Generation of GCC Backend from Sim-nML
Processor Description

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Soubhik Bhattacharya

to the

Department of Computer Science & Engineering
Indian Institute of Technology, Kanpur

July, 2001

Certificate

This is to certify that the work contained in the thesis entitled “Generation of
GCC Backend from Sim-nML Processor Description”, by Soubhik Bhattacharya, has

been carried out under our supervision and that this work has not been submitted

elsewhere for a degree.

July, 2001

(Dr. Rajat Moona)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

(Dr. Sanjeev Kumar Aggarwal)
Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

Abstract

Increasing importance of software in embedded systems led to the paradigm of
hardware-software codesign, which advocates for early integration of hardware and
software, even before the hardware design is complete. To support this paradigm
a set of tools are needed that can simulate the build and execution environment of
hardware. The approach is developed in our group where a high-level specification of
hardware is written and from which the tools assembler, linker, compiler, simulator,
high-level synthesizer etc. are generated automatically.

In this thesis techniques have been developed for analyzing a high-level descrip-
tion of a processor, written in Sim-nML [17] processor specification language, and
extracting the semantic information needed for automatic generation of GCC ma-
chine description. Using Sim-nML one can describe instructions of a processor in a
compact hierarchical form. The hierarchy is initially flattened to obtain a sequence
of C-like statements for each instruction. A sequence describes the semantic action
of an instruction. The action sequences are simplified using the techniques of tempo-
rary removal and branch elimination and matched against some standard patterns
so that they can be identified with one of the standard names used in GCC machine
descriptions. Finally, this information is used to generate a partial GCC machine

description for the processor.

Acknowledgements

It is my privilege to mention the names of Dr. Rajat Moona and Dr. Sanjeev Kumar
in this page. Dr. Moona has driven this research with his enthusiasm and agility
while Dr. Sanjeev Kumar’s wise and experienced words helped me to avoid any
possibility of diversion. Together they played the roles of mentors and teachers. I
owe them a lot for what I have learnt through this research experience. I am thankful
to Dr. Deepak Gupta for his constructive participation in our group discussions. I
should also express my gratitude to the Department of CSE and its faculty and stuff
for the beatiful academic environment that they have created.

This work is a part of an ongoing research at Cadence Research Center, II'T
Kanpur. T am thankful to Cadence India Ltd. for their financial support.

I am grateful to my fellow members of CARES, Rajiv, Souvik, Prithvi, Arvind,
Anand, and Mayank. They have made this group a hub of intellectual activities,
stood by me at difficult times, shared frustrations, and at the same time, boosted
my spirits. I should remember the past members of the group, Prashant and Sarika,
who helped me during my early days. This, also, is an opportunity to bow my head
before the great comradeship of MTech99. 1 hope this spirit will live long.

Finally, let me concede my huge debt to my parents and beloved ones. Without

their support and patience this work would not have been possible.

Contents

1 Introduction 1
1.1 Motivation L 1
1.2 A Survey of Techniques for Compiler Backend Generation 3

1.2.1 Grammar Based Approaches 3

1.2.2 Approaches of Tree Pattern Matching 4
1.2.3 Automatic Code Generation from High Level Processor Spec-

ification 4

1.2.4 Automatic Code Generation from HDL 6

1.2.5 GCC Portable Compiler 7

1.2.6 Our Approach 7

1.3 Outline of the Thesis 8

2 Sim-nML Processor Specification Language 10

2.1 Sim-nML Language 10
2.1.1 General Characteristics 10
2.1.2 Basic Data Types 11
2.1.3 Storage and Functional Units 11
2.1.4 Instruction Set 12
2.1.5 Attribute Types 13

2.2 An Example: Sim-nML Description of UltraSparclli Processor 14
2.2.1 Windowed Register Set 14
2.2.2 Delayed Transfer of Control 15
223 Branches. 15

il

3 GCC and its Porting Mechanism 20

3.1

3.2
3.3

3.4

tion

4.1

4.2
4.3

4.4

RTL Representation Basics 20
3.1.1 RTL Expressions 21
Internal Representation of a Program 22
Machine Description Lo 22
331 mdFile 23
3.3.2 C Header and Program Files 26
The Translation Process 27
3.4.1 Parsing and RTL Generation 27
3.4.2 Optimization, Register Allocation, Reloading 27
343 FinalPasso 28

Generation of GCC Machine Description from Sim-nML Specifica-

29
Preprocessing 29
4.1.1 Register Analysis oL 31
4.1.2 Mode Rule Analysis 31
Flattening of Action Sequence 32
Instruction Analysiso 33
4.3.1 Morphing Parameters 33
4.3.2 Construction of Control Flow Graph 33
4.3.3 Removal of Uses of Temporary variables 34
4.3.4 Instruction Splitting L. 35
4.3.5 Constant Folding 36
4.3.6 Branch Elimination 36
4.3.7 Code Motion o 36
4.3.8 Removal of Definitions of Temporary Variables 37
4.3.9 Mode Rule Synthesis 37
4.3.10 Final Copy Propagation 37
4.3.11 Deletion of PC Assignments 38
4.3.12 Instruction Recognition. 38
Machine Description Generation 39

il

4.4.1 Generation of target.h and target.c 40

4.4.2 Generation of target.md 0oL 40

4.5 Summary . .o 43
5 Results and Future Work 45
5.1 GCC Port for Sparc64 45
5.2 Future Directions 49
A GCC Internals 55
A.1 Components of GCC Compiler Suite 55
A.2 A Grouping of RTL Expression Codes 56
A2.1 Operands 56
A.2.2 Operations.o 57
A.2.3 Side Effects 57
A.2.4 Embedded Side Effects 58
A25 Insns e 58
A.2.6 RTL Templates 58
A.2.7 Definitions L 58

A.3 A Grouping of Standard GCC Names 58
A.3.1 Data Movement 58
A.3.2 Arithmetic-Bitwise Operations 59
A.3.3 Type Conversions 59
A3.4 Comparisons 59
A.3.5 String Operations 59
A.3.6 Control Transfers 59
A.3.7 Stack Operations 60
A3.8 Others 60

A.4 Useful RTX Related Functions and Macros 60
A.5 Machine Mode Related Macros 61
A.6 Functions Related toInsns 62
A.7 Set of Built-in Predicates 62
A.8 Notion of an Address 63

iv

A.8.1 RTXes used as Addresses 63

A.8.2 Definition of a Valid Address 63
A.9 Translation of C Level Data to Machine Level 64
A.9.1 Translation to Machine Modes 66
A.9.2 Definitions of byte mode, word_modeetc 66
A.9.3 Mapping to Hard Registers. 66
A.9.4 Mapping to Memory Locations 68
A.9.5 Translation of Constants 68
genmd2 Maintainer’s Guide 70
B.1 Source Files 70
B.2 Intermediate Dumps L 72
B.3 A Grammar for Value Expressions 73
genmd2 User’s Manual 76
C.1 System Requirements L. 76
C.2 Installation 7
C.3 Running the Tool oo 77
C.4 Configuration File 00 7
C4.1 PCSection e 78
C4.2 CCSection e 78
C.4.3 SP Section 78
C.4.4 Return Address Pointer Section 79

List of Figures

1.1 Outline of Our Approach 9
3.1 Translation Process of GCC 27
4.1 Architecture of GCC Machine Description Generator 30
4.2 Flattened Action for Mips SLL Instruction 38
4.3 Patterns for Adding Single Integers in the md File of PowerPC 603 . 42
4.4 Test and Branch-if-equal Patterns in the md File of Sparc 44
A.1 Translationof Data 65

vi

Chapter 1

Introduction

1.1 Motivation

We are witnessing a time when electronic systems are being deployed in new and
innovative ways across various aspects of our life and civilization, e.g., industrial
automation, telecommunication, media, automobile, consumer electronics, to name
a few. Use of programmable processors are no longer confined to general-purpose
Personal Computers, servers, or multiprocessors. These processors are finding their
ways to application specific electronic systems, better known as embedded systems.
Use of Application Specific Instruction-set Processor (ASIP), Application Specific
Integrated Circuit (ASIC), and general-purpose ISA-based processors, is also gain-
ing popularity in the embedded systems. All these facts contribute in increasing the
importance of software in embedded systems. At the same time an increasing num-
ber of vendors are trying to push embedded systems in various application areas.
To quickly meet the demands of an expanding market and to obtain an edge over
competitors, designer of embedded systems needs low turn-around time and cost
effectiveness in the design. Electronic Design Automation (EDA) tools are used to
meet these objectives. Existing EDA tools and methodologies, which facilitate de-
sign of hardware to a great extent, however do not provide significant aid in software
development and hardware-software integration.

Normally hardware design and software development of an embedded system

begin nearly at the same time. However, they cannot be integrated until a prototype
of the hardware can be built. Hardware/software codesignis a paradigm for designing
embedded systems which advocates early integration of hardware and software in
the design cycle, even before the hardware design is completed. This prevents errors
from propagating through the design and reduces the effort spent in tracking and
fixing them. This also allows the designer to evaluate performance of the system
early and explore various design alternatives. To enable hardware /software codesign
one needs a set of tools that can simulate the build and execution environment of
the hardware. A common approach is to start with a high-level specification of
the hardware, which contains enough information needed to develop software and
execute it on that hardware. Tools are used to automatically generate compiler,
assembler, linker from the high level specification to enable software development.
Simulators are built around this specification to create an execution environment
for the software. High-level synthesis tools are used to enable hardware design from
this specification.

Sim-nML [17] is a high-level processor specification language, which is powerful
enough to describe any ISA based processor. Tools have been developed to generate
assembler [8], disassembler [7], function simulator [1], cache simulator [19] etc from
Sim-nML specifications of processors. A preliminary work for generation of compiler
from Sim-nML specifications has also been carried out [16].

In this work techniques have been developed for performing extensive semantic
analysis of Sim-nML specifications and extracting information needed for generation
of compiler. A tool has been developed that reads a Sim-nML specification in
its intermediate form, and generates a partially complete GCC (GNU Compiler
Collection) machine description. GCC has been retargeted to Sparc using the Sim-
nML description. We have chosen GCC because it is a production quality optimizing
compiler, which can be retargeted by writing a description of the target. However,
GCC machine description is large and complex. Our tool reduces the effort needed to
retarget GCC. The advantage is magnified by the fact that a Sim-nML specification

can also be used to generate many other tools for the processor.

1.2 A Survey of Techniques for Compiler Backend

(Generation

A compiler translates a high-level language program to an equivalent assembly or
machine language program [23] [24]. Broadly, it consists of two components. The
frontend is responsible for lexical analysis, parsing and converting the program to an
intermediate form. The backend or the code generator translates the intermediate
form of the program to assembly or machine language. Ideally, compiler front end
is specific to the source language and backend, to the target processor. This kind
of design reduces the work needed to port an existing compiler to a new source
language or target architecture.

Approaches for automatic generation of parts of the frontend from the specifica-
tions of the source language are well known [23]. Several attempts have been made
to automate the generation of compiler backend from the specification of the target
machine. We shall discuss some of them. At the end of this section, an overview of

our approach will be given.

1.2.1 Grammar Based Approaches

Grammar based approaches attempt to extend the technique of parser generation
to backend generation. A grammar for the intermediate form is specified. For
each grammar rule an action is specified which constructs and/or emits assembly
instructions as the rule is applied. A parser is generated from the grammar, which
parses the intermediate form and generates assembly output.

Graham-Glanville [6] used a context free grammar to parse a Polish-Prefix inter-
mediate form. A register allocator was meshed with the parser. Ganapathi-Fischer
[5] used the more powerful notations of attribute grammars and disambiguating
predicates. The code generators generated by them were capable of doing some

simple optimizations also.

1.2.2 Approaches of Tree Pattern Matching

The approaches of tree pattern matching work on an intermediate form that is a
sequence of trees. A set of tree-rewriting rules are specified. A rule has a tree
pattern, which is matched within the intermediate form, a replacement node, which
replaces the matched pattern, and an action to be performed on successful matching.
A cost function is used to impose additional conditions for matching. Actions are
responsible for emitting assembly code. Dynamic programming is used to determine
an optimal cover for the intermediate form using the patterns.

