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Abstra
tAssemblers are typi
ally spe
i�
 to the pro
essors. Mu
h of an assembler has to bere-implemented for ea
h new ma
hine. This thesis des
ribes the design and implementa-tion of an assembler generator (asmg). The assembler generator automati
ally generatesan assembler for a pro
essor by taking a high level model of the pro
essor in Sim-nML[1℄intermediate form as input. The Sim-nML language provides a simple, elegant and pow-erful me
hanism to des
ribe the pro
essor behavior at the instru
tion level.The assembler thus generated takes an assembly language program as input and gen-erates a relo
atable binary obje
t �le in ELF[2℄ format as output. The pseudo operationssupported by the generated assembler are independent of the pro
essor and 
onform tothe syntax and semanti
s of the GNU assembler(GAS)[3℄. In addition, the generated as-sembler supports the link-time relo
ation of the program. Su
h relo
ations are typi
allyma
hine spe
i�
 and are handled with the help of spe
i�
 
on�guration �le whi
h de�nesthe ma
hine spe
i�
 types of the relo
ations with respe
t to the operations whi
h use them.
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Chapter 1Introdu
tion
1.1 PreambleThe system designers require sophisti
ated and generi
 modeling tools for the designof high performan
e embedded systems. These tools help in evaluation of alternativeimplementations, they simplify the pro
ess of design 
hanges and allow for the trade-o�s at the early stages of development. Hardware-software 
o-design is a 
ost e�e
tivemethodology and results in a shorter time to market as opposed to the design of softwareand hardware 
omponents of an embedded system separately.Powerful modeling tools with high level of abstra
tion are needed with an integratedenvironment whi
h allows designers to assemble, 
ompile, simulate and analyze the per-forman
e of various alternatives of the new design. Hand-
oding is not an option sin
e iteliminates the 
apability of iterating over multiple hardware spe
i�
ations.In this thesis, we have designed a tool 
alled assembler generator (also referredto as asmg) whi
h generates an assembler for pro
essor whose spe
i�
ation is availablein Sim-nML[1℄ language. Sim-nML is simple and powerful language used to spe
ify a
omplex pro
essor ar
hite
ture. The asmg takes an intermediate representation[4℄ ofthe Sim-nML pro
essor spe
i�
ations as its input and generates an assembler for thatpro
essor. The assembler so generated produ
es an ELF obje
t 
ode as output from agiven assembly language program. Sin
e Sim-nML provides a generi
 way of des
ribing apro
essor ar
hite
ture, asmg provides for the generation of assemblers in an ar
hite
tureindependent manner.1.2 Related WorkAutomation tools for performan
e modeling of a system is a growing area and a lot ofresear
h has been pursued in this area. These previous works have resulted in a set ofperforman
e modeling tools using di�erent languages for pro
essor spe
i�
ation.An automati
 assembler generator[5℄ has been developed by George Hadjiyian-1



nis, Silvina Hanono, and Srinivas Devadas at Prin
eton University using the Instru
tionSet Des
ription Language ISDL[6℄. ISDL is a ma
hine spe
i�
ation language similar toSim-nML[1℄. It provides 
onstru
ts for spe
ifying instru
tion set and other ar
hite
turalfeatures. Their assembler generator re
eives an ISDL des
ription as input, and produ
esan assembler whi
h assembles the 
ompiler's output to a binary �le. The assembler gen-erator produ
es Lex and Ya

 �les, whi
h when 
ompiled result in an exe
utable programfor parsing the assembly language programs and generating the 
orresponding ma
hineinstru
tions.Ameta-assembler[7℄ whi
h 
reates assemblers for new ar
hite
tures has been writ-ten for spe
i�
ations in SLED[8℄, a Spe
i�
ation Language for En
oding and De
oding.This language is used to de�ne mappings between symboli
 assembly-language and bi-nary representations of instru
tions. A toolkit, (New Jersey Ma
hine-Code (NJMC)Toolkit) is implemented to help programmers write appli
ations that pro
ess ma
hine
ode{assemblers, disassemblers, 
ode generators, tra
ers, pro�lers, and debuggers. Themeta-assembler is essentially a ma
ro pro
essor with bit-manipulation operators and spe-
ial support for di�erent integer representations.The Language for Instru
tion Set Ar
hite
tures (LISA)[9℄ is 
apable of des
ribing thear
hite
tural details and pipeline operations of modern pro
essors. The language is de-signed to des
ribe pro
essor ar
hite
tures and to enable automated generation of softwaredevelopment tools, su
h as high-level language 
ompiler, assembler, linker, simulator, anddebugger. Furthermore, a

urate and 
onsistent do
umentation 
an be generated in LATEXand HTML format. Currently a pro
essor simulator SuperSim[10℄ has been developed.1.3 Existing ToolsFollowing tools have been implemented in our environment.Ca
he Simulator[4℄ provides a me
hanism to simulate various 
a
hing poli
ies. Thedesigner 
an use the simulator to study the trade-o�s between di�erent 
a
hing poli
ies.Code Instrumentor[4℄ implements a me
hanism to perform analysis and pro�ling ofappli
ation programs through the te
hnique of 
ode instrumentation.Disassembler[11℄ takes the IR of a pro
essor des
ription and a relo
atable binary pro-gram in ELF format as input and produ
es an equivalent program in assembly languageof the pro
essor. The disassembler is generi
 enough to be used for all types of pro
essors.It performs 
omplete symboli
 disassembly and is 
ompatible to the assembler generator.Instru
tion Set Simulator Generator[1℄ takes Sim-nML spe
i�
ation as input andgenerates a performan
e simulator, whi
h in turn takes a binary for that pro
essor andgives the performan
e based results. 2



Retargetable Fun
tional Simulator[12℄ generates a fun
tional simulator for a binaryprogram targeted to run on a pro
essor whose des
ription is given in the Sim-nML.The following tools are under development.Timing Simulator to analyze a parti
ular program for timing performan
e and resour
eusage. A 
ompiled 
ode simulator generator would generate a higher performan
e timingsimulator.Compiler Ba
k-End Generator to generate ba
k-end for GNU-C by automati
allygenerating GNU ma
hine des
ription (.md) of a parti
ular pro
essor from Sim-nML.
1.4 Organization of the ReportIn this thesis we have designed and implemented an Assembler Generator whi
h gen-erates an assembler for a spe
i�
 pro
essor. The generated assembler takes an assemblylanguage program and optionally a 
on�guration �le to provide the information for ma-
hine spe
i�
 link-time relo
ations as input, and generates an ELF format relo
atableobje
t �le as output.The rest of the thesis is organized as follows. In 
hapter 2, we provide a briefintrodu
tion to the Sim-nML language and its intermediate representation. In 
hapter 3,we dis
uss the basi
s of the generated assemblers and the assembler dire
tives supportedby them. We also dis
uss the ELF obje
t �le format and the implementation of ma
hineindependent part of the assembler. In 
hapter 4, we dis
uss the design of the assemblergenerator. We have tried to point out the information that is available in the intermediaterepresentation of ma
hine spe
i�
ation written in Sim-nML and how it 
ontributes tothe generation of the assembler. In 
hapter 5, we dis
uss generi
 relo
ation fun
tionssupported by the generated assembler, the way to de�ne ma
hine spe
i�
 relo
ations. Weuse a ma
hine spe
i�
 
on�guration �le for that. We �nally 
on
lude in 
hapter 6. Inaddition to these we provide a user's manual for the assembler in Appendix A.
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Chapter 2Sim-nML and IntermediateRepresentation
The base language for our environment is Sim-nML[1℄, a generi
 pro
essor modelinglanguage. Sim-nML is an extension of nML[13℄ ma
hine des
ription formalism. Pro
essormodels are written in Sim-nML, using whi
h, various pro
essor spe
i�
 tools 
an begenerated automati
ally. To ease the design of various tools an intermediate representation(IR) for Sim-nML has been designed. A tool 
alled irg[4℄ takes a Sim-nML spe
i�
ationfor a pro
essor and 
onverts it to IR.2.1 The Sim-nML LanguageThe pro
essor modeling language Sim-nML is used to des
ribe the syntax and semanti
sof instru
tions in the instru
tion set of a pro
essor. The instru
tion set is des
ribed in ahierar
hi
al manner. The 
ommon behavior of a 
lass of instru
tions is 
aptured at thehigher level of the tree and the spe
ialized behaviors of the sub-
lasses are 
aptured inthe subsequent lower levels.Sim-nML grammar has a �xed start symbol instru
tion and two kinds of produ
tionsor-rule and and-rule. The or-rule is written as,op n = n0jn1jn2j:::and and-rule is written as,op n0(p1 : t1; p2 : t2; :::)a1 = e1 a2 = e2 ...where ea
h ni is a non-terminal, and ea
h ti is a token. Ea
h ai is an attribute namewith ei being its de�nition.Sim-nML has some prede�ned but optional attributes named image, syntax, a
tionand uses. The syntax attribute des
ribes the textual syntax (assembly language format)of the instru
tion, the image attribute des
ribes the binary 
oding of the instru
tion. The4



