
NFS Extensions for Transparent Aess to RemoteDevies
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

byAvinash Vyas

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurMay, 2001



Certi�ate
This is to ertify that the work ontained in the thesis entitled �NFS Extensionsfor Transparent Aess to Remote Devies�, by Avinash Vyas, has been arried outunder our supervision and that this work has not been submitted elsewhere for adegree.May, 2001
(Dr. Deepak Gupta)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

(Dr. Rajat Moona)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.



AbstratSharing resoures inreases their utilization and availability in a omputing envi-ronment. Solutions exist for transparent sharing of resoures, suh as �le sharingthrough SUN Network File System (NFS), printer sharing through Line PrinterDaemon Protool (lpd). These sharing servies are in the form of resoure spei�protools. A generalized framework is needed that an provide transparent sharingof all lasses of devies. Suh a framework is also desirable in Distributed Systems sothat all the resoures of a workstation are transparently aessible from any other.A resoure sharing framework is easy to develop if there exist servies that providetransparent aess to remote devies.In this thesis, we propose extensions to of Network File System (NFS) to trans-parently aess remote devies in addition to �les. Using this extended NFS protool,lients will be able to aess the loal devies of the server. The proposed extensionsonform to the design goals and properties of the NFS. They are not spei� to anydevie and an be used to provide remote aess to most devies in an easy man-ner. We have also proposed and implemented an arhiteture exemplifying the useof extended NFS protool in providing transparent aess to remote devies. Ourimplementation allows the lients to aess remote onsoles of the server. We havealso desribed the strengths and limitations of our protool.



AknowledgmentsI take this opportunity to express my sinere gratitude toward my supervisors Dr.Deepak Gupta and Dr. Rajat Moona for their invaluable guidane. I would neverhave thought of taking suh a projet to ompletion without their enouragementand support. Their disipline and innovative ideas gave me the right diretionwhenever I needed. I onsider myself extremely fortunate to have had a hane towork under their supervision.I also wish to thank whole heartily all the faulty members of the Department ofComputer Siene and Engineering for the invaluable knowledge they have impartedto me. I would like to speially thank Head of the Department Dr. Pankaj Jalotefor his onstant e�orts of improving the postgraduate program. I also extend mythanks to the tehnial sta� of the department for maintaining an exellent workingfaility.My stay at IITK was unforgettable to say the least, and the biggest reason for itbeing my lassmates of the great mteh99 bath. Spei�ally I would like to thankmy brother Ashutosh, and friend Ashish Gupta for providing me a onstant helpingheld. I annot forget the times I spent with my wing mates Raju, Maloo, Mayankand Saugata. I thank my juniors Gaurav, Alok, Mukul and Neeraj for being sosupportive. I would like to give speial thanks to my seniors Atul, Rahul, Venkat,Godha and Rajeev for listening to my stupid problems patiently. Atul boss is theperson from whom I have learned the most.I an never thank enough my parents and my little sister Anshu for being aonstant soure of love and a�etion throughout. I am eternally grateful to themfor always being with me whenever I needed them. Finally, I thank God for beingkind to me and driving me through this journey.i



Contents
Aknowledgments i1 Introdution 11.1 Resoure Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Remote Aess . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.3 File Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.4 Devie Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Resoure Sharing in Distributed Systems . . . . . . . . . . . . . . . . 31.2.1 NFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2.2 AFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2.3 LOCUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2.4 RFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2.5 SPRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.2.6 JINI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.2.7 Windows NT . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3 The Sope of Our Work . . . . . . . . . . . . . . . . . . . . . . . . . 81.4 Our Approah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.5 Organization of the Report . . . . . . . . . . . . . . . . . . . . . . . . 92 NFS protool and implementation 102.1 Charateristis of NFS . . . . . . . . . . . . . . . . . . . . . . . . . . 102.2 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.3 The Protool Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12ii



2.3.1 Network File System Protool . . . . . . . . . . . . . . . . . 122.3.2 Remote Proedure Call Protool . . . . . . . . . . . . . . . . . 142.3.3 Extended Data Representation Protool . . . . . . . . . . . . 152.3.4 Mount Protool . . . . . . . . . . . . . . . . . . . . . . . . . . 162.4 Implementation and Control Flow . . . . . . . . . . . . . . . . . . . . 162.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.4.2 File Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.5 UNIX Semantis and Performane . . . . . . . . . . . . . . . . . . . . 182.5.1 Deletion Of Open Files . . . . . . . . . . . . . . . . . . . . . . 182.5.2 Exlusive Use . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.5.3 Client-Side Cahing . . . . . . . . . . . . . . . . . . . . . . . . 192.5.4 Retransmission Cahe . . . . . . . . . . . . . . . . . . . . . . 202.6 NFS Version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 NFS Extensions 223.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.2 Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.1 Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.2 Major Devie Number . . . . . . . . . . . . . . . . . . . . . . 243.2.3 Devie State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.2.4 Consisteny in the Devie State . . . . . . . . . . . . . . . . . 263.2.5 Iotl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.2.6 Bloking Input-Output . . . . . . . . . . . . . . . . . . . . . . 273.2.7 Data Bu�ering . . . . . . . . . . . . . . . . . . . . . . . . . . 283.2.8 Response time vs Network load . . . . . . . . . . . . . . . . . 293.2.9 Asynhronous Noti�ation . . . . . . . . . . . . . . . . . . . . 293.3 New NFS Proedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.3.1 Readdevie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.3.2 Writedevie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.3.3 Iotl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.4.1 Disk-less Workstations . . . . . . . . . . . . . . . . . . . . . . 31iii



3.4.2 Exlusive Use of Devies . . . . . . . . . . . . . . . . . . . . . 323.4.3 Asynhronous Noti�ation . . . . . . . . . . . . . . . . . . . . 323.4.4 Crash Reovery . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Implementation Arhiteture 344.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.2 Client Side Implementation . . . . . . . . . . . . . . . . . . . . . . . 374.2.1 Devie Independent Modules . . . . . . . . . . . . . . . . . . . 374.2.2 Devie Spei� Modules . . . . . . . . . . . . . . . . . . . . . 404.3 Server Side Implementation . . . . . . . . . . . . . . . . . . . . . . . 414.3.1 Servie Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.3.2 Devie Independent Modules . . . . . . . . . . . . . . . . . . . 434.3.3 Devie Spei� Modules . . . . . . . . . . . . . . . . . . . . . 454.4 Terminal Spei� Implementation . . . . . . . . . . . . . . . . . . . . 474.4.1 D-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.4.2 Server part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.4.3 Client Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505 Performane Evaluation 585.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585.2 Funtional Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 585.3 Performane Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 595.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616 Conlusions 636.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Bibliography 67A New NFS Proedures 68A.1 Readdevie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68A.2 Writedevie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70A.3 Iotl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72iv



List of Tables5.1 Overhead with Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . 615.2 Overhead with Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . 61

v



List of Figures2.1 NFS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.1 Overall Arhiteture . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.2 Terminal Driver Struture . . . . . . . . . . . . . . . . . . . . . . . . 515.1 Timeout values used in Algorithm 1 . . . . . . . . . . . . . . . . . . . 605.2 Timeout values used in Algorithm 2 . . . . . . . . . . . . . . . . . . . 60

vi



Chapter 1IntrodutionA omputer an be viewed as a olletion of di�erent resoures suh as hardwaredevies (e.g. CPU and memory), peripheral devies (e.g. keyboard and disks) andsoftware abstrations suh as �les. The operating system provides proess as thebasi omputing abstration that uses the resoures suh as CPU time, memoryand other peripheral devies to perform the required omputation. The operatingsystem ats as a resoure alloator for these proesses.1.1 Resoure SharingThe onept of resoure sharing was introdued by Time sharing systems. Theproesses on a single system share the CPU, memory and other devies to exeuteonurrently. This inreased the utilization and the e�ieny of the systems. Theonept of resoure sharing was extended aross the omputers by distributed operat-ing systems. If a number of di�erent omputers are onneted by a ommuniationnetwork, then a user or spei�ally a proess at one omputer is able to use theresoures available at another.1.1.1 AdvantagesDevies like printers, plotters and sanners et. are too expensive to be providedindividually for every user. Shared use of these devies keeps the installation ost1



down and inreases their availability and utilization. Additionally it allows for easyadministration and better ontrol of these devies. In distributed systems, sharing ofthe CPU among onneted omputers results in substantial omputational speedup.Similarly sharing of �les in these systems enable users to aess them from di�erentmahines; this failitates ollaborative working. Additionally, �le sharing allows usermobility as user an work on any mahine and aess his �les transparently.1.1.2 Remote AessAmehanism for remote aess to resoures is the basi faility required for providingresoure sharing among di�erent omputers. Suh a remote aess mehanism hasto deal with network failure, rash of a lient or a server, heterogeneity of the lientand the server mahines, while providing omplete aess transpareny to the users.Aess to a remote resoure requires data to be transferred between loal and remotemahines. The most ommon way to ahieve this transfer is through a remote serviemehanism. In remote servie, a request for aess to remote resoure is delivered tothe remote mahine, whih performs the atual operation and returns the results tothe requesting mahine. The remote proedure all paradigm [10℄ is a representativeof this remote servie.1.1.3 File SharingThe lassial UNIX operating system allows multiple users on a single mahine toshare �les stored loally on the mahine. The network onnetivity enabled the �lesharing between di�erent omputers. The early e�orts in this diretion were re-strited to opying �les from one mahine to another suh as UNIX-to-UNIX Copyprogram [12℄ and File Transfer Protool (ftp) [14℄. These solutions were far fromful�lling the vision of being able to aess �les on remote mahines as loal �les.Distributed File Systems extend the sharing of �les among users on di�erent ma-hines interonneted by a ommuniation network. They hide the dispersion of �lesystems to provide a uniform view and transparent aess to �les aross all the ma-hines. A distributed �le system an be implemented either as a part of a distributed2



operating systems or, in the form of a software layer whih manages the ommu-niation between onventional operating systems and �le systems to provide aessto remote �le systems. Remote File system (RFS) [15℄, Sprite �le system [22℄ areexamples of the former type of implementation and Network File System (NFS) [16℄,Andrew File System (AFS) [17℄ are the examples of latter type of implementation.1.1.4 Devie SharingThe need to share devies in a omputer system arises due to eonomis or thenature of appliations. Sharing of devies is not restrited to just remote aess,it has to deal additionally with issues suh as aess ontrol, maintenane of jobqueue, priority of jobs and exlusive use of the devie for a limited time. To providetransparent sharing of expensive devies, devie spei� appliation layer protoolshave been developed. Examples are Line printer daemon protool (lpd) [9℄ whihprovides transparent remote printing servie and Remote Magtape protool (rmt)[4℄ whih is used for manipulating magneti tape drives from a remote mahine.In distributed systems, sharing of CPU is is implemented by proess migration,primarily for load sharing among di�erent mahines. Transparent proess migrationrequires remote aess to �les and devies. For example, migration of an interativeproess requires remote aess to the loal terminal of the system, where it wasexeuting before migration.1.2 Resoure Sharing in Distributed SystemsSeveral systems have been implemented whih provides resoure sharing. The re-soures that an be shared in these systems vary from �les to devies suh as ter-minals. In this setion we will look at some of these systems and examine their a-pabilities of sharing di�erent resoures. We mainly emphasize on transpareny andsupport for remote devie aess along with loal devie aess. First we desribethe systems whih provides resoure sharing on onventional operating systems, andthen those in distributed operating systems.3



1.2.1 NFSNetwork File System (NFS) [16℄ is the de-fato standard for remote �le sharing onUNIX systems. It is targeted for small environment suh as LANs with limitednumber of lients. It allows sharing of a omplete �le system of �le server or itssubtree, among the lient mahines. There is no notion of a globally shared �lesystem in NFS. Eah lient is independent to on�gure its own �le system namespae, so it is not neessary that all mahines promise a ommon view of the shared�le system. Chapter 2 disusses important harateristis and arhiteture of NFSin more detail.1.2.2 AFSAndrew File System (AFS) [17℄ is a distributed �le system developed at CMU'sProjet Andrew and urrently owned and supported by Transar Corporation. Inontrast to the NFS, AFS is apable of saling to thousands of users. Clients arepresented with a partitioned spae of �le names: a loal name spae and a sharedname spae. The uniform shared name spae is provided by the servers, while the�les onstituting loal name spae are stored on the loal disks of the lients. AFSuses �le ahing for better performane. Consisteny is guaranteed by using allbakmehanism to the lient. AFS is only meant for shared aess to remote �les anddoes not provide aess to the remote devies.1.2.3 LOCUSThe LOCUS operating system is a distributed version of UNIX [13℄. The heartof the LOCUS arhiteture is its distributed �le system. The LOCUS �le systempresents a single tree-strutured naming hierarhy that overs all objets in the �lesystem on all mahines. Every node of the distributed system is given a subtreein the �le system hierarhy for its loal �le system. Loal �le system ontains thedevie �les for aessing the devies of that system. To provide transparent aessto devies, standard �le names were dynamially linked with site spei� devie�les. LOCUS was the �rst of the distributed systems to support transparent aess4



to remote named pipes and devies. Sine it was developed before introdution ofthe VFS/Vnode arhiteture [7℄, remote devie aess was oded within eah deviedriver instead of a separate implementation. For implementing an input-output ofbloking nature, the request is bloked at the lient side and the server uses allbakmehanism for asynhronous noti�ation from the devie to the proess.1.2.4 RFSAT&T introdued the Remote File Sharing (RFS) [15℄ �le system in SVR3 UNIXto provide aess to remote �les over a network. Similar to NFS, RFS is based on alient-server model. The server exports diretories and the lients mount them. TheRFS provides transparent aess to remote �les, devies and named pipes. RFS alsouses remote servie for providing aess to remote resoures. RFS alls these modeof operation as remote system all model. For eah system all that operates on theremote �le or devie, the lient pakages the argument to the system all, as well asinformation about the lient proess's environment into an RFS request. The serverrereates the lient's environment and exeutes the system all. The lient proessbloks until the server sends bak a response message, ontaining the result of thesystem all. The lient then interprets the results and ompletes the system allbefore returning ontrol to the proess. The server proess exeuting the systemall on behalf of the lient may blok for a long time, waiting for devie or pipeinput-output. Thus the number of suh server proesses beomes the bottlenek ofthis sheme. In ase of too many requests bloked at the server, some inomingrequest may be denied servie due to unavailability of the resoures at the server.This results in loss of transpareny. The implementation of RFS requires the stateto be maintained both at the lient as well on the server side. For this reason, theRFS has a omplex mehanism for the rash reovery and a strong ahe onsistenyprotool.
5



