards the ation sequene is free of all the temporary variables.4.3.9 Mode Rule SynthesisIn general, an operand of an instrution is a funtion of the parameters of theinstrution. For example, an instrution may aess a register operand indexed byan immediate type parameter, as shown in the following odeGPR[i℄ = GPR[j℄ + GPR[k℄;Here GPR is a general-purpose register �le, indexed using parameters i, j and k, ofimmediate type.We synthesize new mode rules for suh operand funtions. This way a uniformrepresentation of operands is used that helps in �nal opy propagation, as well as,in instrution reognition.4.3.10 Final Copy PropagationIn this phase all the uses of register and memory operands are replaed by theirmost reent de�nitions. A opy propagation involving temporary variables wasperformed during removal of uses of temporary variables, whih neessitated us toview the ation sequene as a set of parallel statements. Final opy propagation isneeded to truly onvert the ation sequene to a set of parallel statements.It is important to note that a single register or memory operand is atually amode rule and an represent a set of states. Therefore following are the possiblesenarios� De�nition of a variable x is live at a statement that uses x. The solution is toreplae the use of x by the most reent de�nition of it.� De�nition of a variable x is live at a statement that uses a variable y, and xand y are di�erent variables and the sets of states represented by them do not37

TMP_WORD = TMP_WORD << para_no_2;
GPR[para_no_1] = TMP_WORD;

TMP_WORD = para_no_0 <31..0>;

Figure 4.2: Flattened Ation for Mips SLL Instrutioninterset. In suh a ase no replaement an be performed.� De�nition of a variable x is live at a statement that uses a variable y, x andy are di�erent variables and the sets of states represented by them interset.In suh a ase x and y are fored to be same variable and use of y is replaedby the most reent de�nition of x.4.3.11 Deletion of PC AssignmentsAn ation sequene ontains a set of statements for updating the PC and other PC-lass registers (e.g. next-PC). In a non ontrol transfer instrution suh statementsdo not arry any useful information and so, are deleted.4.3.12 Instrution ReognitionAfter simpli�ations, attempts are made to identify the simpli�ed parallel ationof an instrution with a standard GCC name. There is no exhaustive strategy forinstrution reognition. We have followed a heuristi approah by mathing theation against a set of known patterns and heking for some additional onditions(For example, whether the lvalue of an assignment is a PC-lass register). If themathing sueeds and onditions are satis�ed then the instrution is identi�ed witha standard GCC name.As an example, �gure 4.2 shows the �attened ation sequene of Mips SLL (ShiftLeft Logial) instrution. para_no_0 is a mode rule type parameter representinga 64-bit general-purpose register. para_no_1 and para_no_2 are of basi ardinal38

type. TMP_WORD is a temporary variable and GPR is a general-purpose 64-bitregister �le. After the simpli�ation the statement gets onverted to operand_0 =operand_1 � operand_2;Here operand_0 and operand_1 are mode rule type operands, whih represent in-dexed 64-bit general purpose registers. operand_2 is a basi ardinal type. Thesimpli�ed ation readily mathes the typial pattern for left shift.Now the ondition that, the lvalue is not a PC-lass register, is tested. Sineoperand_0 is not a PC-lass register the ondition is satis�ed and the instrution isidenti�ed as a shift-left instrution.As another example, onsider the simpli�ed ation sequene for UltraSparIIiinstrution Branh if Register Zero:if x == 0 thennp = np + d;elseendif;This sequene mathes the following pattern:if operand1 == 0 thenoperand2 = operand2 + operand0;elseendif;Additionally the onditions that operand0 is an immediate operand, operand1 is aregister operand and operand2 is a PC-lass register are tested and the instrutionis reognized as a branh-if-equal instrution.4.4 Mahine Desription GenerationThe instrution analysis phase gathers enough information about the proessor forgeneration of GCC mahine desription. In partiular, it determines a set of namedinstrutions and their operands, and a set of mode rules that are `true operands',i.e., used in named instrutions. This information, along with the information aboutregisters gathered during register analysis and mode rule analysis, is utilized in39

generation of the �les target.h, target. and target.md.4.4.1 Generation of target.h and target.In this phase the maros and enumeration types that de�ne the general properties ofthe proessor, register lasses, ranges of immediate onstants and addressing modesare generated in target.h. Table 4.1 shows the information generated in the header�le. De�nitions of variables that are used in the md and header �le, are generatedin target..4.4.2 Generation of target.mdFinally, the instrution patterns are generated in the �le target.md. Now, it ispossible to desribe a given instrution set in a number of ways. We have adopteda mahine desription generation strategy keeping simpliity in mind.A single named de�ne_expand pattern is generated for eah group of instrutionswith same opode and mahine mode. Then an unnamed de�ne_insn pattern is gen-erated for eah subgroup of instrutions whose patterns di�er only in the onstraintsof their operands. With branh patterns additional tst patterns are generated whihompare a register operand with onstant 0 and stores the result in ondition oderegister.Figure 4.3 shows two patterns for addition, taken from the generated md �le forPowerPC 603. The �rst one is a named de�ne_expand pattern, whih is used atthe time of RTL generation. The seond pattern is an unnamed de�ne_insn, whihis used later for mathing and generation of assembly instrution. This patternspei�es two alternative assembly instrutions for addition. It also aptures the fatthat addition is a ommutative operation.Figure 4.4 shows two named de�ne_expand patterns, taken from the generatedmd �le for Spar. The �rst one is for omparing a register with zero and setting theondition ode aordingly. The seond one reads the ondition ode and deideswhether to branh to a target. GCC ensures that a tst pattern and a branh patternare always used one after another during RTL generation. It is noteworthy that40