Aho, Ganapathi and Tjiang developed a system called twig based on this ap-
proach [22]. LCC [14] also uses this approach. A program called lburg reads a
machine specification file containing definitions of the tree rules and generates a
code generator. In another work, a Reduced Instruction Set Machine (RISM), con-
sisting of a set of simple instructions capable of simulating all other instructions, is
automatically extracted from a tree-based machine description [2]. An RISM code
generator is generated, which converts the intermediate form of the program, an
abstract syntax tree, to a sequence of RISM instructions. An automatically gen-
erated optimizer then merges simple RISM instructions to more complex machine

instructions and produces good quality assembly code.

1.2.3 Automatic Code Generation from High Level Processor

Specification

A high level specification for a processor describes its ISA and additionally, provides
some structural information. Unlike the grammar or tree rewriting rules, these
specifications are tool independent. The source program is translated by a proces-
sor independent fronted to a suitable intermediate form, normally a CDFG (Control
Data Flow Graph). The processor specification is converted to an internal data
structure so that instructions can be represented by patterns which can be matched
within the intermediate form of the program. Then attempts are made to cover the
program optimally using instruction patterns. Basic steps performed by the retar-

getable code generator are instruction selection, resource allocation, and instruction

scheduling [25], [26], [27], |23].

CHESS [11] is a commercially available retargetable compiler based on nML |[3]
machine description formalism. CHESS has been designed for embedded fixed point
DSPs (Digital Signal Processors). nML machine description is internally converted
to an Instruction Set Graph, which stores information about instruction set and
resources of the processor. Source program written in DFL or C is translated to a
CDFG. Then the compiler backend performs code selection, register allocation and
scheduling in sequence.

CodeSyn [15] compiler is a part of FlexWare [15] development environment for
embedded systems. High-level program, written in C or C++, is translated to a
CDFG. The code generator follows a rule-based approach. The machine description
contains resource information (register sets, addressing modes etc) and a set of code
selection rules, one for each high level operation. When the operation matches
within the CDFG, the rule is triggered. The compiler performs global scheduling,
register assignment, and code compaction in sequence.

AVIV [20] retargetable compiler focuses on processors exhibiting significant ILP
(Instruction Level Parallelism) and VLIW architectures. It uses SUIF (Stanford
University Intermediate Format) [28] and SPAM (Synopsys, Princeton, Aachen,
MIT) [29] compilers as its frontend. The code generator reads ISDL [4] machine
description and output of the frontend, which is a set of basic block DAGs (Directed
Acyclic Graphs) connected through control flow information, and generates a Split-
node DAG. A Split-node DAG represents a set of all possible ways the program can
be executed on the processor. A heuristic branch and bound algorithm is used to
produce near optimal assembly code from the Split-node DAG. Unlike most other
approaches AVIV performs instruction selection, resource allocation and scheduling
concurrently.

EXPRESSION [30] machine specification language describes ISA, some struc-
tural information and also the memory subsystem. Tools are used to automati-
cally generate tree patterns describing instructions, a reservation table containing
scheduling information etc. EXPRESS [30] retargetable compiler makes use of these

information to generate code.

LISA [31] processor design platform includes a compiler generator. Along with
LISA machine description, some additional semantic information and an ABI (Ap-
plication Binary Interface) specification is provided to the compiler generator. The
compiler generator then generates a machine description for LCC [14] which is built,
along with LCC frontend, to obtain an LCC port for the processor.

The Mescal group is also working on a project to develop a retargetable compiler
from MAD specification language [32|. However, this work is not complete and they
are yet to report any result.

An earlier work [13| has been carried out to generate LCC [14] machine de-
scription from nML [3]. A tool has been developed that flattens an nML machine
specification to obtain a set of instruction patterns. Additional transformations are
applied to the instructions to synthesize an LCC machine description. The pro-
gram lburg [14] then generates a backend for LCC from the synthesized machine

description.

1.2.4 Automatic Code Generation from HDL

Descriptions written in HDL give a lower level view of the hardware than those
written in high-level specification languages. HDL descriptions can easily accom-
modate architectural changes and they can be directly linked with hardware design
tools. However, from the point of view of code generation, they contain unnecessary
details about the hardware. The ISA, which acts as an interface between hardware
and software, is not apparent in these descriptions. However, like the high-level
specification languages, they are also tool independent.

A work has been carried out to extract ISA from an HDL description and gener-
ating compiler backend from these information. RECORD [27] retargetable compiler
constructs a graph model, consisting of primitive processor entities and their inter-
connection, from an HDL description. From the graph a set of instruction templates
is determined. With additional semantic knowledge of hardware operators, a tree
grammar and a parser are generated. This parser works as a code selector in the
compiler backend. RECORD compiler has reported to outperform (with respect
to size of the generated code) native TT compiler on TMS320C25 DSP chip, when

tested with DSPstone [34| benchmark suite.

1.2.5 GCC Portable Compiler

GCC (GNU Compiler Collection) is a highly optimizing production quality com-
piler which has been ported to a number of processors. GCC has its own machine
description format consisting of an md file, a number of C header files, and a C
program file. The GCC frontend translates a source program into an intermedi-
ate form called RTL [21], which has a LISP-like recursive structure. The md file
specifies a set of RTL templates and the ways to generate assembly instructions
from them. Additionally, some of the templates in the md file are given standard
names, which convey the semantics of the templates to GCC frontend. Frontend
uses named templates to generate initial RTL intermediate form. The initial RTL
form then undergoes a series of transformations for optimization, register allocation
and scheduling, and then they are matched against templates defined in the md file
and assembly code is generated.

GCC produces good quality code for processors with homogeneous structures.
However, it is not very successful in the domain of ASIPs and DSPs, which often
have heterogeneous register sets. Also, porting GCC to a new target often neces-
sitates changes in the so-called ‘machine independent’ sources of GCC. So it is not

retargetable, in the strictest sense of the term [25].

1.2.6 Owur Approach

We propose to generate a GCC machine description from a Sim-nML specification of
a processor, so that GCC can be ported to the processor with minimal effort. Sim-
nML [17|, which is an extension of nML [3] machine description formalism, is a tool
independent high-level processor specification language. It captures information
about the ISA, registers, addressing modes, functional units of a processor in a
compact and easily maintainable form. Several tools have been developed to support
software development and execution around the Sim-nML model of a processor [8]

[7] [1] [9] [19]. In this work we have attempted to complement Sim-nML technology

by adding the compiler-generation capability to it.

A preliminary work for GCC machine description generation from Sim-nML has
been carried out earlier [16]. A tool genmd has been developed which generated a
GCC machine description for Intel8085 processor, sans control transfer instructions.
However, the techniques used in this tool avoided many practical complexities and
so the tool failed to work with more complex processor descriptions. Also it did
not have the appropriate framework for dealing with control transfer instructions.
Nevertheless, this work gave us some insight into the problem.

Figure 1.1 outlines our approach. The tool irg parses the Sim-nML description
and stores it into a file called IR (Intermediate Representation). This IR is input
of our tool. Since the description is written in a compact hierarchical form, it is
initially flattened to obtain a sequence of C-like statements for each instruction. This
sequence of statements describes the semantics of the instruction. Some simplifying
transformations are made to remove temporaries, fold constants, eliminate branches
etc. from the sequences. Then sequences are matched against some predefined
patterns and identified with standard GCC names. At this stage we have gathered
enough information for generation of a GCC machine description. Now it is possible
to write the GCC machine description of a processor in a number of ways. We
have implemented a simple and generic machine description generation strategy and
generated a partial machine description. Finally, additional information are added
to complete the machine description and a GCC is built for the target processor.

The advantage of this approach is that we are using a well-trusted frontend and
high quality optimization and code generation techniques of GCC. But the difficulty
arises because of a lack of simple formal structure in GCC machine description.
Also, semantics of instruction patterns are to be conveyed to GCC explicitly by
using standard GCC names. This necessitates a rigorous semantic analysis of the

Sim-nML description.

1.3 QOutline of the Thesis

In chapter 2 we present an overview of the Sim-nML language.

simplifications

Set of Instruction

Patterns

instruction
recognition

Machine description
generation strategy

Named Instruction

Sim-nML irg sim_nmLl flattener
Specification ofa| /> IR -
Processor
GCC Machine
. GCC Description
GCC Port for | build process
the Processor L

Additional
Information

Figure 1.1: Outline of Our Approach

Patterns

In chapter 3 we discuss GCC and the mechanism to port GCC to a target.

In chapter 4 we discuss the design and implementation of the tool that is de-

veloped in this thesis to generate GCC machine description from Sim-nML. Finally,

we present the results of our work and some future directions in chapter 5.

Chapter 2

Sim-nML Processor Specification

Language

In this chapter the formal structure of Sim-nML language, along with an overview
of its syntax and semantics will be presented. To exemplify the expressibility of
the language, Sim-nML description of UltraSparclli processor will be discussed.
Detailed description of the language can be found in [17] [9] [10] [18].

2.1 Sim-nML Language

2.1.1 General Characteristics

Sim-nML processor specification language is an extension of nML [3]. It has the

following general characteristics:

e High Level of Abstraction: A Sim-nML programmer views a processor
as a machine that executes a set of instructions. For each instruction in the
instruction set of the processor, the binary image, assembly syntax, function-
ality, resource usage and timing are specified. Additionally, the ISA-specified
registers, memory and functional units are described. The description contains
enough information about the processor to support software development and

execution around it.

10

e Tool Independence: A Sim-nML description is not specific to a tool. A
range of tools, including assembler [8|, disassembler |7], function simulator |7],

cache simulator [19] have been generated from it.

e Generality: Sim-nML language is powerful enough to capture any kind of
[SA-based processor. Sim-nML descriptions have been written for different
classes of processors including RISC (Sparc, Mips, PowerPC, ARM), CISC
(M68HC11, 8085), and DSP (ADSP) [33].

e Compactness: Sim-nML allows the programmer to write a compact and

hierarchical description by exploiting the commonality between instructions.

2.1.2 Basic Data Types

Sim-nML provides a set of built-in abstract types viz. card, int, float, range, bool
etc. A near orthogonal set of operators is also provided. All the types used in the
description are defined by the programmer and derived from the built-in types. For
example, card(32) is a 32-bit unsigned integer type derived from the built-in type
card.

Basic data types are used in the following two different contexts

e To describe data types supported by the processor, e.g. to describe types of

registers, memories, or parameters of instructions.

e To describe data types needed for programming, e.g. to describe types of

temporary variables used within the description.

In addition string literals are allowed in the definitions of assembly syntax and

binary images of instructions.

2.1.3 Storage and Functional Units

The keyword resource is used to define a function unit or a pipeline stage. A storage
unit may be a processor resource or a temporary variable needed for programming.

The keyword reg declares an ISA-specified register. The keyword mem may declare

11

a memory unit or a temporary variable. The keyword war is specifically used to

declare the temporary variable.

2.1.4 Instruction Set

In Sim-nML, instruction set of the processor is described as an S-attributed gram-
mar. Each sentence derivable from the grammar corresponds to a single machine
instruction. Each nonterminal symbol of the grammar is associated with a set of
attributes. Each production rule of the grammar is associated with a set of at-
tribute definitions. Each attribute definition computes the value of an attribute of
the left-hand side of the production as a function of the values of the attributes of
the symbols appearing on the right-hand side.

A set of productions of the form:

T : X
T:Y
T : Z
where T, X, Y,, Z are nonterminal symbols, is represented in Sim-nML with

an or rule of the form:
op T=X 1Y | | Z
The attribute definitions are implicit in an or rule. All the attributes of the right-
hand symbol are assigned to the corresponding attributes of the left-hand symbol
when a production of this form is applied.
A single production of the form:
T :XY Z
where T is a nonterminal and X, Y,, Z are terminal or nonterminal grammar
symbols, is represented in Sim-nML with an and rule of the form:
op T (X, Y, ..., Z)
X, Y, ..., Z are called parameters of the and rule. If a parameter is of a basic type
then it is treated as a terminal symbol of the grammar, which is a parameter of a
machine instruction. Otherwise, the parameter is treated as a nonterminal symbol,

which is a partial definition of a machine instruction. Each nonterminal symbol

12

should appear on the left-hand side of ezactly one Sim-nML rule. In an and rule
attributes are explicitly defined. If an attribute is not defined then it is assumed to
have a null value.

