
Instru
tion Ca
he Address Predi
tion forSupers
alar Pro
essors
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

byShankar Seal

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurJanuary, 2001

Certi�
ate
This is to
ertify that the work
ontained in the thesis entitled �Instru
tionCa
he Address Predi
tion for Supers
alar Pro
essors�, by Shankar Seal, has been
arried out under my supervision and that this work has not been submitted elsewherefor a degree.

January, 2001 (Dr. Rajat Moona)Department of Computer S
ien
e & Engineering,Indian Institute of Te
hnology,Kanpur.

A
knowledgementsI would like to take this opportunity to express my gratitude to my thesis supervisorDr. Rajat Moona. He has helped me at every stage of this work with his innovativeideas and his deep knowledge of the subje
t, without whi
h this thesis
ould not havebeen possible. He has always been very understanding,
ompassionate, en
ouragingand helpful to me.I am thankful to all the fa
ulty members of the department of Computer S
ien
eand Engineering, for helping me have a better understanding of various subje
ts of
omputer s
ien
e. I am also thankful to Atul Kumar, P. Suresh and Rajiv A. R. forhelping me in various aspe
ts of this work.I would like to all my
lassmates of the Mte
h'99 bat
h for being supportive andhelpful friends.I am grateful to my parents for their blessings and en
ouragement. Finally Iwould like to thank Sudeshna, who has been a
onstant sour
e of inspiration to me.

iii

Contents
A
knowledgements iii1 Introdu
tion 11.1 Problem Statement . 21.2 Related Works . 31.3 Goals A
hieved . 41.4 Organization . 42 Bran
h Predi
tion Me
hanism 62.1 What is Bran
h Predi
tion . 62.2 Stati
 vs. Dynami
 Bran
h Predi
tion 72.3 Dynami
 Bran
h Predi
tion . 72.3.1 Counter Based Bran
h Predi
tion 72.3.2 Correlation Based Bran
h Predi
tion 92.4 Bran
h Target Bu�er . 102.5 Bran
h Predi
tion s
hemes in re
ent Pro
essors 112.6 Simulation . 123 Address Tra
e Generation 133.1 Overview . 133.2 Features of SPARC Ar
hite
ture . 143.2.1 Registers . 143.2.2 Delayed Control Statement . 153.2.3 SAVE and RESTORE Instru
tions 15iv

3.2.4 Fun
tion Call and Parameter Passing 163.3 Code Instrumentation . 173.3.1 Instrumentation of the Bran
h instru
tion 173.3.2 Instrumentation of the Call Instru
tion 183.3.3 Instrumentation of the Return Instru
tion 223.4 Other Details . 223.5 Drawba
ks . 234 Next Ca
heline Predi
tion 274.1 The Design . 274.1.1 Working Prin
iple . 284.1.2 Cold Start . 284.1.3 A Modi�ed Design . 294.2 Di�erent Performan
e Issues . 294.2.1 Problem 1 . 304.2.2 Problem 2 . 314.2.3 Bran
h Target Bu�er and Ca
heline Predi
tion 334.2.4 Problem 3 . 334.3 Advantages . 365 Simulator 375.1 Overview of Simulator . 375.2 Con�guration File . 385.3 Event Queue Modeling . 385.4 Modeling . 425.4.1 Instru
tion Ca
he . 435.4.2 Predi
tion Tables . 435.4.3 Instru
tion Address Queue . 456 Experimental Results 466.1 Ar
hite
ture Con�guration . 476.2 experimental Results . 486.3 Figures . 48v

7 Con
lusion and Future Work 537.1 Future Dire
tions . 54

vi

List of Tables6.1 Ben
hmark Programs . 466.2 Number of Instru
tions in di�erent Ben
hmark Programs 47

vii

List of Figures3.1 The foo fun
tion repla
ing a bran
h instru
tion 193.2 The foo fun
tion repla
ing a
all instru
tion 213.3 The foo fun
tion repla
ing a ret instru
tion 253.4 foo fun
tion for jmp %o0 . 264.1 Wrong Predi
tion due to Ca
he Repla
ement 314.2 Pseudo Ca
he Miss . 324.3 Mismat
h Due to De
oupling of BTB and Set Way Predi
tion Table:Case 1 . 344.4 Mismat
h Due to De
oupling of BTB and Set Way Predi
tion Table:Case 2 . 355.1
on�guration �le . 395.2
on�guration �le
ontinued . 406.1 Clo
k
y
les taken for exe
utinmg di�erent ben
hmark programs un-der di�erent predi
tion s
hemes. I-Ca
he: 16 KB BTB: 32 entriesSWPT: 32 entries BPT: 1024 entries 486.2 I-Ca
he: 16 KB BTB: 256 entries SWPT: 256 entries BPT: 1024 entries 496.3 I-Ca
he: 32 KB BTB: 32 entries SWPT: 32 entries BPT: 1024 entries 496.4 I-Ca
he: 32 KB BTB: 256 entries SWPT: 256 entries BPT: 1024 entries 506.5 Variation in mismat
h with
a
he asso
iativity for Perl Interpreter . . 516.6 Variation in mismat
h with
a
he asso
iativity for Lisp Interpreter . . 52
viii

Chapter 1Introdu
tionThe re
ent pro
essors like RS10000, Sun UltraSPARC et
. employ supers
alar ar
hi-te
ture. These pro
essors issue multiple instru
tions per
y
le and employ multiplefun
tional units and hardware s
heduling te
hniques to a
hieve maximum paral-lelism at the instru
tion level. To exploit maximum e�
ien
y su
h multiple issuepro
essors must be fed by high instru
tion fet
h bandwidth. The instru
tion fet
hunit must fet
h enough instru
tions every
y
le to keep the fun
tional units busy.No
lo
k
y
le should go idle and thus several instru
tions need to be fet
hed atevery
lo
k
y
le.Meeting these performan
e requirements from the instru
tion fet
h unit, dependsamong other fa
tors on the I-
a
he performan
e and the bran
h predi
tion me
h-anism. In multi-way set�asso
iative
a
hes, data
an reside in one of many
a
heblo
ks within a
a
he set. The data is stored along with a tag whi
h is derived fromthe memory address where the data is a
tually stored. In
onventional multi-wayset-asso
iative I-
a
he, an instru
tion is read in the following way. The addressgenerated by the pro
essor is divided into two parts � tag and index. The indexsele
ts the set of the I-
a
he to be a

essed. The tag is
ompared simultaneouslywith the
a
he blo
ks tags of all the blo
ks in the set. The data is read from theblo
k whose tag mat
hes with the instru
tion tag. If none of the stored tags mat
heswith the instru
tion tag, then a
a
he miss o

urs and the instru
tion is read fromthe other levels of the memory hierar
hy. With very fast
lo
k
y
les, this whole1

pro
edure requires more than one
lo
k
y
le to
omplete. It is expe
ted that thefuture pro
essors, whi
h are likely to have a very deep pipeline, will require severalpipeline stages to fet
h instru
tions.Control hazards also play a
ru
ial role in performan
e of the CPU. A
ondi-tional bran
h instru
tion
an potentially
hange the �ow of program. Before thisinstru
tion is exe
uted, and the bran
h out
ome is known, the address of the nextinstru
tion is not known. Spe
ulative fet
hing of instru
tions (assuming the bran
his not taken)
an lead to the non-utilisation of the pipeline, if the bran
h is a
tuallytaken, thus wasting
lo
k
y
les. These unresolved bran
h instru
tions give rise tothe
ontrol hazard. There are several methods of dealing with this problem and toredu
e the asso
iated penalties. The simplest method is to stall the pipeline on
e abran
h instru
tion is dete
ted. The other methods are to support delayed bran
hes,or bran
h predi
tion s
hemes. In the latter te
hnique, the likely out
ome of thebran
h instru
tion and the target address, are predi
ted before the bran
h instru
-tions are exe
uted. For a multiple-issue pro
essor, handling of
ontrol hazard is evenmore
ru
ial for the performan
e. In the best
ase for an n-issue pro
essor, bran
heswill
ome up to n times faster into the pipeline. To redu
e
ontrol hazard,
orre
tpredi
tion of the next instru
tion has to be made every
lo
k
y
le. In the next
hapter we dis
uss various bran
h predi
tion s
hemes widely used in the modernpro
essors.1.1 Problem StatementThe two main fa
tors that a�e
t the performan
e of a multi-issue pro
essor are:
a
he a

ess time and fet
hing
orre
t instru
tions every
y
le. We address boththese problems by predi
ting the address of the Instru
tion
a
he from where thenext instru
tion has to be fet
hed. For a set asso
iative
a
he, this address
omprisesof the sele
tion of the set as well as the blo
k within the set. We
all this predi
tions
heme the next
a
he-line predi
tion s
heme and we will use this term in the restof this thesis. This kind of predi
tion will have two advantages. First, sin
e we arealso predi
ting the blo
k within the
a
he-set from where the instru
tion has to be2

fet
hed, the tag part of the instru
tion address need not be
ompared with the tagsof the various other blo
ks in the set for sele
ting the blo
k. This will make the
a
he a

ess faster and also redu
e power
onsumption of the I-
a
he. [4℄A mispredi
tion is known by
omparing the tag and index of the sele
ted blo
kwith that of the instru
tion address. A mispredi
tion however is asso
iated withthe penalty of killing wrongly fet
hed instru
tions. The next
a
he-line predi
tionredu
es the need for sophisti
ated bran
h predi
tion s
heme as well. At the fet
hstage itself, we are predi
ting the next
a
heline for fet
hing the next instru
tion, a
orre
t predi
tion,
an thus redu
e
ontrol hazards.1.2 Related WorksKoji Inoue et al. [4℄ proposed a new Way�predi
ting Set�Asso
iative Ca
he. Ex-perimental results showed that this
a
he gives high performan
e at low power
on-sumption. In their s
heme, known as the way�predi
ting
a
he, only one way in a
a
he-set is sele
ted based on what they
alled the MRU (Most Re
ently Used) Al-gorithm. In an n-way set asso
iative
a
he, ea
h set has log2n bit MRU information.These bits are stored in a table whi
h is a

essed using the set-index address, and isused to spe
ulatively sele
t one way from the
orresponding
a
he-set. Experimen-tal results showed that,
ompared to
onventional set�asso
iative
a
he, the power
onsumption was redu
ed by 60�70% without any performan
e degradation.Calder et al. [1℄ proposed a
a
he design
alled Predi
tive Sequential Asso
iativeCa
he that provides same miss ratio as a two-way set asso
iative
a
he and a

esstime
loser to a dire
t mapped
a
he. In this design, a
onventional dire
t mapped
a
he is divided
on
eptually into two banks. This te
hnique makes use of severalpredi
tion sour
es to sele
t between the two banks in a set. The predi
tion sour
es
an be adjusted a

ording to pipeline
onstraints.A similar work for Instru
tion Ca
hes has been done by Calder and Grunwald[2℄. They
all their s
heme as the Next Ca
he Line and Set Predi
tion or the NLSs
heme. In this s
heme, instru
tions following a bran
h instru
tion is fet
hed usingan index into the Instru
tion Ca
he instead of a predi
ted bran
h target address.3