Category General Properties of ProessorFIRST_PSEUDO_REGISTERFIXED_REGISTERSBITS_PER_UNITBITS_BIG_ENDIANBYTES_BIG_ENDIANWORDS_BIG_ENDIANCategory Register Classesenum reg_lassGENERAL_REGSN_REG_CLASSESREG_CLASS_NAMESREG_CLASS_CONTENTSREGNO_REG_CLASSREG_CLASS_FROM_LETTERCategory Ranges of Immediate ConstantsCONST_OK_FOR_LETTER_PCategory Addressing ModesBASE_REG_CLASSINDEX_REG_CLASSREGNO_OK_FOR_BASE_PREGNO_OK_FOR_INDEX_PREG_OK_FOR_BASE_PREG_OK_FOR_INDEX_PGO_IF_LEGITIMATE_ADDRESSCONSTANT_ADDRESS_PEXTRA_CONSTRAINTTable 4.1: Maros and enum Types Generated in target.h
41

(define_expand "addsi3"
[
(set
(match_operand:SI 0 "general_operand" "")
(plus:SI
(match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")
)
)
]
""
"̈"
)

(define_insn ""
[
(set

(plus:SI
(match_operand:SI 1 "register_operand" "%a,a")

(match_operand:SI 0 "register_operand" "=a,a")

(match_operand:SI 2 "register_operand" "a,a")
)
)
]
""
"@
add %0,%1,%2
addc %0,%1,%2"
)Figure 4.3: Patterns for Adding Single Integers in the md File of PowerPC 603

42

the �rst de�ne_expand does not atually generate the tst pattern. It only stores itsoperand in a global variable. The branh pattern atually does the work of bothtest and branhing and so, it uses this global variable.4.5 SummaryWe have developed tehniques for rigorous semanti analysis of a Sim-nML pro-essor spei�ation and automati generation of GCC mahine desription from it.The generated mahine desription is partially omplete. Some of the reasons forinompleteness in the generated mahine desription are as follows.� A Sim-nML spei�ation of the proessor desribes the instrution of the pro-essor. But as noted in hapter 3, GCC needs some additional information,whih are not present in it. In partiular, information about the ABI, ompilerenvironment et. are not present in the Sim-nML spei�ation and so, are tobe added manually to the generated mahine desription.� Inompleteness of the mahine desription an, in part, be attributed to thelimitations of the tool. During instrution analysis some omplex ation se-quenes had to be ignored, as noted in setion 4.3. Also, instrution reognitionis heuristi in nature and annot identify all possible and omplex instrutionations.

43

(define_expand "tstdi"
[
(set (cc0)
(match_operand:DI 0 "register_operand" "")
)
]
""
"
{
target_cmp_op0 = operands[0];
target_cmp_op1 = const0_rtx;
DONE;
}
"
)

(define_expand "beq"
[
(parallel [
(set (pc)
(if_then_else
(eq (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)
)
)
(use (match_dup 1))
])
]
"̈"
"
{

}
"
)

operands[1] = target_cmp_op0;

Figure 4.4: Test and Branh-if-equal Patterns in the md File of Spar44

Chapter 5Results and Future WorkIn this work we have developed tehniques for extensive semanti analysis of a Sim-nML proessor spei�ation, whih led to automati generation of a part of GCCmahine desription from Sim-nML. GCC mahine desription generator has beentested extensively with the Sim-nML spei�ation of UltraSPARC IIi. The generateddesription of SPARC has been integrated with GCC frontend and a minimal portfor Spar64 has been built. We have also generated mahine desriptions of MIPSR10000, and PowerPC 603, whih, though, have not been integrated with GCCfrontend.5.1 GCC Port for Spar64We have generated the �les target.md, target.h and target. from the Sim-nML spe-i�ation of UltraSPARC IIi. With some additional human e�ort the mahine de-sription has been ompleted and a minimal GCC port for Spar64 has been built.Generated md �le has the patterns for instrutions of arithmeti-logi type (e.g.add, sub, div, udiv, and, xor), data movement type (mov), ontrol transfer type (e.g.beq, bne, bgt, ble), and omparison type (tst). The C header �le ontains de�nitionsof maros and enum types for the set of alloatable registers, addressability andendianness of memory, register lasses, ranges of immediate onstants, addressingmodes et., as noted in hapter 4. The C program �le de�nes variables used in the45

File Name Status Lines of Codetarget.md Generated 1922target.md Generated + Hand-oded 2694target.h Generated 261target. Generated 260spar.h Hand-oded 3617spar. Hand-oded 1489sol2.h Reused 185sysv4.h Reused 221svr4.h Reused 980Table 5.1: Summary of the E�ort Needed to Port Spar64generated md and header �les.All the three generated �les together onsist of 2434 lines of ode. To ompletethe port we have manually added the �les spar.h, spar., sol2.h, sysv4.h and svr4.hand edited target.md1. The size of the omplete port is 9707 lines. However, some ofthe additional �les are spei� to target families and so, have been reused. The table5.1 summarises the total human e�ort spent to obtain the port. Our experieneshows that it is possible for a person, with reasonable exposure to GCC portingmehanism, to build a port in 10 days using this tool. It is worth noting here thatthe GCC 2.8.1 port for spar-sun-sunos5.5 has 16718 lines of ode. However, thisport desribes several versions of SPARC pu viz. V7, V8, V9, SuperSPARC et.,ontains resoure-usage information, supports sophistiated optimizations, position-independent ode generation et.GCC port for Spar64 that we have built supports a subset of C language onsist-ing of integer arithmeti-logi, data movement, and ontrol transfer. In unoptimizedompilation the quality of the produed ode is omparable with that produed bythe manually ported GCC.We show an example of the ompilation proess through a simple C programthat have been suessfully ompiled with the GCC port that we have built1spar.h inludes generated target.h and spar. inludes generated target.46

int main(void){ int i=0, j;j = i+2;if (j > 0)i++;elsei--;return 0;}The SPARC V9 assembly version of the program, as produed by our GCCport is shown below. We did not use any option exept that for the generationof assembly language output (-S). In our runtime system %i6 is the frame pointerregister. The variables i and j have been assigned stak slots (%i6 - 24) and (%i6- 32) respetively. C type int has been mapped to a 64-bit word. Register %i0 isthe return value register in the allee's window.

