Iterm-Multilingual X-Windows Indian Script
Terminal

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Jyotirmoy Saikia

to the

Department of Computer Science & Engineering
Indian Institute of Technology, Kanpur

May, 2002

Certificate

This is to certify that the work contained in the thesis entitled “Iterm-
Multilingual X-Windows Indian Script Terminal’, by Jyotirmoy Saikia, has been car-

ried out under my supervision and that this work has not been submitted elsewhere

for a degree.

May, 2002 (Dr. Rajat Moona)
Department of Computer Science & Engineering,
Indian Institute of Technology,

Kanpur.

Abstract

In this thesis, iterm - a multilingual X windows based Indian script terminal
has been developed. It allows entry and simultaneous display of ten Brahmi based
Indian scripts as well as English. ISCII character coding has been used for Indian
script characters.

To overcome the problems due to the non-linearity of Indian scripts, ISCII library
has been developed. It provides configuration-driven conversion from code space to
glyph space.

[term supports two types of keyboard overlays, viz. - Inscript and Roman pho-
netic keyboards. Fonts with any encoding can be used for display of Indian script
characters. Currently, ISFOC fonts and Modular-infotech fonts are supported by
iterm.

The software has been tested against various applications such as editors, filters,

compilers etc.

Acknowledgements

[would like to express my deep gratitude to my thesis supervisor Dr Rajat Moona
for his able guidance and valuable suggestions. Whenever I faced any difficulty, I
just rushed to him. And he was very kind enough to listen to my problems patiently
and then showing me my mistakes, teaching me many new things and also coming
out instantly with better ideas. I take this opportunity to express my thankfulness
to him.

I am thankful to each and every member of the ISCII group - Amit, Anil, Ar-
avind, Ashok, Gaurav, Jyoti, Nitish, Ramesh, Sanatan, Saumen and Vivek. It was
such a wonderful team!

I thank all my friends who made my stay here a memorable one. I would like to
specially say thanks to Parthajit, Rajarshi, Suman, Rajib da and Nalin da.

I also thank my parents for their constant encouragement, help and support.

Contents

1 Introduction
1.1 Motivation
1.2 Terminal emulators for X
1.3 Features of iterm

1.4 Organization of thesis.

2 Background
2.1 Terminal
2.2 Pseudo Terminal
2.3 ISCII Standard
2.4 Overview of Indian Languages
2.4.1 Indian Script Word Syntax

2.5 Support for Internationlization: Character, Bytes and Columns

3 ISCII Library
3.1 Introduction
3.2 Issues behind the development of ISCII library
3.3 Design and Implementation of ISCII library

3.3.1 How to write a configuration file?

4 Design and Implementation of Iterm
4.1 General Design of Iterm Lo
4.2 Font Specification File
4.3 Support for Variable Width Fonts

i

10
10
11
11
13

4.4 Screen Buffer
4.5 Syllable Analyzer
4.6 Refresh Function

4.7 Cursor Movements

5 Results

6 Conclusion

6.1 Future Work

A Man page of ISCII Library

B Man page of iterm

il

20

25
25

27

31

List of Figures

2.1
2.2

3.1

5.1
5.2
5.3
5.4

Block Diagram of a Terminal 5t
Block Diagram of a Pseudo-terminal 6
Design of the ISCII library 12
Results of alias and ls commands 21
Testing cat and cc commands 22
Editing a file in Vieditor L. 23
Testing localeo 24

iv

Chapter 1

Introduction

1.1 Motivation

Terminals provide an interface through which the computer and users communi-
cate with each other. There are various terminals available under X windows for
different languages of the world like English, Chinese, Japanese, Korean etc [4].

India is a multi-linguistic country, with 18 constitutionally recognized languages,
written in various scripts. Out of these, Urdu and Kashimiri use Perso-Arabic scripts
and rest all languages use Brahmi based scripts.

Despite the presence of so many different languages, there has not yet been a
terminal under X which supports all the Indian languages. The motivation for this
thesis was to develop a multilingual terminal software running under X window,

which can allow input and output of Indian script characters.

1.2 Terminal emulators for X

Most commonly used terminal emulator for X which supports input and output of
English texts is xterm [11]. The xterm program emulates VT102 and Tektronix4014
terminals. The charcater encoding used for xterm is ASCII.

Rxvt [8] is another commonly used terminal under X. Rxvt is a colour vt102

terminal emulator intended as an xterm replacement for users who do not require

features such as Tektronix 4014 emulation and toolkit-style configurability. As a

result, rxvt uses much less swap space — a significant advantage on a machine serving

many X sessions.

The kterm [4] program is a multilingual terminal emulator which emulates VT102

and Tektronix4014. It has support for input and output of Chinese, Japanese and

Korean text. Multi-byte encoding is used for storing the text.

1.3

Features of iterm

The iterm program is an X windows based multilingual software, similar to rxvt,

providing an interface for I/O of ten Brahmi based Indian scripts and English. The

salient features of iterm are as follows:

The iterm emulates VT102 terminal. The character encoding used for Indian
language text is ISCII (Indian Script Code for Information Interchange) which
is an eight-bit code. The lower 128 characters are same as in ASCII and the
upper 128 characters caters to all the 10 Indian scripts based on the ancient

Brahmi script.

The entry and simultaneous display of text written in Indian languages and

English is supported by iterm.

Both fixed and variable sized fonts can be used to display text in English or

any Indian scripts.

The iterm supports Inscript keyboard and Roman phonetic keyboard overlays

for Indian language text entry in addition to the normal English keyboard.

A wide range of application program can run under iterm, without any modi-

fication.
The cursor movement is over a syllable.

Currently iterm is supporting the free fonts available from CDAC which are
known as ISFOC standard fonts. But any single byte font encoding can be
used for display of Indian script text.

2

1.4 Organization of thesis

Rest of the thesis is organized as follows. Chapter 2 introduces the terms and cp-
ncepts relevant to discussions held in later chapters. Chapter 3 discusses the ISCII
library used by the iterm program. Chapter 4 discusses the design and implemen-
tation details of the Indian language support in the iterm. Results of various tests
are presented in chapter 4. Finally chapter 5 concludes the thesis. Appendix A is
the man page of the ISCII library. Appendix B is the man page for iterm.

Chapter 2
Background

An attempt has been made in this thesis to develop an X windows based terminal
emulation software which supports all the Brahmi based Indian scripts. Before dis-
cussing the actual design for this terminal, it is essential to understand the workings
of a terminal and a pseudo-terminal, character encodings, issues in computer repre-
sentation of Indian languages etc. This chapter provides these backgrounds which

will be helpful while discussing the design of iterm.

