
Instrution Cahe Address Predition forSupersalar Proessors
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

byShankar Seal

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurJanuary, 2001



Certi�ate
This is to ertify that the work ontained in the thesis entitled �InstrutionCahe Address Predition for Supersalar Proessors�, by Shankar Seal, has beenarried out under my supervision and that this work has not been submitted elsewherefor a degree.

January, 2001 (Dr. Rajat Moona)Department of Computer Siene & Engineering,Indian Institute of Tehnology,Kanpur.



AknowledgementsI would like to take this opportunity to express my gratitude to my thesis supervisorDr. Rajat Moona. He has helped me at every stage of this work with his innovativeideas and his deep knowledge of the subjet, without whih this thesis ould not havebeen possible. He has always been very understanding, ompassionate, enouragingand helpful to me.I am thankful to all the faulty members of the department of Computer Sieneand Engineering, for helping me have a better understanding of various subjets ofomputer siene. I am also thankful to Atul Kumar, P. Suresh and Rajiv A. R. forhelping me in various aspets of this work.I would like to all my lassmates of the Mteh'99 bath for being supportive andhelpful friends.I am grateful to my parents for their blessings and enouragement. Finally Iwould like to thank Sudeshna, who has been a onstant soure of inspiration to me.

iii



Contents
Aknowledgements iii1 Introdution 11.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Goals Ahieved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Branh Predition Mehanism 62.1 What is Branh Predition . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Stati vs. Dynami Branh Predition . . . . . . . . . . . . . . . . . 72.3 Dynami Branh Predition . . . . . . . . . . . . . . . . . . . . . . . 72.3.1 Counter Based Branh Predition . . . . . . . . . . . . . . . . 72.3.2 Correlation Based Branh Predition . . . . . . . . . . . . . . 92.4 Branh Target Bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.5 Branh Predition shemes in reent Proessors . . . . . . . . . . . . 112.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Address Trae Generation 133.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2 Features of SPARC Arhiteture . . . . . . . . . . . . . . . . . . . . . 143.2.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.2.2 Delayed Control Statement . . . . . . . . . . . . . . . . . . . . 153.2.3 SAVE and RESTORE Instrutions . . . . . . . . . . . . . . . 15iv



3.2.4 Funtion Call and Parameter Passing . . . . . . . . . . . . . . 163.3 Code Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . 173.3.1 Instrumentation of the Branh instrution . . . . . . . . . . . 173.3.2 Instrumentation of the Call Instrution . . . . . . . . . . . . . 183.3.3 Instrumentation of the Return Instrution . . . . . . . . . . . 223.4 Other Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.5 Drawbaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Next Caheline Predition 274.1 The Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.1.1 Working Priniple . . . . . . . . . . . . . . . . . . . . . . . . . 284.1.2 Cold Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284.1.3 A Modi�ed Design . . . . . . . . . . . . . . . . . . . . . . . . 294.2 Di�erent Performane Issues . . . . . . . . . . . . . . . . . . . . . . 294.2.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304.2.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.2.3 Branh Target Bu�er and Caheline Predition . . . . . . . . 334.2.4 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.3 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 Simulator 375.1 Overview of Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 375.2 Con�guration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385.3 Event Queue Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 385.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425.4.1 Instrution Cahe . . . . . . . . . . . . . . . . . . . . . . . . . 435.4.2 Predition Tables . . . . . . . . . . . . . . . . . . . . . . . . . 435.4.3 Instrution Address Queue . . . . . . . . . . . . . . . . . . . . 456 Experimental Results 466.1 Arhiteture Con�guration . . . . . . . . . . . . . . . . . . . . . . . . 476.2 experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 486.3 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48v



7 Conlusion and Future Work 537.1 Future Diretions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



List of Tables6.1 Benhmark Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 466.2 Number of Instrutions in di�erent Benhmark Programs . . . . . . 47

vii



List of Figures3.1 The foo funtion replaing a branh instrution . . . . . . . . . . . . 193.2 The foo funtion replaing a all instrution . . . . . . . . . . . . . . 213.3 The foo funtion replaing a ret instrution . . . . . . . . . . . . . . . 253.4 foo funtion for jmp %o0 . . . . . . . . . . . . . . . . . . . . . . . . . 264.1 Wrong Predition due to Cahe Replaement . . . . . . . . . . . . . 314.2 Pseudo Cahe Miss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.3 Mismath Due to Deoupling of BTB and Set Way Predition Table:Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.4 Mismath Due to Deoupling of BTB and Set Way Predition Table:Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355.1 on�guration �le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395.2 on�guration �le ontinued . . . . . . . . . . . . . . . . . . . . . . . . 406.1 Clok yles taken for exeutinmg di�erent benhmark programs un-der di�erent predition shemes. I-Cahe: 16 KB BTB: 32 entriesSWPT: 32 entries BPT: 1024 entries . . . . . . . . . . . . . . . . . . 486.2 I-Cahe: 16 KB BTB: 256 entries SWPT: 256 entries BPT: 1024 entries 496.3 I-Cahe: 32 KB BTB: 32 entries SWPT: 32 entries BPT: 1024 entries 496.4 I-Cahe: 32 KB BTB: 256 entries SWPT: 256 entries BPT: 1024 entries 506.5 Variation in mismath with ahe assoiativity for Perl Interpreter . . 516.6 Variation in mismath with ahe assoiativity for Lisp Interpreter . . 52
viii



Chapter 1IntrodutionThe reent proessors like RS10000, Sun UltraSPARC et. employ supersalar arhi-teture. These proessors issue multiple instrutions per yle and employ multiplefuntional units and hardware sheduling tehniques to ahieve maximum paral-lelism at the instrution level. To exploit maximum e�ieny suh multiple issueproessors must be fed by high instrution feth bandwidth. The instrution fethunit must feth enough instrutions every yle to keep the funtional units busy.No lok yle should go idle and thus several instrutions need to be fethed atevery lok yle.Meeting these performane requirements from the instrution feth unit, dependsamong other fators on the I-ahe performane and the branh predition meh-anism. In multi-way set�assoiative ahes, data an reside in one of many ahebloks within a ahe set. The data is stored along with a tag whih is derived fromthe memory address where the data is atually stored. In onventional multi-wayset-assoiative I-ahe, an instrution is read in the following way. The addressgenerated by the proessor is divided into two parts � tag and index. The indexselets the set of the I-ahe to be aessed. The tag is ompared simultaneouslywith the ahe bloks tags of all the bloks in the set. The data is read from theblok whose tag mathes with the instrution tag. If none of the stored tags matheswith the instrution tag, then a ahe miss ours and the instrution is read fromthe other levels of the memory hierarhy. With very fast lok yles, this whole1



proedure requires more than one lok yle to omplete. It is expeted that thefuture proessors, whih are likely to have a very deep pipeline, will require severalpipeline stages to feth instrutions.Control hazards also play a ruial role in performane of the CPU. A ondi-tional branh instrution an potentially hange the �ow of program. Before thisinstrution is exeuted, and the branh outome is known, the address of the nextinstrution is not known. Speulative fething of instrutions (assuming the branhis not taken) an lead to the non-utilisation of the pipeline, if the branh is atuallytaken, thus wasting lok yles. These unresolved branh instrutions give rise tothe ontrol hazard. There are several methods of dealing with this problem and toredue the assoiated penalties. The simplest method is to stall the pipeline one abranh instrution is deteted. The other methods are to support delayed branhes,or branh predition shemes. In the latter tehnique, the likely outome of thebranh instrution and the target address, are predited before the branh instru-tions are exeuted. For a multiple-issue proessor, handling of ontrol hazard is evenmore ruial for the performane. In the best ase for an n-issue proessor, branheswill ome up to n times faster into the pipeline. To redue ontrol hazard, orretpredition of the next instrution has to be made every lok yle. In the nexthapter we disuss various branh predition shemes widely used in the modernproessors.1.1 Problem StatementThe two main fators that a�et the performane of a multi-issue proessor are:ahe aess time and fething orret instrutions every yle. We address boththese problems by prediting the address of the Instrution ahe from where thenext instrution has to be fethed. For a set assoiative ahe, this address omprisesof the seletion of the set as well as the blok within the set. We all this preditionsheme the next ahe-line predition sheme and we will use this term in the restof this thesis. This kind of predition will have two advantages. First, sine we arealso prediting the blok within the ahe-set from where the instrution has to be2