47

g2_ompiled.:.setion ".text".align 4.global main.type main,#funtion.pro 03main:!#PROLOGUE# 0save %sp,-224,%sp!#PROLOGUE# 1st %i0,[%fp+-36℄add %i6, -24, %g1xor %g0, 0, %i4stx %i4, [%g1℄add %i6, -24, %g1ldx [%g1℄, %i4add %i4, 2, %i4add %i6, -32, %g1stx %i4, [%g1℄add %i6, -32, %g2ldx [%g2℄, %g1brgz,pt %g1, .LL2nopba .LL1nop

48

.LL2:add %i6, -24, %g1ldx [%g1℄, %i4add %i4, 1, %i4add %i6, -24, %g1stx %i4, [%g1℄ba .LL3nop.LL1:add %i6, -24, %g1ldx [%g1℄, %i4add %i4, -1, %i4add %i6, -24, %g1stx %i4, [%g1℄.LL3:xor %g0, 0, %i0retrestoreretrestore.LLfe1:.size main,.LLfe1-main.ident "GCC: (GNU) 2.8.1"5.2 Future DiretionsSome of the possible diretions to whih the work presented in this thesis an beextended are given below.� Work an be arried out to make generated mahine desription more ompleteso that the total e�ort needed to obtain a GCC port is further redued andto improve the quality of the generated desription so that the GCC port an49

produe better ode.Resoure usage information available in a Sim-nML spei�ation an be ana-lyzed to generate the de�nitions de�ne_funtion_unit, de�ne_delay and de-�ne_attribute, whih will allow GCC to perform instrution sheduling anddelay slot sheduling.Instrution analysis an be made more powerful so that bit-seletion and on-atenation an be handled elegantly.Heuristis of instrution reognition an be improved so that omplex ationsequenes that normally appear in desriptions of CISC arhitetures an bereognized.Simple mahine desription generation strategy adopted by us an be replaedby a more mature one so that more ompat desriptions an be generatedand sophistiated optimizations an be supported.� Another possibility is to develop a new retargetable bakend, that an be inte-grated with an existing frontend. Tehniques are to be developed for instru-tion seletion, resoure alloation, and instrution sheduling. Informationgathered during instrution analysis phase an be used in instrution sele-tion. Further analysis of resoure-usage is needed for resoure alloation andinstrution sheduling.

50

Bibliography[1℄ S. Chandra and R. Moona. Retargetable funtional simulator using high level pro-essor models. In Proeedings of the 13th International Conferene on VLSI Design,Calutta, India., January 2000.[2℄ Sanjeev Kumar and V. M. Malhotra. Automati Retargetable Code Generation:A New Tehnique. Foundations of Software Tehnology and Theoritial ComputerSiene, Leture Notes in Computer Siene, vol. 241, Springer-Verlag, 1986.[3℄ Fauth A., Praet Vwn J. , and M. Freeriks Desribing In-strution Sets Using nML (Extended Version). Available at:ftp://ftp.ime.be/pub/vsdm/reports/retargetable_ode_generation/af-edt95.ps.gz,1995.[4℄ S. D. G. Hadjiyiannis, Silvina Hanono. ISDL: An instrution set desription languagefor retargetability. In Proeedings of the 34th DAC, June 1997.[5℄ M. Ganapathi and C. N. Fisher. A�x grammer driven ode generation. ACMTOPLAS, 7(4), Otober 1985.[6℄ R. S. Glanville and S. L. Graham. A new method for ompiler ode generation.In Fifth ACM Symposium on Priniples of Programming Languages, pages 231�240,1978.[7℄ N. C. Jain. Disassembler using high level proessor models. Mas-ter's thesis, Dept. of Computer Siene and Engg., IIT Kanpur, India,http://www.se.iitk.a.in/researh/mteh1997/9711113.html, January 1999.[8℄ S. Kumari. An automati assembler generator for sim-nml desription lan-guage. Master's thesis, Dept. of Computer Siene and Engg., IIT Kanpur, India,http://www.se.iitk.a.in/researh/mteh1998/9811119.html, Marh 2000.[9℄ Rajesh V. A Generi Approah to Performane Modeling and its Appliation toSimulator Generator. Master's thesis, Dept. of Computer Siene and Engg., IITKanpur. Available at: http://www.se.iitk.a.in/sim-nml/index.gi.51