Sim-nML provides a set of attributes with a predefined semantics. When an in-
struction is derived from the grammar, complete definitions of all the attributes are
obtained. The attribute syntaz stores the syntax of the instruction. Likewise, the at-
tributes image, action, and uses store, respectively, the binary image, functionality,
and resource-usage of the instruction.

A Sim-nML rule whose left-hand side is an addressing mode or a partial definition
of an addressing mode, is called a mode rule. All other rules are called op rules. A
mode rule differs from an op rule because it can have a value. The value of a mode
rule is stored in a hidden attribute.

It is intuitively obvious that the S-attributed grammar supported by Sim-nML

can be used to describe any context free grammar and hence, any instruction set.

2.1.5 Attribute Types

The attributes for assembly syntax and binary image are strings. The attribute
for resource-usage follow a usage grammar. Attributes defining functionality of
instructions are sequences of C-like statements, often called action sequences.

Sim-nML provides a restricted programming model to define functionality of
instructions. It supports built-in and user defined types, built-in operators, sequence
of statements, control transfer, function call etc. It also allows programmer to define
variables, which are called temporaries, and have a global scope and infinite lifetime.

To support control transfer Sim-nML has an if-then-else-endif statement. How-
ever, there is no construct for loops and goto-like jumps.

Level of abstraction of an action sequence is lower than that of a machine instruc-
tion because an action sequence is used to express functionality of an instruction.
It gives programmer a lot of freedom through bit-selection and concatenation op-
erators. Bit-selection allows a programmer to view an arbitrary chunk of bits of a

storage unit as a single object. Concatenation allows programmer to form an object

13

by combining a number of objects. In Sim-nML language, the smallest unit of stor-
age that can be viewed as an object is a single bit. However, these low-level features
make application of traditional algorithms for data flow analysis, copy propagation

etc. difficult, as will be observed in chapter 4.

2.2 An Example: Sim-nML Description of Ultra-

Sparclli Processor

UltraSparclli is a 64-bit superscalar RISC processor [36] that implements Sparc V9
[35] ISA. In this section we will discuss the ways in which some of its interesting

features have been expressed using Sim-nML.

2.2.1 'Windowed Register Set

Sparc V9 supports the notion of a windowed register set. The mapping between
a register number generated by software and actual hard register number depends
upon the state of a special register, called window pointer register. Software gener-
ated register numbers are partitioned into four classes viz., global, out, local, and in,
each containing eight registers.

Following formulas show the relationship between software register numbers and
hardware register numbers:

hard_reg_no = global_reg_no + pstate.ag * 8

hard_reg_no = out_reg_no + cwp * 16

hard_reg_no = local_reg no + cwp * 16 + 8

hard_reg_no = in_reg _no + cwp * 16 + 16

Here pstate.ag is a single bit in a state register pstate. cwp is 5-bit current
window pointer register. Following is a Sim-nML mode rule defining an addressing
mode for local registers:

mode loc(x:card(3))=winreg[16*cwp + 8 + x]

syntax=format ("%/%1%d" ,x)

image=format ("%5b" ,x+16)

14

‘winreg’ has earlier been declared to be a register file of 128 registers. Note that

the index of the register file is a function of a state register.

2.2.2 Delayed Transfer of Control

In Sparc V9 all the control transfer instructions (call, jump, branches) are delayed.
The delayed semantics has been expressed by introducing a next-PC register, along
with the normal PC. In the description pc refers to the normal PC and npc, to the
next PC register. All the non control transfer instructions execute the following pair
of statements

pc = npc;

npc = npc + 4;

On the other hand a call instruction, which unconditionally transfer control to
a PC-relative target, executes the following pair of statements

tmpc = pc,;

pc = npc;

npc = tmpc + 4*coerce(sxword, label);

Here tmpc is a temporary, label is a parameter, which specifies the target. coerce
operator sign-extends label to a signed 64-bit integer. The target is multiplied by 4

to maintain alignment.

2.2.3 Branches

In Sparc V9 there are 5 classes of branch instructions viz., bpr, fbfcc, fopfee, bice,
and bpcc. A class contains 24, 32 or 64 branch instructions. For example there are

six variations of bpr (branch on integer register condition with predictions)

e Branch if zero
e Branch if nonzero
e Branch if less than zero

e Branch if less than equal to zero

15

e Branch if greater than zero

e Branch if greater than equal to zero

Each of these branches can be annulling or non annulling, and predict-taken or
predict-not-taken. So there are total 24 branches in class bpr. Such a large number
of branches have been described in Sim-nML in a very compact manner by intro-
ducing dummy mode rules. A mode rule normally corresponds to an operand of the
instruction. A dummy mode rule, however, represents a constituent of the opcode.
In this description dummy mode rules have been used to specify the register condi-
tion to be evaluated, the annul bit and the prediction bit of a branch instruction.
Here is an example from the UltraSparclli description:

//’rcond’ field in ’bpr’

//if equal to zero

mode rz()=1

syntax="z"
image="001"

//if less than equal to zero

mode rlez()=2
syntax="1lez"
image="010"

//if less than zero

mode rlz()=3
syntax="1z"
image="011"

//if not zero

mode rnz()=5

syntax="nz"
image="101"

//if greater than zero

mode rgz()=6

syntax="gz"

16

image="110"
//if greater than equal to zero
mode rgez()=7
syntax="gez"
image="111"
//one of the above conditions
mode rcond= rz | rlez | rlz | rnz | rgz | rgez
Now instead of using 24 different op rules, all the branches of class bpr have
been described using a single op rule, which has a parameter of type rcond. Within
the action, value of this parameter is checked and register condition is evaluated
accordingly. The action of this op rule sets a temporary, taken, which is examined
by another higher-level op rule and pc and npc are adjusted accordingly. Following
is the example of the op rule bpr (a and p are two dummy mode rules specifying
annul and prediction bits, disp16 is a mode rule for a 16-bit displacement, gpr is a
mode rule for a general purpose register):
op bpr(x:a, y:rcond, z:displ6, w:p, u:gpr)
syntax=format ("bris¥%s%s %s, %s", y.syntax, x.syntax, w.syntax, u.syntax,
z.syntax)
image=format ("00%s0%s011%s%s%s%s", x.image, y.image, z.image<14..15>,
w.image, u.image, z.image<0..13>)
action={
annul=x; //save annul bit in a temporary
ea=pc + 4xcoerce(sxword,z); //save target address in a temporary
//evaluate register condition
if y==1 //equal to zero
then
if u==0
then
taken=1;
else

taken=0;

17

endif;
else if y==2 //less than equal to zero
then
if coerce(sxword, u) <= 0
then
taken=1;
else
taken=0;
endif;
else if y==3 //less than zero
then
if coerce(sxword, u) < 0
then
taken=1;
else
taken=0;
endif;
else if y==5 //not zero
then
if u!'=0
then
taken=1;
else
taken=0;
endif;
else if y==6 //greater than zero
then
if coerce(sxword, u) > 0
then
taken=1;

else

18

taken=0;
endif;
else if y==7 //greater than equal to zero
then
if coerce(sxword, u) >= 0
then
taken=1;
else
taken=0;
endif;
endif;
endif;
endif;
endif;
endif;

endif;

19

Chapter 3

GCC and its Porting Mechanism

GCC is a free compiler, developed by the GNU community [37]. It is available
for a number of frontends, including C, C++, Fortran, Java, Objective-C, and a
number of processors including Intel x86, Sparc, Mips, Arm, Motorola 68HC11. It
is known to be a production quality compiler with high quality optimization and
code generation techniques. GCC can be ported to a new target by providing a
target description in the form of an md file, a number of C header files, and a
C program file. GCC frontend produces code in an intermediate form, known as
an RTL representation. RTL patterns also appear in the md file of GCC machine
description.

In this chapter an introduction to GCC RTL representation will be given. Also,
GCC’s internal representation of a program, and machine description will be dis-
cussed in brief. Finally, we shall present an overall picture of the translation proce-

dure. All the four topics, among others, have been discussed at length in [21].

3.1 RTL Representation Basics

RTL has a LISP like recursive structure. An RTL object is the most fundamental
abstraction of an RTL representation. An RTL object can represent an operator,
an operand, side-effect (functionality) of an instruction, an instruction, a definition

of an instruction etc. An RTL object is one of the following

20

e integer: C type int

e wide integer: C type HOST_WIDE_INT, as defined in GCC'’s source files
e string: C type char *

e expression of RTL objects: a pointer to a structure

e vector of RTL expressions: an arbitrary number of RTL expressions

3.1.1 RTL Expressions

Internally (within GCC sources) an RTL expression, also called an RTX, is a pointer
to a structure. Operands of the expression are members of the structure, which in
turn, are RTL objects. The structure also has a member called code of the RTX.
The code gives the expression a name and a semantic meaning, and defines the
number and types of its operands. A list of RTX codes can be found in Appendix
A. Another member of the structure is machine mode of the RTX. Machine mode
defines the type and width of the value produced by the RTX.

An RTX has an external representation, which appears in debugging dumps and
md files. In this form, an RTX is enclosed within a pair of parentheses. Name of
the RTX appears first, followed by the machine mode and operands. Absence of
machine mode implies VOIDmode. Some of the examples of RTXes are as follows:

An RTX representing register number 10 is written as (reg:SI 10) where reg
is the name of the RTX. ST stands for single integer machine mode. A reg RTX has
only one operand, which is an integer RTL object. The operand signifies the register
number.

An RTX representing a constant integer 5 is written as (const_int 5). A
const_int RTX does not have a machine mode (or is equivalent to a machine mode
VOIDmode). The only operand of this RTX signifies the value of the integer.

An RTX representing result of the addition of register number 10 and a constant
integer 5 is written as (plus:SI (reg:SI 10) (const_int 5)). plus RTX has
two operands, both of which are RTXes. They signify the operands of an addition.
The machine mode of plus specifies the type and width of the result of addition.

21

3.2 Internal Representation of a Program

An insn is an RTX, which is GCC’s abstraction of an instruction. GCC frontend
translates a compilation unit into a doubly linked chain of insns. Translation is per-
formed on a statement-by-statement basis during parsing. At the time of assembly
output generation, an insn is typically converted into a sequence of one or more
assembly instructions. Some insns, however, are not real instructions, and represent
labels or some declarative information.

Following are the RTX codes that an insn can have

nsn, jump_insn, call_insn, note, barrier, and code_ label.

An insn has an operand of type RTX which defines its functionality or ‘side-
effect’. A side effect typically performs an arithmetic/logic operation and stores the
result to a register, or moves between registers, or moves between a register and a
memory location, or sets PC conditionally to a target etc.

Following is an example of an insn, that adds a register and an immediate con-
stant, and stores the result into another register:

(insn

10 7 11
(set (reg:SI 9) (plus:SI (reg:SI 10) (const_int 5)))
-1 (nil) (nil)

)

The side-effect of the insn is a set RTX, whose first operand signifies the desti-
nation of the assignment and the second operand, source. set does not produce a
value and so, does not have a machine mode.

Three numbers preceding the side-effect expression represent, in order, uid (unique
identity) of the insn, uid of the previous insn, and uid of the next insn. Others

operands of an insn are not important in this context.

3.3 Machine Description

GCC machine description contains the following information:

22

Processor architecture— functional behavior, and optionally, resource-usage of

instructions, endianness, memory addressability etc.
ABI- register usage, function-calling conventions etc.
Layout of source language data types— sizes of int, float, char etc.

Format of binary files— format of object and executable files, format of debug-

ging information.

Compiler environment— conventions for assembler, linker, libraries, location of

system’s headers and libraries etc.

The machine description consists of an md file, a C program file and a number

of C header files.

3.3.1 md File

An md file can contain the following information:

Definitions of RTL patterns which can appear as side-effects of insns. The

RTXes define_ erpand and define insn are used to provide these information.

