
NFS Extensions for Transparent A

ess to RemoteDevi
es
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

byAvinash Vyas

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurMay, 2001

Certi�
ate
This is to
ertify that the work
ontained in the thesis entitled �NFS Extensionsfor Transparent A

ess to Remote Devi
es�, by Avinash Vyas, has been
arried outunder our supervision and that this work has not been submitted elsewhere for adegree.May, 2001
(Dr. Deepak Gupta)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

(Dr. Rajat Moona)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

Abstra
tSharing resour
es in
reases their utilization and availability in a
omputing envi-ronment. Solutions exist for transparent sharing of resour
es, su
h as �le sharingthrough SUN Network File System (NFS), printer sharing through Line PrinterDaemon Proto
ol (lpd). These sharing servi
es are in the form of resour
e spe
i�
proto
ols. A generalized framework is needed that
an provide transparent sharingof all
lasses of devi
es. Su
h a framework is also desirable in Distributed Systems sothat all the resour
es of a workstation are transparently a

essible from any other.A resour
e sharing framework is easy to develop if there exist servi
es that providetransparent a

ess to remote devi
es.In this thesis, we propose extensions to of Network File System (NFS) to trans-parently a

ess remote devi
es in addition to �les. Using this extended NFS proto
ol,
lients will be able to a

ess the lo
al devi
es of the server. The proposed extensions
onform to the design goals and properties of the NFS. They are not spe
i�
 to anydevi
e and
an be used to provide remote a

ess to most devi
es in an easy man-ner. We have also proposed and implemented an ar
hite
ture exemplifying the useof extended NFS proto
ol in providing transparent a

ess to remote devi
es. Ourimplementation allows the
lients to a

ess remote
onsoles of the server. We havealso des
ribed the strengths and limitations of our proto
ol.

A
knowledgmentsI take this opportunity to express my sin
ere gratitude toward my supervisors Dr.Deepak Gupta and Dr. Rajat Moona for their invaluable guidan
e. I would neverhave thought of taking su
h a proje
t to
ompletion without their en
ouragementand support. Their dis
ipline and innovative ideas gave me the right dire
tionwhenever I needed. I
onsider myself extremely fortunate to have had a
han
e towork under their supervision.I also wish to thank whole heartily all the fa
ulty members of the Department ofComputer S
ien
e and Engineering for the invaluable knowledge they have impartedto me. I would like to spe
ially thank Head of the Department Dr. Pankaj Jalotefor his
onstant e�orts of improving the postgraduate program. I also extend mythanks to the te
hni
al sta� of the department for maintaining an ex
ellent workingfa
ility.My stay at IITK was unforgettable to say the least, and the biggest reason for itbeing my
lassmates of the great mte
h99 bat
h. Spe
i�
ally I would like to thankmy brother Ashutosh, and friend Ashish Gupta for providing me a
onstant helpingheld. I
annot forget the times I spent with my wing mates Raju, Maloo, Mayankand Saugata. I thank my juniors Gaurav, Alok, Mukul and Neeraj for being sosupportive. I would like to give spe
ial thanks to my seniors Atul, Rahul, Venkat,Godha and Rajeev for listening to my stupid problems patiently. Atul boss is theperson from whom I have learned the most.I
an never thank enough my parents and my little sister Anshu for being a
onstant sour
e of love and a�e
tion throughout. I am eternally grateful to themfor always being with me whenever I needed them. Finally, I thank God for beingkind to me and driving me through this journey.i

Contents
A
knowledgments i1 Introdu
tion 11.1 Resour
e Sharing . 11.1.1 Advantages . 11.1.2 Remote A

ess . 21.1.3 File Sharing . 21.1.4 Devi
e Sharing . 31.2 Resour
e Sharing in Distributed Systems 31.2.1 NFS . 41.2.2 AFS . 41.2.3 LOCUS . 41.2.4 RFS . 51.2.5 SPRITE . 61.2.6 JINI . 61.2.7 Windows NT . 71.3 The S
ope of Our Work . 81.4 Our Approa
h . 91.5 Organization of the Report . 92 NFS proto
ol and implementation 102.1 Chara
teristi
s of NFS . 102.2 Introdu
tion . 112.3 The Proto
ol Suite . 12ii

2.3.1 Network File System Proto
ol 122.3.2 Remote Pro
edure Call Proto
ol 142.3.3 Extended Data Representation Proto
ol 152.3.4 Mount Proto
ol . 162.4 Implementation and Control Flow . 162.4.1 Overview . 172.4.2 File Handles . 172.5 UNIX Semanti
s and Performan
e . 182.5.1 Deletion Of Open Files . 182.5.2 Ex
lusive Use . 192.5.3 Client-Side Ca
hing . 192.5.4 Retransmission Ca
he . 202.6 NFS Version 3 . 203 NFS Extensions 223.1 Design Goals . 223.2 Design Issues . 233.2.1 Mounting . 233.2.2 Major Devi
e Number . 243.2.3 Devi
e State . 253.2.4 Consisten
y in the Devi
e State 263.2.5 Io
tl . 263.2.6 Blo
king Input-Output . 273.2.7 Data Bu�ering . 283.2.8 Response time vs Network load 293.2.9 Asyn
hronous Noti�
ation . 293.3 New NFS Pro
edures . 303.3.1 Readdevi
e . 303.3.2 Writedevi
e . 303.3.3 Io
tl . 313.4 Limitations . 313.4.1 Disk-less Workstations . 31iii

3.4.2 Ex
lusive Use of Devi
es . 323.4.3 Asyn
hronous Noti�
ation . 323.4.4 Crash Re
overy . 324 Implementation Ar
hite
ture 344.1 Overview . 344.2 Client Side Implementation . 374.2.1 Devi
e Independent Modules 374.2.2 Devi
e Spe
i�
 Modules . 404.3 Server Side Implementation . 414.3.1 Servi
e Model . 414.3.2 Devi
e Independent Modules 434.3.3 Devi
e Spe
i�
 Modules . 454.4 Terminal Spe
i�
 Implementation . 474.4.1 D-state . 474.4.2 Server part . 494.4.3 Client Part . 505 Performan
e Evaluation 585.1 Experimental Setup . 585.2 Fun
tional Evaluation . 585.3 Performan
e Evaluation . 595.4 Results . 616 Con
lusions 636.1 Future Work . 64Bibliography 67A New NFS Pro
edures 68A.1 Readdevi
e . 68A.2 Writedevi
e . 70A.3 Io
tl . 72iv

List of Tables5.1 Overhead with Algorithm 1 . 615.2 Overhead with Algorithm 2 . 61

v

List of Figures2.1 NFS Implementation . 174.1 Overall Ar
hite
ture . 354.2 Terminal Driver Stru
ture . 515.1 Timeout values used in Algorithm 1 605.2 Timeout values used in Algorithm 2 60

vi

Chapter 1Introdu
tionA
omputer
an be viewed as a
olle
tion of di�erent resour
es su
h as hardwaredevi
es (e.g. CPU and memory), peripheral devi
es (e.g. keyboard and disks) andsoftware abstra
tions su
h as �les. The operating system provides pro
ess as thebasi

omputing abstra
tion that uses the resour
es su
h as CPU time, memoryand other peripheral devi
es to perform the required
omputation. The operatingsystem a
ts as a resour
e allo
ator for these pro
esses.1.1 Resour
e SharingThe
on
ept of resour
e sharing was introdu
ed by Time sharing systems. Thepro
esses on a single system share the CPU, memory and other devi
es to exe
ute
on
urrently. This in
reased the utilization and the e�
ien
y of the systems. The
on
ept of resour
e sharing was extended a
ross the
omputers by distributed operat-ing systems. If a number of di�erent
omputers are
onne
ted by a
ommuni
ationnetwork, then a user or spe
i�
ally a pro
ess at one
omputer is able to use theresour
es available at another.1.1.1 AdvantagesDevi
es like printers, plotters and s
anners et
. are too expensive to be providedindividually for every user. Shared use of these devi
es keeps the installation
ost1

down and in
reases their availability and utilization. Additionally it allows for easyadministration and better
ontrol of these devi
es. In distributed systems, sharing ofthe CPU among
onne
ted
omputers results in substantial
omputational speedup.Similarly sharing of �les in these systems enable users to a

ess them from di�erentma
hines; this fa
ilitates
ollaborative working. Additionally, �le sharing allows usermobility as user
an work on any ma
hine and a

ess his �les transparently.1.1.2 Remote A

essAme
hanism for remote a

ess to resour
es is the basi
 fa
ility required for providingresour
e sharing among di�erent
omputers. Su
h a remote a

ess me
hanism hasto deal with network failure,
rash of a
lient or a server, heterogeneity of the
lientand the server ma
hines, while providing
omplete a

ess transparen
y to the users.A

ess to a remote resour
e requires data to be transferred between lo
al and remotema
hines. The most
ommon way to a
hieve this transfer is through a remote servi
eme
hanism. In remote servi
e, a request for a

ess to remote resour
e is delivered tothe remote ma
hine, whi
h performs the a
tual operation and returns the results tothe requesting ma
hine. The remote pro
edure
all paradigm [10℄ is a representativeof this remote servi
e.1.1.3 File SharingThe
lassi
al UNIX operating system allows multiple users on a single ma
hine toshare �les stored lo
ally on the ma
hine. The network
onne
tivity enabled the �lesharing between di�erent
omputers. The early e�orts in this dire
tion were re-stri
ted to
opying �les from one ma
hine to another su
h as UNIX-to-UNIX Copyprogram [12℄ and File Transfer Proto
ol (ftp) [14℄. These solutions were far fromful�lling the vision of being able to a

ess �les on remote ma
hines as lo
al �les.Distributed File Systems extend the sharing of �les among users on di�erent ma-
hines inter
onne
ted by a
ommuni
ation network. They hide the dispersion of �lesystems to provide a uniform view and transparent a

ess to �les a
ross all the ma-
hines. A distributed �le system
an be implemented either as a part of a distributed2

operating systems or, in the form of a software layer whi
h manages the
ommu-ni
ation between
onventional operating systems and �le systems to provide a

essto remote �le systems. Remote File system (RFS) [15℄, Sprite �le system [22℄ areexamples of the former type of implementation and Network File System (NFS) [16℄,Andrew File System (AFS) [17℄ are the examples of latter type of implementation.1.1.4 Devi
e SharingThe need to share devi
es in a
omputer system arises due to e
onomi
s or thenature of appli
ations. Sharing of devi
es is not restri
ted to just remote a

ess,it has to deal additionally with issues su
h as a

ess
ontrol, maintenan
e of jobqueue, priority of jobs and ex
lusive use of the devi
e for a limited time. To providetransparent sharing of expensive devi
es, devi
e spe
i�
 appli
ation layer proto
olshave been developed. Examples are Line printer daemon proto
ol (lpd) [9℄ whi
hprovides transparent remote printing servi
e and Remote Magtape proto
ol (rmt)[4℄ whi
h is used for manipulating magneti
 tape drives from a remote ma
hine.In distributed systems, sharing of CPU is is implemented by pro
ess migration,primarily for load sharing among di�erent ma
hines. Transparent pro
ess migrationrequires remote a

ess to �les and devi
es. For example, migration of an intera
tivepro
ess requires remote a

ess to the lo
al terminal of the system, where it wasexe
uting before migration.1.2 Resour
e Sharing in Distributed SystemsSeveral systems have been implemented whi
h provides resour
e sharing. The re-sour
es that
an be shared in these systems vary from �les to devi
es su
h as ter-minals. In this se
tion we will look at some of these systems and examine their
a-pabilities of sharing di�erent resour
es. We mainly emphasize on transparen
y andsupport for remote devi
e a

ess along with lo
al devi
e a

ess. First we des
ribethe systems whi
h provides resour
e sharing on
onventional operating systems, andthen those in distributed operating systems.3

1.2.1 NFSNetwork File System (NFS) [16℄ is the de-fa
to standard for remote �le sharing onUNIX systems. It is targeted for small environment su
h as LANs with limitednumber of
lients. It allows sharing of a
omplete �le system of �le server or itssubtree, among the
lient ma
hines. There is no notion of a globally shared �lesystem in NFS. Ea
h
lient is independent to
on�gure its own �le system namespa
e, so it is not ne
essary that all ma
hines promise a
ommon view of the shared�le system. Chapter 2 dis
usses important
hara
teristi
s and ar
hite
ture of NFSin more detail.1.2.2 AFSAndrew File System (AFS) [17℄ is a distributed �le system developed at CMU'sProje
t Andrew and
urrently owned and supported by Transar
 Corporation. In
ontrast to the NFS, AFS is
apable of s
aling to thousands of users. Clients arepresented with a partitioned spa
e of �le names: a lo
al name spa
e and a sharedname spa
e. The uniform shared name spa
e is provided by the servers, while the�les
onstituting lo
al name spa
e are stored on the lo
al disks of the
lients. AFSuses �le
a
hing for better performan
e. Consisten
y is guaranteed by using
allba
kme
hanism to the
lient. AFS is only meant for shared a

ess to remote �les anddoes not provide a

ess to the remote devi
es.1.2.3 LOCUSThe LOCUS operating system is a distributed version of UNIX [13℄. The heartof the LOCUS ar
hite
ture is its distributed �le system. The LOCUS �le systempresents a single tree-stru
tured naming hierar
hy that
overs all obje
ts in the �lesystem on all ma
hines. Every node of the distributed system is given a subtreein the �le system hierar
hy for its lo
al �le system. Lo
al �le system
ontains thedevi
e �les for a

essing the devi
es of that system. To provide transparent a

essto devi
es, standard �le names were dynami
ally linked with site spe
i�
 devi
e�les. LOCUS was the �rst of the distributed systems to support transparent a

ess4

to remote named pipes and devi
es. Sin
e it was developed before introdu
tion ofthe VFS/Vnode ar
hite
ture [7℄, remote devi
e a

ess was
oded within ea
h devi
edriver instead of a separate implementation. For implementing an input-output ofblo
king nature, the request is blo
ked at the
lient side and the server uses
allba
kme
hanism for asyn
hronous noti�
ation from the devi
e to the pro
ess.1.2.4 RFSAT&T introdu
ed the Remote File Sharing (RFS) [15℄ �le system in SVR3 UNIXto provide a

ess to remote �les over a network. Similar to NFS, RFS is based on a
lient-server model. The server exports dire
tories and the
lients mount them. TheRFS provides transparent a

ess to remote �les, devi
es and named pipes. RFS alsouses remote servi
e for providing a

ess to remote resour
es. RFS
alls these modeof operation as remote system
all model. For ea
h system
all that operates on theremote �le or devi
e, the
lient pa
kages the argument to the system
all, as well asinformation about the
lient pro
ess's environment into an RFS request. The serverre
reates the
lient's environment and exe
utes the system
all. The
lient pro
essblo
ks until the server sends ba
k a response message,
ontaining the result of thesystem
all. The
lient then interprets the results and
ompletes the system
allbefore returning
ontrol to the pro
ess. The server pro
ess exe
uting the system
all on behalf of the
lient may blo
k for a long time, waiting for devi
e or pipeinput-output. Thus the number of su
h server pro
esses be
omes the bottlene
k ofthis s
heme. In
ase of too many requests blo
ked at the server, some in
omingrequest may be denied servi
e due to unavailability of the resour
es at the server.This results in loss of transparen
y. The implementation of RFS requires the stateto be maintained both at the
lient as well on the server side. For this reason, theRFS has a
omplex me
hanism for the
rash re
overy and a strong
a
he
onsisten
yproto
ol.
5

