
Generation Of Assemblers Using High LevelProessor Models
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

bySarika Kumari

to theDeapartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurFeb, 2000



Certi�ate
This is to ertify that the work ontained in the thesis entitled \Generation Of Assem-blers Using High Level Proessor Models", by Sarika Kumari, has been arried outunder my supervision and that this work has not been submitted elsewhere for a degree.

Date: Feb, 2000 (Dr. Rajat Moona)Department of Computer Siene & Engineering,Indian Institute of Tehnology,Kanpur.

1



AbstratAssemblers are typially spei� to the proessors. Muh of an assembler has to bere-implemented for eah new mahine. This thesis desribes the design and implementa-tion of an assembler generator (asmg). The assembler generator automatially generatesan assembler for a proessor by taking a high level model of the proessor in Sim-nML[1℄intermediate form as input. The Sim-nML language provides a simple, elegant and pow-erful mehanism to desribe the proessor behavior at the instrution level.The assembler thus generated takes an assembly language program as input and gen-erates a reloatable binary objet �le in ELF[2℄ format as output. The pseudo operationssupported by the generated assembler are independent of the proessor and onform tothe syntax and semantis of the GNU assembler(GAS)[3℄. In addition, the generated as-sembler supports the link-time reloation of the program. Suh reloations are typiallymahine spei� and are handled with the help of spei� on�guration �le whih de�nesthe mahine spei� types of the reloations with respet to the operations whih use them.
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Chapter 1Introdution
1.1 PreambleThe system designers require sophistiated and generi modeling tools for the designof high performane embedded systems. These tools help in evaluation of alternativeimplementations, they simplify the proess of design hanges and allow for the trade-o�s at the early stages of development. Hardware-software o-design is a ost e�etivemethodology and results in a shorter time to market as opposed to the design of softwareand hardware omponents of an embedded system separately.Powerful modeling tools with high level of abstration are needed with an integratedenvironment whih allows designers to assemble, ompile, simulate and analyze the per-formane of various alternatives of the new design. Hand-oding is not an option sine iteliminates the apability of iterating over multiple hardware spei�ations.In this thesis, we have designed a tool alled assembler generator (also referredto as asmg) whih generates an assembler for proessor whose spei�ation is availablein Sim-nML[1℄ language. Sim-nML is simple and powerful language used to speify aomplex proessor arhiteture. The asmg takes an intermediate representation[4℄ ofthe Sim-nML proessor spei�ations as its input and generates an assembler for thatproessor. The assembler so generated produes an ELF objet ode as output from agiven assembly language program. Sine Sim-nML provides a generi way of desribing aproessor arhiteture, asmg provides for the generation of assemblers in an arhitetureindependent manner.1.2 Related WorkAutomation tools for performane modeling of a system is a growing area and a lot ofresearh has been pursued in this area. These previous works have resulted in a set ofperformane modeling tools using di�erent languages for proessor spei�ation.An automati assembler generator[5℄ has been developed by George Hadjiyian-1



nis, Silvina Hanono, and Srinivas Devadas at Prineton University using the InstrutionSet Desription Language ISDL[6℄. ISDL is a mahine spei�ation language similar toSim-nML[1℄. It provides onstruts for speifying instrution set and other arhiteturalfeatures. Their assembler generator reeives an ISDL desription as input, and produesan assembler whih assembles the ompiler's output to a binary �le. The assembler gen-erator produes Lex and Ya �les, whih when ompiled result in an exeutable programfor parsing the assembly language programs and generating the orresponding mahineinstrutions.Ameta-assembler[7℄ whih reates assemblers for new arhitetures has been writ-ten for spei�ations in SLED[8℄, a Spei�ation Language for Enoding and Deoding.This language is used to de�ne mappings between symboli assembly-language and bi-nary representations of instrutions. A toolkit, (New Jersey Mahine-Code (NJMC)Toolkit) is implemented to help programmers write appliations that proess mahineode{assemblers, disassemblers, ode generators, traers, pro�lers, and debuggers. Themeta-assembler is essentially a maro proessor with bit-manipulation operators and spe-ial support for di�erent integer representations.The Language for Instrution Set Arhitetures (LISA)[9℄ is apable of desribing thearhitetural details and pipeline operations of modern proessors. The language is de-signed to desribe proessor arhitetures and to enable automated generation of softwaredevelopment tools, suh as high-level language ompiler, assembler, linker, simulator, anddebugger. Furthermore, aurate and onsistent doumentation an be generated in LATEXand HTML format. Currently a proessor simulator SuperSim[10℄ has been developed.1.3 Existing ToolsFollowing tools have been implemented in our environment.Cahe Simulator[4℄ provides a mehanism to simulate various ahing poliies. Thedesigner an use the simulator to study the trade-o�s between di�erent ahing poliies.Code Instrumentor[4℄ implements a mehanism to perform analysis and pro�ling ofappliation programs through the tehnique of ode instrumentation.Disassembler[11℄ takes the IR of a proessor desription and a reloatable binary pro-gram in ELF format as input and produes an equivalent program in assembly languageof the proessor. The disassembler is generi enough to be used for all types of proessors.It performs omplete symboli disassembly and is ompatible to the assembler generator.Instrution Set Simulator Generator[1℄ takes Sim-nML spei�ation as input andgenerates a performane simulator, whih in turn takes a binary for that proessor andgives the performane based results. 2



Retargetable Funtional Simulator[12℄ generates a funtional simulator for a binaryprogram targeted to run on a proessor whose desription is given in the Sim-nML.The following tools are under development.Timing Simulator to analyze a partiular program for timing performane and resoureusage. A ompiled ode simulator generator would generate a higher performane timingsimulator.Compiler Bak-End Generator to generate bak-end for GNU-C by automatiallygenerating GNU mahine desription (.md) of a partiular proessor from Sim-nML.
1.4 Organization of the ReportIn this thesis we have designed and implemented an Assembler Generator whih gen-erates an assembler for a spei� proessor. The generated assembler takes an assemblylanguage program and optionally a on�guration �le to provide the information for ma-hine spei� link-time reloations as input, and generates an ELF format reloatableobjet �le as output.The rest of the thesis is organized as follows. In hapter 2, we provide a briefintrodution to the Sim-nML language and its intermediate representation. In hapter 3,we disuss the basis of the generated assemblers and the assembler diretives supportedby them. We also disuss the ELF objet �le format and the implementation of mahineindependent part of the assembler. In hapter 4, we disuss the design of the assemblergenerator. We have tried to point out the information that is available in the intermediaterepresentation of mahine spei�ation written in Sim-nML and how it ontributes tothe generation of the assembler. In hapter 5, we disuss generi reloation funtionssupported by the generated assembler, the way to de�ne mahine spei� reloations. Weuse a mahine spei� on�guration �le for that. We �nally onlude in hapter 6. Inaddition to these we provide a user's manual for the assembler in Appendix A.
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Chapter 2Sim-nML and IntermediateRepresentation
The base language for our environment is Sim-nML[1℄, a generi proessor modelinglanguage. Sim-nML is an extension of nML[13℄ mahine desription formalism. Proessormodels are written in Sim-nML, using whih, various proessor spei� tools an begenerated automatially. To ease the design of various tools an intermediate representation(IR) for Sim-nML has been designed. A tool alled irg[4℄ takes a Sim-nML spei�ationfor a proessor and onverts it to IR.2.1 The Sim-nML LanguageThe proessor modeling language Sim-nML is used to desribe the syntax and semantisof instrutions in the instrution set of a proessor. The instrution set is desribed in ahierarhial manner. The ommon behavior of a lass of instrutions is aptured at thehigher level of the tree and the speialized behaviors of the sub-lasses are aptured inthe subsequent lower levels.Sim-nML grammar has a �xed start symbol instrution and two kinds of produtionsor-rule and and-rule. The or-rule is written as,op n = n0jn1jn2j:::and and-rule is written as,op n0(p1 : t1; p2 : t2; :::)a1 = e1 a2 = e2 ...where eah ni is a non-terminal, and eah ti is a token. Eah ai is an attribute namewith ei being its de�nition.Sim-nML has some prede�ned but optional attributes named image, syntax, ationand uses. The syntax attribute desribes the textual syntax (assembly language format)of the instrution, the image attribute desribes the binary oding of the instrution. The4