a
tion des
ribes the semanti
s of the instru
tion while the uses des
ribes the resour
e-usage model. The assembler generator uses the de�nition for syntax and image attributesonly. The Sim-nML example in Figure 2.1 and Figure 2.2 des
ribes a simple pro
essorwith four instru
tions. The add and sub instru
tions add and subtra
t the 
ontents oftwo general purpose registers respe
tively. The jump instru
tion 
hanges the 
urrent PCvalue. The se
ond byte of the jump instru
tion spe
i�es an 8-bit bran
h address. PC refersto the address from whi
h the next instru
tion has to be fet
hed. The move instru
tionmoves the 
ontent of memory addressed by a general purpose register to another generalpurpose register. The addressing modes used by the example pro
essor are REG (registerdire
t), MEM (register indire
t) and IMM (immediate).type index = 
ard(3)reg PC[1, 
ard(8)℄let byte_order = "big"mem M[1024, 
ard(8)℄reg R[8, 
ard(8)℄resour
e Fet
h_Unit, Exe
_Unit[2℄, Retire_Unitmode SHORT = MEM | REGmode MEM (a : index) = M[R[a℄℄syntax = format("(R%d)", a)image = format("0%3b", a)mode REG (i : index) = R[i℄syntax = format("R%d", i)image = format("1%3b", i)mode IMM (n : 
ard(8)) = nsyntax = format("%d", n)image = format("%8b", n)Figure 2.1: Sim-nML Spe
i�
ation for a Simple Pro
essorAddressing modes in the pro
essor are des
ribed using mode rule. The basi
 types ofSim-nML in
lude 
ard, int, bool, 
oat, �xed and enum. The resour
e-usage model is usedto spe
ify the mi
ro-ar
hite
ture details of the pro
essor. A resour
e is an abstra
tion ofa pie
e of hardware whi
h 
an be a
quired/released by any instru
tion in exe
ution su
has a register, ALU, the fun
tional unit, ports et
. For the example pro
essor (Fig.2.1) theresour
es are Fet
h Unit, Exe
 Unit and Retire Unit.5



op instru
tion(x : instr_a
tion)uses = Fet
h_Unit #{2}, x.uses, Retire_Unit #{2}syntax = x.syntaximage = x.imagea
tion = { x.a
tion; }op instr_a
tion = add | sub | mov | jumpop add (sr
 : SHORT, dst : SHORT)uses = Exe
_Unit #{2}syntax = format("add %s,%s", sr
.syntax, dst.syntax)image = format("00000001%s%s", sr
.image, dst.image)a
tion = { dst = sr
 + dst;PC = PC + 2;}op sub (sr
 : SHORT, dst : SHORT)uses = Exe
_Unit #{2}syntax = format("sub %s, %s", sr
.syntax, dst.syntax)image = format("00000010%s%s", dst.image, sr
.image)a
tion = { dst = sr
 - dst;PC = PC + 2;}op mov (sr
 : SHORT, dst : SHORT)uses = Exe
_Unit #{1}syntax = format("move %s, %s", sr
.syntax, dst.syntax)image = format("00000011%s%s", dst.image, sr
.image)a
tion = {sr
 = dst;PC = PC + 2;}op jump (target : IMM)uses = Exe
_Unit #{3}syntax = format("jmp %s", target.syntax)image = format("00000100%s", target.image)a
tion = {PC = PC + target;}Figure 2.2: Sim-nML Spe
i�
ation for a Simple Pro
essor 
ontd ...6



A spe
ial symbol, $ is used to denote the start address of the 
urrent instru
tion.This symbol is used to spe
ify a relative bran
h address for example.2.2 Intermediate RepresentationA pro
essor spe
i�
ation in Sim-nML language is in a human readable text form. It is,however, wasteful for ea
h tool to have its own parser to read the Sim-nML spe
i�
ation.A tool irg[4℄ was developed in an earlier work to simplify this pro
ess. It 
onverts theSim-nML des
ription to an intermediate form(IR). The IR 
ontains all useful informationavailable in the original input without any unne
essary or redundant information. It is
exible and easy to use and fa
ilitate the design of pro
essor spe
i�
 tools like simulator,disassembler, assembler, 
ompiler ba
k-end generator et
.The IR is organized as a 
olle
tion of various tables. We use the following tables forour work.� Meta table: The information in this table is needed to lo
ate other tables in theIR. This is a \table of 
ontent" that 
ontains the information about the lo
ationand name of other tables.� Constant table: This table holds all the 
onstant de
larations in the Sim-nML pro-
essor spe
i�
ation. The useful 
onstants for assembler generator are byte orderand pro
essor name. They spe
ify the endian-ness and the name of the pro
essorrespe
tively.� Attribute table: This table holds the name of all Sim-nML attributes. A 
orre-sponding ID is given to ea
h attribute whi
h is used in all other tables to refer tothis attribute.� And-Rule table: This table holds the information about all and-rules. From thistable we get an index to the syntax table and image table. This index gives thesyntax and image of the and-rule.� Or-Rule table: This table holds the information about 
hildren of all or-rules.� Syntax table: This table holds the syntax attribute de�nitions of all and-rules. Itprovides the assembly language syntax and parameters for various instru
tions.� Image table: This table holds the image-re
ord asso
iated with the image at-tribute de�nitions of all and-rules. It, therefore des
ribes the binary 
oding of theinstru
tion.To get all informations from the above spe
i�ed tables we need to look at some moretables des
ribed below.� Identi�er table: This table holds the name of all the identi�ers (other than thosespe
i�ed in the 
onstant table and in the resour
e table). This name is stored as anindex to the string table. 7



� String table: This table holds strings used in the Sim-nML model. The stringsare terminated by a null 
hara
ter. All identi�er names are read from this table.� Integer table: Similar to the string table, this table holds various integers in thespe
i�
ations. In other tables, an index into this table is used for representing arrayof integers.� Pre�x-Attribute-De�nition Table: This table holds the expressional de�nitionof all the attributes and is referred to when some operation (e.g. arithmeti
, bitmanipulation) is used in the de�nition of the syntax or image attributes.
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Chapter 3The Assembler
Assembler translates an assembly language program for a pro
essor into its ma
hinelanguage (obje
t 
ode). It generates its output in a relo
atable form where by the program
an be linked/ loaded in a position independent manner with the other programs. Besidesthe obje
t 
ode, the assembler outputs a human readable listing of the sour
e programand its translation. It provides error messages interspersed with the 
ode, symbol table,relo
ation table and se
tion table.The pro
ess of assembly involves lexi
al analysis, synta
ti
 analysis, obje
t 
odegeneration, symbol table management and forward referen
es �x-ups. A two pass assemblerpro
esses the instru
tions as 
ompletely as possible during the �rst pass. The se
ond passover the 
ode is used to �x all forward referen
es in the instru
tions. A simple overviewof a two pass assembler is shown in Figure 3.1.We generate a two pass assembler (referred as asm hereinafter) in this work. In the�rst pass, the generated assembler parses its input, gathers all relevant information andfor all unde�ned symbol referen
es assumes that the de�nition for the symbol will appearlater. It also 
he
ks for syntax and semanti
 errors and reports them. The se
ond pass ofthe assembler begins only if the �rst pass of assembly 
ompletes su

essfully. In the se
ondpass the values for the forward referen
es are substituted and the output obje
t 
ode isgenerated. All unde�ned referen
es at this stage are assumed external. The asm takes anadditional 
on�guration �le as its input. This �le 
ontains relo
ation information spe
i�
to the pro
essor and helps in the generation of relo
ation table in the obje
t module. Theoutput of the asm is generated in a relo
atable ELF[2℄ obje
t �le format.3.1 Output File FormatThe format of the output �le generated by the asm is ELF[2℄ (Exe
utable and LinkingFormat). There are three main types of ELF obje
t �les.� A relo
atable �le holds the 
ode and the data. It 
an be linked with other similarobje
t �les to 
reate an exe
utable or a shared obje
t �le. The asm produ
es outputin this format. 9
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Directive Table
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Machine Instruction
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Pass 1

listing
Assembly

Linker

module
Object 

module
Source

Pass 2
To

Figure 3.1: Two-pass Assembler� An exe
utable �le holds a program suitable for exe
ution.� A shared obje
t �le holds 
ode and data suitable for linking.Figure 3.2 shows a linking view of an obje
t �le. In this �le only the ELF headerhas a �xed position. The remaining portion is variable and depends on the a
tual �le.A program header table provides information on how to 
reate a pro
ess image. Ase
tion header table 
ontains information that des
ribes the se
tions in the �le. Ea
hse
tion has an entry in this table. Ea
h entry gives information su
h as the se
tion name,10



the se
tion size et
. Relo
atable obje
t �les whi
h are used during the linking must havea se
tion header table.
ELF Header

Program header table
optional

Section 1

. . .

. . .

Section n

. . .