Ways to generate assembly instructions from insns. The RTXes define insn

and define_peephole are used for this purpose.

Ways to split a single insn into a sequence of insns. The RTX define_split is

used for this purpose.

Information about function units and latencies of instructions. The RTXes

define_ delay and define_ function_unit are used for this purpose.

Names of Patterns

Names are given to RTL patterns defined using define_expand and optionally, to

those defined using define_insn. Two different definitions cannot use same name.

GCC provides a set of standard names which convey the semantics of the patterns to

23

GCC frontend. Standard names are used while translating the high-level language
program into an RTL intermediate form. GCC generates a gen_ name function to
generate a pattern whose name is name and name does not begin with the character
“*' A gen_ name function accepts the operands of the pattern as arguments. These
functions are often used in a machine description to explicitly generate a pattern.

A list of standard names can be found in Appendix A.

B Templates Used in a Pattern

RTL templates are used to specify a set of operands or operators that can appear in
a particular position in the pattern. The following RTXes are used as RTL templates
match_ operand, match_ dup, match_operator etc.

match__operand specifies a set of operands. It has three operands. First operand
is an integer RTL object, specifying operand number. Second and third operands are
string RTL objects, which specify a predicate and a set of constraints, respectively.
A predicate specifies a broad class for the operand, e.g. whether it is a register or
an immediate operand. Constraint imposes stricter conditions e.g. the exact class
of registers or range of immediate operands. Two patterns which differ only in the
constraints of their templates cannot be defined separately. A single definition is
used for them with a set of alternative constraints.

Here is an example of a match_ operand template

(match_operand:SI 0 "register_operand" "a'")

In an actual insn this template will be replaced by the operand number 0, which
must be a register of class ‘a’, with machine mode SImode. There are a number
of built-in predicates provided by GCC. Additional predicates can be defined in
the C program file. A list of built-in predicates has been provided in Appendix A.
Meanings of constraint letters are specified in a C header file within the machine

description.

B define expand Patterns

define_ expands are only used during RTL generation i.e. during translation of the

24

high-level program into RTL. They must have a name. define expand allows gen-

erating a sequence of RTL patterns, each to appear as a side-effect of an insn in a

sequence of insns. Every pattern that may be generated by a define_ expand should

also be defined using a define_insn. Using define_ erpand one can also specify a

fragment of a C code to be executed before the generation of the patterns. The con-

straints which appear in an RTL template of a pattern are ignored by define_ expand.
Here is an example of a define_ expand

(define_expand "addsi3"

(set
(match_operand:SI 0 "general_operand" "")
(plus:SI
(match_operand:SI 1 '"general_operand" "")
(match_operand:SI 2 '"general_operand" "")
)
)
o
o
)

First operand of define expand, "addsi3", is the name of the pattern. "addsi3"
is a standard GCC name, meaning addition in single integer mode. Second operand
is the pattern. Note that match_operand templates have occupied the places of real
operands. The predicate "general operand" allows any general register, memory or
immediate constant as an operand. Third operand is a string, which is supposed to
specify a condition to be tested before this define expand is used. Last operand is

also a string where one can put a fragment of C code.

§ define insn Patterns

define_ insn may or may not have a name. Named define insns may be used during
RTL generation. define_insns are also used at later stages of compilation. Using
define_ insn one can specify a single RTL pattern which can appear as a side-effect

of an insn. Using define_ insn one also specifies the assembly code to be generated

25

from the pattern or a fragment of a C program to be executed to generate the
assembly code.
Here is an example of an unnamed define_insn, which defines a pattern that
may be resulted from the define_ expand shown in the last example:
(define_insn ""
(set
(match_operand:SI 0 "register_operand" "a")
(plus:SI
(match_operand:SI 1 "register_operand" "a")

(match_operand:SI 2 "register_operand" "a")

)

"add %1, %2, %0"

)

The first operand, which specifies the name, is an empty string. Second operand
is the pattern. Third operand specifies a condition which must be true when this
pattern is used. Last operand specifies an assembly instruction that will be generated

from this pattern.

p define peephole

define_peephole is used to define machine specific peephole optimizations. GCC
uses a define_ peephole optionally, only if optimizations are enabled. It allows one to

specify a sequence of patterns and an assembly code to be emitted for the sequence.

3.3.2 C Header and Program Files

C header files and the C program file contain all the information needed by GCC
which cannot be represented properly within an md file. The header files define a
number of macros and enum types, and declare some global variables and routines.

The program file defines some global variables and routines. These files also contain

26

Optimizations,
Register Allocation,
Reloading

Parsing and . Final
c RTL Generation | Doubly Linked Pass Assembly
Function Chain of insns Representation
of Function

Figure 3.1: Translation Process of GCC

support information, viz. macros, variables, and routines, which are used elsewhere

in the machine description. A list of some useful macros can be found in Appendix
A,

3.4 The Translation Process

Figure 3.1 outlines the way GCC translates a C function into an assembly code.

Steps are discussed below.

3.4.1 Parsing and RTL Generation

The C function is parsed and insns are generated on a statement-by-statement basis.
At this stage GCC looks the md file for a define_ expand or a define_insn with some
standard name. If found, it checks the condition (third operand of define expand
or define_insn) and the predicates of the templates used within the pattern. If all
of them are satisfied, then an insn or a sequence of insns is generated to express an

operation of the high-level language.

3.4.2 Optimization, Register Allocation, Reloading

In this phase GCC performs several optimizations e.g. jump optimizations, loop

optimizations, scheduling. It also performs register allocation. Following things can

27

happen in this phase:
e Deletion: An insn may be deleted.

e Matching: An insn may be matched against a define_insn pattern. During
matching predicates of the templates are checked, but constraints are not.

Matching helps in assembly code generation.

e Scheduling: An insn may be matched against a define_ delay or define_ function_unit.

This matching helps in delay slot scheduling and instruction scheduling.

e Combination: A sequence of insns may be combined to form a single, more
complex insn. Resulting complex insn should, of course, match a define insn

pattern. This helps in machine independent peephole optimization.

e Splitting: An insn may be matched against a define_split and split into a
sequence of simpler insns. Each simpler insn should match a define insn
pattern. Splitting is needed if a complex insn formed by insn combination
does not match any define_ insn. Splitting also helps in delay slot scheduling

and instruction scheduling.

e Construction: A new insn may be constructed and added to the doubly
linked list.

e Reload: An insn, that does match a define_insn, may be invalidated because
constraints may not be satisfied. So GCC generates extra move insns to ensure

that constraints are satisfied.

3.4.3 Final Pass

At this stage GCC performs machine specific peephole optimizations, generates
assembly code for a function, generates function entry and exit code.

If a sequence of insns matches a define peephole then the sequence is replaced
by the corresponding assembly code. Otherwise, assembly instruction for an insn is

generated from the matching define insn pattern.

28

Chapter 4

Generation of GCC Machine
Description from Sim-nML

Specification

In this chapter we shall discuss the techniques for automatic generation of a partial
GCC machine description from the Sim-nML specification. We have implemented
these techniques in the form of a tool.

In chapter 1 an outline of our approach was presented. A more detailed block
diagram can be found in figure 4.1. GCC machine description generator reads a
Sim-nML IR and a configuration file and generates the files target.md, target.h,
and target.c. In the rest of this chapter individual components of the tool will be

discussed.

4.1 Preprocessing

At preprocessing stage the machine description generator parses its arguments, reads
the configuration file and the Sim-nML IR. Sim-nML IR is an intermediate repre-
sentation of a Sim-nML specification, generated by the tool irg|[18|. Configuration

file contains additional information about the processor, as needed by the tool. This

29

Sim—-nML IR Configuration File

Analysis of each Instruction
A

| r
|

Preprocessing

]] Morph Parameters
Register Analysis

]

Y

= Construct Flow Graph

Y

Remove Uses of
Temporaries

]

L1l Split Instruction

Mode Rule Analysis

Flattening

Action Flattening

1 Y
| Y

Constant Folding

Syntax Flattening

|
1 Y
|
| Eliminate Branches
|
Y
T T T L Code Motion
i Machine Description Generation '
|
! . I
1 Generation of C i | Remove Temporary
| Header and Program Files - Definitions
| Y ! Y
| . |
l Generation of | Synthesize Mode Rules
| md file |
1 | Y
! Final Copy
‘ Propagation

Delete PC Assignments

|

Recognize Instruction

|
|
|
|
|
|
|
|
|
|
:
|
GCC Machine Description | Y
|
|
|
|
|
|
|
|
|
|
|

,,,,,,,,,,,,,,,,,,,,,,,

30

Figure 4.1: Architecture of GCC Machine Description Generator

information includes the name of the PC and other PC-class registers (e.g. next-
PC), name of the stack pointer, return address pointer, condition code registers etc.
The structure of a configuration file has been described in Appendix C.

After reading the inputs the tool performs some analyses to gather information

about the registers and addressing modes of the processor.

4.1.1 Register Analysis

At register analysis phase a map of all the register of the processor, as described
in the Sim-nML specification, is created. Also special registers, as named in the

configuration file, are identified.

4.1.2 Mode Rule Analysis

A Sim-nML mode rule typically describes an addressing mode of the processor.
Mode rules are used to define parameter types of instruction actions. Mode rule

analysis is performed to gather the following information about each mode rule

e [f the mode rule is an or rule then it is viewed as a set of alternative addressing
modes. Total number of alternatives and each alternative are determined. A
child of a mode or rule may be a mode and rule or a mode or rule. In the
former case, the child represents a single alternative. In the later, the child
itself is a set of alternatives and so, alternatives represented by it are similarly

determined.

e If the mode rule is an and rule and it’s value is an if-then-else-endif expression
then also it is viewed as a set of alternative addressing modes and total number

of alternatives and each alternative are similarly determined.

e If a mode and rule represents a single addressing mode then it’s value ex-
pression is analyzed and the predicate code, machine mode and constraint are

determined.

Value expression of a mode and rule is a prefix expression with arithmetic-logic

operators, index, concatenation, bit-selection etc., and whose operands may be

31

parameters of the mode and rule (basic type or another mode rule), immediate
constants, registers or memories. A grammar for the value expressions that
is recognized by our tool is given in Appendix B. The recursive algorithm for

evaluation of prefix expressions has been used to analyze value expressions.

A predicate code specifies the broad class in which an operand of an instruction
belongs to and is one of the register code, immediate code, memory code, and
operator code. Operator code is used to deal with complex mode rules where
the value expression contain arithmetic-logic operators. Analyses of this kind
of mode rules yield additional secondary mode rules which are operands of the

original mode rule.

A machine mode specifies the type (integer or floating point) and width of the

operand.

For a register operand the constraint refers to a class of registers, which is a
subset of the register map created during register analysis. For an immedi-
ate operand the constraint specifies a range of immediate values while for a

memory operand, the constraint specifies the addressing mode.

Additionally, mode rule analysis determines registers which can be used as base
registers, index registers, window pointer registers etc. and a range of numbers
which can be used as displacements.

To some extent, mode rule analysis can check for semantic validity of the Sim-
nML specification as well. For example, it can be checked by this analysis whether

an index used with a register is within the range or not.

4.2 Flattening of Action Sequence

A Sim-nML specification of a processor contains a compact hierarchical description
of the instructions of the processor. The hierarchy of op rules is assumed to be a
tree. A path from the root of the tree to a leaf is viewed as a single instruction,
which can have parameters of basic and mode rule types. By flattening we mean

traversing all such paths to obtain definitions of a particular attribute of all the

32

instructions. In the context of the current work only syntar and action attributes
are relevant. A recursive algorithm has been used to traverse the tree and obtain
complete syntax string, action sequence and parameter list of each instruction. The

algorithm has been presented by [16].

4.3 Instruction Analysis

The flattened action sequence of an instruction may be very complex with the pres-
ence of temporaries and spurious branches. Therefore, it is difficult to recognize
the instruction from this description. Simplifying transformations, which constitute
the heart of GCC machine description generator, convert the action sequence to a
set of simple parallel statements. This simpler set can be matched against a small
set of simple patterns and the instruction can be recognized. Following subsections

describe the simplifying transformations and instruction recognition.