1.2.5 SPRITESprite [22℄ extends the ideas of LOCUS for aessing the remote devies and pre-serving the UNIX semantis. It provides the notion of a �le server, being di�erentfrom the devie server. In sprite a �le server is a mahine where �les orrespondingto devies are present, while devie server is a mahine where the atual deviesare present. Eah devie �le stores the information about the devie server of thedevie orresponding to that �le. This ensures a system wide uniqueness for devies.For aessing the loal devies every system uses the same �les, alled the loalhostdevie �les. These devie �les map to the lient's instanes of the devies. Forimplementing bloking input-output, servers uses allbak mehanism to the lient,while the lient bloks for the request. This sheme requires omplex rash reoveryprotool by virtue of it being a state based implementation.1.2.6 JINIA JINI system [18℄ is a distributed system based on the idea of federating users andthe resoures required by those users. The goal of the JINI system is to make thenetwork a dynami entity whih enables its users to share servies and resoures overa network. It is intended to provide easy aess to resoures anywhere on the net-work while allowing the network loation of the user to hange. The main emphasisof JINI is on the dynami joining and leaving of servies, devies and users in thesystem rather than transpareny of their use. The JINI system extends the JAVAappliation environment from a single virtual mahine to a network of mahines.JINI names all its resoures as servies. A servie is an entity that an be used bya person, or by a program or by another servie. The JINI system allows sharing ofthese servies. The bakbone of the JINI framework is the JAVA Remote MethodInvoation (RMI) mehanism. RMI is a JAVA programming language enabled ex-tension similar to the remote proedure all mehanism. RMI allows not only datato be passed from objet to objet around the network but also full objets, in-luding ode. It is tightly oupled with the JAVA programming environment andassumes that its omponents are implemented in JAVA. It is good for developingnew distributed appliations and sharing devies/servies. Existing appliations are6



not bene�ted with the framework beause its main goal is platform independeneand not transpareny. Sine JINI servies need to be implemented over user levelJava Virtual Mahine, they are onsiderably slow.1.2.7 Windows NTWindows NT [1℄ is an operating system designed primarily for personal omputersand its design is di�erent from operating systems of UNIX domain. Its design in-orporates several di�erent models of operation, for providing various servies. Ituses lient-server and miro-kernel model for providing multiple operating systemenvironment. Most of the operating environment and operating system servies areimplemented as user level proesses. The lients use these servies by passing mes-sages to them using the message passing primitives provided by the miro-kernel.It uses an objet model for uniformly managing all system resoures. Thus in Win-dows NT, resoures suh as �les, proesses, ports and semaphores et. that an beshared, named, or made visible to user mode programs, are implemented as objets.The kernel mode portion of the Windows NT is known as NT Exeutive. Itonsists of a series of omponents that implement basi operating system servieslike virtual memory management, �le system and interproess ommuniation et.The input-output system of Windows NT is one of the omponent of the NT ex-eutive. Windows NT has a paket driven input-output system, in whih everyinput-output request is represented by an I/O request paket (IRP), as they movefrom one I/O system omponent to another. One of the I/O system omponent,alled I/O Manager de�nes an orderly framework within whih these IRPs are de-livered to �le system and devies. The I/O manager passes the IRP denoting aninput-output request to the orret driver. The driver performs the operation spei-�ed by the IRP and returns the IRP ontaining the result bak to the I/O manager.I/O system has uniform struture of all its drivers, with every input-output beingimplemented through these drivers. The �le system being a part of I/O system, isalso implemented through a driver whih has struture and interfae idential toother drivers. 7



The Windows NT has support for aess to all remote resoures. It views net-working as a means to provide aess to remote resoures suh as �les, deviesand ultimately proessors. The networking software is also largely implementedas extension to the input-output system. Windows NT's support to aess remoteresoures is built through two major omponents, network rediretor and server.Both of these are implemented as �le system drivers and therefore are the part ofthe input-output system of the NT exeutive. The rediretor is the network om-ponent responsible for sending input-output request aross a network when the �leor devie to be aessed is not loal. The server on the remote mahine (where the�le or devie is physially loated) reeives and serves suh requests. The rediretorand the server ommuniates using the SMB protool. The objet model providesthe network transpareny in ase of remote resoure aess, but the naming shemeitself di�erentiates loal and remote resoures.1.3 The Sope of Our WorkOur work is aimed at providing transparent aess to remote devies, in a heteroge-neous UNIX environment. The mahines may have di�erent arhiteture and mayrun di�erent �avors of UNIX. The uses of suh a system span a number of di�erentaudienes. It an easily be extended to provide sharing of expensive resoures suhas printers, plotters and sanners. Another area where suh a system an be used isdistributed operating systems. In these systems, proess migration requires remoteaess to �les and devies for greater transpareny.Our basi approah is to extend an existing remote �le aessing mehanism toprovide aess to remote devies transparently. SUN NFS is one �le system whihis widely used for remote �le sharing in distributed systems and whih is designedfor heterogenous environment. In this work, we extend NFS to allow transparentaess to remote devies.
8



1.4 Our ApproahIn our approah of providing aess to remote devies using NFS, we have avoidedhanges to the existing NFS proedures. Sine the existing read and write pro-edure annot handle the omplexity of the devie input-output, we have addedthree new proedures in the NFS protool. Two of these protools are used by thelients for reading and writing to devies. The third proedure orresponds to theiotl system all, whih is used for modifying devie properties. For implementingbloking input-output, the requesting proess is bloked at the lient. The lientkeeps retransmitting the request to the server till the desired operation ompletessuessfully.In order to make server stateless and failitate transparent rash reovery, thestate of the devie is also maintained at the server. An NFS request should ontainomplete information required for proessing it at the server. Hene the devie stateis also inluded in every request on remote devie. We have also hanged the serviemodel of the these requests at the server.1.5 Organization of the ReportThe rest of this report is organized as follows. Chapter 2 desribes the SUNNetwork File System's design goals and its implementation in UNIX kernel. We alsodesribe the protools assoiated with the NFS like Mount, Network Lok Managerin this hapter. The design issues onsidered for the extension of NFS are disussedin Chapter 3. The implementation of Extended NFS in Linux kernel to supportremote aess to terminals is desribed in Chapter 4. In Chapter 5, we disusssome of the performane issues. Finally, in Chapter 6 we onlude this thesis witha brief summary of the work and possible future enhanements.
9



Chapter 2NFS protool and implementationThe Network File System (NFS) is both an implementation and a spei�ationof software system for aessing remote �les [8℄. It has beome the de-fato standardfor remote �le sharing in UNIX systems. Till date SUN has released two versionsof the NFS spei�ation whih are named as version 2 and version 3. Version 3removes some of the limitations of version 2 and improves its performane.2.1 Charateristis of NFSThe NFS is designed for a network of heterogeneous mahines. It is useful forsharing �les among workstations in a small network. The design of the NFS hasertain features as outlined here:Operating System Independene: The NFS is designed to be independent ofoperating systems and mahine arhitetures. Its implementation is not re-strited to only UNIX systems and several other operating systems implementNFS server as well as NFS lient.Stateless Server: The unique harateristi of NFS is its statelessness. NFSdoes not require a server to retain any information about the state of theNFS lients between two of their suessive requests. Eah request is treatedindependent of all previous requests. In the NFS protool the request sent bya lient ontains all the information needed to proess it at the server end.10



NFS, therefore does not provide any open, seek, or lose requests as theseoperations neessarily require to maintain the state at the server side. Theimplementation of these funtions is therefore private to the NFS lients.Crash Reovery: The NFS protool is very rugged against the rash of theserver or that of the lient. In ase the lient rashes, no rash reovery isrequired at the server as it keeps no persistent information about its lients.In ase the server rashes, lient keeps retransmitting the request at a ertainfrequeny until the response is reeived from the server. When the serverboots after the rash, it proesses the request and sends the response bak. Itis possible beause in the protool all requests are independent of eah other.Thus the NFS lient an not distinguish between a slow server and a rebootedserver.Transpareny: The NFS provides the fundamental property of network trans-pareny as lients are able to aess remote �les using the same set of opera-tions as appliable to the loal �les [8℄. The name of the �le does not revealits physial loation, hene it is loation transparent. Change in storage lo-ation of a single �le results in a hange of its name, however transfer of theexported �le system or diretory has no e�et on the name spae at lientside. The hanges are made only in the lient's mount table using the mountprotool. Thus the NFS also provides loation independene at granularity ofthe omponent (i.e., exported �le system or diretory).2.2 IntrodutionNFS is based on a lient-server paradigm. A �le server exports a �le system orsubtree thereof. Clients are the mahines that remotely aess the �les exportedby the server. Clients an mount the entire �le system exported by the server or asubtree of that onto any diretory in existing �le hierarhy.Clients and servers ommuniate via remote proedure alls, whih are syn-hronous alls. NFS uses the Remote Proedure Call (RPC) Protool [20℄ to11



de�ne the format of all interations between the lient and server. In fat, the NFSprotool [21℄ is de�ned as a set of remote proedure alls. SUN RPC and hene NFSuses Extended Data Representation (XDR) [19℄ to represent the data sent arossthe network in a standard mahine independent format.2.3 The Protool SuiteThe primary protools in the NFS suite are RPC, NFS, and Mount. They all useXDR for data enoding.2.3.1 Network File System ProtoolNFS de�nes a set of remote proedure all, their arguments and results whih areused by the lients to operate on the remote �les at the server. These are de�nedusing the RPC language whih is basially the XDR language extended with pro-gram, version, and proedure delarations. All proedures in the NFS protool areassumed to be synhronous. The most important argument to these NFS proeduresis the �le handle, whih is used by the lients to referene a �le at the server. Anoutline of the NFS protool version 2 proedures is given below.null() returns ()This proedure does nothing and is used to measure the round-trip time be-tween the lient and the server.lookup(dirfh, name) returns (fh, attr)This proedure returns the �le handle orresponding to the �le whose name isgiven as argument. The other argument is the �le handle of the diretory inwhih the �le is present.reate(dirfh, name, attr) returns (newfh, attr)This proedure reates a new �le and returns the �le handle and attributes ofthe reated �le. The other arguments are the �le handle of the diretory inwhih the �le is to be reated and the attributes of the �le.12



remove(dirfh, name) returns (status)This proedure removes a �le from the diretory. The arguments to the pro-edure are the name of the �le and �le handle of the diretory in whih the�le is present.getattr(fh) returns (attr)This proedure return the attributes of the �le whose �le handle is given asargument.setattr(fh, attr) returns (attr)This proedure set the attributes of a �le to the given one. The �le attributeswhih an be modi�ed are mode, uid, gid, size, aess time and modify time.read(fh, o�set, ount) returns (attr, data)This proedure is used to read data from a �le whose �le handle is the argu-ment. The o�set gives the starting byte, from where the data is read up toount haraters from the �le .write(fh, o�set, ount, data) returns (attr)This proedure is used to write data to a �le. The o�set gives the o�set of the�rst byte within the �le. The ount number of bytes are written from data inthe �le. The fh provides the �le handle for the �le.rename(dirfh, name, tofh, toname) returns (status)This proedure renames a �le name in the diretory represented by its �lehandle dirfh to toname in the diretory represented by its �le handle tofh.link(dirfh, name, tofh, toname) returns (status)This proedure reates a hard link toname in the diretory represented by its�le handle tofh to the �le name in the diretory represented by its �le handledirfh.symlink(dirfh, name, string) returns (status)This proedure reates a symboli link name, in the diretory represented bydirfh, with value string. The string argument is not interpreted at the server.13



