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Chapter 1
Introduction

The recent processors like RS10000, Sun UltraSPARC etc. employ superscalar archi-
tecture. These processors issue multiple instructions per cycle and employ multiple
functional units and hardware scheduling techniques to achieve maximum paral-
lelism at the instruction level. To exploit maximum efficiency such multiple issue
processors must be fed by high instruction fetch bandwidth. The instruction fetch
unit must fetch enough instructions every cycle to keep the functional units busy.
No clock cycle should go idle and thus several instructions need to be fetched at
every clock cycle.

Meeting these performance requirements from the instruction fetch unit, depends
among other factors on the I-cache performance and the branch prediction mech-
anism. In multi-way set—associative caches, data can reside in one of many cache
blocks within a cache set. The data is stored along with a tag which is derived from
the memory address where the data is actually stored. In conventional multi-way
set-associative I-cache, an instruction is read in the following way. The address
generated by the processor is divided into two parts — tag and indexr. The index
selects the set of the I-cache to be accessed. The tag is compared simultaneously
with the cache blocks tags of all the blocks in the set. The data is read from the
block whose tag matches with the instruction tag. If none of the stored tags matches
with the instruction tag, then a cache miss occurs and the instruction is read from

the other levels of the memory hierarchy. With very fast clock cycles, this whole



procedure requires more than one clock cycle to complete. It is expected that the
future processors, which are likely to have a very deep pipeline, will require several
pipeline stages to fetch instructions.

Control hazards also play a crucial role in performance of the CPU. A condi-
tional branch instruction can potentially change the flow of program. Before this
instruction is executed, and the branch outcome is known, the address of the next
instruction is not known. Speculative fetching of instructions (assuming the branch
is not taken) can lead to the non-utilisation of the pipeline, if the branch is actually
taken, thus wasting clock cycles. These unresolved branch instructions give rise to
the control hazard. There are several methods of dealing with this problem and to
reduce the associated penalties. The simplest method is to stall the pipeline once a
branch instruction is detected. The other methods are to support delayed branches,
or branch prediction schemes. In the latter technique, the likely outcome of the
branch instruction and the target address, are predicted before the branch instruc-
tions are executed. For a multiple-issue processor, handling of control hazard is even
more crucial for the performance. In the best case for an n-issue processor, branches
will come up to n times faster into the pipeline. To reduce control hazard, correct
prediction of the next instruction has to be made every clock cycle. In the next
chapter we discuss various branch prediction schemes widely used in the modern

processors.

1.1 Problem Statement

The two main factors that affect the performance of a multi-issue processor are:
cache access time and fetching correct instructions every cycle. We address both
these problems by predicting the address of the Instruction cache from where the
next instruction has to be fetched. For a set associative cache, this address comprises
of the selection of the set as well as the block within the set. We call this prediction
scheme the next cache-line prediction scheme and we will use this term in the rest
of this thesis. This kind of prediction will have two advantages. First, since we are

also predicting the block within the cache-set from where the instruction has to be



fetched, the tag part of the instruction address need not be compared with the tags
of the various other blocks in the set for selecting the block. This will make the
cache access faster and also reduce power consumption of the I-cache. [4]

A misprediction is known by comparing the tag and index of the selected block
with that of the instruction address. A misprediction however is associated with
the penalty of killing wrongly fetched instructions. The next cache-line prediction
reduces the need for sophisticated branch prediction scheme as well. At the fetch
stage itself, we are predicting the next cacheline for fetching the next instruction, a

correct prediction, can thus reduce control hazards.

1.2 Related Works

Koji Inoue et al. [4] proposed a new Way-predicting Set—Associative Cache. Ex-
perimental results showed that this cache gives high performance at low power con-
sumption. In their scheme, known as the way—predicting cache, only one way in a
cache-set is selected based on what they called the MRU (Most Recently Used) Al-
gorithm. In an n-way set associative cache, each set has logon bit MRU information.
These bits are stored in a table which is accessed using the set-index address, and is
used to speculatively select one way from the corresponding cache-set. Experimen-
tal results showed that, compared to conventional set—associative cache, the power
consumption was reduced by 60-70% without any performance degradation.

Calder et al. [1] proposed a cache design called Predictive Sequential Associative
Cache that provides same miss ratio as a two-way set associative cache and access
time closer to a direct mapped cache. In this design, a conventional direct mapped
cache is divided conceptually into two banks. This technique makes use of several
prediction sources to select between the two banks in a set. The prediction sources
can be adjusted according to pipeline constraints.

A similar work for Instruction Caches has been done by Calder and Grunwald
[2]. They call their scheme as the Next Cache Line and Set Prediction or the NLS
scheme. In this scheme, instructions following a branch instruction is fetched using

an index into the Instruction Cache instead of a predicted branch target address.



Their work also investigates the use of NLS along with 2 bit correlating branch
prediction table (see Chapter 2).

In our scheme, for every instruction fetched, we predict the address in instruction
cache, from where the next instruction is to be fetched. We predict the cacheline,
that is both the cache set, and the block within the cache where the desired instruc-

tion is expected to reside.

1.3 Goals Achieved

In this thesis we propose a new scheme for superscalar processors to predict the
Instruction Cache address where the next instruction to be executed. The goals

achieved in this work are

e We developed an address trace generator for UltraSPARC processor. The
program instrumented a given input program at assembly language level and

the instrumented code the address trace of the program. See chapter 3.

e A simulator was developed to test the performance of the newly proposed
cacheline prediction scheme. The simulator models the fetch stage of a pro-

cessor and its various parameters are configurable. See chapter 5.

e Using these tools several benchmarks were tested and studies of the scheme

was done. The experimental results are given in Chapter 6.

1.4 Organization

The rest of the thesis is organized as follows. In the next chapter we briefly discuss
the different branch prediction schemes, to compare them with our scheme. In Chap-
ter 3, we discuss the trace generation mechanism of different benchmark programs.
These address traces are the inputs to the simulation program used to test this new
scheme. In Chapter 4 we provide and discuss in detail, the design issues and the

performance issues of our scheme. In Chapter 5 we discuss the implementation of



the simulator. In Chapter 6 we provide the detailed experimental results. Finally

we conclude this work and suggest some work that can be done to extend this work.



Chapter 2
Branch Prediction Mechanism

In this chapter, the various branch prediction schemes in modern processors are
discussed in brief. Typically 15-20% of all instructions in a program are control
transfer instructions. Predicting the right direction of control flow, early in the
pipeline is vital in exploiting Instruction Level Parallelism (ILP) in a processor,
especially in the superscalar ones. Various schemes have been proposed to predict

the outcome of branch instructions.

2.1 What i1s Branch Prediction

Branch Prediction is a scheme predicts the outcome of a branch instruction. After a
prediction is made, a processor can continue to speculatively fetch instructions from
the predicted direction and thus maintain the supply of instructions to the pipeline.
In absence of any prediction scheme, the processor must stall for unresolved branch
instructions, which imposes heavy penalty on performance of a processor. A correct
branch prediction can overcome this problem and can reduce control hazards and
exploit more ILP. If the correct branch prediction rates are high enough to over-
shadow the misprediction penalties, then the overall performance of the processor

is likely to improve.



2.2 Static vs. Dynamic Branch Prediction

Static Branch Prediction schemes define a static prediction used by the proces-
sor. For example, MIPS-X, predicts all branches as taken while Motorola MC88000
predicts all branches to be not taken. Static prediction schemes are utilized by
the compilers where in they use the profiling information from previous runs of a
program and generate appropriate kind of instructions.

