Generation Of Assemblers Using High Level
Processor Models

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of
Master of Technology

by
Sarika Kumari

to the
Deapartment of Computer Science & FEngineering

Indian Institute of Technology, Kanpur
Feb, 2000

Certificate

This is to certify that the work contained in the thesis entitled “Generation Of Assem-
blers Using High Level Processor Models”, by Sarika Kumari, has been carried out
under my supervision and that this work has not been submitted elsewhere for a degree.

Date: Feb, 2000

(Dr. Rajat Moona)

Department of Computer Science & Engineering,
Indian Institute of Technology,
Kanpur.

Abstract

Assemblers are typically specific to the processors. Much of an assembler has to be
re-implemented for each new machine. This thesis describes the design and implementa-
tion of an assembler generator (asmg). The assembler generator automatically generates
an assembler for a processor by taking a high level model of the processor in Sim-nML[1]
intermediate form as input. The Sim-nML language provides a simple, elegant and pow-
erful mechanism to describe the processor behavior at the instruction level.

The assembler thus generated takes an assembly language program as input and gen-
erates a relocatable binary object file in FLF[2] format as output. The pseudo operations
supported by the generated assembler are independent of the processor and conform to
the syntax and semantics of the GNU assembler(GAS)[3]. In addition, the generated as-
sembler supports the link-time relocation of the program. Such relocations are typically
machine specific and are handled with the help of specific configuration file which defines
the machine specific types of the relocations with respect to the operations which use them.

Contents

List of Figures 3
1 Introduction 1
1.1 Preamble 1
1.2 Related Work 1
1.3 Existing Tools 2
1.4 Organization of the Report, 3

2 Sim-nML and Intermediate Representation 4
2.1 The Sim-nML Language 4
2.2 Intermediate Representation 7

3 The Assembler 9
3.1 Output File Format 9
3.1.1 ELF Header 11

3.1.2 Sections 11

3.1.3 String Table 12

3.1.4 Symbol Table 12

3.1.5 Relocation Table L. 12

3.2 The Assembler Directives 13
3.3 Implementation Details oo 14
3.3.1 Evaluation of Assembly Directives 14

3.3.2 Symbol Table and Relocation Table Management 15

3.3.3 The Big Numbers oo 16

3.3.4 Generation of the Output Object File 17

3.3.5 Error Reporting Lo 18

3.4 List File Generation

4 The Assembler Generator
4.1 OVerview
4.2 Implementation Details
4.2.1 Generation of the Yacc Specification File
4.2.2 Extraction of Syntax and Image of Instructions
4.2.3 Generation of the Lex Specification File
4.2.4 Generation of the Keyword File

5 Relocation Handling
5.1 Generic Expressions for Assembly Program
5.1.1 Configuration File L.

5.1.2 An example Relocation for PowerPC Processor

6 Results and Conclusion
6.1 Results
6.2 Conclusion

6.3 Future Work and Extensions

A User’s Manual

A.1 Assembler Generator

A1l Usageo

A.2 Assembler

A21 Usage e
References

21
21
23
25
31
32
35

37
38
40
42

44
44
45
45

46
46
46
46
47

49

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
3.5
5.6

Sim-nML Specification for a Simple Processor

Sim-nML Specification for a Simple Processor contd

Two-pass Assembler
Object file format (Linking view)
A Sample Assembly Listing for PowerPC Processor
A Sample Assembly Listing Contd

Structure of the Assembler Generator asmg.
Sim-nML specification for an example processor
Sim-nML specification for an example processor contd
Generated Yacc specification file for the example processor
Generated Yacc specification file for the example processor contd ...

Generated Yacc specification file for the example processor contd ...

An example merged Yacc Rule
Generated Lex rules
Generated Lex rulescontd

Generated Keywords for the example processor

Grammar used for parsing relocatable symbols
The grammar used to parse Generic Operations
An example configuration file for the PowerPC Processor
An example file with relocations
The generated assembly listing

The generated relocation information

Chapter 1

Introduction

1.1 Preamble

The system designers require sophisticated and generic modeling tools for the design
of high performance embedded systems. These tools help in evaluation of alternative
implementations, they simplify the process of design changes and allow for the trade-
offs at the early stages of development. Hardware-software co-design is a cost effective
methodology and results in a shorter time to market as opposed to the design of software
and hardware components of an embedded system separately.

Powerful modeling tools with high level of abstraction are needed with an integrated
environment which allows designers to assemble, compile, simulate and analyze the per-
formance of various alternatives of the new design. Hand-coding is not an option since it
eliminates the capability of iterating over multiple hardware specifications.