readlink(fh) returns (string)This proedure returns the string assoiated with the symboli link representedby its �le handle fh.mkdir(dirfh, name, attr) returns (fh, newattr)This proedure reates a new diretory name in the diretory represented byits �le handle dirfh. It returns the �le handle of the newly reated diretoryand its attributes.rmdir(dirfh, name) returns (status)This proedure removes an empty diretory name from the parent diretoryrepresented by its �le handle dirfh.readdir(dirfh, ookie, ount) returns (entries)This proedure returns up to ount bytes of diretory entries from the diretoryrepresented by its �le handle dirfh. Eah returned entry onsists of �le name,�le id and pointer to next entry alled the ookie. The returned ookie is usedin the subsequent all to readdir, in ase all diretory entries were not read inthe �rst request itself.statfs(fh) returns (fsstats)This proedure returns the �le system information suh as blok size, numberof free bloks, et.2.3.2 Remote Proedure Call ProtoolThe idea of Remote Proedure Call (RPC) was mooted in mid 70's, but the �rstframework atually ame in early 80's [23℄ [10℄. Today there are many ommerialRPC implementations available suh as Sun Mirosystems RPC [20℄, Xerox Couri-er RPC [2℄, Apollo's Network Computing Arhiteture[3℄ and OSF's DistributedComputing Environment RPC[6℄. The basi working model of RPC is based on thetraditional proedure all model, used in programming languages. Proedure allallows for transfer of ontrol and data within a program running on a single om-puter. RPC extends the idea to transfer of ontrol and data aross a ommuniation14



network.RPC is based on a lient-server paradigm. A lient is a mahine that requests fora proedure to be invoked and a server is where the proedure is atually exeuted.When a remote proedure is invoked, the alling proess at lient is bloked until itreeives the response bak from the server. The parameters and information aboutthe proedure to be alled are passed aross the network to the server where theproedure is to be exeuted. When the proedure �nishes results are passed bakto the bloked proess at the lient.NFS is built over the SUN RPC protool. This protool spei�es message for-mat, transmission methods and authentiation mehanism, for remote proedurealls. SUN RPC is fundamentally independent of transport protool. It imple-ments its own reliable datagram servie by keeping trak of unanswered requestsand retransmitting them periodially until a response is reeived.2.3.3 Extended Data Representation ProtoolComputers in a heterogenous environment vary in arhiteture as well as operat-ing systems. Eah arhiteture has its own internal representation of data. Thesedi�erenes are in byte ordering, sizes of data types, and format of strings and ar-rays. Hene ommuniation between mahines with di�erent arhitetures has todeal with these di�erenes. In opaque data transmission, mahines do not have tointerpret data. The data is treated just as a byte stream. When data has to beinterpreted by the reeiver, both ommuniating mahines have to agree upon astandard format. External Data Representation is one suh mahine-independentrepresentation for data transmission. Data sent over the network is onverted fromthe native to the XDR representation. Similarly, at the reeiver, data is onvertedfrom the XDR to the native representation. XDR de�nes several basi data typesand the rules for onstruting more omplex data types.
15



2.3.4 Mount ProtoolThe Mount protool allows NFS lients to mount the remote �le systems exportedby a NFS server. Using the mount protool the lient obtains the �le handle ofthe root of the exported �le system tree. Similar to the NFS, mount protool isalso desribed by a set of RPC proedures whih use XDR for representing theirarguments and results. It is a state based protool whih requires the server tomaintain a list of all lients whih have mounted a diretory or �le system exportedby the server. This list is however not required for the usual operation of eitherthe lient or the server. The list is used only for advisory purposes like the serverwarning the lients before being shut down.Version one of the mount protool is used with the NFSv2. The only informationommuniated between these two protools is the �le handle of the root diretoryof the mounted �le system.2.4 Implementation and Control FlowNFS has been ported to several non-UNIX systems suh as MS-DOS and VMS.There are both user level as well as kernel level implementation of NFS for variousoperating systems. Our disussion restrits to the kernel implementation of NFS inonventional UNIX systems with VFS/Vnode[7℄ interfae.VFS/Vnode interfae is based on objet-oriented programming onepts andprovides an arhiteture for aommodating multiple �le system implementation ina single UNIX kernel. The VFS (virtual �le system) abstration represents a �lesystem in the UNIX kernel and Vnode represents a �le. They represent abstrat baselasses from whih sublasses an be derived and implemented to provide supportof di�erent �le systems. A typial Vnode interfae in UNIX kernel onsists of twoparts. First part is the �le system independent data and funtions, whih are usedby other kernel subsystems to manipulate the �le. Seond part of the interfae is theset of virtual funtions whih are implemented by spei� �le system and a privatedata struture that holds the �le system spei� data of the Vnode.16



ufs
code

nfs
server
code

Client

sytem call interface

client application

VFS/Vnode Interface

Server

VFS/Vnode Interface

nfs
client
code

rpc
client

Interface

rpc
server

Interface

local
Diskrpc reply

rpc call

Figure 2.1: NFS Implementation2.4.1 OverviewAs shown in Figure 2.1, the server has exported a ufs �le system, whih is mountedby the lient. When a proess on the lient opens a �le mounted through NFS, aftera name lookup, a �le table entry and Vnode orresponding to that �le is alloatedat the lient. The server as a result of a lookup on the �le, returns a �le handleorresponding to that �le. This �le handle, whih is an opaque data objet forthe lient, is sent by the lient with every subsequent request to the server. Thev_op �eld in the Vnode points to the vetor of NFS lient routines that implementthe various Vnode operations. The server proesses the requests by identifying theVnode orresponding to the loal �le and invoking the appropriate Vnode operationthat is implemented by the loal �le system.2.4.2 File HandlesThe NFS protool assoiates an objet alled a �le handle with all �les in theexported diretory. The server generates this handle when the lient reates a remote17



�le or issues a lookup on a remote �le. The server returns the �le handle to thelient in the reply to the request, and the lient an subsequently use it in otheroperations on that �le. It is used by the server to identify the �le that the lientwant to aess. The �le handle is an opaque 32 byte objet for the lient and thelient should not make any attempt to interpret its ontents, whih are spei� tothe server. For most of the UNIX implementation, the �le handle ontains the �lesystem ID, inode number and the generation number of the inode. The generationnumber is added to the inode to solve the problem of stale �le handles. In absene ofthe generation number, if the server deletes a �le and reuses its inode, while the �leis being used by a lient, the �le handle at the lient will refer to the newly reated�le. To eliminate this possibility, server needs to identify that, �le handle sent bythe lient is stale. Sine the generation number of inode is inremented eah timethe inode is freed, server an ompare the generation number in the �le handle andthat in the inode of the �le, to identify the stale �le handles.2.5 UNIX Semantis and PerformaneNFS was primarily intended for UNIX lients, hene it is important that UNIXsemantis be preserved for remote aess to �le aess. The statelessness of NFSdoes not allow lients to maintain information about open �les at the server, whihleads to a few inompatibilities with UNIX.2.5.1 Deletion Of Open FilesIn UNIX, if a proess deletes an open �le (opened by another proess or itself), thekernel does not atually delete this �le. The kernel simply marks the �le for deletionand removes its entry from the parent diretory. Now no new proess an open this�le, while those that have it open an ontinue to aess it. The kernel physiallydeletes the �le, only when the last proess that has the �le open loses it.In NFS this semantis annot be implemented beause the server does not knowwhih �les are open at the lients. In NFS a proess will get unexpeted error ifanother proess deletes the �le it is using. The problem an be solved partially18



at lients, as the lients are aware of the opened �les. When the lient detets anattempt to delete an open �le, it hanges the operation to rename the �le, giving it along and unusual new name whih is unlikely to on�it with the existing �les. Thissheme solves the problem only when the two proesses, the one using the �le andthe one deleting the �le, are on the same lient. It an not solve the problem whenthe two proesses are on two di�erent mahines. Additionally if the lient rashesafter renaming the �le and before atually deleting it, a garbage �le is left on theserver.2.5.2 Exlusive UseNFS annot provide for reord level or �le level loking as provided by the UNIXfor loal �les. As a result, a proess an not aess a �le exlusively. Due to �xedsize of a RPC request, a large read or write operation may span over several RPCrequests. Hene, if two proesses at two di�erent lients issue write operation onthe same �le, at roughly the same time, overlapping writes at the server an our.The Network Lok Manager (NLM) [11℄ protool allows ooperating proess to lokentire �le or its portion, but it is only advisory loking. A proess an always bypassthe loks and aess the �le.2.5.3 Client-Side CahingIf every operation on a remote �les required one or more NFS request to the server,NFS performane would be intolerably low. Hene most NFS lients uses ahing ofboth data bloks and �le attributes to avoid sending NFS request to the server forevery operation on the �le. The �le bloks are ahed in the bu�er ahe and �leattributes are ahed in Vnode orresponding to the remote �le. In order to avoiduse of stale data at the lients, these ahed ontents must be refreshed on eahhange to the ahed data or �le attributes. In NFS, lients has to take measuresfor refreshing ahed data. NFS lients maintains an expiry time indiating the timefor whih the attributes have been ahed. If these attributes are aessed after atime quantum expires, lients feth them from the server again. Before using the19



ahed �le bloks lients ompare the modify time of the �le attributes with the timewhen ahed data was read from the server. If the �le was modi�ed after the databloks were ahed then ahed data is �ushed and request is sent to the server.All these mehanisms redue, but do not eliminate the onsisteny problems of theahed data and �le attributes.2.5.4 Retransmission CaheIn order to provide reliable transmission, RPC lients retransmit requests until theyreeive a response. These retransmissions ours due to the loss of a request or aresponse on the network or beause the response is delayed due to the loaded server.The server needs to handle suh dupliate requests orretly. NFS requests an bedivided into two lasses, idempotent and nonidempotent. Idempotent requests anbe exeuted twie without any ill e�et, while nonidempotent requests may result ininorret behavior if repeated. Re-proessing of dupliate requests not only resultsin inorret behavior but also inreases server load.In order to detet and handle dupliate requests, the server keeps a ahe ofreent requests and reply messages. This ahe is known as retransmission ahe.Eah entry in this ahe additionally ontains a state �eld and a timestamp. If theserver �nds an inoming request in the ahe, and its state is in progress, the requestis disarded. If the state of the ahed request is done and the response has beensent just reently, the request is disarded. But if the dupliate request arrives at theserver after some time, ahed reply is retransmitted to the lient. This approahrequires a large ahe, apable of saving the whole of the reply messages, whih anbe large for a request suh as read.2.6 NFS Version 3NFS version 2 (NFSv2) beame enormously popular, whih helped in highlightingits shortomings. While some of the problems were addressed by lever implemen-tations, many problems were inherent to the protool itself. Thus NFS version3 (NFSv3) was introdued, addressing several important limitations of the older20



version. Major performane bottleneks in NFSv2 are its synhronous proedures,whih require the server to ommit all modi�ations to stable storage before reply-ing. NFSv3 introdues asynhronous writes in the protool that allows the serverto reply before ommitting the modi�ation to stable storage. The data is �nallywritten to the disk when the proess exits or loses the �le at the lient and the lientkernel sends a speial request (COMMIT) to the server. This require that the lientkernel holds on to data, until the proess loses the �le. NFSv3 supports greater �lesizes by inreasing the size of �elds for speifying �le size and o�sets in read andwrite, to 64 bits. Additionally the number of over-the-wire pakets for a given setof �le operations are redued by returning �le attributes on every operations.