Dynamic branch prediction techniques take information derived from the
dynamic execution of the program and predict the outcome of a branch instruction.
The hardware produces two outputs, the expected direction of the branch and the
branch target. The predicted branch direction is signified by a bit (taken / not
taken), while the target is the address of the next instruction in the predicted path.
For our reference in this thesis, the table that provides the direction outcome of a
branch instruction as a branch prediction table, or BPT [3|. Similarly the table that
is used to predict the address of the target instruction is referred to as a branch
target buffer, or BTB [3]. In this thesis we restrict ourselves to dynamic branch

prediction schemes only.

2.3 Dynamic Branch Prediction

The dynamic branch prediction mechanisms can be classified into two groups. The
counter based schemes, and the correlation based schemes. The predictors of the
former type, also known as the One-level branch predictors, predict the outcome of
a branch, depending on its recent behavior. The predictors of the second type, also
known as the Two-level branch predictors, which predict the outcome of a branch

instruction on the basis of recent outcomes of other branch instructions as well.

2.3.1 Counter Based Branch Prediction

The simplest form of this scheme is a branch-prediction buffer or branch history
table. Tt is basically a small cache indexed by few least significant bits of the branch

instruction address. In the simplest case, the entries of the cache are one bit wide.



When a bit corresponding to a branch instruction address is set, the branch is
predicted to be taken. If this bit is zero, then the branch is predicted to be not
taken. After the buffer is accessed, and the prediction bit is read, the instructions are
fetched from the predicted direction. In case of a misprediction, the wrongly fetched
instructions are killed and the prediction bit is toggled. This scheme is useful, only
when the branch delay is longer than the time taken to compute possible target PC.
This scheme however has some drawbacks. Consider a loop branch which is taken
nine times in a row and not taken the last time. The above scheme will predict
branch to be not taken, the first time the branch is encountered. The prediction bit
is then toggled and it gives the correct prediction for the next eight times. The last
time, when the branch is actually not taken, it is predicted to be taken, leading to
another misprediction. So for a branch which is taken 90% of time, the prediction
accuracy is only 80%. The situation can be improved, if instead of one prediction
bit, we used n-prediction bits.

In an n-bit prediction buffer, each entry is an n-bit counter. The counter is
incremented, every time the branch is resolved to be taken, and decremented every
time it is not taken. A branch is predicted to be not taken, if the corresponding
counter value is less than 277!, and predicted taken otherwise.

A 2-bit counter branch predictor is most commonly used and is found sufficient
in most branch applications.

The buffer can be implemented in many ways.

e Direct Mapping The cache entry is indexed directly by the last few bits of
the branch instruction address. However, if the size of the buffer is too small,
a large number of branch instruction will map to the same entry, causing

aliasing.

e Fully Associative In this types of buffers, the entries, along with the predic-
tion bits also contain tag information. The cache entry is found by comparing
the tag with the few least significant bits of the branch instruction address.

This scheme needs cache replacement strategy, which could be LRU or FIFO.

e Set Associative In this implementation, each address maps into a set of



entries, having different tags. The cache is indexed as usual using few least
significant bits of the instruction address, and then tag comparison is done

associatively to obtain the correct prediction bits.

2.3.2 Correlation Based Branch Prediction

Branch predictors, that uses the recent behaviors of other branches for predicting
the outcome of a branch are known as correlating predictors or two-level predictors.
This scheme was originally proposed by Yeh and Patt [8]. To understand the working
of such a predictor, let us consider a correlating branch predictor which uses one
correlation bit and one prediction bit. This type of predictor can be viewed as
consisting of two separate prediction bits. One prediction if the branch instruction
executed prior to the one being predicted was taken, and the other, if that branch
was not taken. This predictor is called a (1,1) predictor since it uses the behavior of
the last (one) branch to select from a pair of one bit predictors. In general a (m,n)
correlating predictor, uses the behavior of the last m branch instructions to choose
from 2™ branch predictors, each having n prediction bits.

This scheme can be implemented by a rather simplistic hardware. It consists
of a global history table which holds the history of outcome of the last m branches.
The global history table can be implemented using an m-bit shift register, where a
1 is shifted in every time a branch is taken. Similarly a 0 is shifted if a branch is
not taken. The branch prediction buffer can be viewed as a two dimensional table
of counters. It can be indexed using the instruction address and the global history
table.

In the original scheme proposed by Yeh and Patt, known as the Two-level adap-
tive prediction scheme (also referred as the Yeh algorithm), history information of
the previous branch outcomes was maintained. This information however was local
and kept was in correlation registers, sometimes called as the local history table.
For each branch, there is an associated correlation register, and the pattern of the
branch history is stored there. Based on this pattern, a particular entry in another
buffer called the global pattern table (GPT) is accessed. The corresponding correla-

tion register and the entry in GPT are updated each time a branch is resolved. An



entry in GPT can be shared by several branches. In order to lookup, we index the
table by the lower bits of the address of the branch instruction. The entry in the
table provides the corresponding correlation register, whose value is used to index
GPT to get the appropriate prediction bits.

Although a correlating predictor gives better performance than simple one-level
branch predictors, it has a disadvantage of an expensive implementation and the
fact that the so called Warm Up Phase (the time the table entries contain usable
values) is much longer.

Besides the two major classes of branch predictors discussed above, there are
another kinds of predictors such as the hybrid branch predictors [5], which use more
than one sources of predictions, which are independent of each other. A selection

mechanism is used to select from among different sources of prediction.

2.4 Branch Target Buffer

In all the schemes discussed in the previous section, the prediction occurs at the
instruction decode stage when the fetched instruction is decoded and it is known to
be a branch instruction. If the branch delay is longer than the time to compute the
target PC, the above schemes can reduce the branch delay by predicting the outcome
of the branches earlier. But in certain processors, the outcome of the branch and
the target address are known at roughly the same time. In this cases, the above
schemes cannot help much. To reduce the branch penalty in these cases, we have to
know the branch target address by the end of the Instruction Fetch (IF) stage itself.
Therefore the address to fetch the next instruction, is predicted even before we know
whether the current instruction is a branch instruction or not. In such schemes we
can possibly have a zero branch penalty. This type of branch prediction schemes,
where we predict the address of the next instruction are called a branch-target buffer
or branch-target cache prediction scheme. Throughout this text, we shall refer to
these type of buffers as Branch Target Buffer or BTB.

In a BTB based prediction, the buffer is accessed during the IF stage, using the
address of the currently fetched instruction. Thus the next PC is known by the end

10



of TF cycle and the instruction fetch can continue without any delay. The branch
target buffer is a table, whose entries contain PC and the predicted next PC. After
an instruction is fetched, it is looked up in the table. If a matching entry is found,
then the corresponding predicted PC is taken to be the next PC. If at a later stage,
the current instruction does not take the branch, then we have a misprediction. The
wrongly fetched instruction is killed and the entry is deleted from the buffer. If on
the other hand, the current PC is not found in the buffer, then the next sequential
instruction is fetched. Many processors improve the branch prediction by using both
BPT based and BTB based schemes simultaneously. Examples are PowerPC 620,
where the two buffers are decoupled, and the Pentium, where the BTB and the
Branch Prediction Buffer are coupled together.

2.5 Branch Prediction schemes in recent Processors

- PowerPC604 [6] has a 64 entry fully associative Branch Target Buffer for
predicting the Branch Target Address and a decoupled direct mapped 512
entry Pattern History Table.