fethed, the tag part of the instrution address need not be ompared with the tagsof the various other bloks in the set for seleting the blok. This will make theahe aess faster and also redue power onsumption of the I-ahe. [4℄A mispredition is known by omparing the tag and index of the seleted blokwith that of the instrution address. A mispredition however is assoiated withthe penalty of killing wrongly fethed instrutions. The next ahe-line preditionredues the need for sophistiated branh predition sheme as well. At the fethstage itself, we are prediting the next aheline for fething the next instrution, aorret predition, an thus redue ontrol hazards.1.2 Related WorksKoji Inoue et al. [4℄ proposed a new Way�prediting Set�Assoiative Cahe. Ex-perimental results showed that this ahe gives high performane at low power on-sumption. In their sheme, known as the way�prediting ahe, only one way in aahe-set is seleted based on what they alled the MRU (Most Reently Used) Al-gorithm. In an n-way set assoiative ahe, eah set has log2n bit MRU information.These bits are stored in a table whih is aessed using the set-index address, and isused to speulatively selet one way from the orresponding ahe-set. Experimen-tal results showed that, ompared to onventional set�assoiative ahe, the poweronsumption was redued by 60�70% without any performane degradation.Calder et al. [1℄ proposed a ahe design alled Preditive Sequential AssoiativeCahe that provides same miss ratio as a two-way set assoiative ahe and aesstime loser to a diret mapped ahe. In this design, a onventional diret mappedahe is divided oneptually into two banks. This tehnique makes use of severalpredition soures to selet between the two banks in a set. The predition souresan be adjusted aording to pipeline onstraints.A similar work for Instrution Cahes has been done by Calder and Grunwald[2℄. They all their sheme as the Next Cahe Line and Set Predition or the NLSsheme. In this sheme, instrutions following a branh instrution is fethed usingan index into the Instrution Cahe instead of a predited branh target address.3



Their work also investigates the use of NLS along with 2 bit orrelating branhpredition table (see Chapter 2).In our sheme, for every instrution fethed, we predit the address in instrutionahe, from where the next instrution is to be fethed. We predit the aheline,that is both the ahe set, and the blok within the ahe where the desired instru-tion is expeted to reside.1.3 Goals AhievedIn this thesis we propose a new sheme for supersalar proessors to predit theInstrution Cahe address where the next instrution to be exeuted. The goalsahieved in this work are� We developed an address trae generator for UltraSPARC proessor. Theprogram instrumented a given input program at assembly language level andthe instrumented ode the address trae of the program. See hapter 3.� A simulator was developed to test the performane of the newly proposedaheline predition sheme. The simulator models the feth stage of a pro-essor and its various parameters are on�gurable. See hapter 5.� Using these tools several benhmarks were tested and studies of the shemewas done. The experimental results are given in Chapter 6.1.4 OrganizationThe rest of the thesis is organized as follows. In the next hapter we brie�y disussthe di�erent branh predition shemes, to ompare them with our sheme. In Chap-ter 3, we disuss the trae generation mehanism of di�erent benhmark programs.These address traes are the inputs to the simulation program used to test this newsheme. In Chapter 4 we provide and disuss in detail, the design issues and theperformane issues of our sheme. In Chapter 5 we disuss the implementation of4



the simulator. In Chapter 6 we provide the detailed experimental results. Finallywe onlude this work and suggest some work that an be done to extend this work.

5



Chapter 2Branh Predition MehanismIn this hapter, the various branh predition shemes in modern proessors aredisussed in brief. Typially 15�20% of all instrutions in a program are ontroltransfer instrutions. Prediting the right diretion of ontrol �ow, early in thepipeline is vital in exploiting Instrution Level Parallelism (ILP) in a proessor,espeially in the supersalar ones. Various shemes have been proposed to preditthe outome of branh instrutions.2.1 What is Branh PreditionBranh Predition is a sheme predits the outome of a branh instrution. After apredition is made, a proessor an ontinue to speulatively feth instrutions fromthe predited diretion and thus maintain the supply of instrutions to the pipeline.In absene of any predition sheme, the proessor must stall for unresolved branhinstrutions, whih imposes heavy penalty on performane of a proessor. A orretbranh predition an overome this problem and an redue ontrol hazards andexploit more ILP. If the orret branh predition rates are high enough to over-shadow the mispredition penalties, then the overall performane of the proessoris likely to improve.
6



2.2 Stati vs. Dynami Branh PreditionStati Branh Predition shemes de�ne a stati predition used by the proes-sor. For example, MIPS-X, predits all branhes as taken while Motorola MC88000predits all branhes to be not taken. Stati predition shemes are utilized bythe ompilers where in they use the pro�ling information from previous runs of aprogram and generate appropriate kind of instrutions.Dynami branh predition tehniques take information derived from thedynami exeution of the program and predit the outome of a branh instrution.The hardware produes two outputs, the expeted diretion of the branh and thebranh target. The predited branh diretion is signi�ed by a bit (taken / nottaken), while the target is the address of the next instrution in the predited path.For our referene in this thesis, the table that provides the diretion outome of abranh instrution as a branh predition table, or BPT [3℄. Similarly the table thatis used to predit the address of the target instrution is referred to as a branhtarget bu�er, or BTB [3℄. In this thesis we restrit ourselves to dynami branhpredition shemes only.2.3 Dynami Branh PreditionThe dynami branh predition mehanisms an be lassi�ed into two groups. Theounter based shemes, and the orrelation based shemes. The preditors of theformer type, also known as the One-level branh preditors, predit the outome ofa branh, depending on its reent behavior. The preditors of the seond type, alsoknown as the Two-level branh preditors, whih predit the outome of a branhinstrution on the basis of reent outomes of other branh instrutions as well.2.3.1 Counter Based Branh PreditionThe simplest form of this sheme is a branh-predition bu�er or branh historytable. It is basially a small ahe indexed by few least signi�ant bits of the branhinstrution address. In the simplest ase, the entries of the ahe are one bit wide.7



When a bit orresponding to a branh instrution address is set, the branh ispredited to be taken. If this bit is zero, then the branh is predited to be nottaken. After the bu�er is aessed, and the predition bit is read, the instrutions arefethed from the predited diretion. In ase of a mispredition, the wrongly fethedinstrutions are killed and the predition bit is toggled. This sheme is useful, onlywhen the branh delay is longer than the time taken to ompute possible target PC.This sheme however has some drawbaks. Consider a loop branh whih is takennine times in a row and not taken the last time. The above sheme will preditbranh to be not taken, the �rst time the branh is enountered. The predition bitis then toggled and it gives the orret predition for the next eight times. The lasttime, when the branh is atually not taken, it is predited to be taken, leading toanother mispredition. So for a branh whih is taken 90% of time, the preditionauray is only 80%. The situation an be improved, if instead of one preditionbit, we used n-predition bits.In an n-bit predition bu�er, eah entry is an n-bit ounter. The ounter isinremented, every time the branh is resolved to be taken, and deremented everytime it is not taken. A branh is predited to be not taken, if the orrespondingounter value is less than 2n�1, and predited taken otherwise.A 2-bit ounter branh preditor is most ommonly used and is found su�ientin most branh appliations.The bu�er an be implemented in many ways.� Diret Mapping The ahe entry is indexed diretly by the last few bits ofthe branh instrution address. However, if the size of the bu�er is too small,a large number of branh instrution will map to the same entry, ausingaliasing.� Fully Assoiative In this types of bu�ers, the entries, along with the predi-tion bits also ontain tag information. The ahe entry is found by omparingthe tag with the few least signi�ant bits of the branh instrution address.This sheme needs ahe replaement strategy, whih ould be LRU or FIFO.� Set Assoiative In this implementation, eah address maps into a set of8



entries, having di�erent tags. The ahe is indexed as usual using few leastsigni�ant bits of the instrution address, and then tag omparison is doneassoiatively to obtain the orret predition bits.2.3.2 Correlation Based Branh PreditionBranh preditors, that uses the reent behaviors of other branhes for preditingthe outome of a branh are known as orrelating preditors or two-level preditors.This sheme was originally proposed by Yeh and Patt [8℄. To understand the workingof suh a preditor, let us onsider a orrelating branh preditor whih uses oneorrelation bit and one predition bit. This type of preditor an be viewed asonsisting of two separate predition bits. One predition if the branh instrutionexeuted prior to the one being predited was taken, and the other, if that branhwas not taken. This preditor is alled a (1,1) preditor sine it uses the behavior ofthe last (one) branh to selet from a pair of one bit preditors. In general a (m,n)orrelating preditor, uses the behavior of the last m branh instrutions to hoosefrom 2m branh preditors, eah having n predition bits.This sheme an be implemented by a rather simplisti hardware. It onsistsof a global history table whih holds the history of outome of the last m branhes.The global history table an be implemented using an m-bit shift register, where a1 is shifted in every time a branh is taken. Similarly a 0 is shifted if a branh isnot taken. The branh predition bu�er an be viewed as a two dimensional tableof ounters. It an be indexed using the instrution address and the global historytable.In the original sheme proposed by Yeh and Patt, known as the Two-level adap-tive predition sheme (also referred as the Yeh algorithm), history information ofthe previous branh outomes was maintained. This information however was loaland kept was in orrelation registers, sometimes alled as the loal history table.For eah branh, there is an assoiated orrelation register, and the pattern of thebranh history is stored there. Based on this pattern, a partiular entry in anotherbu�er alled the global pattern table (GPT) is aessed. The orresponding orrela-tion register and the entry in GPT are updated eah time a branh is resolved. An9