21



Chapter 3NFS ExtensionsIn this hapter, we desribe our proposed extensions to the NFS protool. We �rstdesribe the design goals and the various design alternatives that ould be used tomeet these goals. Then we desribe the proedures that we have added to the NFSprotool. Finally we desribe some limitations of our proposed extensions.3.1 Design GoalsThe design of the proposed extensions to the NFS protool is based upon the fol-lowing goals.Transparent Remote Aess: The primary goal of our work is to support trans-parent aess to the remote devies. The appliation proesses must be ableto use the remote devies as if they were loal. Therefore the sheme shouldprovide loation transpareny for devies, as NFS provides for the �les.Minimal Changes: Another important aim while developing the enhaned NFSprotool is to keep the hanges and additions in the existing NFS protool, itsassoiated protools, and devie drivers to the minimum.Devie Independene: Enhanements made to the NFS protool should be raft-ed with the aim of developing a generalized framework for transparent aessto the remote devies. The protool should not be spei� to any devie type22



and it should be possible to provide the remote aess to new devies in aneasy manner.Conformation with NFS harateristis: Extensions and modi�ation shouldbe in onformation with the harateristis of the NFS. In partiular, a strongemphasis should be laid on preserving the stateless nature of the protool.Heterogeneity: The work is aimed at providing transparent aess to remote de-vies, in a heterogeneous UNIX environment. The mahines may have di�erentarhiteture and may run di�erent �avors of UNIX. The enhanements to theNFS protool should be independent of the operating system and mahinearhiteture heterogeneity.Preserving UNIX semantis: The framework for remote devie aess shouldtry to preserve the UNIX semantis for devie input-output. Although topreserve the stateless nature of the NFS protool, the sheme may have toompromise on some issues. This ould lead to a few inompatibilities withUNIX semantis.3.2 Design IssuesIn this setion, we disuss the issues in the design of our NFS extension to supporttransparent aess to remote devies.3.2.1 MountingThe physial disk unit typially onsists of several logial partition eah of whihusually ontains a �le system. Mounting allows the users to view these di�erent �lesystems as omponents of a single �le system. Mounting integrates two �le systemsby making an assoiation between the mount point diretory and the root diretoryof the mounted �le system. To aess remote �les through NFS, the lients arerequired to mount the remote �le system. Similarly to aess remote devies, thelients will be required to mount them. Ability to export an individual devie in-reases the �exibility at the server, as eah devie an be exported seletively to the23



lients, using the same devie �le. Ability to mount an individual devie inreasestranspareny at lients. This is beause, lients an mount individual remote devieat the mount point that refers to the loal instane of that remote devie. The ex-isting mount protool is able to mount only �le systems and diretories. Mountingan individual devie requires hanging the mount semantis and thus its implemen-tation.In our design we wanted to keep the hanges to existing system minimum. There-fore we deided against hanging the mount protool. Instead we use the existingmount protool to mount a diretory of the server ontaining devie �les. The de-vie �les are then used to aess the remote devies of the server from where thediretory is mounted.3.2.2 Major Devie NumberThe kernel identi�es eah devie by the devie type (blok or harater), and apair of numbers, alled the major and minor devie numbers. The major numberidenti�es the devie driver for a lass of devies, while the minor number identi-�es a spei� instane of a devie in that lass. Alloation of the major numberto devies is spei� to the operating system. In a heterogeneous environment adevie may have major number at the server di�erent then the major number at thelients. In order to provide operating system independene, we hose to standardizethe major numbers for the devies in the extended NFS protool. Further to min-imize hanges to the existing operating systems a mapping is maintained betweennative major numbers and protool standardized major numbers. Before sending arequest, the lient onverts native major numbers to standardized major numbers.Similarly upon reeiving the response the lient does the reverse onversion. Serverupon reeiving a request, maps the standardized major number to the native one.The server ommuniates responses with the lient using the standardized majornumbers. Thus all ommuniation between the server and the lient uses the stan-dardized major numbers. No suh mapping is required for minor numbers as theirinterpretation is spei� to the server. 24



3.2.3 Devie StateThe devies have state and the operating system needs to know about these statesfor most kind of devie operations. Thus the devie operations are stateful in on-trast to the �le operations. The operating system maintains the devie spei�state for eah devie (d-state). The d-state omprises of data strutures to storeon�gurable devie parameters. It is enapsulated within the devie driver of thedevie. In remote operations also the d-state has to be maintained. The d-statean be maintained either at the lient side or at the server side or at both sides.Maintaining it only at the lient side and using its devie driver makes the serverompletely stateless. This option however requires dupliation and inorporation ofdevie driver ode into the NFS server to interat with the atual devies. A lotof hanges and additions are required in server ode to provide remote aess toeah new devie, limiting the �exibility and generality of the server. A protool forensuring onsistent d-state in ase of simultaneous aess by multiple lients is alsorequired. Suh a protool beomes very omplex due to the stateless nature of NFS.The hoie of maintaining d-state at the server side failitates the use of existingdevie drivers without any hanges and provides a leaner interfae between thedevie and the server ode. A rash reovery protool would be required as theserver rash would result in loss of d-state maintained at the server.In our approah, the d-state is maintained at the lient side as well as at theserver side and the existing devie driver at the server side is used. The d-statemaintained at the lient side is embedded in every NFS request on devies alongwith the other arguments. Thus, eah request beomes self ontained and the proessof rash reovery is simpli�ed. The notion of d-state kept at the server is di�erentfrom the NFS notion of state and does not on�it with the stateless nature ofthe NFS server. In normal operation, NFS server does not require any informationfrom the previously served requests in order to serve the urrent request. Moreover,the d-state maintained at the lient side omprises of only the state whih an bemodi�ed by the lients expliitly by iotl system all or impliitly by other systemalls. This state information depends on the type of remote devie being aessed.25



3.2.4 Consisteny in the Devie StateMaintaining the devie state at two di�erent loations has an inherent problem ofinonsisteny in the two states. The d-state kept at a lient provides the state of theatual devie to the lient. In ase of simultaneous aess to the same devie from twodi�erent lients, existene of two d-states an be a potential ause of inonsisteny.This would mean di�erent state of the same devie at di�erent lients. We solvethis problem wherein the most reent image of the d-state from the server is sent tothe lients along with eah response. The lients use this state reeived along withthe response to make their d-state onsistent with that at the server. Although thissheme may not guarantee state onsisteny at all instants, it eventually makes thed-state aross all the lients onsistent with that of the server.3.2.5 IotlThe iotl system all is the generi entry point for modifying the user ontrolledd-state and to on�gure the devies. This is a highly versatile all through whihone an support arbitrary operations on the devies. The arguments to this systemall vary in number and type, depending upon the devie and the type of request.For a devie like terminal, a Linux implementation supports around 60 di�erent iotlommands. This generality makes iotl very di�ult to support in remote environ-ment as it would require di�erent arguments to be sent for eah ommand. In orderto handle the large number and omplexity of di�erent iotl ommands we lassifythem into following three ategories:1. Iotl ommands to retrieve some state information of the devie.2. Iotl ommands that modify the state of the devie.3. Iotl ommands that require some funtion to be invoked in the devie driverof the atual devie.Iotl ommands whih require only the retrieval of state information and passingit to the appliations are handled at the lient side itself. Suh information is26



provided from the d-state present at the lient side. Thus keeping the d-state at thelient side in addition to the server side redues the network tra�. A new proedureiotldevie is added to the NFS protool for the iotl ommands that modify thestate of the devie. Sending of individual iotl ommands and arguments to theserver however inreases the omplexity of the NFS and XDR ode. We used adi�erent approah in our design. The exeution of iotl ommand modi�es the d-state at the lient side and then the entire d-state is sent to the server. At the serverthis reeived state is used to update and modify the atual devie state. This allowsthe design of iotl proedure to be uniform and akin to the other two proedures forreading and writing on devie. For the iotl ommands whih require some funtionto be invoked at the server the iotldevie proedure has the provision for sendingthe ommands along with their arguments, and reeiving the response bak fromthe server. For example, in terminal devies, the iotl ommand TIOCSTI is usedto put a harater in the read bu�er of the terminal driver. This iotl ommandrequires sending of the harater to the server and then storing it in the read bu�ermaintained by the terminal driver. Sine suh iotl ommands are very small innumber, it would not make the XDR enoding-deoding funtion unmanageable.3.2.6 Bloking Input-OutputThe servie time assoiated with the devie operation is potentially inde�nite (forexample, in the ase of terminals or other user input devies) in omparison to theone assoiated with the �le operations whih is typially more preditable. Thisbloking nature makes input-output on devies di�ult to implement in omparisonto that on �les. There ould be two options for implementing the bloking input-output for remote aess, either blok at lient side or blok at the server. When arequest bloks at the server, it holds up system resoures suh as memory. In extremeases some request may be denied servie due to non availability of resoures. Inase the server rashes before the ompletion of the bloking input-output, loss of allbloked requests requires a omplex rash reovery protool. NFS uses the impliitaknowledgement model for RPC requests, where response to a request indiatesthat the request was orretly reeived at the server. Thus in absene of response27



from the server, it is impossible for the lients to distinguish between a lost requestand a bloked request at the server. When there is no response from the serverwithin a time period, the lient has to retransmit the request assuming it was lost.So a bloked request will ause unneessary retransmission of requests, inreasingnetwork tra� and server load.The option of bloking at lients, requires the server to store information aboutthe lient and the operation being performed. Later when the requested operationan proeed without bloking, the server an notify the lient to retry its request.This allbak sheme that is used in many other systems, is unsuitable for extendedNFS beause of the stateless property of the NFS protool.In our approah we implement all operations as non-bloking at the server, whilebloking is implemented at lient side. In this sheme, if a devie operation annotompleted immediately, a speial status value is returned by the devie input-outputhandler at the server. The server returns this speial status to the lient who retriesthe operation with inreasing time intervals until it is ompleted suessfully.3.2.7 Data Bu�eringThe devie drivers bu�ers the input data, before it is read by a proess and bu�ersthe output data before it is written onto the physial devie. The reason of databu�ering in most of the devie driver is to inrease performane, as input-outputoperations on physial devie (e.g. disks) are ostly operations. In some devie (e.g.terminals) apart from performane reasons, the input data has to bu�ered as it isgenerated asynhronously. There ould be two options to bu�er this data, either atthe server side or at the lient side.If the data is bu�ered at the server side then every input-output request on aremote devie at the lient, will be arried out by involving network tra� and thuswill inrease the proessing time of the request. On the other hand if the data isbu�ered at the lient side then we need to ensure onsisteny of the data aross allthe lients using the same devie. In ase of NFS sine the server does not storeany information about the lients, onsisteny of the data bu�ered at the lientsannot be guaranteed. Di�erent shemes an only redue the problem but an not28



eliminate it. In ase of interative devies, data annot be bu�ered at the lients assuh devies generate data asynhronously. The server has to store this data untilany lient sends a request to read it.The deision of data bu�ering is spei� to the devie whih is aessed, but inthe absene of a ideal bu�er onsisteny sheme, we suggest the bu�ering to be doneat server. This is also the ase for the interative devies.3.2.8 Response time vs Network loadThe trials of a request for an operation from the lients inur heavy network andserver load. The time interval between the re trials determines the response time foran operation. If this time is high than the user experienes a delay in the responseand hene transpareny is lost. Keeping this interval low results in a heavier load onthe network. For a tradeo� between the two, the time interval and the algorithm forre-trial needs to be �ne tuned. We explain this algorithm for our implementation inChapter 5.3.2.9 Asynhronous Noti�ationOur sheme (and for that matter any model adhering to the design priniples ofNFS) annot provide asynhronous noti�ation from the devie to a lient proessas it would involve the initiation of ommuniation from the server to the lient. Thisannot be ahieved without ompromising the stateless nature of the server. Heneusing only this framework we annot support devies whih require asynhronousnoti�ation to proesses. An example of suh a devie is the ontrolling terminal,whih requires that the terminal generated signals be delivered to the foregroundproess group. Although an external remote signaling mehanism an provide suhsupport, it is out of the sope of this work.
29



3.3 New NFS ProeduresOur design neessitates sending of d-state along with input-output requests andresponses. The read and write proedures of the existing NFS annot handle theomplexity of devie spei� input-output. Hene, we propose to add three newproedures readdevie, writedevie and iotl in NFS, for reading from, writing toand hanging the properties of the devie. Apart from these additions no hangeshave been made to any proedure of the existing NFS protool. We here desribethe three new proedures added in the NFS protool, their arguments and theirresults. The protool enhanements have been made in version 2 of NFS and shouldbe onsistent with NFSv3 as well.3.3.1 ReaddevieReaddevie is the proedure to read data from a devie at an enhaned NFS server.The arguments to readdevie proedure onsist of the �le handle, o�set, ount andd-state of the devie whih is aessed. The �le handle represents the �le throughwhih the devie is aessed, o�set provides the position on the devie, from whereto start reading (in ase of some devies it is unused) and d-state is the devie statemaintained at the lient. The response of the readdevie proedure ontains thedata read from the devie and the reent d-state of the devie at the server, alongwith the attributes of the devie �le after operation.3.3.2 WritedevieWritedevie is the proedure to write data onto a devie at an enhaned NFS server.The arguments to writedevie onsist of the �le handle, o�set, ount, data and d-state of the devie whih is aessed. The �le handle represents the �le throughwhih the devie is aessed, o�set provides the position on the devie, from whereto start writing (in ase of some devies it is unused), and d-state is the devie statemaintained at the lient. The response of the writedevie inludes the reent d-stateof the devie at the server along with the �le attributes.30