- PowerPC620 has a 256 entry two-way set associative Branch Target Buffer
for predicting the Branch Target Address and a decoupled direct mapped

branch prediction buffer.
- UltraSPARC uses a 2-bit branch prediction scheme.

- Intel Pentium contains a 256 entry 4-way set associative Branch Target
Buffer. Coupled with each Branch Target Buffer entry is a simple one-level

2-bit branch predictor that is responsible for the branch prediction.

- Intel Pentium Pro works with a 512 entry 4-way set associative Branch
Target Buffer. Coupled with each Branch Target Buffer entry is in this case
a 4-bit local branch history. This is mapped in a second level onto a Global

Pattern History Table, thus implementing Yeh’s Algorithm mentioned earlier.

11



2.6 Simulation

In our simulation we compared the performance of our newly proposed scheme with
that of some existing prediction schemes. For this, we modeled in our simulator,
our next cacheline prediction scheme, a BTB based scheme and a (2,2) correlation

based Branch Prediction scheme.

12



Chapter 3
Address Trace Generation

Address trace of a program is the sequence of instruction addresses, through which
the control of a program flows during its execution.

We needed the address traces of the benchmark programs that we tested with
our new scheme. The sequence of instructions that were predicted by our scheme
were compared with the address trace generated. In this chapter we discuss the

process by which these address traces were generated.

3.1 Overview

We developed a code instrumentation program which changed the program to be
tested, so that it generates the address trace when it is run. The instrumentation
was not done on the source code, but on the compiled assembly code. The instru-
mentation was done in a way so that the original address trace is not affected. We
chose Sun UltraSPARC assembly language code for instrumentation. The reason of
this choice is that UltraSPARC is a RISC processor with fixed instruction length of
4 bytes. It has got many other features which made code instrumentation easier.
We first compiled a C source code using — S option of gcc to get the assembly
code. Then the instrumentation program was run on the assembly program to
generate the instrumented code. In the instrumented code all occurrences of control

transfer instructions, which included all the branch instructions the function call

13



instruction, and the ret from instruction; were replaced by a instruction to transfer
the control to a function in instrumentation code. We called this function “foo”
In this newly introduced function we calculated the addresses of the source and
destination instructions of the control transfer instruction involved, and wrote them
into a trace file. Then the actual control transfer instruction was executed from
within the "foo" function. This way the original code trace was not modified and
the instrumentation code was not traced. We now discuss the instrumentation

mechanism in more detail.

3.2 Features of SPARC Architecture

In this section some features of the SPARC processor architecture [7] are discussed,

which are necessary to understand the code instrumentation procedure.

3.2.1 Registers

The SPARC processor has two types of registers. The general purpose registers
and control/status registers. The general purpose register set consists of 8 global
registers (g0 to g7), and several register windows which are changed upon function
calls and restored upon return. The register windows have 8 in registers (i0 to i7),
8 local registers (10 to 17) and 8 out registers (00 to 07).

Upon executing the save instruction, a new register window is allocated such
that its in registers i0 to i7 are same as the out registers o0 to o7 registers of the
old window. Thus parameters can be passed and values returned between functions
using registers. So the save instruction is typically associated with a function call.
The restore restores the register window. See 3.2.3 for details.

The following control registers, are important for instrumentation purposes.

e Program Counter (PC) contains the address of the instruction currently

being executed by the Instruction Unit (IU).

e The next Program Counter (nPC) register contains the address of the

next instruction to be executed.

14



e Condition Code Register (CCR) holds the integer condition codes.

3.2.2 Delayed Control Statement

In SPARC processors, control transfer instructions are delayed, i.e. the effect of
the control transfer is delayed by one instruction. In case of these delayed control
transfer instructions, after the execution the value of the nPC register is changed.
The PC is changed to PC+4 and the next instruction in the program storage order
is fetched into the pipeline. As a result the control transfer takes place after a delay
of one cycle. The instruction following a delayed control transfer instruction is said
to be in the delay slot. Usually after a branch instruction or a call instruction
the compiler introduces the nop instruction. Sometimes, optimized codes can have
other meaningful instructions in the delay slot which does not affect the control flow

and maintains the program semantics.

3.2.3 SAVE and RESTORE Instructions

The SAVE instruction provides the routine executing it, with a new register window.
The out registers from the old window are visible as the in registers of the new
window. The contents of the newly made available registers (out and local) in the

new window are zero. The instruction syntax is:
save T€Grs1,T€G_ OT _ 1MIM,T€Gry

Additionally the instruction behaves as a normal ADD instruction. It takes
the source operands from the previous window and the writes into the destination
register in the new window. Typically the save instruction is used to generate a new
stack pointer (denoted in program by %sp which is an alias to 06). This is done
along with allocating new register window in one atomic operations. For example,

upon execution of the instruction
save hsp,-120,%sp

a new register window is allocated and the stack pointer is moved by 120 bytes.

(The old stack pointer remains in the old windows)

15



The RESTORE instruction restores the register window saved by the last SAVE
instruction executed by the current process. The in registers of the old window now
becomes the out registers of the new window. The #n and local registers of the new

window retain their previous values.

3.2.4 Function Call and Parameter Passing

The Call instruction causes a control transfer to the desired subroutine. It also
saves the value of PC, into out register 07. When the called routine executes the
save instruction, the register o7 of the calling routine is known as in register i7 in
the new window, which now holds the address to the call instruction.

The Ret instruction, like the call instruction is also synthetic instruction and is

equivalent to
jmpl %i7 + 8, %go0

It causes a register—indirect delayed control transfer to the specified address [17]+8
As i7 contains the address of the call instruction, the control will be transfered to the
instruction immediately after delay slot of the call instruction (offset 8). Typically,
after a ret statement, a restore instruction is kept in the delay slot, which restores
the register window to that of the calling function.

Up to six parameters can be passed to a subroutine, by placing them in the out
registers o0 to 05. Additional parameters are passed through memory stack. Thus
in the called routine, after executing save instructions, parameters are available in
registers i0 to i5. The stack pointer is implicitly passed in 06 which becomes the
current procedure’s frame pointer (i6).

A function can return several integer values using the in registers starting at i0
which are visible in the parent routine register window starting at at 0o0. In addition,
SPARC also has several floating point registers which are used for passing/returning
floating point values.

The local registers are used for automatic variables and other temporary values.

16



3.3 Code Instrumentation

In this section we shall discuss the details of instrumenting the various branch in-

structions, call and ret instruction.

3.3.1 Instrumentation of the Branch instruction

Supposing we have the following piece of assembly code:

cmp %10,10
ble LL1 ;branch to LL1 if 10 is less or equal to 10

nop

LL1:

Now we replace the ble instruction by a call to a special function called “foo”.

So the instrumented code will look like the following.

cmp %10,10
call foo,0 ;call function foo

nop

LL1:

17



The corresponding foo function is shown in figure 3.1

Let us now analyze the instrumented code. The routine foo first executes a save
instruction to get a new register window and moves the stack pointer by 120 bytes.
The rd instruction saves condition code register (CCR) into local register 10. We
have to do this because the succeeding instructions can change the value of CCR
and thus change the condition under which the original branch would have been
taken. The address of the original branch instruction is the address of call foo0,0
instruction and is available in register i7 of the current window. The original target
address of the branch is LL1. The “myfprintf” routine is used to write data into the
trace file. Using this function, we first write the source and target addresses of the
original branch instruction. After this, we execute the original branch instruction.
Note that, if the branch is not taken then foo should return to the instruction after
the delay slot. For this, the fall through address is saved in the global variable
“bretaddress”.

