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Abstract

Sharing resources increases their utilization and availability in a computing envi-
ronment. Solutions exist for transparent sharing of resources, such as file sharing
through SUN Network File System (NFS), printer sharing through Line Printer
Daemon Protocol (Ipd). These sharing services are in the form of resource specific
protocols. A generalized framework is needed that can provide transparent sharing
of all classes of devices. Such a framework is also desirable in Distributed Systems so
that all the resources of a workstation are transparently accessible from any other.
A resource sharing framework is easy to develop if there exist services that provide
transparent access to remote devices.

In this thesis, we propose extensions to of Network File System (NFS) to trans-
parently access remote devices in addition to files. Using this extended NF'S protocol,
clients will be able to access the local devices of the server. The proposed extensions
conform to the design goals and properties of the NFS. They are not specific to any
device and can be used to provide remote access to most devices in an easy man-
ner. We have also proposed and implemented an architecture exemplifying the use
of extended NFS protocol in providing transparent access to remote devices. Our
implementation allows the clients to access remote consoles of the server. We have

also described the strengths and limitations of our protocol.
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Chapter 1
Introduction

A computer can be viewed as a collection of different resources such as hardware
devices (e.g. CPU and memory), peripheral devices (e.g. keyboard and disks) and
software abstractions such as files. The operating system provides process as the
basic computing abstraction that uses the resources such as CPU time, memory
and other peripheral devices to perform the required computation. The operating

system acts as a resource allocator for these processes.

1.1 Resource Sharing

The concept of resource sharing was introduced by Time sharing systems. The
processes on a single system share the CPU, memory and other devices to execute
concurrently. This increased the utilization and the efficiency of the systems. The
concept of resource sharing was extended across the computers by distributed operat-
ing systems. If a number of different computers are connected by a communication
network, then a user or specifically a process at one computer is able to use the

resources available at another.

1.1.1 Advantages

Devices like printers, plotters and scanners etc. are too expensive to be provided

individually for every user. Shared use of these devices keeps the installation cost



down and increases their availability and utilization. Additionally it allows for easy
administration and better control of these devices. In distributed systems, sharing of
the CPU among connected computers results in substantial computational speedup.
Similarly sharing of files in these systems enable users to access them from different
machines; this facilitates collaborative working. Additionally, file sharing allows user

mobility as user can work on any machine and access his files transparently.

1.1.2 Remote Access

A mechanism for remote access to resources is the basic facility required for providing
resource sharing among different computers. Such a remote access mechanism has
to deal with network failure, crash of a client or a server, heterogeneity of the client
and the server machines, while providing complete access transparency to the users.
Access to a remote resource requires data to be transferred between local and remote
machines. The most common way to achieve this transfer is through a remote service
mechanism. In remote service, a request for access to remote resource is delivered to
the remote machine, which performs the actual operation and returns the results to
the requesting machine. The remote procedure call paradigm [10] is a representative

of this remote service.

1.1.3 File Sharing

The classical UNIX operating system allows multiple users on a single machine to
share files stored locally on the machine. The network connectivity enabled the file
sharing between different computers. The early efforts in this direction were re-
stricted to copying files from one machine to another such as UNIX-to-UNIX Copy
program [12]| and File Transfer Protocol (ftp) [14]. These solutions were far from
fulfilling the vision of being able to access files on remote machines as local files.
Distributed File Systems extend the sharing of files among users on different ma-
chines interconnected by a communication network. They hide the dispersion of file
systems to provide a uniform view and transparent access to files across all the ma-

chines. A distributed file system can be implemented either as a part of a distributed



operating systems or, in the form of a software layer which manages the commu-
nication between conventional operating systems and file systems to provide access
to remote file systems. Remote File system (RFS) [15], Sprite file system [22] are
examples of the former type of implementation and Network File System (NFS) [16],
Andrew File System (AFS) [17] are the examples of latter type of implementation.

1.1.4 Device Sharing

The need to share devices in a computer system arises due to economics or the
nature of applications. Sharing of devices is not restricted to just remote access,
it has to deal additionally with issues such as access control, maintenance of job
queue, priority of jobs and exclusive use of the device for a limited time. To provide
transparent sharing of expensive devices, device specific application layer protocols
have been developed. Examples are Line printer daemon protocol (Ipd) [9] which
provides transparent remote printing service and Remote Magtape protocol (rmt)
[4] which is used for manipulating magnetic tape drives from a remote machine.
In distributed systems, sharing of CPU is is implemented by process migration,
primarily for load sharing among different machines. Transparent process migration
requires remote access to files and devices. For example, migration of an interactive
process requires remote access to the local terminal of the system, where it was

executing before migration.

1.2 Resource Sharing in Distributed Systems

Several systems have been implemented which provides resource sharing. The re-
sources that can be shared in these systems vary from files to devices such as ter-
minals. In this section we will look at some of these systems and examine their ca-
pabilities of sharing different resources. We mainly emphasize on transparency and
support for remote device access along with local device access. First we describe
the systems which provides resource sharing on conventional operating systems, and

then those in distributed operating systems.



1.2.1 NFS

Network File System (NFS) [16] is the de-facto standard for remote file sharing on
UNIX systems. It is targeted for small environment such as LANs with limited
number of clients. It allows sharing of a complete file system of file server or its
subtree, among the client machines. There is no notion of a globally shared file
system in NFS. Each client is independent to configure its own file system name
space, so it is not necessary that all machines promise a common view of the shared
file system. Chapter 2 discusses important characteristics and architecture of NFS

in more detail.

1.2.2 AFS

Andrew File System (AFS) [17] is a distributed file system developed at CMU’s
Project Andrew and currently owned and supported by Transarc Corporation. In
contrast to the NFS, AFS is capable of scaling to thousands of users. Clients are
presented with a partitioned space of file names: a local name space and a shared
name space. The uniform shared name space is provided by the servers, while the
files constituting local name space are stored on the local disks of the clients. AFS
uses file caching for better performance. Consistency is guaranteed by using callback
mechanism to the client. AFS is only meant for shared access to remote files and

does not provide access to the remote devices.

1.2.3 LOCUS

The LOCUS operating system is a distributed version of UNIX [13|. The heart
of the LOCUS architecture is its distributed file system. The LOCUS file system
presents a single tree-structured naming hierarchy that covers all objects in the file
system on all machines. Every node of the distributed system is given a subtree
in the file system hierarchy for its local file system. Local file system contains the
device files for accessing the devices of that system. To provide transparent access
to devices, standard file names were dynamically linked with site specific device

files. LOCUS was the first of the distributed systems to support transparent access



to remote named pipes and devices. Since it was developed before introduction of
the VFS/Vnode architecture [7], remote device access was coded within each device
driver instead of a separate implementation. For implementing an input-output of
blocking nature, the request is blocked at the client side and the server uses callback

mechanism for asynchronous notification from the device to the process.

1.2.4 RFS

AT&T introduced the Remote File Sharing (RFS) [15] file system in SVR3 UNIX
to provide access to remote files over a network. Similar to NFS, RFS is based on a
client-server model. The server exports directories and the clients mount them. The
RFS provides transparent access to remote files, devices and named pipes. RFS also
uses remote service for providing access to remote resources. RFS calls these mode
of operation as remote system call model. For each system call that operates on the
remote file or device, the client packages the argument to the system call, as well as
information about the client process’s environment into an RFS request. The server
recreates the client’s environment and executes the system call. The client process
blocks until the server sends back a response message, containing the result of the
system call. The client then interprets the results and completes the system call
before returning control to the process. The server process executing the system
call on behalf of the client may block for a long time, waiting for device or pipe
input-output. Thus the number of such server processes becomes the bottleneck of
this scheme. In case of too many requests blocked at the server, some incoming
request may be denied service due to unavailability of the resources at the server.
This results in loss of transparency. The implementation of RFS requires the state
to be maintained both at the client as well on the server side. For this reason, the
RF'S has a complex mechanism for the crash recovery and a strong cache consistency

protocol.



1.2.5 SPRITE

Sprite [22] extends the ideas of LOCUS for accessing the remote devices and pre-
serving the UNIX semantics. It provides the notion of a file server, being different
from the device server. In sprite a file server is a machine where files corresponding
to devices are present, while device server is a machine where the actual devices
are present. Each device file stores the information about the device server of the
device corresponding to that file. This ensures a system wide uniqueness for devices.
For accessing the local devices every system uses the same files, called the localhost
device files. These device files map to the client’s instances of the devices. For
implementing blocking input-output, servers uses callback mechanism to the client,
while the client blocks for the request. This scheme requires complex crash recovery

protocol by virtue of it being a state based implementation.

1.2.6 JINI

A JINI system [18] is a distributed system based on the idea of federating users and
the resources required by those users. The goal of the JINI system is to make the
network a dynamic entity which enables its users to share services and resources over
a network. It is intended to provide easy access to resources anywhere on the net-
work while allowing the network location of the user to change. The main emphasis
of JINT is on the dynamic joining and leaving of services, devices and users in the
system rather than transparency of their use. The JINI system extends the JAVA
application environment from a single virtual machine to a network of machines.
JINT names all its resources as services. A service is an entity that can be used by
a person, or by a program or by another service. The JINI system allows sharing of
these services. The backbone of the JINI framework is the JAVA Remote Method
Invocation (RMI) mechanism. RMI is a JAVA programming language enabled ex-
tension similar to the remote procedure call mechanism. RMI allows not only data
to be passed from object to object around the network but also full objects, in-
cluding code. It is tightly coupled with the JAVA programming environment and
assumes that its components are implemented in JAVA. It is good for developing

new distributed applications and sharing devices/services. Existing applications are



not benefited with the framework because its main goal is platform independence
and not transparency. Since JINI services need to be implemented over user level

Java Virtual Machine, they are considerably slow.

1.2.7 Windows NT

Windows NT [1] is an operating system designed primarily for personal computers
and its design is different from operating systems of UNIX domain. Its design in-
corporates several different models of operation, for providing various services. It
uses client-server and micro-kernel model for providing multiple operating system
environment. Most of the operating environment and operating system services are
implemented as user level processes. The clients use these services by passing mes-
sages to them using the message passing primitives provided by the micro-kernel.
It uses an object model for uniformly managing all system resources. Thus in Win-
dows NT, resources such as files, processes, ports and semaphores etc. that can be
shared, named, or made visible to user mode programs, are implemented as objects.

The kernel mode portion of the Windows NT is known as NT FEzecutive. It
consists of a series of components that implement basic operating system services
like virtual memory management, file system and interprocess communication etc.
The input-output system of Windows NT is one of the component of the NT ex-
ecutive. Windows NT has a packet driven input-output system, in which every
input-output request is represented by an I/0 request packet (IRP), as they move
from one I/O system component to another. One of the I/O system component,
called I/O Manager defines an orderly framework within which these IRPs are de-
livered to file system and devices. The I/O manager passes the IRP denoting an
input-output request to the correct driver. The driver performs the operation speci-
fied by the IRP and returns the IRP containing the result back to the I/O manager.
[/O system has uniform structure of all its drivers, with every input-output being
implemented through these drivers. The file system being a part of I/O system, is
also implemented through a driver which has structure and interface identical to

other drivers.