3.3.3 IotlIotl is the proedure to hange the state of the devie at an enhaned NFS server.The arguments to the iotl proedure onsist of the �le handle, iotl number, iotlarguments and d-state of the devie whih is aessed. The �le handle represents the�le through whih the devie is aessed, iotl number identi�es the iotl that needsto be exeuted at the server (this remains unused for most of the alls), argumentsneeded for the iotl ommand (appliable only when iotl number is used) and thed-state is the modi�ed state of the devie maintained at the lient. The responseof the iotl inludes the result of the iotl ommand that is exeuted at the server(used only when the iotl number in arguments was used), along with the attributesof the devie �le after operation.3.4 LimitationsIn this setion we disuss the appliability and various limitations of the design ofthe extended NFS. Sine the main emphasis is on preserving the design goals andproperties of NFS and keeping hanges to the minimum, various hard issues had tobe resolved.3.4.1 Disk-less WorkstationsIn ase of disk-less workstations, NFS is often used for mounting the root �le system.This �le system also inludes the /dev diretory, the �les of whih are used toaess the loal devies on the disk-less workstation. With the sheme proposed,the devie �les in a diretory mounted by the lients, are used to aess the deviesof the server. This sheme therefore is of limited use for the disk-less workstations.Several solutions an be used in suh a ase to enable disk-less workstation to aesstheir loal devies. At the boot time, a RAM disk an be used in whih the devie�le an be reated to aess the loal devies. Alternatively another �le server anbe used to mount a diretory ontaining the loal devie �les to provide aess toloal devies. Another possibility would be to extend the mount protool to export31



and mount a devie, rather than just a diretory.3.4.2 Exlusive Use of DeviesSimultaneous use of the same devie by two or more proesses may lead to problems.For example, if a printer is used simultaneously by two proess suh that their writerequests are interleaved, printer's output will also be interleaved and of no use. Weneed a mehanism with whih a proess an exlusively use a devie. This problemof exlusive use of a devie is out of the sope of this framework. This is beauseto provide exlusive aess to a devie, the server needs to retain some state for thedevie whih would violate stateless nature of the server. The support for exlusiveuse of devies an however be provided through a separate protool like NetworkLok Manager, whih provides �le loking in NFS.3.4.3 Asynhronous Noti�ationIn NFS, asynhronous noti�ation of any sort from devie to proess is not possibledue to the stateless nature of the servers. This sheme therefore does not provideany mehanism for asynhronous noti�ation from devie to proess. For examplethis sheme an not be used for delivering devie generated signals to the proess.It would require some external mehanism for delivering devie generated signalsremotely.3.4.4 Crash ReoveryThe state reovery of a devie, after a server rash is done when the �rst requestomes from the lient to the server after the rash. This leaves a rae ondition whihpossibly ould result in a devie state after the rash di�erent from the one before therash at the server. A possible senario where this may happen is when two lients,say A and B, simultaneously open the same devie. Suppose the server rashesjust after lient A hanges the state of the devie, so the lient B's d-state beomesstale. If the �rst request after server-reboot omes from the lient B, devie state atthe server will be restored to stale d-state. The lient A who made the hanges to32



devie state prior to the rash, will also hange its d-state to this stale state after itssubsequent requests and responses. This will results in loss of the last modi�ationmade by the lient A. Although this di�ers from the traditional uni-proessor UNIXsemantis a bit, it ensures onsisteny in the d-state of the devie at all the lients.

33



Chapter 4Implementation ArhitetureIn this hapter, we desribe our implementation of the proposed NFS extensions.We have implemented both the lient and the server parts of the design within theLinux 2.2.9 kernel. We �rst give an overview of our implementation arhiteture.We then desribe the server side and the lient side implementation respetively.Finally we desribe the devie spei� implementation aspets for terminal devies.4.1 OverviewOur arhiteture leanly separates the devie independent ode from the devie de-pendent ode, at both the lient and the server end. The overall implementationarhiteture is shown in Figure 4.1. The lient side implementation onsists of theremote devie driver, NFS lient extensions and the kernel poll thread. The NFSlient extensions omprise of the funtions implementing the NFS protool proe-dures and XDR funtions for enoding and deoding their arguments and results.These XDR funtions use the devie spei� XDR funtions to enode and deodethe d-state of the devie, assoiated with every request and response. The remotedevie driver translates the input-output operation on the remote devie to NFSrequests, whih are sent to the server for exeution. It also maintains the d-state ofthe devie at the lient side for the purpose of rash reovery. The kernel pollingthread at the lients polls the remote devies on behalf of the requesting proesses.34



User
Process

User
Process

NFS Client

extension

Conversion

Module

Remote
Device
Driver

Poll
Thread

NFS  Protocol Conversion

Module  extension

NFS Server

Device
state state

Device

Driver
Device
Native

Device

Major  No Major  No

Device
Switch

State Restoring
and

module
State Retrieval

State Restoring
Switch

State Retrieval 
Switch

Device
Switch

Enc-Dec
Functions

Enc-Dec
For

d-state
ForFunctions

d-state

Figure 4.1: Overall ArhitetureThis sheme for polling is essential for implementing the selet system all and isexplained in detail in Setion 4.2.1.The server side implementation onsists of NFS server extensions and the deviestate restoration and retrieval module. The NFS server extensions omprise of theimplementation of NFS protool proedures and their orresponding XDR funtion-s. These XDR funtions use the devie spei� XDR funtions for enoding anddeoding the d-state of the devie as done at the lient side as well. The NFS serverimplementation uses the VFS/Vnode interfae to interat with the atual devie. Inase of a server rash, the devie state restoration and retrieval module at the server,is responsible for restoring the state of the devie to the one prior to the rash. Italso assoiates the latest d-state of the devie with the results of every input-outputrequest.Together, these �ve omponents onstitute the omplete framework of transpar-ent remote devie aess. These modules are explained in detail in later setions. Wenow provide a brief overview of the funtioning of the remote devie aess system.To aess the devies of a server, the lients mount the diretory ontaining35



devie �les of a server through the mount protool assoiated with NFS. The serverdoes not expose loal major numbers of the devies to the lients. The lientstherefore see the major numbers of the devies as modi�ed by the major numberonversion module. At the lient side all input-output operations on the remotedevie are handled by remote devie driver for that devie. When a proess at thelient opens a devie �le of a remote devie, the NFS lookup request is sent to theserver to obtain the �le handle of the devie �le. After obtaining the �le handle, theopen funtion of the remote devie driver at the lient is invoked. The open funtionis used to onstrut the d-state of the devie at the lient. Subsequent operationson the remote devie requested by the proess are translated by its remote deviedriver into one or more NFS requests to the server. Along with the �le handle andarguments, the d-state of the devie is also embedded in suh NFS requests. Theinlusion of the d-state makes eah NFS request self ontained and independent ofprevious requests for the operation on the same devie.At the server the devie requests are handled by the major number onversionmodule. This module translates the major number in the request to the loal deviemajor number. Further proessing of the request depends upon the state (open orlosed) of the devie for whih the request is made. A losed devie indiates thateither no request was made for the devie earlier or the devie was not aessed fora long period (and therefore was automatially losed by the NFS server) or theserver was rebooted after a rash. In these situations, the Devie state restorationand retrieval module opens the devie and restores its state to the one embeddedin the request. For an already opened devie, the request does not require thereopening of the devie.The devie requests are then translated through the VFS/Vnode interfae intothe orresponding devie driver funtions. After proessing the request, the resultsand the latest d-state of the devie are sent bak to the lient. On the lient side,the devie driver either returns ontrol to the user proess or retransmits the requestafter some time, depending upon the response.
36



4.2 Client Side ImplementationThe extensions made to the NFS protool at the lient side have two parts. Thedevie independent part and the devie dependent part. The devie independentpart onsists of the NFS proedures, their XDR funtions and the kernel poll thread.The devie dependent part omprises of the remote devie driver and the XDRfuntions for enoding and deoding the d-state of the devie.4.2.1 Devie Independent ModulesWe now desribe in brief the devie independent parts of the implementation of NFSlient extensions.NFS ProeduresThere are three funtion orresponding to the newly added proedures of NFS pro-tool viz., readdevie, writedevie, and iotl. The remote devie driver (as explainedlater) uses this interfae to send requests for the remote devie to the server andreeive responses from the server.XDR funtionsThere are two funtions for eah of the three newly added NFS proedures. Onefuntion is used for enoding the arguments of NFS request to XDR representationand seond is used for deoding the response in XDR representation to native form.These funtions use the devie spei� XDR funtions to enode and deode thed-state of the devie embedded in every request and response.Kernel Poll ThreadThe poll system all allows a proess to hek whether a devie or soket is ready forinput-output, without atually requesting an input-output operation. This allowsa proess to read from a devie only when data is present, otherwise ontinue itsregular proessing. Polling is partiularly helpful when a proess is monitoring many37



devies for input. However polling is wasteful is terms of proessing power, as theproess itself has to repeatedly hek the devie status. Its variant, the selet systemall allows a proess to hek data availability on multiple devies or sokets withoutrepeatedly heking the devie status. In ase of selet system all, the kernel noti�esthe proess whenever the devie status hanges.Our implementation of poll and selet alls uses a kernel thread named ker-nel poll thread and a linked list alled nfs_poll_issued. The poll system all fora remote devie, plaes the information required for polling a remote devie as anentry in the nfs_poll_issued list. The kernel poll thread uses the information s-tored in the nfs_poll_issued and sends a NFS poll-iotl request (desribed later)for polling the remote devie. The poll mask reeived in the response is stored inthe nfs_poll_issued, whih is later returned to the requesting proess.The entries in the nfs_poll_issued list ontain the omplete information requiredfor sending NFS request to poll remote devie. Some of the important �elds of anentry in nfs_poll_issued list are desribed below.nfs_server: This struture ontains the information (e.g. hostname) of the NFSserver hosting the remote devie to be polled.nfs_fh: This struture is the �le handle of the devie �le of the remote devie tobe polled.devie: This integer stores the major and minor numbers of the devie being polled.The major in this list is the native major number of the lients operatingsystem for that remote devie. It is onverted to the NFS wide major numberbefore sending the request to the server.timeout: The time interval between two suessive polling requests. The pollingthread retries a poll request only after the expiration of this ounter. Thetimeout value is inreased eah time the NFS poll request for the remotedevie is unsuessful. This �eld is used by the implementation of the seletsystem all. 38



wait_address: This �eld represents the wait_queue on whih the proesses sleep,while the kernel poll thread polls the remote devie. This �eld is also used inthe implementation of the selet system all.ompleted: This �ag indiates whether the poll request on the remote devie hasompleted suessfully or not. A request is not suessful beause the deviehas no data to be returned.nos_pro: This �eld indiates the number of proesses polling on the remote devierepresented by this entry.properties: This �eld points to the d-state of the polled remote devie.Poll System Call: As explained earlier the extended NFS does not inlude aproedure for polling a remote devie. Request to poll a remote devie are sent asNFS iotl request to the NFS server for exeution. We refer suh an NFS request aspoll-iotl request. The poll system all is implemented using the kernel poll thread.The kernel poll thread uses the NFS poll-iotl request to poll the remote devie asexplained above.Selet System Call: As mentioned earlier selet is a bloking system all andrequires a noti�ation from the kernel to the proess. The kernel poll thread isintrodued to implement the selet system all. In implementation of other blokingoperations (e.g. read), the devie driver retries the NFS proedure in the ontext ofthe requesting proess. The same mode of operation for selet makes it equivalentto poll. Hene in our approah the selet system all is implemented using kernelpoll thread.When a proess makes a selet system all with a remote devie as one of itsarguments, it is handled by the poll funtion of remote devie driver. This fun-tion plaes a struture ontaining �le handle, server address, poll arguments, timewhen to issue next poll and other information (as desribed earlier) into the nf-s_poll_issued linked list and sleeps on the wait-queue assoiated with this entry.39



Upon the timeout, the kernel poll thread re-sends an NFS poll-iotl request to theserver, using the information from the entry. On suess the ompleted �ag is up-dated and the waiting proess is woken up. In ase of unsuessful poll, the timeinterval for retransmission is set by the retransmission algorithm spei� to thatdevie, and the entry is plaed in the linked list again. When the sleeping proesswakes up, it heks the entry in the linked list. If entry is marked ompleted, thenit removes the entry from the linked list and returns with the poll mask stored. Ifentry indiates unsuessful poll and the appliation spei�ed timeout for selet hasourred, the devie driver retries the NFS poll-iotl request and returns with thepoll mask returned by the server in response.The retransmission algorithm used by the kernel poll thread for deiding thetimeout for retransmissions depends on the kind of devie being polled. The kernelpoll thread uses retransmission timeout swith and the major number of a deviefor deiding the timeout period. The retransmission timeout swith is an array ofpointers indexed by the major number of devies. Its eah entry refers to a tabledesribing suessive retransmission timeout values for eah kind of devie.4.2.2 Devie Spei� ModulesThe devie dependent modules of the NFS lient extensions onsists of devie spei�XDR funtions and the remote devie driver, whih are explained in detail below.Devie Spei� XDR funtionsThe devie spei� XDR enoding-deoding routines are used for two purposes.First, they are used for onversion of devie spei� arguments (for example thoseof iotl) and results of NFS proedures between the native and the XDR represen-tations. Seondly, they are used to enode and deode the d-state of the devieassoiated with eah NFS request and response.
40