Their work also investigates the use of NLS along with 2 bit
orrelating bran
hpredi
tion table (see Chapter 2).In our s
heme, for every instru
tion fet
hed, we predi
t the address in instru
tion
a
he, from where the next instru
tion is to be fet
hed. We predi
t the
a
heline,that is both the
a
he set, and the blo
k within the
a
he where the desired instru
-tion is expe
ted to reside.1.3 Goals A
hievedIn this thesis we propose a new s
heme for supers
alar pro
essors to predi
t theInstru
tion Ca
he address where the next instru
tion to be exe
uted. The goalsa
hieved in this work are� We developed an address tra
e generator for UltraSPARC pro
essor. Theprogram instrumented a given input program at assembly language level andthe instrumented
ode the address tra
e of the program. See
hapter 3.� A simulator was developed to test the performan
e of the newly proposed
a
heline predi
tion s
heme. The simulator models the fet
h stage of a pro-
essor and its various parameters are
on�gurable. See
hapter 5.� Using these tools several ben
hmarks were tested and studies of the s
hemewas done. The experimental results are given in Chapter 6.1.4 OrganizationThe rest of the thesis is organized as follows. In the next
hapter we brie�y dis
ussthe di�erent bran
h predi
tion s
hemes, to
ompare them with our s
heme. In Chap-ter 3, we dis
uss the tra
e generation me
hanism of di�erent ben
hmark programs.These address tra
es are the inputs to the simulation program used to test this news
heme. In Chapter 4 we provide and dis
uss in detail, the design issues and theperforman
e issues of our s
heme. In Chapter 5 we dis
uss the implementation of4

the simulator. In Chapter 6 we provide the detailed experimental results. Finallywe
on
lude this work and suggest some work that
an be done to extend this work.

5

Chapter 2Bran
h Predi
tion Me
hanismIn this
hapter, the various bran
h predi
tion s
hemes in modern pro
essors aredis
ussed in brief. Typi
ally 15�20% of all instru
tions in a program are
ontroltransfer instru
tions. Predi
ting the right dire
tion of
ontrol �ow, early in thepipeline is vital in exploiting Instru
tion Level Parallelism (ILP) in a pro
essor,espe
ially in the supers
alar ones. Various s
hemes have been proposed to predi
tthe out
ome of bran
h instru
tions.2.1 What is Bran
h Predi
tionBran
h Predi
tion is a s
heme predi
ts the out
ome of a bran
h instru
tion. After apredi
tion is made, a pro
essor
an
ontinue to spe
ulatively fet
h instru
tions fromthe predi
ted dire
tion and thus maintain the supply of instru
tions to the pipeline.In absen
e of any predi
tion s
heme, the pro
essor must stall for unresolved bran
hinstru
tions, whi
h imposes heavy penalty on performan
e of a pro
essor. A
orre
tbran
h predi
tion
an over
ome this problem and
an redu
e
ontrol hazards andexploit more ILP. If the
orre
t bran
h predi
tion rates are high enough to over-shadow the mispredi
tion penalties, then the overall performan
e of the pro
essoris likely to improve.
6

2.2 Stati
 vs. Dynami
 Bran
h Predi
tionStati
 Bran
h Predi
tion s
hemes de�ne a stati
 predi
tion used by the pro
es-sor. For example, MIPS-X, predi
ts all bran
hes as taken while Motorola MC88000predi
ts all bran
hes to be not taken. Stati
 predi
tion s
hemes are utilized bythe
ompilers where in they use the pro�ling information from previous runs of aprogram and generate appropriate kind of instru
tions.Dynami
 bran
h predi
tion te
hniques take information derived from thedynami
 exe
ution of the program and predi
t the out
ome of a bran
h instru
tion.The hardware produ
es two outputs, the expe
ted dire
tion of the bran
h and thebran
h target. The predi
ted bran
h dire
tion is signi�ed by a bit (taken / nottaken), while the target is the address of the next instru
tion in the predi
ted path.For our referen
e in this thesis, the table that provides the dire
tion out
ome of abran
h instru
tion as a bran
h predi
tion table, or BPT [3℄. Similarly the table thatis used to predi
t the address of the target instru
tion is referred to as a bran
htarget bu�er, or BTB [3℄. In this thesis we restri
t ourselves to dynami
 bran
hpredi
tion s
hemes only.2.3 Dynami
 Bran
h Predi
tionThe dynami
 bran
h predi
tion me
hanisms
an be
lassi�ed into two groups. The
ounter based s
hemes, and the
orrelation based s
hemes. The predi
tors of theformer type, also known as the One-level bran
h predi
tors, predi
t the out
ome ofa bran
h, depending on its re
ent behavior. The predi
tors of the se
ond type, alsoknown as the Two-level bran
h predi
tors, whi
h predi
t the out
ome of a bran
hinstru
tion on the basis of re
ent out
omes of other bran
h instru
tions as well.2.3.1 Counter Based Bran
h Predi
tionThe simplest form of this s
heme is a bran
h-predi
tion bu�er or bran
h historytable. It is basi
ally a small
a
he indexed by few least signi�
ant bits of the bran
hinstru
tion address. In the simplest
ase, the entries of the
a
he are one bit wide.7

When a bit
orresponding to a bran
h instru
tion address is set, the bran
h ispredi
ted to be taken. If this bit is zero, then the bran
h is predi
ted to be nottaken. After the bu�er is a

essed, and the predi
tion bit is read, the instru
tions arefet
hed from the predi
ted dire
tion. In
ase of a mispredi
tion, the wrongly fet
hedinstru
tions are killed and the predi
tion bit is toggled. This s
heme is useful, onlywhen the bran
h delay is longer than the time taken to
ompute possible target PC.This s
heme however has some drawba
ks. Consider a loop bran
h whi
h is takennine times in a row and not taken the last time. The above s
heme will predi
tbran
h to be not taken, the �rst time the bran
h is en
ountered. The predi
tion bitis then toggled and it gives the
orre
t predi
tion for the next eight times. The lasttime, when the bran
h is a
tually not taken, it is predi
ted to be taken, leading toanother mispredi
tion. So for a bran
h whi
h is taken 90% of time, the predi
tiona

ura
y is only 80%. The situation
an be improved, if instead of one predi
tionbit, we used n-predi
tion bits.In an n-bit predi
tion bu�er, ea
h entry is an n-bit
ounter. The
ounter isin
remented, every time the bran
h is resolved to be taken, and de
remented everytime it is not taken. A bran
h is predi
ted to be not taken, if the
orresponding
ounter value is less than 2n�1, and predi
ted taken otherwise.A 2-bit
ounter bran
h predi
tor is most
ommonly used and is found su�
ientin most bran
h appli
ations.The bu�er
an be implemented in many ways.� Dire
t Mapping The
a
he entry is indexed dire
tly by the last few bits ofthe bran
h instru
tion address. However, if the size of the bu�er is too small,a large number of bran
h instru
tion will map to the same entry,
ausingaliasing.� Fully Asso
iative In this types of bu�ers, the entries, along with the predi
-tion bits also
ontain tag information. The
a
he entry is found by
omparingthe tag with the few least signi�
ant bits of the bran
h instru
tion address.This s
heme needs
a
he repla
ement strategy, whi
h
ould be LRU or FIFO.� Set Asso
iative In this implementation, ea
h address maps into a set of8

entries, having di�erent tags. The
a
he is indexed as usual using few leastsigni�
ant bits of the instru
tion address, and then tag
omparison is doneasso
iatively to obtain the
orre
t predi
tion bits.2.3.2 Correlation Based Bran
h Predi
tionBran
h predi
tors, that uses the re
ent behaviors of other bran
hes for predi
tingthe out
ome of a bran
h are known as
orrelating predi
tors or two-level predi
tors.This s
heme was originally proposed by Yeh and Patt [8℄. To understand the workingof su
h a predi
tor, let us
onsider a
orrelating bran
h predi
tor whi
h uses one
orrelation bit and one predi
tion bit. This type of predi
tor
an be viewed as
onsisting of two separate predi
tion bits. One predi
tion if the bran
h instru
tionexe
uted prior to the one being predi
ted was taken, and the other, if that bran
hwas not taken. This predi
tor is
alled a (1,1) predi
tor sin
e it uses the behavior ofthe last (one) bran
h to sele
t from a pair of one bit predi
tors. In general a (m,n)
orrelating predi
tor, uses the behavior of the last m bran
h instru
tions to
hoosefrom 2m bran
h predi
tors, ea
h having n predi
tion bits.This s
heme
an be implemented by a rather simplisti
 hardware. It
onsistsof a global history table whi
h holds the history of out
ome of the last m bran
hes.The global history table
an be implemented using an m-bit shift register, where a1 is shifted in every time a bran
h is taken. Similarly a 0 is shifted if a bran
h isnot taken. The bran
h predi
tion bu�er
an be viewed as a two dimensional tableof
ounters. It
an be indexed using the instru
tion address and the global historytable.In the original s
heme proposed by Yeh and Patt, known as the Two-level adap-tive predi
tion s
heme (also referred as the Yeh algorithm), history information ofthe previous bran
h out
omes was maintained. This information however was lo
aland kept was in
orrelation registers, sometimes
alled as the lo
al history table.For ea
h bran
h, there is an asso
iated
orrelation register, and the pattern of thebran
h history is stored there. Based on this pattern, a parti
ular entry in anotherbu�er
alled the global pattern table (GPT) is a