[10℄ Subhash Chandra Y. Retargetable Funtional Simulator. Master's the-sis, Dept. of Computer Siene and Engg., IIT Kanpur. Available at:http://www.se.iitk.a.in/sim-nml/index.gi.[11℄ Lanneer D., Praet J. V., Ki�i A., Shoofs K., Geurts W., Thoen F. and Goossens G.CHESS: Retargetable Code Generation for Embedded DSP Proessors. In Code Gen-eration for Embedded Systems. Kluwer Aademi Publishers, 1995.[12℄ P. Marwedel. The MIMOLA Design System: Tools for the design of digital proessors.In Proeedings of the 21st DAC, pages 587�593, 1984.[13℄ S. Mondal. Compiler bak-end generation using nml mahine desription.Master's thesis, Dept. of Computer Siene and Engg., IIT Kanpur, India,http://www.se.iitk.a.in/researh/mteh1997/9711117.html, June 1999.[14℄ Hanson D., Fraser C. W. and Proebsting T. Engineer-ing a simple, e�ient ode generator generator. Available at:http://sunsite.org.uk/Mirrors/ftp.s.prineton.edu/pub/l/ontrib.[15℄ Paulin. Flexware: A �exible �rmware development environment for embedded sys-tems. In Code Generation for Embedded Systems. Kluwer Aademi Publishers, 1995.[16℄ P. Pogde. Retargettable ode generation using sim-nml mahine desription.Master's thesis, Dept. of Computer Siene and Engg., IIT Kanpur, India,http://www.se.iitk.a.in/researh/mteh1998/9811114.html, May 2000.[17℄ V. Rajesh and R. Moona. Proessor modeling for hardware software o design. In Pro-eedings of the 12th International Conferene on VLSI Design, Goa, India., January1999.[18℄ R. Ravindran. Retargetable pro�ling tools and their appliation in ahe simulationand ode instrumentation. Master's thesis, Dept. of Computer Siene and Engg.,IIT Kanpur, India, http://www.se.iitk.a.in/researh/mteh1998/9811116.html, De1999.[19℄ R. Ravindran and R. Moona. Retargetable ahe simulation using high level proes-sor models. In Proeedings of the 6th Australasian Computer Systems ArhitetureConferene, Gold Coast, Australia, January 2001.[20℄ S. D. Silvina Hanono. Instrution seletion, resoure alloation and sheduling in theaviv retargetable ode generator. In Proeedings of the DAC, June 1998.[21℄ R. M. Stallman. Using and Porting GNU CC.http://g.gnu.org/onlinedos/g.html.52

[22℄ Aho Alfred V., M. Ganapathi, and S. Tjiang. Code generation using tree patternmathing and dynami programming. ACM TOPLAS, 11(4), Otober 1989.[23℄ Aho Alfred V., Sethi Ravi, and Ullman Je�rey D. Compilers: Priniples, Tehniques,and Tools. Addison-Wesley, 1999.[24℄ Muhnik Steven S. Advaned Compiler Design and Implementation. Morgan Kauf-mann Publishers, 1997.[25℄ Marwedel P. Compilers for Embedded Proessors. Available at: http://ls12-www.s.uni-dortmund.de/publiations/global_index.html[26℄ Malik S. Optimal Code Generation For Embedded Memory Nonhomogeneous RegisterArhitetures. In 8th International Symposium on System Synthesis (ISSS), 1995.[27℄ Leupers R., Marwedel P. Retargetable Generation of Code Sele-tors from HDL Proessor Models. Available at: http://ls12-www.s.uni-dortmund.de/publiations/global_index.html[28℄ Stanford Compiler Group. The SUIF Library. 1.0 edition, 1994. Available athttp://suif.stanford.edu.[29℄ SPAM Researh Group. SPAM Compiler User's Manual. 1.0 edition, 1997. Availableat: www.ee.prineton.edu/spam/[30℄ Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt andAlex Niolau. EXPRESSION: A Language for Arhiteture Exploration through Com-piler/Simulator Retargetability. Available at: http://www.es.ui.edu/[31℄ S. Pees, A. Ho�mann, V. Zivojnovi, and H. Meyr. LISA - Mahine DesriptionLanguage for Cyle-Aurate Models of Programmable DSP Arhitetures Availableat: http://www.ert.rwth-aahen.de/Projekte/Tools/LISA/index.html[32℄ Mesal (Modern Embedded Systems: Compilers, Arhitetures, and Languages).http://www.gigasale.org/mesal/index.html[33℄ Sim-nML Proessor Desription Language. http://www.se.iitk.a.in/sim-nml/index.gi.[34℄ Ziovojnovi V., Tjiang S., and Meyr H. DSPstone: A DSP-oriented Benhmark-ing Methodology. In International Conferene on Signal Proessing Appliations andTehnology (ICSPAT), 1994.[35℄ Weaver D. L. and Germond T. The SPARC Arhiteture Manual, Version 9. SPARCInternational, In., 1994.[36℄ Sun Mirosystems. UltraSPARC - IIi User's Manual. Available at:http://www.sun.om/miroeletronis/UltraSPARC/index.html.53

[37℄ GNU Compiler Colletion. http://g.gnu.org

54

Appendix AGCC InternalsIn this appendix we present some useful information about GCC internals. Em-phasis will be given on a omprehensive organization. Muh of the informationprovided here are available at http://g.gnu.org/onlinedos/g.html [21℄. Somemore information is gathered from GCC 2.8.1 soures and is presented here.A.1 Components of GCC Compiler SuiteFollowing are the software omponents needed for the funtioning of GCC. Some ofthese ome with GCC, while others are provided by the system or one third partysoftware.� Preproessor (pp, p).� Compiler proper (1, 1plus, 1obj, f771).� Assembler (e.g. as, provided by the system).� Linker and a linker frontend (ld, ollet2).� Headers (GCC spei� headers are searhed in prefix/g-lib/target-name/g-version/inlude and system headers are searhed in loal-prefix/inlude.`pre�x' defaults to /usr/loal/lib/ and loal-pre�x defaults to /usr/loal/).55