Section header table

requiredFigure 3.2: Obje
t �le format (Linking view)In the output �le generated by asm, �rst the ELF Header is written. It then hasthe se
tions and the se
tion header table.3.1.1 ELF HeaderAn ELF header resides at the beginning of the obje
t �le and holds a \road map" des
rib-ing the �le's organization. The �le format is designed to be portable among ma
hinesof various sizes, without imposing the size of the largest or the smallest ma
hine. Theinitial bytes mark the �le as an obje
t �le and provide ma
hine-independent data. Thisdata provides ne
essary information to de
ode and interpret the �le's 
ontents. The ELFheader 
ontains the information regarding the type of obje
t �le, required ar
hite
turefor an individual �le, size of ELF header, size of se
tion header et
.3.1.2 Se
tionsThe data in the obje
t �le is organized in various se
tions that holds program 
ode, dataand 
ontrol information. Ea
h se
tion has a type and an asso
iated attribute to markthe se
tion as read only, exe
utable, relo
atable et
. An obje
t �le's se
tion header tableprovides the lo
ation of all se
tions in the �le.Various prede�ned se
tions whi
h are usually generated by the asm are listed below.� .bss: This se
tion holds uninitialized data that 
ontribute to the program's memoryimage.� .data and .data1: These se
tions hold initialized data that 
ontribute to the pro-gram's memory image.� .relname and .relaname: These se
tions hold relo
ation informations. The nameis supplied by the se
tion to whi
h the relo
ation applies. For example, .rel.text
ontains relo
ation information for symbols used in .text se
tion.� .rodata and .rodata1: These se
tions hold read-only data that typi
ally 
ontributeto a non-writable segment in the pro
ess image.11



� .shstrtab: This se
tion holds se
tion names as null terminated 
hara
ter strings(see se
tion \String Table").� .strtab: This se
tion holds strings, most 
ommonly the strings that represent thenames asso
iated with symbol table entries (see se
tion \String Table").� .symtab: This se
tion holds a symbol table (refer to the se
tion \Symbol Table").� .text: This se
tion holds the \text" or exe
utable instru
tions, of a program.The obje
t �le generated by the asm 
onsists of at least three se
tions named as.bss, .data and .text regardless of whether they exists in the input assembly program ornot. These se
tions have a size of zero bytes if they are not de�ned in the input assemblylanguage program. The generated output �le also 
ontains a .shstrtab se
tion. It 
ontainsthe name of all the se
tions in the obje
t �le.3.1.3 String TableString table se
tions hold null-terminated 
hara
ter sequen
es, 
ommonly 
alled strings.The obje
t �le uses these strings to represent symbols and se
tions name. One referen
esa string as an index into the string table se
tion. The �rst byte at index zero always holdsa null 
hara
ter. Likewise, the last byte in various string tables hold a null 
hara
ter,ensuring null termination for all strings. A string whose index is zero spe
i�es eitherno name or a null name, depending on the 
ontext. An empty string table se
tion ispermitted.3.1.4 Symbol TableAn obje
t �le's symbol table holds information required to relo
ate a program's symboli
de�nitions and referen
es. It 
onsists of entry for symbol name, symbol value, symbol size,symbol info, and name of the se
tion in whi
h the symbol is de�ned. A symbol table index0 serves as an unde�ned symbol index.3.1.5 Relo
ation TableRelo
ation is the pro
ess of 
onne
ting symboli
 referen
es with symboli
 de�nitions. Forexample, when a program 
alls a fun
tion, the asso
iated 
all instru
tion must transfer
ontrol to the proper destination address during exe
ution. Relo
atable �les must have\relo
ation entries" whi
h are ne
essary be
ause they 
ontain information that des
ribeshow to modify their se
tion 
ontents, thus allowing exe
utable and shared obje
t �les tohold the right information for a pro
ess's program image.A relo
ation entry 
ontains the information about the lo
ation at whi
h the relo-
ation a
tion is performed, the symbol table index with respe
t to whi
h the relo
ationmust be made, and the type of ma
hine spe
i�
 information whi
h de�nes the relo
ation12



a
tion. A relo
ation requires to referen
e two other se
tions - the symbol table se
tionand the se
tion that is modi�ed.3.2 The Assembler Dire
tivesThe assembler dire
tives are not translated into the ma
hine 
ode. They are instru
tionsto the assembler to perform various bookkeeping tasks, storage reservation and initial-ization and other 
ontrol fun
tions. The dire
tives used by the asm are 
ompatible withsyntax as well as with semanti
s of GNU assembler GAS[3℄ that is available as part ofthe GNU binary utilities and the GNU C 
ompiler.All assembler dire
tives have names that begin with a period (`.'), and are the sameregardless of the target ma
hine. Some dire
tives however have di�erent interpretationthan the ones used in the GNU assemblers and are dis
ussed here.� .align abs-expr, abs-expr, abs-expr: This pseudo operation is used for aligningthe lo
ation 
ounter (in the 
urrent subse
tion) to a parti
ular storage boundary.The GAS behavior is in
onsistent for this dire
tive and depends on the ar
hite
turefor whi
h it is 
on�gured. e.g. For some pro
essor ar
hite
ture the dire
tive .align3 advan
es the lo
ation 
ounter until it is a multiple of 23, while for some otherpro
essors the dire
tive .align 8 is used for the same purpose. In asm the dire
tive.align 3 is interpreted as to advan
e the lo
ation 
ounter to a multiple of 23. These
ond and third abs-expr have same interpretation as in the GNU assembler.� .�le string: This pseudo operation provides the name of the �le whi
h was trans-lated to give the assembly program. For example it is used by the C 
ompiler toprovide the name of the C �le whi
h was 
ompiled to the assembly language pro-gram. However its handling depends on how GAS is 
on�gured. The asm takes thestring and inserts it into the symbol table as a symbol of type FILE.� .sbttl \string", ... : This pseudo operation is used to format the output listing. Itprovides a sub-heading whi
h is inserted immediately after the title in the assemblylisting. GAS doesn't parse the string and emits it as it is. The asm parses the stringmaking it possible to use variables or prede�ned 
onstants in the sub-heading.� .title \string", ... : This pseudo operation provides the title line for the assemblylisting. In GAS, this is used as the se
ond line and the string is not parsed. In asm,we use this as the �rst line and parse the string as in the .sbttl pseudo operation. Thedefault title is \file listing: $ FILE Page number: $ PAGE", where FILEand PAGE variables are des
ribed later.Certain other dire
tives like .def, .dim, .endef, .ident, .l
ags, .linkon
e, .mri, .s
l,.size, .sleb128, .tag, .type, .val, and .uleb128. whi
h are meaningful in GNU assemblerwhile generating COFF[14℄ output. The asm a

epts these dire
tives and ignores them.In addition, the asm provides some prede�ned 
onstants whi
h 
an be used anywherein the assembly language �le. They are as follows.13



1. FILE is the name of the 
urrent assembly language �le.2. LINE is the 
urrent physi
al line number of the assembly language �le beingpro
essed.3. PAGE is the page number of the generated listing.4. DATE is the system's 
urrent date.5. TIME is the system's 
urrent time.3.3 Implementation DetailsThe 
ompilation of the generated assembler requires some supporting �les whi
h arema
hine independent. These �les 
ontain programs for 
ommand line parsing, evaluationof assembly dire
tive, preparation and manipulation of assembly se
tions, writing of obje
t�le in ELF format et
.3.3.1 Evaluation of Assembly Dire
tivesThe pseudoOp.
 and pseudoOp.h are the two �les whi
h 
ontain all the ne
essary infor-mation for evaluation of assembly dire
tives. In the �rst pass of assembly all dire
tivesare inserted into a hash stru
tured symbol table for faster referen
e. The informationsinserted are as follows.� Name: This is a null terminated string that represents the name of the pseudo-op.A symbol is 
ompared against this name while parsing the input.� Token: This is the 
orresponding token returned to the parser when a pseudo-opis mat
hed against the Name.� Fun
tion pointer: This is a pointer to the 
orresponding fun
tion whi
h is 
alledto pro
ess the re
ognized pseudo-op.As soon as a pseudo-op is re
ognized and the 
orresponding statement in the as-sembly language program is parsed, the fun
tion asso
iated with that pseudo-op is 
alled.This fun
tion now takes 
are of further pro
essing. For example, if \.byte 2+3" is found inthe assembly language program, the parser returns a token AS BYTE. The 
orrespondingfun
tion as byte is then 
alled with the argument 5 (the result of parsing the expression2+3). This fun
tion then 
alls appropriate routine to write value 5 in the spe
i�ed se
tion.All routines for writing se
tions are de�ned in frags.
 �le, the 
orresponding header �le isfrags.h. All writing is 
arried out in the se
ond pass only and nothing is written in anyse
tion in the �rst pass.All se
tions are represented by 
ontiguous blo
ks of memory. We have de�ned ase
tion stru
ture whi
h 
ontains the pointer to this memory blo
k, the size of the blo
k14



and the 
urrent o�set in the se
tion where the writing takes pla
e. For all se
tions these
tion pointer is set to NULL initially and, se
tion size and se
tion o�set are set to zero.While generating the output in a se
tion, the byte order is 
hanged if the endian-ness ofthe target pro
essor is not the same as that of the host pro
essor.The assembly is also 
ontrolled by two assembler dire
tives .if and .else. The in-stru
tions are assembled only when the 
orresponding expression evaluates to true.All writing routines have the following 
ommon stru
ture.1. if 
onditional assembly evaluates to false, return.2. if the pass == �rst then 
ompute the new o�set and return.3. else(a) if the endian-ness of the target pro
essor di�er from the host pro
essor, swapbytes.(b) write data in the se
tion at the 
urrent o�set.(
) update o�set in the se
tion.3.3.2 Symbol Table and Relo
ation Table ManagementThese tables are used for bookkeeping information about a symbol de�ned, used, orrelo
ated in the assembly language program. All these tables are hash stru
tured.Symbol TableAs soon as asm re
ognizes a symbol de�nition it inserts it into the symbol table. Thesymbol is inserted only on
e and further de�nitions for the same symbol results in anerror. The symbols whi
h are not de�ned but used are inserted into symbol table astype unde�ned. asm treats all unde�ned symbols as external. The informations stored insymbol table in the memory are as follows.� Name: A 
hara
ter pointer to the �rst 
hara
ter of the name of the symbol.� Value: This holds the address or the value of the symbol depending on the 
ontext.� Length: This represents the size for the symbol de�ned using .
omm or .l
ommdire
tives.� Info: This 
onsists of the TYPE and BIND information of the symbol. (see ELFobje
t format[2℄.)� Se
tion: This 
ontains the symboli
 name of the se
tion in whi
h the symbol wasde�ned or used. 15