essed. The
orresponding
orrela-tion register and the entry in GPT are updated ea
h time a bran
h is resolved. An9

entry in GPT
an be shared by several bran
hes. In order to lookup, we index thetable by the lower bits of the address of the bran
h instru
tion. The entry in thetable provides the
orresponding
orrelation register, whose value is used to indexGPT to get the appropriate predi
tion bits.Although a
orrelating predi
tor gives better performan
e than simple one-levelbran
h predi
tors, it has a disadvantage of an expensive implementation and thefa
t that the so
alledWarm Up Phase (the time the table entries
ontain usablevalues) is mu
h longer.Besides the two major
lasses of bran
h predi
tors dis
ussed above, there areanother kinds of predi
tors su
h as the hybrid bran
h predi
tors [5℄, whi
h use morethan one sour
es of predi
tions, whi
h are independent of ea
h other. A sele
tionme
hanism is used to sele
t from among di�erent sour
es of predi
tion.2.4 Bran
h Target Bu�erIn all the s
hemes dis
ussed in the previous se
tion, the predi
tion o

urs at theinstru
tion de
ode stage when the fet
hed instru
tion is de
oded and it is known tobe a bran
h instru
tion. If the bran
h delay is longer than the time to
ompute thetarget PC, the above s
hemes
an redu
e the bran
h delay by predi
ting the out
omeof the bran
hes earlier. But in
ertain pro
essors, the out
ome of the bran
h andthe target address are known at roughly the same time. In this
ases, the aboves
hemes
annot help mu
h. To redu
e the bran
h penalty in these
ases, we have toknow the bran
h target address by the end of the Instru
tion Fet
h (IF) stage itself.Therefore the address to fet
h the next instru
tion, is predi
ted even before we knowwhether the
urrent instru
tion is a bran
h instru
tion or not. In su
h s
hemes we
an possibly have a zero bran
h penalty. This type of bran
h predi
tion s
hemes,where we predi
t the address of the next instru
tion are
alled a bran
h-target bu�eror bran
h-target
a
he predi
tion s
heme. Throughout this text, we shall refer tothese type of bu�ers as Bran
h Target Bu�er or BTB.In a BTB based predi
tion, the bu�er is a

essed during the IF stage, using theaddress of the
urrently fet
hed instru
tion. Thus the next PC is known by the end10

of IF
y
le and the instru
tion fet
h
an
ontinue without any delay. The bran
htarget bu�er is a table, whose entries
ontain PC and the predi
ted next PC. Afteran instru
tion is fet
hed, it is looked up in the table. If a mat
hing entry is found,then the
orresponding predi
ted PC is taken to be the next PC. If at a later stage,the
urrent instru
tion does not take the bran
h, then we have a mispredi
tion. Thewrongly fet
hed instru
tion is killed and the entry is deleted from the bu�er. If onthe other hand, the
urrent PC is not found in the bu�er, then the next sequentialinstru
tion is fet
hed. Many pro
essors improve the bran
h predi
tion by using bothBPT based and BTB based s
hemes simultaneously. Examples are PowerPC 620,where the two bu�ers are de
oupled, and the Pentium, where the BTB and theBran
h Predi
tion Bu�er are
oupled together.2.5 Bran
h Predi
tion s
hemes in re
ent Pro
essors- PowerPC604 [6℄ has a 64 entry fully asso
iative Bran
h Target Bu�er forpredi
ting the Bran
h Target Address and a de
oupled dire
t mapped 512entry Pattern History Table.- PowerPC620 has a 256 entry two-way set asso
iative Bran
h Target Bu�erfor predi
ting the Bran
h Target Address and a de
oupled dire
t mappedbran
h predi
tion bu�er.- UltraSPARC uses a 2-bit bran
h predi
tion s
heme.- Intel Pentium
ontains a 256 entry 4-way set asso
iative Bran
h TargetBu�er. Coupled with ea
h Bran
h Target Bu�er entry is a simple one-level2-bit bran
h predi
tor that is responsible for the bran
h predi
tion.- Intel Pentium Pro works with a 512 entry 4-way set asso
iative Bran
hTarget Bu�er. Coupled with ea
h Bran
h Target Bu�er entry is in this
asea 4-bit lo
al bran
h history. This is mapped in a se
ond level onto a GlobalPattern History Table, thus implementing Yeh's Algorithm mentioned earlier.
11

2.6 SimulationIn our simulation we
ompared the performan
e of our newly proposed s
heme withthat of some existing predi
tion s
hemes. For this, we modeled in our simulator,our next
a
heline predi
tion s
heme, a BTB based s
heme and a (2,2)
orrelationbased Bran
h Predi
tion s
heme.

12

Chapter 3Address Tra
e GenerationAddress tra
e of a program is the sequen
e of instru
tion addresses, through whi
hthe
ontrol of a program �ows during its exe
ution.We needed the address tra
es of the ben
hmark programs that we tested withour new s
heme. The sequen
e of instru
tions that were predi
ted by our s
hemewere
ompared with the address tra
e generated. In this
hapter we dis
uss thepro
ess by whi
h these address tra
es were generated.3.1 OverviewWe developed a
ode instrumentation program whi
h
hanged the program to betested, so that it generates the address tra
e when it is run. The instrumentationwas not done on the sour
e
ode, but on the
ompiled assembly
ode. The instru-mentation was done in a way so that the original address tra
e is not a�e
ted. We
hose Sun UltraSPARC assembly language
ode for instrumentation. The reason ofthis
hoi
e is that UltraSPARC is a RISC pro
essor with �xed instru
tion length of4 bytes. It has got many other features whi
h made
ode instrumentation easier.We �rst
ompiled a C sour
e
ode using � S option of g

 to get the assembly
ode. Then the instrumentation program was run on the assembly program togenerate the instrumented
ode. In the instrumented
ode all o

urren
es of
ontroltransfer instru
tions, whi
h in
luded all the bran
h instru
tions the fun
tion
all13

instru
tion, and the ret from instru
tion; were repla
ed by a instru
tion to transferthe
ontrol to a fun
tion in instrumentation
ode. We
alled this fun
tion �foo�In this newly introdu
ed fun
tion we
al
ulated the addresses of the sour
e anddestination instru
tions of the
ontrol transfer instru
tion involved, and wrote theminto a tra
e �le. Then the a
tual
ontrol transfer instru
tion was exe
uted fromwithin the "foo" fun
tion. This way the original
ode tra
e was not modi�ed andthe instrumentation
ode was not tra
ed. We now dis
uss the instrumentationme
hanism in more detail.3.2 Features of SPARC Ar
hite
tureIn this se
tion some features of the SPARC pro
essor ar
hite
ture [7℄ are dis
ussed,whi
h are ne
essary to understand the
ode instrumentation pro
edure.3.2.1 RegistersThe SPARC pro
essor has two types of registers. The general purpose registersand
ontrol/status registers. The general purpose register set
onsists of 8 globalregisters (g0 to g7), and several register windows whi
h are
hanged upon fun
tion
alls and restored upon return. The register windows have 8 in registers (i0 to i7),8 lo
al registers (l0 to l7) and 8 out registers (o0 to 07).Upon exe
uting the save instru
tion, a new register window is allo
ated su
hthat its in registers i0 to i7 are same as the out registers o0 to o7 registers of theold window. Thus parameters
an be passed and values returned between fun
tionsusing registers. So the save instru
tion is typi
ally asso
iated with a fun
tion
all.The restore restores the register window. See 3.2.3 for details.The following
ontrol registers, are important for instrumentation purposes.� Program Counter (PC)
ontains the address of the instru
tion
urrentlybeing exe
uted by the Instru
tion Unit (IU).� The next Program Counter (nPC) register
ontains the address of thenext instru
tion to be exe
uted. 14

� Condition Code Register (CCR) holds the integer
ondition
odes.3.2.2 Delayed Control StatementIn SPARC pro
essors,
ontrol transfer instru
tions are delayed, i.e. the e�e
t ofthe
ontrol transfer is delayed by one instru
tion. In
ase of these delayed
ontroltransfer instru
tions, after the exe
ution the value of the nPC register is
hanged.The PC is
hanged to PC+4 and the next instru
tion in the program storage orderis fet
hed into the pipeline. As a result the
ontrol transfer takes pla
e after a delayof one
y
le. The instru
tion following a delayed
ontrol transfer instru
tion is saidto be in the delay slot. Usually after a bran
h instru
tion or a
all instru
tionthe
ompiler introdu
es the nop instru
tion. Sometimes, optimized
odes
an haveother meaningful instru
tions in the delay slot whi
h does not a�e
t the
ontrol �owand maintains the program semanti
s.3.2.3 SAVE and RESTORE Instru
tionsThe SAVE instru
tion provides the routine exe
uting it, with a new register window.The out registers from the old window are visible as the in registers of the newwindow. The
ontents of the newly made available registers (out and lo
al) in thenew window are zero. The instru
tion syntax is:save regrs1,reg_or_imm,regrdAdditionally the instru
tion behaves as a normal ADD instru
tion. It takesthe sour
e operands from the previous window and the writes into the destinationregister in the new window. Typi
ally the save instru
tion is used to generate a newsta
k pointer (denoted in program by %sp whi
h is an alias to o6). This is donealong with allo
ating new register window in one atomi
 operations. For example,upon exe
ution of the instru
tionsave %sp,-120,%spa new register window is allo
ated and the sta
k pointer is moved by 120 bytes.(The old sta
k pointer remains in the old windows)15