In this thesis, we have designed a tool called assembler generator (also referred
to as asmg) which generates an assembler for processor whose specification is available
in Sim-nML[1] language. Sim-nML is simple and powerful language used to specify a
complex processor architecture. The asmg takes an intermediate representation[4] of
the Sim-nML processor specifications as its input and generates an assembler for that
processor. The assembler so generated produces an ELF object code as output from a
given assembly language program. Since Sim-nML provides a generic way of describing a
processor architecture, asmg provides for the generation of assemblers in an architecture
independent manner.

1.2 Related Work

Automation tools for performance modeling of a system is a growing area and a lot of
research has been pursued in this area. These previous works have resulted in a set of
performance modeling tools using different languages for processor specification.

An automatic assembler generator[5] has been developed by George Hadjiyian-

nis, Silvina Hanono, and Srinivas Devadas at Princeton University using the Instruction
Set Description Language ISDL[6]. ISDL is a machine specification language similar to
Sim-nML[1]. It provides constructs for specifying instruction set and other architectural
features. Their assembler generator receives an ISDL description as input, and produces
an assembler which assembles the compiler’s output to a binary file. The assembler gen-
erator produces Lex and Yacc files, which when compiled result in an executable program
for parsing the assembly language programs and generating the corresponding machine
instructions.

A meta-assembler|7] which creates assemblers for new architectures has been writ-
ten for specifications in SLED[8], a Specification Language for Encoding and Decoding.
This language is used to define mappings between symbolic assembly-language and bi-
nary representations of instructions. A toolkit, (New Jersey Machine-Code (NJMC)
Toolkit) is implemented to help programmers write applications that process machine
code—assemblers, disassemblers, code generators, tracers, profilers, and debuggers. The
meta-assembler is essentially a macro processor with bit-manipulation operators and spe-
cial support for different integer representations.

The Language for Instruction Set Architectures (LISA)[9] is capable of describing the
architectural details and pipeline operations of modern processors. The language is de-
signed to describe processor architectures and to enable automated generation of software
development tools, such as high-level language compiler, assembler, linker, simulator, and
debugger. Furthermore, accurate and consistent documentation can be generated in IXTEX
and HTML format. Currently a processor simulator SuperSim[10] has been developed.

1.3 Existing Tools

Following tools have been implemented in our environment.

Cache Simulator[4] provides a mechanism to simulate various caching policies. The
designer can use the simulator to study the trade-offs between different caching policies.

Code Instrumentor[4] implements a mechanism to perform analysis and profiling of
application programs through the technique of code instrumentation.

Disassembler[11] takes the IR of a processor description and a relocatable binary pro-
gram in ELF format as input and produces an equivalent program in assembly language
of the processor. The disassembler is generic enough to be used for all types of processors.
It performs complete symbolic disassembly and is compatible to the assembler generator.

Instruction Set Simulator Generator|l] takes Sim-nML specification as input and
generates a performance simulator, which in turn takes a binary for that processor and
gives the performance based results.

Retargetable Functional Simulator[12] generates a functional simulator for a binary
program targeted to run on a processor whose description is given in the Sim-nML.

The following tools are under development.

Timing Simulator to analyze a particular program for timing performance and resource
usage. A compiled code simulator generator would generate a higher performance timing
simulator.

Compiler Back-End Generator to generate back-end for GNU-C by automatically
generating GNU machine description (.md) of a particular processor from Sim-nML.

1.4 Organization of the Report

In this thesis we have designed and implemented an Assembler Generator which gen-
erates an assembler for a specific processor. The generated assembler takes an assembly
language program and optionally a configuration file to provide the information for ma-
chine specific link-time relocations as input, and generates an ELF format relocatable
object file as output.

The rest of the thesis is organized as follows. In chapter 2, we provide a brief
introduction to the Sim-nML language and its intermediate representation. In chapter 3,
we discuss the basics of the generated assemblers and the assembler directives supported
by them. We also discuss the ELF object file format and the implementation of machine
independent part of the assembler. In chapter 4, we discuss the design of the assembler
generator. We have tried to point out the information that is available in the intermediate
representation of machine specification written in Sim-nML and how it contributes to
the generation of the assembler. In chapter 5, we discuss generic relocation functions
supported by the generated assembler, the way to define machine specific relocations. We
use a machine specific configuration file for that. We finally conclude in chapter 6. In
addition to these we provide a user’s manual for the assembler in Appendix A.

Chapter 2

Sim-nML and Intermediate
Representation

The base language for our environment is Sim-nML[1], a generic processor modeling
language. Sim-nML is an extension of nML[13] machine description formalism. Processor
models are written in Sim-nML, using which, various processor specific tools can be
generated automatically. To ease the design of various tools an intermediate representation
(IR) for Sim-nML has been designed. A tool called irg[4] takes a Sim-nML specification
for a processor and converts it to IR.