1.2.5 SPRITESprite [22℄ extends the ideas of LOCUS for a

essing the remote devi
es and pre-serving the UNIX semanti
s. It provides the notion of a �le server, being di�erentfrom the devi
e server. In sprite a �le server is a ma
hine where �les
orrespondingto devi
es are present, while devi
e server is a ma
hine where the a
tual devi
esare present. Ea
h devi
e �le stores the information about the devi
e server of thedevi
e
orresponding to that �le. This ensures a system wide uniqueness for devi
es.For a

essing the lo
al devi
es every system uses the same �les,
alled the lo
alhostdevi
e �les. These devi
e �les map to the
lient's instan
es of the devi
es. Forimplementing blo
king input-output, servers uses
allba
k me
hanism to the
lient,while the
lient blo
ks for the request. This s
heme requires
omplex
rash re
overyproto
ol by virtue of it being a state based implementation.1.2.6 JINIA JINI system [18℄ is a distributed system based on the idea of federating users andthe resour
es required by those users. The goal of the JINI system is to make thenetwork a dynami
 entity whi
h enables its users to share servi
es and resour
es overa network. It is intended to provide easy a

ess to resour
es anywhere on the net-work while allowing the network lo
ation of the user to
hange. The main emphasisof JINI is on the dynami
 joining and leaving of servi
es, devi
es and users in thesystem rather than transparen
y of their use. The JINI system extends the JAVAappli
ation environment from a single virtual ma
hine to a network of ma
hines.JINI names all its resour
es as servi
es. A servi
e is an entity that
an be used bya person, or by a program or by another servi
e. The JINI system allows sharing ofthese servi
es. The ba
kbone of the JINI framework is the JAVA Remote MethodInvo
ation (RMI) me
hanism. RMI is a JAVA programming language enabled ex-tension similar to the remote pro
edure
all me
hanism. RMI allows not only datato be passed from obje
t to obje
t around the network but also full obje
ts, in-
luding
ode. It is tightly
oupled with the JAVA programming environment andassumes that its
omponents are implemented in JAVA. It is good for developingnew distributed appli
ations and sharing devi
es/servi
es. Existing appli
ations are6

not bene�ted with the framework be
ause its main goal is platform independen
eand not transparen
y. Sin
e JINI servi
es need to be implemented over user levelJava Virtual Ma
hine, they are
onsiderably slow.1.2.7 Windows NTWindows NT [1℄ is an operating system designed primarily for personal
omputersand its design is di�erent from operating systems of UNIX domain. Its design in-
orporates several di�erent models of operation, for providing various servi
es. Ituses
lient-server and mi
ro-kernel model for providing multiple operating systemenvironment. Most of the operating environment and operating system servi
es areimplemented as user level pro
esses. The
lients use these servi
es by passing mes-sages to them using the message passing primitives provided by the mi
ro-kernel.It uses an obje
t model for uniformly managing all system resour
es. Thus in Win-dows NT, resour
es su
h as �les, pro
esses, ports and semaphores et
. that
an beshared, named, or made visible to user mode programs, are implemented as obje
ts.The kernel mode portion of the Windows NT is known as NT Exe
utive. It
onsists of a series of
omponents that implement basi
 operating system servi
eslike virtual memory management, �le system and interpro
ess
ommuni
ation et
.The input-output system of Windows NT is one of the
omponent of the NT ex-e
utive. Windows NT has a pa
ket driven input-output system, in whi
h everyinput-output request is represented by an I/O request pa
ket (IRP), as they movefrom one I/O system
omponent to another. One of the I/O system
omponent,
alled I/O Manager de�nes an orderly framework within whi
h these IRPs are de-livered to �le system and devi
es. The I/O manager passes the IRP denoting aninput-output request to the
orre
t driver. The driver performs the operation spe
i-�ed by the IRP and returns the IRP
ontaining the result ba
k to the I/O manager.I/O system has uniform stru
ture of all its drivers, with every input-output beingimplemented through these drivers. The �le system being a part of I/O system, isalso implemented through a driver whi
h has stru
ture and interfa
e identi
al toother drivers. 7

The Windows NT has support for a

ess to all remote resour
es. It views net-working as a means to provide a

ess to remote resour
es su
h as �les, devi
esand ultimately pro
essors. The networking software is also largely implementedas extension to the input-output system. Windows NT's support to a

ess remoteresour
es is built through two major
omponents, network redire
tor and server.Both of these are implemented as �le system drivers and therefore are the part ofthe input-output system of the NT exe
utive. The redire
tor is the network
om-ponent responsible for sending input-output request a
ross a network when the �leor devi
e to be a

essed is not lo
al. The server on the remote ma
hine (where the�le or devi
e is physi
ally lo
ated) re
eives and serves su
h requests. The redire
torand the server
ommuni
ates using the SMB proto
ol. The obje
t model providesthe network transparen
y in
ase of remote resour
e a

ess, but the naming s
hemeitself di�erentiates lo
al and remote resour
es.1.3 The S
ope of Our WorkOur work is aimed at providing transparent a

ess to remote devi
es, in a heteroge-neous UNIX environment. The ma
hines may have di�erent ar
hite
ture and mayrun di�erent �avors of UNIX. The uses of su
h a system span a number of di�erentaudien
es. It
an easily be extended to provide sharing of expensive resour
es su
has printers, plotters and s
anners. Another area where su
h a system
an be used isdistributed operating systems. In these systems, pro
ess migration requires remotea

ess to �les and devi
es for greater transparen
y.Our basi
 approa
h is to extend an existing remote �le a

essing me
hanism toprovide a

ess to remote devi
es transparently. SUN NFS is one �le system whi
his widely used for remote �le sharing in distributed systems and whi
h is designedfor heterogenous environment. In this work, we extend NFS to allow transparenta

ess to remote devi
es.
8

1.4 Our Approa
hIn our approa
h of providing a

ess to remote devi
es using NFS, we have avoided
hanges to the existing NFS pro
edures. Sin
e the existing read and write pro-
edure
annot handle the
omplexity of the devi
e input-output, we have addedthree new pro
edures in the NFS proto
ol. Two of these proto
ols are used by the
lients for reading and writing to devi
es. The third pro
edure
orresponds to theio
tl system
all, whi
h is used for modifying devi
e properties. For implementingblo
king input-output, the requesting pro
ess is blo
ked at the
lient. The
lientkeeps retransmitting the request to the server till the desired operation
ompletessu

essfully.In order to make server stateless and fa
ilitate transparent
rash re
overy, thestate of the devi
e is also maintained at the server. An NFS request should
ontain
omplete information required for pro
essing it at the server. Hen
e the devi
e stateis also in
luded in every request on remote devi
e. We have also
hanged the servi
emodel of the these requests at the server.1.5 Organization of the ReportThe rest of this report is organized as follows. Chapter 2 des
ribes the SUNNetwork File System's design goals and its implementation in UNIX kernel. We alsodes
ribe the proto
ols asso
iated with the NFS like Mount, Network Lo
k Managerin this
hapter. The design issues
onsidered for the extension of NFS are dis
ussedin Chapter 3. The implementation of Extended NFS in Linux kernel to supportremote a

ess to terminals is des
ribed in Chapter 4. In Chapter 5, we dis
usssome of the performan
e issues. Finally, in Chapter 6 we
on
lude this thesis witha brief summary of the work and possible future enhan
ements.
9

Chapter 2NFS proto
ol and implementationThe Network File System (NFS) is both an implementation and a spe
i�
ationof software system for a

essing remote �les [8℄. It has be
ome the de-fa
to standardfor remote �le sharing in UNIX systems. Till date SUN has released two versionsof the NFS spe
i�
ation whi
h are named as version 2 and version 3. Version 3removes some of the limitations of version 2 and improves its performan
e.2.1 Chara
teristi
s of NFSThe NFS is designed for a network of heterogeneous ma
hines. It is useful forsharing �les among workstations in a small network. The design of the NFS has
ertain features as outlined here:Operating System Independen
e: The NFS is designed to be independent ofoperating systems and ma
hine ar
hite
tures. Its implementation is not re-stri
ted to only UNIX systems and several other operating systems implementNFS server as well as NFS
lient.Stateless Server: The unique
hara
teristi
 of NFS is its statelessness. NFSdoes not require a server to retain any information about the state of theNFS
lients between two of their su

essive requests. Ea
h request is treatedindependent of all previous requests. In the NFS proto
ol the request sent bya
lient
ontains all the information needed to pro
ess it at the server end.10

NFS, therefore does not provide any open, seek, or
lose requests as theseoperations ne
essarily require to maintain the state at the server side. Theimplementation of these fun
tions is therefore private to the NFS
lients.Crash Re
overy: The NFS proto
ol is very rugged against the
rash of theserver or that of the
lient. In
ase the
lient
rashes, no
rash re
overy isrequired at the server as it keeps no persistent information about its
lients.In
ase the server
rashes,
lient keeps retransmitting the request at a
ertainfrequen
y until the response is re
eived from the server. When the serverboots after the
rash, it pro
esses the request and sends the response ba
k. Itis possible be
ause in the proto
ol all requests are independent of ea
h other.Thus the NFS
lient
an not distinguish between a slow server and a rebootedserver.Transparen
y: The NFS provides the fundamental property of network trans-paren
y as
lients are able to a

ess remote �les using the same set of opera-tions as appli
able to the lo
al �les [8℄. The name of the �le does not revealits physi
al lo
ation, hen
e it is lo
ation transparent. Change in storage lo-
ation of a single �le results in a
hange of its name, however transfer of theexported �le system or dire
tory has no e�e
t on the name spa
e at
lientside. The
hanges are made only in the
lient's mount table using the mountproto
ol. Thus the NFS also provides lo
ation independen
e at granularity ofthe
omponent (i.e., exported �le system or dire
tory).2.2 Introdu
tionNFS is based on a
lient-server paradigm. A �le server exports a �le system orsubtree thereof. Clients are the ma
hines that remotely a

ess the �les exportedby the server. Clients
an mount the entire �le system exported by the server or asubtree of that onto any dire
tory in existing �le hierar
hy.Clients and servers
ommuni
ate via remote pro
edure
alls, whi
h are syn-
hronous
alls. NFS uses the Remote Pro
edure Call (RPC) Proto
ol [20℄ to11

de�ne the format of all intera
tions between the
lient and server. In fa
t, the NFSproto
ol [21℄ is de�ned as a set of remote pro
edure
alls. SUN RPC and hen
e NFSuses Extended Data Representation (XDR) [19℄ to represent the data sent a
rossthe network in a standard ma
hine independent format.2.3 The Proto
ol SuiteThe primary proto
ols in the NFS suite are RPC, NFS, and Mount. They all useXDR for data en
oding.2.3.1 Network File System Proto
olNFS de�nes a set of remote pro
edure
all, their arguments and results whi
h areused by the
lients to operate on the remote �les at the server. These are de�nedusing the RPC language whi
h is basi
ally the XDR language extended with pro-gram, version, and pro
edure de
larations. All pro
edures in the NFS proto
ol areassumed to be syn
hronous. The most important argument to these NFS pro
eduresis the �le handle, whi
h is used by the
lients to referen
e a �le at the server. Anoutline of the NFS proto
ol version 2 pro
edures is given below.null() returns ()This pro
edure does nothing and is used to measure the round-trip time be-tween the
lient and the server.lookup(dirfh, name) returns (fh, attr)This pro
edure returns the �le handle
orresponding to the �le whose name isgiven as argument. The other argument is the �le handle of the dire
tory inwhi
h the �le is present.
reate(dirfh, name, attr) returns (newfh, attr)This pro
edure
reates a new �le and returns the �le handle and attributes ofthe
reated �le. The other arguments are the �le handle of the dire
tory inwhi
h the �le is to be
reated and the attributes of the �le.12

remove(dirfh, name) returns (status)This pro
edure removes a �le from the dire
tory. The arguments to the pro-
edure are the name of the �le and �le handle of the dire
tory in whi
h the�le is present.getattr(fh) returns (attr)This pro
edure return the attributes of the �le whose �le handle is given asargument.setattr(fh, attr) returns (attr)This pro
edure set the attributes of a �le to the given one. The �le attributeswhi
h
an be modi�ed are mode, uid, gid, size, a

ess time and modify time.read(fh, o�set,
ount) returns (attr, data)This pro
edure is used to read data from a �le whose �le handle is the argu-ment. The o�set gives the starting byte, from where the data is read up to
ount
hara
ters from the �le .write(fh, o�set,
ount, data) returns (attr)This pro
edure is used to write data to a �le. The o�set gives the o�set of the�rst byte within the �le. The
ount number of bytes are written from data inthe �le. The fh provides the �le handle for the �le.rename(dirfh, name, tofh, toname) returns (status)This pro
edure renames a �le name in the dire
tory represented by its �lehandle dirfh to toname in the dire
tory represented by its �le handle tofh.link(dirfh, name, tofh, toname) returns (status)This pro
edure
reates a hard link toname in the dire
tory represented by its�le handle tofh to the �le name in the dire
tory represented by its �le handledirfh.symlink(dirfh, name, string) returns (status)This pro
edure
reates a symboli
 link name, in the dire
tory represented bydirfh, with value string. The string argument is not interpreted at the server.13

readlink(fh) returns (string)This pro
edure returns the string asso
iated with the symboli
 link representedby its �le handle fh.mkdir(dirfh, name, attr) returns (fh, newattr)This pro
edure
reates a new dire
tory name in the dire
tory represented byits �le handle dirfh. It returns the �le handle of the newly
reated dire
toryand its attributes.rmdir(dirfh, name) returns (status)This pro
edure removes an empty dire
tory name from the parent dire
toryrepresented by its �le handle dirfh.readdir(dirfh,
ookie,
ount) returns (entries)This pro
edure returns up to
ount bytes of dire
tory entries from the dire
toryrepresented by its �le handle dirfh. Ea
h returned entry
onsists of �le name,�le id and pointer to next entry
alled the
ookie. The returned
ookie is usedin the subsequent
all to readdir, in
ase all dire
tory entries were not read inthe �rst request itself.statfs(fh) returns (fsstats)This pro
edure returns the �le system information su
h as blo
k size, numberof free blo
ks, et
.2.3.2 Remote Pro
edure Call Proto
olThe idea of Remote Pro
edure Call (RPC) was mooted in mid 70's, but the �rstframework a
tually
ame in early 80's [23℄ [10℄. Today there are many
ommer
ialRPC implementations available su
h as Sun Mi
rosystems RPC [20℄, Xerox Couri-er RPC [2℄, Apollo's Network Computing Ar
hite
ture[3℄ and OSF's DistributedComputing Environment RPC[6℄. The basi
 working model of RPC is based on thetraditional pro
edure
all model, used in programming languages. Pro
edure
allallows for transfer of
ontrol and data within a program running on a single
om-puter. RPC extends the idea to transfer of
ontrol and data a
ross a
ommuni
ation14

network.RPC is based on a
lient-server paradigm. A
lient is a ma
hine that requests fora pro
edure to be invoked and a server is where the pro
edure is a
tually exe
uted.When a remote pro
edure is invoked, the
alling pro
ess at
lient is blo
ked until itre
eives the response ba
k from the server. The parameters and information aboutthe pro
edure to be
alled are passed a
ross the network to the server where thepro
edure is to be exe
uted. When the pro
edure �nishes results are passed ba
kto the blo
ked pro
ess at the
lient.NFS is built over the SUN RPC proto
ol. This proto
ol spe
i�es message for-mat, transmission methods and authenti
ation me
hanism, for remote pro
edure
alls. SUN RPC is fundamentally independent of transport proto
ol. It imple-ments its own reliable datagram servi
e by keeping tra
k of unanswered requestsand retransmitting them periodi
ally until a response is re
eived.2.3.3 Extended Data Representation Proto
olComputers in a heterogenous environment vary in ar
hite
ture as well as operat-ing systems. Ea
h ar
hite
ture has its own internal representation of data. Thesedi�eren
es are in byte ordering, sizes of data types, and format of strings and ar-rays. Hen
e
ommuni
ation between ma
hines with di�erent ar
hite
tures has todeal with these di�eren
es. In opaque data transmission, ma
hines do not have tointerpret data. The data is treated just as a byte stream. When data has to beinterpreted by the re
eiver, both
ommuni
ating ma
hines have to agree upon astandard format. External Data Representation is one su
h ma
hine-independentrepresentation for data transmission. Data sent over the network is
onverted fromthe native to the XDR representation. Similarly, at the re
eiver, data is
onvertedfrom the XDR to the native representation. XDR de�nes several basi
 data typesand the rules for
onstru
ting more
omplex data types.
15