� Type: This 
ontains the type of the symbol whi
h 
an be de�ned, unde�ned, de�nedand used et
.The operations performed on symbol table are look up, insertion and modi�
ation.For ea
h of these operations a hash index is 
al
ulated using the name of the symbol.If the symbol found at this index is di�erent from the one that is stored, the symbol onthe 
hain is examined until the symbol is found or the 
hain ends. The symbol is thenreturned or modi�ed depending on the fun
tion 
all. The insertion of the symbol is doneonly if it doesn't exist in the table.Relo
ation TableThe symbols in relo
ation table are inserted as many times as they are used in the input�le. Thus a symbol in relo
ation table 
an have multiple entries ea
h de�ning the distin
tuse of the symbol. The type of relo
ation is ma
hine spe
i�
 and di�ers even in syntaxfrom one pro
essor ar
hite
ture to another. To provide a uniform behavior, asm de�nessome generi
 relo
ation operations. User for spe
i�
 pro
essor provides a 
on�guration�le whi
h have a 
orresponden
e between the ma
hine spe
i�
 relo
ation types and thegeneri
 operations. asm uses a 
ommand line option -
 to provide the name of the
on�guration �le.The informations stored in Relo
ation Table are as follows.� Name: A 
hara
ter pointer pointing to the �rst 
hara
ter of the name of the symbol.� Value: This holds the address where the relo
ation is to be applied.� Type: This holds the ma
hine spe
i�
 relo
ation type.� Addend: This member spe
i�es a 
onstant addend used to 
ompute the value tobe stored into the relo
atable �eld.� Se
tion: This 
ontains the symboli
 name of the se
tion in whi
h the symbol wasused.The operations performed on relo
ation table are look up, and insertion. For ea
hsymbol referen
e in relo
ation table, a 
orresponding entry in symbol table for the symbolis sear
hed. The information required for relo
ation entry in the ELF format is 
al
ulatedand the entry is inserted in the relo
ation table.3.3.3 The Big NumbersThe asm supports integer 
onstants larger than the ma
hine based integers. These are
alled bignum. The bignum have the same syntax and semanti
s as an integer ex
eptthat the number (or its negative) takes more than 32 bits to represent in binary. Thedistin
tion is made be
ause in some pla
es integers are permitted while bignums are not.16



Two type of bignums are available in GAS and are provided in asm also. They are quadand o
ta.� quad bignum: The assembler dire
tive .quad is used to refer to quad bignum.Quadnums are 8-byte integers. The operations available for quadnums are addition,subtra
tion, multipli
ation, bit-shift, bit-or, and bit-and. In asm these operationsare implemented using bit-shift, bit-and and bit-or operations on 4-byte integers.� o
ta bignum: The assembler dire
tive .o
ta is used to refer 16-byte integers. Theoperations available for o
tanums are the same as those for quadnums. The o
-tanums are viewed as a pair of quadnums and all these operations for o
tanum areimplemented using operations on quadnums.3.3.4 Generation of the Output Obje
t FileAfter the se
ond pass of assembly, the output obje
t �le is written in the ELF format.The formatting part of output �le is implemented in �le elf.
, the 
orresponding header�le is elf.h. The elf.h �le 
ontains the de�nitions for stru
ture of ELF header and se
tiontables. Three se
tions .bss, .text and .data are written regardless of whether they arepresent in the input �le or not. Ea
h se
tion o

upies one 
ontiguous (possibly empty)sequen
e of bytes within a �le. They may not overlap, and no byte in a �le resides inmore than one se
tion.Generation of .symtab and .relaname se
tionThe information stored in .symtab se
tion 
omprises of, name whi
h is an index to .strtabse
tion, value, size, se
tion name and info. The info member spe
i�es the symbol's typeand binding attributes. The algorithm used for preparation of .symtab se
tion is dis
ussedbelow.1. 
al
ulate total number (no) of symbols in symbol table.2. initialize 1st entry (index 0) for .strtab se
tion. This entry (STN UNDEF) is reserve,and serves as an unde�ned symbol index.3. while no > 0(a) read symbol from symbol table, and write .symtab se
tion entry by taking 
areof endian-ness.(b) write symbol name in .strtab se
tion.(
) if symbol is relo
atable, prepare relo
ation table entry.(d) de
rement no.After writing the output �le in ELF format asm exits normally. The default namefor output obje
t �le is b.out. It 
an be 
hanged by using the -o 
ommand line option.Conventionally, the obje
t �le name ends with `.o'.17



3.3.5 Error ReportingTwo kinds of errors are reported by the asm. These are Warning Messages and ErrorMessages. The asm writes the warnings and error messages to the standard error �le(usually the terminal).Warning messages have the following format.Warning:�le name:NNN:Warning Message TextWhere NNN is the line number, �le name is the name of the 
urrent input �le and themessage text provides the warning message.Error messages have a format similar to the warning messages as represented below.Fatal:�le name:NNN:Error Message TextThe �le name, line number and message text are derived as in the 
ase of warning mes-sages. The asm generates the output �le for the assembly program even in the presen
eof warnings. In 
ase of errors, the output �le is not generated.3.4 List File GenerationThe generated assembly listing in
ludes assembly program, its equivalent ma
hine 
ode,error messages, a se
tion table, a relo
ation table and a 
ross-referen
e symbol table. Anexample listing is shown in Figure 3.3 and Figure 3.4.The �rst 
olumn in the listing shows the line number. The se
ond 
olumn gives thevalue of the lo
ation 
ounter immediately before the 
orresponding statement is assem-bled. The third 
olumn shows the ma
hine 
ode that the statement is assembled into,and the remainder of ea
h line is the sour
e 
ode just as it is presented to the assembler.If an error is found, the error message is output on the line following the line 
ontainingthe error. The \R" in the line 16, 17 and 20 shows that these instru
tions use symbolvalues whi
h should be relo
ated by the linker.The 
ross-referen
e symbol table summarizes the information regarding the iden-ti�ers in the program. The value is the value of lo
ation 
ounter where the symbol isde�ned. Sin
e printf is unde�ned it 
ontains a value *UND*. The se
tion spe
i�es thename of the se
tion in whi
h the symbol is de�ned and info provides the binding and typeinformation for the symbol as de�ned for ELF[2℄ �le format. The relo
ation table 
ontainsthe name of the symbol, address where relo
ation should be applied, the se
tion nameand the ma
hine spe
i�
 relo
ation type. The se
tion table summarizes the informationregarding generated se
tions. It gives the start address, end address and the size of allgenerated se
tions.
18



file listing: pp
_test.s Page number: 11 00000000 .file "test.
"2 00000000 g

2_
ompiled.:34 00000000 .se
tion ".rodata"5 00000000 .align 26 00000000 .LC0:78 00000000 53554d3a .string "SUM:%d\n"9 25640a0010 00000000 .se
tion ".text"11 00000000 .globl main12 00000000 .type main,�fun
tion13 00000000 main:1415 00000000 901f0010 stw 0,16(31)16 00000004 3d200000 R addis 9,0,.LC0�16:1617 00000008 38690000 R addi 3,9,.LC0�16:018 0000000
 809f0010 lwz 4,16(31)19 00000010 4

63182 
rxor 6,6,620 00000014 48000001 R bl printffile listing: pp
_test.s Page number: 2--------------------------------Symbol Table Information--------------------------------Symbol Value Se
tion Info(bind - type).LC0 00000000 .rodata LOCAL-OBJECTg

2_
ompiled. 00000000 .text LOCAL-OBJECTmain 00000000 .text GLOBAL-OBJECTprintf *UND* .texttest.
 00000000 *ABS* LOCAL-FILE
Figure 3.3: A Sample Assembly Listing for PowerPC Pro
essor19



file listing: pp
_test.s Page number: 3--------------------------------Relo
ation Table Information--------------------------------Symbol Address Se
tion Relo
ation Typeprintf 00000014 .text 8.LC0 0000000a .text 4.LC0 00000006 .text 6file listing: pp
_test.s Page number: 4--------------------------------Se
tion Table Information--------------------------------Se
tion Start End Size.bss 00000034 00000034 00000000.data 00000034 00000034 00000000.rodata 00000034 0000003
 00000008.shstrtab 0000003
 00000080 00000044.strtab 00000080 000000b2 00000032.symtab 000000b2 00000132 00000080.text 00000132 0000018e 0000005
.rel.text 0000018e 000001a6 00000018Figure 3.4: A Sample Assembly Listing Contd ...
20



Chapter 4The Assembler Generator
In this 
hapter we dis
uss the design and implementation of the assembler generator(asmg). The asmg takes a pro
essor model in its IR form, and generates a two passassembler spe
i�
 to that pro
essor. The generated assembler 
onsists of a �le 
on-taining spe
i�
ation for the Lex program[15℄, a �le 
ontaining spe
i�
ation for the Ya

program[16℄, and a keyword �le used for the token generation. These spe
i�
ation �lesare used for the lexi
al and synta
ti
 analysis of the assembly language program. These�les are generated from the IR des
ription of the pro
essor model.The generated �les 
onsist of all the information about the pro
essor e.g. lengthsof the instru
tions, parameters for the instru
tions, binary representations of the instru
-tions, endian-ness of the pro
essor, whi
h are all relevant to the assembler. In additionto these, the assembler uses a C module to handle symbol table operations, a parser andanalyzer module for the pseudo operations, and a C module to write output �le in ELFformat. These �les are independent of the pro
essor model and are the same for all as-semblers that 
an be generated. We have already dis
ussed the pro
essor independent�les in Chapter 3. In this 
hapter, we des
ribe the algorithms used in the generation ofspe
i�
ation �les from the IR representation of the pro
essor model.4.1 OverviewThe basi
 stru
ture of the assembler generator is shown in Figure 4.1. The generation ofassembler is done in two passes over the IR. In order to generate the assembler followingsteps are followed.1. PASS ONE(a) Initialization of asmgi. identi�
ation of the data en
oding (endian-ness) of the host pro
essor onwhi
h asmg is running.ii. 
he
king the integrity of the IR �le by reading the magi
 number in IRheader. 21
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iii. from IR header determine the data en
oding used in the IR. If data en-
oding of the host pro
essor is di�erent from that in the IR, then a 
ag isset to indi
ate that the data read from the IR �le must be 
onverted tothe host byte order before its use.(b) for ea
h and-rule R in Sim-nML des
ription; do,i. read syntax string for R using integer table, and syntax table. Parse thesyntax string using algorithm des
ribed in se
tion 4.2.2.ii. if the pro
essor des
ription 
ontains instru
tions with same syntax, remem-ber the 
orresponding Sim-nML rules. Only one Ya

 rule is generated forall these instru
tions.2. PASS TWO(a) Initialization of Ya

 spe
i�
ation, and keyword �le. The 
onstant startingpart of these �les 
onsisting of variable de
larations, and some part of Ya

de�nition se
tion is written.(b) For ea
h rule in IR with distin
t syntax string a 
orresponding Ya

 rule is gen-erated. The and-rule and the or-rule are 
onsidered di�erently for generationof these rules.(
) Keywords are generated 
orresponding to ea
h assembly mnemoni
. They areused in token generation.The asmg generates the following �les.� asmgYa