2.1 The Sim-nML Language

The processor modeling language Sim-nML is used to describe the syntax and semantics
of instructions in the instruction set of a processor. The instruction set is described in a
hierarchical manner. The common behavior of a class of instructions is captured at the
higher level of the tree and the specialized behaviors of the sub-classes are captured in
the subsequent lower levels.

Sim-nML grammar has a fixed start symbol instruction and two kinds of productions
or-rule and and-rule. The or-rule is written as,

op n = ng|ny|nal...
and and-rule is written as,
op no(py = t1,p2 : g, ...)

ap = €1 g = €9 ...

where each n; is a non-terminal, and each ¢; is a token. Each q; is an attribute name
with e; being its definition.

Sim-nML has some predefined but optional attributes named image, syntaz, action
and uses. The syntaz attribute describes the textual syntax (assembly language format)
of the instruction, the image attribute describes the binary coding of the instruction. The

4

action describes the semantics of the instruction while the uses describes the resource-
usage model. The assembler generator uses the definition for syntaz and image attributes
only.

The Sim-nML example in Figure 2.1 and Figure 2.2 describes a simple processor
with four instructions. The add and sub instructions add and subtract the contents of
two general purpose registers respectively. The jump instruction changes the current PC
value. The second byte of the jump instruction specifies an 8-bit branch address. PC refers
to the address from which the next instruction has to be fetched. The mowe instruction
moves the content of memory addressed by a general purpose register to another general
purpose register. The addressing modes used by the example processor are REG (register
direct), MEM (register indirect) and IMM (immediate).

type index = card(3)
reg PC[1, card(8)]
let byte_order = "big"

mem M[1024, card(8)]
reg R[8, card(8)]

resource Fetch_Unit, Exec_Unit[2], Retire_Unit
mode SHORT = MEM | REG
mode MEM (a : index) = M[R[all]

syntax = format("(R/d)", a)
image format ("0%3b", a)

mode REG (i : index) = R[i]
syntax = format("R%d", i)
image = format("1%3b", i)

mode IMM (n : card(8)) =n
syntax = format("%d", n)
image = format("%8b", n)

Figure 2.1: Sim-nML Specification for a Simple Processor

Addressing modes in the processor are described using mode rule. The basic types of
Sim-nML include card, int, bool, float, fived and enum. The resource-usage model is used
to specify the micro-architecture details of the processor. A resource is an abstraction of
a piece of hardware which can be acquired/released by any instruction in execution such
as a register, ALU, the functional unit, ports etc. For the example processor (Fig.2.1) the
resources are Fetch_Unit, Fxec_Unit and Retire_Unit.

op instruction(x : instr_action)

uses = Fetch_Unit #{2}, x.uses, Retire_Unit #{2}
syntax = x.syntax

image = x.image

action = { x.action; }

op instr_action = add | sub | mov | jump

op add (src : SHORT, dst : SHORT)
uses = Exec_Unit #{2}
syntax = format("add %s,%s", src.syntax, dst.syntax)
image = format("00000001%s%s", src.image, dst.image)
action = {

dst = src + dst;

PC = PC + 2;

+

op sub (src : SHORT, dst : SHORT)
uses = Exec_Unit #{2}
syntax = format("sub %s, %s", src.syntax, dst.syntax)
image = format("00000010%s%s", dst.image, src.image)
action = {

dst = src - dst;

PC = PC + 2;

}

op mov (src : SHORT, dst : SHORT)
uses = Exec_Unit #{1}
syntax = format("move %s, %s", src.syntax, dst.syntax)
image = format("00000011%s%s", dst.image, src.image)
action = {

src = dst;

PC = PC + 2;

}

op jump (target : IMM)
uses = Exec_Unit #{3}
syntax = format("jmp %s", target.syntax)
image = format("00000100%s", target.image)
action = {

PC = PC + target;

}

Figure 2.2: Sim-nML Specification for a Simple Processor contd ...

6

A special symbol, $ is used to denote the start address of the current instruction.
This symbol is used to specify a relative branch address for example.

2.2 Intermediate Representation

A processor specification in Sim-nML language is in a human readable text form. It is,
however, wasteful for each tool to have its own parser to read the Sim-nML specification.
A tool irg[4] was developed in an earlier work to simplify this process. It converts the
Sim-nML description to an intermediate form(IR). The IR contains all useful information
available in the original input without any unnecessary or redundant information. It is
flexible and easy to use and facilitate the design of processor specific tools like simulator,
disassembler, assembler, compiler back-end generator etc.