Then the register window is restored; the CCR register is restored using wr
instruction and the actual branch is executed. If the branch is not taken, it is noted
in the trace file and the control should be transferred back to the correct instruction.

Finally the saved branch return address is written back to i7 and ret instruction

is executed. In the delay slot the restore instruction is put.

3.3.2 Instrumentation of the Call Instruction

Call instructions are essentially jump and link instructions, upon execution of which
the address to the call instruction is stored in the link register o7. Function calls
can be nested. Therefore unlike the handling of branch instructions, the return
address cannot be stored in a single global variable. We therefore use a different
way of handling call instruction. We label the instruction following the delay slot
instruction of a call instruction by a special return label. Finally the function call is
replaced by a call to the foo function. In the foo function (figure 3.2), after the source
and target addresses are noted, the actual function is called. Finally upon return
from the original function to the foo function, an unconditional branch is made

to the corresponding return label. There is one more issue involved. A function
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.section

foo:

.LLfoo:

".text"
.align 4
.global foo
.type foo,#function
.proc 020

1#PROLOGUE# O

save %sp,-120,%sp
'#PROLOGUE# 1

rd Y%ccr,%10

mov %i7,%00

sethi %hi(.LL1),%11
or %11,%lo(.LL1),%11
mov %11,%o1

call myfprintf,0

nop

sethi %hi(bretaddr),%11
st %i7, [%411+%1lo(bretaddr)]
nop

wr %10,%g0,%ccr
restore

ble .LL1

nop

save %sp,-120,%sp
mov 0,%00

mov 0,%o1

call myfprintf,0

nop
sethi %hi(bretaddr),%10

1d [%10+%lo(bretaddr)],%i7
sethi %hi(bretaddr),%10

st %g0, [%#10+%1o(bretaddr)]
ret

restore

.size foo, .LLfoo-foo

;save register window

;save ccCr

;branch source address

;branch target address

;write into trace file

;save the fall-through instruction address
;restore ccr

;restore register window
;take actual branch

;write 0 O to trace file to denote
;branch not taken

;restore fall through address to i7
;fall through

Figure 3.1: The foo function replacing a branch instruction
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call introduces two control transfers. Namely, from the caller to callee routine and
back. To store the second control transfer information into the trace file, we need
to know, from where in the called subroutine, the control was finally returned. For
this, we use another global variable called “retaddr”. The instrumented code for ret
instruction (see 3.3.3) stores the appropriate instruction address into retaddr. If
however, it is a call to a library routine, we cannot know from where the control was
returned (see 3.5) and thus a zero is stored in place of retaddr.

Supposing we have assembly instructions as follows

call fun,O ;call function fun

nop

After instrumentation it is changed to the following code

call foo0,0 ;call function foo
nop
.global .LLret ;special label to denote return instruction

LLret:
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.section

foo:

.LLfoorl1

.LLfoo:

".text"
.align 4
.global foo
.type foo,#function
.proc 020

1#PROLOGUE# O

save %sp,-120,%sp
'#PROLOGUE# 1

mov %i7,%00

sethi %hi(fun),%11

or %11,%lo(fun),%11
mov %11,%o1

call myfprintf,0

nop

restore

call fun,O

nop

save %sp,-120,%sp
sethi %hi(.LLret),%10
or %10,%lo(.LLret),%o1
sethi %hi(retaddr),%10
1d [%10+%lo(retaddr)],%11
cmp %11,0

bne .LLfooril

mov 0,%00

mov %11,%00

call myfprintf,0

nop

sethi %hi(retaddr),%10
st %g0, [%10+%1o(retaddr)]
b .LLret

restore

.size foo, .LLfoo-foo

;save register window

;source address

;target address
;write into trace file

;actual function call

;return address
;return from where?

;if retaddr=0 then it is not known
;from where control is returned

;write into trace file
;reset retaddr

;unconditional branch to return address

Figure 3.2: The foo function replacing a call instruction
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3.3.3 Instrumentation of the Return Instruction

The foo function replacing a ret instruction is shown in Figure 3.3. The function
simply stores the address of the ret statement (stored in 07) into the global variable
“retaddr”. Note that, here no new register window is saved, and it uses the register
window of the routine from which it was called.

Therefore, if we have assembly instructions as follows

ret ;call function fun

restore

instrumentation will change the code to

call foo0,0 ;call function foo

nop ;restore is replaced by nop

3.4 Other Details

The myfprintf routine accepts two addresses as arguments and stores them into the

trace file. The routine uses a buffer to store the addresses temporarily. When the
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buffer is full, it is emptied into the trace file. At the time of program termination,
the remaining part of the buffer was flushed to the trace file.

Since for each of the control transfer instructions, we need a separate “foo” func-
tion, we have to give them unique names. We used the following naming convention
for the foo functions: <fname>foo<<num>, where fname is the name of the .s and
num is a unique sequence number. For example the foo function for the 10" control
transfer statement in a file a.s will have the name af0010.

After all the foo routines are generated they are put together into a file called
foo.s. All the instrumented assembly programs are stored in files with name
T<filename>.s , where filename was the name of the original .s file. Since there can
be more than one such instrumented .s files, and that foo.s has code that uses labels

within them, all the labels and function names are made global.

3.5 Drawbacks

There are certain flaws in this address trace generator. First of all, to preserve the
address space of the code to be instrumented, we could not add any extra instruction
to the individual .s files. All we could do is to replace a control transfer statement

with a function call. Now consider the following branch statement:
ble LL1

Here, in order to write the corresponding “foo” function, we need the branch
instruction (ble) and the target label (LL1). We cannot pass them as parameters to
foo, as it would require several instructions to be inserted into the original program.
We have similar problems with the call instructions too. Therefore, several foo
functions are generated, one for each control transfer instruction. As a result the
generated foo.s file is large in size, and after assembling, the generated binary code
is huge.

In our approach, all register indirect jumps cannot be instrumented. Since in
the “foo” function, we have to save a new register window, instrumentation is not
possible if the argument register is a local or a in register, as these are not visible in

the register window of the foo function. Only if it is an out register, we change it to
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a in register in the instrumented code. An example will clarify the issue. Suppose

we have to instrument the instruction.
jmp %00

The corresponding foo function is shown in figure 3.4.

Obviously an instruction like jmp %i7 cannot be instrumented by our program.