2.3.4 Mount Proto
olThe Mount proto
ol allows NFS
lients to mount the remote �le systems exportedby a NFS server. Using the mount proto
ol the
lient obtains the �le handle ofthe root of the exported �le system tree. Similar to the NFS, mount proto
ol isalso des
ribed by a set of RPC pro
edures whi
h use XDR for representing theirarguments and results. It is a state based proto
ol whi
h requires the server tomaintain a list of all
lients whi
h have mounted a dire
tory or �le system exportedby the server. This list is however not required for the usual operation of eitherthe
lient or the server. The list is used only for advisory purposes like the serverwarning the
lients before being shut down.Version one of the mount proto
ol is used with the NFSv2. The only information
ommuni
ated between these two proto
ols is the �le handle of the root dire
toryof the mounted �le system.2.4 Implementation and Control FlowNFS has been ported to several non-UNIX systems su
h as MS-DOS and VMS.There are both user level as well as kernel level implementation of NFS for variousoperating systems. Our dis
ussion restri
ts to the kernel implementation of NFS in
onventional UNIX systems with VFS/Vnode[7℄ interfa
e.VFS/Vnode interfa
e is based on obje
t-oriented programming
on
epts andprovides an ar
hite
ture for a

ommodating multiple �le system implementation ina single UNIX kernel. The VFS (virtual �le system) abstra
tion represents a �lesystem in the UNIX kernel and Vnode represents a �le. They represent abstra
t base
lasses from whi
h sub
lasses
an be derived and implemented to provide supportof di�erent �le systems. A typi
al Vnode interfa
e in UNIX kernel
onsists of twoparts. First part is the �le system independent data and fun
tions, whi
h are usedby other kernel subsystems to manipulate the �le. Se
ond part of the interfa
e is theset of virtual fun
tions whi
h are implemented by spe
i�
 �le system and a privatedata stru
ture that holds the �le system spe
i�
 data of the Vnode.16

ufs
code

nfs
server
code

Client

sytem call interface

client application

VFS/Vnode Interface

Server

VFS/Vnode Interface

nfs
client
code

rpc
client

Interface

rpc
server

Interface

local
Diskrpc reply

rpc call

Figure 2.1: NFS Implementation2.4.1 OverviewAs shown in Figure 2.1, the server has exported a ufs �le system, whi
h is mountedby the
lient. When a pro
ess on the
lient opens a �le mounted through NFS, aftera name lookup, a �le table entry and Vnode
orresponding to that �le is allo
atedat the
lient. The server as a result of a lookup on the �le, returns a �le handle
orresponding to that �le. This �le handle, whi
h is an opaque data obje
t forthe
lient, is sent by the
lient with every subsequent request to the server. Thev_op �eld in the Vnode points to the ve
tor of NFS
lient routines that implementthe various Vnode operations. The server pro
esses the requests by identifying theVnode
orresponding to the lo
al �le and invoking the appropriate Vnode operationthat is implemented by the lo
al �le system.2.4.2 File HandlesThe NFS proto
ol asso
iates an obje
t
alled a �le handle with all �les in theexported dire
tory. The server generates this handle when the
lient
reates a remote17

�le or issues a lookup on a remote �le. The server returns the �le handle to the
lient in the reply to the request, and the
lient
an subsequently use it in otheroperations on that �le. It is used by the server to identify the �le that the
lientwant to a

ess. The �le handle is an opaque 32 byte obje
t for the
lient and the
lient should not make any attempt to interpret its
ontents, whi
h are spe
i�
 tothe server. For most of the UNIX implementation, the �le handle
ontains the �lesystem ID, inode number and the generation number of the inode. The generationnumber is added to the inode to solve the problem of stale �le handles. In absen
e ofthe generation number, if the server deletes a �le and reuses its inode, while the �leis being used by a
lient, the �le handle at the
lient will refer to the newly
reated�le. To eliminate this possibility, server needs to identify that, �le handle sent bythe
lient is stale. Sin
e the generation number of inode is in
remented ea
h timethe inode is freed, server
an
ompare the generation number in the �le handle andthat in the inode of the �le, to identify the stale �le handles.2.5 UNIX Semanti
s and Performan
eNFS was primarily intended for UNIX
lients, hen
e it is important that UNIXsemanti
s be preserved for remote a

ess to �le a

ess. The statelessness of NFSdoes not allow
lients to maintain information about open �les at the server, whi
hleads to a few in
ompatibilities with UNIX.2.5.1 Deletion Of Open FilesIn UNIX, if a pro
ess deletes an open �le (opened by another pro
ess or itself), thekernel does not a
tually delete this �le. The kernel simply marks the �le for deletionand removes its entry from the parent dire
tory. Now no new pro
ess
an open this�le, while those that have it open
an
ontinue to a

ess it. The kernel physi
allydeletes the �le, only when the last pro
ess that has the �le open
loses it.In NFS this semanti
s
annot be implemented be
ause the server does not knowwhi
h �les are open at the
lients. In NFS a pro
ess will get unexpe
ted error ifanother pro
ess deletes the �le it is using. The problem
an be solved partially18

at
lients, as the
lients are aware of the opened �les. When the
lient dete
ts anattempt to delete an open �le, it
hanges the operation to rename the �le, giving it along and unusual new name whi
h is unlikely to
on�i
t with the existing �les. Thiss
heme solves the problem only when the two pro
esses, the one using the �le andthe one deleting the �le, are on the same
lient. It
an not solve the problem whenthe two pro
esses are on two di�erent ma
hines. Additionally if the
lient
rashesafter renaming the �le and before a
tually deleting it, a garbage �le is left on theserver.2.5.2 Ex
lusive UseNFS
annot provide for re
ord level or �le level lo
king as provided by the UNIXfor lo
al �les. As a result, a pro
ess
an not a

ess a �le ex
lusively. Due to �xedsize of a RPC request, a large read or write operation may span over several RPCrequests. Hen
e, if two pro
esses at two di�erent
lients issue write operation onthe same �le, at roughly the same time, overlapping writes at the server
an o

ur.The Network Lo
k Manager (NLM) [11℄ proto
ol allows
ooperating pro
ess to lo
kentire �le or its portion, but it is only advisory lo
king. A pro
ess
an always bypassthe lo
ks and a

ess the �le.2.5.3 Client-Side Ca
hingIf every operation on a remote �les required one or more NFS request to the server,NFS performan
e would be intolerably low. Hen
e most NFS
lients uses
a
hing ofboth data blo
ks and �le attributes to avoid sending NFS request to the server forevery operation on the �le. The �le blo
ks are
a
hed in the bu�er
a
he and �leattributes are
a
hed in Vnode
orresponding to the remote �le. In order to avoiduse of stale data at the
lients, these
a
hed
ontents must be refreshed on ea
h
hange to the
a
hed data or �le attributes. In NFS,
lients has to take measuresfor refreshing
a
hed data. NFS
lients maintains an expiry time indi
ating the timefor whi
h the attributes have been
a
hed. If these attributes are a

essed after atime quantum expires,
lients fet
h them from the server again. Before using the19

a
hed �le blo
ks
lients
ompare the modify time of the �le attributes with the timewhen
a
hed data was read from the server. If the �le was modi�ed after the datablo
ks were
a
hed then
a
hed data is �ushed and request is sent to the server.All these me
hanisms redu
e, but do not eliminate the
onsisten
y problems of the
a
hed data and �le attributes.2.5.4 Retransmission Ca
heIn order to provide reliable transmission, RPC
lients retransmit requests until theyre
eive a response. These retransmissions o

urs due to the loss of a request or aresponse on the network or be
ause the response is delayed due to the loaded server.The server needs to handle su
h dupli
ate requests
orre
tly. NFS requests
an bedivided into two
lasses, idempotent and nonidempotent. Idempotent requests
anbe exe
uted twi
e without any ill e�e
t, while nonidempotent requests may result inin
orre
t behavior if repeated. Re-pro
essing of dupli
ate requests not only resultsin in
orre
t behavior but also in
reases server load.In order to dete
t and handle dupli
ate requests, the server keeps a
a
he ofre
ent requests and reply messages. This
a
he is known as retransmission
a
he.Ea
h entry in this
a
he additionally
ontains a state �eld and a timestamp. If theserver �nds an in
oming request in the
a
he, and its state is in progress, the requestis dis
arded. If the state of the
a
hed request is done and the response has beensent just re
ently, the request is dis
arded. But if the dupli
ate request arrives at theserver after some time,
a
hed reply is retransmitted to the
lient. This approa
hrequires a large
a
he,
apable of saving the whole of the reply messages, whi
h
anbe large for a request su
h as read.2.6 NFS Version 3NFS version 2 (NFSv2) be
ame enormously popular, whi
h helped in highlightingits short
omings. While some of the problems were addressed by
lever implemen-tations, many problems were inherent to the proto
ol itself. Thus NFS version3 (NFSv3) was introdu
ed, addressing several important limitations of the older20

version. Major performan
e bottlene
ks in NFSv2 are its syn
hronous pro
edures,whi
h require the server to
ommit all modi�
ations to stable storage before reply-ing. NFSv3 introdu
es asyn
hronous writes in the proto
ol that allows the serverto reply before
ommitting the modi�
ation to stable storage. The data is �nallywritten to the disk when the pro
ess exits or
loses the �le at the
lient and the
lientkernel sends a spe
ial request (COMMIT) to the server. This require that the
lientkernel holds on to data, until the pro
ess
loses the �le. NFSv3 supports greater �lesizes by in
reasing the size of �elds for spe
ifying �le size and o�sets in read andwrite, to 64 bits. Additionally the number of over-the-wire pa
kets for a given setof �le operations are redu
ed by returning �le attributes on every operations.

21

Chapter 3NFS ExtensionsIn this
hapter, we des
ribe our proposed extensions to the NFS proto
ol. We �rstdes
ribe the design goals and the various design alternatives that
ould be used tomeet these goals. Then we des
ribe the pro
edures that we have added to the NFSproto
ol. Finally we des
ribe some limitations of our proposed extensions.3.1 Design GoalsThe design of the proposed extensions to the NFS proto
ol is based upon the fol-lowing goals.Transparent Remote A

ess: The primary goal of our work is to support trans-parent a

ess to the remote devi
es. The appli
ation pro
esses must be ableto use the remote devi
es as if they were lo
al. Therefore the s
heme shouldprovide lo
ation transparen
y for devi
es, as NFS provides for the �les.Minimal Changes: Another important aim while developing the enhan
ed NFSproto
ol is to keep the
hanges and additions in the existing NFS proto
ol, itsasso
iated proto
ols, and devi
e drivers to the minimum.Devi
e Independen
e: Enhan
ements made to the NFS proto
ol should be
raft-ed with the aim of developing a generalized framework for transparent a

essto the remote devi
es. The proto
ol should not be spe
i�
 to any devi
e type22

and it should be possible to provide the remote a

ess to new devi
es in aneasy manner.Conformation with NFS
hara
teristi
s: Extensions and modi�
ation shouldbe in
onformation with the
hara
teristi
s of the NFS. In parti
ular, a strongemphasis should be laid on preserving the stateless nature of the proto
ol.Heterogeneity: The work is aimed at providing transparent a

ess to remote de-vi
es, in a heterogeneous UNIX environment. The ma
hines may have di�erentar
hite
ture and may run di�erent �avors of UNIX. The enhan
ements to theNFS proto
ol should be independent of the operating system and ma
hinear
hite
ture heterogeneity.Preserving UNIX semanti
s: The framework for remote devi
e a

ess shouldtry to preserve the UNIX semanti
s for devi
e input-output. Although topreserve the stateless nature of the NFS proto
ol, the s
heme may have to
ompromise on some issues. This
ould lead to a few in
ompatibilities withUNIX semanti
s.3.2 Design IssuesIn this se
tion, we dis
uss the issues in the design of our NFS extension to supporttransparent a

ess to remote devi
es.3.2.1 MountingThe physi
al disk unit typi
ally
onsists of several logi
al partition ea
h of whi
husually
ontains a �le system. Mounting allows the users to view these di�erent �lesystems as
omponents of a single �le system. Mounting integrates two �le systemsby making an asso
iation between the mount point dire
tory and the root dire
toryof the mounted �le system. To a

ess remote �les through NFS, the
lients arerequired to mount the remote �le system. Similarly to a

ess remote devi
es, the
lients will be required to mount them. Ability to export an individual devi
e in-
reases the �exibility at the server, as ea
h devi
e
an be exported sele
tively to the23

lients, using the same devi
e �le. Ability to mount an individual devi
e in
reasestransparen
y at
lients. This is be
ause,
lients
an mount individual remote devi
eat the mount point that refers to the lo
al instan
e of that remote devi
e. The ex-isting mount proto
ol is able to mount only �le systems and dire
tories. Mountingan individual devi
e requires
hanging the mount semanti
s and thus its implemen-tation.In our design we wanted to keep the
hanges to existing system minimum. There-fore we de
ided against
hanging the mount proto
ol. Instead we use the existingmount proto
ol to mount a dire
tory of the server
ontaining devi
e �les. The de-vi
e �les are then used to a

ess the remote devi
es of the server from where thedire
tory is mounted.3.2.2 Major Devi
e NumberThe kernel identi�es ea
h devi
e by the devi
e type (blo
k or
hara
ter), and apair of numbers,
alled the major and minor devi
e numbers. The major numberidenti�es the devi
e driver for a
lass of devi
es, while the minor number identi-�es a spe
i�
 instan
e of a devi
e in that
lass. Allo
ation of the major numberto devi
es is spe
i�
 to the operating system. In a heterogeneous environment adevi
e may have major number at the server di�erent then the major number at the
lients. In order to provide operating system independen
e, we
hose to standardizethe major numbers for the devi
es in the extended NFS proto
ol. Further to min-imize
hanges to the existing operating systems a mapping is maintained betweennative major numbers and proto
ol standardized major numbers. Before sending arequest, the
lient
onverts native major numbers to standardized major numbers.Similarly upon re
eiving the response the
lient does the reverse
onversion. Serverupon re
eiving a request, maps the standardized major number to the native one.The server
ommuni
ates responses with the
lient using the standardized majornumbers. Thus all
ommuni
ation between the server and the
lient uses the stan-dardized major numbers. No su
h mapping is required for minor numbers as theirinterpretation is spe
i�
 to the server. 24