entry in GPT an be shared by several branhes. In order to lookup, we index thetable by the lower bits of the address of the branh instrution. The entry in thetable provides the orresponding orrelation register, whose value is used to indexGPT to get the appropriate predition bits.Although a orrelating preditor gives better performane than simple one-levelbranh preditors, it has a disadvantage of an expensive implementation and thefat that the so alledWarm Up Phase (the time the table entries ontain usablevalues) is muh longer.Besides the two major lasses of branh preditors disussed above, there areanother kinds of preditors suh as the hybrid branh preditors [5℄, whih use morethan one soures of preditions, whih are independent of eah other. A seletionmehanism is used to selet from among di�erent soures of predition.2.4 Branh Target Bu�erIn all the shemes disussed in the previous setion, the predition ours at theinstrution deode stage when the fethed instrution is deoded and it is known tobe a branh instrution. If the branh delay is longer than the time to ompute thetarget PC, the above shemes an redue the branh delay by prediting the outomeof the branhes earlier. But in ertain proessors, the outome of the branh andthe target address are known at roughly the same time. In this ases, the aboveshemes annot help muh. To redue the branh penalty in these ases, we have toknow the branh target address by the end of the Instrution Feth (IF) stage itself.Therefore the address to feth the next instrution, is predited even before we knowwhether the urrent instrution is a branh instrution or not. In suh shemes wean possibly have a zero branh penalty. This type of branh predition shemes,where we predit the address of the next instrution are alled a branh-target bu�eror branh-target ahe predition sheme. Throughout this text, we shall refer tothese type of bu�ers as Branh Target Bu�er or BTB.In a BTB based predition, the bu�er is aessed during the IF stage, using theaddress of the urrently fethed instrution. Thus the next PC is known by the end10



of IF yle and the instrution feth an ontinue without any delay. The branhtarget bu�er is a table, whose entries ontain PC and the predited next PC. Afteran instrution is fethed, it is looked up in the table. If a mathing entry is found,then the orresponding predited PC is taken to be the next PC. If at a later stage,the urrent instrution does not take the branh, then we have a mispredition. Thewrongly fethed instrution is killed and the entry is deleted from the bu�er. If onthe other hand, the urrent PC is not found in the bu�er, then the next sequentialinstrution is fethed. Many proessors improve the branh predition by using bothBPT based and BTB based shemes simultaneously. Examples are PowerPC 620,where the two bu�ers are deoupled, and the Pentium, where the BTB and theBranh Predition Bu�er are oupled together.2.5 Branh Predition shemes in reent Proessors- PowerPC604 [6℄ has a 64 entry fully assoiative Branh Target Bu�er forprediting the Branh Target Address and a deoupled diret mapped 512entry Pattern History Table.- PowerPC620 has a 256 entry two-way set assoiative Branh Target Bu�erfor prediting the Branh Target Address and a deoupled diret mappedbranh predition bu�er.- UltraSPARC uses a 2-bit branh predition sheme.- Intel Pentium ontains a 256 entry 4-way set assoiative Branh TargetBu�er. Coupled with eah Branh Target Bu�er entry is a simple one-level2-bit branh preditor that is responsible for the branh predition.- Intel Pentium Pro works with a 512 entry 4-way set assoiative BranhTarget Bu�er. Coupled with eah Branh Target Bu�er entry is in this asea 4-bit loal branh history. This is mapped in a seond level onto a GlobalPattern History Table, thus implementing Yeh's Algorithm mentioned earlier.
11



2.6 SimulationIn our simulation we ompared the performane of our newly proposed sheme withthat of some existing predition shemes. For this, we modeled in our simulator,our next aheline predition sheme, a BTB based sheme and a (2,2) orrelationbased Branh Predition sheme.

12



Chapter 3Address Trae GenerationAddress trae of a program is the sequene of instrution addresses, through whihthe ontrol of a program �ows during its exeution.We needed the address traes of the benhmark programs that we tested withour new sheme. The sequene of instrutions that were predited by our shemewere ompared with the address trae generated. In this hapter we disuss theproess by whih these address traes were generated.3.1 OverviewWe developed a ode instrumentation program whih hanged the program to betested, so that it generates the address trae when it is run. The instrumentationwas not done on the soure ode, but on the ompiled assembly ode. The instru-mentation was done in a way so that the original address trae is not a�eted. Wehose Sun UltraSPARC assembly language ode for instrumentation. The reason ofthis hoie is that UltraSPARC is a RISC proessor with �xed instrution length of4 bytes. It has got many other features whih made ode instrumentation easier.We �rst ompiled a C soure ode using � S option of g to get the assemblyode. Then the instrumentation program was run on the assembly program togenerate the instrumented ode. In the instrumented ode all ourrenes of ontroltransfer instrutions, whih inluded all the branh instrutions the funtion all13



instrution, and the ret from instrution; were replaed by a instrution to transferthe ontrol to a funtion in instrumentation ode. We alled this funtion �foo�In this newly introdued funtion we alulated the addresses of the soure anddestination instrutions of the ontrol transfer instrution involved, and wrote theminto a trae �le. Then the atual ontrol transfer instrution was exeuted fromwithin the "foo" funtion. This way the original ode trae was not modi�ed andthe instrumentation ode was not traed. We now disuss the instrumentationmehanism in more detail.3.2 Features of SPARC ArhitetureIn this setion some features of the SPARC proessor arhiteture [7℄ are disussed,whih are neessary to understand the ode instrumentation proedure.3.2.1 RegistersThe SPARC proessor has two types of registers. The general purpose registersand ontrol/status registers. The general purpose register set onsists of 8 globalregisters (g0 to g7), and several register windows whih are hanged upon funtionalls and restored upon return. The register windows have 8 in registers (i0 to i7),8 loal registers (l0 to l7) and 8 out registers (o0 to 07).Upon exeuting the save instrution, a new register window is alloated suhthat its in registers i0 to i7 are same as the out registers o0 to o7 registers of theold window. Thus parameters an be passed and values returned between funtionsusing registers. So the save instrution is typially assoiated with a funtion all.The restore restores the register window. See 3.2.3 for details.The following ontrol registers, are important for instrumentation purposes.� Program Counter (PC) ontains the address of the instrution urrentlybeing exeuted by the Instrution Unit (IU).� The next Program Counter (nPC) register ontains the address of thenext instrution to be exeuted. 14



� Condition Code Register (CCR) holds the integer ondition odes.3.2.2 Delayed Control StatementIn SPARC proessors, ontrol transfer instrutions are delayed, i.e. the e�et ofthe ontrol transfer is delayed by one instrution. In ase of these delayed ontroltransfer instrutions, after the exeution the value of the nPC register is hanged.The PC is hanged to PC+4 and the next instrution in the program storage orderis fethed into the pipeline. As a result the ontrol transfer takes plae after a delayof one yle. The instrution following a delayed ontrol transfer instrution is saidto be in the delay slot. Usually after a branh instrution or a all instrutionthe ompiler introdues the nop instrution. Sometimes, optimized odes an haveother meaningful instrutions in the delay slot whih does not a�et the ontrol �owand maintains the program semantis.3.2.3 SAVE and RESTORE InstrutionsThe SAVE instrution provides the routine exeuting it, with a new register window.The out registers from the old window are visible as the in registers of the newwindow. The ontents of the newly made available registers (out and loal) in thenew window are zero. The instrution syntax is:save regrs1,reg_or_imm,regrdAdditionally the instrution behaves as a normal ADD instrution. It takesthe soure operands from the previous window and the writes into the destinationregister in the new window. Typially the save instrution is used to generate a newstak pointer (denoted in program by %sp whih is an alias to o6). This is donealong with alloating new register window in one atomi operations. For example,upon exeution of the instrutionsave %sp,-120,%spa new register window is alloated and the stak pointer is moved by 120 bytes.(The old stak pointer remains in the old windows)15