TheRESTORE instru
tion restores the register window saved by the last SAVEinstru
tion exe
uted by the
urrent pro
ess. The in registers of the old window nowbe
omes the out registers of the new window. The in and lo
al registers of the newwindow retain their previous values.3.2.4 Fun
tion Call and Parameter PassingThe Call instru
tion
auses a
ontrol transfer to the desired subroutine. It alsosaves the value of PC, into out register o7. When the
alled routine exe
utes thesave instru
tion, the register o7 of the
alling routine is known as in register i7 inthe new window, whi
h now holds the address to the
all instru
tion.The Ret instru
tion, like the
all instru
tion is also syntheti
 instru
tion and isequivalent tojmpl %i7 + 8, %g0It
auses a register�indire
t delayed
ontrol transfer to the spe
i�ed address [i7℄+8As i7
ontains the address of the
all instru
tion, the
ontrol will be transfered to theinstru
tion immediately after delay slot of the
all instru
tion (o�set 8). Typi
ally,after a ret statement, a restore instru
tion is kept in the delay slot, whi
h restoresthe register window to that of the
alling fun
tion.Up to six parameters
an be passed to a subroutine, by pla
ing them in the outregisters o0 to o5. Additional parameters are passed through memory sta
k. Thusin the
alled routine, after exe
uting save instru
tions, parameters are available inregisters i0 to i5. The sta
k pointer is impli
itly passed in o6 whi
h be
omes the
urrent pro
edure's frame pointer (i6).A fun
tion
an return several integer values using the in registers starting at i0whi
h are visible in the parent routine register window starting at at o0. In addition,SPARC also has several �oating point registers whi
h are used for passing/returning�oating point values.The lo
al registers are used for automati
 variables and other temporary values.
16

3.3 Code InstrumentationIn this se
tion we shall dis
uss the details of instrumenting the various bran
h in-stru
tions,
all and ret instru
tion.3.3.1 Instrumentation of the Bran
h instru
tionSupposing we have the following pie
e of assembly
ode:...
mp %l0,10ble LL1 ;bran
h to LL1 if l0 is less or equal to 10nop......LL1: ...Now we repla
e the ble instru
tion by a
all to a spe
ial fun
tion
alled �foo�.So the instrumented
ode will look like the following....
mp %l0,10
all foo,0 ;
all fun
tion foonop.....LL1: ... 17

The
orresponding foo fun
tion is shown in �gure 3.1Let us now analyze the instrumented
ode. The routine foo �rst exe
utes a saveinstru
tion to get a new register window and moves the sta
k pointer by 120 bytes.The rd instru
tion saves
ondition
ode register (CCR) into lo
al register l0. Wehave to do this be
ause the su

eeding instru
tions
an
hange the value of CCRand thus
hange the
ondition under whi
h the original bran
h would have beentaken. The address of the original bran
h instru
tion is the address of
all foo,0instru
tion and is available in register i7 of the
urrent window. The original targetaddress of the bran
h is LL1. The �myfprintf� routine is used to write data into thetra
e �le. Using this fun
tion, we �rst write the sour
e and target addresses of theoriginal bran
h instru
tion. After this, we exe
ute the original bran
h instru
tion.Note that, if the bran
h is not taken then foo should return to the instru
tion afterthe delay slot. For this, the fall through address is saved in the global variable�bretaddress�.Then the register window is restored; the CCR register is restored using wrinstru
tion and the a
tual bran
h is exe
uted. If the bran
h is not taken, it is notedin the tra
e �le and the
ontrol should be transferred ba
k to the
orre
t instru
tion.Finally the saved bran
h return address is written ba
k to i7 and ret instru
tionis exe
uted. In the delay slot the restore instru
tion is put.3.3.2 Instrumentation of the Call Instru
tionCall instru
tions are essentially jump and link instru
tions, upon exe
ution of whi
hthe address to the
all instru
tion is stored in the link register o7. Fun
tion
alls
an be nested. Therefore unlike the handling of bran
h instru
tions, the returnaddress
annot be stored in a single global variable. We therefore use a di�erentway of handling
all instru
tion. We label the instru
tion following the delay slotinstru
tion of a
all instru
tion by a spe
ial return label. Finally the fun
tion
all isrepla
ed by a
all to the foo fun
tion. In the foo fun
tion (�gure 3.2), after the sour
eand target addresses are noted, the a
tual fun
tion is
alled. Finally upon returnfrom the original fun
tion to the foo fun
tion, an un
onditional bran
h is madeto the
orresponding return label. There is one more issue involved. A fun
tion18

.se
tion ".text".align 4.global foo.type foo,#fun
tion.pro
 020foo: !#PROLOGUE# 0save %sp,-120,%sp ;save register window!#PROLOGUE# 1rd %

r,%l0 ;save

rmov %i7,%o0 ;bran
h sour
e addresssethi %hi(.LL1),%l1or %l1,%lo(.LL1),%l1mov %l1,%o1 ;bran
h target address
all myfprintf,0 ;write into tra
e filenopsethi %hi(bretaddr),%l1 ;save the fall-through instru
tion addressst %i7,[%l1+%lo(bretaddr)℄nopwr %l0,%g0,%

r ;restore

rrestore ;restore register windowble .LL1 ;take a
tual bran
hnopsave %sp,-120,%spmov 0,%o0mov 0,%o1
all myfprintf,0 ;write 0 0 to tra
e file to denote;bran
h not takennopsethi %hi(bretaddr),%l0ld [%l0+%lo(bretaddr)℄,%i7sethi %hi(bretaddr),%l0st %g0,[%l0+%lo(bretaddr)℄ ;restore fall through address to i7ret ;fall throughrestore.LLfoo: .size foo,.LLfoo-fooFigure 3.1: The foo fun
tion repla
ing a bran
h instru
tion19

all introdu
es two
ontrol transfers. Namely, from the
aller to
allee routine andba
k. To store the se
ond
ontrol transfer information into the tra
e �le, we needto know, from where in the
alled subroutine, the
ontrol was �nally returned. Forthis, we use another global variable
alled �retaddr�. The instrumented
ode for retinstru
tion (see 3.3.3) stores the appropriate instru
tion address into retaddr. Ifhowever, it is a
all to a library routine, we
annot know from where the
ontrol wasreturned (see 3.5) and thus a zero is stored in pla
e of retaddr.Supposing we have assembly instru
tions as follows...
all fun,0 ;
all fun
tion funnop......After instrumentation it is
hanged to the following
ode...
all foo,0 ;
all fun
tion foonop.global .LLret ;spe
ial label to denote return instru
tionLLret:
20

.se
tion ".text".align 4.global foo.type foo,#fun
tion.pro
 020foo: !#PROLOGUE# 0save %sp,-120,%sp ;save register window!#PROLOGUE# 1mov %i7,%o0 ;sour
e addresssethi %hi(fun),%l1or %l1,%lo(fun),%l1mov %l1,%o1 ;target address
all myfprintf,0 ;write into tra
e filenoprestore
all fun,0 ;a
tual fun
tion
allnopsave %sp,-120,%spsethi %hi(.LLret),%l0 ;return addressor %l0,%lo(.LLret),%o1sethi %hi(retaddr),%l0 ;return from where?ld [%l0+%lo(retaddr)℄,%l1
mp %l1,0 ;if retaddr=0 then it is not known;from where
ontrol is returnedbne .LLfoor1mov 0,%o0.LLfoor1:mov %l1,%o0
all myfprintf,0 ;write into tra
e filenopsethi %hi(retaddr),%l0 ;reset retaddrst %g0,[%l0+%lo(retaddr)℄b .LLret ;un
onditional bran
h to return addressrestore.LLfoo: .size foo,.LLfoo-fooFigure 3.2: The foo fun
tion repla
ing a
all instru
tion21

3.3.3 Instrumentation of the Return Instru
tionThe foo fun
tion repla
ing a ret instru
tion is shown in Figure 3.3. The fun
tionsimply stores the address of the ret statement (stored in o7) into the global variable�retaddr�. Note that, here no new register window is saved, and it uses the registerwindow of the routine from whi
h it was
alled.Therefore, if we have assembly instru
tions as follows...ret ;
all fun
tion funrestore......instrumentation will
hange the
ode to...
all foo,0 ;
all fun
tion foonop ;restore is repla
ed by nop......3.4 Other DetailsThe myfprintf routine a

epts two addresses as arguments and stores them into thetra
e �le. The routine uses a bu�er to store the addresses temporarily. When the22

bu�er is full, it is emptied into the tra
e �le. At the time of program termination,the remaining part of the bu�er was �ushed to the tra
e �le.Sin
e for ea
h of the
ontrol transfer instru
tions, we need a separate �foo� fun
-tion, we have to give them unique names. We used the following naming
onventionfor the foo fun
tions: <fname>foo<num>, where fname is the name of the .s andnum is a unique sequen
e number. For example the foo fun
tion for the 10th
ontroltransfer statement in a �le a.s will have the name afoo10.After all the foo routines are generated they are put together into a �le
alledfoo.s. All the instrumented assembly programs are stored in �les with nameT<�lename>.s , where �lename was the name of the original .s �le. Sin
e there
anbe more than one su
h instrumented .s �les, and that foo.s has
ode that uses labelswithin them, all the labels and fun
tion names are made global.3.5 Drawba
ksThere are
ertain �aws in this address tra
e generator. First of all, to preserve theaddress spa
e of the
ode to be instrumented, we
ould not add any extra instru
tionto the individual .s �les. All we
ould do is to repla
e a
ontrol transfer statementwith a fun
tion
all. Now
onsider the following bran
h statement:ble LL1Here, in order to write the
orresponding �foo� fun
tion, we need the bran
hinstru
tion (ble) and the target label (LL1). We
annot pass them as parameters tofoo, as it would require several instru
tions to be inserted into the original program.We have similar problems with the
all instru
tions too. Therefore, several foofun
tions are generated, one for ea
h
ontrol transfer instru
tion. As a result thegenerated foo.s �le is large in size, and after assembling, the generated binary
odeis huge.In our approa
h, all register indire
t jumps
annot be instrumented. Sin
e inthe �foo� fun
tion, we have to save a new register window, instrumentation is notpossible if the argument register is a lo
al or a in register, as these are not visible inthe register window of the foo fun
tion. Only if it is an out register, we
hange it to23

a in register in the instrumented
ode. An example will
larify the issue. Supposewe have to instrument the instru
tion.jmp %o0The
orresponding foo fun
tion is shown in �gure 3.4.Obviously an instru
tion like jmp %i7
annot be instrumented by our program.There is another short
oming in our approa
h. Sin
e we are instrumenting atthe assembly level we
annot tra
e the exe
ution of the di�erent library routines.For this reason, the tra
e �le only holds the jump from the user
ode to the libraryroutine, but not the tra
e of the library routine itself. Sin
e we do not know fromwhere is the library routine the
ontrol was returned, the
orresponding entry in thetra
e �le returned as a zero.