Remote Devie DriverThere is one remote devie driver at lient orresponding to eah type of remotedevie. The remote devie driver hides the physial loation of the devie andmakes the aess to remote devie transparent. The main purpose of the remotedevie driver is to translate the input-output operations on remote devie to one ormore NFS requests to the server. Upon reeiving the response the remote deviedriver deides to retry the NFS request after some time interval or return to theproess, depending upon the input-output semantis of the devie and nature ofthe request. It also implements bloking semantis of devie input-output for thelients. The bloking semantis is implemented by retransmitting the request untilit is exeuted suessfully at the server.The remote devie driver also enapsulates the d-state of the devie that isrequired for rash reovery of the server and is sent with every NFS request on thedevie. It maintains this d-state using the state reeived with eah response fromthe server.4.3 Server Side ImplementationIn this setion we desribe the implementation of the server side NFS extensions.At the server, a new servie model is introdued for the newly added proedures ofextended NFS protool. The new servie model is a modi�ed form of the serviemodel of original NFS protool.4.3.1 Servie ModelThe NFS server is primarily designed to handle the requests for the remote �le oper-ations. A possible stateless algorithm for handling remote �le requests is desribedas follows.servie_request(request) {open �leexeute the requested operation 41



send response to the lientlose �le}This servie model is however not useful for implementing the devie operations overNFS. This is primarily beause the losure of the devie �le with eah request on theserver will destroy the devie state at the server. We require the devie state at theserver even when no request is being served. For example, the terminal driver whenput in non eho mode should not eho any keystrokes even if the appliation has notmade any request to read the data. To implement suh semantis we hanged theservie model for NFS requests on devies. A devie is opened by the NFS serverwhen the �rst NFS request for its aess is reeived. At this time, the state of thedevie is set using the d-state inluded in the request. The devie is not losedafter an operation so that devie state persists aross two devie operations. Themodi�ed servie model is desribed as follows.servie_request(request) {if (the requested devie is not open) {open the devieset the state using the d-state in request}exeute the requested devie operationsend response bak to the lient} This sheme however has a small drawbak in whih the devie one opened willnever be losed. Note however, that this does not introdue any inonsisteny in thedevie behavior. For resoure optimizations we implemented a sheme where in thedevie is losed by the server after absene of requests on it for a signi�antly largeamount of time. Thus the memory used by various data strutures of the deviedriver will be freed when a lient proess eases to aess the devie.42



4.3.2 Devie Independent ModulesThe devie independent part of the server implementation of the extended NFS pro-tool omprises mainly of the server proedures, their XDR funtions and routinesthat provide interfae to the devie driver funtions.Devie InterfaeAs disussed in the design, the NFS requests at the server are translated throughVFS/Vnode interfae into orresponding devie driver funtions. In order to keepthe interfae between NFS server and native devie driver lean and minimize therequired hanges, we have provided four funtions � opendevie, readdevie, writ-edevie and iotldevie. These funtions provide the interfae to the existing deviedriver funtions. They use a �le table entry to store the pointer to devie driverfuntions and its private data strutures. The �le table entry one alloated, is usedby these proedures to serve subsequent requests on the devie. We now desribethese funtions brie�y.Opendevie: As disussed earlier, the servie model of the new proedures re-quires a devie to remain open one a request for that devie is reeived at theserver. The proessing of the request on a devie depends upon whether the devieis found in open or lose state. This funtion is used for the devie state dependentproessing of a request. It is responsible for obtaining the �le table entry orre-sponding to the devie �le on whih the operation is to be issued. To provide theneeded funtionality it maintains a linked list alled open_devies, whih stores in-formation about devies that are urrently open. A typial entry in open_deviesontains the major and minor numbers and the �le table entry of the �le orre-sponding to the devie. Before any NFS request on devie is served, this funtionsearhes the open_devies linked list for an entry orresponding to that devie. Ifan entry for that devie is found, the orresponding �le table entry is returned. Ifthe entry is not found in the open_devies, a new �le table entry is alloated. Theentry is initialized and stored in the open_devies list. In this ase the funtion alsoinvokes the devie spei� funtions to restore the devie state. The d-state in the43



request is used for restoring the devie state. Finally a pointer to the �le table entryis returned.Readdevie: This funtion is the interfae to Vnode funtion for reading from adevie. It uses the implementation of the Vnode funtion provided by the existingdevie drivers. Using the opendevie funtion it obtains the �le table entry orre-sponding to the �le through whih the devie is aessed and invokes the Vnoderead operation of the native devie driver. The read operation of the devie driveris issued in a non-bloking mode. If the operation ompletes without bloking, itsresult is enoded and sent bak to the requesting lient. Otherwise if the operation isrequired to blok in the devie driver, a speial status is sent bak to the requestinglient. This ensures a bounded response time to the lients, even for bloking readoperation. The result of the read operation and the d-state of devie are returnedto the NFS server proedure whih are then sent bak to the lient.Writedevie: This funtion, similar to the readdevie funtion, is the interfae toVnode funtion for writing to a devie. It uses the implementation of the Vnodefuntion provided by the existing devie drivers. Using the opendevie funtion, itobtains the �le table entry orresponding to the devie �le and invokes the Vnodewrite operation of the devie. Similar to the read operation the write operation ofthe devie driver is also issued in a non-bloking mode, thus ensuring a boundedresponse time to the lients. The result of the write operation and the latest d-stateof devie are returned to the NFS server proedure whih are then sent bak to thelient.Iotldevie: This funtion modi�es the d-state of the devie at the server. Sinethe d-state and the iotl ommands sent with the request are spei� to a devie, thedevie spei� funtions are used to modify the d-state of the devie. This funtiontherefore uses the devie state restoration swith for modifying the d-state of thedevie. The implementation and funtioning of devie state restoration swith isexplained later. After modifying the devie state, the d-state of the devie and theresults of iotl ommands are returned bak to the NFS server proedure to be sent44



bak to the lient.NFS ProeduresThere are three funtion orresponding to the newly added NFS proedures readde-vie, writedevie, and iotl. At the server, after getting the deoded arguments, theseproedures invoke the orresponding devie interfae routines explained above. Theresults are onverted into XDR representation before sending them to the lients.XDR funtionsFor eah of the three new proedures, there are two XDR funtions � one for deodingthe arguments of the request and seond for enoding the results. The request andthe response inlude the d-state and some devie spei� arguments (in ase of iotl),whih are spei� to a devie. Hene, these funtions use the devie spei� XDRfuntions for enoding and deoding the d-state of the devie and arguments of iotlrequests.4.3.3 Devie Spei� ModulesThe devie spei� modules at the server side inlude the devie state restorationand retrieval module, and the XDR enoder-deoder funtions for the d-state.XDR Enoder-Deoder Funtions for d-stateThese funtions onvert the d-state sent along with the request from XDR repre-sentation to native format and from native to XDR representation when d-state issent along with the response. Some iotl ommands and their arguments an also besent to the server to be exeuted. This funtion �rst deodes suh iotl ommandsand then onvert their arguments from XDR representation to native one.
45



Devie State Restoration and Retrieval ModuleThis module provides a lean and well de�ned interfae between the devie indepen-dent and devie dependent proessing of an NFS request on a devie at the server.It is responsible for restoring the d-state of the devie to the one embedded in therequest if the devie is not found in open state. The same module is responsible forhandling the devie spei� iotl proessing. The module also provides the latestd-state of the devie whih is sent along with the response to the lient. There arethree major data strutures maintained by this module. These are used by the NFSserver for handling the d-state of the devie. The data strutures and their use isdesribed as follows.Open Devie List: This list alled open_devies, as disussed earlier, is used toidentify the open instanes of the devies at the server.State Restoring Swith: The devie state restoration part of this module main-tains two state restoring swithes similar to the devie swithes, one for haraterdevies and seond for blok devies. The state restoring swith is an array of fun-tion pointers whih is indexed by major number. Eah entry points to a funtionthat is used for modifying the d-state spei� to the devie with that major number.For example, the funtion for modifying the d-state of a devie whose major numberis i an be found at an index i of the array. This funtion uses the d-state embeddedin the request and di�erent iotl ommands provided by the native devie driver torestore the d-state of the devie.As explained earlier, the NFS iotl request inludes the d-state of the devieas its argument. This d-state is to be used to set the state of the devie at theserver. In our implementation the state restoring module also handles the NFS iotlrequest. However for some iotl ommands the lient sends the arguments along withthe iotl request, whih are proessed at the server. Thus the devie spei� staterestoring funtion needs to handle these ases as well. This funtion uses equivalentiotl ommands provided by the native devie driver at the server to perform theiotl requested by the lient. 46



State Retrieval Swith: The devie state retrieval part of this module maintainstwo state retrieval swithes, one for harater devies and one for blok devies.Similar to the state restoration swith, state retrieval swith is also an array offuntion pointers indexed by the major number. These funtions are meant forretrieving the devie spei� d-state to be sent with the response. Eah devie hasdi�erent d-state and hene has di�erent methods to retrieve this state of the atualdevie. The suggested method of retrieving the d-state of a devie, is using di�erentiotl ommands (spei� to the devie) through the VFS/Vnode interfae. The stateretrieval funtion hides the devie spei� proessing needed to retrieve the d-stateof the devie at the server.4.4 Terminal Spei� ImplementationIn the extended NFS protool, the devie spei� part of a devie that an beaessed remotely is to be provided. We have implemented the support for theremote aess to terminals using the extended NFS protool. In this setion wedesribe this implementation.4.4.1 D-stateThe most important thing in providing remote aess to a devie is to identify thed-state of that devie. For terminals, the d-state omprises of three �elds � termiosstruture, winsize struture and the line disipline. The ontents of these struturesand their use desribed is as follows.Termios is the struture that ontains all the harateristis of a terminal deviethat an be examined and hanged. This is the most important part of thed-state of the terminals. It ontains four sets of �ags and an array of ontrolharaters. The delaration of this struture on Linux is shown below.strut termios {tflag_t _iflag;tflag_t _oflag; 47



tflag_t _flag;tflag_t _lflag;_t _[NCCS℄;};The _i�ag stores the input �ags that ontrol the input of haraters by theterminal devie driver (strip the eight bit on input, enable input parity hek-ing, et.). The _o�ag stores the output �ags that ontrol the driver output(expand tabs to spaes, map newline to CR/LF, perform output proessing,et.). The _�ag stores the ontrol �ags that ontrol the RS-232 serial lines(odd or even parity, send one or two stop bits, et.). The _l�ag are the loal�ags whih a�et the interfae between the terminal driver and the user (ehoon or o�, enable terminal generated signals, visually erase haraters, et.).Winsize struture keep traks of the urrent terminal window size. This helps innotifying the foreground proess group when the size of the terminal windowhanges. The �elds of this struture are given below.strut winsize {unsigned short ws_row;unsigned short ws_ol;unsigned short ws_xpixel;unsigned short ws_ypixel;};The ws_row and ws_ol �elds indiate the number of rows and the numberof olumns in harater unit for the terminal window. The horizontal size andvertial size in pixel units are indiated by the �elds ws_xpixel and ws_ypixelrespetively. In Linux, ws_xpixel and ws_ypixel �elds are not used urrently.line disipline is a number that identi�es the line disipline used by the deviedriver at the server. The line disipline is the part of terminal driver respon-sible for interpreting the input and output. Depending upon the mode of the48



terminal, the raw data sequene typed at the keyboard is onverted to the de-sired form before it is given to a proess. Similarly output sequenes writtenby a proess is onverted to the format as desired by the user for the outputon the terminal.4.4.2 Server partAs mentioned earlier, the devie spei� part of the server implementation of ex-tended protool onsists of the ode that handles the d-state of the devie sent alongwith the NFS requests and their response. There are two modules in the protoolimplementation that handles the d-state of the terminal at the server.Devie State Restoration and Retrieval ModuleFor the terminals the devie state restoration funtion uses the iotl funtion of thenative terminal driver to set the d-state of the terminals using the one inluded inthe request. Typial iotl ommands used are TCSETS, whih sets the termios ofthe terminal and TIOCSETD, whih hanges the line disipline used by the terminaldriver and TIOCSWINSZ, whih sets the window size of the terminal.As explained earlier, the devie state restoration funtion also handles the deviespei� iotl proessing. The modi�ed d-state with the iotl request is used to setthe state of the devie as explained above. The iotl ommands for terminals thatrequire arguments to be send to the server to be exeuted there, are the following.TIOCCONS: This ommand is used to rediret the onsole input-output to apartiular terminal.TIOCSTI: This ommand is used to plae a harater into the read bu�er of theterminal. The harater is treated as if it is atually read from the terminal.TCXONC: This ommand is used to suspend or start the output and/or input toa terminal.TCFLSH: This iotl ommand is used to �ush the input and/or output bu�ersassoiated with the terminal. 49



TIOCOUTQ: This ommand is used to �nd out the length of the output queueassoiated with the terminal.TIOCINQ: This ommand is used to �nd out the length of the input queue asso-iated with the terminal.POLL: This iotl ommand is used to retrieve the poll mask of the devie.The server exeutes these iotl ommands using the iotl funtion of the nativeterminal devie driver and sends the results bak to the lients.The state retrieval funtion for the terminal also uses the iotl funtion of thenative terminal driver to get the latest d-state of the devie after the operation.Typial iotl ommands used to obtain this d-state are TCGETS, whih retrievesthe termios struture of the terminal and TIOCGETD, whih retrieves the numberof line disipline used by the devie driver and TIOCGWINSZ, whih get the winsizestruture of the terminal.4.4.3 Client PartThere are two terminal spei� modules at the lients - remote terminal driver andXDR funtions for enoding and deoding of the d-state of the terminals. XDRfuntions have been desribed earlier.Remote Terminal DriverThe remote terminal driver implements the Vnode funtions using the proeduresof extended NFS and maintains the d-state of the terminals. The implementationstruture of the remote terminal driver is kept idential to the Linux terminal driverand is shown in Figure 4.2.Data Strutures: The major data strutures assoiated with the remote terminaldriver are � tty_driver, tty_ldis, tty_strut, termios, winsize. These data struturesstore the various information needed for devie driver funtioning and interfaingwith the Linux kernel. 50