TheRESTORE instrution restores the register window saved by the last SAVEinstrution exeuted by the urrent proess. The in registers of the old window nowbeomes the out registers of the new window. The in and loal registers of the newwindow retain their previous values.3.2.4 Funtion Call and Parameter PassingThe Call instrution auses a ontrol transfer to the desired subroutine. It alsosaves the value of PC, into out register o7. When the alled routine exeutes thesave instrution, the register o7 of the alling routine is known as in register i7 inthe new window, whih now holds the address to the all instrution.The Ret instrution, like the all instrution is also syntheti instrution and isequivalent tojmpl %i7 + 8, %g0It auses a register�indiret delayed ontrol transfer to the spei�ed address [i7℄+8As i7 ontains the address of the all instrution, the ontrol will be transfered to theinstrution immediately after delay slot of the all instrution (o�set 8). Typially,after a ret statement, a restore instrution is kept in the delay slot, whih restoresthe register window to that of the alling funtion.Up to six parameters an be passed to a subroutine, by plaing them in the outregisters o0 to o5. Additional parameters are passed through memory stak. Thusin the alled routine, after exeuting save instrutions, parameters are available inregisters i0 to i5. The stak pointer is impliitly passed in o6 whih beomes theurrent proedure's frame pointer (i6).A funtion an return several integer values using the in registers starting at i0whih are visible in the parent routine register window starting at at o0. In addition,SPARC also has several �oating point registers whih are used for passing/returning�oating point values.The loal registers are used for automati variables and other temporary values.
16



3.3 Code InstrumentationIn this setion we shall disuss the details of instrumenting the various branh in-strutions, all and ret instrution.3.3.1 Instrumentation of the Branh instrutionSupposing we have the following piee of assembly ode:...mp %l0,10ble LL1 ;branh to LL1 if l0 is less or equal to 10nop......LL1: ...Now we replae the ble instrution by a all to a speial funtion alled �foo�.So the instrumented ode will look like the following....mp %l0,10all foo,0 ;all funtion foonop.....LL1: ... 17



The orresponding foo funtion is shown in �gure 3.1Let us now analyze the instrumented ode. The routine foo �rst exeutes a saveinstrution to get a new register window and moves the stak pointer by 120 bytes.The rd instrution saves ondition ode register (CCR) into loal register l0. Wehave to do this beause the sueeding instrutions an hange the value of CCRand thus hange the ondition under whih the original branh would have beentaken. The address of the original branh instrution is the address of all foo,0instrution and is available in register i7 of the urrent window. The original targetaddress of the branh is LL1. The �myfprintf� routine is used to write data into thetrae �le. Using this funtion, we �rst write the soure and target addresses of theoriginal branh instrution. After this, we exeute the original branh instrution.Note that, if the branh is not taken then foo should return to the instrution afterthe delay slot. For this, the fall through address is saved in the global variable�bretaddress�.Then the register window is restored; the CCR register is restored using wrinstrution and the atual branh is exeuted. If the branh is not taken, it is notedin the trae �le and the ontrol should be transferred bak to the orret instrution.Finally the saved branh return address is written bak to i7 and ret instrutionis exeuted. In the delay slot the restore instrution is put.3.3.2 Instrumentation of the Call InstrutionCall instrutions are essentially jump and link instrutions, upon exeution of whihthe address to the all instrution is stored in the link register o7. Funtion allsan be nested. Therefore unlike the handling of branh instrutions, the returnaddress annot be stored in a single global variable. We therefore use a di�erentway of handling all instrution. We label the instrution following the delay slotinstrution of a all instrution by a speial return label. Finally the funtion all isreplaed by a all to the foo funtion. In the foo funtion (�gure 3.2), after the soureand target addresses are noted, the atual funtion is alled. Finally upon returnfrom the original funtion to the foo funtion, an unonditional branh is madeto the orresponding return label. There is one more issue involved. A funtion18



.setion ".text".align 4.global foo.type foo,#funtion.pro 020foo: !#PROLOGUE# 0save %sp,-120,%sp ;save register window!#PROLOGUE# 1rd %r,%l0 ;save rmov %i7,%o0 ;branh soure addresssethi %hi(.LL1),%l1or %l1,%lo(.LL1),%l1mov %l1,%o1 ;branh target addressall myfprintf,0 ;write into trae filenopsethi %hi(bretaddr),%l1 ;save the fall-through instrution addressst %i7,[%l1+%lo(bretaddr)℄nopwr %l0,%g0,%r ;restore rrestore ;restore register windowble .LL1 ;take atual branhnopsave %sp,-120,%spmov 0,%o0mov 0,%o1all myfprintf,0 ;write 0 0 to trae file to denote;branh not takennopsethi %hi(bretaddr),%l0ld [%l0+%lo(bretaddr)℄,%i7sethi %hi(bretaddr),%l0st %g0,[%l0+%lo(bretaddr)℄ ;restore fall through address to i7ret ;fall throughrestore.LLfoo: .size foo,.LLfoo-fooFigure 3.1: The foo funtion replaing a branh instrution19



all introdues two ontrol transfers. Namely, from the aller to allee routine andbak. To store the seond ontrol transfer information into the trae �le, we needto know, from where in the alled subroutine, the ontrol was �nally returned. Forthis, we use another global variable alled �retaddr�. The instrumented ode for retinstrution (see 3.3.3) stores the appropriate instrution address into retaddr. Ifhowever, it is a all to a library routine, we annot know from where the ontrol wasreturned (see 3.5) and thus a zero is stored in plae of retaddr.Supposing we have assembly instrutions as follows...all fun,0 ;all funtion funnop......After instrumentation it is hanged to the following ode...all foo,0 ;all funtion foonop.global .LLret ;speial label to denote return instrutionLLret: .....
20



.setion ".text".align 4.global foo.type foo,#funtion.pro 020foo: !#PROLOGUE# 0save %sp,-120,%sp ;save register window!#PROLOGUE# 1mov %i7,%o0 ;soure addresssethi %hi(fun),%l1or %l1,%lo(fun),%l1mov %l1,%o1 ;target addressall myfprintf,0 ;write into trae filenoprestoreall fun,0 ;atual funtion allnopsave %sp,-120,%spsethi %hi(.LLret),%l0 ;return addressor %l0,%lo(.LLret),%o1sethi %hi(retaddr),%l0 ;return from where?ld [%l0+%lo(retaddr)℄,%l1mp %l1,0 ;if retaddr=0 then it is not known;from where ontrol is returnedbne .LLfoor1mov 0,%o0.LLfoor1:mov %l1,%o0all myfprintf,0 ;write into trae filenopsethi %hi(retaddr),%l0 ;reset retaddrst %g0,[%l0+%lo(retaddr)℄b .LLret ;unonditional branh to return addressrestore.LLfoo: .size foo,.LLfoo-fooFigure 3.2: The foo funtion replaing a all instrution21



3.3.3 Instrumentation of the Return InstrutionThe foo funtion replaing a ret instrution is shown in Figure 3.3. The funtionsimply stores the address of the ret statement (stored in o7) into the global variable�retaddr�. Note that, here no new register window is saved, and it uses the registerwindow of the routine from whih it was alled.Therefore, if we have assembly instrutions as follows...ret ;all funtion funrestore......instrumentation will hange the ode to...all foo,0 ;all funtion foonop ;restore is replaed by nop......3.4 Other DetailsThe myfprintf routine aepts two addresses as arguments and stores them into thetrae �le. The routine uses a bu�er to store the addresses temporarily. When the22



bu�er is full, it is emptied into the trae �le. At the time of program termination,the remaining part of the bu�er was �ushed to the trae �le.Sine for eah of the ontrol transfer instrutions, we need a separate �foo� fun-tion, we have to give them unique names. We used the following naming onventionfor the foo funtions: <fname>foo<num>, where fname is the name of the .s andnum is a unique sequene number. For example the foo funtion for the 10th ontroltransfer statement in a �le a.s will have the name afoo10.After all the foo routines are generated they are put together into a �le alledfoo.s. All the instrumented assembly programs are stored in �les with nameT<�lename>.s , where �lename was the name of the original .s �le. Sine there anbe more than one suh instrumented .s �les, and that foo.s has ode that uses labelswithin them, all the labels and funtion names are made global.3.5 DrawbaksThere are ertain �aws in this address trae generator. First of all, to preserve theaddress spae of the ode to be instrumented, we ould not add any extra instrutionto the individual .s �les. All we ould do is to replae a ontrol transfer statementwith a funtion all. Now onsider the following branh statement:ble LL1Here, in order to write the orresponding �foo� funtion, we need the branhinstrution (ble) and the target label (LL1). We annot pass them as parameters tofoo, as it would require several instrutions to be inserted into the original program.We have similar problems with the all instrutions too. Therefore, several foofuntions are generated, one for eah ontrol transfer instrution. As a result thegenerated foo.s �le is large in size, and after assembling, the generated binary odeis huge.In our approah, all register indiret jumps annot be instrumented. Sine inthe �foo� funtion, we have to save a new register window, instrumentation is notpossible if the argument register is a loal or a in register, as these are not visible inthe register window of the foo funtion. Only if it is an out register, we hange it to23



a in register in the instrumented ode. An example will larify the issue. Supposewe have to instrument the instrution.jmp %o0The orresponding foo funtion is shown in �gure 3.4.Obviously an instrution like jmp %i7 annot be instrumented by our program.There is another shortoming in our approah. Sine we are instrumenting atthe assembly level we annot trae the exeution of the di�erent library routines.For this reason, the trae �le only holds the jump from the user ode to the libraryroutine, but not the trae of the library routine itself. Sine we do not know fromwhere is the library routine the ontrol was returned, the orresponding entry in thetrae �le returned as a zero.