24

.se
tion ".text".align 4.global foo.type foo,#fun
tion.pro
 020foo: !#PROLOGUE# 0mov %o7,%l1sethi %hi(retaddr),%l0st %l1,[%l0+%lo(retaddr)℄ ;store o7 into retaddrret ;return
ontrolrestore.LLfoo: .size foo,.LLfoo-fooFigure 3.3: The foo fun
tion repla
ing a ret instru
tion

25

foo: !#PROLOGUE# 0save %sp,-120,%sp ;new register window!#PROLOGUE# 1rd %

r,%l0mov %i7,%o0mov %i0,%o1 ;The o0 register be
omes i0;pass i0 as parameter to myfprintf
all myfprintf,0nopsethi %hi(bretaddr),%l1st %i7,[%l1+%lo(bretaddr)℄nopwr %l0,%g0,%

rrestorejmp %o0 ;the original jmp instru
tionnopsave %sp,-120,%spmov %o0,%i7mov 0,%o0mov 0,%o1
all myfprintf,0nopsethi %hi(bretaddr),%l0ld [%l0+%lo(bretaddr)℄,%i7sethi %hi(bretaddr),%l0st %g0,[%l0+%lo(bretaddr)℄retrestore Figure 3.4: foo fun
tion for jmp %o0
26

Chapter 4Next Ca
heline Predi
tionIn this
hapter we dis
uss in detail the new Next Ca
heline Predi
tion s
heme thatis proposed in this thesis. As mentioned in the �rst
hapter, the fa
tors that a�e
tthe performan
e of a multi-issue pro
essor are the I-
a
he a

ess time and predi
tionof the next set of instru
tions to be fet
hed into the pipeline. Our s
heme predi
tsthe lo
ation of the
a
heline, i.e. the set and way, where the next instru
tion(s)reside. Sin
e, in this s
heme, we need not
ompare the tag of an instru
tion addresswith the tag stored in
a
he blo
ks, in a parti
ular set, it makes
a
he a

ess fasterand redu
es the I-
a
he power
onsumption. In the remaining part of the
hapter,we shall address the I-
a
he simply as
a
he.4.1 The DesignThe main feature of this s
heme is a Set Way Predi
tion Table whi
h is a small
a
he memory whose entries
ontain the following information.
urrent set,
urrent way ! next set, next wayAs the instru
tions are fet
hed from an address, an entry in the table is sear
hedfor the next set and next way. The
urrent set and way for this entry should besame as the set and way for the
urrent instru
tions. The next set and way is thepredi
ted set and way in the
a
he from where the next instru
tion is to befet
hed. Whenever an instru
tion is fet
hed, from a given set, way; the table is27

looked up for a
orresponding entry. If the
urrent set and way is found in thetable, then the next instru
tion is fet
hed from the predi
ted set and way. If noentry is found
orresponding to the
urrent set and way, then the defaultpredi
tion is used. The default predi
tion is based on the spatial lo
ality prin
iple.instru
tions that are lo
ated in neighboring positions in memory, when fet
hed to
a
he, will tend to �ll up the
a
he
olumn by
olumn. Hen
e, if the
urrentinstru
tion
omes from set s, way w; then the next instru
tion is likely to be in set(s+1) and way w. This is the default predi
tion of this s
heme.4.1.1 Working Prin
ipleInitially the predi
tion bu�er is empty. The
a
he is a

essed in the traditional wayto translate the address in the PC to
orre
t
a
he address (set and way) to read theinstru
tion. After this, the
urrent set and way is used to predi
t the next set andway and the instru
tion is spe
ulatively read from the predi
ted
a
heline. If thepredi
tion is not
orre
t, then the spe
ulatively fet
hed instru
tions are killed andthe predi
tion table is updated. The
orre
t PC is then used to a

ess the
a
he intraditional way and fet
h the
orre
t instru
tion.4.1.2 Cold StartAt the beginning of the program exe
ution, most predi
ted
a
he addresses
orre-spond to invalid
a
helines. A

essing these
a
helines result in
a
he miss. In this
ase, the address of the instru
tion is
onstru
ted using the address of the previousinstru
tion read, and the instru
tion is read from this address.Consider a 2 way asso
iative
a
he of size 1 Kilobytes (128 sets, ea
h with 2blo
ks), 32 bit wide
a
helines. The instru
tion addresses are 20 bit wide. Assumethat, the last
a
heline read was from set 0x44 and way 0 of the
a
he. The
or-responding tag was 0x83. As there are no entries
orresponding to this set/way inthe predi
tion table, the next set and way are predi
ted as 0x45 and 0. As this
a
heline is invalid, the instru
tion has to be read from memory. From the tag andindex of the previously fet
hed instru
tion we
an easily re
onstru
t the address of28

this fet
hed instru
tion to be 0x10710. Assuming instru
tions are 4 bytes long, theaddress of the next instru
tion is 0x10714 (whi
h indeed belongs to set 0x45). Thisinstru
tion is then read from the memory and pla
ed in way 0 of set 0x45.Note that, on
e the entire
a
he is �lled up by some instru
tions, all the spe
-ulative
a
he reads will result in a hit. However, as we shall see later, there is noguarantee that all these spe
ulative reads fet
h the desired instru
tion.4.1.3 A Modi�ed DesignAs a modi�
ation of this s
heme, we
an use the Bran
h Target Bu�er(BTB) as anadditional sour
e for predi
tion the address to the next instru
tion to be fet
hed.As in the earlier s
heme, the
urrent set and way is used to predi
t a new pair of setand way. Simultaneously, the address of the
urrent instru
tion is used to refer tothe BTB as usual, and predi
t the PC of the next instru
tion. The tag and index ofthe predi
ted PC are
ompared with the tag and index of the spe
ulatively fet
hedinstru
tion. If the tag and index of the fet
hed instru
tion do not mat
h that ofthe predi
ted PC, the spe
ulatively fet
hed instru
tion is killed, and the
a
he isa

essed in the traditional way, using the predi
ted PC. In su
h a
ase, the set waypredi
tion table is also updated. It is seen that the next
a
heline s
heme givesbetter performan
e when
oupled with the BTB (see Chapter 2).Using the next
a
heline predi
tion s
heme, the fo
us shifts from address pre-di
tion, to predi
ting the exa
t lo
ation in the
a
he where the instru
tion resides.A
a
heline repla
ement (due to
a
he miss)
an have serious impli
ations on theperforman
e.4.2 Di�erent Performan
e IssuesAs dis
ussed in Chapter 2, in a pro
essor using a bran
h predi
tion table, theout
ome of a instru
tion bran
h is predi
ted. Similarly in a Bran
h Target Bu�erbased predi
tion, the target address of a bran
h instru
tion is predi
ted. Essentially,in these bran
h predi
tion s
hemes, the address to the next instru
tion is predi
ted.In our s
heme, we do not predi
t the next memory address from where the instru
tion29

is to be fet
hed, but rather predi
t the position in
a
he, where the next instru
tionis likely to be present is predi
ted. Thus in our s
heme there is a shift of fo
us frominstru
tion address, to the a
tual lo
ation of the instru
tion in the
a
he.It is this distin
tion, whi
h a�e
ts many performan
e issues of this s
heme. Ifa BTB based s
heme makes a predi
tion of
ontrol transfer from an instru
tionaddress PC1 to another instru
tion address PC2, then it signi�es that there is a
ontrol transfer instru
tion at address PC1. This
ontrol transfer may not alwaystake pla
e (as in the
ase of a
onditional bran
h). However the
ontrol transferinstru
tion will be present throughout the lifetime of the program. So an entry inthe BTB always
onvey some relevant pie
e of information. Now,
onsider the set-way predi
tion table of our s
heme. Suppose, due to a
a
he miss, the instru
tion ina parti
ular
a
heline of the
a
he gets repla
ed, then all information stored aboutthat set and way of the
a
he loses all relevan
e. This unfortunately gives rise to
ertain drawba
ks in this s
heme. Now, we dis
uss the various problems in su
h asystem.4.2.1 Problem 1The most
ommon problem o

urs when a instru
tion that is the sour
e or target ofa
ontrol transfer instru
tion gets repla
ed due to
a
he repla
ement poli
y. Let usexplain it with an example (�g. 4.1). Suppose there is a jump from address 0x106d4to 0x10700. Suppose the �rst instru
tion is in way 0 of set 53 and the se
ondinstru
tion is in way 0 of set 0. The set way predi
tion table will
ontain an entry(0,53) ! (0,0),
orresponding to this jump. Now, suppose, the instru
tion 0x10700gets repla
ed due to
a
he miss. Now, the
orresponding entry in the predi
tion tableloses relevan
e. If at some point later the
ontrol rea
hes at instru
tion 0x106d4,then the next set and way will be wrongly predi
ted as (0,0) where the instru
tionhas been repla
ed. One solution to this problem
ould be to invalidate all the entriesin the set way predi
tion table
orresponding to a set-way whi
h just got repla
ed.But, even then this will not substantially improve the situation. Supposing, the entryin the predi
tion table is invalidated. When
ontrol will be transferred to 0x106d4at set 53, way 0, the predi
tion table will be looked up. When no
orresponding30