ation desribes the semantis of the instrution while the uses desribes the resoure-usage model. The assembler generator uses the de�nition for syntax and image attributesonly. The Sim-nML example in Figure 2.1 and Figure 2.2 desribes a simple proessorwith four instrutions. The add and sub instrutions add and subtrat the ontents oftwo general purpose registers respetively. The jump instrution hanges the urrent PCvalue. The seond byte of the jump instrution spei�es an 8-bit branh address. PC refersto the address from whih the next instrution has to be fethed. The move instrutionmoves the ontent of memory addressed by a general purpose register to another generalpurpose register. The addressing modes used by the example proessor are REG (registerdiret), MEM (register indiret) and IMM (immediate).type index = ard(3)reg PC[1, ard(8)℄let byte_order = "big"mem M[1024, ard(8)℄reg R[8, ard(8)℄resoure Feth_Unit, Exe_Unit[2℄, Retire_Unitmode SHORT = MEM | REGmode MEM (a : index) = M[R[a℄℄syntax = format("(R%d)", a)image = format("0%3b", a)mode REG (i : index) = R[i℄syntax = format("R%d", i)image = format("1%3b", i)mode IMM (n : ard(8)) = nsyntax = format("%d", n)image = format("%8b", n)Figure 2.1: Sim-nML Spei�ation for a Simple ProessorAddressing modes in the proessor are desribed using mode rule. The basi types ofSim-nML inlude ard, int, bool, oat, �xed and enum. The resoure-usage model is usedto speify the miro-arhiteture details of the proessor. A resoure is an abstration ofa piee of hardware whih an be aquired/released by any instrution in exeution suhas a register, ALU, the funtional unit, ports et. For the example proessor (Fig.2.1) theresoures are Feth Unit, Exe Unit and Retire Unit.5



op instrution(x : instr_ation)uses = Feth_Unit #{2}, x.uses, Retire_Unit #{2}syntax = x.syntaximage = x.imageation = { x.ation; }op instr_ation = add | sub | mov | jumpop add (sr : SHORT, dst : SHORT)uses = Exe_Unit #{2}syntax = format("add %s,%s", sr.syntax, dst.syntax)image = format("00000001%s%s", sr.image, dst.image)ation = { dst = sr + dst;PC = PC + 2;}op sub (sr : SHORT, dst : SHORT)uses = Exe_Unit #{2}syntax = format("sub %s, %s", sr.syntax, dst.syntax)image = format("00000010%s%s", dst.image, sr.image)ation = { dst = sr - dst;PC = PC + 2;}op mov (sr : SHORT, dst : SHORT)uses = Exe_Unit #{1}syntax = format("move %s, %s", sr.syntax, dst.syntax)image = format("00000011%s%s", dst.image, sr.image)ation = {sr = dst;PC = PC + 2;}op jump (target : IMM)uses = Exe_Unit #{3}syntax = format("jmp %s", target.syntax)image = format("00000100%s", target.image)ation = {PC = PC + target;}Figure 2.2: Sim-nML Spei�ation for a Simple Proessor ontd ...6



A speial symbol, $ is used to denote the start address of the urrent instrution.This symbol is used to speify a relative branh address for example.2.2 Intermediate RepresentationA proessor spei�ation in Sim-nML language is in a human readable text form. It is,however, wasteful for eah tool to have its own parser to read the Sim-nML spei�ation.A tool irg[4℄ was developed in an earlier work to simplify this proess. It onverts theSim-nML desription to an intermediate form(IR). The IR ontains all useful informationavailable in the original input without any unneessary or redundant information. It isexible and easy to use and failitate the design of proessor spei� tools like simulator,disassembler, assembler, ompiler bak-end generator et.The IR is organized as a olletion of various tables. We use the following tables forour work.� Meta table: The information in this table is needed to loate other tables in theIR. This is a \table of ontent" that ontains the information about the loationand name of other tables.� Constant table: This table holds all the onstant delarations in the Sim-nML pro-essor spei�ation. The useful onstants for assembler generator are byte orderand proessor name. They speify the endian-ness and the name of the proessorrespetively.� Attribute table: This table holds the name of all Sim-nML attributes. A orre-sponding ID is given to eah attribute whih is used in all other tables to refer tothis attribute.� And-Rule table: This table holds the information about all and-rules. From thistable we get an index to the syntax table and image table. This index gives thesyntax and image of the and-rule.� Or-Rule table: This table holds the information about hildren of all or-rules.� Syntax table: This table holds the syntax attribute de�nitions of all and-rules. Itprovides the assembly language syntax and parameters for various instrutions.� Image table: This table holds the image-reord assoiated with the image at-tribute de�nitions of all and-rules. It, therefore desribes the binary oding of theinstrution.To get all informations from the above spei�ed tables we need to look at some moretables desribed below.� Identi�er table: This table holds the name of all the identi�ers (other than thosespei�ed in the onstant table and in the resoure table). This name is stored as anindex to the string table. 7



� String table: This table holds strings used in the Sim-nML model. The stringsare terminated by a null harater. All identi�er names are read from this table.� Integer table: Similar to the string table, this table holds various integers in thespei�ations. In other tables, an index into this table is used for representing arrayof integers.� Pre�x-Attribute-De�nition Table: This table holds the expressional de�nitionof all the attributes and is referred to when some operation (e.g. arithmeti, bitmanipulation) is used in the de�nition of the syntax or image attributes.
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Chapter 3The Assembler
Assembler translates an assembly language program for a proessor into its mahinelanguage (objet ode). It generates its output in a reloatable form where by the programan be linked/ loaded in a position independent manner with the other programs. Besidesthe objet ode, the assembler outputs a human readable listing of the soure programand its translation. It provides error messages interspersed with the ode, symbol table,reloation table and setion table.The proess of assembly involves lexial analysis, syntati analysis, objet odegeneration, symbol table management and forward referenes �x-ups. A two pass assemblerproesses the instrutions as ompletely as possible during the �rst pass. The seond passover the ode is used to �x all forward referenes in the instrutions. A simple overviewof a two pass assembler is shown in Figure 3.1.We generate a two pass assembler (referred as asm hereinafter) in this work. In the�rst pass, the generated assembler parses its input, gathers all relevant information andfor all unde�ned symbol referenes assumes that the de�nition for the symbol will appearlater. It also heks for syntax and semanti errors and reports them. The seond pass ofthe assembler begins only if the �rst pass of assembly ompletes suessfully. In the seondpass the values for the forward referenes are substituted and the output objet ode isgenerated. All unde�ned referenes at this stage are assumed external. The asm takes anadditional on�guration �le as its input. This �le ontains reloation information spei�to the proessor and helps in the generation of reloation table in the objet module. Theoutput of the asm is generated in a reloatable ELF[2℄ objet �le format.3.1 Output File FormatThe format of the output �le generated by the asm is ELF[2℄ (Exeutable and LinkingFormat). There are three main types of ELF objet �les.� A reloatable �le holds the ode and the data. It an be linked with other similarobjet �les to reate an exeutable or a shared objet �le. The asm produes outputin this format. 9
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Figure 3.1: Two-pass Assembler� An exeutable �le holds a program suitable for exeution.� A shared objet �le holds ode and data suitable for linking.Figure 3.2 shows a linking view of an objet �le. In this �le only the ELF headerhas a �xed position. The remaining portion is variable and depends on the atual �le.A program header table provides information on how to reate a proess image. Asetion header table ontains information that desribes the setions in the �le. Eahsetion has an entry in this table. Eah entry gives information suh as the setion name,10



the setion size et. Reloatable objet �les whih are used during the linking must havea setion header table.
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requiredFigure 3.2: Objet �le format (Linking view)In the output �le generated by asm, �rst the ELF Header is written. It then hasthe setions and the setion header table.3.1.1 ELF HeaderAn ELF header resides at the beginning of the objet �le and holds a \road map" desrib-ing the �le's organization. The �le format is designed to be portable among mahinesof various sizes, without imposing the size of the largest or the smallest mahine. Theinitial bytes mark the �le as an objet �le and provide mahine-independent data. Thisdata provides neessary information to deode and interpret the �le's ontents. The ELFheader ontains the information regarding the type of objet �le, required arhiteturefor an individual �le, size of ELF header, size of setion header et.3.1.2 SetionsThe data in the objet �le is organized in various setions that holds program ode, dataand ontrol information. Eah setion has a type and an assoiated attribute to markthe setion as read only, exeutable, reloatable et. An objet �le's setion header tableprovides the loation of all setions in the �le.Various prede�ned setions whih are usually generated by the asm are listed below.� .bss: This setion holds uninitialized data that ontribute to the program's memoryimage.� .data and .data1: These setions hold initialized data that ontribute to the pro-gram's memory image.� .relname and .relaname: These setions hold reloation informations. The nameis supplied by the setion to whih the reloation applies. For example, .rel.textontains reloation information for symbols used in .text setion.� .rodata and .rodata1: These setions hold read-only data that typially ontributeto a non-writable segment in the proess image.11