24



.setion ".text".align 4.global foo.type foo,#funtion.pro 020foo: !#PROLOGUE# 0mov %o7,%l1sethi %hi(retaddr),%l0st %l1,[%l0+%lo(retaddr)℄ ;store o7 into retaddrret ;return ontrolrestore.LLfoo: .size foo,.LLfoo-fooFigure 3.3: The foo funtion replaing a ret instrution

25



foo: !#PROLOGUE# 0save %sp,-120,%sp ;new register window!#PROLOGUE# 1rd %r,%l0mov %i7,%o0mov %i0,%o1 ;The o0 register beomes i0;pass i0 as parameter to myfprintfall myfprintf,0nopsethi %hi(bretaddr),%l1st %i7,[%l1+%lo(bretaddr)℄nopwr %l0,%g0,%rrestorejmp %o0 ;the original jmp instrutionnopsave %sp,-120,%spmov %o0,%i7mov 0,%o0mov 0,%o1all myfprintf,0nopsethi %hi(bretaddr),%l0ld [%l0+%lo(bretaddr)℄,%i7sethi %hi(bretaddr),%l0st %g0,[%l0+%lo(bretaddr)℄retrestore Figure 3.4: foo funtion for jmp %o0
26



Chapter 4Next Caheline PreditionIn this hapter we disuss in detail the new Next Caheline Predition sheme thatis proposed in this thesis. As mentioned in the �rst hapter, the fators that a�etthe performane of a multi-issue proessor are the I-ahe aess time and preditionof the next set of instrutions to be fethed into the pipeline. Our sheme preditsthe loation of the aheline, i.e. the set and way, where the next instrution(s)reside. Sine, in this sheme, we need not ompare the tag of an instrution addresswith the tag stored in ahe bloks, in a partiular set, it makes ahe aess fasterand redues the I-ahe power onsumption. In the remaining part of the hapter,we shall address the I-ahe simply as ahe.4.1 The DesignThe main feature of this sheme is a Set Way Predition Table whih is a smallahe memory whose entries ontain the following information.urrent set, urrent way ! next set, next wayAs the instrutions are fethed from an address, an entry in the table is searhedfor the next set and next way. The urrent set and way for this entry should besame as the set and way for the urrent instrutions. The next set and way is thepredited set and way in the ahe from where the next instrution is to befethed. Whenever an instrution is fethed, from a given set, way; the table is27



looked up for a orresponding entry. If the urrent set and way is found in thetable, then the next instrution is fethed from the predited set and way. If noentry is found orresponding to the urrent set and way, then the defaultpredition is used. The default predition is based on the spatial loality priniple.instrutions that are loated in neighboring positions in memory, when fethed toahe, will tend to �ll up the ahe olumn by olumn. Hene, if the urrentinstrution omes from set s, way w; then the next instrution is likely to be in set(s+1) and way w. This is the default predition of this sheme.4.1.1 Working PrinipleInitially the predition bu�er is empty. The ahe is aessed in the traditional wayto translate the address in the PC to orret ahe address (set and way) to read theinstrution. After this, the urrent set and way is used to predit the next set andway and the instrution is speulatively read from the predited aheline. If thepredition is not orret, then the speulatively fethed instrutions are killed andthe predition table is updated. The orret PC is then used to aess the ahe intraditional way and feth the orret instrution.4.1.2 Cold StartAt the beginning of the program exeution, most predited ahe addresses orre-spond to invalid ahelines. Aessing these ahelines result in ahe miss. In thisase, the address of the instrution is onstruted using the address of the previousinstrution read, and the instrution is read from this address.Consider a 2 way assoiative ahe of size 1 Kilobytes (128 sets, eah with 2bloks), 32 bit wide ahelines. The instrution addresses are 20 bit wide. Assumethat, the last aheline read was from set 0x44 and way 0 of the ahe. The or-responding tag was 0x83. As there are no entries orresponding to this set/way inthe predition table, the next set and way are predited as 0x45 and 0. As thisaheline is invalid, the instrution has to be read from memory. From the tag andindex of the previously fethed instrution we an easily reonstrut the address of28



this fethed instrution to be 0x10710. Assuming instrutions are 4 bytes long, theaddress of the next instrution is 0x10714 (whih indeed belongs to set 0x45). Thisinstrution is then read from the memory and plaed in way 0 of set 0x45.Note that, one the entire ahe is �lled up by some instrutions, all the spe-ulative ahe reads will result in a hit. However, as we shall see later, there is noguarantee that all these speulative reads feth the desired instrution.4.1.3 A Modi�ed DesignAs a modi�ation of this sheme, we an use the Branh Target Bu�er(BTB) as anadditional soure for predition the address to the next instrution to be fethed.As in the earlier sheme, the urrent set and way is used to predit a new pair of setand way. Simultaneously, the address of the urrent instrution is used to refer tothe BTB as usual, and predit the PC of the next instrution. The tag and index ofthe predited PC are ompared with the tag and index of the speulatively fethedinstrution. If the tag and index of the fethed instrution do not math that ofthe predited PC, the speulatively fethed instrution is killed, and the ahe isaessed in the traditional way, using the predited PC. In suh a ase, the set waypredition table is also updated. It is seen that the next aheline sheme givesbetter performane when oupled with the BTB (see Chapter 2).Using the next aheline predition sheme, the fous shifts from address pre-dition, to prediting the exat loation in the ahe where the instrution resides.A aheline replaement (due to ahe miss) an have serious impliations on theperformane.4.2 Di�erent Performane IssuesAs disussed in Chapter 2, in a proessor using a branh predition table, theoutome of a instrution branh is predited. Similarly in a Branh Target Bu�erbased predition, the target address of a branh instrution is predited. Essentially,in these branh predition shemes, the address to the next instrution is predited.In our sheme, we do not predit the next memory address from where the instrution29



is to be fethed, but rather predit the position in ahe, where the next instrutionis likely to be present is predited. Thus in our sheme there is a shift of fous frominstrution address, to the atual loation of the instrution in the ahe.It is this distintion, whih a�ets many performane issues of this sheme. Ifa BTB based sheme makes a predition of ontrol transfer from an instrutionaddress PC1 to another instrution address PC2, then it signi�es that there is aontrol transfer instrution at address PC1. This ontrol transfer may not alwaystake plae (as in the ase of a onditional branh). However the ontrol transferinstrution will be present throughout the lifetime of the program. So an entry inthe BTB always onvey some relevant piee of information. Now, onsider the set-way predition table of our sheme. Suppose, due to a ahe miss, the instrution ina partiular aheline of the ahe gets replaed, then all information stored aboutthat set and way of the ahe loses all relevane. This unfortunately gives rise toertain drawbaks in this sheme. Now, we disuss the various problems in suh asystem.4.2.1 Problem 1The most ommon problem ours when a instrution that is the soure or target ofa ontrol transfer instrution gets replaed due to ahe replaement poliy. Let usexplain it with an example (�g. 4.1). Suppose there is a jump from address 0x106d4to 0x10700. Suppose the �rst instrution is in way 0 of set 53 and the seondinstrution is in way 0 of set 0. The set way predition table will ontain an entry(0,53) ! (0,0), orresponding to this jump. Now, suppose, the instrution 0x10700gets replaed due to ahe miss. Now, the orresponding entry in the predition tableloses relevane. If at some point later the ontrol reahes at instrution 0x106d4,then the next set and way will be wrongly predited as (0,0) where the instrutionhas been replaed. One solution to this problem ould be to invalidate all the entriesin the set way predition table orresponding to a set-way whih just got replaed.But, even then this will not substantially improve the situation. Supposing, the entryin the predition table is invalidated. When ontrol will be transferred to 0x106d4at set 53, way 0, the predition table will be looked up. When no orresponding30