The IR is organized as a collection of various tables. We use the following tables for
our work.

e Meta table: The information in this table is needed to locate other tables in the
IR. This is a “table of content” that contains the information about the location
and name of other tables.

e Constant table: This table holds all the constant declarations in the Sim-nML pro-
cessor specification. The useful constants for assembler generator are byte_order
and processor_name. They specify the endian-ness and the name of the processor
respectively.

e Attribute table: This table holds the name of all Sim-nML attributes. A corre-
sponding ID is given to each attribute which is used in all other tables to refer to
this attribute.

e And-Rule table: This table holds the information about all and-rules. From this
table we get an index to the syntaz table and image table. This index gives the
syntax and image of the and-rule.

e Or-Rule table: This table holds the information about children of all or-rules.

e Syntax table: This table holds the syntaz attribute definitions of all and-rules. It
provides the assembly language syntax and parameters for various instructions.

e Image table: This table holds the image-record associated with the image at-
tribute definitions of all and-rules. It, therefore describes the binary coding of the
instruction.

To get all informations from the above specified tables we need to look at some more
tables described below.

e Identifier table: This table holds the name of all the identifiers (other than those
specified in the constant table and in the resource table). This name is stored as an
index to the string table.

e String table: This table holds strings used in the Sim-nML model. The strings
are terminated by a null character. All identifier names are read from this table.

e Integer table: Similar to the string table, this table holds various integers in the
specifications. In other tables, an index into this table is used for representing array
of integers.

e Prefix-Attribute-Definition Table: This table holds the expressional definition
of all the attributes and is referred to when some operation (e.g. arithmetic, bit
manipulation) is used in the definition of the syntaz or image attributes.

Chapter 3

The Assembler

Assembler translates an assembly language program for a processor into its machine
language (object code). It generates its output in a relocatable form where by the program
can be linked/ loaded in a position independent manner with the other programs. Besides
the object code, the assembler outputs a human readable listing of the source program
and its translation. It provides error messages interspersed with the code, symbol table,
relocation table and section table.

The process of assembly involves lexical analysis, syntactic analysis, object code
generation, symbol table management and forward references fix-ups. A two pass assembler
processes the instructions as completely as possible during the first pass. The second pass
over the code is used to fix all forward references in the instructions. A simple overview
of a two pass assembler is shown in Figure 3.1.

We generate a two pass assembler (referred as asm hereinafter) in this work. In the
first pass, the generated assembler parses its input, gathers all relevant information and
for all undefined symbol references assumes that the definition for the symbol will appear
later. It also checks for syntax and semantic errors and reports them. The second pass of
the assembler begins only if the first pass of assembly completes successfully. In the second
pass the values for the forward references are substituted and the output object code is
generated. All undefined references at this stage are assumed external. The asm takes an
additional configuration file as its input. This file contains relocation information specific
to the processor and helps in the generation of relocation table in the object module. The
output of the asm is generated in a relocatable ELF[2] object file format.

3.1 Output File Format

The format of the output file generated by the asm is ELF[2] (Executable and Linking
Format). There are three main types of ELF object files.

e A relocatable file holds the code and the data. It can be linked with other similar
object files to create an executable or a shared object file. The asm produces output
in this format.

= Passl

e An ezecutable file holds a program suitable for execution.

e A shared object file holds code and data suitable for linking.

Symbol Table

Machine Instruction
Table

Directive Table

L ocation Counter

Figure 3.1: Two-pass Assembler

Object
module
To

—_—

Linker

Figure 3.2 shows a linking view of an object file. In this file only the ELF header
has a fixed position. The remaining portion is variable and depends on the actual file.

A program header table provides information on how to create a process image. A
section header table contains information that describes the sections in the file. Each
section has an entry in this table. Each entry gives information such as the section name,

10

the section size etc. Relocatable object files which are used during the linking must have
a section header table.

ELF Header

Program header table
optional

Section 1

Section n

Section header table|
required

Figure 3.2: Object file format (Linking view)

In the output file generated by asm, first the ELF Header is written. It then has
the sections and the section header table.

3.1.1 ELF Header

An ELF header resides at the beginning of the object file and holds a “road map” describ-
ing the file’s organization. The file format is designed to be portable among machines
of various sizes, without imposing the size of the largest or the smallest machine. The
initial bytes mark the file as an object file and provide machine-independent data. This
data provides necessary information to decode and interpret the file’s contents. The ELF
header contains the information regarding the type of object file, required architecture
for an individual file, size of ELF header, size of section header etc.