The Windows NT has support for access to all remote resources. It views net-
working as a means to provide access to remote resources such as files, devices
and ultimately processors. The networking software is also largely implemented
as extension to the input-output system. Windows N'T’s support to access remote
resources is built through two major components, network redirector and server.
Both of these are implemented as file system drivers and therefore are the part of
the input-output system of the N'T executive. The redirector is the network com-
ponent responsible for sending input-output request across a network when the file
or device to be accessed is not local. The server on the remote machine (where the
file or device is physically located) receives and serves such requests. The redirector
and the server communicates using the SMB protocol. The object model provides
the network transparency in case of remote resource access, but the naming scheme

itself differentiates local and remote resources.

1.3 The Scope of Our Work

Our work is aimed at providing transparent access to remote devices, in a heteroge-
neous UNIX environment. The machines may have different architecture and may
run different flavors of UNIX. The uses of such a system span a number of different
audiences. It can easily be extended to provide sharing of expensive resources such
as printers, plotters and scanners. Another area where such a system can be used is
distributed operating systems. In these systems, process migration requires remote
access to files and devices for greater transparency.

Our basic approach is to extend an existing remote file accessing mechanism to
provide access to remote devices transparently. SUN NF'S is one file system which
is widely used for remote file sharing in distributed systems and which is designed
for heterogenous environment. In this work, we extend NFS to allow transparent

access to remote devices.



1.4 Our Approach

In our approach of providing access to remote devices using NFS, we have avoided
changes to the existing NFS procedures. Since the existing read and write pro-
cedure cannot handle the complexity of the device input-output, we have added
three new procedures in the NFS protocol. Two of these protocols are used by the
clients for reading and writing to devices. The third procedure corresponds to the
ioctl system call, which is used for modifying device properties. For implementing
blocking input-output, the requesting process is blocked at the client. The client
keeps retransmitting the request to the server till the desired operation completes
successfully.

In order to make server stateless and facilitate transparent crash recovery, the
state of the device is also maintained at the server. An NFS request should contain
complete information required for processing it at the server. Hence the device state
is also included in every request on remote device. We have also changed the service

model of the these requests at the server.

1.5 Organization of the Report

The rest of this report is organized as follows. Chapter 2 describes the SUN
Network File System’s design goals and its implementation in UNIX kernel. We also
describe the protocols associated with the NFS like Mount, Network Lock Manager
in this chapter. The design issues considered for the extension of NFS are discussed
in Chapter 3. The implementation of Extended NFS in Linux kernel to support
remote access to terminals is described in Chapter 4. In Chapter 5, we discuss
some of the performance issues. Finally, in Chapter 6 we conclude this thesis with

a brief summary of the work and possible future enhancements.



Chapter 2
NFS protocol and implementation

The Network File System (NFS) is both an implementation and a specification
of software system for accessing remote files [8|. It has become the de-facto standard
for remote file sharing in UNIX systems. Till date SUN has released two versions
of the NFS specification which are named as version 2 and wversion 3. Version 3

removes some of the limitations of version 2 and improves its performance.

2.1 Characteristics of NFS

The NFS is designed for a network of heterogeneous machines. It is useful for
sharing files among workstations in a small network. The design of the NFS has

certain features as outlined here:

Operating System Independence: The NFS is designed to be independent of
operating systems and machine architectures. Its implementation is not re-
stricted to only UNIX systems and several other operating systems implement

NFS server as well as NFS client.

Stateless Server: The unique characteristic of NFS is its statelessness. NFS
does not require a server to retain any information about the state of the
NFS clients between two of their successive requests. Each request is treated
independent of all previous requests. In the NFS protocol the request sent by

a client contains all the information needed to process it at the server end.

10



NFS, therefore does not provide any open, seek, or close requests as these
operations necessarily require to maintain the state at the server side. The

implementation of these functions is therefore private to the NFS clients.

Crash Recovery: The NFS protocol is very rugged against the crash of the

server or that of the client. In case the client crashes, no crash recovery is
required at the server as it keeps no persistent information about its clients.
In case the server crashes, client keeps retransmitting the request at a certain
frequency until the response is received from the server. When the server
boots after the crash, it processes the request and sends the response back. It
is possible because in the protocol all requests are independent of each other.
Thus the NFS client can not distinguish between a slow server and a rebooted

server.

Transparency: The NFS provides the fundamental property of network trans-

2.2

parency as clients are able to access remote files using the same set of opera-
tions as applicable to the local files [8]. The name of the file does not reveal
its physical location, hence it is location transparent. Change in storage lo-
cation of a single file results in a change of its name, however transfer of the
exported file system or directory has no effect on the name space at client
side. The changes are made only in the client’s mount table using the mount
protocol. Thus the NFS also provides location independence at granularity of

the component (i.e., exported file system or directory).

Introduction

NFS is based on a client-server paradigm. A file server exports a file system or

subtree thereof. Clients are the machines that remotely access the files exported

by the server. Clients can mount the entire file system exported by the server or a

subtree of that onto any directory in existing file hierarchy.

Clients and servers communicate via remote procedure calls, which are syn-

chronous calls. NFS uses the Remote Procedure Call (RPC) Protocol [20] to

11



define the format of all interactions between the client and server. In fact, the NFS
protocol [21] is defined as a set of remote procedure calls. SUN RPC and hence NFS
uses Extended Data Representation (XDR) [19] to represent the data sent across

the network in a standard machine independent format.

2.3 The Protocol Suite

The primary protocols in the NFS suite are RPC, NFS, and Mount. They all use
XDR for data encoding.

2.3.1 Network File System Protocol

NFS defines a set of remote procedure call, their arguments and results which are
used by the clients to operate on the remote files at the server. These are defined
using the RPC language which is basically the XDR language extended with pro-
gram, version, and procedure declarations. All procedures in the NFS protocol are
assumed to be synchronous. The most important argument to these NFS procedures
is the file handle, which is used by the clients to reference a file at the server. An

outline of the NFS protocol version 2 procedures is given below.

null() returns ()
This procedure does nothing and is used to measure the round-trip time be-

tween the client and the server.

lookup(dirfh, name) returns (fh, attr)
This procedure returns the file handle corresponding to the file whose name is
given as argument. The other argument is the file handle of the directory in

which the file is present.

create(dirfh, name, attr) returns (newth, attr)
This procedure creates a new file and returns the file handle and attributes of
the created file. The other arguments are the file handle of the directory in
which the file is to be created and the attributes of the file.

12



remove(dirfh, name) returns (status)
This procedure removes a file from the directory. The arguments to the pro-
cedure are the name of the file and file handle of the directory in which the

file is present.

getattr(fh) returns (attr)
This procedure return the attributes of the file whose file handle is given as

argument.

setattr(fh, attr) returns (attr)
This procedure set the attributes of a file to the given one. The file attributes

which can be modified are mode, uid, gid, size, access time and modify time.

read(fh, offset, count) returns (attr, data)
This procedure is used to read data from a file whose file handle is the argu-
ment. The offset gives the starting byte, from where the data is read up to

count characters from the file .

write(fh, offset, count, data) returns (attr)
This procedure is used to write data to a file. The offset gives the offset of the
first byte within the file. The count number of bytes are written from data in
the file. The fh provides the file handle for the file.

rename(dirfh, name, tofh, toname) returns (status)
This procedure renames a file name in the directory represented by its file

handle dirfh to toname in the directory represented by its file handle tofh.

link(dirfh, name, tofh, toname) returns (status)
This procedure creates a hard link toname in the directory represented by its
file handle tofh to the file name in the directory represented by its file handle
dirfh.

symlink(dirfh, name, string) returns (status)
This procedure creates a symbolic link name, in the directory represented by

dirfh, with value string. The string argument is not interpreted at the server.

13



readlink(fh) returns (string)
This procedure returns the string associated with the symbolic link represented
by its file handle fh.

mkdir(dirfh, name, attr) returns (fh, newattr)
This procedure creates a new directory name in the directory represented by
its file handle dirfh. It returns the file handle of the newly created directory

and its attributes.

rmdir(dirfh, name) returns (status)
This procedure removes an empty directory name from the parent directory
represented by its file handle dirfh.

readdir(dirfh, cookie, count) returns (entries)
This procedure returns up to count bytes of directory entries from the directory
represented by its file handle dirfh. Each returned entry consists of file name,
file id and pointer to next entry called the cookie. The returned cookie is used
in the subsequent call to readdir, in case all directory entries were not read in

the first request itself.

statfs(fh) returns (fsstats)
This procedure returns the file system information such as block size, number

of free blocks, etc.

2.3.2 Remote Procedure Call Protocol

The idea of Remote Procedure Call (RPC) was mooted in mid 70’s, but the first
framework actually came in early 80’s [23] [10]. Today there are many commercial
RPC implementations available such as Sun Microsystems RPC [20], Xerox Couri-
er RPC [2], Apollo’s Network Computing Architecture[3] and OSF’s Distributed
Computing Environment RPC[6]. The basic working model of RPC is based on the
traditional procedure call model, used in programming languages. Procedure call
allows for transfer of control and data within a program running on a single com-

puter. RPC extends the idea to transfer of control and data across a communication
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network.

RPC is based on a client-server paradigm. A client is a machine that requests for
a procedure to be invoked and a server is where the procedure is actually executed.
When a remote procedure is invoked, the calling process at client is blocked until it
receives the response back from the server. The parameters and information about
the procedure to be called are passed across the network to the server where the
procedure is to be executed. When the procedure finishes results are passed back
to the blocked process at the client.

NF'S is built over the SUN RPC protocol. This protocol specifies message for-
mat, transmission methods and authentication mechanism, for remote procedure
calls. SUN RPC is fundamentally independent of transport protocol. It imple-
ments its own reliable datagram service by keeping track of unanswered requests

and retransmitting them periodically until a response is received.

2.3.3 Extended Data Representation Protocol

Computers in a heterogenous environment vary in architecture as well as operat-
ing systems. Each architecture has its own internal representation of data. These
differences are in byte ordering, sizes of data types, and format of strings and ar-
rays. Hence communication between machines with different architectures has to
deal with these differences. In opaque data transmission, machines do not have to
interpret data. The data is treated just as a byte stream. When data has to be
interpreted by the receiver, both communicating machines have to agree upon a
standard format. External Data Representation is one such machine-independent
representation for data transmission. Data sent over the network is converted from
the native to the XDR representation. Similarly, at the receiver, data is converted
from the XDR to the native representation. XDR defines several basic data types

and the rules for constructing more complex data types.
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2.3.4 Mount Protocol

The Mount protocol allows NFS clients to mount the remote file systems exported
by a NFS server. Using the mount protocol the client obtains the file handle of
the root of the exported file system tree. Similar to the NFS, mount protocol is
also described by a set of RPC procedures which use XDR for representing their
arguments and results. It is a state based protocol which requires the server to
maintain a list of all clients which have mounted a directory or file system exported
by the server. This list is however not required for the usual operation of either
the client or the server. The list is used only for advisory purposes like the server
warning the clients before being shut down.