 0 1

0

1

2

 53

 54

64

 0 1

0

1

2

 53

 54

64

cache miss

(0,0) replaced

Set Way Prediction Table

53 0 0 0

0x10700 0x10800

0x106d4

0x106d8

0x106d4

0x106d8

Figure 4.1: Wrong Predi
tion due to Ca
he Repla
emententry will be found, it will predi
t by default to fet
h instru
tion from set 54, way0, whi
h in this
ase
ontains 0x106d8. Now suppose the bran
h instru
tion at0x106d4 a
tually takes the bran
h. Then also a mispredi
tion o

urs. In both the
ases the performan
e penalty is the same. However if the bran
h is not taken afterthe
a
heline gets repla
ed, then there will be some advantage.4.2.2 Problem 2This problem is explained with an example. Supposing, the instru
tions 0x106d4,0x106d8 and 0x106d
 are stored in way 0 of the adja
ent sets 53, 54 and 55 re-spe
tively (�g. 4.2). Initially there are no entries
orresponding to any of these31

 0 1

0

1

2

 53

 54

64

 55

 0 1

0

1

2

 53

 54

64

 55

 0 1

0

1

2

 53

 54

64

 55

53 0

Set Way Prediction Table

0x106d4 0x106d4 0x106d4

0x106d8

0x106dc 0x106dc 0x106dc

0x106d80x105d8 0x105d8

54 1

54 1 55 0

cache miss

(54,0) replaced

Figure 4.2: Pseudo Ca
he Missinstru
tions in the predi
tion table. Now suppose the instru
tion 0x106d8 gets re-pla
ed by instru
tion 0x105d8. Then when the
ontrol is transferred to 0x106d4at set 53, way 0, the predi
tion s
heme predi
ts the next instru
tion to be fet
hedfrom set 54, way 0. It is not a
a
he miss, but the wrong instru
tion is fet
hed. Anormal
a
he read will result in a
a
he miss. After the
a
he penalty the
orre
tinstru
tion will be read from the memory and pla
ed in the
a
he at way 1 of set 54.The mistake will be dis
overed after a few
lo
k
y
les. By that time some otherwrong instru
tions have been fet
hed and all these instru
tions have to be killed.The subsequent next predi
tion will try to fet
h an instru
tion from way 1 of set 55.This predi
tion will meet a similar fate, sin
e the expe
ted instru
tion is in way 032

of set 55. So again there will be a penalty asso
iated with it, although the desiredinstru
tion is already present in the
a
he. This sort of pseudo
a
he miss degradethe performan
e of the system.As an added penalty, the set way predi
tion table will be updated with twoentries (53,0) ! (54,1) and (54,1) ! (55,0). These two entries signify that afterset 53, way 0 is a

essed, the next instru
tion is to be fet
hed from set 54, way 1and then from set 55 way 0. Although there is no jump from 0x106d4 to 0x106d8or from 0x106d8 to 0x106d
, the entries
orresponding to these sequential �ow of
ontrol, will remain in the predi
tion table. Thus the predi
tion table
an haveentries, whi
h a
tually depi
ts sequential �ow of
ontrol, rather than a jump.4.2.3 Bran
h Target Bu�er and Ca
heline Predi
tionThe penalties asso
iated with the problems mentioned above,
an be redu
ed if themispredi
tions are dete
ted earlier. We in
orporated BTB based predi
tion also inour s
heme (see 4.1.3) assuming that BTB gives a more a

urate predi
tion for theaddresses. Experimental results
on�rms it. Note that, even in the modi�ed s
heme,the above mentioned problems will not be eliminated, sin
e the primary sour
eof predi
tion is still the set way predi
tion bu�er. But, in the modi�ed s
heme,whenever we spe
ulatively fet
h a wrong instru
tion, the following
omparison withthe predi
ted PC, will result in a mismat
h and the error will be dete
ted at a mu
hearlier stage of the pipeline, thus redu
ing the penalty.4.2.4 Problem 3Asso
iation of BTB along with the
a
he predi
tion table brings in some moreproblems.As we saw that the set way predi
tion has to store information about instru
tionswhi
h are not of
ontrol transfer type. Sin
e the set way predi
tion table has alimited number of entries, entries in the table
an get repla
ed, whi
h may be entriesfor
ontrol transfer instru
tions. However the BTB may still have the informationabout the bran
h instru
tion. 33

X Y

S1,W1 S2,W2

Branch Target Buffer Set Way Prediction Table

X Y

S3,W3 S4,W4

Logical
link
lost

Replaced
Entry

Figure 4.3: Mismat
h Due to De
oupling of BTB and Set Way Predi
tion Table:Case 1Sometimes, su
h in
onsisten
ies between the two tables
an lead to degradationin performan
e as explained in the following example (�g 4.3). Suppose we havea jump from address X to address Y. The instru
tions were stored in the
a
he at(s1,w1) and (s2,w2) respe
tively. The BTB
ontains an entry X ! Y. Similarly theset way predi
tion table
ontains the entry (s1 w1)! (s2 w2). Now assume that theentry (s1 w1)! (s2 w2) is repla
ed by some other unrelated entry (s3 w3)! (s4 w4).Now suppose the
ontrol is transferred to the instru
tion X, stored at set s1 way w1.The set way predi
tion table has no entry for this
a
heline and will mispredi
t thenext instru
tion to be fet
hed from set (s1 + 1 way w1), The BTB based predi
tionprovides the next predi
ted PC to be Y, whi
h is a
orre
t predi
tion if the bran
h istaken. A mispredi
tion is dete
ted and all the fet
hed instru
tions are killed. Afterthis the
orre
t instru
tion will be fet
hed, but after a
onsiderable penalty.34

X Y

S1,W1 S2,W2

S1,W1 S2,W2

S4,W4S3,W3

A B

Branch Target Buffer Set Way Prediction Table

Figure 4.4: Mismat
h Due to De
oupling of BTB and Set Way Predi
tion Table:Case 2Just the reverse
ase
an happen (see �g 4.4). Instead of the set way predi
tionentry being repla
ed, it may be the
ase that the entry X! Y in BTB got repla
edby another entry A ! B. Now, if the
ontrol goes to the instru
tion X, the set waypredi
tion table will predi
t the next instru
tion to be in set s2 way w2, whi
h is
orre
t predi
tion. Later, when the BTB is
onsulted , and no entry is found foraddress X, it will predi
t the next PC to be X+4 (assume that the instru
tions areall 4 bytes long), whi
h is a mispredi
tion. A mismat
h will be dete
ted and the
orre
tly fet
hed instru
tion will be killed. A wrong instru
tion will be fet
hed as aresult of BTB mispredi
tion and the set way predi
tion table will be updated as aresult of whi
h the
orre
t entry of (s1 w1)! (s2 w2) will be removed. This mistakewill be dete
ted at the later stage in the pipeline and the
orre
t instru
tion will befet
hed, but after a
onsiderable penalty. Note that although, it was a mispredi
tion35

of the BTB and there would have been a penalty even if we had BTB only; thepenalty would have been lesser than the penalty in this
ase.4.3 AdvantagesIn this s
heme, whenever the instru
tion
a
he is a

essed, asso
iative tag
ompar-ison need not be done. This makes the instru
tion fet
h operation faster. Sin
ewe are bypassing the tag
omparison step, we are redu
ing the length of the fet
hpipeline. Essentially, there are two parallel instru
tion fet
h paths. The shorter oneis taken most of the time. The longer traditional path is taken, only when we dete
ta mispredi
tion.As observed in [4℄, eliminating tag
omparison redu
es power
onsumption, ours
heme has the added advantage of saving power.The performa
e of the s
heme for predi
ting the next instru
tion is
omparableto the other existing s
hemes. The details are given in Chapter 6.

36

Chapter 5SimulatorA simulator was built to simulate the proposed
a
heline predi
tion s
heme, and
ompare its performan
e with other predi
tion s
hemes. The simulator is highly
on�gurable. The simulator models only the fet
h stage of a pro
essor and is highly
on�gurable. It simulates instru
tion fet
hing me
hanism and predi
tion of the nextinstru
tion of a pro
essor.5.1 Overview of SimulatorThe inputs to the simulator are the tra
e �le (
hapter 3) for the program to betested and the
on�guration �le whi
h
ontains the values of the di�erent parametersused to model the ar
hite
ture.It
an simulate three di�erent type of predi
tion s
hemes. It
an simulate theBTB based s
heme, the BPT based s
heme and the proposed next
a
heline pre-di
tion s
heme. These s
hemes
an be simulated independently or in
ombinationwith another s
heme.It models the instru
tion
a
he and various events like
a
he miss asso
iated withit. It also models the various predi
tion bu�ers. It
an simulate stalls in pipelineand �ushing of the pipeline.The simulator does not take the instru
tions of the program into
onsiderationand does not exe
ute the program. It only simulates the instru
tion fet
h and37

predi
tion me
hanisms.The address of the �rst instru
tion of the program under test is supplied to thesimulator at the beginning of the simulation The simulator
ompares the predi
tedinstru
tion address with the tra
e �le. If the predi
ted address does not mat
h withthe tra
e �le, then a mispredi
tion o

urs, and the simulator updates its tables andthe
orre
t instru
tion address is taken from the tra
e �le. The simulation
ontinuesuntil the entire tra
e �le is read.It re
ords the number of mispredi
tions o

urred, total time taken in
lo
k
y
leset
. It also models the instru
tion
a
he and simulates various events like
a
he missasso
iated with it. These statisti
al data is used to
ompare the performan
e of thevarious instru
tion address predi
tion s
hemes.5.2 Con�guration FileThe simulator is designed to be as mu
h
on�gurable as follows. It uses a
on�gura-tion �le to read in the various parameters, used to model the pro
essor ar
hite
tureand the instru
tion fet
h predi
tion s
hemes. An example
on�guration �le is shownin �g 5.2. The syntax of the lines in the
on�guration �le is parameter: value Inthe
on�guration �le, a line beginning with a hash symbol is ignored and
an beused as a
omment line.5.3 Event Queue ModelingTo simulate the pipeline, we used Event Queue Modeling te
hnique. The di�erentstages of the pipeline
an be viewed to perform some operations as responses to
ertain events. For example,
a
he miss is an event, and as a response to it, theinstru
tion is fet
hed from the next level of memory. An event
an trigger oneor more events as a
onsequen
e. Depending on out
ome of some operation, the
onsequent events
an be di�erent. For example, as a response to the
a
he readevent, the I-
a
he is a