3.2.3 Devi
e StateThe devi
es have state and the operating system needs to know about these statesfor most kind of devi
e operations. Thus the devi
e operations are stateful in
on-trast to the �le operations. The operating system maintains the devi
e spe
i�
state for ea
h devi
e (d-state). The d-state
omprises of data stru
tures to store
on�gurable devi
e parameters. It is en
apsulated within the devi
e driver of thedevi
e. In remote operations also the d-state has to be maintained. The d-state
an be maintained either at the
lient side or at the server side or at both sides.Maintaining it only at the
lient side and using its devi
e driver makes the server
ompletely stateless. This option however requires dupli
ation and in
orporation ofdevi
e driver
ode into the NFS server to intera
t with the a
tual devi
es. A lotof
hanges and additions are required in server
ode to provide remote a

ess toea
h new devi
e, limiting the �exibility and generality of the server. A proto
ol forensuring
onsistent d-state in
ase of simultaneous a

ess by multiple
lients is alsorequired. Su
h a proto
ol be
omes very
omplex due to the stateless nature of NFS.The
hoi
e of maintaining d-state at the server side fa
ilitates the use of existingdevi
e drivers without any
hanges and provides a
leaner interfa
e between thedevi
e and the server
ode. A
rash re
overy proto
ol would be required as theserver
rash would result in loss of d-state maintained at the server.In our approa
h, the d-state is maintained at the
lient side as well as at theserver side and the existing devi
e driver at the server side is used. The d-statemaintained at the
lient side is embedded in every NFS request on devi
es alongwith the other arguments. Thus, ea
h request be
omes self
ontained and the pro
essof
rash re
overy is simpli�ed. The notion of d-state kept at the server is di�erentfrom the NFS notion of state and does not
on�i
t with the stateless nature ofthe NFS server. In normal operation, NFS server does not require any informationfrom the previously served requests in order to serve the
urrent request. Moreover,the d-state maintained at the
lient side
omprises of only the state whi
h
an bemodi�ed by the
lients expli
itly by io
tl system
all or impli
itly by other system
alls. This state information depends on the type of remote devi
e being a

essed.25

3.2.4 Consisten
y in the Devi
e StateMaintaining the devi
e state at two di�erent lo
ations has an inherent problem ofin
onsisten
y in the two states. The d-state kept at a
lient provides the state of thea
tual devi
e to the
lient. In
ase of simultaneous a

ess to the same devi
e from twodi�erent
lients, existen
e of two d-states
an be a potential
ause of in
onsisten
y.This would mean di�erent state of the same devi
e at di�erent
lients. We solvethis problem wherein the most re
ent image of the d-state from the server is sent tothe
lients along with ea
h response. The
lients use this state re
eived along withthe response to make their d-state
onsistent with that at the server. Although thiss
heme may not guarantee state
onsisten
y at all instants, it eventually makes thed-state a
ross all the
lients
onsistent with that of the server.3.2.5 Io
tlThe io
tl system
all is the generi
 entry point for modifying the user
ontrolledd-state and to
on�gure the devi
es. This is a highly versatile
all through whi
hone
an support arbitrary operations on the devi
es. The arguments to this system
all vary in number and type, depending upon the devi
e and the type of request.For a devi
e like terminal, a Linux implementation supports around 60 di�erent io
tl
ommands. This generality makes io
tl very di�
ult to support in remote environ-ment as it would require di�erent arguments to be sent for ea
h
ommand. In orderto handle the large number and
omplexity of di�erent io
tl
ommands we
lassifythem into following three
ategories:1. Io
tl
ommands to retrieve some state information of the devi
e.2. Io
tl
ommands that modify the state of the devi
e.3. Io
tl
ommands that require some fun
tion to be invoked in the devi
e driverof the a
tual devi
e.Io
tl
ommands whi
h require only the retrieval of state information and passingit to the appli
ations are handled at the
lient side itself. Su
h information is26

provided from the d-state present at the
lient side. Thus keeping the d-state at the
lient side in addition to the server side redu
es the network tra�
. A new pro
edureio
tldevi
e is added to the NFS proto
ol for the io
tl
ommands that modify thestate of the devi
e. Sending of individual io
tl
ommands and arguments to theserver however in
reases the
omplexity of the NFS and XDR
ode. We used adi�erent approa
h in our design. The exe
ution of io
tl
ommand modi�es the d-state at the
lient side and then the entire d-state is sent to the server. At the serverthis re
eived state is used to update and modify the a
tual devi
e state. This allowsthe design of io
tl pro
edure to be uniform and akin to the other two pro
edures forreading and writing on devi
e. For the io
tl
ommands whi
h require some fun
tionto be invoked at the server the io
tldevi
e pro
edure has the provision for sendingthe
ommands along with their arguments, and re
eiving the response ba
k fromthe server. For example, in terminal devi
es, the io
tl
ommand TIOCSTI is usedto put a
hara
ter in the read bu�er of the terminal driver. This io
tl
ommandrequires sending of the
hara
ter to the server and then storing it in the read bu�ermaintained by the terminal driver. Sin
e su
h io
tl
ommands are very small innumber, it would not make the XDR en
oding-de
oding fun
tion unmanageable.3.2.6 Blo
king Input-OutputThe servi
e time asso
iated with the devi
e operation is potentially inde�nite (forexample, in the
ase of terminals or other user input devi
es) in
omparison to theone asso
iated with the �le operations whi
h is typi
ally more predi
table. Thisblo
king nature makes input-output on devi
es di�
ult to implement in
omparisonto that on �les. There
ould be two options for implementing the blo
king input-output for remote a

ess, either blo
k at
lient side or blo
k at the server. When arequest blo
ks at the server, it holds up system resour
es su
h as memory. In extreme
ases some request may be denied servi
e due to non availability of resour
es. In
ase the server
rashes before the
ompletion of the blo
king input-output, loss of allblo
ked requests requires a
omplex
rash re
overy proto
ol. NFS uses the impli
ita
knowledgement model for RPC requests, where response to a request indi
atesthat the request was
orre
tly re
eived at the server. Thus in absen
e of response27

from the server, it is impossible for the
lients to distinguish between a lost requestand a blo
ked request at the server. When there is no response from the serverwithin a time period, the
lient has to retransmit the request assuming it was lost.So a blo
ked request will
ause unne
essary retransmission of requests, in
reasingnetwork tra�
 and server load.The option of blo
king at
lients, requires the server to store information aboutthe
lient and the operation being performed. Later when the requested operation
an pro
eed without blo
king, the server
an notify the
lient to retry its request.This
allba
k s
heme that is used in many other systems, is unsuitable for extendedNFS be
ause of the stateless property of the NFS proto
ol.In our approa
h we implement all operations as non-blo
king at the server, whileblo
king is implemented at
lient side. In this s
heme, if a devi
e operation
annot
ompleted immediately, a spe
ial status value is returned by the devi
e input-outputhandler at the server. The server returns this spe
ial status to the
lient who retriesthe operation with in
reasing time intervals until it is
ompleted su

essfully.3.2.7 Data Bu�eringThe devi
e drivers bu�ers the input data, before it is read by a pro
ess and bu�ersthe output data before it is written onto the physi
al devi
e. The reason of databu�ering in most of the devi
e driver is to in
rease performan
e, as input-outputoperations on physi
al devi
e (e.g. disks) are
ostly operations. In some devi
e (e.g.terminals) apart from performan
e reasons, the input data has to bu�ered as it isgenerated asyn
hronously. There
ould be two options to bu�er this data, either atthe server side or at the
lient side.If the data is bu�ered at the server side then every input-output request on aremote devi
e at the
lient, will be
arried out by involving network tra�
 and thuswill in
rease the pro
essing time of the request. On the other hand if the data isbu�ered at the
lient side then we need to ensure
onsisten
y of the data a
ross allthe
lients using the same devi
e. In
ase of NFS sin
e the server does not storeany information about the
lients,
onsisten
y of the data bu�ered at the
lients
annot be guaranteed. Di�erent s
hemes
an only redu
e the problem but
an not28

eliminate it. In
ase of intera
tive devi
es, data
annot be bu�ered at the
lients assu
h devi
es generate data asyn
hronously. The server has to store this data untilany
lient sends a request to read it.The de
ision of data bu�ering is spe
i�
 to the devi
e whi
h is a

essed, but inthe absen
e of a ideal bu�er
onsisten
y s
heme, we suggest the bu�ering to be doneat server. This is also the
ase for the intera
tive devi
es.3.2.8 Response time vs Network loadThe trials of a request for an operation from the
lients in
ur heavy network andserver load. The time interval between the re trials determines the response time foran operation. If this time is high than the user experien
es a delay in the responseand hen
e transparen
y is lost. Keeping this interval low results in a heavier load onthe network. For a tradeo� between the two, the time interval and the algorithm forre-trial needs to be �ne tuned. We explain this algorithm for our implementation inChapter 5.3.2.9 Asyn
hronous Noti�
ationOur s
heme (and for that matter any model adhering to the design prin
iples ofNFS)
annot provide asyn
hronous noti�
ation from the devi
e to a
lient pro
essas it would involve the initiation of
ommuni
ation from the server to the
lient. This
annot be a
hieved without
ompromising the stateless nature of the server. Hen
eusing only this framework we
annot support devi
es whi
h require asyn
hronousnoti�
ation to pro
esses. An example of su
h a devi
e is the
ontrolling terminal,whi
h requires that the terminal generated signals be delivered to the foregroundpro
ess group. Although an external remote signaling me
hanism
an provide su
hsupport, it is out of the s
ope of this work.
29

3.3 New NFS Pro
eduresOur design ne
essitates sending of d-state along with input-output requests andresponses. The read and write pro
edures of the existing NFS
annot handle the
omplexity of devi
e spe
i�
 input-output. Hen
e, we propose to add three newpro
edures readdevi
e, writedevi
e and io
tl in NFS, for reading from, writing toand
hanging the properties of the devi
e. Apart from these additions no
hangeshave been made to any pro
edure of the existing NFS proto
ol. We here des
ribethe three new pro
edures added in the NFS proto
ol, their arguments and theirresults. The proto
ol enhan
ements have been made in version 2 of NFS and shouldbe
onsistent with NFSv3 as well.3.3.1 Readdevi
eReaddevi
e is the pro
edure to read data from a devi
e at an enhan
ed NFS server.The arguments to readdevi
e pro
edure
onsist of the �le handle, o�set,
ount andd-state of the devi
e whi
h is a

essed. The �le handle represents the �le throughwhi
h the devi
e is a

essed, o�set provides the position on the devi
e, from whereto start reading (in
ase of some devi
es it is unused) and d-state is the devi
e statemaintained at the
lient. The response of the readdevi
e pro
edure
ontains thedata read from the devi
e and the re
ent d-state of the devi
e at the server, alongwith the attributes of the devi
e �le after operation.3.3.2 Writedevi
eWritedevi
e is the pro
edure to write data onto a devi
e at an enhan
ed NFS server.The arguments to writedevi
e
onsist of the �le handle, o�set,
ount, data and d-state of the devi
e whi
h is a

essed. The �le handle represents the �le throughwhi
h the devi
e is a

essed, o�set provides the position on the devi
e, from whereto start writing (in
ase of some devi
es it is unused), and d-state is the devi
e statemaintained at the
lient. The response of the writedevi
e in
ludes the re
ent d-stateof the devi
e at the server along with the �le attributes.30

3.3.3 Io
tlIo
tl is the pro
edure to
hange the state of the devi
e at an enhan
ed NFS server.The arguments to the io
tl pro
edure
onsist of the �le handle, io
tl number, io
tlarguments and d-state of the devi
e whi
h is a

essed. The �le handle represents the�le through whi
h the devi
e is a

essed, io
tl number identi�es the io
tl that needsto be exe
uted at the server (this remains unused for most of the
alls), argumentsneeded for the io
tl
ommand (appli
able only when io
tl number is used) and thed-state is the modi�ed state of the devi
e maintained at the
lient. The responseof the io
tl in
ludes the result of the io
tl
ommand that is exe
uted at the server(used only when the io
tl number in arguments was used), along with the attributesof the devi
e �le after operation.3.4 LimitationsIn this se
tion we dis
uss the appli
ability and various limitations of the design ofthe extended NFS. Sin
e the main emphasis is on preserving the design goals andproperties of NFS and keeping
hanges to the minimum, various hard issues had tobe resolved.3.4.1 Disk-less WorkstationsIn
ase of disk-less workstations, NFS is often used for mounting the root �le system.This �le system also in
ludes the /dev dire
tory, the �les of whi
h are used toa

ess the lo
al devi
es on the disk-less workstation. With the s
heme proposed,the devi
e �les in a dire
tory mounted by the
lients, are used to a

ess the devi
esof the server. This s
heme therefore is of limited use for the disk-less workstations.Several solutions
an be used in su
h a
ase to enable disk-less workstation to a

esstheir lo
al devi
es. At the boot time, a RAM disk
an be used in whi
h the devi
e�le
an be
reated to a

ess the lo
al devi
es. Alternatively another �le server
anbe used to mount a dire
tory
ontaining the lo
al devi
e �les to provide a

ess tolo
al devi
es. Another possibility would be to extend the mount proto
ol to export31

and mount a devi
e, rather than just a dire
tory.3.4.2 Ex
lusive Use of Devi
esSimultaneous use of the same devi
e by two or more pro
esses may lead to problems.For example, if a printer is used simultaneously by two pro
ess su
h that their writerequests are interleaved, printer's output will also be interleaved and of no use. Weneed a me
hanism with whi
h a pro
ess
an ex
lusively use a devi
e. This problemof ex
lusive use of a devi
e is out of the s
ope of this framework. This is be
auseto provide ex
lusive a

ess to a devi
e, the server needs to retain some state for thedevi
e whi
h would violate stateless nature of the server. The support for ex
lusiveuse of devi
es
an however be provided through a separate proto
ol like NetworkLo
k Manager, whi
h provides �le lo
king in NFS.3.4.3 Asyn
hronous Noti�
ationIn NFS, asyn
hronous noti�
ation of any sort from devi
e to pro
ess is not possibledue to the stateless nature of the servers. This s
heme therefore does not provideany me
hanism for asyn
hronous noti�
ation from devi
e to pro
ess. For examplethis s
heme
an not be used for delivering devi
e generated signals to the pro
ess.It would require some external me
hanism for delivering devi
e generated signalsremotely.3.4.4 Crash Re
overyThe state re
overy of a devi
e, after a server
rash is done when the �rst request
omes from the
lient to the server after the
rash. This leaves a ra
e
ondition whi
hpossibly
ould result in a devi
e state after the
rash di�erent from the one before the
rash at the server. A possible s
enario where this may happen is when two
lients,say A and B, simultaneously open the same devi
e. Suppose the server
rashesjust after
lient A
hanges the state of the devi
e, so the
lient B's d-state be
omesstale. If the �rst request after server-reboot
omes from the
lient B, devi
e state atthe server will be restored to stale d-state. The
lient A who made the
hanges to32

devi
e state prior to the
rash, will also
hange its d-state to this stale state after itssubsequent requests and responses. This will results in loss of the last modi�
ationmade by the
lient A. Although this di�ers from the traditional uni-pro
essor UNIXsemanti
s a bit, it ensures
onsisten
y in the d-state of the devi
e at all the
lients.