 0  1

0

1

2

 53

 54

64

 0  1

0

1

2

 53

 54

64

cache miss

(0,0) replaced

Set Way Prediction Table

53   0 0  0

0x10700 0x10800

0x106d4

0x106d8

0x106d4

0x106d8

Figure 4.1: Wrong Predition due to Cahe Replaemententry will be found, it will predit by default to feth instrution from set 54, way0, whih in this ase ontains 0x106d8. Now suppose the branh instrution at0x106d4 atually takes the branh. Then also a mispredition ours. In both theases the performane penalty is the same. However if the branh is not taken afterthe aheline gets replaed, then there will be some advantage.4.2.2 Problem 2This problem is explained with an example. Supposing, the instrutions 0x106d4,0x106d8 and 0x106d are stored in way 0 of the adjaent sets 53, 54 and 55 re-spetively (�g. 4.2). Initially there are no entries orresponding to any of these31



 0  1

0

1

2

 53

 54

64

 55

 0  1

0

1

2

 53

 54

64

 55

 0  1

0

1

2

 53

 54

64

 55

53   0

Set Way Prediction Table

0x106d4 0x106d4 0x106d4

0x106d8

0x106dc 0x106dc 0x106dc

0x106d80x105d8 0x105d8

54  1

54   1 55  0

cache miss

(54,0) replaced

Figure 4.2: Pseudo Cahe Missinstrutions in the predition table. Now suppose the instrution 0x106d8 gets re-plaed by instrution 0x105d8. Then when the ontrol is transferred to 0x106d4at set 53, way 0, the predition sheme predits the next instrution to be fethedfrom set 54, way 0. It is not a ahe miss, but the wrong instrution is fethed. Anormal ahe read will result in a ahe miss. After the ahe penalty the orretinstrution will be read from the memory and plaed in the ahe at way 1 of set 54.The mistake will be disovered after a few lok yles. By that time some otherwrong instrutions have been fethed and all these instrutions have to be killed.The subsequent next predition will try to feth an instrution from way 1 of set 55.This predition will meet a similar fate, sine the expeted instrution is in way 032



of set 55. So again there will be a penalty assoiated with it, although the desiredinstrution is already present in the ahe. This sort of pseudo ahe miss degradethe performane of the system.As an added penalty, the set way predition table will be updated with twoentries (53,0) ! (54,1) and (54,1) ! (55,0). These two entries signify that afterset 53, way 0 is aessed, the next instrution is to be fethed from set 54, way 1and then from set 55 way 0. Although there is no jump from 0x106d4 to 0x106d8or from 0x106d8 to 0x106d, the entries orresponding to these sequential �ow ofontrol, will remain in the predition table. Thus the predition table an haveentries, whih atually depits sequential �ow of ontrol, rather than a jump.4.2.3 Branh Target Bu�er and Caheline PreditionThe penalties assoiated with the problems mentioned above, an be redued if themispreditions are deteted earlier. We inorporated BTB based predition also inour sheme (see 4.1.3) assuming that BTB gives a more aurate predition for theaddresses. Experimental results on�rms it. Note that, even in the modi�ed sheme,the above mentioned problems will not be eliminated, sine the primary soureof predition is still the set way predition bu�er. But, in the modi�ed sheme,whenever we speulatively feth a wrong instrution, the following omparison withthe predited PC, will result in a mismath and the error will be deteted at a muhearlier stage of the pipeline, thus reduing the penalty.4.2.4 Problem 3Assoiation of BTB along with the ahe predition table brings in some moreproblems.As we saw that the set way predition has to store information about instrutionswhih are not of ontrol transfer type. Sine the set way predition table has alimited number of entries, entries in the table an get replaed, whih may be entriesfor ontrol transfer instrutions. However the BTB may still have the informationabout the branh instrution. 33



X Y

S1,W1 S2,W2

Branch Target Buffer Set Way Prediction Table

X Y

S3,W3 S4,W4

Logical
link
lost

Replaced
Entry 

Figure 4.3: Mismath Due to Deoupling of BTB and Set Way Predition Table:Case 1Sometimes, suh inonsistenies between the two tables an lead to degradationin performane as explained in the following example (�g 4.3). Suppose we havea jump from address X to address Y. The instrutions were stored in the ahe at(s1,w1) and (s2,w2) respetively. The BTB ontains an entry X ! Y. Similarly theset way predition table ontains the entry (s1 w1)! (s2 w2). Now assume that theentry (s1 w1)! (s2 w2) is replaed by some other unrelated entry (s3 w3)! (s4 w4).Now suppose the ontrol is transferred to the instrution X, stored at set s1 way w1.The set way predition table has no entry for this aheline and will mispredit thenext instrution to be fethed from set (s1 + 1 way w1), The BTB based preditionprovides the next predited PC to be Y, whih is a orret predition if the branh istaken. A mispredition is deteted and all the fethed instrutions are killed. Afterthis the orret instrution will be fethed, but after a onsiderable penalty.34



X Y

S1,W1 S2,W2

S1,W1 S2,W2

S4,W4S3,W3

A B

Branch Target Buffer Set Way Prediction Table

Figure 4.4: Mismath Due to Deoupling of BTB and Set Way Predition Table:Case 2Just the reverse ase an happen (see �g 4.4). Instead of the set way preditionentry being replaed, it may be the ase that the entry X! Y in BTB got replaedby another entry A ! B. Now, if the ontrol goes to the instrution X, the set waypredition table will predit the next instrution to be in set s2 way w2, whih isorret predition. Later, when the BTB is onsulted , and no entry is found foraddress X, it will predit the next PC to be X+4 (assume that the instrutions areall 4 bytes long), whih is a mispredition. A mismath will be deteted and theorretly fethed instrution will be killed. A wrong instrution will be fethed as aresult of BTB mispredition and the set way predition table will be updated as aresult of whih the orret entry of (s1 w1)! (s2 w2) will be removed. This mistakewill be deteted at the later stage in the pipeline and the orret instrution will befethed, but after a onsiderable penalty. Note that although, it was a mispredition35



of the BTB and there would have been a penalty even if we had BTB only; thepenalty would have been lesser than the penalty in this ase.4.3 AdvantagesIn this sheme, whenever the instrution ahe is aessed, assoiative tag ompar-ison need not be done. This makes the instrution feth operation faster. Sinewe are bypassing the tag omparison step, we are reduing the length of the fethpipeline. Essentially, there are two parallel instrution feth paths. The shorter oneis taken most of the time. The longer traditional path is taken, only when we deteta mispredition.As observed in [4℄, eliminating tag omparison redues power onsumption, oursheme has the added advantage of saving power.The performae of the sheme for prediting the next instrution is omparableto the other existing shemes. The details are given in Chapter 6.

36



Chapter 5SimulatorA simulator was built to simulate the proposed aheline predition sheme, andompare its performane with other predition shemes. The simulator is highlyon�gurable. The simulator models only the feth stage of a proessor and is highlyon�gurable. It simulates instrution fething mehanism and predition of the nextinstrution of a proessor.5.1 Overview of SimulatorThe inputs to the simulator are the trae �le (hapter 3) for the program to betested and the on�guration �le whih ontains the values of the di�erent parametersused to model the arhiteture.It an simulate three di�erent type of predition shemes. It an simulate theBTB based sheme, the BPT based sheme and the proposed next aheline pre-dition sheme. These shemes an be simulated independently or in ombinationwith another sheme.It models the instrution ahe and various events like ahe miss assoiated withit. It also models the various predition bu�ers. It an simulate stalls in pipelineand �ushing of the pipeline.The simulator does not take the instrutions of the program into onsiderationand does not exeute the program. It only simulates the instrution feth and37



predition mehanisms.The address of the �rst instrution of the program under test is supplied to thesimulator at the beginning of the simulation The simulator ompares the preditedinstrution address with the trae �le. If the predited address does not math withthe trae �le, then a mispredition ours, and the simulator updates its tables andthe orret instrution address is taken from the trae �le. The simulation ontinuesuntil the entire trae �le is read.It reords the number of mispreditions ourred, total time taken in lok yleset. It also models the instrution ahe and simulates various events like ahe missassoiated with it. These statistial data is used to ompare the performane of thevarious instrution address predition shemes.5.2 Con�guration FileThe simulator is designed to be as muh on�gurable as follows. It uses a on�gura-tion �le to read in the various parameters, used to model the proessor arhitetureand the instrution feth predition shemes. An example on�guration �le is shownin �g 5.2. The syntax of the lines in the on�guration �le is parameter: value Inthe on�guration �le, a line beginning with a hash symbol is ignored and an beused as a omment line.5.3 Event Queue ModelingTo simulate the pipeline, we used Event Queue Modeling tehnique. The di�erentstages of the pipeline an be viewed to perform some operations as responses toertain events. For example, ahe miss is an event, and as a response to it, theinstrution is fethed from the next level of memory. An event an trigger oneor more events as a onsequene. Depending on outome of some operation, theonsequent events an be di�erent. For example, as a response to the ahe readevent, the I-ahe is aessed. If the aess results in a hit, some events are generatedto dispath the fethed instrution and initialize feth of next instrution. However,38