.y, whi
h 
ontains grammar rules.� asmgKey.
, whi
h 
ontains assembly language mnemoni
s and the 
orrespondingtokens.� asmgLex.l, whi
h 
ontains the s
anner rules.The des
ription of the asmg is best des
ribed using an example Sim-nML pro
essorspe
i�
ation. Sin
e only the syntax and image attributes are relevant for asmg, otherattributes have been dropped from the Sim-nML model shown in Figure 4.2 and Figure4.3.4.2 Implementation DetailsThe relevant information from IR is extra
ted and ma
hine dependent �les are generatedusing this information. These �les after 
ompilation produ
es the assembler for the spe
-i�ed pro
essor. A shell s
ript is provide to simplify the generation of the assembler. It�rst generates the assembler �les and then 
ompiles them to produ
e the assembler.23



type index = 
ard(3)reg PC[1, 
ard(8)℄let byte_order = "big"let pro
essor_name = "none"mem M[1024, 
ard(8)℄reg R[8, 
ard(8)℄mode SHORT = MEM| REGmode MEM (a : index) = M[R[a℄℄syntax = format("(R%d)", a)image = format("0%3b", a)mode REG (i : index) = R[i℄syntax = format("R%d", i)image = format("1%3b", i)mode IMM (n : 
ard(8)) = nsyntax = format("%d", n)image = format("%8b", n)op instru
tion(x : instr_a
tion)syntax = x.syntaximage = x.imageop instr_a
tion = alu_op| jump| test_opop alu_op(sr
:SHORT, dst:SHORT, aa:alu_a
tion)syntax = format("%s %s,%s", aa.syntax, sr
.syntax, dst.syntax)image = format("0000%s%s%s", aa.image, sr
.image, dst.image)op alu_a
tion = a_add| a_subop a_add()syntax = "add"image = "0001"Figure 4.2: Sim-nML spe
i�
ation for an example pro
essor24



op a_sub()syntax = "sub"image = "0010"op jump (target : IMM)syntax = format("jmp %s", target.syntax)image = format("10000000%s", target.image)op test_op(in:intype)syntax = format("test %s", in.syntax)image = format("1111%s%s", in.image<2..3>, in.image)op intype(sr
:REG, sr
1:REG)syntax = format("%s %s", sr
.syntax, sr
1.syntax)image = format("11%s%s", sr
1.image, sr
.image)Figure 4.3: Sim-nML spe
i�
ation for an example pro
essor 
ontd ...4.2.1 Generation of the Ya

 Spe
i�
ation FileThe format of the generated Ya

 spe
i�
ation �le is as follows.[ definitions ℄%%[ rules ℄[ %%[ user fun
tions ℄℄Here De�nitions is the se
tion where the variables are de�ned that are used laterin the grammar. It also 
ontains #in
lude dire
tives. Rules is the se
tion that 
ontainsgrammar rules for the parser. These rules are generated a

ording to the pro
essor spe
-i�
ations in the IR. User fun
tions is the se
tion that 
ontains the de�nition of thefun
tions used in the rules se
tion.The hierar
hi
al stru
ture of pro
essor des
ription in Sim-nML is preserved in gen-eration of Ya

 rules. For ea
h rule in pro
essor des
ription we get a 
orrespondingYa

-rule (ex
ept in the 
ase when two rules have the same syntax. This 
ase is des
ribedlater). For the purpose of parsing and grammar rules generation, mode-rule and op-rulein Sim-nML spe
i�
ation are not di�erentiated. Only the attributes syntax and image inop/mode rules are used by the assembler generator.The syntax attribute is used to generate the grammar rule where the name of thenon terminal (on the left side of the produ
tion) is same as the name of the op/mode rule.25



The format string in the syntax attribute is used for the token generation. The generatedkeywords for the tokens are all in 
apital letters and are pre�xed by the string AS toavoid 
on
i
ts with prede�ned 
onstants. For ea
h non-terminal, a de�nition %type isgenerated to spe
ify the value returned by the rule. Similarly, for ea
h terminal symbol, ade�nition %token is generated to spe
ify the value asso
iated with the token. The modeand-rule and op and-rule may di�ers in %type de�nition. The op rule returns a pointer toa 
hara
ter array. The mode-rule returns an expression stru
ture 
onsists of the expressiontree 
reated while parsing an expression or a pointer to a 
hara
ter array depending onthe 
ontext. The image attribute is used for the generation of the a
tion-part in the Ya

rule. The Ya

 rules used for parsing of arithmeti
 expressions and assembly dire
tivesare �xed and are independent of the pro
essor under 
onsideration.The pro
essor spe
i�
 part of generated Ya

 spe
i�
ation �le for example pro
essor(Figure 4.2) is shown in Figure 4.4.instru
tion : instr_a
tion { $$ = $1; };instr_a
tion : alu_op { $$ = $1; }| jump { $$ = $1; }| test_op { $$ = $1; };test_op : AS_TEST intype {string str;str = "1111" + bitsele
t($2,2,3) + (string)$2;$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';delete [℄ $2;};intype : REG REG {string str;str = "11" + (string)$2 + (string)$1;$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';delete [℄ $2;delete [℄ $1;};Figure 4.4: Generated Ya

 spe
i�
ation �le for the example pro
essor26



REG : AS_R { string str;str = "1" + setsize(itosul($1.val[0℄ ,3), 3);$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';};jump : AS_JMP IMM {string str;str = "10000000" + (string)$2;$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';delete [℄ $2;};IMM : expr {if ($1.val[0℄ < 0 || $1.val[0℄ > 255){yyerror("Value: %d Is out of range", $1.val[0℄);errorNo++;$$ = new 
har[1℄;$$[0℄='\0';}else{//
al
ulate imagestring str;sizeInstr = 8;relo
ateSymbol(&$1);str = setsize(itosul($1.val[0℄ ,8), 8);$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';}};alu_op : alu_a
tion SHORT ',' SHORT {string str;str = "0000" + (string)$1 + (string)$2 +(string)$4;$$ = new 
har[str.size()+1℄;Figure 4.5: Generated Ya

 spe
i�
ation �le for the example pro
essor 
ontd ...27



strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';delete [℄ $1;delete [℄ $2;delete [℄ $4;};SHORT : MEM{ $$ = $1; }| REG{ $$ = $1; };MEM : '(' AS_R ')' {string str;str = "0" + setsize(itosul($2.val[0℄ ,3), 3);$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';};alu_a
tion : a_add{ $$ = $1; }| a_sub{ $$ = $1; };a_sub : AS_SUB {string str;str = "0010";$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';};a_add : AS_ADD {string str;str = "0001";$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';};%%Figure 4.6: Generated Ya

 spe
i�
ation �le for the example pro
essor 
ontd ...28



The algorithm for generation of Ya

-rules 
an be summarized as follows.1. start from instru
tion node.2. for ea
h rule R in Sim-nML des
ription; do,(a) if R is an and-rule,i. read number of parameters from and-rule table.ii. read syntax string and the image string 
orresponding to R using integertable, syntax table and image table.iii. parse the syntax string using algorithm des
ribed in se
tion 4.2.2 and writethe rule in Ya

 �le.iv. parse the image string and write the a
tion using the algorithm in se
tion4.2.2.(b) if R is an or-rule,i. Read number of 
hildren from or-rule table.ii. for all 
hildren write a rule in Ya

 �le. The 
orresponding a
tion is $$ =$1.The user de�ned fun
tion part of the Ya

 spe
i�
ation is 
onstant and appended atthe end of the generated �le. This part 
onsists of the fun
tions to output the assemblylisting in a prede�ned format.Merging of Ya