2.1 Terminal

A terminal provides users an interface to communicate with application programs
executing on host computer. Terminals consist of transmit and receive blocks. The
transmit blocks interfaces with keyboard and sends the characters typed in to the
computer. The receive block receives characters from the host and interfaces with
the monitor for displaying them. Terminals support the standard I/O operations as
well as terminal specific operations to control input/output behaviour and cursor
editing. Figure 2.1 shows the basic building block of a terminal.

Apart from displaying the normal characters, terminals also receive control se-
quences, specifying some special action to be taken. Each terminal provides different

set of control sequences.

Terminal

| Monit Receive i

| onitor Logic :

i | Host

| i computer
i Transmit l ﬁ

w Logic |

| | Keyboard |

,,,

Figure 2.1: Block Diagram of a Terminal

2.2 Pseudo Terminal

The term pseudo-terminal|9] implies that it looks like a terminal to an application
program, but it’s not a real terminal. Pseudo terminals are pairs of master and slave
terminals, acting together like one terminal unit. The slave terminal is the interface,
acting like a terminal unit for the user programs, while the master represents the
other end of the link. Figure 2.2 shows the basic building blocks inside a pseudo
terminal.

A process opens the pseudo-terminal master and then produces a child process
by calling the fork system call. The child process establishes a new session and
opens the corresponding pseudo-terminal slavs. Then the child duplicates it to be
standard input, standard output and standard error and calls exec to run the shell
process. The pseudo-terminal slave becomes the controlling terminal for the child
process. For a user process running above the slave, it appears that its standard
input, standard output and standard error are a terminal device. Anything written

to the master appears as input to the slave and vice-versa.

fork

exec

Y

user process user process

stdin, stdout, stderr

read and write read and write
functions functions

A

Y

_ kernel
terminal
line discipline

Y

pseudo-terminal
slave

Y

pseudo-terminal
master

Figure 2.2: Block Diagram of a Pseudo-terminal

2.3 ISCII Standard

ISCII stands for Indian Standard Code for Information Interchange [7]. It is an
8-bit code and the lower seven bits are same as ASCII standards. So the lower 128
characters are same as ASCII and the upper 128 characters cater to the need of the
Brahmi based Indian script characters. ISCII character set is a super set of all the
characters required in all the ten Brahmi based script.

A code for all Indian language is made possible by their common origin from the
Brahmi script. Similarly, an optimal keyboard overlay for all Indian languages is
made possible by the phonetic nature of the alphabet.

There are many advantages for having a common code and keyboard overlay for
all the Indian scripts. Any software, which allows ISCII codes to be used, can be

used for any Indian script. Furthermore, immediate transliteration between different

Indian scripts becomes possible.

Two important properties of ISCII codes are:

e Phonetic sequence - The ISCII characters, within a word, are kept in the same

order as they would get pronounced. For example,

e Display independence - ISCII codes allow a complete delinking of the codes
from the displayed fonts. An ISCII syllable can be displayed using combina-
tions of basic shapes. Different implementations can choose variant techniques

in combination of these basic shapes.

2.4 Overview of Indian Languages

All Brahmi-based Indian scripts are phonetic in nature. The alphabet in each may
vary somewhat, but they all share a common phonetic structure. The differences
between scripts are primarily in their written forms, where different combination
rules get used [7].

Devanagari character set can be categorized into wvowels, consonants, matras,
modifiers, numerals, punctuation and some special symbols like halant and nukta.

In our following discussion, we will use VOWEL A for the following vowel:

3

In Devanagari scripts, consonant have an implicit VOWEL A attached to it.
A pure consonant is obtained by attaching a special symbol called halant to the
consonant. Most of these pure consonants have a different display shapes.

Each vowel except VOWEL A has a corresponding matra which can be attached
to a consonant to form composite characters. The modifiers are anuswar (causing
nasalaization), visarg (introducing apsiration), chandrabindu (causing prolongation).
The diatric mark nukta is used along with some consonants, and is mostly used to

represent some foreign sounds. All punctuation marks used in Indian scripts are

similar to the ones used in English, except for the full-stop, instead of which viram
is used.

Devanagari script is a logical composition of its consitituent symbols in two
dimensions. The matras, modifiers, halant, and nukta can be attached to a vowel or
a consonant to the right, left, top or bottom.

Two or more pure consonants combine to form a conjunct. Conjuncts can form
composite characters by addition of matras, and modifiers in the same way as con-
sonants. Shape of these conjuncts usually vary from those of the constituting con-

sonants.

2.4.1 Indian Script Word Syntax

An Indian script word contains one or more syllable. The syllables are formed from
the characters and there are certain rules how these some characters combine to
form a syllable. The following rule in Backus-Naur Formalism (BNF) states syllable

formation syntax [7]:

Word ::= {Syllable} [Cons-Syllablel

Syllable ::= Cons-Vowel-Syllable | Vowel-Syllable
Vowel-Syllable ::= Vowel[Modifiers]

Cons-Vowel-Syllable ::= [Cons-Syllable]Full-Cons[Matra] [Modifiers]
Cons-Syllable ::= [Pure-Cons] [Pure-Cons]Pure-Cons

Pure-Cons ::= Full-Cons Halant

Full-Cons ::= Consonant [Nuktal

Following conventions are used in the syntax given above:

defines a relation.
{ } encloses items which may be repeated one or more times
] encloses items which may or may not be present

| seperates items, out of which only one can be present

The above syntax ignores the followings cases:

1. Some vowels derived through Nukta and the Avagrah symbol

2. The Explicit Halant (Halant + Halant) and Soft Halant (Halant + Nukta)

2.5 Support for Internationlization: Character, Bytes

and Columns

One ASCII character is always represented in one byte and it occupies one column
in console or X terminal emulators (fixed font for X). But such an assumption should
not be made for 118N programming and the distinction among number of bytes,
characters, and columns should be made.

In multibyte encodings, two or more bytes are needed to express one character. In
the case of CJK (Chinese, Japanese, Korean) scripts, character encoding is multibyte
and each character occupies an integral multiple of number of columns[5|.

One ISCII character is expressed in one byte. But number of columns in case of
Indian script characters can never be predicted as Indian script characters combine in
various ways in a two-dimensional space to form composite characters and conjuncts.
This is one of the most important issues to be kept in mind while developing any

Indian language software.

Chapter 3

ISCII Library

Indian languages are non-linear in nature. Besides, there is no one-to-one mapping
between character codes and glyphs. So there was a requirement for a mechanism
for converting the character codes to the glyphs, keeping in mind the various rules
specific to that script. ISCII library have been developed for that purpose. This
chapter discusses the design and implementation of the ISCII library that is used

by the iterm program.