� Library (GCC provides the following libraries: libg, libg1, libg2,libobj, libstd++).� Start up �les (e.g. rtbegin.o, rtend.o et).� Compiler driver (g, g++, g77).A.2 A Grouping of RTL Expression CodesIn this setion we lassify the RTX odes on the basis of their uses.A.2.1 OperandsFollowing RTL expressions an appear as operands in the side-e�ets of insns.ConstantsRTX odes representing onstant operands are as follows.onst_int, onst_double, onst_string, symbol_ref, label_ref, onst, high.Registers and MemoryRTX odes representing register and memory operands are as follows.reg, subreg, srath, 0, p, mem, addressof.Bit FieldsFollowing RTX odes represent bit-�elds within a register or memory loation.sign_extrat, zero_extrat.Type ConversionsFollowing RTX odes are used for onverting types of operands.sign_extend, zero_extend, �oat_extend, trunate, �oat_trunate, �oat, un-signed_�oat, �x, unsigned_�x. 56

DelarationThe following RTX is used to delare that only lower half of the operand will bemodi�ed.strit_low_part.A.2.2 OperationsIn this subsetion we group the RTX odes used to represent operations in a side-e�et of an insn.Arithmeti-LogiFollowing RTX odes represent arithmeti-logi operations. These RTXes produevalues, whih are same as the result of the operation.plus, lo_sum, minus, ompare, neg, mult, div, udiv, mod, umod, smin, umin,smax, umax, not, and, ior, xor, ashift, lshiftrt, ashiftrt, rotate, rotatert, abs, sqrt,�s. ComparisonFollowing RTXes represent omparison operations. These RTXes an be used toompare two registers, or a register and a onstant, or a ondition ode and (onst_int0). eq, ne, le, leu, lt, ltu, ge, geu, gt, gtu, if_then_else, ond.A.2.3 Side E�etsFollowing RTXes represent funtionality of an insn. They do not produe any value.But they may modify a proessor state.set, return, all, trap_if, lobber, use, parallel, sequene, asm_input, asm_output,unspe, unspe_volatile, addr_ve, addr_di�_ve.
57

A.2.4 Embedded Side E�etsThese are speial side-e�ets whih may be assoiated with memory addresses.pre_de, pre_in, post_de, post_in.A.2.5 InsnsFollowing is a list of RTX odes for insns.insn, all_insn, jump_insn, note, barrier, ode_label.A.2.6 RTL TemplatesFollowing is a list of RTXes whih are used as plae-holders for operands or opera-tions within a pattern in the md �le.math_operand, math_srath, math_dup, math_operator, math_parallel,math_op_dup, math_par_dup, address.A.2.7 De�nitionsFollowing RTX odes are used to de�ne various things, for example, instrutions,funtional units, et., inside an md �le.de�ne_expand, de�ne_insn, de�ne_peephole, de�ne_split, de�ne_ombine1,de�ne_delay, de�ne_funtion_unit, de�ne_attr.A.3 A Grouping of Standard GCC NamesIn this setion we present a lassi�ation of standard pattern names used in GCCmahine desription.A.3.1 Data MovementFollowing names are used for instrution patterns whih move data between tworegisters, or between a register and a memory loation et.1unused in GCC 2.8.1 58

movmode, reload_inmode, reload_outmode, movstritmode, load_multiple, store_multiple,movemode.A.3.2 Arithmeti-Bitwise OperationsFollowing names represent instrutions whih perform arithmeti-logi operationson their operands and store the result.addmode3, submode3, mulmode3, divmode3, udivmode3, modmode3, umodmode3,sminmode3, uminmode3, smaxmode3, umaxmode3, mulhisi3, mulqihi3, mulsidi3,umulhisi3, umulqihi3, umulsidi3, mul3_hipart, umul3_hipart, divmodmode3, udiv-modmode3, negmode2, absmode2, sqrtmode2.andmode3, iormode3, xormode3, ashlmode3, ashrmode3, lshrmode3, rotlmode3,rotrmode3, one_mplmode2, �smode2, insv, extv, extzv.A.3.3 Type ConversionsFollowing names are used for instrutions whih onvert the type of data.�oatmn2, �oatunsmn2, �xmn2, �xunsmn2, ftrunmode2, �x_trunmn2, �x_unstrunmn2,trunmn2, extendmn2, zero_extendmn2.A.3.4 ComparisonsThese are names for instrutions whih ompare their operands and store the resultin a ondition ode or any ordinary register.mpmode, tstmode, sond.A.3.5 String OperationsInstrutions with following names perform operations on string.movstr, lrstr, mpstr, strlen.A.3.6 Control TransfersInstrutions with following names are responsible for onstrol transfer.59

bond, indiret_jump, jump, all, all_value, all_pop, all_value_pop, un-typed_all, return, untyped_return, asesi, tablejump, nonloal_goto, nonloal_goto_reeiver,exeption_reeiver, builtin_setjmp_reeiver.A.3.7 Stak OperationsFollowing names are for instrutions that aess and manipulate stak.save_stak_blok, restore_stak_blok, save_stak_funtion, restore_stak_funtion,save_stak_nonloal, restore_stak_nonloal, alloate_stak, probe, hek_stak.A.3.8 OthersNames whih do not �t into any of the above ategories are listed here.nop, anonialize_funptr_for_ompare.A.4 Useful RTX Related Funtions and MarosSeveral funtions and maros are de�ned in the soure �les of GCC, whih are usedto read and manipulate RTL expressions. These maros are often used in the GCCmahine desriptions. In this setion we present a list of these maros. The exatde�nitions an be found in the orresponding soure �les.Maros De�ned in rtl.hGET_CODE(),PUT_CODE(),GET_RTX(),LENGTH(),GET_RTX_FORMAT(),GET_RTX_CLASS(),XEXP(),XINT(),XWINT(), 60