 RulesOnly one Ya

 rule is generated for all the instru
tions that have the same assembly lan-guage syntax but generate di�erent images depending upon the arguments. For example,a pro
essor 
an have an instru
tion JUMP target where, the target 
an take any integervalue. If the value of $ - target is less than 215 the jump 
an be 
oded as a relative jump.For target addresses larger than that, the assembler generates an absolute jump (if thetarget 
an �t in 16 bits). The ma
hine 
odes in two di�erent 
ases are di�erent. Thegenerated Ya

 rule for ea
h of these instru
tions is AS JUMP expr. If we write two su
hrules in the Ya

 spe
i�
ation �le the parser generated by this �le 
ontains a redu
e-redu
e
on
i
t. In the presen
e of this 
on
i
t the generated parser always re
ognizes only onerule (the rule whi
h 
omes �rst in the spe
i�
ation �le) and ignores all other rules. Toavoid this we merge all these rule in one Ya

 spe
i�
ation rule. The algorithm used isgiven below.1. Create a list of rules with the same syntax (the list is 
reated for ea
h rules in the�rst pass of generation of spe
i�
ation �le).2. Sort this list on the size of the parameters.3. Write the rule in Ya

 spe
i�
ation �le.29



bran
h : AS_JUMP expr {if (!relo
atableSymbol && $2.val[0℄ >= -32768&& $2.val[0℄ <= 32767){sizeInstr = 15;relo
ateSymbol(&$2);string str;str = "000000001"+ setsize(itosul($2.val[0℄, 15), 15);$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';}else if (!relo
atableSymbol && $$2.val[0℄ >= -65536&& $2.val[0℄ <= 65535){sizeInstr = 16;relo
ateSymbol(&$2);string str;str = "10000001"+ setsize(itosul($2.val[0℄, 16), 16);$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';}else if(!relo
atableSymbol){yyerror("Value: %d Is out of range" ,$2);errorNo++;$$ = new 
har[1℄;$$[0℄='\0';}else if(relo
atableSymbol){sizeInstr = 16;relo
ateSymbol(&$2);string str;str = "10000001"+ setsize(itosul($2.val[0℄, 16), 16);$$ = new 
har[str.size()+1℄;strn
py($$,(
har *)str.
_str(),str.size());$$[str.size()℄='\0';}}; Figure 4.7: An example merged Ya

 Rule30



4. For ea
h rule in the list,(a) Write a Ya

 a
tion 
orresponding to the rule with a 
ondition on the param-eter.The generated rule for the example JUMP instru
tion is shown in Figure.4.7. Therelo
atableSymbol is a boolean variable used by the Ya

 spe
i�
ation to mark the variableas relo
atable. The variables whi
h are unde�ned or whose value depends on where theprogram is loaded in the memory are referred as relo
atables. In 
ase of relo
atablesymbols the instru
tion with the largest parameter size is generated to give linker themaximum 
exibility.4.2.2 Extra
tion of Syntax and Image of Instru
tionsThe IR of the pro
essor spe
i�
ation 
ontains syntax and image re
ords for all the in-stru
tions. We extra
t this information for ea
h op-rule starting from instru
tion node.These re
ords en
ode the syntax of an assembly language instru
tion, 
orresponding bi-nary image and information about the arguments. The information about the argumentsis found with the help of the and-rule table and integer table.The expression 
orresponding to syntax re
ord of instru
tions does not 
ontain theverbatim syntax of the instru
tions. For example, in IR the jump instru
tion des
ribed inFigure 4.3 has the syntax string as "jump %sf0.3g". The instru
tion takes one argumentspe
i�ed by the %s. The �rst integer value en
losed in fg spe
i�es the parameter number,and the se
ond value spe
i�es the attribute name. For instru
tion \jump" the argument isdes
ribed by a mode-and rule named as IMM. The algorithm used to parse syntax stringis des
ribed below.1. read syntax string 
orresponding to the 
urrent op-and-rule from syntax table.2. for all 
hara
ters in the syntax string; do,3. if the 
hara
ter is a '%',(a) read the next 
hara
ter, it should be one of 'd', or 's' or 'x'. Remember this
hara
ter.(b) read two integer values en
losed in between f and g. The �rst integer gives theparameter number and the se
ond integer gives the index for 
orrespondingattribute. Read the name of the parameter in the variable name using integertable and identi�er table.(
) if the remembered 
hara
ter was 's' write this name in Ya

 spe
i�
ation �le,for the above jump instru
tion the name 
orresponds to IMM.(d) If the remembered 
hara
ter was 'd' or 'x', the parameter index to the integertable gives the type and value for the parameter. Write these values as exprin Ya

 spe
i�
ation �le. expr is a prede�ned Ya

 rule for evaluation of theinteger expressions. 31



4. else if the s
anned 
hara
ter is an alphanumeri
 
hara
ter append it into a stringvariable nameStr.5. else if the s
anned 
hara
ter is a blank, write the value of nameStr in the Ya

spe
i�
ation �le after pre�xing it with AS string. This represents a TOKEN. Thegenerated tokens are 
hanged into upper 
ase if the generated assembler is non
ase-sensitive otherwise they are retained as extra
ted from the syntax expression.Corresponding entry in keyword �le is also made for this TOKEN.6. else if the s
anned 
hara
ter is any pun
tuation mark e.g '(', '�', ')' et
., it is writtenin Ya

 �le as it is.Similarly, the string 
orresponding to the image re
ord of instru
tions also does not
ontain the binary information for instru
tions verbatim. For the same jump instru
tionthe image expression is "10000000%sf0.4g". If instru
tion "jump 20" is assembled, thenthe 
orresponding generated binary image should be "1000000000010100" The algorithmused to parse image string is as follows.1. read image string 
orresponding to 
urrent op-and-rule from image table.2. for all 
hara
ters in the image string; do,3. if the 
hara
ter is a '0' or '1', write it in the Ya

 spe
i�
ation �le.4. else if the 
hara
ter is a '%',(a) read the next 
hara
ter, if it is 'd' or 's' or 'x' remember the 
hara
ter. Other-wise the image is of type %integerb e.g. %2b. The asso
iated integer value isused to 
he
k the size of the operand at the time of assembly.(b) read two integer values en
losed in between f and g.i. if the �rst value read is negative then it is an index to pre�x attributetable and se
ond value is the length of 
orresponding expression. Read theexpression from pre�x attribute table and write it into the Ya

 spe
i�
ation�le.ii. else write the Ya

 parameter number.4.2.3 Generation of the Lex Spe
i�
ation FileThe generated Lex spe
i�
ation �le works as a s
anner. The rules are written in the formof regular expression. The format of generated Lex spe
i�
ation �le is,definitions%%rules%%user_subroutines 32



De�nitions is the se
tion whi
h 
ontains de�nition for all the variables used inrules se
tion. The de�nitions se
tion in the generated Lex spe
i�
ation �le is shownbelow. Here, the left hand side shows the variable name and the right hand side providesits de�nition.L [a-zA-Z_℄D [0-9℄OP [!-&(-/:-�[-^{-}℄HEXDIGIT [0-9a-fA-F℄OCTAL [0-7℄DEC "."DOLLAR "$"EXP [eE℄PLUS "+"MINUS "-"In the rules se
tion, these variable names are used within bra
es fg.Rules is the se
tion whi
h provides the way of handling tokens. In this se
tion, theleft hand side 
ontains the pattern to be re
ognized and the right hand side 
ontains theC program fragment exe
uted when that pattern is re
ognized. Some example generatedrules are shown in Figure.4.8 and Figure.4.9.{L}({L}|{D}|{DEC}|{DOLLAR})*/":" { /* a label */
opy(yytext, textptr);
opy(yytext);strn
py(textptr, ":", 1);textptr++;return LABELID;delete [℄ yylval.sym;}"//"[^\n℄* { /* one-line 
omment */
opy(yytext);return COMMENT;delete [℄ yylval.sym;}{D}+ { /* numbers having digits 0-9 */
opy(yytext, textptr);
opy(yytext);return INTEGER;delete [℄ yylval.sym;} Figure 4.8: Generated Lex rules33



/* The operators + - * / | & << >> � # $ % , et
 */{OP} { *textptr++ = yytext[0℄;if(yytext[0℄=='<'){SBYTE 
= yyinput();if(
=='<')return SHL;elseunput(
);}if(yytext[0℄=='>'){SBYTE 
= yyinput();if(
=='>')return SHR;elseunput(
);}return yytext[0℄ ;}/* a keyword a ma
ro name or a variable */{L}({L}|{D}|{DEC}|{DOLLAR})* {/* 
he
k for ma
ro name */ma
 = ma
Tbl.look(yylval.sym);if(ma
){/* fun
tion to parse ma
ro 
all */return MACRO;}/* sear
h the variable into the keyword table */name = keywordTbl.look(yylval.sym, !sensitiveCase);if(name){/* return token 
orresponding to this keyword */}/* 
he
k for a defined variable */var = symbolTbl.look(yylval.sym);if(var){/* return defined variable token */}/* undefined symbol */else{return UNDEFINED;}} Figure 4.9: Generated Lex rules 
ontd ...34



User Subroutines is the se
tion that 
ontains supporting fun
tions, 
alled in therules se
tion. For example, the routines 
opy to 
opy the 
ontent of yytext into yylval,
reateBu�er to 
reate a new bu�er for yyin, ma
Parse to parse the ma
ro use et
. areused in the rules se
tion and de�ned here.4.2.4 Generation of the Keyword FileKeywords are assembly mnemoni
s whi
h are extra
ted from IR while parsing syntaxexpression in Sim-nML des
ription of the pro
essor. We use the terms keywords andassembly mnemoni
s both to refer to the string obtained by parsing a syntax expressioninter
hangeably. As des
ribed earlier syntax strings are parsed and 
orresponding tokensare generated. Chara
ters su
h as spa
e, 
omma et
. work as delimiter while parsing thesyntax strings.
stati
 stru
t { // keywords
har * name;int token;} keywords[℄ = {"TEST", AS_TEST,"R", AS_R,"JMP", AS_JMP,"SUB", AS_SUB,"ADD", AS_ADD,0, 0,};initialize_keywords(){for(int i=0; keywords[i℄.name;++i)keywordTbl.insert(keywords[i℄.name, keywords[i℄.token);}

Figure 4.10: Generated Keywords for the example pro
essorIf the assembler is generated to be a 
ase-sensitive one, the generated keywords aresame as obtained from syntax expression. Otherwise the keywords are �rst 
onverted intoupper-
ase and then written in keyword �le. e.g. if add is embedded in the syntax-stringin the IR, the generated keyword for a 
ase-sensitive assembler will be add and that for a
ase-insensitive one will be ADD.The token names are also generated 
orresponding to ea
h assembly mnemoni
s. Atoken name is generated by pre�xing AS to ea
h generated keyword. This way 
on
i
ts35



in the prede�ned names are avoided.All these generated keywords and the 
orresponding tokens are installed in a hashstru
ture keyword table. The hash key is 
al
ulated using the name of the keyword, andthe 
on
i
ts in the hashing are resolved using 
hains. While parsing an assembly language�le whenever Ya

 re
ognizes a string it hashes it into keyword table, if it gets mat
hedthe 
orresponding token value is returned to the parser. The generated keywords �le forthe example pro
essor des
ription (Figure 4.2) is shown in Figure 4.10.