4.3.1 Morphing Parameters

A parameter reference that appears in a statement within the flattened action se-
quence is the parameter number as assigned in the op and rule from which the
statement is resulted. However, for validity of the following transformations a uni-
form numbering scheme for parameters is needed. So all parameter references are
replaced by the parameter numbers as assigned in the parameter list of the instruc-

tion.

4.3.2 Construction of Control Flow Graph

The basic blocks' and control flow arcs connecting the basic blocks are determined.
Since the action sequence does not have any loop or unconditional goto, the resulting
control flow graph is a Directed Acyclic Graph (DAG). This graph contains infor-

mation necessary for removal of uses of temporary variables and copy propagation.

LA sequence of statements with a single entry and a single exit point

33

4.3.3 Removal of Uses of Temporary variables

A temporary variable represents a state that is not specified in the ISA but is used
in the Sim-nML specification to simplify the description. Temporary variables are
usually defined using the var keyword in the Sim-nML description. All temporary
variables should be removed from the action sequence before the instruction can be
recognized.

To remove a use of a temporary variable, it is replaced by its most recent defini-
tion. However, if a state appearing on the right hand side of the definition changes
before the use of the temporary variable then this transformation cannot be applied.
In such a case we view the resulting statements as parallel statements i.e. all the
states are read before any one of them is written [16].

Consider the following example of sequential statements
tmpc = pc;
pc = npc;
npc = tmpct+4;

Above sequence of statements updates PC and NPC registers within the action
sequence of a non control transfer instruction of UltraSparc processor with delayed
transfer of control. The first statement defines the temporary variable tmpc, the
second statement writes to the pc register, which appears on the right hand side
of the definition of temporary variable, and third statement uses tmpc to define
npc register. After transformation these statements can be written as the following
parallel statements:

PCout = NPCin;
NPCoys = PCin 1+ 4;

There are some additional complexities present in this phase because of the
possible uses of bit-selection and concatenation operators in the action sequence.
This forces one to keep track of virtually every single bit of every temporary variable.

Following is a pair of definitions of temporary variable temp in presence of bit-
selection, where the later nullifies the effect of the former:
temp<2..8> = ...
temp<4..12> = ...

34

The following is another example where it is not possible to say whether the first
statement is nullified or whether the effect of the first statement is visible after the
second statement.
templ::temp2 = ...;
temp2 = ...;

In such a case we have chosen to ignore the instruction.

There may be situations where it may be very difficult to determine the most
recent definition of a temporary variable. Here is an example:
temp<4..12> = ..

X = temp<3..7>;

Here is another similar example:
templ::temp2 = ...;

X = templ;

In such scenarios we have chosen to ignore the instruction.

4.3.4 Instruction Splitting

If an instruction’s behavior depends upon the value of a parameter that is not a
part of the processor state, then we view it as a compact representation of a number
of alternative instructions. Such an instruction is split into a number of alternative
instructions and the original instruction is ignored.

In particular, if an action sequence has an if-then-else-endif statement which tests
the value of a parameter of immediate type, then only one of the two paths will be
executed and the exact path of execution can be known at the time when compiler
generates this instruction. Such an instruction is split into two instructions, one for
each of the two paths of execution.

Here is an example taken from the action of Store Byte Update instruction of
PowerPC 603

if ra == 0 then

EA = d;
else
EA = GPR[ral+d;

35

endif;

The above statements compute an effective address, which is a sum of a register
and a displacement, d. GPR is a general-purpose register file and ra is an immediate
type parameter of this instruction which indexes this register file. However, GPR/0]
is hardwired to 0 and should always read as 0. So the effective address, FA, has
two definitions, depending upon whether ra is 0 or nonzero. Splitting yields two
instructions, in one of which ra is always 0 and effective address is computed by the
following single statement
EA = d;

In the other instruction ra is always nonzero and effective address is computed
by the statement
EA = GPRJra]+d;

4.3.5 Constant Folding

Removal of the uses of temporary variables often creates constant expressions. We

evaluate constant expressions and replace them by their values.

4.3.6 Branch Elimination

The if-then-else-endif statements whose outcomes are known (as a result of constant

folding) are eliminated. All the statements in the ‘false’ path are deleted.

4.3.7 Code Motion

The statements which follow an if-then-else-endif statement are moved to the end
of the then and else branches.

After this step it is checked whether there are any uses of temporary variables
left in the action sequence. In such a case the control flow graph is constructed once

again and the above steps are iterated.

36

4.3.8 Removal of Definitions of Temporary Variables

Once all the uses of temporary variables are removed from the action sequence
the statements which define temporary variables are also deleted. From this point

onwards the action sequence is free of all the temporary variables.

4.3.9 Mode Rule Synthesis

In general, an operand of an instruction is a function of the parameters of the
instruction. For example, an instruction may access a register operand indexed by
an immediate type parameter, as shown in the following code
GPR[i] = GPR[j] + GPR[k];
Here GPR is a general-purpose register file, indexed using parameters 7, 7 and £, of
immediate type.

We synthesize new mode rules for such operand functions. This way a uniform
representation of operands is used that helps in final copy propagation, as well as,

in instruction recognition.

4.3.10 Final Copy Propagation

In this phase all the uses of register and memory operands are replaced by their
most recent definitions. A copy propagation involving temporary variables was
performed during removal of uses of temporary variables, which necessitated us to
view the action sequence as a set of parallel statements. Final copy propagation is
needed to truly convert the action sequence to a set of parallel statements.

It is important to note that a single register or memory operand is actually a
mode rule and can represent a set of states. Therefore following are the possible

scenarios

e Definition of a variable x is live at a statement that uses x. The solution is to

replace the use of x by the most recent definition of it.

e Definition of a variable x is live at a statement that uses a variable y, and x

and y are different variables and the sets of states represented by them do not

37

TMP_WORD = para_no_0 <31..0>;
TMP_WORD = TMP_WORD << para_nho_2;
GPR[para_no_1] = TMP_WORD;

Figure 4.2: Flattened Action for Mips SLL Instruction

intersect. In such a case no replacement can be performed.

e Definition of a variable x is live at a statement that uses a variable y, x and
y are different variables and the sets of states represented by them intersect.
In such a case x and y are forced to be same variable and use of y is replaced

by the most recent definition of x.

4.3.11 Deletion of PC Assignments

An action sequence contains a set of statements for updating the PC and other PC-
class registers (e.g. next-PC). In a non control transfer instruction such statements

do not carry any useful information and so, are deleted.

4.3.12 Instruction Recognition

After simplifications, attempts are made to identify the simplified parallel action
of an instruction with a standard GCC name. There is no exhaustive strategy for
instruction recognition. We have followed a heuristic approach by matching the
action against a set of known patterns and checking for some additional conditions
(For example, whether the lvalue of an assignment is a PC-class register). If the
matching succeeds and conditions are satisfied then the instruction is identified with
a standard GCC name.

As an example, figure 4.2 shows the flattened action sequence of Mips SLL (Shift
Left Logical) instruction. para_no_ 0 is a mode rule type parameter representing

a 64-bit general-purpose register. para_no_ 1 and para_no_ 2 are of basic cardinal

38

type. TMP_WORD is a temporary variable and GPR is a general-purpose 64-bit
register file. After the simplification the statement gets converted to operand_0 =
operand_1 « operand_2;
Here operand_ 0 and operand_ 1 are mode rule type operands, which represent in-
dexed 64-bit general purpose registers. operand_2 is a basic cardinal type. The
simplified action readily matches the typical pattern for left shift.
Now the condition that, the lvalue is not a PC-class register, is tested. Since
operand_ () is not a PC-class register the condition is satisfied and the instruction is
identified as a shift-left instruction.

As another example, consider the simplified action sequence for UltraSparcIli
instruction Branch if Register Zero:
if x == 0 then

npc = npc + d;

else
endif;
This sequence matches the following pattern:
if operandl == 0 then

operand2 = operand2 + operand0;
else
endif;
Additionally the conditions that operand(is an immediate operand, operandl is a
register operand and operand2 is a PC-class register are tested and the instruction

is recognized as a branch-if-equal instruction.

4.4 Machine Description Generation

The instruction analysis phase gathers enough information about the processor for
generation of GCC machine description. In particular, it determines a set of named
instructions and their operands, and a set of mode rules that are ‘true operands’,
i.e., used in named instructions. This information, along with the information about

registers gathered during register analysis and mode rule analysis, is utilized in

39

generation of the files target.h, target.c and target.md.

4.4.1 Generation of target.h and target.c

In this phase the macros and enumeration types that define the general properties of
the processor, register classes, ranges of immediate constants and addressing modes
are generated in target.h. Table 4.1 shows the information generated in the header
file. Definitions of variables that are used in the md and header file, are generated

in target.c.

4.4.2 Generation of target.md

Finally, the instruction patterns are generated in the file target.md. Now, it is
possible to describe a given instruction set in a number of ways. We have adopted
a machine description generation strategy keeping simplicity in mind.

A single named define_ expand pattern is generated for each group of instructions
with same opcode and machine mode. Then an unnamed define_ insn pattern is gen-
erated for each subgroup of instructions whose patterns differ only in the constraints
of their operands. With branch patterns additional tst patterns are generated which
compare a register operand with constant 0 and stores the result in condition code
register.

Figure 4.3 shows two patterns for addition, taken from the generated md file for
PowerPC 603. The first one is a named define_ expand pattern, which is used at
the time of RTL generation. The second pattern is an unnamed define_ insn, which
is used later for matching and generation of assembly instruction. This pattern
specifies two alternative assembly instructions for addition. It also captures the fact
that addition is a commutative operation.

Figure 4.4 shows two named define_ erpand patterns, taken from the generated
md file for Sparc. The first one is for comparing a register with zero and setting the
condition code accordingly. The second one reads the condition code and decides
whether to branch to a target. GCC ensures that a st pattern and a branch pattern

are always used one after another during RTL generation. It is noteworthy that

40

‘ Category ‘ General Properties of Processor ‘
FIRST PSEUDO_REGISTER
FIXED REGISTERS
BITS PER_UNIT
BITS BIG ENDIAN
BYTES BIG_ ENDIAN
WORDS BIG ENDIAN

Category Register Classes

enum reg_class
GENERAL_ REGS
N REG CLASSES
REG_CLASS NAMES
REG CLASS CONTENTS
REGNO_REG _CLASS
REG_ CLASS FROM LETTER

Category Ranges of Immediate Constants
CONST_OK_ FOR_LETTER_P
Category Addressing Modes

BASE_REG_CLASS
INDEX REG_CLASS
REGNO OK_FOR_BASE P
REGNO_OK_FOR_INDEX P
REG_OK_FOR_BASE P
REG_OK_FOR_INDEX D
GO _IF_LEGITIMATE ADDRESS
CONSTANT ADDRESS P
EXTRA_CONSTRAINT

Table 4.1: Macros and enum Types Generated in target.h

41

(define_expand "addsi3"

[

(set

(match_operand:SlI 0 "general_operand" ")
(plus:Sl

(match_operand:SlI 1 "general_operand" ")
(match_operand:Sl 2 "general_operand" ")

)
)
]

)

(define_insn ™"

[

(set

(match_operand:SlI 0 "register_operand
(plus:Sl

(match_operand:Sl 1 "register_operand" "%a,a")
(match_operand:Sl 2 "register_operand” "a,a")

)

)

]

'@

add %0,%1,%2
addc %0,%1,%2"

)

=a,a")

Figure 4.3: Patterns for Adding Single Integers in the md File of PowerPC 603

42

the first define expand does not actually generate the tst pattern. It only stores its
operand in a global variable. The branch pattern actually does the work of both

test and branching and so, it uses this global variable.

4.5 Summary

We have developed techniques for rigorous semantic analysis of a Sim-nML pro-
cessor specification and automatic generation of GCC machine description from it.
The generated machine description is partially complete. Some of the reasons for

incompleteness in the generated machine description are as follows.

e A Sim-nML specification of the processor describes the instruction of the pro-
cessor. But as noted in chapter 3, GCC needs some additional information,
which are not present in it. In particular, information about the ABI, compiler
environment etc. are not present in the Sim-nML specification and so, are to

be added manually to the generated machine description.

e Incompleteness of the machine description can, in part, be attributed to the
limitations of the tool. During instruction analysis some complex action se-
quences had to be ignored, as noted in section 4.3. Also, instruction recognition
is heuristic in nature and cannot identify all possible and complex instruction

actions.