File System Interface

Upper Layer Driver Routine

Line Discipline InterfaceConsole Driver Interface

Lower Layer Driver Routines Line Discipline RoutinesFigure 4.2: Terminal Driver Struturetty_driver: The remote terminal driver stores the tty_strut and termios stru-tures orresponding to eah remote terminal it is handling. This struture alsode�nes the interfae between the lower-layer terminal driver and the upper-layer terminal interfae routines. The remote terminal driver need not imple-ment any funtion of this interfae, as the lower-layer driver funtions are usedto interat with the physial devie interfae.tty_ldis: This struture de�nes the interfae between terminal line disipline andthe upper-layer terminal interfae routines. Sine the atual line disiplineproessing is done at the server, the remote terminal driver need not implementmost of the funtions of this interfae. However, it implements the iotl andpoll funtion of the interfae, whih are used for sending orresponding requeststo the server, for exeution.tty_strut: This struture is used to store all of the state assoiated with a tty,while the tty is open. The main information inludes, pointers to low-level ter-minal_driver interfae, pointer to line disipline interfae, pointer to termiosand winsize strutures. It also stores the ount of number of proesses thathave opened this terminal, and major-minor number of the terminal devie forwhih the struture is being used. This struture is alloated when a losedterminal is opened and dealloated when the last proess whih has the ter-minal open, loses it. 51



termios: At the lient this struture is stored and maintained for rash reovery,it does not a�et the atual proessing. The termios struture of the deviedriver at the server is responsible for the atual proessing of the input-output.The termios state is maintained even when the terminal is losed.winsize: The winsize struture is maintained to keep trak of the urrent terminalwindow size. This helps in notifying the foreground proess group when thesize of the terminal window hanges.Funtions: Some of the Vnode operations are not appliable for terminals andare not implemented. For example, lseek funtion, returns error beause a proessannot seek on a terminal.Open: Opening of a remote terminal by an appliation at the lient results in allo-ation and initialization of data strutures of the remote terminal driver. Theremote terminal driver does not send any NFS request to the server on openinga terminal. If a remote terminal is opened for the �rst time (after booting), theremote terminal driver alloates and initializes termios, tty_strut and winsizestrutures. If a losed remote terminal is opened, then only tty_strut andwinsize are alloated and initialized. If an already opened remote terminal isreopened, the remote terminal driver returns a pointer to the tty_strut andwinsize strutures already alloated after inrementing their use ount. This isused to keep a ount of the number of open instanes. The data strutures arefreed when the last proess aessing the terminal loses it. For future refer-ene, a pointer to the tty_strut is stored in the �le table entry orrespondingto the devie �le.Read: The read proedure for terminals is omplex as it has to handle variousmodes of terminal input. The proedure �rst validates the �le handle and �leattributes of the remote devie �le. It then alloates a kernel bu�er for read-ing haraters from remote terminal. This funtion uses di�erent algorithmsfor reading from remote terminal depending upon the mode of the terminal(anonial or non-anonial). The data is read from the atual devie at the52



server using the readdevie NFS proedure. Along with the readdevie request,it also sends the d-state of that terminal. On reeiving the response of therequest, the d-state embedded in the response is used to update the d-state ofthe terminal at the lient.Here we desribe the various modes of the terminal input and their UNIXsemantis. Then we explain how these modes and their semantis are imple-mented by the remote terminal driver.Canonial In this mode terminal input is proessed as lines. The terminaldriver returns at most one line per read request, where a line is thesequene of haraters up to a end-of-line harater. If the number ofharaters entered by the user are more than requested in read, then onlythe requested number of haraters are given to the read request. Noharaters are lost after the partial read and the next read starts wherethe previous read stopped. This mode reognizes and proesses speialinput haraters suh as bakspae, new-line and key ombination forgenerating signals. This mode bloks the reading proess till the driverreeives the end-of-line harater.The remote terminal driver bloks the reading proess and sends a NFSreaddevie request to the server. The request either returns the requestednumber of haraters (possibly less) or a speial status to retry the oper-ation. If the request returns a speial status to the lient, this funtionswaits (sleeps) and retry the operations with exponentially inreasing timeinterval until the requested number of haraters (possibly less) are readfrom the server. If the number of haraters to be read is greater thanthe maximum size of a NFS request, then a single read request is brokeninto two or more NFS readdevie requests. In suh a ase, the lient �rstsends only one request, of the multiple NFS readdevie requests. If thenumber of bytes in the response of the �rst NFS request equals maximumsize of a response then only the seond NFS request is sent. This ensuresthe semantis of read, even if the read request spans aross multiple NFSrequests. 53



Non-anonial In non-anonial mode input data is not assembled into lines.This mode also turns o� the proessing of speial haraters and signalgenerating key ombinations. The read request returns depending uponthe values of two variables MIN and TIME in _ array in the termiosstruture. MIN spei�es the minimum number of bytes before a readreturns and TIME spei�es the number of tenths-of-a-seond to wait fordata to arrive. There are four possible sub-modes depending upon thevalues of these two variables.Case A: MIN > 0, TIME > 0In this ase TIME spei�es value of a timer that is started only when the�rst byte is reeived. If MIN bytes are reeived before the timer expires,read returns MIN bytes. If the timer expires before MIN bytes are re-eived, read returns the bytes reeived. This bloks the reading proessuntil the �rst byte is reeived, thus at least one byte is returned to thereading proess.The remote terminal driver keep sending NFS readdevie requests untilone or more bytes are reeived from the server. If the number of bytesread are equal to MIN then the read returns. Other wise it starts a timerwhih expires after TIME tenths-of-a-seond. After the timer expires thelient sent another readdevie request and tries to read at the server, ifthere are some more bytes to be read. It then returns with the numberof bytes read up to now.Case B: MIN > 0, TIME = 0The read does not return until MIN bytes are reeived, thus inde�nitelybloking the reading proess.The remote terminal driver keeps sending NFS readdevie requests to theserver, with exponentially inreasing time interval between suessive re-tries, until MIN number of bytes are read from the server.
54



Case C: MIN = 0, TIME > 0In this ase, TIME spei�es value of a timer that is started when read isalled. The read returns when a single byte is reeived or when the timerexpires.In this ase the remote terminal driver issues a NFS readdevie requestto the server to read a byte. If the response ontains some bytes read,read returns. Otherwise, if the server returns a status to try again, theremote terminal driver starts a timer for TIME tenths-of-a-seond. Af-ter expiry of the timer the driver issues another NFS readdevie requestto the server to read a single byte and returns with the response obtained.Case D: MIN = 0, TIME = 0In this sub-mode, if some data is available then read returns up to thenumber of bytes requested. Otherwise if no data is available read returnsimmediately.The remote terminal driver in this sub-mode issues the NFS readdevierequest one. If some bytes are read from the server, read returns withthe read bytes else it returns zero.Write: The implementation of write funtion is simpler than that of the read.It uses the NFS writedevie proedure to write data on to remote terminal.If the number of bytes to write is more than the maximum size of an NFSrequest, then two or more NFS writedevie requests are sent to the server. Thealgorithm for sending the multiple NFS writedevie requests orresponding toa single write request from appliation is same as the one for read. After theresponse of the �rst NFS request is reeived, the seond NFS request is sent.This sheme is required for orret ordering of writes at the server. Beforesending the writedevie request, this funtion validates the �le handle and�le attributes of the remote terminal �le. After reeiving the response of therequest from the server, the d-state embedded in the response is used to updatethe d-state of the terminal at the lient.55



Iotl: The terminals provide a large number of iotl ommands, whih are han-dled at two levels � upper layer iotl routine and line disipline iotl routine.The iotl ommands that retrieve some state information are served at thelient itself, using the d-state of the terminals maintained at the lients. Theiotl ommands that modify the state of the terminals are made to modifythe d-state maintained at the lients. The modi�ed d-state of the terminalis then sent to the server in NFS iotl request. The arguments of the iotlommands, whih are to be exeuted at the server, are sent to the server usingthe NFS iotl request. Some iotl ommands are not appliable for the remoteterminals aessed through this sheme. Examples of suh iotl ommands arelisted below.TIOCEXCL: It marks the terminal for exlusive use. No other proess (ex-ept with superuser privileges) an open the terminal after it is markedfor exlusive use. This iotl ommand is not supported by remote ter-minal driver beause NFS annot guarantee exlusive use of the terminalaross di�erent lients.TIOCNXCL: It lears the terminal, marked for exlusive use. Sine a remoteterminal annot be marked for exlusive use, this iotl ommand is alsonot supported.TIOCSCTTY: If the terminal is not the ontrolling terminal of a session,then this iotl ommand sets it as the ontrolling terminal of the allingproess. As explained earlier, this sheme does not allow for remoteontrolling terminals. Therefore this iotl ommand is not supported inthe remote terminal driver.TIOCNOTTY: If the terminal is a ontrolling terminal of a session, thenthe session leader an use this iotl ommand to disassoiate itself fromthis terminal. This iotl ommand is also not supported by the driver forthe above mentioned reason.TIOCSPGRP: This iotl ommand is used to set the foreground proessgroup-id of a terminal. The foreground proess group-id of a terminal56



identi�es the proess group to whih the terminal generated signals areto be delivered. It is not supported as remote signal delivery is notsupported by this sheme.TIOCGPGRP: This iotl ommand is used to obtain the foreground proessgroup-id of a terminal. Sine a remote terminal is not assoiated withforeground proess group, this iotl ommand is not supported.TIOCGSID: This iotl ommand is used to obtain the session-id of the ses-sion with whih the terminal is assoiated. This iotl ommand is notsupported due to above mentioned reason.Close: The lose funtion is used for lean up ativity at the lient. Similar tothe open funtion, the remote devie driver does not send any NFS requestto the server on losing a remote devie. If the losing proess is the lastproess whih has opened the terminal, this funtion releases the tty_strutand winsize strutures, and removes pointers from the �le table entry. If thereare other proesses whih have the same terminal open, it only derementsthe ount maintained in the tty_strut struture. The termios struture forterminal is not released.The terminal spei� modules and the devie independent parts of the imple-mentation of NFS extensions, together provides the remote terminal aessing meh-anism. Similarly by providing the devie spei� implementation for other devies,exempli�ed by the terminal spei� implementation, one ould easily provide remoteaess to them using the extended NFS protool.

57



Chapter 5Performane EvaluationIn this hapter we disuss the experiments onduted to test the funtioning of theextended NFS system. Another objetive of these experiments was to measure theoverheads assoiated in aessing remote devies. The measure of the overheadsprovides a means to on�gure the retransmission algorithm used by the remotedevie driver.5.1 Experimental SetupIn these experiments the lient and the server mahines used were both Intel Pentium�II PCs with 128 MB RAM, running Linux kernel 2.2.9. The two mahines wereonneted through a 10 Mbps Ethernet LAN. The experiments were onduted innormal working onditions, i.e., average load on server and average tra� in LAN.A diretory ontaining the devie �le /dev/tty8 orresponding to a virtual onsoleof the server was mounted at the lient. This allows the proess at the lient toaess the onsole of the server and interat with the user sitting on that onsole.5.2 Funtional EvaluationThe funtionality of the design and implementation of extended NFS system wasevaluated by exeuting various existing appliations, whih make extensive use of58



terminals, over remote terminals aessed through this system. The system is ableto support the omplete funtionality of the terminals while using all the optionsof these appliations. The transpareny provided by our framework is evident withthe suessful exeution of these appliations over the remote terminals, withoutany modi�ations.The typial senario of the experiments omprises of an appliation proess ex-euting at the NFS lient, using the remote terminal of NFS server to interat withthe user at the server. We exeuted appliations ranging from simpler ommandssuh as ls, at et. to omplex appliations suh as vi, shell et. on remote terminals.The system reovered transparently even in the ases of server reboot. If the NFSserver rashes while an appliation at the lient is using a terminal of the server, theappliation is not able to use the terminal till the server reboots. While the serveris rebooting the lient ontinues to send its requests. After the server reboots, thestate of the terminal is restored at the server (when the next request from the lientis reeived) and the appliation at the lient is able to use the terminal again.5.3 Performane EvaluationThe appropriate performane measures for our system depend upon the kind ofdevie being aessed. For terminals the primary measure of interest is the responsetime. The response time would determine to what extent the user experienes an"interative" experiene. The user of a terminal would expet a harater to appearon the terminal very soon after he/she presses a key. If the terminal is in ehomode, the typed haraters would be ehoed by the devie driver on the server itselfand would therefore appear on the sreen almost immediately. Consider, however asituation where the terminal is used in a non-eho mode by the appliation. In suha senario the user would see the response only after the appliation reeives theharater typed and displays some output. A typial example of suh a situationwould be the use on an editor suh as vi. The vi editor puts the terminal in raw modeand assumes the responsibility of ehoing the typed haraters (in the INPUT mode).In suh a senario, the response time would ritially depend on the algorithm used59



for retransmission of read requests. Sine there is no easy way to measure theresponse time, in our experiments we used the user's subjetive evaluation of thisresponse time to evaluate various retransmission algorithms.Another performane measure, whih is important for all kind of devies, isthe network load. In ase of terminals one an easily see the tradeo� between theresponse time and the network load. Reduing response time would require frequentretransmissions whih would then lead to high network tra�. Thus one needs totune the retransmission algorithm in a way suh that while the users experienesan aeptable response time, the network tra� generated due to retransmission isalso reasonable. The algorithm should also prevent exessive retransmission duringlong periods of user non-ativity while always ensuring a reasonable bound on theresponse time.We experimented with two retransmission algorithms used for terminals andompare them in terms of the network tra� generated and the quality of userexperiene. The two retransmission algorithms di�ered only in the timeouts usedfor retransmissions. Instead of a �xed timeout period (whih would mean either alarge response time or high rate of retransmissions even during the period of non-ativity), we use a progressively inreasing timeout value. The maximum timeoutvalue is �xed to ensure a bound on the response time after a long period of non-ativity. Figures 5.1 and 5.2 show the suessive timeout values (in milliseonds) forthe two algorithms used.50, 50, 100, 100, 150, 150, 200, 200, 250, 250, 300, 300, 500, 500, 1000, 1000,1000,......... Figure 5.1: Timeout values used in Algorithm 150, 100, 150, 200, 250, 300, 500, 1000, 1000, 1000,.........Figure 5.2: Timeout values used in Algorithm 2We onduted the experiments with four users with di�erent typing speeds. Theusers were asked to use vi to type for two minutes, without erasing any haraters.60