36



Chapter 5Relo
ation Handling
Consider the following example of assembly language program segment for PowerPC pro-
essor..LC0: addis 9, 0, .LC0�16:16addis 3, 9, .LC0�16:1bl printf..The following points are important. The de�nition of the printf routine is typi
allyprovided in the library and therefore the address of printf is not known at the time ofassembly. Further, the program segment may be put at any address and therefore .LC0value is determined only at the time of linking. Thus these addresses should be assignedtypi
ally at the time of linking or loading the program into memory. A

ordingly whereverthese symbols are used in the instru
tions, instru
tion operand should be adjusted at thesame time.The pro
ess of adjusting instru
tion operands prior to running the program is 
alledrelo
ation. Relo
ation requires to lo
ate the usage of symboli
 addresses within the se
-tion and adjust them so that they refer to the proper run-time addresses. The adjustmentof the addresses is typi
ally pro
essor spe
i�
. For example, a program instru
tion mayrequire 24 bits of an address to be loaded in a register (su
h as in De
 Alpha) where a 32bit address is loaded in a register using two instru
tions - �rst to load 24 bits and then toload 12 bits. Similarly, in the example of the 
ode given earlier, 16 bits of .LC0 are loadedin two separate instru
tions for Power PC. Sin
e the address is not known at the time ofassembly, the 
orresponding load instru
tion ne
essarily require adjustment (referred toas relo
ation now onwards) that is pro
essor spe
i�
.The relo
ation method is typi
ally denoted by an integer 
alled relo
ation type.Therefore the relo
ation types are also pro
essor-spe
i�
 (as per the ELF do
umentation)and vary from one pro
essor to another. Sin
e the values of the symbols are not known atthe time of assembly, the values of the expressions involving them 
an not be 
omputed.The assembler prepares a relo
ation table entry for ea
h of these usage of symboli
 ad-37



dresses in expressions using a relo
ation type. The value of this expression is 
al
ulatedby the linker depending on the asso
iated relo
ation type.We need a generi
 way to des
ribe the relo
ation type to fa
ilitate the automati
generation of assembler for all the pro
essors. Keeping this in mind in our method wehave designed a generi
 way to des
ribe all kinds of relo
ations.5.1 Generi
 Expressions for Assembly ProgramWe have de�ned generi
 expressions whi
h involve symboli
 addresses. The only operatorspermitted in these generi
 expressions are extra
t, signed extension, unsigned extension,shift left, shift right, addition of a 
onstant and subtra
tion of a 
onstant. The generi
expressions are not evaluated by the asm. Instead the ma
hine spe
i�
 relo
ation typesare found for these expressions as des
ribed in the next se
tion. The syntax for operatorson symboli
 addresses is given below.Extend(symbol�abs exp1:abs exp2, abs exp3) op1 abs exp4 op2 abs exp5Two types of Extend operators are supported - signed-extension and unsigned-extension. It is spe
i�ed using string SN (for signed-extension) and UN (for unsigned-extension). abs exp3 gives the size for extension.The extra
t operator is used to spe
ify the extra
tion of a number of bits from thevalue of the symbol starting from some bit position. \�" is used to represent an extra
toperator. abs exp1 gives the size and abs exp2 provides the start bit position for theextra
t. In the example given above .LC0�16:16 is an expression used to extra
t 16 bitsfrom the value of .LC0 starting from bit position 16.Four arithmeti
 operators are supported. Shift Left n spe
i�es a left shift by n bits.The operator is represented by \<<" in the assembly language program. Shift Right nspe
i�es a right shift by n bits. This operator is represented by \>>" in the assemblylanguage program. The op1 spe
i�es a Shift Left or Shift Right and abs exp4 gives thenumber of bits. The Add n spe
i�es an addition of a 
onstant n to the expression. Itis represented by the use of \+" in the assembly program. Similarly the Subtra
t nrepresents a subtra
tion of a 
onstant from the value of the expression and is representedusing \�" in the assembly program. In the syntax string given above, the op2 representsan Add or Subtra
t operator with a value abs exp5.The grammar used to parse the expression in the assembly language program whi
huse relo
atable symbols is given in Figure.5.1.The tokens SIGN, UNSIGN represent the signed-extension and the unsigned-extensionoperators and INTEGER is a token that represents an integer. The tokens SHL, SHR repre-sent the shift-left and shift-right operators respe
tively. The expr is the integer expressioninvolving any arithmeti
 and boolean operators supported by the assembler.Examples of a few expressions involving a symboli
 address are .LC0, .LC0�16:16,38



extra
t: symbol| symbol '�' expr ':' exprextend: SIGN '(' extra
t ',' INTEGER ')'| UNSIGN '(' extra
t ',' INTEGER ')'| extra
topfirst: extend SHL INTEGER| extend SHR INTEGER| '(' extend SHL INTEGER ')' SHR INTEGER| '(' extend SHR INTEGER ')' SHL INTEGER| '(' extend SHL INTEGER ')' SHL INTEGER| '(' extend SHR INTEGER ')' SHR INTEGER| extendopfinal: opfirst '+' INTEGER| opfirst '-' INTEGER| opfirst '+' '(' expr ')'| opfirst '-' '(' expr ')'| opfirstFigure 5.1: Grammar used for parsing relo
atable symbolsSN(.LC0�16:16, 32), .LC0 + 10 et
.In 
ase an operator is missed out, 
orresponding identity operation is assumed (forexample << 0 or >> 0). If no extra
t operator is spe
i�ed a default extra
t is usedwith the size of the expression as spe
i�ed in the Sim-nML pro
essor des
ription for the
orresponding instru
tion.In addition the asm also supports two operators Dire
t and Relative to representthe dire
t and relative relo
ation types. The asm identi�es these operations using theSim-nML des
ription and depending on whether the 
orresponding image for the binaryof the instru
tion uses relative or dire
t addressing.Sin
e generi
 expressions are not evaluated we need to know what value to write inpla
e of these expressions in the output binary generated by the asm. Also the addresswhere the relo
ation should be applied is not known. For example, the instru
tion bl takesa 24 bit parameter. The instru
tion is assembled assuming the value of the expression(printf) as zero. The address in the relo
ation table entry where the relo
ation is tobe performed is the start address for this instru
tion. While in addis instru
tion theexpression is assembled with its value taken as zero and the relo
ation address is 
al
ulatedafter adding two to the start address of the instru
tion. The start address for theseinstru
tions 
orresponds to the start address at the time of assembly. The 
on�guration�le provides, both, the value to be substituted for the expression and the address to be39



written in the relo
ation table in addition to the relo
ation type to be generated.5.1.1 Con�guration FileThe 
on�guration �le helps in mapping generi
 relo
ation operations to ma
hine relo
ationtypes. The 
on�guration �le also provides information like what value to substitute inpla
e of the expression involving the symbol and what address to put in the relo
ationtable. The format of the 
on�guration �le is �xed. All the �elds in the 
on�guration�le must be separated by blanks or tabs and must be written in a spe
i�ed order. Oneline is provided for ea
h type of ma
hine spe
i�
 relo
ation. All the four �eld in the
on�guration �le for a relo
ation type must be present. Comments 
an also be written inthe 
on�guration �le using C or C++ type 
omment style. The asm a

epts the name ofthis �le using -
 
ommand-line option.generi
Op: opr '(' extra
tConfig 
hange shift arith ')'// relo
ation typeopr: DIRECT| RELATIVE// extra
tion operatorextra
tConfig: '<' INTEGER ':' INTEGER '>'// sign and un-signed extension operator
hange: // null statement| SIGN| UNSIGN// shift operatorshift: // null statement| SHIFTLEFT| SHIFTRIGHT// addition and subtra
tion operatorarith: // null statement| '+' INTEGER| '-' INTEGERFigure 5.2: The grammar used to parse Generi
 OperationsIn the 
on�guration �le, the extend operator is spe
i�ed using one of the two stringsSN
onst int or UN
onst int. The 
onst int gives the size for extension and it repre-sents a 
onstant integer. SN spe
i�es a signed-extension and UN spe
i�es an unsigned-extension. 40