43

(define_expand "tstdi"

[

(set (cc0)

(match_operand:DI O "register_operand” ™)
)

]

{

target_cmp_op0 = operands|O0];
target_cmp_opl = const0_rtx;
DONE;

}

)

(define_expand "beq"

[

(parallel [

(set (pc)

(if_then_else

(eq (ccO) (const_int 0))
(label_ref (match_operand 0 ™ ™))
(pc)

)

)

(use (match_dup 1))

})

{

operands[1] = target_cmp_op0;

1
)

Figure 4.4: Test and Branch-if-equal Patterns in the md File of Sparc

44

Chapter 5

Results and Future Work

In this work we have developed techniques for extensive semantic analysis of a Sim-
nML processor specification, which led to automatic generation of a part of GCC
machine description from Sim-nML. GCC machine description generator has been
tested extensively with the Sim-nML specification of UltraSPARC IIi. The generated
description of SPARC has been integrated with GCC frontend and a minimal port
for Sparc64 has been built. We have also generated machine descriptions of MIPS
R10000, and PowerPC 603, which, though, have not been integrated with GCC

frontend.

5.1 GCC Port for Sparc64

We have generated the files target.md, target.h and target.c from the Sim-nML spec-
ification of UltraSPARC IIi. With some additional human effort the machine de-
scription has been completed and a minimal GCC port for Sparc64 has been built.

Generated md file has the patterns for instructions of arithmetic-logic type (e.g.
add, sub, div, udiv, and, zor), data movement type (mov), control transfer type (e.g.
beq, bne, bgt, ble), and comparison type (tst). The C header file contains definitions
of macros and enum types for the set of allocatable registers, addressability and
endianness of memory, register classes, ranges of immediate constants, addressing

modes etc., as noted in chapter 4. The C program file defines variables used in the

45

‘ File Name ‘ Status ‘ Lines of Code ‘

target.md Generated 1922
target.md | Generated + Hand-coded 2694
target.h Generated 261
target.c Generated 260

sparc.h Hand-coded 3617
sparc.c Hand-coded 1489
sol2.h Reused 185
sysvd.h Reused 221
svrd.h Reused 980

Table 5.1: Summary of the Effort Needed to Port Sparc64

generated md and header files.

All the three generated files together consist of 2434 lines of code. To complete
the port we have manually added the files sparc.h, sparc.c, sol2.h, sysvj.h and svr4.h
and edited target.md'. The size of the complete port is 9707 lines. However, some of
the additional files are specific to target families and so, have been reused. The table
5.1 summarises the total human effort spent to obtain the port. Our experience
shows that it is possible for a person, with reasonable exposure to GCC porting
mechanism, to build a port in 10 days using this tool. It is worth noting here that
the GCC 2.8.1 port for sparc-sun-sunosd.5 has 16718 lines of code. However, this
port describes several versions of SPARC cpu viz. V7, V8, V9, SuperSPARC etc.,
contains resource-usage information, supports sophisticated optimizations, position-
independent code generation etc.

GCC port for Sparc64 that we have built supports a subset of C language consist-
ing of integer arithmetic-logic, data movement, and control transfer. In unoptimized
compilation the quality of the produced code is comparable with that produced by
the manually ported GCC.

We show an example of the compilation process through a simple C program

that have been successfully compiled with the GCC port that we have built

'sparc.h includes generated target.h and sparc.c includes generated target.c

46

int main(void)
{
int i=0, j;
j=1+2;
if (j > 0)
1+
else
I--
return 0;

}

The SPARC V9 assembly version of the program, as produced by our GCC
port is shown below. We did not use any option except that for the generation
of assembly language output (-S). In our runtime system %i6 is the frame pointer
register. The variables i and j have been assigned stack slots (%i6 - 24) and (%i6
- 32) respectively. C type int has been mapped to a 64-bit word. Register %i0 is

the return value register in the callee’s window.

47

gce2 compiled.:

section ".text"
.align 4
.global main
type main,#function
.proc 03

main:
'#PROLOGUE# 0
save %sp,-224,%sp
'#PROLOGUE# 1
st %10, %fp+-36]
add %i6, -24, %gl
xor %g0, 0, %i4
stx %id, |%gl|
add %i6, -24, %gl
ldx |%gl|, %i4
add %i4, 2, %i4
add %i6, -32, %gl
stx %id, |%gl|
add %i6, -32, %g2
ldx |%g2|, %gl
brgz,pt %gl, .LL2
nop
ba .LL1

nop

48

.LL2:
add %i6, -24, %gl
1dx [Y%gl|, %id
add %id4, 1, %i4
add %i6, -24, %gl
stx %i4, [Y%ogl|
ba .LL3
nop
.LL1:
add %i6, -24, %gl
ldx |%gl|, %i4
add %i4, -1, %i4
add %i6, -24, %gl
stx %i4, [%ogl|
.LL3:
xor %g0, 0, %i0
ret
restore
ret
restore
.LLfel:
.size main,.LLfel-main

ident "GCC: (GNU) 2.8.1"

Future Directions

Some of the possible directions to which the work presented in this thesis can be

extended are given below.

e Work can be carried out to make generated machine description more complete
so that the total effort needed to obtain a GCC port is further reduced and

to improve the quality of the generated description so that the GCC port can

49

produce better code.

Resource usage information available in a Sim-nML specification can be ana-
lyzed to generate the definitions define function_unit, define_delay and de-
fine__ attribute, which will allow GCC to perform instruction scheduling and

delay slot scheduling.

Instruction analysis can be made more powerful so that bit-selection and con-

catenation can be handled elegantly.

Heuristics of instruction recognition can be improved so that complex action
sequences that normally appear in descriptions of CISC architectures can be

recognized.

Simple machine description generation strategy adopted by us can be replaced
by a more mature one so that more compact descriptions can be generated

and sophisticated optimizations can be supported.

Another possibility is to develop a new retargetable backend, that can be inte-
grated with an existing frontend. Techniques are to be developed for instruc-
tion selection, resource allocation, and instruction scheduling. Information
gathered during instruction analysis phase can be used in instruction selec-
tion. Further analysis of resource-usage is needed for resource allocation and

instruction scheduling.

20

Bibliography

[1]

2]

3]

4]

5]

[6]

7]

8]

9]

S. Chandra and R. Moona. Retargetable functional simulator using high level pro-
cessor models. In Proceedings of the 13th International Conference on VLSI Design,
Calcutta, India., January 2000.

Sanjeev Kumar and V. M. Malhotra. Automatic Retargetable Code Generation:
A New Technique. Foundations of Software Technology and Theoritical Computer
Science, Lecture Notes in Computer Science, vol. 241, Springer-Verlag, 1986.

Fauth A., Praet Vwn J. , and M. Freericks Describing In-
struction Sets Using nML (Extended Version). Available at:
ftp://ftp.imec.be/pub/vsdm/reports/retargetable code_generation/af-edtc95.ps.gz,
1995.

S. D. G. Hadjiyiannis, Silvina Hanono. ISDL: An instruction set description language
for retargetability. In Proceedings of the 34th DAC, June 1997.

M. Ganapathi and C. N. Fischer. Affix grammer driven code generation. ACM
TOPLAS, 7(4), October 1985.

R. S. Glanville and S. L. Graham. A new method for compiler code generation.
In Fifth ACM Symposium on Principles of Programming Languages, pages 231-240,
1978.

N. C. Jain. Disassembler wusing high level processor models. Mas-
ter’'s thesis, Dept. of Computer Science and Engg., IIT Kanpur, India,
http://www.cse.iitk.ac.in /research /mtech1997/9711113.html, January 1999.

S. Kumari. An automatic assembler generator for sim-nml description lan-
guage. Master’s thesis, Dept. of Computer Science and Engg., IIT Kanpur, India,
http://www.cse.iitk.ac.in /research /mtech1998 /9811119.html, March 2000.

Rajesh V. A Generic Approach to Performance Modeling and its Application to
Simulator Generator. Master’s thesis, Dept. of Computer Science and Engg., I1IT

Kanpur. Available at: http://www.cse.iitk.ac.in/sim-nml/index.cgi.

ol

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Subhash Chandra Y. Retargetable Functional Simulator. Master’s the-
sis, Dept. of Computer Science and Engg., IIT Kanpur. Available at:
http://www.cse.iitk.ac.in/sim-nml /index.cgi.

Lanneer D., Praet J. V., Kifli A., Schoofs K., Geurts W., Thoen F. and Goossens G.
CHESS: Retargetable Code Generation for Embedded DSP Processors. In Code Gen-
eration for Embedded Systems. Kluwer Academic Publishers, 1995.

P. Marwedel. The MIMOLA Design System: Tools for the design of digital processors.
In Proceedings of the 21st DAC, pages 587-593, 1984.

S. Mondal. Compiler back-end generation using nml machine description.
Master’s thesis, Dept. of Computer Science and Engg., IIT Kanpur, India,
http://www.cse.iitk.ac.in /research /mtech1997,/9711117.html, June 1999.

Hanson D., Fraser C. W. and Proebsting T. Engineer-
ing a simple, efficient code generator generator. Available at:
http://sunsite.org.uk /Mirrors/ftp.cs.princeton.edu/pub/lcc/contrib.

Paulin. Flexware: A flexible firmware development environment for embedded sys-
tems. In Code Generation for Embedded Systems. Kluwer Academic Publishers, 1995.
P. Pogde. Retargettable code generation using sim-nml machine description.
Master’s thesis, Dept. of Computer Science and Engg., IIT Kanpur, India,
http://www.cse.iitk.ac.in /research /mtech1998 /9811114.html, May 2000.

V. Rajesh and R. Moona. Processor modeling for hardware software co design. In Pro-
ceedings of the 12th International Conference on VLSI Design, Goa, India., January
1999.

R. Ravindran. Retargetable profiling tools and their application in cache simulation
and code instrumentation. Master’s thesis, Dept. of Computer Science and Engg.,
IIT Kanpur, India, http://www.cse.iitk.ac.in /research /mtech1998 /9811116.html, Dec
1999.

R. Ravindran and R. Moona. Retargetable cache simulation using high level proces-
sor models. In Proceedings of the 6th Australasian Computer Systems Architecture
Conference, Gold Coast, Australia, January 2001.

S. D. Silvina Hanono. Instruction selection, resource allocation and scheduling in the
aviv retargetable code generator. In Proceedings of the DAC, June 1998.

R. M. Stallman. Using and Porting GNU CcC.
http://gec.gnu.org/onlinedocs/gee.html.

52

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

Aho Alfred V., M. Ganapathi, and S. Tjiang. Code generation using tree pattern
matching and dynamic programming. ACM TOPLAS, 11(4), October 1989.

Aho Alfred V., Sethi Ravi, and Ullman Jeffrey D. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1999.

Muchnick Steven S. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, 1997.

Marwedel P. Compilers for Embedded Processors. Available at: http://Is12-
www.cs.uni-dortmund.de/publications/global _index.html

Malik S. Optimal Code Generation For Embedded Memory Nonhomogeneous Register
Architectures. In 8th International Symposium on System Synthesis (ISSS), 1995.
Leupers R., Marwedel P. Retargetable Generation of Code Selec-
tors from HDL Processor Models. Available at: http://Is12-www.cs.uni-
dortmund.de/publications/global _index.html

Stanford Compiler Group. The SUIF Library. 1.0 edition, 1994. Available at
http://suif.stanford.edu.