Version one of the mount protocol is used with the NFSv2. The only information
communicated between these two protocols is the file handle of the root directory

of the mounted file system.

2.4 Implementation and Control Flow

NFS has been ported to several non-UNIX systems such as MS-DOS and VMS.
There are both user level as well as kernel level implementation of NF'S for various
operating systems. Our discussion restricts to the kernel implementation of NFS in
conventional UNIX systems with VFS/Vnode|7| interface.

VFS/Vnode interface is based on object-oriented programming concepts and
provides an architecture for accommodating multiple file system implementation in
a single UNIX kernel. The VFS (virtual file system) abstraction represents a file
system in the UNIX kernel and Vnode represents a file. They represent abstract base
classes from which subclasses can be derived and implemented to provide support
of different file systems. A typical Vnode interface in UNIX kernel consists of two
parts. First part is the file system independent data and functions, which are used
by other kernel subsystems to manipulate the file. Second part of the interface is the
set of virtual functions which are implemented by specific file system and a private
data structure that holds the file system specific data of the Vnode.
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Figure 2.1: NFS Implementation

2.4.1 Overview

As shown in Figure 2.1, the server has exported a ufs file system, which is mounted
by the client. When a process on the client opens a file mounted through NFS, after
a name lookup, a file table entry and Vnode corresponding to that file is allocated
at the client. The server as a result of a lookup on the file, returns a file handle
corresponding to that file. This file handle, which is an opaque data object for
the client, is sent by the client with every subsequent request to the server. The
v_op field in the Vnode points to the vector of NFS client routines that implement
the various Vnode operations. The server processes the requests by identifying the
Vnode corresponding to the local file and invoking the appropriate Vnode operation

that is implemented by the local file system.

2.4.2 File Handles

The NFES protocol associates an object called a file handle with all files in the

exported directory. The server generates this handle when the client creates a remote
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file or issues a lookup on a remote file. The server returns the file handle to the
client in the reply to the request, and the client can subsequently use it in other
operations on that file. It is used by the server to identify the file that the client
want to access. The file handle is an opaque 32 byte object for the client and the
client should not make any attempt to interpret its contents, which are specific to
the server. For most of the UNIX implementation, the file handle contains the file
system ID, inode number and the generation number of the inode. The generation
number is added to the inode to solve the problem of stale file handles. In absence of
the generation number, if the server deletes a file and reuses its inode, while the file
is being used by a client, the file handle at the client will refer to the newly created
file. To eliminate this possibility, server needs to identify that, file handle sent by
the client is stale. Since the generation number of inode is incremented each time
the inode is freed, server can compare the generation number in the file handle and
that in the inode of the file, to identify the stale file handles.

2.5 UNIX Semantics and Performance

NFS was primarily intended for UNIX clients, hence it is important that UNIX
semantics be preserved for remote access to file access. The statelessness of NFS
does not allow clients to maintain information about open files at the server, which

leads to a few incompatibilities with UNIX.

2.5.1 Deletion Of Open Files

In UNIX, if a process deletes an open file (opened by another process or itself), the
kernel does not actually delete this file. The kernel simply marks the file for deletion
and removes its entry from the parent directory. Now no new process can open this
file, while those that have it open can continue to access it. The kernel physically
deletes the file, only when the last process that has the file open closes it.

In NFS this semantics cannot be implemented because the server does not know
which files are open at the clients. In NFS a process will get unexpected error if

another process deletes the file it is using. The problem can be solved partially
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at clients, as the clients are aware of the opened files. When the client detects an
attempt to delete an open file, it changes the operation to rename the file, giving it a
long and unusual new name which is unlikely to conflict with the existing files. This
scheme solves the problem only when the two processes, the one using the file and
the one deleting the file, are on the same client. It can not solve the problem when
the two processes are on two different machines. Additionally if the client crashes
after renaming the file and before actually deleting it, a garbage file is left on the

server.

2.5.2 Exclusive Use

NF'S cannot provide for record level or file level locking as provided by the UNIX
for local files. As a result, a process can not access a file exclusively. Due to fixed
size of a RPC request, a large read or write operation may span over several RPC
requests. Hence, if two processes at two different clients issue write operation on
the same file, at roughly the same time, overlapping writes at the server can occur.
The Network Lock Manager (NLM) [11] protocol allows cooperating process to lock
entire file or its portion, but it is only advisory locking. A process can always bypass

the locks and access the file.

2.5.3 Client-Side Caching

If every operation on a remote files required one or more NFS request to the server,
NF'S performance would be intolerably low. Hence most NF'S clients uses caching of
both data blocks and file attributes to avoid sending NFS request to the server for
every operation on the file. The file blocks are cached in the buffer cache and file
attributes are cached in Vnode corresponding to the remote file. In order to avoid
use of stale data at the clients, these cached contents must be refreshed on each
change to the cached data or file attributes. In NFS, clients has to take measures
for refreshing cached data. NFS clients maintains an expiry time indicating the time
for which the attributes have been cached. If these attributes are accessed after a

time quantum expires, clients fetch them from the server again. Before using the
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cached file blocks clients compare the modify time of the file attributes with the time
when cached data was read from the server. If the file was modified after the data
blocks were cached then cached data is flushed and request is sent to the server.
All these mechanisms reduce, but do not eliminate the consistency problems of the

cached data and file attributes.

2.5.4 Retransmission Cache

In order to provide reliable transmission, RPC clients retransmit requests until they
receive a response. These retransmissions occurs due to the loss of a request or a
response on the network or because the response is delayed due to the loaded server.
The server needs to handle such duplicate requests correctly. NFS requests can be
divided into two classes, idempotent and nonidempotent. Idempotent requests can
be executed twice without any ill effect, while nonidempotent requests may result in
incorrect behavior if repeated. Re-processing of duplicate requests not only results
in incorrect behavior but also increases server load.

In order to detect and handle duplicate requests, the server keeps a cache of
recent requests and reply messages. This cache is known as retransmission cache.
Each entry in this cache additionally contains a state field and a timestamp. If the
server finds an incoming request in the cache, and its state is in progress, the request
is discarded. If the state of the cached request is done and the response has been
sent just recently, the request is discarded. But if the duplicate request arrives at the
server after some time, cached reply is retransmitted to the client. This approach
requires a large cache, capable of saving the whole of the reply messages, which can

be large for a request such as read.

2.6 NFS Version 3

NFS wversion 2 (NFSv2) became enormously popular, which helped in highlighting
its shortcomings. While some of the problems were addressed by clever implemen-
tations, many problems were inherent to the protocol itself. Thus NFS wersion

3 (NFSv3) was introduced, addressing several important limitations of the older
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version. Major performance bottlenecks in NFSv2 are its synchronous procedures,
which require the server to commit all modifications to stable storage before reply-
ing. NFSv3 introduces asynchronous writes in the protocol that allows the server
to reply before committing the modification to stable storage. The data is finally
written to the disk when the process exits or closes the file at the client and the client
kernel sends a special request (COMMIT) to the server. This require that the client
kernel holds on to data, until the process closes the file. NFSv3 supports greater file
sizes by increasing the size of fields for specifying file size and offsets in read and
write, to 64 bits. Additionally the number of over-the-wire packets for a given set

of file operations are reduced by returning file attributes on every operations.
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Chapter 3

NFS Extensions

In this chapter, we describe our proposed extensions to the NFS protocol. We first
describe the design goals and the various design alternatives that could be used to
meet these goals. Then we describe the procedures that we have added to the NFS

protocol. Finally we describe some limitations of our proposed extensions.

3.1 Design Goals

The design of the proposed extensions to the NFS protocol is based upon the fol-

lowing goals.

Transparent Remote Access: The primary goal of our work is to support trans-
parent access to the remote devices. The application processes must be able
to use the remote devices as if they were local. Therefore the scheme should

provide location transparency for devices, as NFS provides for the files.

Minimal Changes: Another important aim while developing the enhanced NFS
protocol is to keep the changes and additions in the existing NFS protocol, its

associated protocols, and device drivers to the minimum.

Device Independence: Enhancements made to the NFS protocol should be craft-
ed with the aim of developing a generalized framework for transparent access

to the remote devices. The protocol should not be specific to any device type
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and it should be possible to provide the remote access to new devices in an

easy manner.

Conformation with NFS characteristics: Extensions and modification should
be in conformation with the characteristics of the NFS. In particular, a strong

emphasis should be laid on preserving the stateless nature of the protocol.

Heterogeneity: The work is aimed at providing transparent access to remote de-
vices, in a heterogeneous UNIX environment. The machines may have different
architecture and may run different flavors of UNIX. The enhancements to the
NFS protocol should be independent of the operating system and machine

architecture heterogeneity:.

Preserving UNIX semantics: The framework for remote device access should
try to preserve the UNIX semantics for device input-output. Although to
preserve the stateless nature of the NFS protocol, the scheme may have to
compromise on some issues. This could lead to a few incompatibilities with
UNIX semantics.

3.2 Design Issues

In this section, we discuss the issues in the design of our NFS extension to support

transparent access to remote devices.

3.2.1 Mounting

The physical disk unit typically consists of several logical partition each of which
usually contains a file system. Mounting allows the users to view these different file
systems as components of a single file system. Mounting integrates two file systems
by making an association between the mount point directory and the root directory
of the mounted file system. To access remote files through NFS, the clients are
required to mount the remote file system. Similarly to access remote devices, the
clients will be required to mount them. Ability to export an individual device in-

creases the flexibility at the server, as each device can be exported selectively to the
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clients, using the same device file. Ability to mount an individual device increases
transparency at clients. This is because, clients can mount individual remote device
at the mount point that refers to the local instance of that remote device. The ex-
isting mount protocol is able to mount only file systems and directories. Mounting
an individual device requires changing the mount semantics and thus its implemen-
tation.

In our design we wanted to keep the changes to existing system minimum. There-
fore we decided against changing the mount protocol. Instead we use the existing
mount protocol to mount a directory of the server containing device files. The de-
vice files are then used to access the remote devices of the server from where the

directory is mounted.

3.2.2 Major Device Number

The kernel identifies each device by the device type (block or character), and a
pair of numbers, called the major and minor device numbers. The major number
identifies the device driver for a class of devices, while the minor number identi-
fies a specific instance of a device in that class. Allocation of the major number
to devices is specific to the operating system. In a heterogeneous environment a
device may have major number at the server different then the major number at the
clients. In order to provide operating system independence, we chose to standardize
the major numbers for the devices in the extended NFS protocol. Further to min-
imize changes to the existing operating systems a mapping is maintained between
native major numbers and protocol standardized major numbers. Before sending a
request, the client converts native major numbers to standardized major numbers.
Similarly upon receiving the response the client does the reverse conversion. Server
upon receiving a request, maps the standardized major number to the native one.
The server communicates responses with the client using the standardized major
numbers. Thus all communication between the server and the client uses the stan-
dardized major numbers. No such mapping is required for minor numbers as their

interpretation is specific to the server.
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3.2.3 Device State

The devices have state and the operating system needs to know about these states
for most kind of device operations. Thus the device operations are stateful in con-
trast to the file operations. The operating system maintains the device specific
state for each device (d-state). The d-state comprises of data structures to store
configurable device parameters. It is encapsulated within the device driver of the
device. In remote operations also the d-state has to be maintained. The d-state
can be maintained either at the client side or at the server side or at both sides.
Maintaining it only at the client side and using its device driver makes the server
completely stateless. This option however requires duplication and incorporation of
device driver code into the NFS server to interact with the actual devices. A lot
of changes and additions are required in server code to provide remote access to
each new device, limiting the flexibility and generality of the server. A protocol for
ensuring consistent d-state in case of simultaneous access by multiple clients is also
required. Such a protocol becomes very complex due to the stateless nature of NFS.