3.1 Introduction

ISCII library contains some code-conversion routines for converting from one cod-
ing mechanism to another, e.g. ISCII coded data to glyphs , glyphs to ISCII coded
data etc. A configuration-driven approach is adopted for converting a source string
to an array of target codes. The configuration file provides language and encoding
specific rules.

The iterm program uses the ISCII library for converting the ISCII codes to the
glyphs of a particular font.

10

3.2

Issues behind the development of ISCII library

English has the advantage of linearity, that is, the characters are typed in and

displayed in the same sequence as it is written. Besides, there is one-to-one mapping

between ASCII character codes and glyphs of any English fonts.

Contrary to English language, Indian language have some peculiar features which

are discussed below:

3.3

To

Indian languages are non-linear in nature. The display order of Indian lan-
guage characters are not necessarily the same as they were typed from the
keyboard. The symbols of the script can be attached either to the left, right,

top or bottom of the previous symbol.

One character code may be represented by several display shapes available in
the font. On the other hand, several character codes may combine to form a

single display shape.

As the characters are typed, they may combine with earlier characters to form

an entirely new display shape.

There are some fixed rules which determines how several character codes can
combine to form a new display shape. These rules are specific to the particular

script.

The fonts for Indian scripts may follow different encoding techniques. There
is no standardisation for font encodings of Indian scripts. There should be

flexibility to support any font.

Design and Implementation of ISCII library

overcome the challenges thrown by Indian languages as discussed in the pre-

vious section, the ISCII library have been developed. The ISCII characters are

converted into the glyphs using the functions in this library which is configuration

driven, that is, configuration files guide these conversion. Various language and font

encoding rules have been incorporated into these configuration files.

11

Each configuration file deals with a source space and a target space. For ex-
ample, for converting ISCII codes to the ISFOC fonts of Assamese language, ISCII
code space is the source space and Assamese ISFOC font is the target space. This
particular configuration file will contain information entailing the rules about how
the various characters are combined to form composite characters and conjuncts in
Assamese language.

A parser has been developed using Lex and Yacc, which parses the configuration
file and generates various tables. The conversion routines consults these tables for
converting the source space codes to target space codes. Figure 3.1 shows the basic
design of the ISCII library.

Lex-Yacc
Specifications

Lex &

Input string in
Code space

Various tables %\

Yacc

routines

Output string in
Configuration file target space

Figure 3.1: Design of the ISCII library

12

3.3.1 How to write a configuration file?

The configuration file basically consists of three different types of statements:
definition, grouping rules and rewriting rules. Each statement is terminated by
semi-colon.

In source space, numbers are preceded by symbol and in target space the num-
bers are preceded by % symbol. The numbers can be written in decimal, hexadecimal
or octal number format of C language. For example, in the configuration file for

iscii2glyph conversion, we may have two definitions as given below:

KA = #179;
G_AA = 70x61 %0x41 ;

which means KA is the ISCII code 179 and G_ KA is the glyphs 61h and 41h.
Grouping rules specify the various categories in the source space and target space.

Each category consists of one or more constituent symbols (identifiers or numbers),

seperated by | (the vertical bar). For example, in the configuration file for iscii2glyph

conversion, we may have a grouping rule like the one given below:
CONSONANT = KA | KHA | #181;

which states that KA, KHA and 181 constitute the category CONSONANT in the
codespace.

Definitions and grouping rules can be written in terms of identifiers or numbers
of the same space. But source and target space numbers/identifiers cannot be mixed
together in the same defintion or grouping statement.

Rewriting rules provide the language and encoding specific rules. The left hand
side of a rewriting rule consists of source space identifiers and source space numbers
only. It cannot contain any target space identifiers or numbers in the left hand side.
The right hand side of a rewriting rule may contain any sequence of source and
target space identifiers and numbers.

The source string is compared with the left hand side of each rewriting rule.
The rule that matches first is taken and the part of the input string that matches
with the rule are replaced by the right hand side of the rule. The rules are applied

13

repeatedly until the output string consists of only target space numbers.

Let’s illustrate rewriting rules with an example from ISCII to glyph conversion:

CONSONANT HALANT CONSONANT LEFT_MATRA -> G_LEFT_MATRA($4) $1 $2 $3;
CONSONANT HALANT CONSONANT -> G_HALF_CONSONANT($1) $3;
CONSONANT -> G_CONSONANT($1);

The $n in right hand side means the n-th symbol in the left hand side of the rule. Re-
ferring to the first rule, G LEFT MATRA ($4) means corresponding G LEFT MATRA
of $4, which is LEFT MATRA.

Suppose that the input ISCII string consists of a consonant, halant, consonant
and a left matra(e,g. matra i) in that order. Then the first rule will match first
and the input string will be replaced by the right hand side of the first rule, that
is, the glyph code of the left-matra, ISCII codes of the first consonant, halant and
ISCIT code of the other consonant. Now the second rule will match and part of
the input string matching this rule will be replaced by the right hand side of the
rule. So this time, the output string will contain glyph code of the left matra, glyph
code of the half-consonant of the first consonant and the ISCII code of the third
consonant. The remaining ISCII code of the consonant will match with the third
rule and the ISCII code of the consonant will be replaced by the glyph code of the
consoant. Now the output string consists entirely of glyphs and so rules will not be
applied any more. This becomes the final output string.

In ISCII to glyph conversion, conjuncts are treated just like consonants. In
order to do that, each of the conjuncts is first given an intermediate code in the
source space and then this code is included in the grouping rule for consonants.
Correspondingly the glyph code of the conjunct is included in the grouping rule for
the category of glyph of consonants. So whenever a conjunct is found in the input
string, it is first rewritten with an intermediate code in the source space which makes
it as a consonant. This same approach is taken for nukta consonants also, i.e, for

the consonants after which a nukta character can be attached.

14

Chapter 4
Design and Implementation of Iterm

The iterm program has been developed by modifying rxvt [8] - a VT102 terminal
emulator for X. Thus iterm inherits all the features of rxvt and in addition provides
entry and display of all Brahmi based Indian scripts and variable width English
fonts. This chapter discusses how rxvt was modified to provide support for Indian

language.

4.1 General Design of Iterm

Iterm, being derived from rxvt, emulates VT102 terminal. It supports all the
ten Brahmi based Indian scripts in addition to English. ISCII character coding [7]
has been used for Indian script characters.

A menu has been provided to select the script. On choosing the script, the
terminal generates the ATR |7] character and the script attribute and send these
to the application. In ISCII standard, an ATR character followed by a valid script
attribute determines the script for the whole row or till another ATR character in
the same row. Besides, two boxes has been provided just beside the menu to select
the display attribute of the current script. One can select a bold, italics and bold-
italics font by clicking on these boxes. A status bar has also been provided which
displays the current character under the cursor.