There is another shortcoming in our approach. Since we are instrumenting at
the assembly level we cannot trace the execution of the different library routines.
For this reason, the trace file only holds the jump from the user code to the library
routine, but not the trace of the library routine itself. Since we do not know from
where is the library routine the control was returned, the corresponding entry in the

trace file returned as a zero.
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.section ", text"
.align 4
.global foo
.type foo,#function
.proc 020
foo:
'#PROLOGUE# 0O
mov %o7,%11
sethi %hi(retaddr),%10
st %11, [%10+%lo(retaddr)] ;store o7 into retaddr
ret ;return control
restore
.LLfoo:
.size foo,.LLfoo-foo

Figure 3.3: The foo function replacing a ret instruction
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foo:

1#PROLOGUE# O
save %sp,-120,%sp
I#PROLOGUE# 1

rd Yccr,%10

mov %i7,%00

mov %i0,%o1l

call myfprintf,0

nop

sethi %hi(bretaddr),’%11

st %i7,[%h11+%1lo(bretaddr)]
nop

wr %10,%g0,%ccr

restore

jmp %00

nop

save 7%sp,-120,%sp

mov %00,%i7

mov 0, %00

mov 0,%o1

call myfprintf,0

nop

sethi %hi(bretaddr),%10
1d [%10+%lo(bretaddr)],%i7
sethi %hi(bretaddr),%10
st %g0, [%#10+%1o(bretaddr)]
ret

restore

;new register window

;The 00 register becomes 1i0
;pass 10 as parameter to myfprintf

;the original jmp instruction

Figure 3.4: foo function for jmp %o0
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Chapter 4

Next Cacheline Prediction

In this chapter we discuss in detail the new Next Cacheline Prediction scheme that
is proposed in this thesis. As mentioned in the first chapter, the factors that affect
the performance of a multi-issue processor are the I-cache access time and prediction
of the next set of instructions to be fetched into the pipeline. Our scheme predicts
the location of the cacheline, i.e. the set and way, where the next instruction(s)
reside. Since, in this scheme, we need not compare the tag of an instruction address
with the tag stored in cache blocks, in a particular set, it makes cache access faster
and reduces the I-cache power consumption. In the remaining part of the chapter,

we shall address the I-cache simply as cache.

4.1 The Design

The main feature of this scheme is a Set Way Prediction Table which is a small

cache memory whose entries contain the following information.

current set, current way — next set, next way

As the instructions are fetched from an address, an entry in the table is searched
for the next set and next way. The current set and way for this entry should be
same as the set and way for the current instructions. The next set and way is the
predicted set and way in the cache from where the next instruction is to be

fetched. Whenever an instruction is fetched, from a given set, way; the table is
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looked up for a corresponding entry. If the current set and way is found in the
table, then the next instruction is fetched from the predicted set and way. If no
entry is found corresponding to the current set and way, then the default
prediction is used. The default prediction is based on the spatial locality principle.
instructions that are located in neighboring positions in memory, when fetched to
cache, will tend to fill up the cache column by column. Hence, if the current
instruction comes from set s, way w; then the next instruction is likely to be in set

(s+1) and way w. This is the default prediction of this scheme.

4.1.1 Working Principle

Initially the prediction buffer is empty. The cache is accessed in the traditional way
to translate the address in the PC to correct cache address (set and way) to read the
instruction. After this, the current set and way is used to predict the next set and
way and the instruction is speculatively read from the predicted cacheline. If the
prediction is not correct, then the speculatively fetched instructions are killed and
the prediction table is updated. The correct PC is then used to access the cache in

traditional way and fetch the correct instruction.

4.1.2 Cold Start

At the beginning of the program execution, most predicted cache addresses corre-
spond to invalid cachelines. Accessing these cachelines result in cache miss. In this
case, the address of the instruction is constructed using the address of the previous
instruction read, and the instruction is read from this address.

Consider a 2 way associative cache of size 1 Kilobytes (128 sets, each with 2
blocks), 32 bit wide cachelines. The instruction addresses are 20 bit wide. Assume
that, the last cacheline read was from set 0x44 and way O of the cache. The cor-
responding tag was 0x83. As there are no entries corresponding to this set/way in
the prediction table, the next set and way are predicted as 0x45 and 0. As this
cacheline is invalid, the instruction has to be read from memory. From the tag and

index of the previously fetched instruction we can easily reconstruct the address of
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this fetched instruction to be 0x10710. Assuming instructions are 4 bytes long, the
address of the next instruction is 0x10714 (which indeed belongs to set 0x45). This
instruction is then read from the memory and placed in way 0 of set 0x45.

Note that, once the entire cache is filled up by some instructions, all the spec-
ulative cache reads will result in a hit. However, as we shall see later, there is no

guarantee that all these speculative reads fetch the desired instruction.

4.1.3 A Modified Design

As a modification of this scheme, we can use the Branch Target Buffer(BTB) as an
additional source for prediction the address to the next instruction to be fetched.
As in the earlier scheme, the current set and way is used to predict a new pair of set
and way. Simultaneously, the address of the current instruction is used to refer to
the BTB as usual, and predict the PC of the next instruction. The tag and index of
the predicted PC are compared with the tag and index of the speculatively fetched
instruction. If the tag and index of the fetched instruction do not match that of
the predicted PC, the speculatively fetched instruction is killed, and the cache is
accessed in the traditional way, using the predicted PC. In such a case, the set way
prediction table is also updated. It is seen that the next cacheline scheme gives
better performance when coupled with the BTB (see Chapter 2).

Using the next cacheline prediction scheme, the focus shifts from address pre-
diction, to predicting the exact location in the cache where the instruction resides.
A cacheline replacement (due to cache miss) can have serious implications on the

performance.

4.2 Different Performance Issues

As discussed in Chapter 2, in a processor using a branch prediction table, the
outcome of a instruction branch is predicted. Similarly in a Branch Target Buffer
based prediction, the target address of a branch instruction is predicted. Essentially,
in these branch prediction schemes, the address to the next instruction is predicted.

In our scheme, we do not predict the next memory address from where the instruction
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is to be fetched, but rather predict the position in cache, where the next instruction
is likely to be present is predicted. Thus in our scheme there is a shift of focus from
instruction address, to the actual location of the instruction in the cache.

It is this distinction, which affects many performance issues of this scheme. If
a BTB based scheme makes a prediction of control transfer from an instruction
address PC1 to another instruction address PC2, then it signifies that there is a
control transfer instruction at address PC1. This control transfer may not always
take place (as in the case of a conditional branch). However the control transfer
instruction will be present throughout the lifetime of the program. So an entry in
the BTB always convey some relevant piece of information. Now, consider the set-
way prediction table of our scheme. Suppose, due to a cache miss, the instruction in
a particular cacheline of the cache gets replaced, then all information stored about
that set and way of the cache loses all relevance. This unfortunately gives rise to
certain drawbacks in this scheme. Now, we discuss the various problems in such a

system.

4.2.1 Problem 1

The most common problem occurs when a instruction that is the source or target of
a control transfer instruction gets replaced due to cache replacement policy. Let us
explain it with an example (fig. 4.1). Suppose there is a jump from address 0x106d4
to 0x10700. Suppose the first instruction is in way 0 of set 53 and the second
instruction is in way 0 of set 0. The set way prediction table will contain an entry
(0,53) — (0,0), corresponding to this jump. Now, suppose, the instruction 0x10700
gets replaced due to cache miss. Now, the corresponding entry in the prediction table
loses relevance. If at some point later the control reaches at instruction 0x106d4,
then the next set and way will be wrongly predicted as (0,0) where the instruction
has been replaced. One solution to this problem could be to invalidate all the entries
in the set way prediction table corresponding to a set-way which just got replaced.
But, even then this will not substantially improve the situation. Supposing, the entry
in the prediction table is invalidated. When control will be transferred to 0x106d4
at set 53, way 0, the prediction table will be looked up. When no corresponding
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0 1 0 1

o | 0x10700 0 | 0x10800
1 1
2 2
I cache miss |
I I
(0,0) replaced
53 | Ox106d4 53 | Ox106d4
54 | Ox106d8 54 | Ox106d8
I I
I I
I I
I I
I I
64 64
Set Way Prediction Table
53 0 00

Figure 4.1: Wrong Prediction due to Cache Replacement

entry will be found, it will predict by default to fetch instruction from set 54, way
0, which in this case contains 0x106d8. Now suppose the branch instruction at
0x106d4 actually takes the branch. Then also a misprediction occurs. In both the
cases the performance penalty is the same. However if the branch is not taken after

the cacheline gets replaced, then there will be some advantage.