The choice of maintaining d-state at the server side facilitates the use of existing
device drivers without any changes and provides a cleaner interface between the
device and the server code. A crash recovery protocol would be required as the
server crash would result in loss of d-state maintained at the server.

In our approach, the d-state is maintained at the client side as well as at the
server side and the existing device driver at the server side is used. The d-state
maintained at the client side is embedded in every NFS request on devices along
with the other arguments. Thus, each request becomes self contained and the process
of crash recovery is simplified. The notion of d-state kept at the server is different
from the NFS notion of state and does not conflict with the stateless nature of
the NFS server. In normal operation, NFS server does not require any information
from the previously served requests in order to serve the current request. Moreover,
the d-state maintained at the client side comprises of only the state which can be
modified by the clients explicitly by ioctl system call or implicitly by other system

calls. This state information depends on the type of remote device being accessed.
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3.2.4 Consistency in the Device State

Maintaining the device state at two different locations has an inherent problem of
inconsistency in the two states. The d-state kept at a client provides the state of the
actual device to the client. In case of simultaneous access to the same device from two
different clients, existence of two d-states can be a potential cause of inconsistency.
This would mean different state of the same device at different clients. We solve
this problem wherein the most recent image of the d-state from the server is sent to
the clients along with each response. The clients use this state received along with
the response to make their d-state consistent with that at the server. Although this
scheme may not guarantee state consistency at all instants, it eventually makes the

d-state across all the clients consistent with that of the server.

3.2.5 loctl

The idoctl system call is the generic entry point for modifying the user controlled
d-state and to configure the devices. This is a highly versatile call through which
one can support arbitrary operations on the devices. The arguments to this system
call vary in number and type, depending upon the device and the type of request.
For a device like terminal, a Linux implementation supports around 60 different ioctl
commands. This generality makes ioctl very difficult to support in remote environ-
ment as it would require different arguments to be sent for each command. In order
to handle the large number and complexity of different ioctl commands we classify

them into following three categories:

1. Toctl commands to retrieve some state information of the device.
2. Toctl commands that modify the state of the device.

3. Ioctl commands that require some function to be invoked in the device driver

of the actual device.

Ioctl commands which require only the retrieval of state information and passing

it to the applications are handled at the client side itself. Such information is
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provided from the d-state present at the client side. Thus keeping the d-state at the
client side in addition to the server side reduces the network traffic. A new procedure
ioctldevice is added to the NFS protocol for the ioctl commands that modify the
state of the device. Sending of individual ioctl commands and arguments to the
server however increases the complexity of the NFS and XDR code. We used a
different approach in our design. The execution of ioctl command modifies the d-
state at the client side and then the entire d-state is sent to the server. At the server
this received state is used to update and modify the actual device state. This allows
the design of ioctl procedure to be uniform and akin to the other two procedures for
reading and writing on device. For the ioctl commands which require some function
to be invoked at the server the ioctldevice procedure has the provision for sending
the commands along with their arguments, and receiving the response back from
the server. For example, in terminal devices, the ioctl command TIOCSTI is used
to put a character in the read buffer of the terminal driver. This ioctl command
requires sending of the character to the server and then storing it in the read buffer
maintained by the terminal driver. Since such ioctl commands are very small in

number, it would not make the XDR encoding-decoding function unmanageable.

3.2.6 Blocking Input-Output

The service time associated with the device operation is potentially indefinite (for
example, in the case of terminals or other user input devices) in comparison to the
one associated with the file operations which is typically more predictable. This
blocking nature makes input-output on devices difficult to implement in comparison
to that on files. There could be two options for implementing the blocking input-
output for remote access, either block at client side or block at the server. When a
request blocks at the server, it holds up system resources such as memory. In extreme
cases some request may be denied service due to non availability of resources. In
case the server crashes before the completion of the blocking input-output, loss of all
blocked requests requires a complex crash recovery protocol. NFS uses the implicit
acknowledgement model for RPC requests, where response to a request indicates

that the request was correctly received at the server. Thus in absence of response
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from the server, it is impossible for the clients to distinguish between a lost request
and a blocked request at the server. When there is no response from the server
within a time period, the client has to retransmit the request assuming it was lost.
So a blocked request will cause unnecessary retransmission of requests, increasing
network traffic and server load.

The option of blocking at clients, requires the server to store information about
the client and the operation being performed. Later when the requested operation
can proceed without blocking, the server can notify the client to retry its request.
This callback scheme that is used in many other systems, is unsuitable for extended
NFS because of the stateless property of the NFS protocol.

In our approach we implement all operations as non-blocking at the server, while
blocking is implemented at client side. In this scheme, if a device operation cannot
completed immediately, a special status value is returned by the device input-output
handler at the server. The server returns this special status to the client who retries

the operation with increasing time intervals until it is completed successfully.

3.2.7 Data Buffering

The device drivers buffers the input data, before it is read by a process and buffers
the output data before it is written onto the physical device. The reason of data
buffering in most of the device driver is to increase performance, as input-output
operations on physical device (e.g. disks) are costly operations. In some device (e.g.
terminals) apart from performance reasons, the input data has to buffered as it is
generated asynchronously. There could be two options to buffer this data, either at
the server side or at the client side.

If the data is buffered at the server side then every input-output request on a
remote device at the client, will be carried out by involving network traffic and thus
will increase the processing time of the request. On the other hand if the data is
buffered at the client side then we need to ensure consistency of the data across all
the clients using the same device. In case of NFS since the server does not store
any information about the clients, consistency of the data buffered at the clients

cannot be guaranteed. Different schemes can only reduce the problem but can not
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eliminate it. In case of interactive devices, data cannot be buffered at the clients as
such devices generate data asynchronously. The server has to store this data until
any client sends a request to read it.

The decision of data buffering is specific to the device which is accessed, but in
the absence of a ideal buffer consistency scheme, we suggest the buffering to be done

at server. This is also the case for the interactive devices.

3.2.8 Response time vs Network load

The trials of a request for an operation from the clients incur heavy network and
server load. The time interval between the re trials determines the response time for
an operation. If this time is high than the user experiences a delay in the response
and hence transparency is lost. Keeping this interval low results in a heavier load on
the network. For a tradeoff between the two, the time interval and the algorithm for
re-trial needs to be fine tuned. We explain this algorithm for our implementation in
Chapter 5.

3.2.9 Asynchronous Notification

Our scheme (and for that matter any model adhering to the design principles of
NFS) cannot provide asynchronous notification from the device to a client process
as it would involve the initiation of communication from the server to the client. This
cannot be achieved without compromising the stateless nature of the server. Hence
using only this framework we cannot support devices which require asynchronous
notification to processes. An example of such a device is the controlling terminal,
which requires that the terminal generated signals be delivered to the foreground
process group. Although an external remote signaling mechanism can provide such

support, it is out of the scope of this work.
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3.3 New NFS Procedures

Our design necessitates sending of d-state along with input-output requests and
responses. The read and write procedures of the existing NFS cannot handle the
complexity of device specific input-output. Hence, we propose to add three new
procedures readdevice, writedevice and ioctl in NFS, for reading from, writing to
and changing the properties of the device. Apart from these additions no changes
have been made to any procedure of the existing NF'S protocol. We here describe
the three new procedures added in the NFS protocol, their arguments and their
results. The protocol enhancements have been made in version 2 of NFS and should

be consistent with NFSv3 as well.

3.3.1 Readdevice

Readdevice is the procedure to read data from a device at an enhanced NFS server.
The arguments to readdevice procedure consist of the file handle, offset, count and
d-state of the device which is accessed. The file handle represents the file through
which the device is accessed, offset provides the position on the device, from where
to start reading (in case of some devices it is unused) and d-state is the device state
maintained at the client. The response of the readdevice procedure contains the
data read from the device and the recent d-state of the device at the server, along

with the attributes of the device file after operation.

3.3.2 Writedevice

Writedevice is the procedure to write data onto a device at an enhanced NFS server.
The arguments to writedevice consist of the file handle, offset, count, data and d-
state of the device which is accessed. The file handle represents the file through
which the device is accessed, offset provides the position on the device, from where
to start writing (in case of some devices it is unused), and d-state is the device state
maintained at the client. The response of the writedevice includes the recent d-state

of the device at the server along with the file attributes.
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3.3.3 loctl

Ioctl is the procedure to change the state of the device at an enhanced NFS server.
The arguments to the ioctl procedure consist of the file handle, ioctl number, ioctl
arguments and d-state of the device which is accessed. The file handle represents the
file through which the device is accessed, ioct]l number identifies the ioctl that needs
to be executed at the server (this remains unused for most of the calls), arguments
needed for the ioctl command (applicable only when ioctl number is used) and the
d-state is the modified state of the device maintained at the client. The response
of the ioctl includes the result of the ioctl command that is executed at the server
(used only when the ioctl number in arguments was used), along with the attributes

of the device file after operation.

3.4 Limitations

In this section we discuss the applicability and various limitations of the design of
the extended NFS. Since the main emphasis is on preserving the design goals and
properties of NFS and keeping changes to the minimum, various hard issues had to

be resolved.

3.4.1 Disk-less Workstations

In case of disk-less workstations, NF'S is often used for mounting the root file system.
This file system also includes the /dev directory, the files of which are used to
access the local devices on the disk-less workstation. With the scheme proposed,
the device files in a directory mounted by the clients, are used to access the devices
of the server. This scheme therefore is of limited use for the disk-less workstations.
Several solutions can be used in such a case to enable disk-less workstation to access
their local devices. At the boot time, a RAM disk can be used in which the device
file can be created to access the local devices. Alternatively another file server can
be used to mount a directory containing the local device files to provide access to

local devices. Another possibility would be to extend the mount protocol to export
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and mount a device, rather than just a directory.

3.4.2 Exclusive Use of Devices

Simultaneous use of the same device by two or more processes may lead to problems.
For example, if a printer is used simultaneously by two process such that their write
requests are interleaved, printer’s output will also be interleaved and of no use. We
need a mechanism with which a process can exclusively use a device. This problem
of exclusive use of a device is out of the scope of this framework. This is because
to provide exclusive access to a device, the server needs to retain some state for the
device which would violate stateless nature of the server. The support for exclusive
use of devices can however be provided through a separate protocol like Network

Lock Manager, which provides file locking in NFS.