� .shstrtab: This setion holds setion names as null terminated harater strings(see setion \String Table").� .strtab: This setion holds strings, most ommonly the strings that represent thenames assoiated with symbol table entries (see setion \String Table").� .symtab: This setion holds a symbol table (refer to the setion \Symbol Table").� .text: This setion holds the \text" or exeutable instrutions, of a program.The objet �le generated by the asm onsists of at least three setions named as.bss, .data and .text regardless of whether they exists in the input assembly program ornot. These setions have a size of zero bytes if they are not de�ned in the input assemblylanguage program. The generated output �le also ontains a .shstrtab setion. It ontainsthe name of all the setions in the objet �le.3.1.3 String TableString table setions hold null-terminated harater sequenes, ommonly alled strings.The objet �le uses these strings to represent symbols and setions name. One referenesa string as an index into the string table setion. The �rst byte at index zero always holdsa null harater. Likewise, the last byte in various string tables hold a null harater,ensuring null termination for all strings. A string whose index is zero spei�es eitherno name or a null name, depending on the ontext. An empty string table setion ispermitted.3.1.4 Symbol TableAn objet �le's symbol table holds information required to reloate a program's symbolide�nitions and referenes. It onsists of entry for symbol name, symbol value, symbol size,symbol info, and name of the setion in whih the symbol is de�ned. A symbol table index0 serves as an unde�ned symbol index.3.1.5 Reloation TableReloation is the proess of onneting symboli referenes with symboli de�nitions. Forexample, when a program alls a funtion, the assoiated all instrution must transferontrol to the proper destination address during exeution. Reloatable �les must have\reloation entries" whih are neessary beause they ontain information that desribeshow to modify their setion ontents, thus allowing exeutable and shared objet �les tohold the right information for a proess's program image.A reloation entry ontains the information about the loation at whih the relo-ation ation is performed, the symbol table index with respet to whih the reloationmust be made, and the type of mahine spei� information whih de�nes the reloation12



ation. A reloation requires to referene two other setions - the symbol table setionand the setion that is modi�ed.3.2 The Assembler DiretivesThe assembler diretives are not translated into the mahine ode. They are instrutionsto the assembler to perform various bookkeeping tasks, storage reservation and initial-ization and other ontrol funtions. The diretives used by the asm are ompatible withsyntax as well as with semantis of GNU assembler GAS[3℄ that is available as part ofthe GNU binary utilities and the GNU C ompiler.All assembler diretives have names that begin with a period (`.'), and are the sameregardless of the target mahine. Some diretives however have di�erent interpretationthan the ones used in the GNU assemblers and are disussed here.� .align abs-expr, abs-expr, abs-expr: This pseudo operation is used for aligningthe loation ounter (in the urrent subsetion) to a partiular storage boundary.The GAS behavior is inonsistent for this diretive and depends on the arhiteturefor whih it is on�gured. e.g. For some proessor arhiteture the diretive .align3 advanes the loation ounter until it is a multiple of 23, while for some otherproessors the diretive .align 8 is used for the same purpose. In asm the diretive.align 3 is interpreted as to advane the loation ounter to a multiple of 23. Theseond and third abs-expr have same interpretation as in the GNU assembler.� .�le string: This pseudo operation provides the name of the �le whih was trans-lated to give the assembly program. For example it is used by the C ompiler toprovide the name of the C �le whih was ompiled to the assembly language pro-gram. However its handling depends on how GAS is on�gured. The asm takes thestring and inserts it into the symbol table as a symbol of type FILE.� .sbttl \string", ... : This pseudo operation is used to format the output listing. Itprovides a sub-heading whih is inserted immediately after the title in the assemblylisting. GAS doesn't parse the string and emits it as it is. The asm parses the stringmaking it possible to use variables or prede�ned onstants in the sub-heading.� .title \string", ... : This pseudo operation provides the title line for the assemblylisting. In GAS, this is used as the seond line and the string is not parsed. In asm,we use this as the �rst line and parse the string as in the .sbttl pseudo operation. Thedefault title is \file listing: $ FILE Page number: $ PAGE", where FILEand PAGE variables are desribed later.Certain other diretives like .def, .dim, .endef, .ident, .lags, .linkone, .mri, .sl,.size, .sleb128, .tag, .type, .val, and .uleb128. whih are meaningful in GNU assemblerwhile generating COFF[14℄ output. The asm aepts these diretives and ignores them.In addition, the asm provides some prede�ned onstants whih an be used anywherein the assembly language �le. They are as follows.13



1. FILE is the name of the urrent assembly language �le.2. LINE is the urrent physial line number of the assembly language �le beingproessed.3. PAGE is the page number of the generated listing.4. DATE is the system's urrent date.5. TIME is the system's urrent time.3.3 Implementation DetailsThe ompilation of the generated assembler requires some supporting �les whih aremahine independent. These �les ontain programs for ommand line parsing, evaluationof assembly diretive, preparation and manipulation of assembly setions, writing of objet�le in ELF format et.3.3.1 Evaluation of Assembly DiretivesThe pseudoOp. and pseudoOp.h are the two �les whih ontain all the neessary infor-mation for evaluation of assembly diretives. In the �rst pass of assembly all diretivesare inserted into a hash strutured symbol table for faster referene. The informationsinserted are as follows.� Name: This is a null terminated string that represents the name of the pseudo-op.A symbol is ompared against this name while parsing the input.� Token: This is the orresponding token returned to the parser when a pseudo-opis mathed against the Name.� Funtion pointer: This is a pointer to the orresponding funtion whih is alledto proess the reognized pseudo-op.As soon as a pseudo-op is reognized and the orresponding statement in the as-sembly language program is parsed, the funtion assoiated with that pseudo-op is alled.This funtion now takes are of further proessing. For example, if \.byte 2+3" is found inthe assembly language program, the parser returns a token AS BYTE. The orrespondingfuntion as byte is then alled with the argument 5 (the result of parsing the expression2+3). This funtion then alls appropriate routine to write value 5 in the spei�ed setion.All routines for writing setions are de�ned in frags. �le, the orresponding header �le isfrags.h. All writing is arried out in the seond pass only and nothing is written in anysetion in the �rst pass.All setions are represented by ontiguous bloks of memory. We have de�ned asetion struture whih ontains the pointer to this memory blok, the size of the blok14



and the urrent o�set in the setion where the writing takes plae. For all setions thesetion pointer is set to NULL initially and, setion size and setion o�set are set to zero.While generating the output in a setion, the byte order is hanged if the endian-ness ofthe target proessor is not the same as that of the host proessor.The assembly is also ontrolled by two assembler diretives .if and .else. The in-strutions are assembled only when the orresponding expression evaluates to true.All writing routines have the following ommon struture.1. if onditional assembly evaluates to false, return.2. if the pass == �rst then ompute the new o�set and return.3. else(a) if the endian-ness of the target proessor di�er from the host proessor, swapbytes.(b) write data in the setion at the urrent o�set.() update o�set in the setion.3.3.2 Symbol Table and Reloation Table ManagementThese tables are used for bookkeeping information about a symbol de�ned, used, orreloated in the assembly language program. All these tables are hash strutured.Symbol TableAs soon as asm reognizes a symbol de�nition it inserts it into the symbol table. Thesymbol is inserted only one and further de�nitions for the same symbol results in anerror. The symbols whih are not de�ned but used are inserted into symbol table astype unde�ned. asm treats all unde�ned symbols as external. The informations stored insymbol table in the memory are as follows.� Name: A harater pointer to the �rst harater of the name of the symbol.� Value: This holds the address or the value of the symbol depending on the ontext.� Length: This represents the size for the symbol de�ned using .omm or .lommdiretives.� Info: This onsists of the TYPE and BIND information of the symbol. (see ELFobjet format[2℄.)� Setion: This ontains the symboli name of the setion in whih the symbol wasde�ned or used. 15