# onfiguration file# Abbreviations used# BTB Branh Target Buffer# BPT Branh Predition Table# length of instrution address in bitsaddress: 24# I-ahe size in KiloBytessize: 32# ahe assoiativityasso: 2# aheline size in bytes; a ahe line an hold one or more wordsline: 8# ahe word size in bytesword: 4# ahe replaement poliy: 0 FIFO 1 RANDOM 2 LRUreplae: 0# yle after feth when BTB predits next PCbtbd: 1# yle after feth when BPT predits outome of branh instrutionbptd: 2# is set way predition presentswpt: 0# is branh predition table presentisbpt: 0# is branh target buffer presentisbtb: 1 Figure 5.1: on�guration �le39



# number of entries in BPTbptsize: 1024# history bits in BPT : number of branhes whose history is reordedm: 2# predition bits per entry in the BPTn: 2# yles after ahe aess when outome of branh is knownbranh: 5# Instrution Buffer size (number of instrutions)ibufsize: 32# set way predition table size (number of entries)swptsize: 256# BTB size (number of entries)pptsize: 256# miss penalty (in yles)missp: 4# instrution issue rateirate: 2 Figure 5.2: on�guration �le ontinued
40



a miss generates the ahe miss event. Some events like the ahe miss an generatestalls in the pipeline. Some other events (like a branh mispredition) an lead tokilling of instrutions, whih means all the existing events are killed.Thus the pipeline is modeled as a series of events or an event queue. This eventqueue is implemented as a linked list in our implementation. The nodes of thislinked list are the atual events, and ontain the following �elds./* struture definitions for a node in the event queue */typedef strut entag {int etype; /* event type */int time; /* time at whih the event is sheduled to our */int param1; /* parameter */int param2; /* parameter */int param3; /* parameter */strut entag *next; /* link to the next event */}enode;The etype �eld distinguishes one event from other. The di�erent event typesused in the simulator are as follows.loadPC /* load PC with new value */preditNextPC /* predit next PC */preditSetWay /* predit next set and way of ahe(aheline predition)*/ompareTag /* ompare address of speulativelyread instrution with predited PC */preditBranh /* Branh Predition Table predits branh */speulativeCaheRead /* read instrution on basis frompredited aheline */aheMiss /* ahe miss */
41



hkBranh /* Resolve branh instrutions,hek whether next instrutionmathes branh target */updateSetWayPreditionTable /* update the Set Way (next aheline)Predition Table */updatePCPreditionTable /* update the BTB */seletWay /* selet the ahe blok in a set */readWay /* read from the way */
Every event is assoiated with a time at whih they our. This time is stored inthe time �eld. The simulator exeutes in a loop. At the beginning of eah iteration,events that are supposed to be handled at the urrent time, are taken out fromthe event queue, and handled sequentially. The handling of an event often dependson some external fators. These an be passed to the event handlers through threeparameters. For example, the update Branh Target Bu�er has to reate a new entryor delete an entry depending on the outome of the previous branh instrution. Thisinformation an be passed by the param �elds.After events are handled, they may generate some more events, whih are thenplaed at the appropriate plae in the event queue in sorted order. Stall in a pipelinean be modeled by delaying the time at whih the events in the queue are sheduledto our. Flushing the pipeline is equivalent to deleting all the future events in thequeue at that time.5.4 ModelingThe simulator models the instrution ahe, the various predition tables et. Theimplementations of these are disussed in brief.

42



5.4.1 Instrution CaheThe Instrution Cahe is implemented as a two dimensional array of ahe bloks.The number of olumns in the array is equal to the ahe assoiativity. The numberof rows in the array is equal to the number of sets in the ahe. The size and otherparameters of the ahe are on�gurable (as given in setion 5.2). The ontents ofthe ahe blok, i.e. the instrution itself was not stored sine it would not serve anypurpose to us. Only the tag for eah ahe blok was stored along with the valid bitinformation. The struture de�nition is given below.typedef strut {int tag; /* ahe line tag */int valid; /* whether ahe entry is valid */int age; /* used for ahe replaement */} itype;5.4.2 Predition TablesThe di�erent predition bu�ers are also ahes and are implemented as array ofstrutures.The Set Way Predition Bu�er or the next aheline predition bu�er is a fullyassoiative ahe. Eah entry ontains four �elds. Current ahe set and way (theblok within the ahe set) and predited ahe set and way. Eah entry has a ountassoiated with it, whih is inremented every time the bu�er is aessed. Duringreplaement, the entry with maximum ount (i.e. the oldest entry) is replaed andthe ount is reset.strut {int set,way; /* urrent */int nset,nway; /* next */int ount; /* for replaing */} 43



The Branh Target Bu�er (BTB) is also modeled as a fully assoiative ahe andimplemented as an array of the following struture.strut {int PC;int nPC;int ount; /* for replaing */} The Branh Predition Table (BPT) is modeled as a diret mapped ahe. Eahentry has a tag (to prevent aliasing), and a set of predition bits, depending onthe depth of history of other branhes maintained. The ahe replaement poliy isFIFO. In our implementation we also keep a �eld alled PC per entry whih givesthe predited branh target. In reality, the BPT does not predit branh target,but by the time it is aessed, the branh target of the branh instrution is alreadyresolved./* Branh Predition Table: Diretly Mapped Cahe */strut {int tag;int *pbits; /* pointer to set of predition bits */int PC; /* target PC */}
44



5.4.3 Instrution Address QueueIn proessor employing some kind of instrution address predition, the validityof a predition is not known immediately after the instrution is fethed speula-tively. After a branh instrution is fully resolved, the target instrution addressis ompared with the address of the next instrution fethed speulatively. If theinstrution is not of ontrol transfer type, the address of the next instrution shouldbe the address of the urrent instrution plus the feth o�set. To model this, in oursimulator too, the predited instrution addresses are not ompared with the trae�le immediately. Instead, they are stored in a queue and after a number of yle(as spei�ed in the on�guration) the address in the front of the queue is omparedwith the trae �le. If no mispredition is deteted, they are dequeued. Otherwisethe event queue is �ushed, the queue storing instrution address is emptied and thepredition tables are updated, and the orret instrutions are fethed. The queueis implemented using irular array.

45



Chapter 6Experimental ResultsThe simulator was run on address trae of a few benhmark programs. Table 6.1shows the benhmark programs tested and their brief desriptionAll the Benhmark programs are written in C.Some abbreviations used in this hapter are:- BTB � Branh Target Bu�er- SWPT � Set Way Predition Table, i.e. next aheline predition table- BPT � Branh Predition TableTable 6.2 gives the total number of instrutions in the di�erent benhmarkprograms that we tested.Compress SPEC 95 Integer Benhmark data ompressionPerl Interpreter SPEC 95 Integer Benhmark programBanner Simple program to print banners on printerLisp Interpreter CPU intensive SPEC 95 Integer Benhmark programWhetstone Netlib Double Preision Benhmark programMatmul Matrix Multipliation ProgramTable 6.1: Benhmark Programs
46



Benhmark Number of InstrutionsCompress 5831442Perl Interpreter 1682454Banner 3806932Lisp Interpreter 458974Whetstone 1393724Matmul 1808794Table 6.2: Number of Instrutions in di�erent Benhmark Programs6.1 Arhiteture Con�gurationIn this hapter we shall use the terms next aheline predition sheme and Set WayPredition Table based sheme interhangeably. The benhmark was tested for thefollowing predition shemes:1. BTB and BPT: Branh Target Bu�er based predition along with BranhPredition Table2. BTB: Branh Target Bu�er3. BTB and SWPT: Branh Target Bu�er based predition along with SetWay Predition table based sheme (next aheline predition sheme)4. SWPT: Set Way Predition Table (next aheline predition sheme)In all the experimental results shown later in this hapter we have used thefollowing arhiteture on�guration. The size of BPT was kept at 1024 entries.Both the BTB and SWPT were tested with 32 and 256 entries. The benhmarkprograms were tested for 16 KB and 32 KB 2-way set assoiative instrution ahes,with FIFO replaement poliy. The ahe miss penalty was kept at 4 yles. Theinstrution issue rate was 2 instrutions/yle. Branh outome is taken to beresolved after 5 yles of instrution fething.
47