33

Chapter 4Implementation Ar
hite
tureIn this
hapter, we des
ribe our implementation of the proposed NFS extensions.We have implemented both the
lient and the server parts of the design within theLinux 2.2.9 kernel. We �rst give an overview of our implementation ar
hite
ture.We then des
ribe the server side and the
lient side implementation respe
tively.Finally we des
ribe the devi
e spe
i�
 implementation aspe
ts for terminal devi
es.4.1 OverviewOur ar
hite
ture
leanly separates the devi
e independent
ode from the devi
e de-pendent
ode, at both the
lient and the server end. The overall implementationar
hite
ture is shown in Figure 4.1. The
lient side implementation
onsists of theremote devi
e driver, NFS
lient extensions and the kernel poll thread. The NFS
lient extensions
omprise of the fun
tions implementing the NFS proto
ol pro
e-dures and XDR fun
tions for en
oding and de
oding their arguments and results.These XDR fun
tions use the devi
e spe
i�
 XDR fun
tions to en
ode and de
odethe d-state of the devi
e, asso
iated with every request and response. The remotedevi
e driver translates the input-output operation on the remote devi
e to NFSrequests, whi
h are sent to the server for exe
ution. It also maintains the d-state ofthe devi
e at the
lient side for the purpose of
rash re
overy. The kernel pollingthread at the
lients polls the remote devi
es on behalf of the requesting pro
esses.34

User
Process

User
Process

NFS Client

extension

Conversion

Module

Remote
Device
Driver

Poll
Thread

NFS Protocol Conversion

Module extension

NFS Server

Device
state state

Device

Driver
Device
Native

Device

Major No Major No

Device
Switch

State Restoring
and

module
State Retrieval

State Restoring
Switch

State Retrieval
Switch

Device
Switch

Enc-Dec
Functions

Enc-Dec
For

d-state
ForFunctions

d-state

Figure 4.1: Overall Ar
hite
tureThis s
heme for polling is essential for implementing the sele
t system
all and isexplained in detail in Se
tion 4.2.1.The server side implementation
onsists of NFS server extensions and the devi
estate restoration and retrieval module. The NFS server extensions
omprise of theimplementation of NFS proto
ol pro
edures and their
orresponding XDR fun
tion-s. These XDR fun
tions use the devi
e spe
i�
 XDR fun
tions for en
oding andde
oding the d-state of the devi
e as done at the
lient side as well. The NFS serverimplementation uses the VFS/Vnode interfa
e to intera
t with the a
tual devi
e. In
ase of a server
rash, the devi
e state restoration and retrieval module at the server,is responsible for restoring the state of the devi
e to the one prior to the
rash. Italso asso
iates the latest d-state of the devi
e with the results of every input-outputrequest.Together, these �ve
omponents
onstitute the
omplete framework of transpar-ent remote devi
e a

ess. These modules are explained in detail in later se
tions. Wenow provide a brief overview of the fun
tioning of the remote devi
e a

ess system.To a

ess the devi
es of a server, the
lients mount the dire
tory
ontaining35

devi
e �les of a server through the mount proto
ol asso
iated with NFS. The serverdoes not expose lo
al major numbers of the devi
es to the
lients. The
lientstherefore see the major numbers of the devi
es as modi�ed by the major number
onversion module. At the
lient side all input-output operations on the remotedevi
e are handled by remote devi
e driver for that devi
e. When a pro
ess at the
lient opens a devi
e �le of a remote devi
e, the NFS lookup request is sent to theserver to obtain the �le handle of the devi
e �le. After obtaining the �le handle, theopen fun
tion of the remote devi
e driver at the
lient is invoked. The open fun
tionis used to
onstru
t the d-state of the devi
e at the
lient. Subsequent operationson the remote devi
e requested by the pro
ess are translated by its remote devi
edriver into one or more NFS requests to the server. Along with the �le handle andarguments, the d-state of the devi
e is also embedded in su
h NFS requests. Thein
lusion of the d-state makes ea
h NFS request self
ontained and independent ofprevious requests for the operation on the same devi
e.At the server the devi
e requests are handled by the major number
onversionmodule. This module translates the major number in the request to the lo
al devi
emajor number. Further pro
essing of the request depends upon the state (open or
losed) of the devi
e for whi
h the request is made. A
losed devi
e indi
ates thateither no request was made for the devi
e earlier or the devi
e was not a

essed fora long period (and therefore was automati
ally
losed by the NFS server) or theserver was rebooted after a
rash. In these situations, the Devi
e state restorationand retrieval module opens the devi
e and restores its state to the one embeddedin the request. For an already opened devi
e, the request does not require thereopening of the devi
e.The devi
e requests are then translated through the VFS/Vnode interfa
e intothe
orresponding devi
e driver fun
tions. After pro
essing the request, the resultsand the latest d-state of the devi
e are sent ba
k to the
lient. On the
lient side,the devi
e driver either returns
ontrol to the user pro
ess or retransmits the requestafter some time, depending upon the response.
36

4.2 Client Side ImplementationThe extensions made to the NFS proto
ol at the
lient side have two parts. Thedevi
e independent part and the devi
e dependent part. The devi
e independentpart
onsists of the NFS pro
edures, their XDR fun
tions and the kernel poll thread.The devi
e dependent part
omprises of the remote devi
e driver and the XDRfun
tions for en
oding and de
oding the d-state of the devi
e.4.2.1 Devi
e Independent ModulesWe now des
ribe in brief the devi
e independent parts of the implementation of NFS
lient extensions.NFS Pro
eduresThere are three fun
tion
orresponding to the newly added pro
edures of NFS pro-to
ol viz., readdevi
e, writedevi
e, and io
tl. The remote devi
e driver (as explainedlater) uses this interfa
e to send requests for the remote devi
e to the server andre
eive responses from the server.XDR fun
tionsThere are two fun
tions for ea
h of the three newly added NFS pro
edures. Onefun
tion is used for en
oding the arguments of NFS request to XDR representationand se
ond is used for de
oding the response in XDR representation to native form.These fun
tions use the devi
e spe
i�
 XDR fun
tions to en
ode and de
ode thed-state of the devi
e embedded in every request and response.Kernel Poll ThreadThe poll system
all allows a pro
ess to
he
k whether a devi
e or so
ket is ready forinput-output, without a
tually requesting an input-output operation. This allowsa pro
ess to read from a devi
e only when data is present, otherwise
ontinue itsregular pro
essing. Polling is parti
ularly helpful when a pro
ess is monitoring many37

devi
es for input. However polling is wasteful is terms of pro
essing power, as thepro
ess itself has to repeatedly
he
k the devi
e status. Its variant, the sele
t system
all allows a pro
ess to
he
k data availability on multiple devi
es or so
kets withoutrepeatedly
he
king the devi
e status. In
ase of sele
t system
all, the kernel noti�esthe pro
ess whenever the devi
e status
hanges.Our implementation of poll and sele
t
alls uses a kernel thread named ker-nel poll thread and a linked list
alled nfs_poll_issued. The poll system
all fora remote devi
e, pla
es the information required for polling a remote devi
e as anentry in the nfs_poll_issued list. The kernel poll thread uses the information s-tored in the nfs_poll_issued and sends a NFS poll-io
tl request (des
ribed later)for polling the remote devi
e. The poll mask re
eived in the response is stored inthe nfs_poll_issued, whi
h is later returned to the requesting pro
ess.The entries in the nfs_poll_issued list
ontain the
omplete information requiredfor sending NFS request to poll remote devi
e. Some of the important �elds of anentry in nfs_poll_issued list are des
ribed below.nfs_server: This stru
ture
ontains the information (e.g. hostname) of the NFSserver hosting the remote devi
e to be polled.nfs_fh: This stru
ture is the �le handle of the devi
e �le of the remote devi
e tobe polled.devi
e: This integer stores the major and minor numbers of the devi
e being polled.The major in this list is the native major number of the
lients operatingsystem for that remote devi
e. It is
onverted to the NFS wide major numberbefore sending the request to the server.timeout: The time interval between two su

essive polling requests. The pollingthread retries a poll request only after the expiration of this
ounter. Thetimeout value is in
reased ea
h time the NFS poll request for the remotedevi
e is unsu

essful. This �eld is used by the implementation of the sele
tsystem
all. 38

wait_address: This �eld represents the wait_queue on whi
h the pro
esses sleep,while the kernel poll thread polls the remote devi
e. This �eld is also used inthe implementation of the sele
t system
all.
ompleted: This �ag indi
ates whether the poll request on the remote devi
e has
ompleted su

essfully or not. A request is not su

essful be
ause the devi
ehas no data to be returned.nos_pro
: This �eld indi
ates the number of pro
esses polling on the remote devi
erepresented by this entry.properties: This �eld points to the d-state of the polled remote devi
e.Poll System Call: As explained earlier the extended NFS does not in
lude apro
edure for polling a remote devi
e. Request to poll a remote devi
e are sent asNFS io
tl request to the NFS server for exe
ution. We refer su
h an NFS request aspoll-io
tl request. The poll system
all is implemented using the kernel poll thread.The kernel poll thread uses the NFS poll-io
tl request to poll the remote devi
e asexplained above.Sele
t System Call: As mentioned earlier sele
t is a blo
king system
all andrequires a noti�
ation from the kernel to the pro
ess. The kernel poll thread isintrodu
ed to implement the sele
t system
all. In implementation of other blo
kingoperations (e.g. read), the devi
e driver retries the NFS pro
edure in the
ontext ofthe requesting pro
ess. The same mode of operation for sele
t makes it equivalentto poll. Hen
e in our approa
h the sele
t system
all is implemented using kernelpoll thread.When a pro
ess makes a sele
t system
all with a remote devi
e as one of itsarguments, it is handled by the poll fun
tion of remote devi
e driver. This fun
-tion pla
es a stru
ture
ontaining �le handle, server address, poll arguments, timewhen to issue next poll and other information (as des
ribed earlier) into the nf-s_poll_issued linked list and sleeps on the wait-queue asso
iated with this entry.39

Upon the timeout, the kernel poll thread re-sends an NFS poll-io
tl request to theserver, using the information from the entry. On su

ess the
ompleted �ag is up-dated and the waiting pro
ess is woken up. In
ase of unsu

essful poll, the timeinterval for retransmission is set by the retransmission algorithm spe
i�
 to thatdevi
e, and the entry is pla
ed in the linked list again. When the sleeping pro
esswakes up, it
he
ks the entry in the linked list. If entry is marked
ompleted, thenit removes the entry from the linked list and returns with the poll mask stored. Ifentry indi
ates unsu

essful poll and the appli
ation spe
i�ed timeout for sele
t haso

urred, the devi
e driver retries the NFS poll-io
tl request and returns with thepoll mask returned by the server in response.The retransmission algorithm used by the kernel poll thread for de
iding thetimeout for retransmissions depends on the kind of devi
e being polled. The kernelpoll thread uses retransmission timeout swit
h and the major number of a devi
efor de
iding the timeout period. The retransmission timeout swit
h is an array ofpointers indexed by the major number of devi
es. Its ea
h entry refers to a tabledes
ribing su

essive retransmission timeout values for ea
h kind of devi
e.4.2.2 Devi
e Spe
i�
 ModulesThe devi
e dependent modules of the NFS
lient extensions
onsists of devi
e spe
i�
XDR fun
tions and the remote devi
e driver, whi
h are explained in detail below.Devi
e Spe
i�
 XDR fun
tionsThe devi
e spe
i�
 XDR en
oding-de
oding routines are used for two purposes.First, they are used for
onversion of devi
e spe
i�
 arguments (for example thoseof io
tl) and results of NFS pro
edures between the native and the XDR represen-tations. Se
ondly, they are used to en
ode and de
ode the d-state of the devi
easso
iated with ea
h NFS request and response.
40