4.2.2 Problem 2

This problem is explained with an example. Supposing, the instructions 0x106d4,
0x106d8 and 0x106dc are stored in way 0 of the adjacent sets 53, 54 and 55 re-

spectively (fig. 4.2). Initially there are no entries corresponding to any of these
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0 0 0
1 1 1
2 2 2
l he mi ! |
! cache miss ! !
! (54,0) replaced ! !
53 | 0x106d4 53 | 0x106d4 53 | 0x106d4 \
54 | ox106d8 54 | 0x105d8 54 | 0x105d8 | Ox106d8
55 | 0x106dc 55 | Ox106dc 55 | 0x106dc
64 64 64
Set Way Prediction Table
53 0 54 1
54 1 550

Figure 4.2: Pseudo Cache Miss

instructions in the prediction table. Now suppose the instruction 0x106d8 gets re-
placed by instruction 0x105d8. Then when the control is transferred to 0x106d4
at set 53, way 0, the prediction scheme predicts the next instruction to be fetched
from set 54, way 0. It is not a cache miss, but the wrong instruction is fetched. A
normal cache read will result in a cache miss. After the cache penalty the correct
instruction will be read from the memory and placed in the cache at way 1 of set 54.
The mistake will be discovered after a few clock cycles. By that time some other
wrong instructions have been fetched and all these instructions have to be killed.
The subsequent next prediction will try to fetch an instruction from way 1 of set 55.

This prediction will meet a similar fate, since the expected instruction is in way 0
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of set 55. So again there will be a penalty associated with it, although the desired
instruction is already present in the cache. This sort of pseudo cache miss degrade
the performance of the system.

As an added penalty, the set way prediction table will be updated with two
entries (53,0) — (54,1) and (54,1) — (55,0). These two entries signify that after
set 53, way 0 is accessed, the next instruction is to be fetched from set 54, way 1
and then from set 55 way 0. Although there is no jump from 0x106d4 to 0x106d8
or from 0x106d8 to 0x106dc, the entries corresponding to these sequential flow of
control, will remain in the prediction table. Thus the prediction table can have

entries, which actually depicts sequential flow of control, rather than a jump.

4.2.3 Branch Target Buffer and Cacheline Prediction

The penalties associated with the problems mentioned above, can be reduced if the
mispredictions are detected earlier. We incorporated BTB based prediction also in
our scheme (see 4.1.3) assuming that BTB gives a more accurate prediction for the
addresses. Experimental results confirms it. Note that, even in the modified scheme,
the above mentioned problems will not be eliminated, since the primary source
of prediction is still the set way prediction buffer. But, in the modified scheme,
whenever we speculatively fetch a wrong instruction, the following comparison with
the predicted PC, will result in a mismatch and the error will be detected at a much

earlier stage of the pipeline, thus reducing the penalty.

4.2.4 Problem 3

Association of BTB along with the cache prediction table brings in some more
problems.

As we saw that the set way prediction has to store information about instructions
which are not of control transfer type. Since the set way prediction table has a
limited number of entries, entries in the table can get replaced, which may be entries
for control transfer instructions. However the BTB may still have the information

about the branch instruction.
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SIL,W1 —— S2W2
X —» Y /

Entry
Replaced
Branch Target Buffer Set Way Prediction Table
% SBW3 — A W4
X —Y Logical
link
lost

Figure 4.3: Mismatch Due to Decoupling of BTB and Set Way Prediction Table:
Case 1

Sometimes, such inconsistencies between the two tables can lead to degradation
in performance as explained in the following example (fig 4.3). Suppose we have
a jump from address X to address Y. The instructions were stored in the cache at
(s1,w1) and (sy,wy) respectively. The BTB contains an entry X — Y. Similarly the
set way prediction table contains the entry (s; wi) — (s3 wo). Now assume that the
entry (s; wq) — (S2 W) is replaced by some other unrelated entry (s3 w3) — (sq wy).
Now suppose the control is transferred to the instruction X, stored at set s; way wy.
The set way prediction table has no entry for this cacheline and will mispredict the
next instruction to be fetched from set (s; + 1 way wy), The BTB based prediction
provides the next predicted PC to be Y, which is a correct prediction if the branch is
taken. A misprediction is detected and all the fetched instructions are killed. After

this the correct instruction will be fetched, but after a considerable penalty.
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S1L,W1 — S2 W2
X —» Y /

Branch Target Buffer Set Way Prediction Table

SLW1 — S2W2

A —B
\. S3W3 —— 4W4

Figure 4.4: Mismatch Due to Decoupling of BTB and Set Way Prediction Table:
Case 2

Just the reverse case can happen (see fig 4.4). Instead of the set way prediction
entry being replaced, it may be the case that the entry X — Y in BTB got replaced
by another entry A — B. Now, if the control goes to the instruction X, the set way
prediction table will predict the next instruction to be in set sy way wy, which is
correct prediction. Later, when the BTB is consulted , and no entry is found for
address X, it will predict the next PC to be X-+4 (assume that the instructions are
all 4 bytes long), which is a misprediction. A mismatch will be detected and the
correctly fetched instruction will be killed. A wrong instruction will be fetched as a
result of BTB misprediction and the set way prediction table will be updated as a
result of which the correct entry of (s; wy) — (s wy) will be removed. This mistake
will be detected at the later stage in the pipeline and the correct instruction will be

fetched, but after a considerable penalty. Note that although, it was a misprediction

35



of the BTB and there would have been a penalty even if we had BTB only; the

penalty would have been lesser than the penalty in this case.

4.3 Advantages

In this scheme, whenever the instruction cache is accessed, associative tag compar-
ison need not be done. This makes the instruction fetch operation faster. Since
we are bypassing the tag comparison step, we are reducing the length of the fetch
pipeline. Essentially, there are two parallel instruction fetch paths. The shorter one
is taken most of the time. The longer traditional path is taken, only when we detect
a misprediction.

As observed in [4], eliminating tag comparison reduces power consumption, our
scheme has the added advantage of saving power.

The performace of the scheme for predicting the next instruction is comparable

to the other existing schemes. The details are given in Chapter 6.
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Chapter 5
Simulator

A simulator was built to simulate the proposed cacheline prediction scheme, and
compare its performance with other prediction schemes. The simulator is highly
configurable. The simulator models only the fetch stage of a processor and is highly
configurable. It simulates instruction fetching mechanism and prediction of the next

instruction of a processor.

5.1 Overview of Simulator

The inputs to the simulator are the trace file (chapter 3) for the program to be
tested and the configuration file which contains the values of the different parameters
used to model the architecture.

It can simulate three different type of prediction schemes. It can simulate the
BTB based scheme, the BPT based scheme and the proposed next cacheline pre-
diction scheme. These schemes can be simulated independently or in combination
with another scheme.

It models the instruction cache and various events like cache miss associated with
it. It also models the various prediction buffers. It can simulate stalls in pipeline
and flushing of the pipeline.

The simulator does not take the instructions of the program into consideration

and does not execute the program. It only simulates the instruction fetch and

37



prediction mechanisms.