We measured the number of NFS requests transmitted (read, write and poll) duringeah typing session and also asked the users about the quality of their experiene.5.4 ResultsUser Total Read per Write per Poll perNo Chars har har har1 523 0.933 1.380 12.4362 438 0.929 1.406 10.7693 382 0.893 1.416 9.7934 375 0.885 1.525 9.727Table 5.1: Overhead with Algorithm 1User Total Read per Write per Poll perNo Chars har har har1 519 0.844 1.272 8.2832 447 0.850 1.351 8.8873 414 0.837 1.391 9.1744 382 0.829 1.418 9.756Table 5.2: Overhead with Algorithm 2Table 5.1 shows the the total number of haraters typed by the four users intwo minutes, the number of read, write, and poll requests sent to the server perharater typed, using Algorithm 1. Table 5.2 shows the same data for the seondexperiment in whih Algorithm 2 was used.For algorithm 1, the �rst three users reported an aeptable degree of interativ-ity while the slowest user (user 4) reported an unaeptable quality of interation. Itan also be seen from Table 5.1 that the retransmission of the requests per haraterwith this algorithm was substantially higher for the faster users.For algorithm 2, the �rst three users experiened poorer interativity as om-pared with algorithm 1, but was still within aeptable limits while the slow user61



(user 4) reported unaeptable interativity. Clearly, the number of retransmissionsfor all four users are nearly equivalent and quite less in omparison to the algorithm1. In both the algorithms, by the time the slow user types a harater the re-transmission timeout almost reahes the maximum possible value. Hene he/sheexperienes a notieable delay in the response. We have adopted the algorithm 2in our �nal implementation owing to the redued network tra�. It was found thathoosing larger timeout values, further dereased the number of retransmissions, butresulted in an unaeptable quality of experiene, even for fast and average users.

62



Chapter 6ConlusionsIn this thesis we have presented a mehanism for transparently aessing the remotedevies. We have extended NFS to aess the devies of an NFS server from thelients. The extensions preserve the harateristi properties of the NFS, espeiallythe statelessness of the protool and transparent rash reovery.The NFS protool is extended to inlude three new proedures, viz., readdevie,writedevie and iotl. No hanges have been made to any of the existing NFSproedures. These proedures are used by the lients to aess devies of the NFSserver. We have also suggested a new servie model for these proedures at theserver. The requests and responses of these proedures also inlude the d-state ofthe devie being aessed. In ase of a server rash, this d-state is used by the serverto set the d-state of the atual devie.To aess the remote devies through NFS transparently, the lients use a remotedevie driver. The remote devie driver of a devie simulates the UNIX semantis ofinput-output for that devie. It implements the input-output operations requestedby a lient appliation on the remote devie using the new NFS proedures. It alsomaintains the d-state of the devie, whih is sent with every request for making eahrequest self ontained and independent of previous requests.We have implemented the proposed protool for terminals. Our implementationis primarily based on the Linux operating system. Experiments show that the re-sponse time for remote terminal aessed using this implementation is aeptable63



and the network tra� generated is also reasonable.We have also integrated our extended NFS implementation with a proess mi-gration system [5℄. This allows interative proess to migrate to other hosts. Sinethis proess migration system supports transparent delivery of signals to remoteproesses, asynhronous noti�ation from a terminal to a remote proess also ourstransparently in this integrated system.6.1 Future WorkWe have tried to keep the extensions to the NFS protool, devie and operatingsystem independent. But in order to validate the orretness and performane ofthe protool, support for remote aess to di�erent types of devies need to be im-plemented using it. Additionally some of the implementation should be on di�erentUNIX implementations. After experiene with these implementations, if needed theprotool an be reevaluated and suitably modi�ed.To use this sheme for exlusive aess to devies, an external protool needsto be developed. Suh a protool will allow transparent sharing of even devie likeprinters.

64



Bibliography[1℄ Helen Cluster. �Inside WINDOWS NT�. Mirosoft Press Publiation, 1993.[2℄ Xerox Corp. �Courier: The Remote Proedure Call Protool�. Tehnial ReportXNSS 038112, Xerox Corp, De 1981.[3℄ T.H. Dineen, P.J. Leah, N.W. Mishkin, J.N. Pato, and G.L. Wyant. �TheNetwork Computing Arhiteture and System: An Environment for Develop-ing Distributed Appliations�. In Proeedings of the 1987 Summer USENIXConferene, pages 385�398, Phoenix, Ariz., 1987.[4℄ Peter Eriksson. �Standardizing/Extending the RMT (Remote MagTape) Pro-tool�. IETF 1993 Arhives, http://mlarhive.ima.om/ietf/1993/1041.html.[5℄ Ashish Gupta. �Performane and Poliy issues in a Proess Migration Imple-mentation�. M.Teh. Thesis, Dept. of Comp. S. and Engg., IIT Kanpur, 2001.[6℄ Jr. H.W., Lokhart. �OSF DCE Guide to Developing Distributed Appliations�.MGraw-Hill, In., 1994.[7℄ S. Kleiman. �Vnodes: An Arhiteture for Multiple File System Types in SunUNIX�. In USENIX Conferene Proeedings, pages 238�247, Jun 1986.[8℄ E. Levy and A. Silbershatz. �Distributed File Systems : Conepts and Exam-ples�. ACM Computing Surveys, 22(4), De 1990.[9℄ L. MLaughlin. �Line Printer Daemon Protool�. Request for Comments RFC1179, Aug 1990. 65



[10℄ B.J. Nelson and A.D. Birrell. �Implementing Remote Proedure Calls�. ACMTransation on Computer Systems, 2(1):39�59, Feb 1984.[11℄ X/Open CAE Spei�ation: �Protools for X/Open Internetworking: XNFS�,1991.[12℄ D.A. Nowitz. �UUCP Administration�. UNIX Researh System Papers, Saun-ders College Publishing, II, 1990.[13℄ G. J. Popek and B. J. Walker. �The LOCUS Distributed System Arhiteture�.Computer Systems Series, The MIT Press, 1985.[14℄ J. Postel and J. Reynolds. �File Transfer Protool�. Request for CommentsRFC 959, Ot 1985.[15℄ A.P. Rifkin, M.P. Forbes, R.L. Hamilton, M. Sabrio, S. Shah, and K. Yue-h. �RFS Arhiteture Overview�. In Proeedings of the summer 1986 UsenixTehnial Conferene, pages 248�259, Jun 1986.[16℄ R. Sandberg, D. Goldberg, S. Klliman, D. Walsh, and B. Lyon. �Design andImplementation of the Sun Network Filesystem�. In USENIX Tehnial Con-ferene Proeedings, pages 119�131, Jun 1985.[17℄ M. Satyanarayanan, J. H. Howard, D. Niholas, R. Sidebotham, A. Spetor,and M. Vest. �The ITC Distributed File System: Priniples and Design�. InPro. 10th Symposium on Operating System Priniples, pages 119�130, De1985.[18℄ Sun Mirosystems, In. �JINI Arhiteure Spei�ation�. http://www.sun.om-/jini/spes/jini1.1html/jini-title.html.[19℄ Sun Mirosystems, In. �XDR: External Data Representation Standard�. Re-quest for Comments RFC 1014, Jun 1987.[20℄ Sun Mirosystems, In. �RPC: Remote Proedure Call, Protool Spei�ation,version 2�. Request for Comments RFC 1057, Jun 1988.66



[21℄ Sun Mirosystems, In. �Network File System Protool Spei�ation�. Requestfor Comments RFC 1094, Mar 1989.[22℄ B. B. Welh. �Naming, State Management, and User-Level Extensions in theSprite Distributed File System�. Ph.D. dissertation, Computer Siene Divi-sion, Dept. of Eletrial Engg. and Computer Sienes, University of California,Berkeley, 1990.[23℄ J.E. White. �A high level framework for network-based resoure sharing�. InPro. National Computer Conferene, Jun 1976.

67



Appendix ANew NFS Proedures
A.1 ReaddevieReaddevie is a proedure to read data from a devie at enhaned NFS server.strut readdevieargs {fhandle file;unsigned ount;unsigned offset;properties prop;}union readdevieres swith (stat status) {ase NFS_OK:fattr attributes;properties prop;nfs_data data;default:void;}

68



On entry the arguments in readdevieargs are:�le The �le handle of the �le orresponding to the devie, from whih datais to be read. This is used by the server to identify the �le throughwhih the devie is aessed.ount The number of bytes of data that are to be read. If the ount is 0 thenread will sueed and return 0 bytes. The value of ount must be lessthan or equal to maximum read ount provided by the server, in �lesystem information.O�set Usually in ase of devies, speially the harater devies, the o�set hasno meaning. But in ase of some blok devies it may be required bythe devie driver to speify the o�set from where to read the data from.properties This is the d-state of the devie kept at the lient. It is sent with everyrequest to make it omplete by itself. This depends upon the deviebeing read from and inlude only the state whih is modi�able by aproess.
On suess it returns readdevieres whih inludes:fattr These are the �le attributes after read operation is ompleted.ount This is the total number of bytes atually read from the devie. Thisan be less then the requested amount of data. As in ase of manydevies the exat ount of data to be read is not known a priori.properties This is the most reent d-state of the devie at the server. It may bedi�erent from what was sent with the request, if some other lient hadhanged properties at the server. This must be used by lients to maketheir d-state of the devie onsistent with the whole system.data The data read from the devie.

69



A.2 WritedevieWritedevie is a proedure to write data onto a devie at enhaned NFS server.strut writedevieargs {fhandle file;unsigned ount;unsigned offset;properties prop;nfsdata data;}union writedevieres swith (stat status) {ase NFS_OK:fattr attributes;properties prop;default:void;} On entry the arguments in writedevieargs are:�le The �le handle of the �le orresponding to the devie, on whih datais to be written. This is used by the server to identify the �le throughwhih the devie is aessed.ount The number of bytes of data that are to be written. The value of ountmust be less than or equal to maximum write value that have beenprovided in �le system information by the server.O�set Usually in ase of devies speially the harater devies the o�set hasno meaning. But in ase of some blok devies this may be required bythe driver to speify the o�set at whih to write the data.properties This is the d-state of the devie kept at the lient. It is sent withevery request to make it omplete by itself. This depends upon thedevie being aessed and inlude only the state whih is modi�able bya proess.data The data bytes to be written on the devie.70



On suess it returns writedevieres whih inludes:fattr These are the �le attributes after write operation is ompleted.properties This is the most reent d-state of the devie at the server. It may bedi�erent from what was sent with the request, if some other lient hadhanged properties at the server. This must be used by lients to maketheir d-state of the devie onsistent with the whole system.

71



A.3 IotlIotl is a proedure to hange properties of a devie at enhaned NFS server.strut iotlargs {fhandle file;properties prop;unsigned ser_iotl;iotl_param ioargs;}strut iotlres {ase NFS_OK:fattr attributes;iotl_return iores;default:void;} On entry the arguments in iotlargs are:�le The �le handle of the �le orresponding to the devie, on whih iotlis to be issued. This is used by the server to identify the �le throughwhih the devie is aessed.properties This is the d-state of the devie kept at the lient, whih is modi�edby the iotl. This d-state is used to modify the d-state of the atualdevie at the server to re�et the hanges made by the lient throughiotl.ser_iotl Some iotl ommands does not modify the devie properties but requiresome funtion to be invoked in the devie driver of that devie. Thisidenti�es the iotl ommand to be issued at the server.ioargs These are the parameters to the iotl ommands that need to be exe-uted at the server.
72



On suess it returns iotlres whih inludes:fattr These are the �le attributes after iotl operation is ompleted.iores This is the response sent by the server after exeuting one of the iotlommands that require some funtion of the devie driver to be invokedat the server.

73