6.2 experimental ResultsThe following �gures show the total time (in lok yles) needed by the variousbenhmark programs for the various ahe and predition bu�er on�gurations.The �gures show our sheme to give omparable results with other shemes formost benhmark programs exept Perl Interpreter and Lisp Interpreter. Theperformane improves drastially by inreasing the predition table size.6.3 Figures
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

cl
oc

k 
cy

cl
es

Total execution time in clock cycles

compress perl banner lisp whetstone matmul

btb+bpt
btb

swpt+btb
swpt

Figure 6.1: Clok yles taken for exeutinmg di�erent benhmark programs underdi�erent predition shemes. I-Cahe: 16 KB BTB: 32 entries SWPT: 32 entriesBPT: 1024 entries
48



����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

cl
oc

k 
cy

cl
es

Total execution time in clock cycles

compress perl banner lisp whetstone matmul

btb+bpt
btb

swpt+btb
swpt

Figure 6.2: I-Cahe: 16 KB BTB: 256 entries SWPT: 256 entries BPT: 1024 entries
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

cl
oc

k 
cy

cl
es

Total execution time in clock cycles

compress perl banner lisp whetstone matmul

btb+bpt
btb

swpt+btb
swpt

Figure 6.3: I-Cahe: 32 KB BTB: 32 entries SWPT: 32 entries BPT: 1024 entries49



����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

cl
oc

k 
cy

cl
es

Total execution time in clock cycles

compress perl banner lisp whetstone matmul

btb+bpt
btb

swpt+btb
swpt

Figure 6.4: I-Cahe: 32 KB BTB: 256 entries SWPT: 256 entries BPT: 1024 entries

50



In the ombined Set Way Predition Table and BTB based sheme, wheneverthe address of the instrution fethed on the basis of aheline predition does notmath with the instrution address predited by BTB, we say an instrution addressmismath to have ourred. In the next two �gures, we have shown the variationof instrution address mismathes with hange in assoiativity of the InstrutionCahe. It is observed that the number of mismathes inreases drastially with theinrease in assoiativity. We have shown the bar harts for the benhmark programsPerl Interpreter and Lisp Interpreter. This observation an be related to theproblem disussed in 4.2.2
����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�� ����

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

0

100000

200000

300000

400000

500000

600000

700000

800000

m
is

m
at

ch
es

Variation in Instruction Address Mismatch with Cache Associativity

16KB, 32 entry 32KB, 32 entry 16KB, 256 entry 32KB, 256 entry

2 way
4 way
8 way

Figure 6.5: Variation in mismath with ahe assoiativity for Perl Interpreter

51



����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�� ��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��0

5000

10000

15000

20000

25000

m
is

m
at

ch
es

Variation in Instruction Address Mismatch with Cache Associativity

16KB, 32 entry 32KB, 32 entry 16KB, 256 entry 32KB, 256 entry

2 way
4 way
8 way

Figure 6.6: Variation in mismath with ahe assoiativity for Lisp Interpreter

52



Chapter 7Conlusion and Future WorkFrom the statistial data in Chapter 6, it an be onluded that generally thenext aheline predition sheme gives omparable performane as the other branhpredition based shemes. Only in the ases of Perl Interpreter and Lisp Inter-preter program, did the sheme perform poorly. For loop intensive programs, likeWhetstone and Matrix Multipliation, the next aheline predition shemegave good performane. So this sheme an at as an alternative to the di�erentexisting sophistiated branh predition mehanism.Sine tag omparison is not performed everytime the ahe is aessed, the fethpipeline gets shorter. There are atually two parallel feth paths in our sheme.The shorter path (whih is taken more often) bypasses the tag omparison step.The other longer path aesses the ahe in traditional way, whenever a mispre-dition ours. So, in general, our sheme will make ahe aess faster withoutompromising with the hit rate.The work done by Koji Inoue et al. [4℄ shows that Way Predition Cahes ansave up to 70% of ahe power onsumption. Sine I-ahes are aessed in almostevery lok yle, reduing power onsumption of I-ahe an save a onsiderableamount of total power onsumed by the proessor. The tag omparison of all thebloks in a partiular ahe set an be almost eliminated using next aheline pre-dition, thus reduing power onsumption. So there ould be a power-performanetrade o�. This fat also inreases the potential of the sheme. Next, we propose53



some future diretions for improving the design of the sheme and building a moree�ient simulator for better testing purpose.It was also seen that with inrease in assoiativity of ahe, the mispreditionrate inreased, resulting in performane degradation. The sheme will produe bestresults for diret mapped Instrution ahes and 2-way set assoiative instrutionahes.7.1 Future Diretions1. We have seen in Chapter 4 that how ahe replaement an degrade the per-formane of our predition sheme. Espeially, when a ahe blok ontaininga branh instrution, or a target instrution of a ontrol transfer instrution,is replaed, then the predition sheme fails. From this information we ansuggest that if we an mark these instrutions as privileged and design a ahereplaement poliy suh that the privileged instrutions are never replaed, orat the most replaed, when there is no other way, then our sheme may showbetter results. It is apparent that, the design of the ahe and the replaementpoliy will have a tremendous impat on the performane of our sheme, a newkind of ahe design is required whih will enhane the predition performane.2. It is seen that inreasing the predition bu�er size improves performane. Butsine we intend to implement the bu�er as a fully assoiative ahe, we annothave a very large bu�er. So an alternative design for the predition bu�er, soas to inrease its size, an also help. We an implement the predition bu�eras a diretly mapped ahe indexed by the index of the urrent instrution.3. The sheme stores information for non-ontrol transfer statements in the pre-dition bu�er along with branh information. This takes up spae in the pre-dition bu�er whih ould otherwise be used for storing other branh predi-tion informations. The next ahe-blok to be aessed in ase of non-branhinstrutions an be stored in a speial �eld in the ahe blok itself [2℄.4. In our sheme, the predition bu�er stores fewer bits than a Branh Target54



Bu�er. The latter has to store the full instrution address, while in our sheme,only a few bits are required to store the ahe blok loation. So with thesame ost of that of a BTB, we an have a muh larger set-way preditiontable. So the latter an store more branh information at redued ost. Inour sheme, we have proposed the set-way predition to be a fully assoiativeahe memory. Instead, we ould have a tagged diret mapped ahe, indexedby the ahe set number. This way, we ould have larger tables yielding betterresults.5. The performane degradation with inrease in assoiativity suggests that thesheme in its present format is not suitable for more that 2-way assoiativeahes. A new variation to this sheme for highly assoiative ahe need to beinvestigated.6. The simulation should be arried out using standard tools like simplesalarwhih an fully simulate various features of a supersalar arhiteture.7. Finally, a word must be said about the trae generation program too. Asmentioned in Chapter 3, there are many limitations to the program. Sinewe ould not get the trae of a library routine, the generated trae was notomplete. In fat, any all to a library routine was visualized as a ombi-nation of two unonditional jumps. From point of invoation to the libraryroutine, and bak. This assumption might have a�eted the performane ofthe predition sheme. The generated trae �les were too large. The programfails to generate traes of programs whih uses loaland in registers as jumptargets. These problems an be solved if address traes are generated usingsome pro�ling tools.
55



Bibliography[1℄ Brad Calder, D. G., and Emer, J. Preditive Sequential AssoiativeCahe. 2nd International Symposium on High Performane Computer Arhi-teture (February 1996), 244�253. http://www.s.olorado.edu/~grunwald/Papers/HPCA96-SeqAssoCahe/paper.ps.[2℄ Calder, B., and Grunwald, D. Next Cahe Line and Set Predition. Pro-eedings of the 22nd annual international symposium on Computer arhiteture(June 1995), 287�295. http://dev.am.org/pubs/artiles/proeedings/isa/223982/p287-alder/p287-alder.pdf.[3℄ Hennessey, J. L., and Patterson, D. Computer Arhiteture: A Quantita-tive Approah, 2 ed. Harourt Asia PTE LTD.[4℄ Koji Inoue, T. I., and Murakami, K.Way-Prediting Set-Assoiative Cahefor High Performane and Low Energy Consumption. Proeedings of 1999 Inter-national Symposium on Low Power Eletronis and Design (ISLPED'99) (Au-gust 1999), 273�275. http://www.kasuga.se.kyushu-u.a.jp/~pparam/paper/PPRAM-TR-42.ps.gz/.[5℄ Lee, B. Dynami Branh Predition. www.ee.orst.edu/~benl/Projets/branh_pred/ .[6℄ S. Peter Song, M. D., and Chang, J. The PowerPC 604 RISC miropro-essor. IEEE Miro (Otober 1994).[7℄ Weaver, D. L., and Germond, T. The SPARC Arhiteture Manual, Ver-sion 9. Prentie Hall.[8℄ Yeh, T., and Patt, Y. Two-level Adaptive Branh Predition. 24thACM/IEEE International Symposium on Miroarhiteture (November 1991).56