There are two types of keyboard overlays supported by iterm, viz - Inscript

15

keyboard and Roman phonetic in addition to the normal English keyboard. Initially
the keyboard is in English mode. By pressing the scroll lock key, one can cyclically
change the keyboard from English to Roman Phonetic, Roman Phonetic to Inscript
and Inscript to English. Besides, there is provision for temporary switching of

keyboard modes for typing a single character by pressing the right-ALT key.

4.2 Font Specification File

This specification file provides the name of the fonts corresponding to various dis-
play attributes, like normal, bold, italics etc for a particular script. The name of this
specification file can be supplied from command line . If it is not given in command
line option, this is searched in the X resource database. If it is npt found in the X

resource also, then the default specification file is read from /usr/share/iterm/spec

A sample font specification file is shown below:

<DEV>

NOR = -altsys-dv_ttyogesh-medium-r-normal--20-0-50-50-p-0-is08859-1;
BLD
ITA = -altsys-dv_ttyogesh-medium-i-normal--20-0-50-50-p-0-is08859-1;
BLD ITA = -altsys-dv_ttyogesh-bold-i-normal--20-0-50-50-p-0-is08859-1;
</DEV>

-altsys-dv_ttyogesh-bold-r-normal--20-0-50-50-p-0-is08859-1;

<TML>

NOR = -altsys-tm_ttvalluvar-medium-r-normal--20-0-50-50-p-0-is08859-1;
BLD = -altsys-tm_ttvalluvar-bold-r-normal--20-0-50-50-p-0-1is08859-1;
ITA = -altsys-tm_ttvalluvar-medium-i-normal--20-0-50-50-p-0-is08859-1;

BLD ITA = -altsys-tm_ttvalluvar-bold-i-normal--20-0-50-50-p-0-is08859-1;
</TML>

16

4.3 Support for Variable Width Fonts

Indian scripts characters are of variable widths by their nature. Some matras and
modifiers have zero width; some matras have a width of a few pixels and consonants
and vowel etc have width of of a few more pixels. Original rxvt used to support
fixed width fonts only and it used to draw each fixed with character in a column
position. The concept of column has been removed in iterm. Instead of finding
the xpixel position for drawing a character by calculating it from its column, iterm
calculates the xpixel position by adding the pixel width of the previous characters.
While calculating the widths of previous characters, it is to be kept in mind that

each character may belong to a different font because of ATR characters.

4.4 Screen Buffer

Codes received by the program are stored in a screen buffer. This screen buffer
contains the entire text displayed in the current screen as well as the text saved for
scrolling.

The screen buffer is basically an array of pointers and each of these pointers
point to a dynamically allocated memory space. Each of these pointers correspond
to a row in the screen and each of these memory space pointed by these pointers
contain the text for each row.

Each of these rows are considered to be of infinite length (that is, a very high
value) instead of some fixed values as in original rxvt. So there is no restriction on

the number of characters per row.

4.5 Syllable Analyzer

For Indian languages, a worst case consonant syllable can contain|7]:
CNHCNHCNHCMD

A worst case vowel syllable can contain:

17

VD

where C = Consonant
V = Vowel
N = Nukta

= Halant

= Matra

= Modifier

But in actual case, the consonant syllable may be more complexed as the above
notation does not take into consideration Halant + Halant (Explicit Halant) and Ha-
lant + Nukta (Soft Halant) and the vowels derived through Nukta and the Avagrah
symbol.

A parser for a syllable analyzer has been developed which takes into consideration
all possible cases of a syllable for Indian scripts. This syllable analyzer is run for
each row of the characters that is being drawn. The syllable analyzer gives the
boundaries of each syllable. For the case of an invalid syllable, each invalid symbol
is considered to be a syllable in itself.

This syllable analyzer is used by the refresh function of iterm.

4.6 Refresh Function

The rxvt code has two screen buffers: current one and previous one. While
refreshing the screen, each row was compared between these two buffers and only
the difference of characters between them were displayed in the screen. The iterm
code has been modified in such a way that whenever some characters were coming
for refresh, the syllable analyzer was consulted first and the entire syllable to which
these characters belong is refreshed. Again, any text being refreshed are first passed

through the conversion functions provided by the ISCII library to get the appropriate
glyphs.

18

4.7 Cursor Movements

In English there is one to one correspondence between the input character and
the display shape and so the cursor always shows the actual character. However in
case of Indian scripts, multiple characters may combine together to form a single
glyph. In iterm, the cursor is drawn in reverse video mode over the entire syllable
to which the current character belongs to. At the same time, the status bar shows

the current character on which the cursor is actually present.

19

Chapter 5

Results

The iterm supports all application programs that run on rxvt. The software has
been tested against some application programs like vi, more, cat, Is and C com-
piler. Screenshots of the terminal has been taken while using different applications.

In Figure 5.1, the output of alias and lIs commands are seen. In figure 5.2, it is
tested for cat and cc commands. Figure 5.3 shows a file being edited with vi editor.

Figure 5.4 shows date and 1s commands after setting the locale to Bengali locale.

20

Devanagr i “ | B I - -] "_l"“‘l

bash-2.04% alias HA='1ls -1°

bash-2.04% =i

total 22

-TrwW-¥r--T-- 1 Jms nscd 468 Apr 12
-rw-r--r-- 1 jms nscd 21395 Apr 19
-TrwW-¥r--T-- 1 Jms nscd 00 Apr 19
-rw-r--r-- 1 jms nscd 219 Apr 19
-TrwW-¥r--T-- 1 Jms nscd 1797 Apr 19
-rw-r--r-- 1 jms nscd A0 Apr 19
-TrwW-¥r--T-- 1 Jms nscd S0 Apr 26
-rw-r--r-- 1 jms nscd 25650 Apr 22
-TrwW-¥r--T-- 1 Jms nscd 15248 Apr 19
{pash-2.043 |

Figure 5.1: Results of alias and 1s commands

21

Hezamese | W | B | I | - ~l - Th.

bash-2.043 cat @AM .o

main (] {
printf ("FH F T HmT 2 1\n") ;
printf ("SFE A GREEE A Aot ;
!
bash-2.04% cc FAd.c
bash-2.04% ./a.out
FHA H el HEY g |
o TEE A A |

bash-2.043 |

Figure 5.2: Testing cat and cc commands

22

Devanagri | i | E | I | =l - Th:

The £i1le has a few of the Indian scripts text.