� Type: This ontains the type of the symbol whih an be de�ned, unde�ned, de�nedand used et.The operations performed on symbol table are look up, insertion and modi�ation.For eah of these operations a hash index is alulated using the name of the symbol.If the symbol found at this index is di�erent from the one that is stored, the symbol onthe hain is examined until the symbol is found or the hain ends. The symbol is thenreturned or modi�ed depending on the funtion all. The insertion of the symbol is doneonly if it doesn't exist in the table.Reloation TableThe symbols in reloation table are inserted as many times as they are used in the input�le. Thus a symbol in reloation table an have multiple entries eah de�ning the distintuse of the symbol. The type of reloation is mahine spei� and di�ers even in syntaxfrom one proessor arhiteture to another. To provide a uniform behavior, asm de�nessome generi reloation operations. User for spei� proessor provides a on�guration�le whih have a orrespondene between the mahine spei� reloation types and thegeneri operations. asm uses a ommand line option - to provide the name of theon�guration �le.The informations stored in Reloation Table are as follows.� Name: A harater pointer pointing to the �rst harater of the name of the symbol.� Value: This holds the address where the reloation is to be applied.� Type: This holds the mahine spei� reloation type.� Addend: This member spei�es a onstant addend used to ompute the value tobe stored into the reloatable �eld.� Setion: This ontains the symboli name of the setion in whih the symbol wasused.The operations performed on reloation table are look up, and insertion. For eahsymbol referene in reloation table, a orresponding entry in symbol table for the symbolis searhed. The information required for reloation entry in the ELF format is alulatedand the entry is inserted in the reloation table.3.3.3 The Big NumbersThe asm supports integer onstants larger than the mahine based integers. These arealled bignum. The bignum have the same syntax and semantis as an integer exeptthat the number (or its negative) takes more than 32 bits to represent in binary. Thedistintion is made beause in some plaes integers are permitted while bignums are not.16



Two type of bignums are available in GAS and are provided in asm also. They are quadand ota.� quad bignum: The assembler diretive .quad is used to refer to quad bignum.Quadnums are 8-byte integers. The operations available for quadnums are addition,subtration, multipliation, bit-shift, bit-or, and bit-and. In asm these operationsare implemented using bit-shift, bit-and and bit-or operations on 4-byte integers.� ota bignum: The assembler diretive .ota is used to refer 16-byte integers. Theoperations available for otanums are the same as those for quadnums. The o-tanums are viewed as a pair of quadnums and all these operations for otanum areimplemented using operations on quadnums.3.3.4 Generation of the Output Objet FileAfter the seond pass of assembly, the output objet �le is written in the ELF format.The formatting part of output �le is implemented in �le elf., the orresponding header�le is elf.h. The elf.h �le ontains the de�nitions for struture of ELF header and setiontables. Three setions .bss, .text and .data are written regardless of whether they arepresent in the input �le or not. Eah setion oupies one ontiguous (possibly empty)sequene of bytes within a �le. They may not overlap, and no byte in a �le resides inmore than one setion.Generation of .symtab and .relaname setionThe information stored in .symtab setion omprises of, name whih is an index to .strtabsetion, value, size, setion name and info. The info member spei�es the symbol's typeand binding attributes. The algorithm used for preparation of .symtab setion is disussedbelow.1. alulate total number (no) of symbols in symbol table.2. initialize 1st entry (index 0) for .strtab setion. This entry (STN UNDEF) is reserve,and serves as an unde�ned symbol index.3. while no > 0(a) read symbol from symbol table, and write .symtab setion entry by taking areof endian-ness.(b) write symbol name in .strtab setion.() if symbol is reloatable, prepare reloation table entry.(d) derement no.After writing the output �le in ELF format asm exits normally. The default namefor output objet �le is b.out. It an be hanged by using the -o ommand line option.Conventionally, the objet �le name ends with `.o'.17



3.3.5 Error ReportingTwo kinds of errors are reported by the asm. These are Warning Messages and ErrorMessages. The asm writes the warnings and error messages to the standard error �le(usually the terminal).Warning messages have the following format.Warning:�le name:NNN:Warning Message TextWhere NNN is the line number, �le name is the name of the urrent input �le and themessage text provides the warning message.Error messages have a format similar to the warning messages as represented below.Fatal:�le name:NNN:Error Message TextThe �le name, line number and message text are derived as in the ase of warning mes-sages. The asm generates the output �le for the assembly program even in the preseneof warnings. In ase of errors, the output �le is not generated.3.4 List File GenerationThe generated assembly listing inludes assembly program, its equivalent mahine ode,error messages, a setion table, a reloation table and a ross-referene symbol table. Anexample listing is shown in Figure 3.3 and Figure 3.4.The �rst olumn in the listing shows the line number. The seond olumn gives thevalue of the loation ounter immediately before the orresponding statement is assem-bled. The third olumn shows the mahine ode that the statement is assembled into,and the remainder of eah line is the soure ode just as it is presented to the assembler.If an error is found, the error message is output on the line following the line ontainingthe error. The \R" in the line 16, 17 and 20 shows that these instrutions use symbolvalues whih should be reloated by the linker.The ross-referene symbol table summarizes the information regarding the iden-ti�ers in the program. The value is the value of loation ounter where the symbol isde�ned. Sine printf is unde�ned it ontains a value *UND*. The setion spei�es thename of the setion in whih the symbol is de�ned and info provides the binding and typeinformation for the symbol as de�ned for ELF[2℄ �le format. The reloation table ontainsthe name of the symbol, address where reloation should be applied, the setion nameand the mahine spei� reloation type. The setion table summarizes the informationregarding generated setions. It gives the start address, end address and the size of allgenerated setions.
18



file listing: pp_test.s Page number: 11 00000000 .file "test."2 00000000 g2_ompiled.:34 00000000 .setion ".rodata"5 00000000 .align 26 00000000 .LC0:78 00000000 53554d3a .string "SUM:%d\n"9 25640a0010 00000000 .setion ".text"11 00000000 .globl main12 00000000 .type main,�funtion13 00000000 main:1415 00000000 901f0010 stw 0,16(31)16 00000004 3d200000 R addis 9,0,.LC0�16:1617 00000008 38690000 R addi 3,9,.LC0�16:018 0000000 809f0010 lwz 4,16(31)19 00000010 463182 rxor 6,6,620 00000014 48000001 R bl printffile listing: pp_test.s Page number: 2--------------------------------Symbol Table Information--------------------------------Symbol Value Setion Info(bind - type).LC0 00000000 .rodata LOCAL-OBJECTg2_ompiled. 00000000 .text LOCAL-OBJECTmain 00000000 .text GLOBAL-OBJECTprintf *UND* .texttest. 00000000 *ABS* LOCAL-FILE
Figure 3.3: A Sample Assembly Listing for PowerPC Proessor19



file listing: pp_test.s Page number: 3--------------------------------Reloation Table Information--------------------------------Symbol Address Setion Reloation Typeprintf 00000014 .text 8.LC0 0000000a .text 4.LC0 00000006 .text 6file listing: pp_test.s Page number: 4--------------------------------Setion Table Information--------------------------------Setion Start End Size.bss 00000034 00000034 00000000.data 00000034 00000034 00000000.rodata 00000034 0000003 00000008.shstrtab 0000003 00000080 00000044.strtab 00000080 000000b2 00000032.symtab 000000b2 00000132 00000080.text 00000132 0000018e 0000005.rel.text 0000018e 000001a6 00000018Figure 3.4: A Sample Assembly Listing Contd ...
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Chapter 4The Assembler Generator
In this hapter we disuss the design and implementation of the assembler generator(asmg). The asmg takes a proessor model in its IR form, and generates a two passassembler spei� to that proessor. The generated assembler onsists of a �le on-taining spei�ation for the Lex program[15℄, a �le ontaining spei�ation for the Yaprogram[16℄, and a keyword �le used for the token generation. These spei�ation �lesare used for the lexial and syntati analysis of the assembly language program. These�les are generated from the IR desription of the proessor model.The generated �les onsist of all the information about the proessor e.g. lengthsof the instrutions, parameters for the instrutions, binary representations of the instru-tions, endian-ness of the proessor, whih are all relevant to the assembler. In additionto these, the assembler uses a C module to handle symbol table operations, a parser andanalyzer module for the pseudo operations, and a C module to write output �le in ELFformat. These �les are independent of the proessor model and are the same for all as-semblers that an be generated. We have already disussed the proessor independent�les in Chapter 3. In this hapter, we desribe the algorithms used in the generation ofspei�ation �les from the IR representation of the proessor model.4.1 OverviewThe basi struture of the assembler generator is shown in Figure 4.1. The generation ofassembler is done in two passes over the IR. In order to generate the assembler followingsteps are followed.1. PASS ONE(a) Initialization of asmgi. identi�ation of the data enoding (endian-ness) of the host proessor onwhih asmg is running.ii. heking the integrity of the IR �le by reading the magi number in IRheader. 21
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iii. from IR header determine the data enoding used in the IR. If data en-oding of the host proessor is di�erent from that in the IR, then a ag isset to indiate that the data read from the IR �le must be onverted tothe host byte order before its use.(b) for eah and-rule R in Sim-nML desription; do,i. read syntax string for R using integer table, and syntax table. Parse thesyntax string using algorithm desribed in setion 4.2.2.ii. if the proessor desription ontains instrutions with same syntax, remem-ber the orresponding Sim-nML rules. Only one Ya rule is generated forall these instrutions.2. PASS TWO(a) Initialization of Ya spei�ation, and keyword �le. The onstant startingpart of these �les onsisting of variable delarations, and some part of Yade�nition setion is written.(b) For eah rule in IR with distint syntax string a orresponding Ya rule is gen-erated. The and-rule and the or-rule are onsidered di�erently for generationof these rules.() Keywords are generated orresponding to eah assembly mnemoni. They areused in token generation.The asmg generates the following �les.� asmgYa.y, whih ontains grammar rules.� asmgKey., whih ontains assembly language mnemonis and the orrespondingtokens.� asmgLex.l, whih ontains the sanner rules.The desription of the asmg is best desribed using an example Sim-nML proessorspei�ation. Sine only the syntax and image attributes are relevant for asmg, otherattributes have been dropped from the Sim-nML model shown in Figure 4.2 and Figure4.3.4.2 Implementation DetailsThe relevant information from IR is extrated and mahine dependent �les are generatedusing this information. These �les after ompilation produes the assembler for the spe-i�ed proessor. A shell sript is provide to simplify the generation of the assembler. It�rst generates the assembler �les and then ompiles them to produe the assembler.23