Remote Devi
e DriverThere is one remote devi
e driver at
lient
orresponding to ea
h type of remotedevi
e. The remote devi
e driver hides the physi
al lo
ation of the devi
e andmakes the a

ess to remote devi
e transparent. The main purpose of the remotedevi
e driver is to translate the input-output operations on remote devi
e to one ormore NFS requests to the server. Upon re
eiving the response the remote devi
edriver de
ides to retry the NFS request after some time interval or return to thepro
ess, depending upon the input-output semanti
s of the devi
e and nature ofthe request. It also implements blo
king semanti
s of devi
e input-output for the
lients. The blo
king semanti
s is implemented by retransmitting the request untilit is exe
uted su

essfully at the server.The remote devi
e driver also en
apsulates the d-state of the devi
e that isrequired for
rash re
overy of the server and is sent with every NFS request on thedevi
e. It maintains this d-state using the state re
eived with ea
h response fromthe server.4.3 Server Side ImplementationIn this se
tion we des
ribe the implementation of the server side NFS extensions.At the server, a new servi
e model is introdu
ed for the newly added pro
edures ofextended NFS proto
ol. The new servi
e model is a modi�ed form of the servi
emodel of original NFS proto
ol.4.3.1 Servi
e ModelThe NFS server is primarily designed to handle the requests for the remote �le oper-ations. A possible stateless algorithm for handling remote �le requests is des
ribedas follows.servi
e_request(request) {open �leexe
ute the requested operation 41

send response to the
lient
lose �le}This servi
e model is however not useful for implementing the devi
e operations overNFS. This is primarily be
ause the
losure of the devi
e �le with ea
h request on theserver will destroy the devi
e state at the server. We require the devi
e state at theserver even when no request is being served. For example, the terminal driver whenput in non e
ho mode should not e
ho any keystrokes even if the appli
ation has notmade any request to read the data. To implement su
h semanti
s we
hanged theservi
e model for NFS requests on devi
es. A devi
e is opened by the NFS serverwhen the �rst NFS request for its a

ess is re
eived. At this time, the state of thedevi
e is set using the d-state in
luded in the request. The devi
e is not
losedafter an operation so that devi
e state persists a
ross two devi
e operations. Themodi�ed servi
e model is des
ribed as follows.servi
e_request(request) {if (the requested devi
e is not open) {open the devi
eset the state using the d-state in request}exe
ute the requested devi
e operationsend response ba
k to the
lient} This s
heme however has a small drawba
k in whi
h the devi
e on
e opened willnever be
losed. Note however, that this does not introdu
e any in
onsisten
y in thedevi
e behavior. For resour
e optimizations we implemented a s
heme where in thedevi
e is
losed by the server after absen
e of requests on it for a signi�
antly largeamount of time. Thus the memory used by various data stru
tures of the devi
edriver will be freed when a
lient pro
ess
eases to a

ess the devi
e.42

4.3.2 Devi
e Independent ModulesThe devi
e independent part of the server implementation of the extended NFS pro-to
ol
omprises mainly of the server pro
edures, their XDR fun
tions and routinesthat provide interfa
e to the devi
e driver fun
tions.Devi
e Interfa
eAs dis
ussed in the design, the NFS requests at the server are translated throughVFS/Vnode interfa
e into
orresponding devi
e driver fun
tions. In order to keepthe interfa
e between NFS server and native devi
e driver
lean and minimize therequired
hanges, we have provided four fun
tions � opendevi
e, readdevi
e, writ-edevi
e and io
tldevi
e. These fun
tions provide the interfa
e to the existing devi
edriver fun
tions. They use a �le table entry to store the pointer to devi
e driverfun
tions and its private data stru
tures. The �le table entry on
e allo
ated, is usedby these pro
edures to serve subsequent requests on the devi
e. We now des
ribethese fun
tions brie�y.Opendevi
e: As dis
ussed earlier, the servi
e model of the new pro
edures re-quires a devi
e to remain open on
e a request for that devi
e is re
eived at theserver. The pro
essing of the request on a devi
e depends upon whether the devi
eis found in open or
lose state. This fun
tion is used for the devi
e state dependentpro
essing of a request. It is responsible for obtaining the �le table entry
orre-sponding to the devi
e �le on whi
h the operation is to be issued. To provide theneeded fun
tionality it maintains a linked list
alled open_devi
es, whi
h stores in-formation about devi
es that are
urrently open. A typi
al entry in open_devi
es
ontains the major and minor numbers and the �le table entry of the �le
orre-sponding to the devi
e. Before any NFS request on devi
e is served, this fun
tionsear
hes the open_devi
es linked list for an entry
orresponding to that devi
e. Ifan entry for that devi
e is found, the
orresponding �le table entry is returned. Ifthe entry is not found in the open_devi
es, a new �le table entry is allo
ated. Theentry is initialized and stored in the open_devi
es list. In this
ase the fun
tion alsoinvokes the devi
e spe
i�
 fun
tions to restore the devi
e state. The d-state in the43

request is used for restoring the devi
e state. Finally a pointer to the �le table entryis returned.Readdevi
e: This fun
tion is the interfa
e to Vnode fun
tion for reading from adevi
e. It uses the implementation of the Vnode fun
tion provided by the existingdevi
e drivers. Using the opendevi
e fun
tion it obtains the �le table entry
orre-sponding to the �le through whi
h the devi
e is a

essed and invokes the Vnoderead operation of the native devi
e driver. The read operation of the devi
e driveris issued in a non-blo
king mode. If the operation
ompletes without blo
king, itsresult is en
oded and sent ba
k to the requesting
lient. Otherwise if the operation isrequired to blo
k in the devi
e driver, a spe
ial status is sent ba
k to the requesting
lient. This ensures a bounded response time to the
lients, even for blo
king readoperation. The result of the read operation and the d-state of devi
e are returnedto the NFS server pro
edure whi
h are then sent ba
k to the
lient.Writedevi
e: This fun
tion, similar to the readdevi
e fun
tion, is the interfa
e toVnode fun
tion for writing to a devi
e. It uses the implementation of the Vnodefun
tion provided by the existing devi
e drivers. Using the opendevi
e fun
tion, itobtains the �le table entry
orresponding to the devi
e �le and invokes the Vnodewrite operation of the devi
e. Similar to the read operation the write operation ofthe devi
e driver is also issued in a non-blo
king mode, thus ensuring a boundedresponse time to the
lients. The result of the write operation and the latest d-stateof devi
e are returned to the NFS server pro
edure whi
h are then sent ba
k to the
lient.Io
tldevi
e: This fun
tion modi�es the d-state of the devi
e at the server. Sin
ethe d-state and the io
tl
ommands sent with the request are spe
i�
 to a devi
e, thedevi
e spe
i�
 fun
tions are used to modify the d-state of the devi
e. This fun
tiontherefore uses the devi
e state restoration swit
h for modifying the d-state of thedevi
e. The implementation and fun
tioning of devi
e state restoration swit
h isexplained later. After modifying the devi
e state, the d-state of the devi
e and theresults of io
tl
ommands are returned ba
k to the NFS server pro
edure to be sent44

ba
k to the
lient.NFS Pro
eduresThere are three fun
tion
orresponding to the newly added NFS pro
edures readde-vi
e, writedevi
e, and io
tl. At the server, after getting the de
oded arguments, thesepro
edures invoke the
orresponding devi
e interfa
e routines explained above. Theresults are
onverted into XDR representation before sending them to the
lients.XDR fun
tionsFor ea
h of the three new pro
edures, there are two XDR fun
tions � one for de
odingthe arguments of the request and se
ond for en
oding the results. The request andthe response in
lude the d-state and some devi
e spe
i�
 arguments (in
ase of io
tl),whi
h are spe
i�
 to a devi
e. Hen
e, these fun
tions use the devi
e spe
i�
 XDRfun
tions for en
oding and de
oding the d-state of the devi
e and arguments of io
tlrequests.4.3.3 Devi
e Spe
i�
 ModulesThe devi
e spe
i�
 modules at the server side in
lude the devi
e state restorationand retrieval module, and the XDR en
oder-de
oder fun
tions for the d-state.XDR En
oder-De
oder Fun
tions for d-stateThese fun
tions
onvert the d-state sent along with the request from XDR repre-sentation to native format and from native to XDR representation when d-state issent along with the response. Some io
tl
ommands and their arguments
an also besent to the server to be exe
uted. This fun
tion �rst de
odes su
h io
tl
ommandsand then
onvert their arguments from XDR representation to native one.
45

Devi
e State Restoration and Retrieval ModuleThis module provides a
lean and well de�ned interfa
e between the devi
e indepen-dent and devi
e dependent pro
essing of an NFS request on a devi
e at the server.It is responsible for restoring the d-state of the devi
e to the one embedded in therequest if the devi
e is not found in open state. The same module is responsible forhandling the devi
e spe
i�
 io
tl pro
essing. The module also provides the latestd-state of the devi
e whi
h is sent along with the response to the
lient. There arethree major data stru
tures maintained by this module. These are used by the NFSserver for handling the d-state of the devi
e. The data stru
tures and their use isdes
ribed as follows.Open Devi
e List: This list
alled open_devi
es, as dis
ussed earlier, is used toidentify the open instan
es of the devi
es at the server.State Restoring Swit
h: The devi
e state restoration part of this module main-tains two state restoring swit
hes similar to the devi
e swit
hes, one for
hara
terdevi
es and se
ond for blo
k devi
es. The state restoring swit
h is an array of fun
-tion pointers whi
h is indexed by major number. Ea
h entry points to a fun
tionthat is used for modifying the d-state spe
i�
 to the devi
e with that major number.For example, the fun
tion for modifying the d-state of a devi
e whose major numberis i
an be found at an index i of the array. This fun
tion uses the d-state embeddedin the request and di�erent io
tl
ommands provided by the native devi
e driver torestore the d-state of the devi
e.As explained earlier, the NFS io
tl request in
ludes the d-state of the devi
eas its argument. This d-state is to be used to set the state of the devi
e at theserver. In our implementation the state restoring module also handles the NFS io
tlrequest. However for some io
tl
ommands the
lient sends the arguments along withthe io
tl request, whi
h are pro
essed at the server. Thus the devi
e spe
i�
 staterestoring fun
tion needs to handle these
ases as well. This fun
tion uses equivalentio
tl
ommands provided by the native devi
e driver at the server to perform theio
tl requested by the
lient. 46

State Retrieval Swit
h: The devi
e state retrieval part of this module maintainstwo state retrieval swit
hes, one for
hara
ter devi
es and one for blo
k devi
es.Similar to the state restoration swit
h, state retrieval swit
h is also an array offun
tion pointers indexed by the major number. These fun
tions are meant forretrieving the devi
e spe
i�
 d-state to be sent with the response. Ea
h devi
e hasdi�erent d-state and hen
e has di�erent methods to retrieve this state of the a
tualdevi
e. The suggested method of retrieving the d-state of a devi
e, is using di�erentio
tl
ommands (spe
i�
 to the devi
e) through the VFS/Vnode interfa
e. The stateretrieval fun
tion hides the devi
e spe
i�
 pro
essing needed to retrieve the d-stateof the devi
e at the server.4.4 Terminal Spe
i�
 ImplementationIn the extended NFS proto
ol, the devi
e spe
i�
 part of a devi
e that
an bea

essed remotely is to be provided. We have implemented the support for theremote a

ess to terminals using the extended NFS proto
ol. In this se
tion wedes
ribe this implementation.4.4.1 D-stateThe most important thing in providing remote a

ess to a devi
e is to identify thed-state of that devi
e. For terminals, the d-state
omprises of three �elds � termiosstru
ture, winsize stru
ture and the line dis
ipline. The
ontents of these stru
turesand their use des
ribed is as follows.Termios is the stru
ture that
ontains all the
hara
teristi
s of a terminal devi
ethat
an be examined and
hanged. This is the most important part of thed-state of the terminals. It
ontains four sets of �ags and an array of
ontrol
hara
ters. The de
laration of this stru
ture on Linux is shown below.stru
t termios {t
flag_t
_iflag;t
flag_t
_oflag; 47

t
flag_t
_
flag;t
flag_t
_lflag;

_t
_

[NCCS℄;};The
_i�ag stores the input �ags that
ontrol the input of
hara
ters by theterminal devi
e driver (strip the eight bit on input, enable input parity
he
k-ing, et
.). The
_o�ag stores the output �ags that
ontrol the driver output(expand tabs to spa
es, map newline to CR/LF, perform output pro
essing,et
.). The
_
�ag stores the
ontrol �ags that
ontrol the RS-232 serial lines(odd or even parity, send one or two stop bits, et
.). The
_l�ag are the lo
al�ags whi
h a�e
t the interfa
e between the terminal driver and the user (e
hoon or o�, enable terminal generated signals, visually erase
hara
ters, et
.).Winsize stru
ture keep tra
ks of the
urrent terminal window size. This helps innotifying the foreground pro
ess group when the size of the terminal window
hanges. The �elds of this stru
ture are given below.stru
t winsize {unsigned short ws_row;unsigned short ws_
ol;unsigned short ws_xpixel;unsigned short ws_ypixel;};The ws_row and ws_
ol �elds indi
ate the number of rows and the numberof
olumns in
hara
ter unit for the terminal window. The horizontal size andverti
al size in pixel units are indi
ated by the �elds ws_xpixel and ws_ypixelrespe
tively. In Linux, ws_xpixel and ws_ypixel �elds are not used
urrently.line dis
ipline is a number that identi�es the line dis
ipline used by the devi
edriver at the server. The line dis
ipline is the part of terminal driver respon-sible for interpreting the input and output. Depending upon the mode of the48

terminal, the raw data sequen
e typed at the keyboard is
onverted to the de-sired form before it is given to a pro
ess. Similarly output sequen
es writtenby a pro
ess is
onverted to the format as desired by the user for the outputon the terminal.4.4.2 Server partAs mentioned earlier, the devi
e spe
i�
 part of the server implementation of ex-tended proto
ol
onsists of the
ode that handles the d-state of the devi
e sent alongwith the NFS requests and their response. There are two modules in the proto
olimplementation that handles the d-state of the terminal at the server.Devi
e State Restoration and Retrieval ModuleFor the terminals the devi
e state restoration fun
tion uses the io
tl fun
tion of thenative terminal driver to set the d-state of the terminals using the one in
luded inthe request. Typi
al io
tl
ommands used are TCSETS, whi
h sets the termios ofthe terminal and TIOCSETD, whi
h
hanges the line dis
ipline used by the terminaldriver and TIOCSWINSZ, whi
h sets the window size of the terminal.As explained earlier, the devi
e state restoration fun
tion also handles the devi
espe
i�
 io
tl pro
essing. The modi�ed d-state with the io
tl request is used to setthe state of the devi
e as explained above. The io
tl
ommands for terminals thatrequire arguments to be send to the server to be exe
uted there, are the following.TIOCCONS: This
ommand is used to redire
t the
onsole input-output to aparti
ular terminal.TIOCSTI: This
ommand is used to pla
e a
hara
ter into the read bu�er of theterminal. The
hara
ter is treated as if it is a
tually read from the terminal.TCXONC: This
ommand is used to suspend or start the output and/or input toa terminal.TCFLSH: This io
tl
ommand is used to �ush the input and/or output bu�ersasso
iated with the terminal. 49

TIOCOUTQ: This
ommand is used to �nd out the length of the output queueasso
iated with the terminal.TIOCINQ: This
ommand is used to �nd out the length of the input queue asso-
iated with the terminal.POLL: This io
tl
ommand is used to retrieve the poll mask of the devi
e.The server exe
utes these io
tl
ommands using the io
tl fun
tion of the nativeterminal devi
e driver and sends the results ba
k to the
lients.The state retrieval fun
tion for the terminal also uses the io
tl fun
tion of thenative terminal driver to get the latest d-state of the devi
e after the operation.Typi
al io
tl
ommands used to obtain this d-state are TCGETS, whi
h retrievesthe termios stru
ture of the terminal and TIOCGETD, whi
h retrieves the numberof line dis
ipline used by the devi
e driver and TIOCGWINSZ, whi
h get the winsizestru
ture of the terminal.4.4.3 Client PartThere are two terminal spe
i�
 modules at the
lients - remote terminal driver andXDR fun
tions for en
oding and de
oding of the d-state of the terminals. XDRfun
tions have been des
ribed earlier.Remote Terminal DriverThe remote terminal driver implements the Vnode fun
tions using the pro
eduresof extended NFS and maintains the d-state of the terminals. The implementationstru
ture of the remote terminal driver is kept identi
al to the Linux terminal driverand is shown in Figure 4.2.Data Stru
tures: The major data stru
tures asso
iated with the remote terminaldriver are � tty_driver, tty_ldis
, tty_stru
t, termios, winsize. These data stru
turesstore the various information needed for devi
e driver fun
tioning and interfa
ingwith the Linux kernel. 50