essed. If the a

ess results in a hit, some events are generatedto dispat
h the fet
hed instru
tion and initialize fet
h of next instru
tion. However,38

onfiguration file# Abbreviations used# BTB Bran
h Target Buffer# BPT Bran
h Predi
tion Table# length of instru
tion address in bitsaddress: 24# I-
a
he size in KiloBytessize: 32#
a
he asso
iativityasso
: 2#
a
heline size in bytes; a
a
he line
an hold one or more wordsline: 8#
a
he word size in bytesword: 4#
a
he repla
ement poli
y: 0 FIFO 1 RANDOM 2 LRUrepla
e: 0#
y
le after fet
h when BTB predi
ts next PCbtbd: 1#
y
le after fet
h when BPT predi
ts out
ome of bran
h instru
tionbptd: 2# is set way predi
tion presentswpt: 0# is bran
h predi
tion table presentisbpt: 0# is bran
h target buffer presentisbtb: 1 Figure 5.1:
on�guration �le39

number of entries in BPTbptsize: 1024# history bits in BPT : number of bran
hes whose history is re
ordedm: 2# predi
tion bits per entry in the BPTn: 2#
y
les after
a
he a

ess when out
ome of bran
h is knownbran
h: 5# Instru
tion Buffer size (number of instru
tions)ibufsize: 32# set way predi
tion table size (number of entries)swptsize: 256# BTB size (number of entries)p
ptsize: 256# miss penalty (in
y
les)missp: 4# instru
tion issue rateirate: 2 Figure 5.2:
on�guration �le
ontinued
40

a miss generates the
a
he miss event. Some events like the
a
he miss
an generatestalls in the pipeline. Some other events (like a bran
h mispredi
tion)
an lead tokilling of instru
tions, whi
h means all the existing events are killed.Thus the pipeline is modeled as a series of events or an event queue. This eventqueue is implemented as a linked list in our implementation. The nodes of thislinked list are the a
tual events, and
ontain the following �elds./* stru
ture definitions for a node in the event queue */typedef stru
t entag {int etype; /* event type */int time; /* time at whi
h the event is s
heduled to o

ur */int param1; /* parameter */int param2; /* parameter */int param3; /* parameter */stru
t entag *next; /* link to the next event */}enode;The etype �eld distinguishes one event from other. The di�erent event typesused in the simulator are as follows.loadPC /* load PC with new value */predi
tNextPC /* predi
t next PC */predi
tSetWay /* predi
t next set and way of
a
he(
a
heline predi
tion)*/
ompareTag /*
ompare address of spe
ulativelyread instru
tion with predi
ted PC */predi
tBran
h /* Bran
h Predi
tion Table predi
ts bran
h */spe
ulativeCa
heRead /* read instru
tion on basis frompredi
ted
a
heline */
a
heMiss /*
a
he miss */
41

hkBran
h /* Resolve bran
h instru
tions,
he
k whether next instru
tionmat
hes bran
h target */updateSetWayPredi
tionTable /* update the Set Way (next
a
heline)Predi
tion Table */updatePCPredi
tionTable /* update the BTB */sele
tWay /* sele
t the
a
he blo
k in a set */readWay /* read from the way */
Every event is asso
iated with a time at whi
h they o

ur. This time is stored inthe time �eld. The simulator exe
utes in a loop. At the beginning of ea
h iteration,events that are supposed to be handled at the
urrent time, are taken out fromthe event queue, and handled sequentially. The handling of an event often dependson some external fa
tors. These
an be passed to the event handlers through threeparameters. For example, the update Bran
h Target Bu�er has to
reate a new entryor delete an entry depending on the out
ome of the previous bran
h instru
tion. Thisinformation
an be passed by the param �elds.After events are handled, they may generate some more events, whi
h are thenpla
ed at the appropriate pla
e in the event queue in sorted order. Stall in a pipeline
an be modeled by delaying the time at whi
h the events in the queue are s
heduledto o

ur. Flushing the pipeline is equivalent to deleting all the future events in thequeue at that time.5.4 ModelingThe simulator models the instru
tion
a
he, the various predi
tion tables et
. Theimplementations of these are dis
ussed in brief.

42

5.4.1 Instru
tion Ca
heThe Instru
tion Ca
he is implemented as a two dimensional array of
a
he blo
ks.The number of
olumns in the array is equal to the
a
he asso
iativity. The numberof rows in the array is equal to the number of sets in the
a
he. The size and otherparameters of the
a
he are
on�gurable (as given in se
tion 5.2). The
ontents ofthe
a
he blo
k, i.e. the instru
tion itself was not stored sin
e it would not serve anypurpose to us. Only the tag for ea
h
a
he blo
k was stored along with the valid bitinformation. The stru
ture de�nition is given below.typedef stru
t {int tag; /*
a
he line tag */int valid; /* whether
a
he entry is valid */int age; /* used for
a
he repla
ement */} i
type;5.4.2 Predi
tion TablesThe di�erent predi
tion bu�ers are also
a
hes and are implemented as array ofstru
tures.The Set Way Predi
tion Bu�er or the next
a
heline predi
tion bu�er is a fullyasso
iative
a
he. Ea
h entry
ontains four �elds. Current
a
he set and way (theblo
k within the
a
he set) and predi
ted
a
he set and way. Ea
h entry has a
ountasso
iated with it, whi
h is in
remented every time the bu�er is a

essed. Duringrepla
ement, the entry with maximum
ount (i.e. the oldest entry) is repla
ed andthe
ount is reset.stru
t {int set,way; /*
urrent */int nset,nway; /* next */int
ount; /* for repla
ing */} 43

The Bran
h Target Bu�er (BTB) is also modeled as a fully asso
iative
a
he andimplemented as an array of the following stru
ture.stru
t {int PC;int nPC;int
ount; /* for repla
ing */} The Bran
h Predi
tion Table (BPT) is modeled as a dire
t mapped
a
he. Ea
hentry has a tag (to prevent aliasing), and a set of predi
tion bits, depending onthe depth of history of other bran
hes maintained. The
a
he repla
ement poli
y isFIFO. In our implementation we also keep a �eld
alled PC per entry whi
h givesthe predi
ted bran
h target. In reality, the BPT does not predi
t bran
h target,but by the time it is a

essed, the bran
h target of the bran
h instru
tion is alreadyresolved./* Bran
h Predi
tion Table: Dire
tly Mapped Ca
he */stru
t {int tag;int *pbits; /* pointer to set of predi
tion bits */int PC; /* target PC */}
44

5.4.3 Instru
tion Address QueueIn pro
essor employing some kind of instru
tion address predi
tion, the validityof a predi
tion is not known immediately after the instru
tion is fet
hed spe
ula-tively. After a bran
h instru
tion is fully resolved, the target instru
tion addressis
ompared with the address of the next instru
tion fet
hed spe
ulatively. If theinstr
ution is not of
ontrol transfer type, the address of the next instru
tion shouldbe the address of the
urrent instru
tion plus the fet
h o�set. To model this, in oursimulator too, the predi
ted instru
tion addresses are not
ompared with the tra
e�le immediately. Instead, they are stored in a queue and after a number of
y
le(as spe
i�ed in the
on�guration) the address in the front of the queue is
omparedwith the tra
e �le. If no mispredi
tion is dete
ted, they are dequeued. Otherwisethe event queue is �ushed, the queue storing instru
tion address is emptied and thepredi
tion tables are updated, and the
orre
t instru
tions are fet
hed. The queueis implemented using
ir
ular array.

45

Chapter 6Experimental ResultsThe simulator was run on address tra
e of a few ben
hmark programs. Table 6.1shows the ben
hmark programs tested and their brief des
riptionAll the Ben
hmark programs are written in C.Some abbreviations used in this
hapter are:- BTB � Bran
h Target Bu�er- SWPT � Set Way Predi
tion Table, i.e. next
a
heline predi
tion table- BPT � Bran
h Predi
tion TableTable 6.2 gives the total number of instru
tions in the di�erent ben
hmarkprograms that we tested.Compress SPEC 95 Integer Ben
hmark data
ompressionPerl Interpreter SPEC 95 Integer Ben
hmark programBanner Simple program to print banners on printerLisp Interpreter CPU intensive SPEC 95 Integer Ben
hmark programWhetstone Netlib Double Pre
ision Ben
hmark programMatmul Matrix Multipli
ation ProgramTable 6.1: Ben
hmark Programs
46

Ben
hmark Number of Instru
tionsCompress 5831442Perl Interpreter 1682454Banner 3806932Lisp Interpreter 458974Whetstone 1393724Matmul 1808794Table 6.2: Number of Instru
tions in di�erent Ben
hmark Programs6.1 Ar
hite
ture Con�gurationIn this
hapter we shall use the terms next
a
heline predi
tion s
heme and Set WayPredi
tion Table based s
heme inter
hangeably. The ben
hmark was tested for thefollowing predi
tion s
hemes:1. BTB and BPT: Bran
h Target Bu�er based predi
tion along with Bran
hPredi
tion Table2. BTB: Bran
h Target Bu�er3. BTB and SWPT: Bran
h Target Bu�er based predi
tion along with SetWay Predi
tion table based s
heme (next
a
heline predi
tion s
heme)4. SWPT: Set Way Predi
tion Table (next
a
heline predi
tion s
heme)In all the experimental results shown later in this
hapter we have used thefollowing ar
hite
ture
on�guration. The size of BPT was kept at 1024 entries.Both the BTB and SWPT were tested with 32 and 256 entries. The ben
hmarkprograms were tested for 16 KB and 32 KB 2-way set asso
iative instru
tion
a
hes,with FIFO repla
ement poli
y. The
a
he miss penalty was kept at 4
y
les. Theinstru
tion issue rate was 2 instru
tions/
y
le. Bran
h out
ome is taken to beresolved after 5
y
les of instru
tion fet
hing.
47