3.4.3 Asynchronous Notification

In NF'S, asynchronous notification of any sort from device to process is not possible
due to the stateless nature of the servers. This scheme therefore does not provide
any mechanism for asynchronous notification from device to process. For example
this scheme can not be used for delivering device generated signals to the process.
It would require some external mechanism for delivering device generated signals

remotely.

3.4.4 Crash Recovery

The state recovery of a device, after a server crash is done when the first request
comes from the client to the server after the crash. This leaves a race condition which
possibly could result in a device state after the crash different from the one before the
crash at the server. A possible scenario where this may happen is when two clients,
say A and B, simultaneously open the same device. Suppose the server crashes
just after client A changes the state of the device, so the client B’s d-state becomes
stale. If the first request after server-reboot comes from the client B, device state at

the server will be restored to stale d-state. The client A who made the changes to
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device state prior to the crash, will also change its d-state to this stale state after its
subsequent requests and responses. This will results in loss of the last modification
made by the client A. Although this differs from the traditional uni-processor UNIX

semantics a bit, it ensures consistency in the d-state of the device at all the clients.
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Chapter 4
Implementation Architecture

In this chapter, we describe our implementation of the proposed NFS extensions.
We have implemented both the client and the server parts of the design within the
Linux 2.2.9 kernel. We first give an overview of our implementation architecture.
We then describe the server side and the client side implementation respectively.

Finally we describe the device specific implementation aspects for terminal devices.

4.1 Overview

Our architecture cleanly separates the device independent code from the device de-
pendent code, at both the client and the server end. The overall implementation
architecture is shown in Figure 4.1. The client side implementation consists of the
remote device driver, NFS client extensions and the kernel poll thread. The NFS
client extensions comprise of the functions implementing the NFS protocol proce-
dures and XDR functions for encoding and decoding their arguments and results.
These XDR functions use the device specific XDR functions to encode and decode
the d-state of the device, associated with every request and response. The remote
device driver translates the input-output operation on the remote device to NFS
requests, which are sent to the server for execution. It also maintains the d-state of
the device at the client side for the purpose of crash recovery. The kernel polling

thread at the clients polls the remote devices on behalf of the requesting processes.
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Figure 4.1: Overall Architecture

This scheme for polling is essential for implementing the select system call and is
explained in detail in Section 4.2.1.

The server side implementation consists of NFS server extensions and the device
state restoration and retrieval module. The NFS server extensions comprise of the
implementation of NFS protocol procedures and their corresponding XDR function-
s. These XDR functions use the device specific XDR functions for encoding and
decoding the d-state of the device as done at the client side as well. The NFS server
implementation uses the VFS/Vnode interface to interact with the actual device. In
case of a server crash, the device state restoration and retrieval module at the server,
is responsible for restoring the state of the device to the one prior to the crash. It
also associates the latest d-state of the device with the results of every input-output
request.

Together, these five components constitute the complete framework of transpar-
ent remote device access. These modules are explained in detail in later sections. We
now provide a brief overview of the functioning of the remote device access system.

To access the devices of a server, the clients mount the directory containing
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device files of a server through the mount protocol associated with NFS. The server
does not expose local major numbers of the devices to the clients. The clients
therefore see the major numbers of the devices as modified by the major number
conversion module. At the client side all input-output operations on the remote
device are handled by remote device driver for that device. When a process at the
client opens a device file of a remote device, the NFS lookup request is sent to the
server to obtain the file handle of the device file. After obtaining the file handle, the
open function of the remote device driver at the client is invoked. The open function
is used to construct the d-state of the device at the client. Subsequent operations
on the remote device requested by the process are translated by its remote device
driver into one or more NFS requests to the server. Along with the file handle and
arguments, the d-state of the device is also embedded in such NFS requests. The
inclusion of the d-state makes each NFS request self contained and independent of
previous requests for the operation on the same device.

At the server the device requests are handled by the major number conversion
module. This module translates the major number in the request to the local device
major number. Further processing of the request depends upon the state (open or
closed) of the device for which the request is made. A closed device indicates that
either no request was made for the device earlier or the device was not accessed for
a long period (and therefore was automatically closed by the NFS server) or the
server was rebooted after a crash. In these situations, the Device state restoration
and retrieval module opens the device and restores its state to the one embedded
in the request. For an already opened device, the request does not require the
reopening of the device.

The device requests are then translated through the VEFS/Vnode interface into
the corresponding device driver functions. After processing the request, the results
and the latest d-state of the device are sent back to the client. On the client side,
the device driver either returns control to the user process or retransmits the request

after some time, depending upon the response.
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4.2 Client Side Implementation

The extensions made to the NFS protocol at the client side have two parts. The
device independent part and the device dependent part. The device independent
part consists of the NFS procedures, their XDR functions and the kernel poll thread.
The device dependent part comprises of the remote device driver and the XDR

functions for encoding and decoding the d-state of the device.

4.2.1 Device Independent Modules

We now describe in brief the device independent parts of the implementation of NFS

client extensions.

B8 NFS Procedures

There are three function corresponding to the newly added procedures of NFS pro-
tocol viz., readdevice, writedevice, and ioctl. The remote device driver (as explained
later) uses this interface to send requests for the remote device to the server and

receive responses from the server.

g8 XDR functions

There are two functions for each of the three newly added NFS procedures. One
function is used for encoding the arguments of NFS request to XDR representation
and second is used for decoding the response in XDR representation to native form.
These functions use the device specific XDR functions to encode and decode the

d-state of the device embedded in every request and response.

g Kernel Poll Thread

The poll system call allows a process to check whether a device or socket is ready for
input-output, without actually requesting an input-output operation. This allows
a process to read from a device only when data is present, otherwise continue its

regular processing. Polling is particularly helpful when a process is monitoring many
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devices for input. However polling is wasteful is terms of processing power, as the
process itself has to repeatedly check the device status. Its variant, the select system
call allows a process to check data availability on multiple devices or sockets without
repeatedly checking the device status. In case of select system call, the kernel notifies
the process whenever the device status changes.

Our implementation of poll and select calls uses a kernel thread named ker-
nel poll thread and a linked list called nfs poll issued. The poll system call for
a remote device, places the information required for polling a remote device as an
entry in the nfs_poll issued list. The kernel poll thread uses the information s-
tored in the nfs poll issued and sends a NFS poll-ioct] request (described later)
for polling the remote device. The poll mask received in the response is stored in
the nfs_poll issued, which is later returned to the requesting process.

The entries in the nfs_poll issued list contain the complete information required
for sending NF'S request to poll remote device. Some of the important fields of an

entry in nfs_poll issued list are described below.

nfs server: This structure contains the information (e.g. hostname) of the NFS

server hosting the remote device to be polled.

nfs fh: This structure is the file handle of the device file of the remote device to
be polled.

device: This integer stores the major and minor numbers of the device being polled.
The major in this list is the native major number of the clients operating
system for that remote device. It is converted to the NF'S wide major number

before sending the request to the server.

timeout: The time interval between two successive polling requests. The polling
thread retries a poll request only after the expiration of this counter. The
timeout value is increased each time the NFS poll request for the remote
device is unsuccessful. This field is used by the implementation of the select

system call.
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wait address: This field represents the wait_ queue on which the processes sleep,
while the kernel poll thread polls the remote device. This field is also used in

the implementation of the select system call.

completed: This flag indicates whether the poll request on the remote device has
completed successfully or not. A request is not successful because the device

has no data to be returned.

nos_proc: This field indicates the number of processes polling on the remote device

represented by this entry.

properties: This field points to the d-state of the polled remote device.

Poll System Call: As explained earlier the extended NFS does not include a
procedure for polling a remote device. Request to poll a remote device are sent as
NF'S ioctl request to the NFS server for execution. We refer such an NFS request as
poll-ioctl request. The poll system call is implemented using the kernel poll thread.
The kernel poll thread uses the NFS poll-ioctl request to poll the remote device as

explained above.

Select System Call: As mentioned earlier select is a blocking system call and
requires a notification from the kernel to the process. The kernel poll thread is
introduced to implement the select system call. In implementation of other blocking
operations (e.g. read), the device driver retries the NFS procedure in the context of
the requesting process. The same mode of operation for select makes it equivalent
to poll. Hence in our approach the select system call is implemented using kernel
poll thread.

When a process makes a select system call with a remote device as one of its
arguments, it is handled by the poll function of remote device driver. This func-
tion places a structure containing file handle, server address, poll arguments, time
when to issue next poll and other information (as described earlier) into the nf-

s_poll issued linked list and sleeps on the wait-queue associated with this entry.
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Upon the timeout, the kernel poll thread re-sends an NFS poll-ioctl request to the
server, using the information from the entry. On success the completed flag is up-
dated and the waiting process is woken up. In case of unsuccessful poll, the time
interval for retransmission is set by the retransmission algorithm specific to that
device, and the entry is placed in the linked list again. When the sleeping process
wakes up, it checks the entry in the linked list. If entry is marked completed, then
it removes the entry from the linked list and returns with the poll mask stored. If
entry indicates unsuccessful poll and the application specified timeout for select has
occurred, the device driver retries the NFS poll-ioctl request and returns with the
poll mask returned by the server in response.

The retransmission algorithm used by the kernel poll thread for deciding the
timeout for retransmissions depends on the kind of device being polled. The kernel
poll thread uses retransmission timeout switch and the major number of a device
for deciding the timeout period. The retransmission timeout switch is an array of
pointers indexed by the major number of devices. Its each entry refers to a table

describing successive retransmission timeout values for each kind of device.

4.2.2 Device Specific Modules

The device dependent modules of the NF'S client extensions consists of device specific

XDR functions and the remote device driver, which are explained in detail below.

B Device Specific XDR functions

The device specific XDR encoding-decoding routines are used for two purposes.
First, they are used for conversion of device specific arguments (for example those
of ioctl) and results of NFS procedures between the native and the XDR represen-
tations. Secondly, they are used to encode and decode the d-state of the device

associated with each NFS request and response.
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B Remote Device Driver

There is one remote device driver at client corresponding to each type of remote
device. The remote device driver hides the physical location of the device and
makes the access to remote device transparent. The main purpose of the remote
device driver is to translate the input-output operations on remote device to one or
more NFS requests to the server. Upon receiving the response the remote device
driver decides to retry the NFS request after some time interval or return to the
process, depending upon the input-output semantics of the device and nature of
the request. It also implements blocking semantics of device input-output for the
clients. The blocking semantics is implemented by retransmitting the request until
it is executed successfully at the server.

The remote device driver also encapsulates the d-state of the device that is
required for crash recovery of the server and is sent with every NFS request on the
device. It maintains this d-state using the state received with each response from

the server.

4.3 Server Side Implementation

In this section we describe the implementation of the server side NF'S extensions.
At the server, a new service model is introduced for the newly added procedures of
extended NFS protocol. The new service model is a modified form of the service

model of original NF'S protocol.