type index = ard(3)reg PC[1, ard(8)℄let byte_order = "big"let proessor_name = "none"mem M[1024, ard(8)℄reg R[8, ard(8)℄mode SHORT = MEM| REGmode MEM (a : index) = M[R[a℄℄syntax = format("(R%d)", a)image = format("0%3b", a)mode REG (i : index) = R[i℄syntax = format("R%d", i)image = format("1%3b", i)mode IMM (n : ard(8)) = nsyntax = format("%d", n)image = format("%8b", n)op instrution(x : instr_ation)syntax = x.syntaximage = x.imageop instr_ation = alu_op| jump| test_opop alu_op(sr:SHORT, dst:SHORT, aa:alu_ation)syntax = format("%s %s,%s", aa.syntax, sr.syntax, dst.syntax)image = format("0000%s%s%s", aa.image, sr.image, dst.image)op alu_ation = a_add| a_subop a_add()syntax = "add"image = "0001"Figure 4.2: Sim-nML spei�ation for an example proessor24



op a_sub()syntax = "sub"image = "0010"op jump (target : IMM)syntax = format("jmp %s", target.syntax)image = format("10000000%s", target.image)op test_op(in:intype)syntax = format("test %s", in.syntax)image = format("1111%s%s", in.image<2..3>, in.image)op intype(sr:REG, sr1:REG)syntax = format("%s %s", sr.syntax, sr1.syntax)image = format("11%s%s", sr1.image, sr.image)Figure 4.3: Sim-nML spei�ation for an example proessor ontd ...4.2.1 Generation of the Ya Spei�ation FileThe format of the generated Ya spei�ation �le is as follows.[ definitions ℄%%[ rules ℄[ %%[ user funtions ℄℄Here De�nitions is the setion where the variables are de�ned that are used laterin the grammar. It also ontains #inlude diretives. Rules is the setion that ontainsgrammar rules for the parser. These rules are generated aording to the proessor spe-i�ations in the IR. User funtions is the setion that ontains the de�nition of thefuntions used in the rules setion.The hierarhial struture of proessor desription in Sim-nML is preserved in gen-eration of Ya rules. For eah rule in proessor desription we get a orrespondingYa-rule (exept in the ase when two rules have the same syntax. This ase is desribedlater). For the purpose of parsing and grammar rules generation, mode-rule and op-rulein Sim-nML spei�ation are not di�erentiated. Only the attributes syntax and image inop/mode rules are used by the assembler generator.The syntax attribute is used to generate the grammar rule where the name of thenon terminal (on the left side of the prodution) is same as the name of the op/mode rule.25



The format string in the syntax attribute is used for the token generation. The generatedkeywords for the tokens are all in apital letters and are pre�xed by the string AS toavoid onits with prede�ned onstants. For eah non-terminal, a de�nition %type isgenerated to speify the value returned by the rule. Similarly, for eah terminal symbol, ade�nition %token is generated to speify the value assoiated with the token. The modeand-rule and op and-rule may di�ers in %type de�nition. The op rule returns a pointer toa harater array. The mode-rule returns an expression struture onsists of the expressiontree reated while parsing an expression or a pointer to a harater array depending onthe ontext. The image attribute is used for the generation of the ation-part in the Yarule. The Ya rules used for parsing of arithmeti expressions and assembly diretivesare �xed and are independent of the proessor under onsideration.The proessor spei� part of generated Ya spei�ation �le for example proessor(Figure 4.2) is shown in Figure 4.4.instrution : instr_ation { $$ = $1; };instr_ation : alu_op { $$ = $1; }| jump { $$ = $1; }| test_op { $$ = $1; };test_op : AS_TEST intype {string str;str = "1111" + bitselet($2,2,3) + (string)$2;$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';delete [℄ $2;};intype : REG REG {string str;str = "11" + (string)$2 + (string)$1;$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';delete [℄ $2;delete [℄ $1;};Figure 4.4: Generated Ya spei�ation �le for the example proessor26



REG : AS_R { string str;str = "1" + setsize(itosul($1.val[0℄ ,3), 3);$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';};jump : AS_JMP IMM {string str;str = "10000000" + (string)$2;$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';delete [℄ $2;};IMM : expr {if ($1.val[0℄ < 0 || $1.val[0℄ > 255){yyerror("Value: %d Is out of range", $1.val[0℄);errorNo++;$$ = new har[1℄;$$[0℄='\0';}else{//alulate imagestring str;sizeInstr = 8;reloateSymbol(&$1);str = setsize(itosul($1.val[0℄ ,8), 8);$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';}};alu_op : alu_ation SHORT ',' SHORT {string str;str = "0000" + (string)$1 + (string)$2 +(string)$4;$$ = new har[str.size()+1℄;Figure 4.5: Generated Ya spei�ation �le for the example proessor ontd ...27



strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';delete [℄ $1;delete [℄ $2;delete [℄ $4;};SHORT : MEM{ $$ = $1; }| REG{ $$ = $1; };MEM : '(' AS_R ')' {string str;str = "0" + setsize(itosul($2.val[0℄ ,3), 3);$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';};alu_ation : a_add{ $$ = $1; }| a_sub{ $$ = $1; };a_sub : AS_SUB {string str;str = "0010";$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';};a_add : AS_ADD {string str;str = "0001";$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';};%%Figure 4.6: Generated Ya spei�ation �le for the example proessor ontd ...28



The algorithm for generation of Ya-rules an be summarized as follows.1. start from instrution node.2. for eah rule R in Sim-nML desription; do,(a) if R is an and-rule,i. read number of parameters from and-rule table.ii. read syntax string and the image string orresponding to R using integertable, syntax table and image table.iii. parse the syntax string using algorithm desribed in setion 4.2.2 and writethe rule in Ya �le.iv. parse the image string and write the ation using the algorithm in setion4.2.2.(b) if R is an or-rule,i. Read number of hildren from or-rule table.ii. for all hildren write a rule in Ya �le. The orresponding ation is $$ =$1.The user de�ned funtion part of the Ya spei�ation is onstant and appended atthe end of the generated �le. This part onsists of the funtions to output the assemblylisting in a prede�ned format.Merging of Ya RulesOnly one Ya rule is generated for all the instrutions that have the same assembly lan-guage syntax but generate di�erent images depending upon the arguments. For example,a proessor an have an instrution JUMP target where, the target an take any integervalue. If the value of $ - target is less than 215 the jump an be oded as a relative jump.For target addresses larger than that, the assembler generates an absolute jump (if thetarget an �t in 16 bits). The mahine odes in two di�erent ases are di�erent. Thegenerated Ya rule for eah of these instrutions is AS JUMP expr. If we write two suhrules in the Ya spei�ation �le the parser generated by this �le ontains a redue-redueonit. In the presene of this onit the generated parser always reognizes only onerule (the rule whih omes �rst in the spei�ation �le) and ignores all other rules. Toavoid this we merge all these rule in one Ya spei�ation rule. The algorithm used isgiven below.1. Create a list of rules with the same syntax (the list is reated for eah rules in the�rst pass of generation of spei�ation �le).2. Sort this list on the size of the parameters.3. Write the rule in Ya spei�ation �le.29



branh : AS_JUMP expr {if (!reloatableSymbol && $2.val[0℄ >= -32768&& $2.val[0℄ <= 32767){sizeInstr = 15;reloateSymbol(&$2);string str;str = "000000001"+ setsize(itosul($2.val[0℄, 15), 15);$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';}else if (!reloatableSymbol && $$2.val[0℄ >= -65536&& $2.val[0℄ <= 65535){sizeInstr = 16;reloateSymbol(&$2);string str;str = "10000001"+ setsize(itosul($2.val[0℄, 16), 16);$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';}else if(!reloatableSymbol){yyerror("Value: %d Is out of range" ,$2);errorNo++;$$ = new har[1℄;$$[0℄='\0';}else if(reloatableSymbol){sizeInstr = 16;reloateSymbol(&$2);string str;str = "10000001"+ setsize(itosul($2.val[0℄, 16), 16);$$ = new har[str.size()+1℄;strnpy($$,(har *)str._str(),str.size());$$[str.size()℄='\0';}}; Figure 4.7: An example merged Ya Rule30