FEoman (Roman]

GGEl (Oriva)
PEUsEa (Malavalam)
fEdl (Hindi)

J&W%Ltﬂ (Gujarati)
Wﬁm (Assamese)
t3@ (Kannaca)
swofi® (Telugu)
UAEt (Punjabi)

"roultl . txt" [ccs] 111, 2Z21C

a

Figure 5.3: Editing a file in Vi editor

23

Azzamese

SrEENEN

bash-2.043% export LC ALL=Ln

bash-2.043% date
o T 27 00:01:56 EDT 2002
bash-2.043% 1s -1

total 44

-rw-I--T-- 1 Jjms nscd 463 Af%HA 26
-rw-Tr--T-- 1 Jms nscd 21395 A9F 26
-rw-I--T-- 1 Jjms nscd 300 AT9F 26
-rw-Tr--T-- 1 Jms nscd 219 AM¥HA 26
-rw-I--T-- 1 Jjms nscd 1797 ATHH 26
-rw-Tr--T-- 1 Jms nscd 60 A9 26

bash-2.043 |

Figure 5.4: Testing locale

24

Chapter 6
Conclusion

The iterm has underline been developed from rxvt, a VT102 terminal emulator
for X. It can support simultaneous display and entry of all the ten Brahmi based
script. The character coding used is ISCII|7].

Iterm supports both fixed width and variable width fonts. It can work with
any type of font. To change fonts, the font specification file needs to be modified
and the corresponding encoding file in the ISCII library needs to be written, if it is
not already present. Currently ISCII library supports all ISFOC[3]| and modular|6]
fonts.

Two types of keyboard overlays are provided: Inscript and Roman Phonetic.
Scroll-lcok key is used to permanently switch the keyboard from one mode to another
and right-ALT key is used for a temporary switch.

The iterm and ISCII library are part of the iLinux distribution from the
TDIL[10] group, IIT Kanpur.

6.1 Future Work

The iterm works only for ISCII character coding. It does not support Unicode
standards. Iterm should be given Unicode support also. Besides, a horizontal scroll
bar is required as there is no restriction on column length and so long lines go out

of the screen. A horizonal scroll bar will help in scrolling the terminal window

25

horizontally to view any long lines that go beyond the screen width.

26

Appendix A

Man page of ISCII Library

NAME

codeconversionbyname, codeconversionbyencoding, getencoding - library func-

tions for handling ISCII data

SYNOPSYS

#include <isciilib.h>

unsigned char *codeconversionbyencoding(const unsignedchar *sourcestr,
int sizeofsourcestr, unsignedchar *targetstr, int *sizeoftargetstr, const

char *encoding, int *errorcode);
unsigned char *codeconversionbyname(const unsigned char *sourcestr,
int sizeofsourcestr, const char *sourceformat, unsignedchar *target-

str, int *sizeoftargetstr, const char *fontname, int *errorcode);

int getencodingbyname(const char *fontname, const char *source-

format, char *encoding); const char *fontname, int *errorcode);

int getaltnamebyname(const char *indianfontname, char *matching-

fontname, float *mfactor);

DESCRIPTION

27

The function codeconversionbyencoding() converts an sourcestring pointed
by sourcestr to an array of target codes pointed by targetstr according to the
encoding name encoding. The size of the source string is provided in the in-

teger value sizeofsourcestr. The size of the target array is provided in the

integer value pointed by sizeoftargetstr and this size should be large enough

to accomodate all the target codes generated from the sourcestr. Upon re-

turn, sizeoftargetstr is set to the number of target codes translated into the

targetstr. The return value of sizeoftargetstr never exceeds the value pro-

vided at the entry. The encoding name encoding refers to a configuration
file where various rules for the translation from source space to target space
are defined. The enviornment variable ENC _PATH contains the name of the
directories, seperated by semi-colons, where the encoding file is searched in
that order. If ENC_ PATH is not defined, then a default value is used as
/usr/lib/X11 /fonts/encodings;/usr/share/fonts/encodings;
/etc/X11/fs/encodings;$HOME /encodings. Examples of some of the encod-
ings are "ISFOC_DEV", "ISFOC _ASM", "ISFOC_BNG", "ISFOC_TML",
"ISFOC_TLG", "ISFOC_ASM", "ISFOC _ORI", "ISFOC_KND", "ISFOC _MLM",
"ISFOC _GJR", "ISFOC_PNJ", "ISFOC_RMN", "DEVATEX" etc.

The errorcode returns the error number .

The function codeconversionbyname() is similiar, except that the name
of the font fontname is passed instead of the encoding. Besides, the format
of the source(whether ISCII, UNICODE or UTF-8 etc) sourceformat is also
pased. This function uses getencodingbyname() function to retrieve the
corresponding encoding associated with the fontname.

The function getencodingbyname() fills the array encoding with the name
of the encoding associated with the font whose name is passed as an argument
to it. For doing this, the function uses a fonttable which provides a mapping
between font name and encoding. The first column of the fonttable contains
font names which can be written in X font naming convention. The second

column corresponds to the encoding associated with the font. The fonttable is

28

stored in a file example of which is given below:

dv_ttx ISFOC_DEV *courierx
*as_ttk-x-% ISFOC_ASM xhelveticax
xor_tt* ISFOC_ORI *courierx
bn_tt ISFOC_BNG *courier*

This function appends the sourceformat to the name of the encoding retrieved
from the second column of the fonttable. For example, if the sourceformat
is ISCII and the encoding name mentioned in the fonttable is ISFOC __ASM,
then the array encoding will be filled with ISCIT _ISFOC _ASM.

The enviornment variable FONT ENC contains the name of the directories,
seperated by semicolons, where the fonttable is searched in that order. If
FONT ENC is not defined, then a default value is used as
/usr/lib/X11/fonts; /usr/share/fonts; /etc/X11 /fs;$HOME.

The function getaltnamebyname() stores the name of the matching English

font name corresponding to the Indian font name indianfontname, from the

third column in the fonttable, into the array matchingfontname and stores mul-

tiplying factor from the fourth column of the fonttable into the value pointed

by mfactor.
RETURN VALUES

codeconversionbyencoding() and codeconversionbyname() return the
first byte address of sourcestr that could not be converted because of lack of
space in the target array. These return (sourcestr + sizeofsourcestr) when
the entire sourcestr could be successfully converted and returns sourcestr if

nothing could be converted.

getencodingbyname() and getaltnamebyname() returns 0 when it could
find a corresponding encoding for the font fontname. It returns 1 if the font-
table could not be located or the encoding was not found. It returns 10001 to
20000 for syntax error in line number (x-10000) in fonttable, where x lies in
between 10001 and 20000.