The address of the first instruction of the program under test is supplied to the
simulator at the beginning of the simulation The simulator compares the predicted
instruction address with the trace file. If the predicted address does not match with
the trace file, then a misprediction occurs, and the simulator updates its tables and
the correct instruction address is taken from the trace file. The simulation continues
until the entire trace file is read.

It records the number of mispredictions occurred, total time taken in clock cycles
etc. It also models the instruction cache and simulates various events like cache miss
associated with it. These statistical data is used to compare the performance of the

various instruction address prediction schemes.

5.2 Configuration File

The simulator is designed to be as much configurable as follows. It uses a configura-
tion file to read in the various parameters, used to model the processor architecture
and the instruction fetch prediction schemes. An example configuration file is shown
in fig 5.2. The syntax of the lines in the configuration file is parameter: value In
the configuration file, a line beginning with a hash symbol is ignored and can be

used as a comment line.

5.3 Event Queue Modeling

To simulate the pipeline, we used Event Queue Modeling technique. The different
stages of the pipeline can be viewed to perform some operations as responses to
certain events. For example, cache miss is an event, and as a response to it, the
instruction is fetched from the next level of memory. An event can trigger one
or more events as a consequence. Depending on outcome of some operation, the
consequent events can be different. For example, as a response to the cache read
event, the I-cache is accessed. If the access results in a hit, some events are generated

to dispatch the fetched instruction and initialize fetch of next instruction. However,
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# configuration file

# Abbreviations used

# BTB Branch Target Buffer

# BPT Branch Prediction Table

# length of instruction address in bits
address: 24

# I-cache size in KiloBytes
size: 32

# cache associativity
assoc: 2

# cacheline size in bytes; a cache line can hold one or more words
line: 8

# cache word size in bytes
word: 4

# cache replacement policy: O FIFO 1 RANDOM 2 LRU
replace: 0O

# cycle after fetch when BTB predicts next PC
btbd: 1

# cycle after fetch when BPT predicts outcome of branch instruction
bptd: 2

# is set way prediction present
swpt: O

# is branch prediction table present
isbpt: 0

# is branch target buffer present
isbtb: 1
Figure 5.1: configuration file
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# number of entries in BPT
bptsize: 1024

# history bits in BPT : number of branches whose history is recorded
m: 2

# prediction bits per entry in the BPT
n: 2

# cycles after cache access when outcome of branch is known
branch: b5

# Instruction Buffer size (number of instructions)
ibufsize: 32

# set way prediction table size (number of entries)
swptsize: 256

# BTB size (number of entries)
pcptsize: 256

# miss penalty (in cycles)
missp: 4

# instruction issue rate
irate: 2

Figure 5.2: configuration file continued
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a miss generates the cache miss event. Some events like the cache miss can generate

stalls in the pipeline. Some other events (like a branch misprediction) can lead to

killing of instructions, which means all the existing events are killed.

Thus the pipeline is modeled as a series of events or an event queue. This event

queue is implemented as a linked list in our implementation. The nodes of this

linked list are the actual events, and contain the following fields.

/* structure definitions for a node in the event queue */

typedef struct entag {
int etype;
int time;
int paramil;
int param2;
int param3;
struct entag *next;

}enode;

/%
/%

event type */
time at which the event is scheduled to occur */
parameter */
parameter */
parameter */

link to the next event */

The etype field distinguishes one event from other. The different event types

used in the simulator are as follows.

loadPC
predictNextPC
predictSetWay

compareTag

predictBranch

speculativeCacheRead

cacheMiss

/* load PC with new value */
/* predict next PC x/
/* predict next set and way of cache
(cacheline prediction)*/
/* compare address of speculatively
read instruction with predicted PC */
/* Branch Prediction Table predicts branch */
/* read instruction on basis from
predicted cacheline */

/* cache miss */
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chkBranch /* Resolve branch instructions,
check whether next instruction

matches branch target */

updateSetWayPredictionTable /* update the Set Way (next cacheline)
Prediction Table */

updatePCPredictionTable /* update the BTB */

selectWay /* select the cache block in a set */

readWay /* read from the way */

Every event is associated with a time at which they occur. This time is stored in
the time field. The simulator executes in a loop. At the beginning of each iteration,
events that are supposed to be handled at the current time, are taken out from
the event queue, and handled sequentially. The handling of an event often depends
on some external factors. These can be passed to the event handlers through three
parameters. For example, the update Branch Target Buffer has to create a new entry
or delete an entry depending on the outcome of the previous branch instruction. This
information can be passed by the param fields.

After events are handled, they may generate some more events, which are then
placed at the appropriate place in the event queue in sorted order. Stall in a pipeline
can be modeled by delaying the time at which the events in the queue are scheduled
to occur. Flushing the pipeline is equivalent to deleting all the future events in the

queue at that time.

5.4 Modeling

The simulator models the instruction cache, the various prediction tables etc. The

implementations of these are discussed in brief.
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5.4.1 Instruction Cache

The Instruction Cache is implemented as a two dimensional array of cache blocks.
The number of columns in the array is equal to the cache associativity. The number
of rows in the array is equal to the number of sets in the cache. The size and other
parameters of the cache are configurable (as given in section 5.2). The contents of
the cache block, i.e. the instruction itself was not stored since it would not serve any
purpose to us. Only the tag for each cache block was stored along with the valid bit

information. The structure definition is given below.

typedef struct {

int tag; /* cache line tag */
int valid; /* whether cache entry is valid */
int age; /* used for cache replacement */

} ictype;

5.4.2 Prediction Tables

The different prediction buffers are also caches and are implemented as array of
structures.

The Set Way Prediction Buffer or the next cacheline prediction buffer is a fully
associative cache. Each entry contains four fields. Current cache set and way (the
block within the cache set) and predicted cache set and way. Each entry has a count
associated with it, which is incremented every time the buffer is accessed. During
replacement, the entry with maximum count (i.e. the oldest entry) is replaced and

the count is reset.

struct {
int set,way; /* current */
int nset,nway; /* next */

int count; /* for replacing */
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The Branch Target Buffer (BTB) is also modeled as a fully associative cache and

implemented as an array of the following structure.

struct {
int PC;
int nPC;

int count; /* for replacing */

The Branch Prediction Table (BPT) is modeled as a direct mapped cache. Each
entry has a tag (to prevent aliasing), and a set of prediction bits, depending on
the depth of history of other branches maintained. The cache replacement policy is
FIFO. In our implementation we also keep a field called PC per entry which gives
the predicted branch target. In reality, the BPT does not predict branch target,
but by the time it is accessed, the branch target of the branch instruction is already

resolved.

/* Branch Prediction Table: Directly Mapped Cache */

struct {
int tag;
int *pbits; /* pointer to set of prediction bits */
int PC; /* target PC */

}

44



5.4.3 Instruction Address Queue

In processor employing some kind of instruction address prediction, the validity
of a prediction is not known immediately after the instruction is fetched specula-
tively. After a branch instruction is fully resolved, the target instruction address
is compared with the address of the next instruction fetched speculatively. If the
instrcution is not of control transfer type, the address of the next instruction should
be the address of the current instruction plus the fetch offset. To model this, in our
simulator too, the predicted instruction addresses are not compared with the trace
file immediately. Instead, they are stored in a queue and after a number of cycle
(as specified in the configuration) the address in the front of the queue is compared
with the trace file. If no misprediction is detected, they are dequeued. Otherwise
the event queue is flushed, the queue storing instruction address is emptied and the
prediction tables are updated, and the correct instructions are fetched. The queue

is implemented using circular array.
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Chapter 6
Experimental Results

The simulator was run on address trace of a few benchmark programs. Table 6.1
shows the benchmark programs tested and their brief description
All the Benchmark programs are written in C.