XSTR(),XVEC(),XVECLEN(),XVECEXP(),GEN_INT().Funtions De�ned in rtl.read_rtx().Funtions De�ned in emit-rtl.gen_rtx(), gen_reg_rtx(), gen_label_rtx().Funtions De�ned in print-rtl.print_rtx(), print_rtl().A.5 Mahine Mode Related MarosA list of maros de�ned in di�ernt soure �les of GCC, whih are used to aessmahine modes, are presented below.Maros De�ned in rtl.hGET_MODE(),PUT_MODE().Maros De�ned in mahmode.hGET_MODE_NAME(),GET_MODE_CLASS(),INTEGRAL_MODE_P(),FLOAT_MODE_P(), 61

GET_MODE_SIZE(),GET_MODE_UNIT_SIZE(),GET_MODE_NUNITS(),GET_MODE_BITSIZE(),GET_MODE_MASK(),GET_MODE_WIDER_MODE(),GET_MODE_ALIGNMENT(),GET_CLASS_NARROWEST_MODE().A.6 Funtions Related to InsnsIn this setion we list the funtions whih are responsible for emitting insns. Thesefuntions are sometimes used in mahine desriptions to expliitly ontrol the gen-eration of insns.Funtions De�ned in emit-rtl.hemit_insn(), emit_all_insn(), emit_jump_insn().A.7 Set of Built-in PrediatesA set of basi prediates are de�ned in the soures of GCC. Here we present a listof them.rtl. de�nes a set of useful prediatesgeneral_operand, register_operand, immediate_operand,onst_int_operand, onst_double_operand, non_immediate_operand,memory_operand, nonmemory_operand, indiret_operand,push_operand, address_operand, omparison_operator.
62

A.8 Notion of an AddressThere is a notion of an address of a memory loation within GCC. The memoryloation may ontain data or may be target of a ontrol transfer. For example, the�rst operand of a mem RTX is the address of a memory loation. Similarly, the�rst operand of an indiret_jump or jump pattern is an address, whih spei�es thetarget of the jump.A.8.1 RTXes used as AddressesThese are the RTXes whih may be used as addresses.onst_int, onst_double, symbol_ref, label_ref, high, onst, RTXes for arith-meti operations and onversion (see A.2.1 and A.2.2), addressof, srath, reg, mem(a mem RTX may refer to the ontents of a memory loation, whih may in turn bean address. A mem RTX may also refer to the address of a memory loation, forexample, in the ase, when onstraint letter `p' is used.).A.8.2 De�nition of a Valid AddressFollowing maros, prediates and onstraints are used to de�ne the notion of a validaddress:Maros De�ned in target.hCONSTANT_ADDRESS_P,GO_IF_LEGITIMATE_ADDRESS,REG_OK_FOR_BASE_P,REG_OK_FOR_INDEX_P,GO_IF_MODE_DEPENDENT_ADDRESS,REG_MODE_OK_FOR_BASE_P,MAX_REGS_PER_ADDRESS,HAVE_POST_INCREMENT,HAVE_PRE_INCREMENT, 63

HAVE_POST_DECREMENT,HAVE_PRE_DECREMENT,LEGITIMIZE_ADDRESS,EXTRA_CONSTRAINTS,BASE_REG_CLASS,INDEX_REG_CLASS,REGNO_OK_FOR_BASE_P,REGNO_OK_FOR_INDEX_P,REGNO_MODE_OK_FOR_BASE_P,PRINT_OPERAND_ADDRESS.Prediates De�ned in reog.address_operand, memory_operand, indiret_operand, general_operand.Constraint Letters De�ned in onstrain_operands() in reog.m: allows a memory operand with any kind of addresso: allows a memory operand, but only if the address is o�settableV: aloows a memory operand, only if its address is not o�esttable<: allows a memory operand with autoderement addressing (both prederementand postderement are allowed)>: allows a memory operand with autoinrement addressing (both preinrementand postinrement are allowed)p: represents an operand that is a valid memory addressA.9 Translation of C Level Data to Mahine LevelFigure A.1 shows the way GCC translates C level data to hard registers, or memoryloations, or immediate onstants. Information needed in eah step are presentedbelow.
64

char, short, int, long,
float, double, long double,

pointers

QI, HI, SI, PSI, DI, PDI, TI, OI,

QF, HF, TQF, SF, DF, XF, TF,
VOID

Basic C Types:

Machine Modes:

byte_mode,
word_mode,

ptr_mode, Pmode
Hard Registers Memory Locations ConstantsFigure A.1: Translation of Data

65

A.9.1 Translation to Mahine ModesIn this subsetion we present a list of maros and de�nitions whih ontain theinformation needed for translating basi C types to GCC mahine modes.1. De�nitions of mahine modes (in terms of number of units per mode) in mah-mode.def2. Maros de�ned in target.h:BITS_PER_UNIT,INT_TYPE_SIZE,SHORT_TYPE_SIZE,LONG_TYPE_SIZE,CHAR_TYPE_SIZE,FLOAT_TYPE_SIZE,DOUBLE_TYPE_SIZE,LONG_DOUBLE_SIZE,MAX_FIXED_MODE_SIZE.A.9.2 De�nitions of byte_mode, word_mode etFollowing are the maros whih ontain the information needed for de�ning thevariables byte_mode and word_mode.1. Maros de�ned in target.hBITS_PER_WORD,UNITS_PER_WORD,POINTER_SIZE,Pmode,POINTER_EXTENDED_UNSIGNED.A.9.3 Mapping to Hard RegistersFollowing maros help in mapping high-level language operands to registers of themahine.1. Maros and enum types de�ned in target.h66