29

ERROR NUMBERS

The integer value errorcode may have the following values:

0 : No error

1 Encoding file not found

2 Fonttable or encoding of a font not found

3 : Not enough space

4 Target string is not big enough to store all the target codes

5 No rule matched

10001 to 20000 : Syntax error in line number (x - 10000) in fonttable,
where x lies in between 10001 and 20000

20001 to 30000 : Syntax error in line number (x - 20000) in

encoding file, where x lies in between 20001 and 30000
30001 to 40000 : Undefined symbol in line number (x - 30000) in
encoding file, where x lies in between 30001land 40000
40001 to 50000 : Illegal grouping in line number (x - 40000) in
encoding file, where x lies in between 40001 and 50000
50001 to 60000 : Redifinition of a symbol in line number (x - 50000)

in encoding file, where x lies in between 50001 and 60000

30

Appendix B

Man page of iterm

NAME
iterm - a VT102 terminal emulator for Indian languages based on the X win-

dow system
SYNOPSIS

iterm [options| [-e command | args ||
DESCRIPTION
The iterm, version 1.1 is a colour vt102 terminal emulator intended for users

intending to use Indian languages for their computing purposes.
USAGE

The terminal in addition to the normal terminal behaviour displays indian
language scripts. It uses the ISCII(Indian Script Code for Information In-
terchange) character coding standard to display Indian scripts. The terminal
allows you to work in the following Indian scripts : Assamese, Bengali, De-
vanagri, Gujarati, Kannada, Malayalam, Oriya, Punjabi, Tamil and Telugu,
apart from the usual Roman script. The terminal is set to the script Devanagri
at the first invocation. This can be altered by selecting from the drop down

menu that appears on clicking on the arrow by the side. The style of the

31

script in which you wish to type can be chosen by clicking on the menubar
buttons showing 'B’(for Bold) and 'T’(for Italics). These can be activated si-
multaneously too. The default font of the scripts is "Normal". The 'B’ and
" buttons also indicate the font attribute of the character that is presently
under the cursor, and therefore change accordingly assuming the user will be
typing characters in the present script with the same attributes. The present
script though is not indicated in the script bar. Assuming the user will be us-
ing/typing in one particular script usually, the selection of the same has been
facilitated by having it displayed in the menubar and the user need only to
click on it for reactivating the printing in the displayed script. While moving
the cursor in a text from one script to the other the attributes and the script
change as per the character under the cursor. The associated attributes are
accordingly indicated by the corresponding status of the menubar buttons,
the script being implicit is not indicated in the menubar box. Any further
typing would be in the same script with the same attributes until they be
explicitly altered by clicking on the menubar boxes accordingly as mentioned
above. Also the script and the attributes by default are set to Devanagri and
Normal when on a new line. The blackened area in the menubar that comes
next, displays the character(Indian Language or Roman) under the current
cursor location. It could also be "ATR"(short for Attribute) or a single char
indicating the attribute code associated with the respective Indian language
which are for use by the terminal and are not shown while displaying the In-
dian scripts. The arrows on the side facilitate cursor movement in a text as
per the direction they indicate and also facilitate in switching to the earlier or

next command in the sequence of commands previously given.

OPTIONS The following options are recognized by iterm:

Note that iterm permits the resource name to be used as a long-option (—/+-+
option). For example: ‘iterm —loginShell

—colorl Orange’.

-fs fontspecificationfilename

32

Specify the font specification file to be used; resource fontspec.
-help, —help

Print out a message describing available options.
-display displayname

Attempt to open a window on the named X display (-d still respected).
In the absence of this option, the display specified by the DISPLAY environ-
ment variable is used.
-geometry geom

Window geometry (-g still respected); resource geometry.
-rv|+rv

Turn on/off simulated reverse video; resource reverseVideo.
-ip[+ip

Turn on/off inheriting parent window’s pixmap; resource inheritPixmap.
-bg colour

Window background colour; resource background.
-fg colour

Window foreground colour; resource foreground.
-pixmap: file[;geom]|

Specify XPM file for the background and also optionally specify its
scaling with a geometry string. Note you may need to add quotes to avoid
special shell interpretation of the ‘;” in the command-line; resource background-
Pixmap.
-cr colour

The cursor colour; resource cursorColor.
-pr colour

The mouse pointer colour; resource pointerColor.
-bd colour

The colour of the border between the xterm scrollbar and the text; re-
source borderColor.

-km mode

33

Multiple-character font-set encoding mode; eucj: EUC Japanese encod-
ing. sjis: Shift JIS encoding. bigh: BIG5 encoding. gb: GB encoding. kr:
EUC Korean encoding. noenc: no encoding; resource multichar encoding.
-grk mode

Greek keyboard translation; iso: ISO-8859 mapping. ibm: TBM-437
mapping; resource greek keyboard.

-name name

Specify the application name under which resources are to be obtained,
rather than the default executable file name. Name should not contain ‘.” or
“*" characters. Also sets the icon and title name.

-1s|+1s

Start as a login-shell /sub-shell; resource loginShell.
-ut|+4ut

Inhibit/enable writing a utmp entry; resource utmplInhibit.
-vb|+vb

Turn on/off visual bell on receipt of a bell character; resource visualBell.
-sb|+sb

Turn on/off scrollbar; resource scrollBar.

-si|+si

Turn on/off scroll-to-bottom on TTY output inhibit; resource scrollT-
tyOutput has opposite effect.
-sk|+sk

Turn on/off scroll-to-bottom on keypress; resource scrollTtyKeypress.
-sr|+sr

Put scrollbar on right /left; resource scrollBar _right.

-st|+st

Display normal (non XTerm/NeXT) scrollbar without/with a trough;

resource scrollBar floating.
-iconic
Start iconified, if the window manager supports that option.

-sl number

34

Save number lines in the scrollback buffer; resource saveLines.
-b number

Internal border of number pixels; resource internalBorder.

-w number

External border of number pixels. Also, -bw and -borderwidth; resource
externalBorder.
-tn termname

This option specifies the name of the terminal type to be set in the
TERM environment variable. This terminal type must exist in the termcap(5)
database and should have li and co entries; resource termName.

-e command [arguments]

Run the command with its command-line arguments in the iterm win-
dow; also sets the window title and icon name to be the basename of the
program being executed if neither -title (-T) nor -n are given on the command
line. If this option is used, it must be the last on the command-line. If there
is no -e option then the default is to run the program specified by the SHELL
environment variable or, failing that, sh(1).

-title text

Window title (-T still respected); the default title is the basename of the
program specified after the -e option, if any, otherwise the application name;
resource title.

-n text

Icon name; the default name is the basename of the program specified

after the -e option, if any, otherwise the application name; resource iconName.

-C Capture system console messages.