File System Interface

Upper Layer Driver Routine

Line Discipline InterfaceConsole Driver Interface

Lower Layer Driver Routines Line Discipline RoutinesFigure 4.2: Terminal Driver Stru
turetty_driver: The remote terminal driver stores the tty_stru
t and termios stru
-tures
orresponding to ea
h remote terminal it is handling. This stru
ture alsode�nes the interfa
e between the lower-layer terminal driver and the upper-layer terminal interfa
e routines. The remote terminal driver need not imple-ment any fun
tion of this interfa
e, as the lower-layer driver fun
tions are usedto intera
t with the physi
al devi
e interfa
e.tty_ldis
: This stru
ture de�nes the interfa
e between terminal line dis
ipline andthe upper-layer terminal interfa
e routines. Sin
e the a
tual line dis
iplinepro
essing is done at the server, the remote terminal driver need not implementmost of the fun
tions of this interfa
e. However, it implements the io
tl andpoll fun
tion of the interfa
e, whi
h are used for sending
orresponding requeststo the server, for exe
ution.tty_stru
t: This stru
ture is used to store all of the state asso
iated with a tty,while the tty is open. The main information in
ludes, pointers to low-level ter-minal_driver interfa
e, pointer to line dis
ipline interfa
e, pointer to termiosand winsize stru
tures. It also stores the
ount of number of pro
esses thathave opened this terminal, and major-minor number of the terminal devi
e forwhi
h the stru
ture is being used. This stru
ture is allo
ated when a
losedterminal is opened and deallo
ated when the last pro
ess whi
h has the ter-minal open,
loses it. 51

termios: At the
lient this stru
ture is stored and maintained for
rash re
overy,it does not a�e
t the a
tual pro
essing. The termios stru
ture of the devi
edriver at the server is responsible for the a
tual pro
essing of the input-output.The termios state is maintained even when the terminal is
losed.winsize: The winsize stru
ture is maintained to keep tra
k of the
urrent terminalwindow size. This helps in notifying the foreground pro
ess group when thesize of the terminal window
hanges.Fun
tions: Some of the Vnode operations are not appli
able for terminals andare not implemented. For example, lseek fun
tion, returns error be
ause a pro
ess
annot seek on a terminal.Open: Opening of a remote terminal by an appli
ation at the
lient results in allo-
ation and initialization of data stru
tures of the remote terminal driver. Theremote terminal driver does not send any NFS request to the server on openinga terminal. If a remote terminal is opened for the �rst time (after booting), theremote terminal driver allo
ates and initializes termios, tty_stru
t and winsizestru
tures. If a
losed remote terminal is opened, then only tty_stru
t andwinsize are allo
ated and initialized. If an already opened remote terminal isreopened, the remote terminal driver returns a pointer to the tty_stru
t andwinsize stru
tures already allo
ated after in
rementing their use
ount. This isused to keep a
ount of the number of open instan
es. The data stru
tures arefreed when the last pro
ess a

essing the terminal
loses it. For future refer-en
e, a pointer to the tty_stru
t is stored in the �le table entry
orrespondingto the devi
e �le.Read: The read pro
edure for terminals is
omplex as it has to handle variousmodes of terminal input. The pro
edure �rst validates the �le handle and �leattributes of the remote devi
e �le. It then allo
ates a kernel bu�er for read-ing
hara
ters from remote terminal. This fun
tion uses di�erent algorithmsfor reading from remote terminal depending upon the mode of the terminal(
anoni
al or non-
anoni
al). The data is read from the a
tual devi
e at the52

server using the readdevi
e NFS pro
edure. Along with the readdevi
e request,it also sends the d-state of that terminal. On re
eiving the response of therequest, the d-state embedded in the response is used to update the d-state ofthe terminal at the
lient.Here we des
ribe the various modes of the terminal input and their UNIXsemanti
s. Then we explain how these modes and their semanti
s are imple-mented by the remote terminal driver.Canoni
al In this mode terminal input is pro
essed as lines. The terminaldriver returns at most one line per read request, where a line is thesequen
e of
hara
ters up to a end-of-line
hara
ter. If the number of
hara
ters entered by the user are more than requested in read, then onlythe requested number of
hara
ters are given to the read request. No
hara
ters are lost after the partial read and the next read starts wherethe previous read stopped. This mode re
ognizes and pro
esses spe
ialinput
hara
ters su
h as ba
kspa
e, new-line and key
ombination forgenerating signals. This mode blo
ks the reading pro
ess till the driverre
eives the end-of-line
hara
ter.The remote terminal driver blo
ks the reading pro
ess and sends a NFSreaddevi
e request to the server. The request either returns the requestednumber of
hara
ters (possibly less) or a spe
ial status to retry the oper-ation. If the request returns a spe
ial status to the
lient, this fun
tionswaits (sleeps) and retry the operations with exponentially in
reasing timeinterval until the requested number of
hara
ters (possibly less) are readfrom the server. If the number of
hara
ters to be read is greater thanthe maximum size of a NFS request, then a single read request is brokeninto two or more NFS readdevi
e requests. In su
h a
ase, the
lient �rstsends only one request, of the multiple NFS readdevi
e requests. If thenumber of bytes in the response of the �rst NFS request equals maximumsize of a response then only the se
ond NFS request is sent. This ensuresthe semanti
s of read, even if the read request spans a
ross multiple NFSrequests. 53

Non-
anoni
al In non-
anoni
al mode input data is not assembled into lines.This mode also turns o� the pro
essing of spe
ial
hara
ters and signalgenerating key
ombinations. The read request returns depending uponthe values of two variables MIN and TIME in
_

 array in the termiosstru
ture. MIN spe
i�es the minimum number of bytes before a readreturns and TIME spe
i�es the number of tenths-of-a-se
ond to wait fordata to arrive. There are four possible sub-modes depending upon thevalues of these two variables.Case A: MIN > 0, TIME > 0In this
ase TIME spe
i�es value of a timer that is started only when the�rst byte is re
eived. If MIN bytes are re
eived before the timer expires,read returns MIN bytes. If the timer expires before MIN bytes are re-
eived, read returns the bytes re
eived. This blo
ks the reading pro
essuntil the �rst byte is re
eived, thus at least one byte is returned to thereading pro
ess.The remote terminal driver keep sending NFS readdevi
e requests untilone or more bytes are re
eived from the server. If the number of bytesread are equal to MIN then the read returns. Other wise it starts a timerwhi
h expires after TIME tenths-of-a-se
ond. After the timer expires the
lient sent another readdevi
e request and tries to read at the server, ifthere are some more bytes to be read. It then returns with the numberof bytes read up to now.Case B: MIN > 0, TIME = 0The read does not return until MIN bytes are re
eived, thus inde�nitelyblo
king the reading pro
ess.The remote terminal driver keeps sending NFS readdevi
e requests to theserver, with exponentially in
reasing time interval between su

essive re-tries, until MIN number of bytes are read from the server.
54

Case C: MIN = 0, TIME > 0In this
ase, TIME spe
i�es value of a timer that is started when read is
alled. The read returns when a single byte is re
eived or when the timerexpires.In this
ase the remote terminal driver issues a NFS readdevi
e requestto the server to read a byte. If the response
ontains some bytes read,read returns. Otherwise, if the server returns a status to try again, theremote terminal driver starts a timer for TIME tenths-of-a-se
ond. Af-ter expiry of the timer the driver issues another NFS readdevi
e requestto the server to read a single byte and returns with the response obtained.Case D: MIN = 0, TIME = 0In this sub-mode, if some data is available then read returns up to thenumber of bytes requested. Otherwise if no data is available read returnsimmediately.The remote terminal driver in this sub-mode issues the NFS readdevi
erequest on
e. If some bytes are read from the server, read returns withthe read bytes else it returns zero.Write: The implementation of write fun
tion is simpler than that of the read.It uses the NFS writedevi
e pro
edure to write data on to remote terminal.If the number of bytes to write is more than the maximum size of an NFSrequest, then two or more NFS writedevi
e requests are sent to the server. Thealgorithm for sending the multiple NFS writedevi
e requests
orresponding toa single write request from appli
ation is same as the one for read. After theresponse of the �rst NFS request is re
eived, the se
ond NFS request is sent.This s
heme is required for
orre
t ordering of writes at the server. Beforesending the writedevi
e request, this fun
tion validates the �le handle and�le attributes of the remote terminal �le. After re
eiving the response of therequest from the server, the d-state embedded in the response is used to updatethe d-state of the terminal at the
lient.55

Io
tl: The terminals provide a large number of io
tl
ommands, whi
h are han-dled at two levels � upper layer io
tl routine and line dis
ipline io
tl routine.The io
tl
ommands that retrieve some state information are served at the
lient itself, using the d-state of the terminals maintained at the
lients. Theio
tl
ommands that modify the state of the terminals are made to modifythe d-state maintained at the
lients. The modi�ed d-state of the terminalis then sent to the server in NFS io
tl request. The arguments of the io
tl
ommands, whi
h are to be exe
uted at the server, are sent to the server usingthe NFS io
tl request. Some io
tl
ommands are not appli
able for the remoteterminals a

essed through this s
heme. Examples of su
h io
tl
ommands arelisted below.TIOCEXCL: It marks the terminal for ex
lusive use. No other pro
ess (ex-
ept with superuser privileges)
an open the terminal after it is markedfor ex
lusive use. This io
tl
ommand is not supported by remote ter-minal driver be
ause NFS
annot guarantee ex
lusive use of the terminala
ross di�erent
lients.TIOCNXCL: It
lears the terminal, marked for ex
lusive use. Sin
e a remoteterminal
annot be marked for ex
lusive use, this io
tl
ommand is alsonot supported.TIOCSCTTY: If the terminal is not the
ontrolling terminal of a session,then this io
tl
ommand sets it as the
ontrolling terminal of the
allingpro
ess. As explained earlier, this s
heme does not allow for remote
ontrolling terminals. Therefore this io
tl
ommand is not supported inthe remote terminal driver.TIOCNOTTY: If the terminal is a
ontrolling terminal of a session, thenthe session leader
an use this io
tl
ommand to disasso
iate itself fromthis terminal. This io
tl
ommand is also not supported by the driver forthe above mentioned reason.TIOCSPGRP: This io
tl
ommand is used to set the foreground pro
essgroup-id of a terminal. The foreground pro
ess group-id of a terminal56

identi�es the pro
ess group to whi
h the terminal generated signals areto be delivered. It is not supported as remote signal delivery is notsupported by this s
heme.TIOCGPGRP: This io
tl
ommand is used to obtain the foreground pro
essgroup-id of a terminal. Sin
e a remote terminal is not asso
iated withforeground pro
ess group, this io
tl
ommand is not supported.TIOCGSID: This io
tl
ommand is used to obtain the session-id of the ses-sion with whi
h the terminal is asso
iated. This io
tl
ommand is notsupported due to above mentioned reason.Close: The
lose fun
tion is used for
lean up a
tivity at the
lient. Similar tothe open fun
tion, the remote devi
e driver does not send any NFS requestto the server on
losing a remote devi
e. If the
losing pro
ess is the lastpro
ess whi
h has opened the terminal, this fun
tion releases the tty_stru
tand winsize stru
tures, and removes pointers from the �le table entry. If thereare other pro
esses whi
h have the same terminal open, it only de
rementsthe
ount maintained in the tty_stru
t stru
ture. The termios stru
ture forterminal is not released.The terminal spe
i�
 modules and the devi
e independent parts of the imple-mentation of NFS extensions, together provides the remote terminal a

essing me
h-anism. Similarly by providing the devi
e spe
i�
 implementation for other devi
es,exempli�ed by the terminal spe
i�
 implementation, one
ould easily provide remotea

ess to them using the extended NFS proto
ol.

57

Chapter 5Performan
e EvaluationIn this
hapter we dis
uss the experiments
ondu
ted to test the fun
tioning of theextended NFS system. Another obje
tive of these experiments was to measure theoverheads asso
iated in a

essing remote devi
es. The measure of the overheadsprovides a means to
on�gure the retransmission algorithm used by the remotedevi
e driver.5.1 Experimental SetupIn these experiments the
lient and the server ma
hines used were both Intel Pentium�II PCs with 128 MB RAM, running Linux kernel 2.2.9. The two ma
hines were
onne
ted through a 10 Mbps Ethernet LAN. The experiments were
ondu
ted innormal working
onditions, i.e., average load on server and average tra�
 in LAN.A dire
tory
ontaining the devi
e �le /dev/tty8
orresponding to a virtual
onsoleof the server was mounted at the
lient. This allows the pro
ess at the
lient toa

ess the
onsole of the server and intera
t with the user sitting on that
onsole.5.2 Fun
tional EvaluationThe fun
tionality of the design and implementation of extended NFS system wasevaluated by exe
uting various existing appli
ations, whi
h make extensive use of58

terminals, over remote terminals a

essed through this system. The system is ableto support the
omplete fun
tionality of the terminals while using all the optionsof these appli
ations. The transparen
y provided by our framework is evident withthe su

essful exe
ution of these appli
ations over the remote terminals, withoutany modi�
ations.The typi
al s
enario of the experiments
omprises of an appli
ation pro
ess ex-e
uting at the NFS
lient, using the remote terminal of NFS server to intera
t withthe user at the server. We exe
uted appli
ations ranging from simpler
ommandssu
h as ls,
at et
. to
omplex appli
ations su
h as vi, shell et
. on remote terminals.The system re
overed transparently even in the
ases of server reboot. If the NFSserver
rashes while an appli
ation at the
lient is using a terminal of the server, theappli
ation is not able to use the terminal till the server reboots. While the serveris rebooting the
lient
ontinues to send its requests. After the server reboots, thestate of the terminal is restored at the server (when the next request from the
lientis re
eived) and the appli
ation at the
lient is able to use the terminal again.5.3 Performan
e EvaluationThe appropriate performan
e measures for our system depend upon the kind ofdevi
e being a

essed. For terminals the primary measure of interest is the responsetime. The response time would determine to what extent the user experien
es an"intera
tive" experien
e. The user of a terminal would expe
t a
hara
ter to appearon the terminal very soon after he/she presses a key. If the terminal is in e
homode, the typed
hara
ters would be e
hoed by the devi
e driver on the server itselfand would therefore appear on the s
reen almost immediately. Consider, however asituation where the terminal is used in a non-e
ho mode by the appli
ation. In su
ha s
enario the user would see the response only after the appli
ation re
eives the
hara
ter typed and displays some output. A typi
al example of su
h a situationwould be the use on an editor su
h as vi. The vi editor puts the terminal in raw modeand assumes the responsibility of e
hoing the typed
hara
ters (in the INPUT mode).In su
h a s
enario, the response time would
riti
ally depend on the algorithm used59

for retransmission of read requests. Sin
e there is no easy way to measure theresponse time, in our experiments we used the user's subje
tive evaluation of thisresponse time to evaluate various retransmission algorithms.Another performan
e measure, whi
h is important for all kind of devi
es, isthe network load. In
ase of terminals one
an easily see the tradeo� between theresponse time and the network load. Redu
ing response time would require frequentretransmissions whi
h would then lead to high network tra�
. Thus one needs totune the retransmission algorithm in a way su
h that while the users experien
esan a

eptable response time, the network tra�
 generated due to retransmission isalso reasonable. The algorithm should also prevent ex
essive retransmission duringlong periods of user non-a
tivity while always ensuring a reasonable bound on theresponse time.We experimented with two retransmission algorithms used for terminals and
ompare them in terms of the network tra�
 generated and the quality of userexperien
e. The two retransmission algorithms di�ered only in the timeouts usedfor retransmissions. Instead of a �xed timeout period (whi
h would mean either alarge response time or high rate of retransmissions even during the period of non-a
tivity), we use a progressively in
reasing timeout value. The maximum timeoutvalue is �xed to ensure a bound on the response time after a long period of non-a
tivity. Figures 5.1 and 5.2 show the su

essive timeout values (in millise
onds) forthe two algorithms used.50, 50, 100, 100, 150, 150, 200, 200, 250, 250, 300, 300, 500, 500, 1000, 1000,1000,......... Figure 5.1: Timeout values used in Algorithm 150, 100, 150, 200, 250, 300, 500, 1000, 1000, 1000,.........Figure 5.2: Timeout values used in Algorithm 2We
ondu
ted the experiments with four users with di�erent typing speeds. Theusers were asked to use vi to type for two minutes, without erasing any
hara
ters.60