4.3.1 Service Model

The NFS server is primarily designed to handle the requests for the remote file oper-
ations. A possible stateless algorithm for handling remote file requests is described

as follows.

service request(request) {
open file

execute the requested operation
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send response to the client

close file

This service model is however not useful for implementing the device operations over
NF'S. This is primarily because the closure of the device file with each request on the
server will destroy the device state at the server. We require the device state at the
server even when no request is being served. For example, the terminal driver when
put in non echo mode should not echo any keystrokes even if the application has not
made any request to read the data. To implement such semantics we changed the
service model for NFS requests on devices. A device is opened by the NFS server
when the first NFS request for its access is received. At this time, the state of the
device is set using the d-state included in the request. The device is not closed
after an operation so that device state persists across two device operations. The

modified service model is described as follows.

service request(request) {
if (the requested device is not open) {
open the device
set the state using the d-state in request
}
execute the requested device operation

send response back to the client

This scheme however has a small drawback in which the device once opened will
never be closed. Note however, that this does not introduce any inconsistency in the
device behavior. For resource optimizations we implemented a scheme where in the
device is closed by the server after absence of requests on it for a significantly large
amount of time. Thus the memory used by various data structures of the device

driver will be freed when a client process ceases to access the device.
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4.3.2 Device Independent Modules

The device independent part of the server implementation of the extended NFS pro-
tocol comprises mainly of the server procedures, their XDR functions and routines

that provide interface to the device driver functions.

g Device Interface

As discussed in the design, the NFS requests at the server are translated through
VFS/Vnode interface into corresponding device driver functions. In order to keep
the interface between NFS server and native device driver clean and minimize the
required changes, we have provided four functions — opendevice, readdevice, writ-
edevice and ioctldevice. These functions provide the interface to the existing device
driver functions. They use a file table entry to store the pointer to device driver
functions and its private data structures. The file table entry once allocated, is used
by these procedures to serve subsequent requests on the device. We now describe

these functions briefly.

Opendevice: As discussed earlier, the service model of the new procedures re-
quires a device to remain open once a request for that device is received at the
server. The processing of the request on a device depends upon whether the device
is found in open or close state. This function is used for the device state dependent
processing of a request. It is responsible for obtaining the file table entry corre-
sponding to the device file on which the operation is to be issued. To provide the
needed functionality it maintains a linked list called open_ devices, which stores in-
formation about devices that are currently open. A typical entry in open_ devices
contains the major and minor numbers and the file table entry of the file corre-
sponding to the device. Before any NFS request on device is served, this function
searches the open_ devices linked list for an entry corresponding to that device. If
an entry for that device is found, the corresponding file table entry is returned. If
the entry is not found in the open_ devices, a new file table entry is allocated. The
entry is initialized and stored in the open_ devices list. In this case the function also

invokes the device specific functions to restore the device state. The d-state in the
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request is used for restoring the device state. Finally a pointer to the file table entry

is returned.

Readdevice: This function is the interface to Vnode function for reading from a
device. It uses the implementation of the Vnode function provided by the existing
device drivers. Using the opendevice function it obtains the file table entry corre-
sponding to the file through which the device is accessed and invokes the Vnode
read operation of the native device driver. The read operation of the device driver
is issued in a non-blocking mode. If the operation completes without blocking, its
result is encoded and sent back to the requesting client. Otherwise if the operation is
required to block in the device driver, a special status is sent back to the requesting
client. This ensures a bounded response time to the clients, even for blocking read
operation. The result of the read operation and the d-state of device are returned

to the NFS server procedure which are then sent back to the client.

Writedevice: This function, similar to the readdevice function, is the interface to
Vnode function for writing to a device. It uses the implementation of the Vnode
function provided by the existing device drivers. Using the opendevice function, it
obtains the file table entry corresponding to the device file and invokes the Vnode
write operation of the device. Similar to the read operation the write operation of
the device driver is also issued in a non-blocking mode, thus ensuring a bounded
response time to the clients. The result of the write operation and the latest d-state
of device are returned to the NFS server procedure which are then sent back to the

client.

Ioctldevice: This function modifies the d-state of the device at the server. Since
the d-state and the ioctl commands sent with the request are specific to a device, the
device specific functions are used to modify the d-state of the device. This function
therefore uses the device state restoration switch for modifying the d-state of the
device. The implementation and functioning of device state restoration switch is
explained later. After modifying the device state, the d-state of the device and the

results of ioctl commands are returned back to the NFS server procedure to be sent
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back to the client.

B8 NFS Procedures

There are three function corresponding to the newly added NFS procedures readde-
vice, writedevice, and ioctl. At the server, after getting the decoded arguments, these
procedures invoke the corresponding device interface routines explained above. The

results are converted into XDR representation before sending them to the clients.

8 XDR functions

For each of the three new procedures, there are two XDR functions — one for decoding
the arguments of the request and second for encoding the results. The request and
the response include the d-state and some device specific arguments (in case of ioctl),
which are specific to a device. Hence, these functions use the device specific XDR
functions for encoding and decoding the d-state of the device and arguments of ioctl

requests.

4.3.3 Device Specific Modules

The device specific modules at the server side include the device state restoration

and retrieval module, and the XDR encoder-decoder functions for the d-state.

8 XDR Encoder-Decoder Functions for d-state

These functions convert the d-state sent along with the request from XDR repre-
sentation to native format and from native to XDR representation when d-state is
sent along with the response. Some ioctl commands and their arguments can also be
sent to the server to be executed. This function first decodes such ioctl commands

and then convert their arguments from XDR representation to native one.
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B Device State Restoration and Retrieval Module

This module provides a clean and well defined interface between the device indepen-
dent and device dependent processing of an NFS request on a device at the server.
It is responsible for restoring the d-state of the device to the one embedded in the
request if the device is not found in open state. The same module is responsible for
handling the device specific ioctl processing. The module also provides the latest
d-state of the device which is sent along with the response to the client. There are
three major data structures maintained by this module. These are used by the NFS
server for handling the d-state of the device. The data structures and their use is

described as follows.

Open Device List: This list called open_ devices, as discussed earlier, is used to

identify the open instances of the devices at the server.

State Restoring Switch: The device state restoration part of this module main-
tains two state restoring switches similar to the device switches, one for character
devices and second for block devices. The state restoring switch is an array of func-
tion pointers which is indexed by major number. Each entry points to a function
that is used for modifying the d-state specific to the device with that major number.
For example, the function for modifying the d-state of a device whose major number
is 7 can be found at an index ¢ of the array. This function uses the d-state embedded
in the request and different ioctl commands provided by the native device driver to
restore the d-state of the device.

As explained earlier, the NFS ioctl request includes the d-state of the device
as its argument. This d-state is to be used to set the state of the device at the
server. In our implementation the state restoring module also handles the NF'S ioctl
request. However for some ioctl commands the client sends the arguments along with
the ioctl request, which are processed at the server. Thus the device specific state
restoring function needs to handle these cases as well. This function uses equivalent
ioctl commands provided by the native device driver at the server to perform the

ioctl requested by the client.
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State Retrieval Switch: The device state retrieval part of this module maintains
two state retrieval switches, one for character devices and one for block devices.
Similar to the state restoration switch, state retrieval switch is also an array of
function pointers indexed by the major number. These functions are meant for
retrieving the device specific d-state to be sent with the response. Each device has
different d-state and hence has different methods to retrieve this state of the actual
device. The suggested method of retrieving the d-state of a device, is using different
ioctl commands (specific to the device) through the VFS/Vnode interface. The state
retrieval function hides the device specific processing needed to retrieve the d-state

of the device at the server.

4.4 Terminal Specific Implementation

In the extended NFS protocol, the device specific part of a device that can be
accessed remotely is to be provided. We have implemented the support for the
remote access to terminals using the extended NFS protocol. In this section we

describe this implementation.

4.4.1 D-state

The most important thing in providing remote access to a device is to identify the
d-state of that device. For terminals, the d-state comprises of three fields — termios
structure, winsize structure and the line discipline. The contents of these structures

and their use described is as follows.

Termios is the structure that contains all the characteristics of a terminal device
that can be examined and changed. This is the most important part of the
d-state of the terminals. It contains four sets of flags and an array of control

characters. The declaration of this structure on Linux is shown below.

struct termios {
tcflag t c_iflag;
tcflag_t c_oflag;
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tcflag t c_cflag;

tcflag t c_1lflag;

cc_t c_cc[NCCST;
s

The c¢_iflag stores the input flags that control the input of characters by the
terminal device driver (strip the eight bit on input, enable input parity check-
ing, etc.). The ¢_oflag stores the output flags that control the driver output
(expand tabs to spaces, map newline to CR/LF, perform output processing,
etc.). The ¢_ cflag stores the control flags that control the RS-232 serial lines
(odd or even parity, send one or two stop bits, etc.). The ¢_Iflag are the local
flags which affect the interface between the terminal driver and the user (echo

on or off, enable terminal generated signals, visually erase characters, etc.).

Winsize structure keep tracks of the current terminal window size. This helps in
notifying the foreground process group when the size of the terminal window

changes. The fields of this structure are given below.

struct winsize {
unsigned short  ws_row;
unsigned short  ws_col;
unsigned short  ws_xpixel;
unsigned short  ws_ypixel;

};

The ws_row and ws_ col fields indicate the number of rows and the number
of columns in character unit for the terminal window. The horizontal size and
vertical size in pixel units are indicated by the fields ws_zpizel and ws_ypizel

respectively. In Linux, ws_xpixel and ws_ ypixel fields are not used currently.

line discipline is a number that identifies the line discipline used by the device
driver at the server. The line discipline is the part of terminal driver respon-

sible for interpreting the input and output. Depending upon the mode of the
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terminal, the raw data sequence typed at the keyboard is converted to the de-
sired form before it is given to a process. Similarly output sequences written
by a process is converted to the format as desired by the user for the output

on the terminal.

4.4.2 Server part

As mentioned earlier, the device specific part of the server implementation of ex-
tended protocol consists of the code that handles the d-state of the device sent along
with the NFS requests and their response. There are two modules in the protocol

implementation that handles the d-state of the terminal at the server.

g Device State Restoration and Retrieval Module

For the terminals the device state restoration function uses the ioctl function of the
native terminal driver to set the d-state of the terminals using the one included in
the request. Typical ioctl commands used are TCSETS, which sets the termios of
the terminal and TIOCSETD, which changes the line discipline used by the terminal
driver and TIOCSWINSZ, which sets the window size of the terminal.

As explained earlier, the device state restoration function also handles the device
specific ioctl processing. The modified d-state with the ioctl request is used to set
the state of the device as explained above. The ioctl commands for terminals that

require arguments to be send to the server to be executed there, are the following.

TIOCCONS: This command is used to redirect the console input-output to a

particular terminal.

TIOCSTI: This command is used to place a character into the read buffer of the

terminal. The character is treated as if it is actually read from the terminal.

TCXONC: This command is used to suspend or start the output and/or input to

a terminal.

TCFLSH: This ioctl command is used to flush the input and/or output buffers

associated with the terminal.
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TIOCOUTQ: This command is used to find out the length of the output queue

associated with the terminal.

TIOCINQ: This command is used to find out the length of the input queue asso-

ciated with the terminal.

POLL: This ioctl command is used to retrieve the poll mask of the device.

The server executes these ioctl commands using the ioctl function of the native
terminal device driver and sends the results back to the clients.