RESOURCES (available also as long-options)

If compiled with internal Xresources support (i.e. iterm -h lists .Xdefaults)
then iterm accepts application defaults set in XAPPLOADDIR /Rxvt (compile-
time defined: usually /usr/lib/X11/app-defaults/Rxvt) and resources set in
/ Xdefaults, or /.Xresources if /.Xdefaults does not exist. Note that when

35

reading X resources, iterm recognizes two class names: XTerm and Rxvt.
The class name XTerm allows resources common to both rxvt and xterm to
be easily configured, while the class name Rxvt allows resources unique to
rxvt, notably colours and key-handling, to be shared between different rxvt
configurations. If no resources are specified, suitable defaults will be used.
Command-line arguments can be used to override resource settings. The fol-
lowing resources are allowed:
fontspec: fontspecificationfilename

iterm uses several fonts. The fonts are for various Indian Scripts and
for their display variations (like bold, italic etc.). The file containing the
font names can be specified and provided by the user. The font specifica-
tion (if) provided in the command line has the highest priority. The file can
also be provided in the X-resource database which will be used in the case
of absence of command line specifications. The "spec" file in the directory -
" Jusr /share/iterm" is the default font specification file in the absence of the
above two; option -fs.
geometry: geom

Create the window with the specified X window geometry [default
80x24|; option -geometry.
background: colour

Use the specified colour as the window’s background colour [default
White|; option -bg.
foreground: colour

Use the specified colour as the window’s foreground colour [default
Black|; option -fg.
colorn: colour

Use the specified colour for the colour value n, where 0-7 corresponds to
low-intensity (normal) colours and 8-15 corresponds to high-intensity (bold
= bright foreground, blink = bright background) colours. The canonical
names are as follows: O—=black, 1=red, 2—green, 3—yellow, 4=blue, 5—ma-

genta, 6=cyan, 7=white, but the actual colour names used are listed in the

36

COLORS AND GRAPHICS section.
colorBD: colour

Use the specified colour to display bold characters when the foreground
colour is the default.
colorUL: colour

Use the specified colour to display underlined characters when the fore-
ground colour is the default.
cursorColor: colour

Use the specified colour for the cursor. The default is to use the fore-
ground colour; option -cr.
cursorColor2: colour

Use the specified colour for the colour of the cursor text. For this to
take effect, cursorColor must also be specified. The default is to use the back-
ground colour.
reverseVideo: boolean

True: simulate reverse video by foreground and background colours;
option -rv, False: regular screen colours [default]; option +rv. See note in
COLORS AND GRAPHICS section.
inheritPixmap: boolean

True: make the background inherit the parent window’s pixmap, giving
artificial transparency. False: do not inherit the parent window’s pixmap.
scrollColor: colour

Use the specified colour for the scrollbar [default B2B2B2].
troughColor: colour

Use the specified colour for the scrollbar’s trough area [default 969696].
Only relevant for normal (non XTerm/NeXT) scrollbar.
backgroundPixmap: file/;geom/

Use the specified XPM file (note the ‘.xpm’ extension is optional) for
the background and also optionally specify its scaling with a geometry string
WxH+X+Y, in which "W" / "H" specify the horizontal /vertical scale (per-
cent) and "X" / "Y" locate the image centre (percent). A scale of 0 displays

37

the image with tiling. A scale of 1 displays the image without any scaling.
A scale of 2 to 9 specifies an integer number of images in that direction. No
image will be magnified beyond 10 times its original size. The maximum per-
mitted scale is 1000. [default 0x0-+50+50]
path: path

Specify the colon-delimited search path for finding files (XPM and
menus), in addition to the paths specified by the RXVTPATH and PATH
environment variables.
multichar encoding: mode

Set the encoding mode to be used when multicharacter encoding is
received; eucj: EUC Japanese encoding [default for Kanji|. sjis: Shift JIS en-
coding. bigh: BIG5 encoding. gb: GB encoding. kr: EUC Korean encoding.
noenc: no encoding; option -km.
greek keyboard: mode

Set the Greek keyboard translation mode to be used; iso: 1SO-8859
mapping (elot-928) [default|. ibm: IBM-437 mapping (DOS codepage 737);
option -grk. Use Mode switch to toggle keyboard input. For more details,
see the distributed file README.greek.
selectstyle: text

Set mouse selection style to old which is 2.20, oldword which is xterm
style with 2.20 old word selection, or anything else which gives xterm style
selection.
title: text

Set window title string, the default title is the command-line specified
after the -e option, if any, otherwise the application name; option -title.
iconName: text

Set the name used to label the window’s icon or displayed in an icon
manager window, it also sets the window’s title unless it is explicitly set; op-
tion -n.

mapAlert: boolean

38

True: de-iconify (map) on receipt of a bell character. False: no de-
iconify (map) on receipt of a bell character |default|.
visualBell: boolean

True: use visual bell on receipt of a bell character; option -vb. False:
no visual bell [default]; option +vb.
loginShell: boolean

True: start as a login shell by prepending a ‘-’ to argv[0] of the shell;
option -ls. False: start as a normal sub-shell

default

; option —+ls.
utmplInhibit: boolean True: inhibit writing record into the system log
file utmp; option -ut. False: write record into the system log file utmp [de-
fault]; option +ut.
print-pipe: string

Specify a command pipe for vt100 printer [default Ipr(1)]. Use Print to
initiate a screen dump to the printer and Ctrl-Print or Shift-Print to include
the scrollback as well.
scrollBar: boolean

True: enable the scrollbar [default|; option -sb. False: disable the
scrollbar; option +sb. Note that the scrollbar type (with/without arrows)
is compile-time selected. smallfont key: keysym

If enabled, use Alt-keysym to toggle to a smaller font [default Alt-<]
bigfont key: keysym

If enabled, use Alt-keysym to toggle to a bigger font [default Alt->]
saveLines: number

Save number lines in the scrollback buffer [default 64]; option -sl.
internalBorder: number

Internal border of number pixels; option -b.
externalBorder: number

External border of number pixels; option -w, -bw, -borderwidth.
termName: termname

Specifies the terminal type name to be set in the TERM environment

39

variable; option -tn.
meta8: boolean

True: handle Meta (Alt) + keypress to set the 8th bit. False: handle
Meta (Alt) + keypress as an escape prefix [default].
backspacekey: string

The string to send when the backspace key is pressed. If set to DEC or
unset it will send Delete (code 127) or, if shifted, Backspace (code 8) - which
can be reversed with the appropriate DEC private mode escape sequence.
deletekey: string

The string to send when the delete key (not the keypad delete key) is
pressed. If unset it will send the sequence traditionally associated with the
Execute key.
THE FORMAT OF THE FONT SPECIFICATION FILE
The font specification file contains several scripts related font information in
the following format.
<Indian_Script mnemonic >
Display _Attribute(s) 1 = Corresponding font name;
Display _Attribute(s) 2 = Corresponding font name;