The extra
t operator is represented by a pattern like < size : start bit >. Here sizeand start bit provide the parameters for the extra
tion. Both of these are representedusing 
onstant integer values.The arithmeti
 operations shift left and shift right are represented by SHL
onst intand SHR
onst int respe
tively. The add and subtra
t operations are represented using+
onst int and �
onst int respe
tively. The grammar used to parse the generi
 expres-sions in the 
on�guration �le is shown in Figure 5.2.The token SHIFTLEFT, SHIFTRIGHT represent the shift-left and shift-right operatorsrespe
tively. For example, DIRECT(< 32 : 0 >) SN32 SHR16 + 16 and RELATIVE(<32 : 0 >) SN32 - 32 are valid generi
 operations.Any of the generi
 relo
ation operators ex
ept extra
t 
an be omitted while des
rib-ing a relo
ation expression in the 
on�guration �le. The example 
on�guration �le forPowerPC 603 is shown in Figure 5.3./* generi
 m/
 spe
ifi
 generated address in the *//* expr relo
ation 
ode in pla
e relo
ation table *//* of symbol */DIRECT(<32:0>) 1 0 $DIRECT(<24:0>) 2 0 $ + 1DIRECT(<16:0>) 4 0 $ + 2DIRECT(<16:16>) 6 0 $ + 2DIRECT(<14:0>) 7 0 $RELATIVE(<24:0>) 10 0 $RELATIVE(<14:0>) 11 0 $RELATIVE(<32:0>) 26 0 $Figure 5.3: An example 
on�guration �le for the PowerPC Pro
essorThe symbol $ is used in the 
on�guration �le to indi
ate the value of 
urrent lo
ation
ounter (i.e. the address of the instru
tion). � is used to represent the value of the symbolas known at the time of assembly of the program. For example, the �rst line in the example
on�guration �le represents that whenever an expression involving a symbol is found inthe assembly program whi
h uses 32 bits of the symbol for dire
t addressing, relo
ationtype is 1 and 0 is substituted for the expression while assembly. The address to emit isthe address of the 
urrent instru
tion.Whenever asm �nds a symboli
 address referen
e in assembly language program itsear
hes for a 
orresponding entry in the 
on�guration �le depending on the operatorsapplied on the symbol. If an entry gets mat
hed it generates the relo
ation table usingthe information spe
i�ed in the 
on�guration �le.41



5.1.2 An example Relo
ation for PowerPC Pro
essorAn Example assembly language program fragment with relo
ations for Power PC pro
es-sor is shown below..LC0:addis 9, 0, .LC0�16:16addis 3, 9, .LC0�16:1addi 3, 9, .LC0bl printfFigure 5.4: An example �le with relo
ationsThe generated relo
ation table entries are as follows.� .LC0�16:16: This expression gets mat
hed with the fourth entry (i.e. DIRECT(16:16)) and therefore the generated relo
ation type is 6, the instru
tion is assembledas addis 9,0,0 and the address in the relo
ation entry is 2 + the address of the 
urrentinstru
tion.� .LC0�16:1: The assembler tries to mat
h it but the 
on�guration �le doesn't havean entry DIRECT(< 16 : 1 >) so an error is 
agged.� .LC0: Sin
e nothing is spe
i�ed assembler gets its size using the information avail-able in Sim-nML spe
i�
ation of the pro
essor. The Sim-nML spe
i�
ation forPowerPC 603 shows that the size of argument for instru
tion addi should be 16bits. Hen
e the size for symbol .LC0 is 16. The third entry of 
on�guration �le
orresponds to this relo
ation operation and the generated relo
ation type is 4.� printf: The symbol value is unde�ned. The Sim-nML spe
i�
ation �le shows thatthe instru
tion bl is a relative bran
h instru
tion and it uses a 24 bit operand. In the
on�guration it mat
hes with the sixth entry and therefore the generated relo
ationtype is 10.Let us assume that the lo
ation 
ounter for the �rst instru
tion is 0x00000034. Afterremoval of error line the generated assembly listing is shown in the Figure 5.5.00000034 3d200000 R addis 9,0,.LC0�16:1600000038 38690000 R addi 3,9,.LC00000003
 48000001 R bl printfFigure 5.5: The generated assembly listing42



In this example for the �rst instru
tion the value assembled in pla
e of .LC0�16:16is zero as spe
i�ed in the 
on�guration �le and the address for relo
ation is $+2 whi
hevaluates to 0x36. Similarly the value assembled in pla
e of .LC0 in the se
ond instru
tionis also zero and the address is $+2 (i.e. 0x3a) as spe
i�ed by the third entry in the
on�guration �le. For the last instru
tion the value substituted is zero while the addressfor relo
ation is $ (i.e. 3
).Symbol Address Se
tion Relo
-Typeprintf 0000003
 .text 10.LC0 0000003a .text 4.LC0 00000036 .text 6Figure 5.6: The generated relo
ation informationThe generated relo
ation table is shown in Figure 5.6. The se
tion in relo
ationtable spe
i�es the se
tion in whi
h the symbol was found.
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Chapter 6Results and Con
lusion
6.1 ResultsThe assembler generator(asmg) is tested for PowerPC 603, 68HC11, 8085 and Hita
hiH/8 pro
essor models in Sim-nML. For ea
h of these pro
essor des
ription an assembleris generated and veri�ed for di�erent assembly language programs. It is also veri�ed thatthe asmg takes 
are of pro
essor endian-ness 
onversion by running it on Pentium (little-endian) based Linux ma
hines as well as on Spar
 (big-endian) based ma
hines. Theassembly listing and ELF generated by the assembler have been su

essfully mat
hedwith those generated by the GNU assembler. In 
ase of PowerPC 603 assembler, theoutput ELF �le was also veri�ed with GNU objdump.The 
omplete pro
edure to generate an assembler from Sim-nML spe
i�
ation isen
apsulated into a shell s
ript. When this s
ript is run with IR of a pro
essor as anargument, the �rst phase of generation of ma
hine dependent �les is exe
uted. This phase
reates some intermediate �les spe
i�
 to that pro
essor. In the next phase, the assembleris generated using the ma
hine spe
i�
 generated �les and the ma
hine independent �les.For PowerPC 603 pro
essor the input assembly language programs are generatedusing GNU C 
ross-
ompiler running on Pentium based Linux ma
hines. The generatedassembly language �le 
onsists of some instru
tions whi
h are not part of PowerPC 603Sim-nML spe
i�
ation sin
e those instru
tions for PowerPC 603 are alternative namesof some other instru
tions. For example, a generated instru
tion 
an be blt target whi
his equivalent to the instru
tion b
 12, 0, target. Similarly the instru
tion mr 31, t isequivalent to or 31, 1, t and the instru
tion li s, d is equivalent to addi s, d.In the g

 generated assembly programs, these instru
tions 
an be edited to theirequivalent instru
tions. As an alternative these instru
tions 
an be added in the Sim-nMLmodel. We tried both approa
hes and both seems to work �ne.In 
ase of PowerPC 603, the 
ompiler generates a few ma
hine spe
i�
 operationsin the expressions. For example :LC0�ha whi
h is equivalent to :LC0�16 : 16 in ourassembler. Prior to the assembly, we edit the g

 generated programs and repla
e all su
hma
hine spe
i�
 operations to their 
ounterparts.44



6.2 Con
lusionIn this thesis we have developed an assembler generator whi
h takes an IR of Sim-nMLbasi
 model for a pro
essor and generates an assembler. The generated assembler takesan assembly language program spe
i�
 to that pro
essor and generates a relo
atable ELFbinary obje
t �le. The assembler is generated and tested for PowerPC 603, 68HC11 and8085 pro
essors.The availability of an assembler allows assembly programs to be written and testedon the fun
tional simulator[12℄, even when no 
ompiler is available.6.3 Future Work and ExtensionsUsing Lex and Ya

 for the assembler implies that the assembly syntax must be singletoken lookahead sin
e the parsers generated by the Ya

 
an only look one token ahead.Also the assembler 
an produ
e relo
atable obje
t �le in ELF format only. It 
ould beuseful if extended to generate other format su
h as COFF, a.out et
.
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Appendix AUser's Manual
A.1 Assembler GeneratorThe generation and 
ompilation of assembler �les to get the �nal exe
utable assem-bler(asm) is done with the help of a shell s
ript whi
h is available as a 
ommand nameasmg. The assembler generator requires a pro
essor spe
i�
ation in the IR form, option-ally we 
an name the generated intermediate �les. A string CS in 
ommand line is usedto make the generated assembler 
ase-sensitive. By default it is none 
ase-sensitive.A.1.1 UsageUsage: asmg [ir-�le℄ fya

-�leg fkey-�leg flex-�leg fCSgir-�le: This is the name of the input IR �le.ya

-�le: Generate the intermediate Ya

 spe
i�
ation �le in a �le name ya

-�le. Thedefault name is asmgYa

.y.key-�le: Generate the intermediate keywords �le in a �le name key-�le. The defaultname is asmgKey.
.lex-�le: Generate the intermediate Lex spe
i�
ation �le in a �le name lex-�le. Thedefault name is asmgLex.l.A.2 AssemblerThe assembler is used to translate an assembly language program to its relo
atable binary
ounterpart in ELF format. The generated assembler has a 
ommand line interfa
e that is
onventional for the utilities/
ommands in a Unix system. If the assembler is run withoutany arguments, it displays a small help giving all the options.46



A.2.1 UsageUsage: asm f-hg f-pg f-m ma
hine nameg f-o output �leg f-
 
on�g �leg f-l list �leg[�les℄-h: This is an optional argument to print the usage message. If this option is spe
i�ed,all other arguments are ignored.-p: This is an optional argument. It prints the name of all supporting pro
essors asdes
ribed in the ELF do
umentation.-o output �le: Generate the ELF output in a �le name output �le. Default name isb.out.-m ma
hine name: Spe
ify the target ma
hine name. This name is used in the ELFheader.-l list �le: Generate the assembly listing in list �le. Default is stdout if listing is on.-
 
on�g �le: Use 
on�guration �le 
on�g �le for ma
hine spe
i�
 relo
ations.�les: These are the name of input assembly language �les. The names are separatedby spa
es. These �les spe
ify exa
tly one sour
e program. The sour
e program is a
on
atenation of all the �les in the order spe
i�ed from left �le name to right.
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