4. For eah rule in the list,(a) Write a Ya ation orresponding to the rule with a ondition on the param-eter.The generated rule for the example JUMP instrution is shown in Figure.4.7. ThereloatableSymbol is a boolean variable used by the Ya spei�ation to mark the variableas reloatable. The variables whih are unde�ned or whose value depends on where theprogram is loaded in the memory are referred as reloatables. In ase of reloatablesymbols the instrution with the largest parameter size is generated to give linker themaximum exibility.4.2.2 Extration of Syntax and Image of InstrutionsThe IR of the proessor spei�ation ontains syntax and image reords for all the in-strutions. We extrat this information for eah op-rule starting from instrution node.These reords enode the syntax of an assembly language instrution, orresponding bi-nary image and information about the arguments. The information about the argumentsis found with the help of the and-rule table and integer table.The expression orresponding to syntax reord of instrutions does not ontain theverbatim syntax of the instrutions. For example, in IR the jump instrution desribed inFigure 4.3 has the syntax string as "jump %sf0.3g". The instrution takes one argumentspei�ed by the %s. The �rst integer value enlosed in fg spei�es the parameter number,and the seond value spei�es the attribute name. For instrution \jump" the argument isdesribed by a mode-and rule named as IMM. The algorithm used to parse syntax stringis desribed below.1. read syntax string orresponding to the urrent op-and-rule from syntax table.2. for all haraters in the syntax string; do,3. if the harater is a '%',(a) read the next harater, it should be one of 'd', or 's' or 'x'. Remember thisharater.(b) read two integer values enlosed in between f and g. The �rst integer gives theparameter number and the seond integer gives the index for orrespondingattribute. Read the name of the parameter in the variable name using integertable and identi�er table.() if the remembered harater was 's' write this name in Ya spei�ation �le,for the above jump instrution the name orresponds to IMM.(d) If the remembered harater was 'd' or 'x', the parameter index to the integertable gives the type and value for the parameter. Write these values as exprin Ya spei�ation �le. expr is a prede�ned Ya rule for evaluation of theinteger expressions. 31



4. else if the sanned harater is an alphanumeri harater append it into a stringvariable nameStr.5. else if the sanned harater is a blank, write the value of nameStr in the Yaspei�ation �le after pre�xing it with AS string. This represents a TOKEN. Thegenerated tokens are hanged into upper ase if the generated assembler is nonase-sensitive otherwise they are retained as extrated from the syntax expression.Corresponding entry in keyword �le is also made for this TOKEN.6. else if the sanned harater is any puntuation mark e.g '(', '�', ')' et., it is writtenin Ya �le as it is.Similarly, the string orresponding to the image reord of instrutions also does notontain the binary information for instrutions verbatim. For the same jump instrutionthe image expression is "10000000%sf0.4g". If instrution "jump 20" is assembled, thenthe orresponding generated binary image should be "1000000000010100" The algorithmused to parse image string is as follows.1. read image string orresponding to urrent op-and-rule from image table.2. for all haraters in the image string; do,3. if the harater is a '0' or '1', write it in the Ya spei�ation �le.4. else if the harater is a '%',(a) read the next harater, if it is 'd' or 's' or 'x' remember the harater. Other-wise the image is of type %integerb e.g. %2b. The assoiated integer value isused to hek the size of the operand at the time of assembly.(b) read two integer values enlosed in between f and g.i. if the �rst value read is negative then it is an index to pre�x attributetable and seond value is the length of orresponding expression. Read theexpression from pre�x attribute table and write it into the Ya spei�ation�le.ii. else write the Ya parameter number.4.2.3 Generation of the Lex Spei�ation FileThe generated Lex spei�ation �le works as a sanner. The rules are written in the formof regular expression. The format of generated Lex spei�ation �le is,definitions%%rules%%user_subroutines 32



De�nitions is the setion whih ontains de�nition for all the variables used inrules setion. The de�nitions setion in the generated Lex spei�ation �le is shownbelow. Here, the left hand side shows the variable name and the right hand side providesits de�nition.L [a-zA-Z_℄D [0-9℄OP [!-&(-/:-�[-^{-}℄HEXDIGIT [0-9a-fA-F℄OCTAL [0-7℄DEC "."DOLLAR "$"EXP [eE℄PLUS "+"MINUS "-"In the rules setion, these variable names are used within braes fg.Rules is the setion whih provides the way of handling tokens. In this setion, theleft hand side ontains the pattern to be reognized and the right hand side ontains theC program fragment exeuted when that pattern is reognized. Some example generatedrules are shown in Figure.4.8 and Figure.4.9.{L}({L}|{D}|{DEC}|{DOLLAR})*/":" { /* a label */opy(yytext, textptr);opy(yytext);strnpy(textptr, ":", 1);textptr++;return LABELID;delete [℄ yylval.sym;}"//"[^\n℄* { /* one-line omment */opy(yytext);return COMMENT;delete [℄ yylval.sym;}{D}+ { /* numbers having digits 0-9 */opy(yytext, textptr);opy(yytext);return INTEGER;delete [℄ yylval.sym;} Figure 4.8: Generated Lex rules33



/* The operators + - * / | & << >> � # $ % , et */{OP} { *textptr++ = yytext[0℄;if(yytext[0℄=='<'){SBYTE = yyinput();if(=='<')return SHL;elseunput();}if(yytext[0℄=='>'){SBYTE = yyinput();if(=='>')return SHR;elseunput();}return yytext[0℄ ;}/* a keyword a maro name or a variable */{L}({L}|{D}|{DEC}|{DOLLAR})* {/* hek for maro name */ma = maTbl.look(yylval.sym);if(ma){/* funtion to parse maro all */return MACRO;}/* searh the variable into the keyword table */name = keywordTbl.look(yylval.sym, !sensitiveCase);if(name){/* return token orresponding to this keyword */}/* hek for a defined variable */var = symbolTbl.look(yylval.sym);if(var){/* return defined variable token */}/* undefined symbol */else{return UNDEFINED;}} Figure 4.9: Generated Lex rules ontd ...34



User Subroutines is the setion that ontains supporting funtions, alled in therules setion. For example, the routines opy to opy the ontent of yytext into yylval,reateBu�er to reate a new bu�er for yyin, maParse to parse the maro use et. areused in the rules setion and de�ned here.4.2.4 Generation of the Keyword FileKeywords are assembly mnemonis whih are extrated from IR while parsing syntaxexpression in Sim-nML desription of the proessor. We use the terms keywords andassembly mnemonis both to refer to the string obtained by parsing a syntax expressioninterhangeably. As desribed earlier syntax strings are parsed and orresponding tokensare generated. Charaters suh as spae, omma et. work as delimiter while parsing thesyntax strings.
stati strut { // keywordshar * name;int token;} keywords[℄ = {"TEST", AS_TEST,"R", AS_R,"JMP", AS_JMP,"SUB", AS_SUB,"ADD", AS_ADD,0, 0,};initialize_keywords(){for(int i=0; keywords[i℄.name;++i)keywordTbl.insert(keywords[i℄.name, keywords[i℄.token);}