Display Attribute(s) n = Corresponding font name ;

< /Indian_Script _mnemonic>

Following mnemonics are used for Indian Scripts:

RMN: Roman
DEV: Devanagri

40

BNG: Bengali
TML: Tamil
TLG: Telugu
ASM: Assamese
ORI: Oriya
KND: Kannada
MLM: Malayalam
GJR: Gujarati
PNJ: Punjabi

The following mnemonics are used for the Display_Attribute_name:

BLD: Bold

ITA: Italic

UL: Underline

EXP: Expanded

HLT: Highlight

OTL: QOutline

SHD: Shadow

NOR: Normal

Display Attributes can be combined together to give composite attributes.
Bold -+ Italic = BoldlItalic

An example of the font specification file is:

<DEV>
NOR = -altsys-dv_ttyogesh-medium-r-normal--20-0-50-50-p-0-1508859-1;
BLD = -altsys-dv_ttyogesh-bold-r-normal--20-0-50-50-p-0-is08859-1;
ITA = -altsys-dv_ttyogesh-medium-i-normal--20-0-50-50-p-0-i508859-1;

BLD ITA = -altsys-dv_ttyogesh-bold-i-normal--20-0-50-50-p-0-is08859-1;
</DEV>

41

<TML>

NOR = -altsys-tm_ttvalluvar-medium-r-normal--20-0-50-50-p-0-is08859-1;
BLD = -altsys-tm_ttvalluvar-bold-r-normal--20-0-50-50-p-0-is08859-1;
ITA = -altsys-tm_ttvalluvar-medium-i-normal--20-0-50-50-p-0-is08859-1;

BLD ITA = -altsys-tm_ttvalluvar-bold-i-normal--20-0-50-50-p-0-is08859-1;
</TML>

Here DEV is the mnemonic used for Devanagari Script. As shown above the
begin and end tags for the scripts must be same except terminating symbol in
the end tag. NOR is the Display Attribute for Normal fonts, Display Attributes
"BLD ITA" together is for Bold+Italic text. "-altsys-dv__ttyogesh-medium-r-
normal-20-0-50-50-p-0-iso8859-1" is the corresponding font name followed by
a semicolon. The mnemonics for the Script and Display Attributes can be in

mixed case.

THE SCROLLBAR

Lines of text that scroll off the top of the iterm window (resource: saveLines)
and can be scrolled back using the scrollbar or by keystrokes. The normal iterm
scrollbar has arrows and its behaviour is fairly intuitive. The xterm-scrollbar

is without arrows and its behaviour mimics that of xterm

Scroll down with Buttonl (xterm-scrollbar) or Shift-Next. Scroll up with

Button3 (xterm-scrollbar) or Shift-Prior. Continuous scroll with Button2.
MOUSE REPORTING

To temporarily override mouse reporting, for either the scrollbar or the normal
text selection/insertion, hold either the Shift or the Meta (Alt) key while

performing the desired mouse action.

If mouse reporting mode is active, the normal scrollbar actions are disabled —
on the assumption that we are using a fullscreen application. Instead, pressing
Buttonl and Button3 sends ESC[6 (Next) and ESC[5 (Prior), respectively.
Similarly, clicking on the up and down arrows sends ESC[A (Up) and ESC|B

(Down), respectively.

42

TEXT SELECTION AND INSERTION

The behaviour of text selection and insertion mechanism is similar to xterm(1).

Selection:

Left click at the beginning of the region, drag to the end of the region and
release; Right click to extend the marked region; Left double-click to select a
word; Left triple-click to select the entire line. Insertion:

Pressing and releasing the Middle mouse button (or Shift-Insert) in an iterm
window causes the current text selection to be inserted as if it had been typed

on the keyboard.
LOGIN STAMP

iterm tries to write an entry into the utmp(5) file so that it can be seen via
the who(1) command, and can accept messages. To allow this feature, iterm

must be installed setuid root on some systems.
COLORS AND GRAPHICS

If graphics support was enabled at compile-time, iterm can be queried with
ANSI escape sequences and can address individual pixels instead of text char-

acters. Note the graphics support is still considered beta code.

In addition to the default foreground and background colours, iterm can dis-
play up to 16 colours (8 ANSI colours plus high-intensity bold/blink versions

of the same). Here is a list of the colours with their rgb.txt names.

It is also possible to specify the colour values of foreground, background,
cursorColor, cursorColor2, colorBD, colorUL as a number 0-15, as a conve-
nient shorthand to reference the colour name of color0-colorl5. Note that
-rv ("reverseVideo: True") simulates reverse video by always swapping the
foreground /background colours. This is in contrast to xterm(1l) where the
colours are only swapped if they have not otherwise been specified. For ex-
ample, would yield White on Black, while on xterm(1) it would yield Black
on White. iterm sets the environment variables TERM, COLORTERM and

43

COLORFGBG. The environment variable WINDOWID is set to the X win-
dow id number of the iterm window and it also uses and sets the environment
variable DISPLAY to specify which display terminal to use. iterm uses the
environment variables RXVTPATH and PATH to find XPM files. System file

for login records. Color names.

Written by Saumen Mandal. Report bugs to <saumen@cse.iitk.ac.in>,

Copyright 2001 by iLinux Software Products IIT Kanpur, All Rights Reserved.

44

Bibliography

[1]

2]

3]
[4]

[5]

(6]

17l

8]

19]

[10]

[11]

Jeffrey D. Ullman Alfred Aho, Ravi Sethi. Compilers - Principles, Technique
and Tools. Addison Wesley.

Nabajyoti Barkakati. X Window System Programming. Prentice Hall, second

edition.
Cdac. World Wide Web,http://www.cdac.org.in.

Kterm, multingual terminal emulator for x. World Wide Webhttp://
packages.debian.org/unstable/x11/kterm.html.

Tomohiro Kubota. Introduction to i18n. World Wide Webhttp://wuw.

debian.org/doc/manuals/intro-i18n/.
Modular-infotech. World Wide Web http://www.modular-infotech.com.

Bureau of Indian Standards. Indian Script Code for Information Interchange
- ISCII Standard. Manak Bhawan, 9, Bahadur Shah Zafar Marg, New Delhi,
December, 1991.

Rxvt. World Wide Web.http://www.rxvt.org.

W. Richard Stevens. Advanced Programming in the UNIX Enviornment. Ad-
dison Wesley.

Tdil. World Wide Web,http://wuw.tdil.gov.1in.
Xterm. World Wide Web,http://www.cs.utk.edu/ shuford/terminal/

xterm.html.

45