We measured the number of NFS requests transmitted (read, write and poll) duringea
h typing session and also asked the users about the quality of their experien
e.5.4 ResultsUser Total Read per Write per Poll perNo Chars
har
har
har1 523 0.933 1.380 12.4362 438 0.929 1.406 10.7693 382 0.893 1.416 9.7934 375 0.885 1.525 9.727Table 5.1: Overhead with Algorithm 1User Total Read per Write per Poll perNo Chars
har
har
har1 519 0.844 1.272 8.2832 447 0.850 1.351 8.8873 414 0.837 1.391 9.1744 382 0.829 1.418 9.756Table 5.2: Overhead with Algorithm 2Table 5.1 shows the the total number of
hara
ters typed by the four users intwo minutes, the number of read, write, and poll requests sent to the server per
hara
ter typed, using Algorithm 1. Table 5.2 shows the same data for the se
ondexperiment in whi
h Algorithm 2 was used.For algorithm 1, the �rst three users reported an a

eptable degree of intera
tiv-ity while the slowest user (user 4) reported an una

eptable quality of intera
tion. It
an also be seen from Table 5.1 that the retransmission of the requests per
hara
terwith this algorithm was substantially higher for the faster users.For algorithm 2, the �rst three users experien
ed poorer intera
tivity as
om-pared with algorithm 1, but was still within a

eptable limits while the slow user61

(user 4) reported una

eptable intera
tivity. Clearly, the number of retransmissionsfor all four users are nearly equivalent and quite less in
omparison to the algorithm1. In both the algorithms, by the time the slow user types a
hara
ter the re-transmission timeout almost rea
hes the maximum possible value. Hen
e he/sheexperien
es a noti
eable delay in the response. We have adopted the algorithm 2in our �nal implementation owing to the redu
ed network tra�
. It was found that
hoosing larger timeout values, further de
reased the number of retransmissions, butresulted in an una

eptable quality of experien
e, even for fast and average users.

62

Chapter 6Con
lusionsIn this thesis we have presented a me
hanism for transparently a

essing the remotedevi
es. We have extended NFS to a

ess the devi
es of an NFS server from the
lients. The extensions preserve the
hara
teristi
 properties of the NFS, espe
iallythe statelessness of the proto
ol and transparent
rash re
overy.The NFS proto
ol is extended to in
lude three new pro
edures, viz., readdevi
e,writedevi
e and io
tl. No
hanges have been made to any of the existing NFSpro
edures. These pro
edures are used by the
lients to a

ess devi
es of the NFSserver. We have also suggested a new servi
e model for these pro
edures at theserver. The requests and responses of these pro
edures also in
lude the d-state ofthe devi
e being a

essed. In
ase of a server
rash, this d-state is used by the serverto set the d-state of the a
tual devi
e.To a

ess the remote devi
es through NFS transparently, the
lients use a remotedevi
e driver. The remote devi
e driver of a devi
e simulates the UNIX semanti
s ofinput-output for that devi
e. It implements the input-output operations requestedby a
lient appli
ation on the remote devi
e using the new NFS pro
edures. It alsomaintains the d-state of the devi
e, whi
h is sent with every request for making ea
hrequest self
ontained and independent of previous requests.We have implemented the proposed proto
ol for terminals. Our implementationis primarily based on the Linux operating system. Experiments show that the re-sponse time for remote terminal a

essed using this implementation is a

eptable63

and the network tra�
 generated is also reasonable.We have also integrated our extended NFS implementation with a pro
ess mi-gration system [5℄. This allows intera
tive pro
ess to migrate to other hosts. Sin
ethis pro
ess migration system supports transparent delivery of signals to remotepro
esses, asyn
hronous noti�
ation from a terminal to a remote pro
ess also o

urstransparently in this integrated system.6.1 Future WorkWe have tried to keep the extensions to the NFS proto
ol, devi
e and operatingsystem independent. But in order to validate the
orre
tness and performan
e ofthe proto
ol, support for remote a

ess to di�erent types of devi
es need to be im-plemented using it. Additionally some of the implementation should be on di�erentUNIX implementations. After experien
e with these implementations, if needed theproto
ol
an be reevaluated and suitably modi�ed.To use this s
heme for ex
lusive a

ess to devi
es, an external proto
ol needsto be developed. Su
h a proto
ol will allow transparent sharing of even devi
e likeprinters.

64

Bibliography[1℄ Helen Cluster. �Inside WINDOWS NT�. Mi
rosoft Press Publi
ation, 1993.[2℄ Xerox Corp. �Courier: The Remote Pro
edure Call Proto
ol�. Te
hni
al ReportXNSS 038112, Xerox Corp, De
 1981.[3℄ T.H. Dineen, P.J. Lea
h, N.W. Mishkin, J.N. Pato, and G.L. Wyant. �TheNetwork Computing Ar
hite
ture and System: An Environment for Develop-ing Distributed Appli
ations�. In Pro
eedings of the 1987 Summer USENIXConferen
e, pages 385�398, Phoenix, Ariz., 1987.[4℄ Peter Eriksson. �Standardizing/Extending the RMT (Remote MagTape) Pro-to
ol�. IETF 1993 Ar
hives, http://mlar
hive.ima.
om/ietf/1993/1041.html.[5℄ Ashish Gupta. �Performan
e and Poli
y issues in a Pro
ess Migration Imple-mentation�. M.Te
h. Thesis, Dept. of Comp. S
. and Engg., IIT Kanpur, 2001.[6℄ Jr. H.W., Lo
khart. �OSF DCE Guide to Developing Distributed Appli
ations�.M
Graw-Hill, In
., 1994.[7℄ S. Kleiman. �Vnodes: An Ar
hite
ture for Multiple File System Types in SunUNIX�. In USENIX Conferen
e Pro
eedings, pages 238�247, Jun 1986.[8℄ E. Levy and A. Silbers
hatz. �Distributed File Systems : Con
epts and Exam-ples�. ACM Computing Surveys, 22(4), De
 1990.[9℄ L. M
Laughlin. �Line Printer Daemon Proto
ol�. Request for Comments RFC1179, Aug 1990. 65

[10℄ B.J. Nelson and A.D. Birrell. �Implementing Remote Pro
edure Calls�. ACMTransa
tion on Computer Systems, 2(1):39�59, Feb 1984.[11℄ X/Open CAE Spe
i�
ation: �Proto
ols for X/Open Internetworking: XNFS�,1991.[12℄ D.A. Nowitz. �UUCP Administration�. UNIX Resear
h System Papers, Saun-ders College Publishing, II, 1990.[13℄ G. J. Popek and B. J. Walker. �The LOCUS Distributed System Ar
hite
ture�.Computer Systems Series, The MIT Press, 1985.[14℄ J. Postel and J. Reynolds. �File Transfer Proto
ol�. Request for CommentsRFC 959, O
t 1985.[15℄ A.P. Rifkin, M.P. Forbes, R.L. Hamilton, M. Sabrio, S. Shah, and K. Yue-h. �RFS Ar
hite
ture Overview�. In Pro
eedings of the summer 1986 UsenixTe
hni
al Conferen
e, pages 248�259, Jun 1986.[16℄ R. Sandberg, D. Goldberg, S. Klliman, D. Walsh, and B. Lyon. �Design andImplementation of the Sun Network Filesystem�. In USENIX Te
hni
al Con-feren
e Pro
eedings, pages 119�131, Jun 1985.[17℄ M. Satyanarayanan, J. H. Howard, D. Ni
holas, R. Sidebotham, A. Spe
tor,and M. Vest. �The ITC Distributed File System: Prin
iples and Design�. InPro
. 10th Symposium on Operating System Prin
iples, pages 119�130, De
1985.[18℄ Sun Mi
rosystems, In
. �JINI Ar
hite
ure Spe
i�
ation�. http://www.sun.
om-/jini/spe
s/jini1.1html/jini-title.html.[19℄ Sun Mi
rosystems, In
. �XDR: External Data Representation Standard�. Re-quest for Comments RFC 1014, Jun 1987.[20℄ Sun Mi
rosystems, In
. �RPC: Remote Pro
edure Call, Proto
ol Spe
i�
ation,version 2�. Request for Comments RFC 1057, Jun 1988.66

[21℄ Sun Mi
rosystems, In
. �Network File System Proto
ol Spe
i�
ation�. Requestfor Comments RFC 1094, Mar 1989.[22℄ B. B. Wel
h. �Naming, State Management, and User-Level Extensions in theSprite Distributed File System�. Ph.D. dissertation, Computer S
ien
e Divi-sion, Dept. of Ele
tri
al Engg. and Computer S
ien
es, University of California,Berkeley, 1990.[23℄ J.E. White. �A high level framework for network-based resour
e sharing�. InPro
. National Computer Conferen
e, Jun 1976.

67

Appendix ANew NFS Pro
edures
A.1 Readdevi
eReaddevi
e is a pro
edure to read data from a devi
e at enhan
ed NFS server.stru
t readdevi
eargs {fhandle file;unsigned
ount;unsigned offset;properties prop;}union readdevi
eres swit
h (stat status) {
ase NFS_OK:fattr attributes;properties prop;nfs_data data;default:void;}

68

On entry the arguments in readdevi
eargs are:�le The �le handle of the �le
orresponding to the devi
e, from whi
h datais to be read. This is used by the server to identify the �le throughwhi
h the devi
e is a

essed.
ount The number of bytes of data that are to be read. If the
ount is 0 thenread will su

eed and return 0 bytes. The value of
ount must be lessthan or equal to maximum read
ount provided by the server, in �lesystem information.O�set Usually in
ase of devi
es, spe
ially the
hara
ter devi
es, the o�set hasno meaning. But in
ase of some blo
k devi
es it may be required bythe devi
e driver to spe
ify the o�set from where to read the data from.properties This is the d-state of the devi
e kept at the
lient. It is sent with everyrequest to make it
omplete by itself. This depends upon the devi
ebeing read from and in
lude only the state whi
h is modi�able by apro
ess.
On su

ess it returns readdevi
eres whi
h in
ludes:fattr These are the �le attributes after read operation is
ompleted.
ount This is the total number of bytes a
tually read from the devi
e. This
an be less then the requested amount of data. As in
ase of manydevi
es the exa
t
ount of data to be read is not known a priori.properties This is the most re
ent d-state of the devi
e at the server. It may bedi�erent from what was sent with the request, if some other
lient had
hanged properties at the server. This must be used by
lients to maketheir d-state of the devi
e
onsistent with the whole system.data The data read from the devi
e.

69

A.2 Writedevi
eWritedevi
e is a pro
edure to write data onto a devi
e at enhan
ed NFS server.stru
t writedevi
eargs {fhandle file;unsigned
ount;unsigned offset;properties prop;nfsdata data;}union writedevi
eres swit
h (stat status) {
ase NFS_OK:fattr attributes;properties prop;default:void;} On entry the arguments in writedevi
eargs are:�le The �le handle of the �le
orresponding to the devi
e, on whi
h datais to be written. This is used by the server to identify the �le throughwhi
h the devi
e is a

essed.
ount The number of bytes of data that are to be written. The value of
ountmust be less than or equal to maximum write value that have beenprovided in �le system information by the server.O�set Usually in
ase of devi
es spe
ially the
hara
ter devi
es the o�set hasno meaning. But in
ase of some blo
k devi
es this may be required bythe driver to spe
ify the o�set at whi
h to write the data.properties This is the d-state of the devi
e kept at the
lient. It is sent withevery request to make it
omplete by itself. This depends upon thedevi
e being a

essed and in
lude only the state whi
h is modi�able bya pro
ess.data The data bytes to be written on the devi
e.70

On su

ess it returns writedevi
eres whi
h in
ludes:fattr These are the �le attributes after write operation is
ompleted.properties This is the most re
ent d-state of the devi
e at the server. It may bedi�erent from what was sent with the request, if some other
lient had
hanged properties at the server. This must be used by
lients to maketheir d-state of the devi
e
onsistent with the whole system.

71

A.3 Io
tlIo
tl is a pro
edure to
hange properties of a devi
e at enhan
ed NFS server.stru
t io
tlargs {fhandle file;properties prop;unsigned ser_io
tl;io
tl_param ioargs;}stru
t io
tlres {
ase NFS_OK:fattr attributes;io
tl_return iores;default:void;} On entry the arguments in io
tlargs are:�le The �le handle of the �le
orresponding to the devi
e, on whi
h io
tlis to be issued. This is used by the server to identify the �le throughwhi
h the devi
e is a

essed.properties This is the d-state of the devi
e kept at the
lient, whi
h is modi�edby the io
tl. This d-state is used to modify the d-state of the a
tualdevi
e at the server to re�e
t the
hanges made by the
lient throughio
tl.ser_io
tl Some io
tl
ommands does not modify the devi
e properties but requiresome fun
tion to be invoked in the devi
e driver of that devi
e. Thisidenti�es the io
tl
ommand to be issued at the server.ioargs These are the parameters to the io
tl
ommands that need to be exe-
uted at the server.
72

On su

ess it returns io
tlres whi
h in
ludes:fattr These are the �le attributes after io
tl operation is
ompleted.iores This is the response sent by the server after exe
uting one of the io
tl
ommands that require some fun
tion of the devi
e driver to be invokedat the server.

73