SPAM Research Group. SPAM Compiler User’s Manual. 1.0 edition, 1997. Available
at: www.ee.princeton.edu/spam/

Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt and
Alex Nicolau. EXPRESSION: A Language for Architecture Exploration through Com-
piler/Simulator Retargetability. Available at: http://www.cecs.uci.edu/

S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. LISA - Machine Description
Language for Cycle-Accurate Models of Programmable DSP Architectures Available
at: http://www.ert.rwth-aachen.de/Projekte/Tools/LISA /index.html

Mescal (Modern Embedded Systems: Compilers, Architectures, and Languages).
http://www.gigascale.org/mescal /index.html

Sim-nML Processor Description Language. http:/ /www.cse.iitk.ac.in /sim-
nml/index.cgi.

Ziovojnovic V., Tjiang S., and Meyr H. DSPstone: A DSP-oriented Benchmark-
ing Methodology. In International Conference on Signal Processing Applications and
Technology (ICSPAT), 1994.

Weaver D. L. and Germond T. The SPARC Architecture Manual, Version 9. SPARC
International, Inc., 1994.

Sun Microsystems. UltraSPARC - 1IIi User’'s Manual. Available at:
http://www.sun.com/microelectronics/UltraSPARC /index.html.

23

[37] GNU Compiler Collection. http://gcc.gnu.org

o4

Appendix A

GCC Internals

In this appendix we present some useful information about GCC internals. Em-
phasis will be given on a comprehensive organization. Much of the information
provided here are available at http://gcc.gnu.org/onlinedocs/gec.html [21]. Some

more information is gathered from GCC 2.8.1 sources and is presented here.

A.1 Components of GCC Compiler Suite

Following are the software components needed for the functioning of GCC. Some of
these come with GCC, while others are provided by the system or one third party

software.

e Preprocessor (cpp, cccp).

e Compiler proper (ccl, cclplus, cclobj, f771).
e Assembler (e.g. as, provided by the system).

e Linker and a linker frontend (1d, collect2).

e Headers (GCC specific headers are searched in prefix/gcc-1lib/target-name
/gcc-version/include and system headers are searched in local-prefix/include.
‘prefix’ defaults to /usr/local/lib/ and local-prefix defaults to /usr/local/).

95

e Library (GCC provides the following libraries: libgcc, libgccl, libg2c,
libobjc, libstdc++).

e Start up files (e.g. crtbegin.o, crtend.o etc).

e Compiler driver (gcc, g++, g77).

A.2 A Grouping of RTL Expression Codes

In this section we classify the RTX codes on the basis of their uses.

A.2.1 Operands

Following RTL expressions can appear as operands in the side-effects of insns.

g Constants

RTX codes representing constant operands are as follows.

const_int, const double, const _string, symbol ref, label ref, const, high.

B Registers and Memory

RTX codes representing register and memory operands are as follows.

reg, subreg, scratch, cc0, pc, mem, addressof.

g Bit Fields

Following RTX codes represent bit-fields within a register or memory location.

sign _extract, zero extract.

B Type Conversions

Following RTX codes are used for converting types of operands.
sign_extend, zero extend, float extend, truncate, float truncate, float, un-

signed float, fix, unsigned fix.

26

B Declaration

The following RTX is used to declare that only lower half of the operand will be
modified.

strict _low_part.

A.2.2 Operations

In this subsection we group the RTX codes used to represent operations in a side-

effect of an insn.

B Arithmetic-Logic

Following RTX codes represent arithmetic-logic operations. These RTXes produce
values, which are same as the result of the operation.

plus, lo_sum, minus, compare, neg, mult, div, udiv, mod, umod, smin, umin,
smax, umax, not, and, ior, xor, ashift, Ishiftrt, ashiftrt, rotate, rotatert, abs, sqrt,
ffs.

8 Comparison

Following RTXes represent comparison operations. These RTXes can be used to

compare two registers, or a register and a constant, or a condition code and (const_int

0).

eq, ne, le, leu, 1t, ltu, ge, geu, gt, gtu, if then else, cond.

A.2.3 Side Effects

Following RTXes represent functionality of an insn. They do not produce any value.
But they may modify a processor state.
set, return, call, trap _if, clobber, use, parallel, sequence, asm _input, asm__output,

unspec, unspec_volatile, addr_vec, addr__diff vec.

57

A.2.4 Embedded Side Effects

These are special side-effects which may be associated with memory addresses.

pre_dec, pre_inc, post dec, post_inc.

A.2.5 Insns

Following is a list of RTX codes for insns.

insn, call insn, jump _insn, note, barrier, code label.

A.2.6 RTL Templates

Following is a list of RTXes which are used as place-holders for operands or opera-
tions within a pattern in the md file.
match operand, match scratch, match dup, match operator, match parallel,

match op dup, match par dup, address.

A.2.7 Definitions

Following RTX codes are used to define various things, for example, instructions,
functional units, etc., inside an md file.
define expand, define insn, define peephole, define split, define combine!,

define delay, define function unit, define attr.

A.3 A Grouping of Standard GCC Names

In this section we present a classification of standard pattern names used in GCC

machine description.

A.3.1 Data Movement

Following names are used for instruction patterns which move data between two

registers, or between a register and a memory location etc.

lynused in GCC 2.8.1

o8

movmode, reload _inmode, reload outmode, movstrictmode, load multiple, store multiple,

movemodecc.

A.3.2 Arithmetic-Bitwise Operations

Following names represent instructions which perform arithmetic-logic operations
on their operands and store the result.

addmode3, submode3, mulmode3, divmode3, udivmode3, modmode3, umodmode3,
sminmode3, uminmode3, smaxmode3, umaxmode3, mulhisi3, mulqihi3, mulsidi3,
umulhisi3, umulqihi3, umulsidi3, mul3 _hipart, umul3 hipart, divmodmode3, udiv-
modmode3, negmode2, absmode2, sqrtmode2.

andmode3, iormode3, xormode3, ashlmode3, ashrmode3, Ishrmode3, rotlmode3,

rotrmode3, one__cmplmode2, fismode2, insv, extv, extzv.

A.3.3 Type Conversions

Following names are used for instructions which convert the type of data.
floatmn2, floatunsmn2, fixmn2, fixunsmn2, ftruncmode2, fix_truncmn?2, fix _unstruncmn?2,

truncmn?2, extendmn2, zero extendmn?2.

A.3.4 Comparisons

These are names for instructions which compare their operands and store the result
in a condition code or any ordinary register.

cmpmode, tstmode, scond.

A.3.5 String Operations

Instructions with following names perform operations on string.

movstr, clrstr, cmpstr, strlen.

A.3.6 Control Transfers

Instructions with following names are responsible for constrol transfer.

29

bcond, indirect jump, jump, call, call value, call pop, call value pop, un-
typed call, return, untyped return, casesi, tablejump, nonlocal goto, nonlocal goto receiver,

exception _receiver, builtin_setjmp receiver.

A.3.7 Stack Operations

Following names are for instructions that access and manipulate stack.
save stack block, restore stack block, save stack function, restore stack function,

save stack nonlocal, restore stack nonlocal, allocate stack, probe, check stack.

A.3.8 Others

Names which do not fit into any of the above categories are listed here.

nop, canonicalize funcptr for compare.

A.4 Useful RTX Related Functions and Macros

Several functions and macros are defined in the source files of GCC, which are used
to read and manipulate RTL expressions. These macros are often used in the GCC
machine descriptions. In this section we present a list of these macros. The exact

definitions can be found in the corresponding source files.

B8 Macros Defined in rtl.h

GET_CODE(),

PUT _CODE(),
GET_RTX(),
LENGTH(),
GET_RTX_FORMAT(),
GET_RTX_CLASS(),
XEXP(),

XINT(),

XWINT(),

60

XSTR(),
XVEC(),
XVECLEN(),
XVECEXP(),
GEN_INT().

g Functions Defined in rtl.c

read _rtx().

8 Functions Defined in emit-rtl.c

gen rtx(), gen reg rtx(), gen label rtx().

8 Functions Defined in print-rtl.c

print _rtx(), print_ rtl().

A.5 Machine Mode Related Macros

A list of macros defined in differnt source files of GCC, which are used to access

machine modes, are presented below.

B8 Macros Defined in rtl.h

GET_MODE(),
PUT_MODE().

8 Macros Defined in machmode.h

GET_MODE_NAME(),

GET_MODE_ CLASS(),

INTEGRAL MODE_P(),
FLOAT MODE_P(),

61

GET_MODE_SIZE(),
GET_MODE_UNIT_SIZE(),
GET_MODE_NUNITS(),

GET_ MODE_BITSIZE(),
GET_MODE_MASK(),
GET_MODE_WIDER_MODE(),
GET_MODE_ALIGNMENT(),
GET_CLASS NARROWEST MODE().

A.6 Functions Related to Insns

In this section we list the functions which are responsible for emitting insns. These
functions are sometimes used in machine descriptions to explicitly control the gen-

eration of insns.

g Functions Defined in emit-rtl.h

emit _insn(), emit call insn(), emit jump insn().

A.7 Set of Built-in Predicates

A set of basic predicates are defined in the sources of GCC. Here we present a list

of them.

p rtlc defines a set of useful predicates

general operand, register operand, immediate operand,
const _int operand, const double operand, non immediate operand,
memory _operand, nonmemory operand, indirect operand,

push operand, address operand, comparison _operator.

62

A.8 Notion of an Address

There is a notion of an address of a memory location within GCC. The memory
location may contain data or may be target of a control transfer. For example, the
first operand of a mem RTX is the address of a memory location. Similarly, the
first operand of an indirect jump or jump pattern is an address, which specifies the

target of the jump.

A.8.1 RTXes used as Addresses

These are the RTXes which may be used as addresses.

const_int, const _double, symbol ref, label ref, high, const, RTXes for arith-
metic operations and conversion (see A.2.1 and A.2.2), addressof, scratch, reg, mem
(a mem RTX may refer to the contents of a memory location, which may in turn be
an address. A mem RTX may also refer to the address of a memory location, for

example, in the case, when constraint letter ‘p’ is used.).

A.8.2 Definition of a Valid Address

Following macros, predicates and constraints are used to define the notion of a valid

address:

B Macros Defined in target.h

CONSTANT ADDRESS P,

GO _IF LEGITIMATE ADDRESS,

REG OK FOR BASE P,
REG_OK_FOR_INDEX P,
GO_IF_MODE_DEPENDENT ADDRESS,
REG MODE OK FOR_BASE P,

MAX REGS PER ADDRESS,

HAVE POST INCREMENT,

HAVE PRE_INCREMENT,

63

HAVE POST DECREMENT,

HAVE PRE DECREMENT,
LEGITIMIZE ADDRESS,
EXTRA_CONSTRAINTS,
BASE REG CLASS,
INDEX REG CLASS,
REGNO_OK_FOR_BASE_P,
REGNO_OK_FOR_INDEX_P,
REGNO MODE OK FOR BASE P,
PRINT OPERAND ADDRESS.

g Predicates Defined in recog.c

address_operand, memory operand, indirect operand, general operand.

i Constraint Letters Defined in constrain _operands() in recog.c

m: allows a memory operand with any kind of address

o: allows a memory operand, but only if the address is offsettable

V: aloows a memory operand, only if its address is not offesttable

<: allows a memory operand with autodecrement addressing (both predecrement
and postdecrement are allowed)

>: allows a memory operand with autoincrement addressing (both preincrement
and postincrement are allowed)

p: represents an operand that is a valid memory address

A.9 Translation of C Level Data to Machine Level

Figure A.1 shows the way GCC translates C level data to hard registers, or memory
locations, or immediate constants. Information needed in each step are presented

below.

64

Basic C Types:
char, short, int, long,
float, double, long double,
pointers

|

Machine Modes:
Ql, HI, SI, PSI, DI, PDI, Tl, OI,

QF, HF, TQF, SF, DF, XF, TF,
VOID

) =

byte_mode,
word_mode,
ptr_mode, Pmode

Hard Registers Memory Locations

Figure A.1: Translation of Data

65

Constants

A.9.1 Translation to Machine Modes

In this subsection we present a list of macros and definitions which contain the
information needed for translating basic C types to GCC machine modes.

1. Definitions of machine modes (in terms of number of units per mode) in mach-
mode.def

2. Macros defined in target.h:

BITS PER_UNIT,

INT TYPE_ SIZE,

SHORT TYPE SIZE,

LONG_TYPE SIZE,

CHAR_TYPE_SIZE,

FLOAT TYPE_SIZE,

DOUBLE_ TYPE_SIZE,

LONG_ DOUBLE _ SIZE,

MAX FIXED MODE _SIZE.