The state retrieval function for the terminal also uses the ioctl function of the
native terminal driver to get the latest d-state of the device after the operation.
Typical ioctl commands used to obtain this d-state are TCGETS, which retrieves
the termios structure of the terminal and TIOCGETD, which retrieves the number
of line discipline used by the device driver and TIOCGWINSZ, which get the winsize

structure of the terminal.

4.4.3 Client Part

There are two terminal specific modules at the clients - remote terminal driver and
XDR functions for encoding and decoding of the d-state of the terminals. XDR

functions have been described earlier.

B8 Remote Terminal Driver

The remote terminal driver implements the Vnode functions using the procedures
of extended NFS and maintains the d-state of the terminals. The implementation
structure of the remote terminal driver is kept identical to the Linux terminal driver

and is shown in Figure 4.2.

Data Structures: The major data structures associated with the remote terminal
driver are — tty _driver, tty ldisc, tty struct, termios, winsize. These data structures
store the various information needed for device driver functioning and interfacing

with the Linux kernel.
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Figure 4.2: Terminal Driver Structure

tty driver: The remote terminal driver stores the tty _struct and termios struc-
tures corresponding to each remote terminal it is handling. This structure also
defines the interface between the lower-layer terminal driver and the upper-
layer terminal interface routines. The remote terminal driver need not imple-
ment any function of this interface, as the lower-layer driver functions are used

to interact with the physical device interface.

tty ldisc: This structure defines the interface between terminal line discipline and
the upper-layer terminal interface routines. Since the actual line discipline
processing is done at the server, the remote terminal driver need not implement
most of the functions of this interface. However, it implements the ioctl and
poll function of the interface, which are used for sending corresponding requests

to the server, for execution.

tty struct: This structure is used to store all of the state associated with a tty,
while the tty is open. The main information includes, pointers to low-level ter-
minal driver interface, pointer to line discipline interface, pointer to termios
and winsize structures. It also stores the count of number of processes that
have opened this terminal, and major-minor number of the terminal device for
which the structure is being used. This structure is allocated when a closed
terminal is opened and deallocated when the last process which has the ter-

minal open, closes it.

ol



termios: At the client this structure is stored and maintained for crash recovery,
it does not affect the actual processing. The termios structure of the device
driver at the server is responsible for the actual processing of the input-output.

The termios state is maintained even when the terminal is closed.

winsize: The winsize structure is maintained to keep track of the current terminal
window size. This helps in notifying the foreground process group when the

size of the terminal window changes.

Functions: Some of the Vnode operations are not applicable for terminals and
are not implemented. For example, [seek function, returns error because a process

cannot seek on a terminal.

Open: Opening of a remote terminal by an application at the client results in allo-
cation and initialization of data structures of the remote terminal driver. The
remote terminal driver does not send any NF'S request to the server on opening
a terminal. If a remote terminal is opened for the first time (after booting), the
remote terminal driver allocates and initializes termios, tty struct and winsize
structures. If a closed remote terminal is opened, then only tty struct and
winsize are allocated and initialized. If an already opened remote terminal is
reopened, the remote terminal driver returns a pointer to the tty struct and
winsize structures already allocated after incrementing their use count. This is
used to keep a count of the number of open instances. The data structures are
freed when the last process accessing the terminal closes it. For future refer-
ence, a pointer to the tty struct is stored in the file table entry corresponding
to the device file.

Read: The read procedure for terminals is complex as it has to handle various
modes of terminal input. The procedure first validates the file handle and file
attributes of the remote device file. It then allocates a kernel buffer for read-
ing characters from remote terminal. This function uses different algorithms
for reading from remote terminal depending upon the mode of the terminal

(canonical or non-canonical). The data is read from the actual device at the
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server using the readdevice NF'S procedure. Along with the readdevice request,
it also sends the d-state of that terminal. On receiving the response of the
request, the d-state embedded in the response is used to update the d-state of

the terminal at the client.

Here we describe the various modes of the terminal input and their UNIX
semantics. Then we explain how these modes and their semantics are imple-

mented by the remote terminal driver.

Canonical In this mode terminal input is processed as lines. The terminal
driver returns at most one line per read request, where a line is the
sequence of characters up to a end-of-line character. If the number of
characters entered by the user are more than requested in read, then only
the requested number of characters are given to the read request. No
characters are lost after the partial read and the next read starts where
the previous read stopped. This mode recognizes and processes special
input characters such as backspace, new-line and key combination for
generating signals. This mode blocks the reading process till the driver

receives the end-of-line character.

The remote terminal driver blocks the reading process and sends a NFS
readdevice request to the server. The request either returns the requested
number of characters (possibly less) or a special status to retry the oper-
ation. If the request returns a special status to the client, this functions
waits (sleeps) and retry the operations with exponentially increasing time
interval until the requested number of characters (possibly less) are read
from the server. If the number of characters to be read is greater than
the maximum size of a NF'S request, then a single read request is broken
into two or more NFS readdevice requests. In such a case, the client first
sends only one request, of the multiple NF'S readdevice requests. If the
number of bytes in the response of the first NFS request equals maximum
size of a response then only the second NFS request is sent. This ensures
the semantics of read, even if the read request spans across multiple NFS

requests.
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Non-canonical In non-canonical mode input data is not assembled into lines.
This mode also turns off the processing of special characters and signal
generating key combinations. The read request returns depending upon
the values of two variables MIN and TIME in ¢_ cc array in the termios
structure. MIN specifies the minimum number of bytes before a read
returns and TIME specifies the number of tenths-of-a-second to wait for
data to arrive. There are four possible sub-modes depending upon the

values of these two variables.

Case A: MIN > 0, TIME > 0

In this case TIME specifies value of a timer that is started only when the
first byte is received. If MIN bytes are received before the timer expires,
read returns MIN bytes. If the timer expires before MIN bytes are re-
ceived, read returns the bytes received. This blocks the reading process
until the first byte is received, thus at least one byte is returned to the

reading process.

The remote terminal driver keep sending NFS readdevice requests until
one or more bytes are received from the server. If the number of bytes
read are equal to MIN then the read returns. Other wise it starts a timer
which expires after TIME tenths-of-a-second. After the timer expires the
client sent another readdevice request and tries to read at the server, if
there are some more bytes to be read. It then returns with the number

of bytes read up to now.

Case B: MIN > 0, TIME = 0
The read does not return until MIN bytes are received, thus indefinitely
blocking the reading process.
The remote terminal driver keeps sending NF'S readdevice requests to the
server, with exponentially increasing time interval between successive re-

tries, until MIN number of bytes are read from the server.
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Write:

Case C: MIN = 0, TIME > 0

In this case, TIME specifies value of a timer that is started when read is
called. The read returns when a single byte is received or when the timer
expires.

In this case the remote terminal driver issues a NFS readdevice request
to the server to read a byte. If the response contains some bytes read,
read returns. Otherwise, if the server returns a status to try again, the
remote terminal driver starts a timer for TIME tenths-of-a-second. Af-
ter expiry of the timer the driver issues another NFS readdevice request

to the server to read a single byte and returns with the response obtained.

Case D: MIN = 0, TIME = 0

In this sub-mode, if some data is available then read returns up to the
number of bytes requested. Otherwise if no data is available read returns
immediately.

The remote terminal driver in this sub-mode issues the NFS readdevice
request once. If some bytes are read from the server, read returns with

the read bytes else it returns zero.

The implementation of write function is simpler than that of the read.

It uses the NFS writedevice procedure to write data on to remote terminal.

If the number of bytes to write is more than the maximum size of an NFS

request, then two or more NFS writedevice requests are sent to the server. The

algorithm for sending the multiple NFS writedevice requests corresponding to

a single write request from application is same as the one for read. After the

response of the first NEF'S request is received, the second NFS request is sent.

This scheme is required for correct ordering of writes at the server. Before

sending the writedevice request, this function validates the file handle and

file attributes of the remote terminal file. After receiving the response of the

request from the server, the d-state embedded in the response is used to update

the d-state of the terminal at the client.
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Toctl: The terminals provide a large number of ioctl commands, which are han-
dled at two levels — upper layer ioctl routine and line discipline ioctl routine.
The ioctl commands that retrieve some state information are served at the
client itself, using the d-state of the terminals maintained at the clients. The
ioctl commands that modify the state of the terminals are made to modify
the d-state maintained at the clients. The modified d-state of the terminal
is then sent to the server in NF'S idoctl request. The arguments of the ioctl
commands, which are to be executed at the server, are sent to the server using
the NF'S ioctl request. Some ioctl commands are not applicable for the remote
terminals accessed through this scheme. Examples of such ioctl commands are
listed below.

TIOCEXCL: It marks the terminal for exclusive use. No other process (ex-
cept with superuser privileges) can open the terminal after it is marked
for exclusive use. This ioctl command is not supported by remote ter-
minal driver because NF'S cannot guarantee exclusive use of the terminal

across different clients.

TIOCNXCL: It clears the terminal, marked for exclusive use. Since a remote
terminal cannot be marked for exclusive use, this ioctl command is also

not supported.

TIOCSCTTY: If the terminal is not the controlling terminal of a session,
then this ioctl command sets it as the controlling terminal of the calling
process. As explained earlier, this scheme does not allow for remote
controlling terminals. Therefore this ioctl command is not supported in

the remote terminal driver.

TIOCNOTTY: If the terminal is a controlling terminal of a session, then
the session leader can use this ioctl command to disassociate itself from
this terminal. This ioctl command is also not supported by the driver for

the above mentioned reason.

TIOCSPGRP: This ioctl command is used to set the foreground process

group-id of a terminal. The foreground process group-id of a terminal
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identifies the process group to which the terminal generated signals are
to be delivered. It is not supported as remote signal delivery is not

supported by this scheme.

TIOCGPGRP: This ioctl command is used to obtain the foreground process
group-id of a terminal. Since a remote terminal is not associated with

foreground process group, this ioctl command is not supported.

TIOCGSID: This ioctl command is used to obtain the session-id of the ses-
sion with which the terminal is associated. This ioctl command is not

supported due to above mentioned reason.

Close: The close function is used for clean up activity at the client. Similar to
the open function, the remote device driver does not send any NFS request
to the server on closing a remote device. If the closing process is the last
process which has opened the terminal, this function releases the tty struct
and winsize structures, and removes pointers from the file table entry. If there
are other processes which have the same terminal open, it only decrements
the count maintained in the tty struct structure. The termios structure for

terminal is not released.

The terminal specific modules and the device independent parts of the imple-
mentation of NFS extensions, together provides the remote terminal accessing mech-
anism. Similarly by providing the device specific implementation for other devices,
exemplified by the terminal specific implementation, one could easily provide remote

access to them using the extended NFS protocol.
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Chapter 5
Performance Evaluation

In this chapter we discuss the experiments conducted to test the functioning of the
extended NFS system. Another objective of these experiments was to measure the
overheads associated in accessing remote devices. The measure of the overheads
provides a means to configure the retransmission algorithm used by the remote

device driver.