Figure 4.10: Generated Keywords for the example proessorIf the assembler is generated to be a ase-sensitive one, the generated keywords aresame as obtained from syntax expression. Otherwise the keywords are �rst onverted intoupper-ase and then written in keyword �le. e.g. if add is embedded in the syntax-stringin the IR, the generated keyword for a ase-sensitive assembler will be add and that for aase-insensitive one will be ADD.The token names are also generated orresponding to eah assembly mnemonis. Atoken name is generated by pre�xing AS to eah generated keyword. This way onits35



in the prede�ned names are avoided.All these generated keywords and the orresponding tokens are installed in a hashstruture keyword table. The hash key is alulated using the name of the keyword, andthe onits in the hashing are resolved using hains. While parsing an assembly language�le whenever Ya reognizes a string it hashes it into keyword table, if it gets mathedthe orresponding token value is returned to the parser. The generated keywords �le forthe example proessor desription (Figure 4.2) is shown in Figure 4.10.
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Chapter 5Reloation Handling
Consider the following example of assembly language program segment for PowerPC pro-essor..LC0: addis 9, 0, .LC0�16:16addis 3, 9, .LC0�16:1bl printf..The following points are important. The de�nition of the printf routine is typiallyprovided in the library and therefore the address of printf is not known at the time ofassembly. Further, the program segment may be put at any address and therefore .LC0value is determined only at the time of linking. Thus these addresses should be assignedtypially at the time of linking or loading the program into memory. Aordingly whereverthese symbols are used in the instrutions, instrution operand should be adjusted at thesame time.The proess of adjusting instrution operands prior to running the program is alledreloation. Reloation requires to loate the usage of symboli addresses within the se-tion and adjust them so that they refer to the proper run-time addresses. The adjustmentof the addresses is typially proessor spei�. For example, a program instrution mayrequire 24 bits of an address to be loaded in a register (suh as in De Alpha) where a 32bit address is loaded in a register using two instrutions - �rst to load 24 bits and then toload 12 bits. Similarly, in the example of the ode given earlier, 16 bits of .LC0 are loadedin two separate instrutions for Power PC. Sine the address is not known at the time ofassembly, the orresponding load instrution neessarily require adjustment (referred toas reloation now onwards) that is proessor spei�.The reloation method is typially denoted by an integer alled reloation type.Therefore the reloation types are also proessor-spei� (as per the ELF doumentation)and vary from one proessor to another. Sine the values of the symbols are not known atthe time of assembly, the values of the expressions involving them an not be omputed.The assembler prepares a reloation table entry for eah of these usage of symboli ad-37



dresses in expressions using a reloation type. The value of this expression is alulatedby the linker depending on the assoiated reloation type.We need a generi way to desribe the reloation type to failitate the automatigeneration of assembler for all the proessors. Keeping this in mind in our method wehave designed a generi way to desribe all kinds of reloations.5.1 Generi Expressions for Assembly ProgramWe have de�ned generi expressions whih involve symboli addresses. The only operatorspermitted in these generi expressions are extrat, signed extension, unsigned extension,shift left, shift right, addition of a onstant and subtration of a onstant. The generiexpressions are not evaluated by the asm. Instead the mahine spei� reloation typesare found for these expressions as desribed in the next setion. The syntax for operatorson symboli addresses is given below.Extend(symbol�abs exp1:abs exp2, abs exp3) op1 abs exp4 op2 abs exp5Two types of Extend operators are supported - signed-extension and unsigned-extension. It is spei�ed using string SN (for signed-extension) and UN (for unsigned-extension). abs exp3 gives the size for extension.The extrat operator is used to speify the extration of a number of bits from thevalue of the symbol starting from some bit position. \�" is used to represent an extratoperator. abs exp1 gives the size and abs exp2 provides the start bit position for theextrat. In the example given above .LC0�16:16 is an expression used to extrat 16 bitsfrom the value of .LC0 starting from bit position 16.Four arithmeti operators are supported. Shift Left n spei�es a left shift by n bits.The operator is represented by \<<" in the assembly language program. Shift Right nspei�es a right shift by n bits. This operator is represented by \>>" in the assemblylanguage program. The op1 spei�es a Shift Left or Shift Right and abs exp4 gives thenumber of bits. The Add n spei�es an addition of a onstant n to the expression. Itis represented by the use of \+" in the assembly program. Similarly the Subtrat nrepresents a subtration of a onstant from the value of the expression and is representedusing \�" in the assembly program. In the syntax string given above, the op2 representsan Add or Subtrat operator with a value abs exp5.The grammar used to parse the expression in the assembly language program whihuse reloatable symbols is given in Figure.5.1.The tokens SIGN, UNSIGN represent the signed-extension and the unsigned-extensionoperators and INTEGER is a token that represents an integer. The tokens SHL, SHR repre-sent the shift-left and shift-right operators respetively. The expr is the integer expressioninvolving any arithmeti and boolean operators supported by the assembler.Examples of a few expressions involving a symboli address are .LC0, .LC0�16:16,38



extrat: symbol| symbol '�' expr ':' exprextend: SIGN '(' extrat ',' INTEGER ')'| UNSIGN '(' extrat ',' INTEGER ')'| extratopfirst: extend SHL INTEGER| extend SHR INTEGER| '(' extend SHL INTEGER ')' SHR INTEGER| '(' extend SHR INTEGER ')' SHL INTEGER| '(' extend SHL INTEGER ')' SHL INTEGER| '(' extend SHR INTEGER ')' SHR INTEGER| extendopfinal: opfirst '+' INTEGER| opfirst '-' INTEGER| opfirst '+' '(' expr ')'| opfirst '-' '(' expr ')'| opfirstFigure 5.1: Grammar used for parsing reloatable symbolsSN(.LC0�16:16, 32), .LC0 + 10 et.In ase an operator is missed out, orresponding identity operation is assumed (forexample << 0 or >> 0). If no extrat operator is spei�ed a default extrat is usedwith the size of the expression as spei�ed in the Sim-nML proessor desription for theorresponding instrution.In addition the asm also supports two operators Diret and Relative to representthe diret and relative reloation types. The asm identi�es these operations using theSim-nML desription and depending on whether the orresponding image for the binaryof the instrution uses relative or diret addressing.Sine generi expressions are not evaluated we need to know what value to write inplae of these expressions in the output binary generated by the asm. Also the addresswhere the reloation should be applied is not known. For example, the instrution bl takesa 24 bit parameter. The instrution is assembled assuming the value of the expression(printf) as zero. The address in the reloation table entry where the reloation is tobe performed is the start address for this instrution. While in addis instrution theexpression is assembled with its value taken as zero and the reloation address is alulatedafter adding two to the start address of the instrution. The start address for theseinstrutions orresponds to the start address at the time of assembly. The on�guration�le provides, both, the value to be substituted for the expression and the address to be39



written in the reloation table in addition to the reloation type to be generated.5.1.1 Con�guration FileThe on�guration �le helps in mapping generi reloation operations to mahine reloationtypes. The on�guration �le also provides information like what value to substitute inplae of the expression involving the symbol and what address to put in the reloationtable. The format of the on�guration �le is �xed. All the �elds in the on�guration�le must be separated by blanks or tabs and must be written in a spei�ed order. Oneline is provided for eah type of mahine spei� reloation. All the four �eld in theon�guration �le for a reloation type must be present. Comments an also be written inthe on�guration �le using C or C++ type omment style. The asm aepts the name ofthis �le using - ommand-line option.generiOp: opr '(' extratConfig hange shift arith ')'// reloation typeopr: DIRECT| RELATIVE// extration operatorextratConfig: '<' INTEGER ':' INTEGER '>'// sign and un-signed extension operatorhange: // null statement| SIGN| UNSIGN// shift operatorshift: // null statement| SHIFTLEFT| SHIFTRIGHT// addition and subtration operatorarith: // null statement| '+' INTEGER| '-' INTEGERFigure 5.2: The grammar used to parse Generi OperationsIn the on�guration �le, the extend operator is spei�ed using one of the two stringsSNonst int or UNonst int. The onst int gives the size for extension and it repre-sents a onstant integer. SN spei�es a signed-extension and UN spei�es an unsigned-extension. 40