A.9.2 Definitions of byte_mode, word_mode etc

Following are the macros which contain the information needed for defining the
variables byte_ mode and word_mode.

1. Macros defined in target.h

BITS PER_WORD,

UNITS _PER_WORD,

POINTER _SIZE,

Pmode,

POINTER EXTENDED UNSIGNED.

A.9.3 Mapping to Hard Registers

Following macros help in mapping high-level language operands to registers of the
machine.

1. Macros and enum types defined in target.h

66

FIRST PSEUDO_ REGISTER,

REGISTER NAMES,

FIXED REGISTERS,

CALL_USED_ REGISTERS,

HARD REGNO_NREGS,

HARD_ REGNO_ MODE _ OK,

MODES TIEABLE P,

BITS BIG_ ENDIAN,
BYTES BIG ENDIAN,
WORDS BIG ENDIAN,

FLOAT WORDS_ BIG_ENDIAN,
PROMOTE _MODE,

PROMOTE_ FUNCTION ARGS,
PROMOTE_ FUNCTION RETURN,
PROMOTE_ FOR_CALL_ONLY,

TARGET FLOAT FORMAT,

REG CLASS FROM LETTER,

N REG _CLASSES,

enum reg_class,

REG_CLASS NAMES,

REG _CLASS CONTENTS,

PREFERRED RELOAD CLASS,
PREFERRED OUTPUT_ RELOAD CLASS,
SECONDARY INPUT_ RELOAD _CLASS,
SECONDARY OUTPUT_ RELOAD CLASS,
SECONDARY MEMORY NEEDED,
CLASS MAX NREGS, EXTRA CONSTRAINT.
2. Predicates defined in recog.c

general operand, register operand.

67

A.9.4 Mapping to Memory Locations

Following macros contain information needed for mapping high-level language operands
to memory locations.

1. Macros defined in target.h

BITS BIG ENDIAN,
BYTES BIG _ENDIAN,

WORDS BIG_ENDIAN,

PARM_ BOUNDARY,

BIGGEST ALIGNMENT,

MINIMUM _ATOMIC ALIGNMENT,
BIGGEST FIELD ALIGNMENT,
DATA ALIGNMENT,

STRICT ALIGNMENT,

ADJUST FIELD ALIGN,

EMPTY FIELD BOUNDARY,
STRUCTURE SIZE BOUNDARY,
PCC_BITFIELD TYPE MATTERS,
GO _IF _LEGITIMATE ADDRESS.
2. Predicates defined in recog.c

general operand, memory operand,

indirect operand, address operand.

A.9.5 Translation of Constants

Constants or literals that appear in a high-level language program are translated
to immediate operands of instructions or memory objects. The following macros
contain information needed for this translation.

1. Macros defined in target.h

LEGITIMATE CONSTANT P,

CONSTANT ALIGNMENT,

REAL VALUE TYPE,

TARGET FLOAT FORMAT,

68

CHECK FLOAT VALUE,

REAL VALUE TO _ TARGET SINGLE,
REAL VALUE TO_ TARGET_ DOUBLE,
REAL VALUE TO_ TARGET_ LONG_ DOUBLE,
REAL VALUE TO_ DECIMAL,

ASM_ OUTPUT _ASCII,
ASM_OUTPUT_BYTE,

ASM_OUTPUT _CHAR,

ASM_ OUTPUT _ SHORT,

ASM_ OUTPUT INT,
ASM_OUTPUT_DOUBLE_INT,
ASM_OUTPUT_QUADRUPLE _INT,
ASM OUTPUT_ BYTE FLOAT,

ASM OUTPUT_ SHORT FLOAT,
ASM_OUTPUT_THREE QUARTER _ FLOAT,
ASM_OUTPUT_FLOAT,

ASM OUTPUT_ DOUBLE,

ASM OUTPUT LONG_ DOUBLE,
PRINT OPERAND.

2. A macro defined in rtl.h

CONSTANT P.

3. Predicates defined in recog.c

general operand, immediate operand,

const int operand, const double operand.

69

Appendix B

genmd2 Maintainer’s Guide

This appendix contains some information useful for maintaining the tool genmd2.
This tool implements the techniques for generating GCC machine description from
Sim-nML. This appendix complements the comments associated with the source
files.

B.1 Source Files

Source files are stored inside a CVS repository and all the versions of the files can
be retrieved from the repository. Log messages associated with the versions may be
useful in tracking past changes.

Following files and directories can be found in the root of the distribution of

genmd2.

e genbackend.c: The toplevel module that contains the main() function. It
drives all the phases of the backend generator in order as discussed earlier.

Further it also parses the command line arguments and reads the configuration
file.

e irview.c: Reads the Sim-nML IR.

e registers.c: Contains code for the register analysis and generation of target.h

and target.c.

70

flattenModes.c: Contains code for the mode rule analysis.

analyze-mode.c: This code is used for register analysis, mode rule analysis

and mode rule synthesis.
flatten.c: action flattener.
flatten syntax.c: syntar flattener.

analyze-insn.c: Instruction analysis. Does some work associated with flat-

tening.

recog.c: Instruction recognition. Also assigns constraint letters to ‘true

operand’ mode rules.
emit insn.c: Generates target.md.
include: A directory containing header and definition files.

include/systypes.h: Defines some system specific types used within the

sources.
include/decls.h: Declarations of global variables and functions.
include/tables.h: Data structures for Sim-nML IR.

include/operands.h: Data structures for mode tables and register analysis.
include/instructions.h: Data structures for instruction table.
include/syntax.h: Data structures for syntax table.
include/md_operands.h: Data structures for named instruction patterns.
include/opcodes.def: Defines the opcodes used within standard GCC names.

include/modifiers.def: Defines the RTXes used as modifiers of values or

operands.
Makefile: Make file.

71

e test: Working directory. ‘make’ generates the binary executable of the tool

in this directory.

e test/template.conf: A template for a configuration file.

B.2 Intermediate Dumps

genmd?2 produces intermediate dump files at several phases. These files are useful

for debugging the tool.

e meminfo.table: Produced by register analysis.
e mode.table: Dump of mode table, produced by mode rule analysis.

e sec_mode .table: Dump of secondary mode table, produced by mode rule

analysis.

e base index disp.table: Maps of base, index, and window pointer registers

and range of valid displacement. It is produced after mode rule analysis.

e instr.table: Intermediate version of instruction table, produced during action
flattening. May contain some extra instructions and may not show some valid

instructions.
e syntax.table: Syntax table, which is produced after syntax flattening.
e instrl.table: Instruction table, which is produced after flattening is complete.

e par stmtl.table: Instruction table, which is produced after morphing of

parameters.

e par_ stmt2.table: Instruction table, which is produced after all temporaries

are removed.

e par_ stmt3.table: Instruction table, which is produced after PC assignments

are deleted.

72

e syntaxl.table: Syntax table, which is produced after instruction analysis is

complete.

e third mode.table: Mode table, which is produced after instruction analysis

is complete.

e fourth mode.table: Secondary mode table, which is produced after instruc-

tion analysis is complete.

e base index displ.table: Maps of base, index, and window pointer regis-

ters and range of valid displacement. It is produced after instruction analysis.

B.3 A Grammar for Value Expressions

Following is a partial specification of the grammar used by our tool for a recur-
sive analysis of the prefix expressions which can appear as values of mode and
rules. This grammar is a subset of the Sim-nML grammar for expressions which
can appear as a value. The original Sim-nML grammar is too general, too complex
and often, can result in value expressions that are impractical. The names of ter-
minal symbols (all capitalized) conform to the names of OPERATOR_TYPE and
BYTE TYPE enumeration constants, as defined in include/tables.h. VallndexExpr
represents an expression which can be used as an index of a register or a memory
location. ValCondExpr represents an expression that can be used as a condition in
an if-then-else-endif expression.
ValExpr :

ID

| COERCE ValTypeExpr CARDINAL_CONSTANT CARDINAL_CONSTANT ValExpr

| . ID ID

| DCOLON ValExpr ValExpr

| INDX ID VallndexExpr

| BITLR INDX ID ValIndexExpr ValBitExpr ValBitExpr

| BITLR ID ValBitExpr ValBitExpr

| + ValExpr ValExpr

73

ValExpr ValExpr
| * ValExpr ValExpr
| / ValExpr ValExpr
| % ValExpr ValExpr
| EXP ValExpr ValExpr
| LSFT ValExpr ValExpr
| RSFT ValExpr ValExpr
| RLFT ValExpr ValExpr
| RRHT ValExpr ValExpr
| < ValExpr ValExpr
| > ValExpr ValExpr
| LEQ ValExpr ValExpr
| GEQ ValExpr ValExpr
| EQ ValExpr ValExpr
| NEQ ValExpr ValExpr
| LAND ValExpr ValExpr
| LOR ValExpr ValExpr
| LXOR ValExpr ValExpr
| BUNOT ValExpr
| AND ValExpr ValExpr
| OR ValExpr ValExpr
| ' ValExpr
| FIXED_CONSTANT
| CARDINAL_CONSTANT
| BINARY_CONSTANT
| HEX_CONSTANT
| IF ValCondExpr ValExpr OptValExpr

ValTypeExpr
BOOL
| CARD
| INT

74

| FIX

| FLOAT

| RANGE

| ENUM
ValBitExpr :

CARDINAL_CONSTANT
OptValExpr :

NULL

| ValExpr

75

Appendix C

genmd2 User’s Manual

genmd2 is the tool that implements the techniques for GCC machine description
generation from Sim-nML, as outlined in this thesis. The inputs to the tool are
a Sim-nML IR file and a configuration file. The tool generates the files target.h,

target.c and target.md.

C.1 System Requirements

The tool has been successfully tested under the following conditions. The tool is

expected to work in any compatible systems.
e Processor: Intel Pentium III, 32 bit, Little Endian

e OS Kernel: Linux 2.2.15-mdk

Compiler: GCC 2.95.3 19991030 (prerelease), used for building the tool.

Libraries: GNU C Library Version 2.1 Beta, used for building the tool.

Binary Utilities: GNU Binary Utilities Version 2.9.5, used for building the

tool.

76

C.2 Installation

A make file is provided along with the source of genmd2. The tool can be built
using this make file by giving the following the following command at the root of
the source tree
make

The tool will be built and stored as a binary executable file test/genmd2. The

compiled binary can be moved to any directory.

C.3 Running the Tool

Following is the comand line specification for the tool:
genmd2 ir_file_name [OPTIONS] [-c config_file_name]
genmd?2 is the name of the binary executable file for the tool.
ir_file_name is the name of the Sim-nML IR file.
The tool genmd2 supports the following command line options:
-s SP__REG : Specifies the stack pointer register name.
-f FLAG_REG : Specifies the condition code regsiter name.
-p PC_REG : Specifies the name of the program counter.
The user can optionally specify a configuration file which is a flexible and power-
ful way to provide additional information about the processor. On a conflict between
the information provided through a command line option and the configuaration file

the information from the command line is ignored.

C.4 Configuration File

The configuration file consists of a number of sections. Each section can have zero
or more entries. A section with zero entries can be omitted.

An entry in a section refers to a single register and is a single line of the following
form

register_file_name:index_in_the_register_file

7

If the register being referred to is not in a register file then the regsiter file _name
is same as the name of the register and the index is 0.
A configuration file ends with the following line:
/end
A template for a configuration file is provided along with the source in test/template.conf
file.

C.4.1 PC Section

PC section begins with the line
pc
and ends with the line
/pc
Its entries refer to PC-class registers e.g. PC, next-PC etc.

C.4.2 CC Section

CC section begins with the line
cc

and ends with the line
/cc

Its entries refer to the condition code registers.

C.4.3 SP Section

SP section begins with the line
sp

and ends with the line
/sp

It has an entry for the stack pointer register.

78

C.4.4 Return Address Pointer Section

Return address pointer section begins with the line
rap
and ends with the line

/rap
It has an entry for the return address pointer register.

79