Some abbreviations used in this chapter are:

- BTB — Branch Target Buffer

- SWPT — Set Way Prediction Table, i.e. next cacheline prediction table
- BPT - Branch Prediction Table

Table 6.2 gives the total number of instructions in the different benchmark

programs that we tested.

Compress SPEC 95 Integer Benchmark data compression

Perl Interpreter | SPEC 95 Integer Benchmark program

Banner Simple program to print banners on printer

Lisp Interpreter | CPU intensive SPEC 95 Integer Benchmark program
Whetstone Netlib Double Precision Benchmark program
Matmul Matrix Multiplication Program

Table 6.1: Benchmark Programs
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‘ Benchmark ‘ Number of Instructions

Compress 5831442
Perl Interpreter | 1682454
Banner 3806932
Lisp Interpreter | 458974

Whetstone 1393724
Matmul 1808794

Table 6.2: Number of Instructions in different Benchmark Programs

6.1 Architecture Configuration

In this chapter we shall use the terms next cacheline prediction scheme and Set Way
Prediction Table based scheme interchangeably. The benchmark was tested for the

following prediction schemes:

1. BTB and BPT: Branch Target Buffer based prediction along with Branch
Prediction Table

2. BTB: Branch Target Buffer

3. BTB and SWPT: Branch Target Buffer based prediction along with Set

Way Prediction table based scheme (next cacheline prediction scheme)

4. SWPT: Set Way Prediction Table (next cacheline prediction scheme)

In all the experimental results shown later in this chapter we have used the
following architecture configuration. The size of BPT was kept at 1024 entries.
Both the BTB and SWPT were tested with 32 and 256 entries. The benchmark
programs were tested for 16 KB and 32 KB 2-way set associative instruction caches,
with FIFO replacement policy. The cache miss penalty was kept at 4 cycles. The
instruction issue rate was 2 instructions/cycle. Branch outcome is taken to be

resolved after 5 cycles of instruction fetching.
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6.2 experimental Results

The following figures show the total time (in clock cycles) needed by the various

benchmark programs for the various cache and prediction buffer configurations.

The figures show our scheme to give comparable results with other schemes for

most benchmark programs except Perl Interpreter and Lisp Interpreter. The

performance improves drastically by increasing the prediction table size.

6.3 Figures
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Figure 6.1: Clock cycles taken for executinmg different benchmark programs under
different prediction schemes. I-Cache: 16 KB BTB: 32 entries SWPT: 32 entries
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In the combined Set Way Prediction Table and BTB based scheme, whenever
the address of the instruction fetched on the basis of cacheline prediction does not
match with the instruction address predicted by BTB, we say an instruction address
mismatch to have occurred. In the next two figures, we have shown the variation
of instruction address mismatches with change in associativity of the Instruction
Cache. It is observed that the number of mismatches increases drastically with the
increase in associativity. We have shown the bar charts for the benchmark programs
Perl Interpreter and Lisp Interpreter. This observation can be related to the

problem discussed in 4.2.2

Variation in Instruction Address Mismatch with Cache Associativity
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Figure 6.5: Variation in mismatch with cache associativity for Perl Interpreter
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Variation in Instruction Address Mismatch with Cache Associativity
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Chapter 7
Conclusion and Future Work

From the statistical data in Chapter 6, it can be concluded that generally the
next cacheline prediction scheme gives comparable performance as the other branch
prediction based schemes. Only in the cases of Perl Interpreter and Lisp Inter-
preter program, did the scheme perform poorly. For loop intensive programs, like
Whetstone and Matrix Multiplication, the next cacheline prediction scheme
gave good performance. So this scheme can act as an alternative to the different
existing sophisticated branch prediction mechanism.

Since tag comparison is not performed everytime the cache is accessed, the fetch
pipeline gets shorter. There are actually two parallel fetch paths in our scheme.
The shorter path (which is taken more often) bypasses the tag comparison step.
The other longer path accesses the cache in traditional way, whenever a mispre-
diction occurs. So, in general, our scheme will make cache access faster without
compromising with the hit rate.

The work done by Koji Inoue et al. [4] shows that Way Prediction Caches can
save up to 70% of cache power consumption. Since I-caches are accessed in almost
every clock cycle, reducing power consumption of I-cache can save a considerable
amount of total power consumed by the processor. The tag comparison of all the
blocks in a particular cache set can be almost eliminated using next cacheline pre-
diction, thus reducing power consumption. So there could be a power-performance

trade off. This fact also increases the potential of the scheme. Next, we propose

23



some future directions for improving the design of the scheme and building a more
efficient simulator for better testing purpose.

It was also seen that with increase in associativity of cache, the misprediction
rate increased, resulting in performance degradation. The scheme will produce best
results for direct mapped Instruction caches and 2-way set associative instruction

caches.

7.1 Future Directions

1. We have seen in Chapter 4 that how cache replacement can degrade the per-
formance of our prediction scheme. Especially, when a cache block containing
a branch instruction, or a target instruction of a control transfer instruction,
is replaced, then the prediction scheme fails. From this information we can
suggest that if we can mark these instructions as privileged and design a cache
replacement policy such that the privileged instructions are never replaced, or
at the most replaced, when there is no other way, then our scheme may show
better results. It is apparent that, the design of the cache and the replacement
policy will have a tremendous impact on the performance of our scheme, a new

kind of cache design is required which will enhance the prediction performance.

2. It is seen that increasing the prediction buffer size improves performance. But
since we intend to implement the buffer as a fully associative cache, we cannot
have a very large buffer. So an alternative design for the prediction buffer, so
as to increase its size, can also help. We can implement the prediction buffer

as a directly mapped cache indexed by the index of the current instruction.

3. The scheme stores information for non-control transfer statements in the pre-
diction buffer along with branch information. This takes up space in the pre-
diction buffer which could otherwise be used for storing other branch predic-
tion informations. The next cache-block to be accessed in case of non-branch

instructions can be stored in a special field in the cache block itself [2].

4. In our scheme, the prediction buffer stores fewer bits than a Branch Target
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Buffer. The latter has to store the full instruction address, while in our scheme,
only a few bits are required to store the cache block location. So with the
same cost of that of a BTB, we can have a much larger set-way prediction
table. So the latter can store more branch information at reduced cost. In
our scheme, we have proposed the set-way prediction to be a fully associative
cache memory. Instead, we could have a tagged direct mapped cache, indexed
by the cache set number. This way, we could have larger tables yielding better

results.

. The performance degradation with increase in associativity suggests that the
scheme in its present format is not suitable for more that 2-way associative
caches. A new variation to this scheme for highly associative cache need to be

investigated.

. The simulation should be carried out using standard tools like simplescalar

which can fully simulate various features of a superscalar architecture.

. Finally, a word must be said about the trace generation program too. As
mentioned in Chapter 3, there are many limitations to the program. Since
we could not get the trace of a library routine, the generated trace was not
complete. In fact, any call to a library routine was visualized as a combi-
nation of two unconditional jumps. From point of invocation to the library
routine, and back. This assumption might have affected the performance of
the prediction scheme. The generated trace files were too large. The program
fails to generate traces of programs which uses localand in registers as jump
targets. These problems can be solved if address traces are generated using

some profiling tools.
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