The extrat operator is represented by a pattern like < size : start bit >. Here sizeand start bit provide the parameters for the extration. Both of these are representedusing onstant integer values.The arithmeti operations shift left and shift right are represented by SHLonst intand SHRonst int respetively. The add and subtrat operations are represented using+onst int and �onst int respetively. The grammar used to parse the generi expres-sions in the on�guration �le is shown in Figure 5.2.The token SHIFTLEFT, SHIFTRIGHT represent the shift-left and shift-right operatorsrespetively. For example, DIRECT(< 32 : 0 >) SN32 SHR16 + 16 and RELATIVE(<32 : 0 >) SN32 - 32 are valid generi operations.Any of the generi reloation operators exept extrat an be omitted while desrib-ing a reloation expression in the on�guration �le. The example on�guration �le forPowerPC 603 is shown in Figure 5.3./* generi m/ speifi generated address in the *//* expr reloation ode in plae reloation table *//* of symbol */DIRECT(<32:0>) 1 0 $DIRECT(<24:0>) 2 0 $ + 1DIRECT(<16:0>) 4 0 $ + 2DIRECT(<16:16>) 6 0 $ + 2DIRECT(<14:0>) 7 0 $RELATIVE(<24:0>) 10 0 $RELATIVE(<14:0>) 11 0 $RELATIVE(<32:0>) 26 0 $Figure 5.3: An example on�guration �le for the PowerPC ProessorThe symbol $ is used in the on�guration �le to indiate the value of urrent loationounter (i.e. the address of the instrution). � is used to represent the value of the symbolas known at the time of assembly of the program. For example, the �rst line in the exampleon�guration �le represents that whenever an expression involving a symbol is found inthe assembly program whih uses 32 bits of the symbol for diret addressing, reloationtype is 1 and 0 is substituted for the expression while assembly. The address to emit isthe address of the urrent instrution.Whenever asm �nds a symboli address referene in assembly language program itsearhes for a orresponding entry in the on�guration �le depending on the operatorsapplied on the symbol. If an entry gets mathed it generates the reloation table usingthe information spei�ed in the on�guration �le.41



5.1.2 An example Reloation for PowerPC ProessorAn Example assembly language program fragment with reloations for Power PC proes-sor is shown below..LC0:addis 9, 0, .LC0�16:16addis 3, 9, .LC0�16:1addi 3, 9, .LC0bl printfFigure 5.4: An example �le with reloationsThe generated reloation table entries are as follows.� .LC0�16:16: This expression gets mathed with the fourth entry (i.e. DIRECT(16:16)) and therefore the generated reloation type is 6, the instrution is assembledas addis 9,0,0 and the address in the reloation entry is 2 + the address of the urrentinstrution.� .LC0�16:1: The assembler tries to math it but the on�guration �le doesn't havean entry DIRECT(< 16 : 1 >) so an error is agged.� .LC0: Sine nothing is spei�ed assembler gets its size using the information avail-able in Sim-nML spei�ation of the proessor. The Sim-nML spei�ation forPowerPC 603 shows that the size of argument for instrution addi should be 16bits. Hene the size for symbol .LC0 is 16. The third entry of on�guration �leorresponds to this reloation operation and the generated reloation type is 4.� printf: The symbol value is unde�ned. The Sim-nML spei�ation �le shows thatthe instrution bl is a relative branh instrution and it uses a 24 bit operand. In theon�guration it mathes with the sixth entry and therefore the generated reloationtype is 10.Let us assume that the loation ounter for the �rst instrution is 0x00000034. Afterremoval of error line the generated assembly listing is shown in the Figure 5.5.00000034 3d200000 R addis 9,0,.LC0�16:1600000038 38690000 R addi 3,9,.LC00000003 48000001 R bl printfFigure 5.5: The generated assembly listing42



In this example for the �rst instrution the value assembled in plae of .LC0�16:16is zero as spei�ed in the on�guration �le and the address for reloation is $+2 whihevaluates to 0x36. Similarly the value assembled in plae of .LC0 in the seond instrutionis also zero and the address is $+2 (i.e. 0x3a) as spei�ed by the third entry in theon�guration �le. For the last instrution the value substituted is zero while the addressfor reloation is $ (i.e. 3).Symbol Address Setion Relo-Typeprintf 0000003 .text 10.LC0 0000003a .text 4.LC0 00000036 .text 6Figure 5.6: The generated reloation informationThe generated reloation table is shown in Figure 5.6. The setion in reloationtable spei�es the setion in whih the symbol was found.
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Chapter 6Results and Conlusion
6.1 ResultsThe assembler generator(asmg) is tested for PowerPC 603, 68HC11, 8085 and HitahiH/8 proessor models in Sim-nML. For eah of these proessor desription an assembleris generated and veri�ed for di�erent assembly language programs. It is also veri�ed thatthe asmg takes are of proessor endian-ness onversion by running it on Pentium (little-endian) based Linux mahines as well as on Spar (big-endian) based mahines. Theassembly listing and ELF generated by the assembler have been suessfully mathedwith those generated by the GNU assembler. In ase of PowerPC 603 assembler, theoutput ELF �le was also veri�ed with GNU objdump.The omplete proedure to generate an assembler from Sim-nML spei�ation isenapsulated into a shell sript. When this sript is run with IR of a proessor as anargument, the �rst phase of generation of mahine dependent �les is exeuted. This phasereates some intermediate �les spei� to that proessor. In the next phase, the assembleris generated using the mahine spei� generated �les and the mahine independent �les.For PowerPC 603 proessor the input assembly language programs are generatedusing GNU C ross-ompiler running on Pentium based Linux mahines. The generatedassembly language �le onsists of some instrutions whih are not part of PowerPC 603Sim-nML spei�ation sine those instrutions for PowerPC 603 are alternative namesof some other instrutions. For example, a generated instrution an be blt target whihis equivalent to the instrution b 12, 0, target. Similarly the instrution mr 31, t isequivalent to or 31, 1, t and the instrution li s, d is equivalent to addi s, d.In the g generated assembly programs, these instrutions an be edited to theirequivalent instrutions. As an alternative these instrutions an be added in the Sim-nMLmodel. We tried both approahes and both seems to work �ne.In ase of PowerPC 603, the ompiler generates a few mahine spei� operationsin the expressions. For example :LC0�ha whih is equivalent to :LC0�16 : 16 in ourassembler. Prior to the assembly, we edit the g generated programs and replae all suhmahine spei� operations to their ounterparts.44



6.2 ConlusionIn this thesis we have developed an assembler generator whih takes an IR of Sim-nMLbasi model for a proessor and generates an assembler. The generated assembler takesan assembly language program spei� to that proessor and generates a reloatable ELFbinary objet �le. The assembler is generated and tested for PowerPC 603, 68HC11 and8085 proessors.The availability of an assembler allows assembly programs to be written and testedon the funtional simulator[12℄, even when no ompiler is available.6.3 Future Work and ExtensionsUsing Lex and Ya for the assembler implies that the assembly syntax must be singletoken lookahead sine the parsers generated by the Ya an only look one token ahead.Also the assembler an produe reloatable objet �le in ELF format only. It ould beuseful if extended to generate other format suh as COFF, a.out et.
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Appendix AUser's Manual
A.1 Assembler GeneratorThe generation and ompilation of assembler �les to get the �nal exeutable assem-bler(asm) is done with the help of a shell sript whih is available as a ommand nameasmg. The assembler generator requires a proessor spei�ation in the IR form, option-ally we an name the generated intermediate �les. A string CS in ommand line is usedto make the generated assembler ase-sensitive. By default it is none ase-sensitive.A.1.1 UsageUsage: asmg [ir-�le℄ fya-�leg fkey-�leg flex-�leg fCSgir-�le: This is the name of the input IR �le.ya-�le: Generate the intermediate Ya spei�ation �le in a �le name ya-�le. Thedefault name is asmgYa.y.key-�le: Generate the intermediate keywords �le in a �le name key-�le. The defaultname is asmgKey..lex-�le: Generate the intermediate Lex spei�ation �le in a �le name lex-�le. Thedefault name is asmgLex.l.A.2 AssemblerThe assembler is used to translate an assembly language program to its reloatable binaryounterpart in ELF format. The generated assembler has a ommand line interfae that isonventional for the utilities/ommands in a Unix system. If the assembler is run withoutany arguments, it displays a small help giving all the options.46



A.2.1 UsageUsage: asm f-hg f-pg f-m mahine nameg f-o output �leg f- on�g �leg f-l list �leg[�les℄-h: This is an optional argument to print the usage message. If this option is spei�ed,all other arguments are ignored.-p: This is an optional argument. It prints the name of all supporting proessors asdesribed in the ELF doumentation.-o output �le: Generate the ELF output in a �le name output �le. Default name isb.out.-m mahine name: Speify the target mahine name. This name is used in the ELFheader.-l list �le: Generate the assembly listing in list �le. Default is stdout if listing is on.- on�g �le: Use on�guration �le on�g �le for mahine spei� reloations.�les: These are the name of input assembly language �les. The names are separatedby spaes. These �les speify exatly one soure program. The soure program is aonatenation of all the �les in the order spei�ed from left �le name to right.
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