6.2 experimental ResultsThe following �gures show the total time (in
lo
k
y
les) needed by the variousben
hmark programs for the various
a
he and predi
tion bu�er
on�gurations.The �gures show our s
heme to give
omparable results with other s
hemes formost ben
hmark programs ex
ept Perl Interpreter and Lisp Interpreter. Theperforman
e improves drasti
ally by in
reasing the predi
tion table size.6.3 Figures
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

cl
oc

k
cy

cl
es

Total execution time in clock cycles

compress perl banner lisp whetstone matmul

btb+bpt
btb

swpt+btb
swpt

Figure 6.1: Clo
k
y
les taken for exe
utinmg di�erent ben
hmark programs underdi�erent predi
tion s
hemes. I-Ca
he: 16 KB BTB: 32 entries SWPT: 32 entriesBPT: 1024 entries
48

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

cl
oc

k
cy

cl
es

Total execution time in clock cycles

compress perl banner lisp whetstone matmul

btb+bpt
btb

swpt+btb
swpt

Figure 6.2: I-Ca
he: 16 KB BTB: 256 entries SWPT: 256 entries BPT: 1024 entries
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

cl
oc

k
cy

cl
es

Total execution time in clock cycles

compress perl banner lisp whetstone matmul

btb+bpt
btb

swpt+btb
swpt

Figure 6.3: I-Ca
he: 32 KB BTB: 32 entries SWPT: 32 entries BPT: 1024 entries49

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

cl
oc

k
cy

cl
es

Total execution time in clock cycles

compress perl banner lisp whetstone matmul

btb+bpt
btb

swpt+btb
swpt

Figure 6.4: I-Ca
he: 32 KB BTB: 256 entries SWPT: 256 entries BPT: 1024 entries

50

In the
ombined Set Way Predi
tion Table and BTB based s
heme, wheneverthe address of the instru
tion fet
hed on the basis of
a
heline predi
tion does notmat
h with the instru
tion address predi
ted by BTB, we say an instru
tion addressmismat
h to have o

urred. In the next two �gures, we have shown the variationof instru
tion address mismat
hes with
hange in asso
iativity of the Instru
tionCa
he. It is observed that the number of mismat
hes in
reases drasti
ally with thein
rease in asso
iativity. We have shown the bar
harts for the ben
hmark programsPerl Interpreter and Lisp Interpreter. This observation
an be related to theproblem dis
ussed in 4.2.2
����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�� ����

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

0

100000

200000

300000

400000

500000

600000

700000

800000

m
is

m
at

ch
es

Variation in Instruction Address Mismatch with Cache Associativity

16KB, 32 entry 32KB, 32 entry 16KB, 256 entry 32KB, 256 entry

2 way
4 way
8 way

Figure 6.5: Variation in mismat
h with
a
he asso
iativity for Perl Interpreter

51

����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�� ��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��0

5000

10000

15000

20000

25000

m
is

m
at

ch
es

Variation in Instruction Address Mismatch with Cache Associativity

16KB, 32 entry 32KB, 32 entry 16KB, 256 entry 32KB, 256 entry

2 way
4 way
8 way

Figure 6.6: Variation in mismat
h with
a
he asso
iativity for Lisp Interpreter

52

Chapter 7Con
lusion and Future WorkFrom the statisti
al data in Chapter 6, it
an be
on
luded that generally thenext
a
heline predi
tion s
heme gives
omparable performan
e as the other bran
hpredi
tion based s
hemes. Only in the
ases of Perl Interpreter and Lisp Inter-preter program, did the s
heme perform poorly. For loop intensive programs, likeWhetstone and Matrix Multipli
ation, the next
a
heline predi
tion s
hemegave good performan
e. So this s
heme
an a
t as an alternative to the di�erentexisting sophisti
ated bran
h predi
tion me
hanism.Sin
e tag
omparison is not performed everytime the
a
he is a

essed, the fet
hpipeline gets shorter. There are a
tually two parallel fet
h paths in our s
heme.The shorter path (whi
h is taken more often) bypasses the tag
omparison step.The other longer path a

esses the
a
he in traditional way, whenever a mispre-di
tion o

urs. So, in general, our s
heme will make
a
he a

ess faster without
ompromising with the hit rate.The work done by Koji Inoue et al. [4℄ shows that Way Predi
tion Ca
hes
ansave up to 70% of
a
he power
onsumption. Sin
e I-
a
hes are a

essed in almostevery
lo
k
y
le, redu
ing power
onsumption of I-
a
he
an save a
onsiderableamount of total power
onsumed by the pro
essor. The tag
omparison of all theblo
ks in a parti
ular
a
he set
an be almost eliminated using next
a
heline pre-di
tion, thus redu
ing power
onsumption. So there
ould be a power-performan
etrade o�. This fa
t also in
reases the potential of the s
heme. Next, we propose53

some future dire
tions for improving the design of the s
heme and building a moree�
ient simulator for better testing purpose.It was also seen that with in
rease in asso
iativity of
a
he, the mispredi
tionrate in
reased, resulting in performan
e degradation. The s
heme will produ
e bestresults for dire
t mapped Instru
tion
a
hes and 2-way set asso
iative instru
tion
a
hes.7.1 Future Dire
tions1. We have seen in Chapter 4 that how
a
he repla
ement
an degrade the per-forman
e of our predi
tion s
heme. Espe
ially, when a
a
he blo
k
ontaininga bran
h instru
tion, or a target instru
tion of a
ontrol transfer instru
tion,is repla
ed, then the predi
tion s
heme fails. From this information we
ansuggest that if we
an mark these instru
tions as privileged and design a
a
herepla
ement poli
y su
h that the privileged instru
tions are never repla
ed, orat the most repla
ed, when there is no other way, then our s
heme may showbetter results. It is apparent that, the design of the
a
he and the repla
ementpoli
y will have a tremendous impa
t on the performan
e of our s
heme, a newkind of
a
he design is required whi
h will enhan
e the predi
tion performan
e.2. It is seen that in
reasing the predi
tion bu�er size improves performan
e. Butsin
e we intend to implement the bu�er as a fully asso
iative
a
he, we
annothave a very large bu�er. So an alternative design for the predi
tion bu�er, soas to in
rease its size,
an also help. We
an implement the predi
tion bu�eras a dire
tly mapped
a
he indexed by the index of the
urrent instru
tion.3. The s
heme stores information for non-
ontrol transfer statements in the pre-di
tion bu�er along with bran
h information. This takes up spa
e in the pre-di
tion bu�er whi
h
ould otherwise be used for storing other bran
h predi
-tion informations. The next
a
he-blo
k to be a

essed in
ase of non-bran
hinstru
tions
an be stored in a spe
ial �eld in the
a
he blo
k itself [2℄.4. In our s
heme, the predi
tion bu�er stores fewer bits than a Bran
h Target54

Bu�er. The latter has to store the full instru
tion address, while in our s
heme,only a few bits are required to store the
a
he blo
k lo
ation. So with thesame
ost of that of a BTB, we
an have a mu
h larger set-way predi
tiontable. So the latter
an store more bran
h information at redu
ed
ost. Inour s
heme, we have proposed the set-way predi
tion to be a fully asso
iative
a
he memory. Instead, we
ould have a tagged dire
t mapped
a
he, indexedby the
a
he set number. This way, we
ould have larger tables yielding betterresults.5. The performan
e degradation with in
rease in asso
iativity suggests that thes
heme in its present format is not suitable for more that 2-way asso
iative
a
hes. A new variation to this s
heme for highly asso
iative
a
he need to beinvestigated.6. The simulation should be
arried out using standard tools like simples
alarwhi
h
an fully simulate various features of a supers
alar ar
hite
ture.7. Finally, a word must be said about the tra
e generation program too. Asmentioned in Chapter 3, there are many limitations to the program. Sin
ewe
ould not get the tra
e of a library routine, the generated tra
e was not
omplete. In fa
t, any
all to a library routine was visualized as a
ombi-nation of two un
onditional jumps. From point of invo
ation to the libraryroutine, and ba
k. This assumption might have a�e
ted the performan
e ofthe predi
tion s
heme. The generated tra
e �les were too large. The programfails to generate tra
es of programs whi
h uses lo
aland in registers as jumptargets. These problems
an be solved if address tra
es are generated usingsome pro�ling tools.
55

Bibliography[1℄ Brad Calder, D. G., and Emer, J. Predi
tive Sequential Asso
iativeCa
he. 2nd International Symposium on High Performan
e Computer Ar
hi-te
ture (February 1996), 244�253. http://www.
s.
olorado.edu/~grunwald/Papers/HPCA96-SeqAsso
Ca
he/paper.ps.[2℄ Calder, B., and Grunwald, D. Next Ca
he Line and Set Predi
tion. Pro-
eedings of the 22nd annual international symposium on Computer ar
hite
ture(June 1995), 287�295. http://dev.a
m.org/pubs/arti
les/pro
eedings/is
a/223982/p287-
alder/p287-
alder.pdf.[3℄ Hennessey, J. L., and Patterson, D. Computer Ar
hite
ture: A Quantita-tive Approa
h, 2 ed. Har
ourt Asia PTE LTD.[4℄ Koji Inoue, T. I., and Murakami, K.Way-Predi
ting Set-Asso
iative Ca
hefor High Performan
e and Low Energy Consumption. Pro
eedings of 1999 Inter-national Symposium on Low Power Ele
troni
s and Design (ISLPED'99) (Au-gust 1999), 273�275. http://www.kasuga.
s
e.kyushu-u.a
.jp/~pparam/paper/PPRAM-TR-42.ps.gz/.[5℄ Lee, B. Dynami
 Bran
h Predi
tion. www.e
e.orst.edu/~benl/Proje
ts/bran
h_pred/ .[6℄ S. Peter Song, M. D., and Chang, J. The PowerPC 604 RISC mi
ropro-
essor. IEEE Mi
ro (O
tober 1994).[7℄ Weaver, D. L., and Germond, T. The SPARC Ar
hite
ture Manual, Ver-sion 9. Prenti
e Hall.[8℄ Yeh, T., and Patt, Y. Two-level Adaptive Bran
h Predi
tion. 24thACM/IEEE International Symposium on Mi
roar
hite
ture (November 1991).56