FIRST_PSEUDO_REGISTER,REGISTER_NAMES,FIXED_REGISTERS,CALL_USED_REGISTERS,HARD_REGNO_NREGS,HARD_REGNO_MODE_OK,MODES_TIEABLE_P,BITS_BIG_ENDIAN,BYTES_BIG_ENDIAN,WORDS_BIG_ENDIAN,FLOAT_WORDS_BIG_ENDIAN,PROMOTE_MODE,PROMOTE_FUNCTION_ARGS,PROMOTE_FUNCTION_RETURN,PROMOTE_FOR_CALL_ONLY,TARGET_FLOAT_FORMAT,REG_CLASS_FROM_LETTER,N_REG_CLASSES,enum reg_lass,REG_CLASS_NAMES,REG_CLASS_CONTENTS,PREFERRED_RELOAD_CLASS,PREFERRED_OUTPUT_RELOAD_CLASS,SECONDARY_INPUT_RELOAD_CLASS,SECONDARY_OUTPUT_RELOAD_CLASS,SECONDARY_MEMORY_NEEDED,CLASS_MAX_NREGS, EXTRA_CONSTRAINT.2. Prediates de�ned in reog.general_operand, register_operand.
67

A.9.4 Mapping to Memory LoationsFollowingmaros ontain information needed for mapping high-level language operandsto memory loations.1. Maros de�ned in target.hBITS_BIG_ENDIAN,BYTES_BIG_ENDIAN,WORDS_BIG_ENDIAN,PARM_BOUNDARY,BIGGEST_ALIGNMENT,MINIMUM_ATOMIC_ALIGNMENT,BIGGEST_FIELD_ALIGNMENT,DATA_ALIGNMENT,STRICT_ALIGNMENT,ADJUST_FIELD_ALIGN,EMPTY_FIELD_BOUNDARY,STRUCTURE_SIZE_BOUNDARY,PCC_BITFIELD_TYPE_MATTERS,GO_IF_LEGITIMATE_ADDRESS.2. Prediates de�ned in reog.general_operand, memory_operand,indiret_operand, address_operand.A.9.5 Translation of ConstantsConstants or literals that appear in a high-level language program are translatedto immediate operands of instrutions or memory objets. The following marosontain information needed for this translation.1. Maros de�ned in target.hLEGITIMATE_CONSTANT_P,CONSTANT_ALIGNMENT,REAL_VALUE_TYPE,TARGET_FLOAT_FORMAT, 68

CHECK_FLOAT_VALUE,REAL_VALUE_TO_TARGET_SINGLE,REAL_VALUE_TO_TARGET_DOUBLE,REAL_VALUE_TO_TARGET_LONG_DOUBLE,REAL_VALUE_TO_DECIMAL,ASM_OUTPUT_ASCII,ASM_OUTPUT_BYTE,ASM_OUTPUT_CHAR,ASM_OUTPUT_SHORT,ASM_OUTPUT_INT,ASM_OUTPUT_DOUBLE_INT,ASM_OUTPUT_QUADRUPLE_INT,ASM_OUTPUT_BYTE_FLOAT,ASM_OUTPUT_SHORT_FLOAT,ASM_OUTPUT_THREE_QUARTER_FLOAT,ASM_OUTPUT_FLOAT,ASM_OUTPUT_DOUBLE,ASM_OUTPUT_LONG_DOUBLE,PRINT_OPERAND.2. A maro de�ned in rtl.hCONSTANT_P.3. Prediates de�ned in reog.general_operand, immediate_operand,onst_int_operand, onst_double_operand.

69

Appendix Bgenmd2 Maintainer's GuideThis appendix ontains some information useful for maintaining the tool genmd2.This tool implements the tehniques for generating GCC mahine desription fromSim-nML. This appendix omplements the omments assoiated with the soure�les.B.1 Soure FilesSoure �les are stored inside a CVS repository and all the versions of the �les anbe retrieved from the repository. Log messages assoiated with the versions may beuseful in traking past hanges.Following �les and diretories an be found in the root of the distribution ofgenmd2.� genbakend.: The toplevel module that ontains the main() funtion. Itdrives all the phases of the bakend generator in order as disussed earlier.Further it also parses the ommand line arguments and reads the on�guration�le.� irview.: Reads the Sim-nML IR.� registers.: Contains ode for the register analysis and generation of target.hand target.. 70

� �attenModes.: Contains ode for the mode rule analysis.� analyze-mode.: This ode is used for register analysis, mode rule analysisand mode rule synthesis.� �atten.: ation �attener.� �atten_syntax.: syntax �attener.� analyze-insn.: Instrution analysis. Does some work assoiated with �at-tening.� reog.: Instrution reognition. Also assigns onstraint letters to `trueoperand' mode rules.� emit_insn.: Generates target.md.� inlude: A diretory ontaining header and de�nition �les.� inlude/systypes.h: De�nes some system spei� types used within thesoures.� inlude/dels.h: Delarations of global variables and funtions.� inlude/tables.h: Data strutures for Sim-nML IR.� inlude/operands.h: Data strutures for mode tables and register analysis.� inlude/instrutions.h: Data strutures for instrution table.� inlude/syntax.h: Data strutures for syntax table.� inlude/md_operands.h: Data strutures for named instrution patterns.� inlude/opodes.def: De�nes the opodes used within standard GCC names.� inlude/modi�ers.def: De�nes the RTXes used as modi�ers of values oroperands.� Make�le: Make �le. 71

� test: Working diretory. `make' generates the binary exeutable of the toolin this diretory.� test/template.onf: A template for a on�guration �le.B.2 Intermediate Dumpsgenmd2 produes intermediate dump �les at several phases. These �les are usefulfor debugging the tool.� meminfo.table: Produed by register analysis.� mode.table: Dump of mode table, produed by mode rule analysis.� se_mode_.table: Dump of seondary mode table, produed by mode ruleanalysis.� base_index_disp.table: Maps of base, index, and window pointer registersand range of valid displaement. It is produed after mode rule analysis.� instr.table: Intermediate version of instrution table, produed during ation�attening. May ontain some extra instrutions and may not show some validinstrutions.� syntax.table: Syntax table, whih is produed after syntax �attening.� instr1.table: Instrution table, whih is produed after �attening is omplete.� par_stmt1.table: Instrution table, whih is produed after morphing ofparameters.� par_stmt2.table: Instrution table, whih is produed after all temporariesare removed.� par_stmt3.table: Instrution table, whih is produed after PC assignmentsare deleted. 72