5.1 Experimental Setup

In these experiments the client and the server machines used were both Intel Pentium—
IT PCs with 128 MB RAM, running Linux kernel 2.2.9. The two machines were
connected through a 10 Mbps Ethernet LAN. The experiments were conducted in
normal working conditions, i.e., average load on server and average traffic in LAN.
A directory containing the device file /dev/tty8 corresponding to a virtual console
of the server was mounted at the client. This allows the process at the client to

access the console of the server and interact with the user sitting on that console.

5.2 Functional Evaluation

The functionality of the design and implementation of extended NFS system was

evaluated by executing various existing applications, which make extensive use of
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terminals, over remote terminals accessed through this system. The system is able
to support the complete functionality of the terminals while using all the options
of these applications. The transparency provided by our framework is evident with
the successful execution of these applications over the remote terminals, without
any modifications.

The typical scenario of the experiments comprises of an application process ex-
ecuting at the NFS client, using the remote terminal of NF'S server to interact with
the user at the server. We executed applications ranging from simpler commands
such as Is, cat etc. to complex applications such as vi, shell etc. on remote terminals.

The system recovered transparently even in the cases of server reboot. If the NFS
server crashes while an application at the client is using a terminal of the server, the
application is not able to use the terminal till the server reboots. While the server
is rebooting the client continues to send its requests. After the server reboots, the
state of the terminal is restored at the server (when the next request from the client

is received) and the application at the client is able to use the terminal again.

5.3 Performance Evaluation

The appropriate performance measures for our system depend upon the kind of
device being accessed. For terminals the primary measure of interest is the response
time. The response time would determine to what extent the user experiences an
"interactive" experience. The user of a terminal would expect a character to appear
on the terminal very soon after he/she presses a key. If the terminal is in echo
mode, the typed characters would be echoed by the device driver on the server itself
and would therefore appear on the screen almost immediately. Consider, however a
situation where the terminal is used in a non-echo mode by the application. In such
a scenario the user would see the response only after the application receives the
character typed and displays some output. A typical example of such a situation
would be the use on an editor such as vi. The vi editor puts the terminal in raw mode
and assumes the responsibility of echoing the typed characters (in the INPUT mode).

In such a scenario, the response time would critically depend on the algorithm used
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for retransmission of read requests. Since there is no easy way to measure the
response time, in our experiments we used the user’s subjective evaluation of this
response time to evaluate various retransmission algorithms.

Another performance measure, which is important for all kind of devices, is
the network load. In case of terminals one can easily see the tradeoff between the
response time and the network load. Reducing response time would require frequent
retransmissions which would then lead to high network traffic. Thus one needs to
tune the retransmission algorithm in a way such that while the users experiences
an acceptable response time, the network traffic generated due to retransmission is
also reasonable. The algorithm should also prevent excessive retransmission during
long periods of user non-activity while always ensuring a reasonable bound on the
response time.

We experimented with two retransmission algorithms used for terminals and
compare them in terms of the network traffic generated and the quality of user
experience. The two retransmission algorithms differed only in the timeouts used
for retransmissions. Instead of a fixed timeout period (which would mean either a
large response time or high rate of retransmissions even during the period of non-
activity), we use a progressively increasing timeout value. The maximum timeout
value is fixed to ensure a bound on the response time after a long period of non-
activity. Figures 5.1 and 5.2 show the successive timeout values (in milliseconds) for

the two algorithms used.

50, 50, 100, 100, 150, 150, 200, 200, 250, 250, 300, 300, 500, 500, 1000, 1000,

Figure 5.1: Timeout values used in Algorithm 1

50, 100, 150, 200, 250, 300, 500, 1000, 1000, 1000,.........

Figure 5.2: Timeout values used in Algorithm 2

We conducted the experiments with four users with different typing speeds. The

users were asked to use vi to type for two minutes, without erasing any characters.
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We measured the number of NFS requests transmitted (read, write and poll) during

each typing session and also asked the users about the quality of their experience.

5.4 Results

User | Total | Read per | Write per | Poll per
No | Chars char char char
1 523 0.933 1.380 12.436
2 438 0.929 1.406 10.769
3 382 0.893 1.416 9.793
4 375 0.885 1.525 9.727

Table 5.1: Overhead with Algorithm 1

User | Total | Read per | Write per | Poll per
No | Chars char char char
1 519 0.844 1.272 8.283
2 447 0.850 1.351 8.887
3 414 0.837 1.391 9.174
4 382 0.829 1.418 9.756

Table 5.2: Overhead with Algorithm 2

Table 5.1 shows the the total number of characters typed by the four users in
two minutes, the number of read, write, and poll requests sent to the server per
character typed, using Algorithm 1. Table 5.2 shows the same data for the second
experiment in which Algorithm 2 was used.

For algorithm 1, the first three users reported an acceptable degree of interactiv-
ity while the slowest user (user 4) reported an unacceptable quality of interaction. It
can also be seen from Table 5.1 that the retransmission of the requests per character
with this algorithm was substantially higher for the faster users.

For algorithm 2, the first three users experienced poorer interactivity as com-

pared with algorithm 1, but was still within acceptable limits while the slow user
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(user 4) reported unacceptable interactivity. Clearly, the number of retransmissions
for all four users are nearly equivalent and quite less in comparison to the algorithm
1.

In both the algorithms, by the time the slow user types a character the re-
transmission timeout almost reaches the maximum possible value. Hence he/she
experiences a noticeable delay in the response. We have adopted the algorithm 2
in our final implementation owing to the reduced network traffic. It was found that
choosing larger timeout values, further decreased the number of retransmissions, but

resulted in an unacceptable quality of experience, even for fast and average users.

62



Chapter 6
Conclusions

In this thesis we have presented a mechanism for transparently accessing the remote
devices. We have extended NFS to access the devices of an NFS server from the
clients. The extensions preserve the characteristic properties of the NFS, especially
the statelessness of the protocol and transparent crash recovery.

The NFS protocol is extended to include three new procedures, viz., readdevice,
writedevice and ioctl. No changes have been made to any of the existing NFS
procedures. These procedures are used by the clients to access devices of the NFS
server. We have also suggested a new service model for these procedures at the
server. The requests and responses of these procedures also include the d-state of
the device being accessed. In case of a server crash, this d-state is used by the server
to set the d-state of the actual device.

To access the remote devices through NFS transparently, the clients use a remote
device driver. The remote device driver of a device simulates the UNIX semantics of
input-output for that device. It implements the input-output operations requested
by a client application on the remote device using the new NFS procedures. It also
maintains the d-state of the device, which is sent with every request for making each
request self contained and independent of previous requests.

We have implemented the proposed protocol for terminals. Our implementation
is primarily based on the Linux operating system. Experiments show that the re-

sponse time for remote terminal accessed using this implementation is acceptable
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and the network traffic generated is also reasonable.

We have also integrated our extended NFS implementation with a process mi-
gration system [5]. This allows interactive process to migrate to other hosts. Since
this process migration system supports transparent delivery of signals to remote
processes, asynchronous notification from a terminal to a remote process also occurs

transparently in this integrated system.

6.1 Future Work

We have tried to keep the extensions to the NFS protocol, device and operating
system independent. But in order to validate the correctness and performance of
the protocol, support for remote access to different types of devices need to be im-
plemented using it. Additionally some of the implementation should be on different
UNIX implementations. After experience with these implementations, if needed the
protocol can be reevaluated and suitably modified.

To use this scheme for exclusive access to devices, an external protocol needs
to be developed. Such a protocol will allow transparent sharing of even device like

printers.
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Appendix A

New NFS Procedures

A.1 Readdevice

Readdevice is a procedure to read data from a device at enhanced NFS server.

struct readdeviceargs {
fhandle file;
unsigned  count;
unsigned  offset;

properties prop;

union readdeviceres switch (stat status) {
case NFS_OK:
fattr attributes;
properties prop;
nfs_data data;
default:

void;
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file

count

Offset

properties

fattr
count

properties

data

On entry the arguments in readdeviceargs are:

The file handle of the file corresponding to the device, from which data
is to be read. This is used by the server to identify the file through
which the device is accessed.

The number of bytes of data that are to be read. If the count is 0 then
read will succeed and return 0 bytes. The value of count must be less
than or equal to maximum read count provided by the server, in file
system information.

Usually in case of devices, specially the character devices, the offset has
no meaning. But in case of some block devices it may be required by
the device driver to specify the offset from where to read the data from.
This is the d-state of the device kept at the client. It is sent with every
request to make it complete by itself. This depends upon the device
being read from and include only the state which is modifiable by a
process.

On success it returns readdeviceres which includes:

These are the file attributes after read operation is completed.

This is the total number of bytes actually read from the device. This
can be less then the requested amount of data. As in case of many
devices the exact count of data to be read is not known a priori.

This is the most recent d-state of the device at the server. It may be
different from what was sent with the request, if some other client had
changed properties at the server. This must be used by clients to make
their d-state of the device consistent with the whole system.

The data read from the device.
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A.2 Writedevice

Writedevice is a procedure to write data onto a device at enhanced NFS server.

struct writedeviceargs {

fhandle

file;

unsigned  count;

unsigned  offset;

properties prop;

nfsdata

data;

union writedeviceres switch (stat status) {
case NFS_OK:
fattr attributes;

properties prop;

default

void;

file

count

Offset

properties

data

On entry the arguments in writedeviceargs are:

The file handle of the file corresponding to the device, on which data
is to be written. This is used by the server to identify the file through
which the device is accessed.

The number of bytes of data that are to be written. The value of count
must be less than or equal to maximum write value that have been
provided in file system information by the server.

Usually in case of devices specially the character devices the offset has
no meaning. But in case of some block devices this may be required by
the driver to specify the offset at which to write the data.

This is the d-state of the device kept at the client. It is sent with
every request to make it complete by itself. This depends upon the
device being accessed and include only the state which is modifiable by
a process.

The data bytes to be written on the device.
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On success it returns writedeviceres which includes:

fattr
properties

These are the file attributes after write operation is completed.

This is the most recent d-state of the device at the server. It may be
different from what was sent with the request, if some other client had
changed properties at the server. This must be used by clients to make
their d-state of the device consistent with the whole system.
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A.3 Toctl

Ioctl is a procedure to change properties of a device at enhanced NFS server.

struct ioctlargs {

fhandle

file;

properties prop;

unsigned ser_ioctl;

ioctl_param ioargs;

struct ioctlres {
case NFS_OK:
fattr attributes;

ioctl_return iores;

default

void;

file

properties

ser__ioctl

ioargs

On entry the arguments in ioctlargs are:

The file handle of the file corresponding to the device, on which ioctl
is to be issued. This is used by the server to identify the file through
which the device is accessed.

This is the d-state of the device kept at the client, which is modified
by the ioctl. This d-state is used to modify the d-state of the actual
device at the server to reflect the changes made by the client through
ioctl.

Some ioctl commands does not modify the device properties but require
some function to be invoked in the device driver of that device. This
identifies the ioctl command to be issued at the server.

These are the parameters to the ioctl commands that need to be exe-
cuted at the server.
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On success it returns ioctlres which includes:

fattr These are the file attributes after ioctl operation is completed.

iores This is the response sent by the server after executing one of the ioctl
commands that require some function of the device driver to be invoked
at the server.
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