� syntax1.table: Syntax table, whih is produed after instrution analysis isomplete.� third_mode.table: Mode table, whih is produed after instrution analysisis omplete.� fourth_mode.table: Seondary mode table, whih is produed after instru-tion analysis is omplete.� base_index_disp1.table: Maps of base, index, and window pointer regis-ters and range of valid displaement. It is produed after instrution analysis.B.3 A Grammar for Value ExpressionsFollowing is a partial spei�ation of the grammar used by our tool for a reur-sive analysis of the pre�x expressions whih an appear as values of mode andrules. This grammar is a subset of the Sim-nML grammar for expressions whihan appear as a value. The original Sim-nML grammar is too general, too omplexand often, an result in value expressions that are impratial. The names of ter-minal symbols (all apitalized) onform to the names of OPERATOR_TYPE andBYTE_TYPE enumeration onstants, as de�ned in inlude/tables.h. ValIndexExprrepresents an expression whih an be used as an index of a register or a memoryloation. ValCondExpr represents an expression that an be used as a ondition inan if-then-else-endif expression.ValExpr :ID| COERCE ValTypeExpr CARDINAL_CONSTANT CARDINAL_CONSTANT ValExpr| . ID ID| DCOLON ValExpr ValExpr| INDX ID ValIndexExpr| BITLR INDX ID ValIndexExpr ValBitExpr ValBitExpr| BITLR ID ValBitExpr ValBitExpr| + ValExpr ValExpr 73

| - ValExpr ValExpr| * ValExpr ValExpr| / ValExpr ValExpr| % ValExpr ValExpr| EXP ValExpr ValExpr| LSFT ValExpr ValExpr| RSFT ValExpr ValExpr| RLFT ValExpr ValExpr| RRHT ValExpr ValExpr| < ValExpr ValExpr| > ValExpr ValExpr| LEQ ValExpr ValExpr| GEQ ValExpr ValExpr| EQ ValExpr ValExpr| NEQ ValExpr ValExpr| LAND ValExpr ValExpr| LOR ValExpr ValExpr| LXOR ValExpr ValExpr| BUNOT ValExpr| AND ValExpr ValExpr| OR ValExpr ValExpr| ! ValExpr| FIXED_CONSTANT| CARDINAL_CONSTANT| BINARY_CONSTANT| HEX_CONSTANT| IF ValCondExpr ValExpr OptValExprValTypeExpr :BOOL| CARD| INT 74

| FIX| FLOAT| RANGE| ENUMValBitExpr :CARDINAL_CONSTANTOptValExpr :NULL| ValExpr

75

Appendix Cgenmd2 User's Manualgenmd2 is the tool that implements the tehniques for GCC mahine desriptiongeneration from Sim-nML, as outlined in this thesis. The inputs to the tool area Sim-nML IR �le and a on�guration �le. The tool generates the �les target.h,target. and target.md.C.1 System RequirementsThe tool has been suessfully tested under the following onditions. The tool isexpeted to work in any ompatible systems.� Proessor: Intel Pentium III, 32 bit, Little Endian� OS Kernel: Linux 2.2.15-mdk� Compiler: GCC 2.95.3 19991030 (prerelease), used for building the tool.� Libraries: GNU C Library Version 2.1 Beta, used for building the tool.� Binary Utilities: GNU Binary Utilities Version 2.9.5, used for building thetool.
76

C.2 InstallationA make �le is provided along with the soure of genmd2. The tool an be builtusing this make �le by giving the following the following ommand at the root ofthe soure treemakeThe tool will be built and stored as a binary exeutable �le test/genmd2. Theompiled binary an be moved to any diretory.C.3 Running the ToolFollowing is the omand line spei�ation for the tool:genmd2 ir_file_name [OPTIONS℄ [- onfig_file_name℄genmd2 is the name of the binary exeutable �le for the tool.ir_file_name is the name of the Sim-nML IR �le.The tool genmd2 supports the following ommand line options:-s SP_REG : Spei�es the stak pointer register name.-f FLAG_REG : Spei�es the ondition ode regsiter name.-p PC_REG : Spei�es the name of the program ounter.The user an optionally speify a on�guration �le whih is a �exible and power-ful way to provide additional information about the proessor. On a on�it betweenthe information provided through a ommand line option and the on�guaration �lethe information from the ommand line is ignored.C.4 Con�guration FileThe on�guration �le onsists of a number of setions. Eah setion an have zeroor more entries. A setion with zero entries an be omitted.An entry in a setion refers to a single register and is a single line of the followingformregister_file_name:index_in_the_register_file77

If the register being referred to is not in a register �le then the regsiter_�le_nameis same as the name of the register and the index is 0.A on�guration �le ends with the following line:/endA template for a on�guration �le is provided along with the soure in test/template.onf�le.C.4.1 PC SetionPC setion begins with the linep and ends with the line/pIts entries refer to PC-lass registers e.g. PC, next-PC et.C.4.2 CC SetionCC setion begins with the line and ends with the line/Its entries refer to the ondition ode registers.C.4.3 SP SetionSP setion begins with the linesp and ends with the line/spIt has an entry for the stak pointer register.
78

C.4.4 Return Address Pointer SetionReturn address pointer setion begins with the linerapand ends with the line/rapIt has an entry for the return address pointer register.

79