3.1.2 Sections

The data in the object file is organized in various sections that holds program code, data
and control information. Each section has a type and an associated attribute to mark
the section as read only, executable, relocatable etc. An object file’s section header table
provides the location of all sections in the file.

Various predefined sections which are usually generated by the asm are listed below.

.bss: This section holds uninitialized data that contribute to the program’s memory
image.

e .data and .datal: These sections hold initialized data that contribute to the pro-
gram’s memory image.

e .relname and .relaname: These sections hold relocation informations. The name
is supplied by the section to which the relocation applies. For example, .rel.text
contains relocation information for symbols used in .tezt section.

e .rodata and .rodatal: These sections hold read-only data that typically contribute
to a non-writable segment in the process image.

11

.shstrtab: This section holds section names as null terminated character strings
(see section “String Table”).

.strtab: This section holds strings, most commonly the strings that represent the
names associated with symbol table entries (see section “String Table”).

.symtab: This section holds a symbol table (refer to the section “Symbol Table”).

.text: This section holds the “text” or executable instructions, of a program.

The object file generated by the asm consists of at least three sections named as
.bss, .data and .text regardless of whether they exists in the input assembly program or
not. These sections have a size of zero bytes if they are not defined in the input assembly
language program. The generated output file also contains a .shstrtab section. It contains
the name of all the sections in the object file.

3.1.3 String Table

String table sections hold null-terminated character sequences, commonly called strings.
The object file uses these strings to represent symbols and sections name. One references
a string as an index into the string table section. The first byte at index zero always holds
a null character. Likewise, the last byte in various string tables hold a null character,
ensuring null termination for all strings. A string whose index is zero specifies either
no name or a null name, depending on the context. An empty string table section is
permitted.

3.1.4 Symbol Table

An object file’'s symbol table holds information required to relocate a program’s symbolic
definitions and references. It consists of entry for symbol name, symbol value, symbol size,
symbol info, and name of the section in which the symbol is defined. A symbol table index
0 serves as an undefined symbol index.

3.1.5 Relocation Table

Relocation is the process of connecting symbolic references with symbolic definitions. For
example, when a program calls a function, the associated call instruction must transfer
control to the proper destination address during execution. Relocatable files must have
“relocation entries” which are necessary because they contain information that describes
how to modify their section contents, thus allowing executable and shared object files to
hold the right information for a process’s program image.

A relocation entry contains the information about the location at which the relo-
cation action is performed, the symbol table index with respect to which the relocation
must be made, and the type of machine specific information which defines the relocation

12

action. A relocation requires to reference two other sections - the symbol table section
and the section that is modified.

3.2 The Assembler Directives

The assembler directives are not translated into the machine code. They are instructions
to the assembler to perform various bookkeeping tasks, storage reservation and initial-
ization and other control functions. The directives used by the asm are compatible with
syntax as well as with semantics of GNU assembler GAS[3] that is available as part of
the GNU binary utilities and the GNU C compiler.

All assembler directives have names that begin with a period (‘.’), and are the same
regardless of the target machine. Some directives however have different interpretation
than the ones used in the GNU assemblers and are discussed here.

e .align abs-expr, abs-expr, abs-expr: This pseudo operation is used for aligning
the location counter (in the current subsection) to a particular storage boundary.
The GAS behavior is inconsistent for this directive and depends on the architecture
for which it is configured. e.g. For some processor architecture the directive .align
3 advances the location counter until it is a multiple of 23, while for some other
processors the directive .align 8 is used for the same purpose. In asm the directive
.align 3 is interpreted as to advance the location counter to a multiple of 23. The
second and third abs-expr have same interpretation as in the GNU assembler.

e .file string: This pseudo operation provides the name of the file which was trans-
lated to give the assembly program. For example it is used by the C compiler to
provide the name of the C file which was compiled to the assembly language pro-
gram. However its handling depends on how GAS is configured. The asm takes the
string and inserts it into the symbol table as a symbol of type FILE.

e .sbttl “string”, ... : This pseudo operation is used to format the output listing. It
provides a sub-heading which is inserted immediately after the title in the assembly
listing. GAS doesn’t parse the string and emits it as it is. The asm parses the string
making it possible to use variables or predefined constants in the sub-heading.

e .title “string”, ... : This pseudo operation provides the title line for the assembly
listing. In GAS, this is used as the second line and the string is not parsed. In asm,
we use this as the first line and parse the string as in the .sbttl pseudo operation. The
default titleis “file listing: $__FILE Page number: $__PAGE”, where _FILE
and __PAGE variables are described later.

Certain other directives like .def, .dim, .endef, .ident, .lflags, .linkonce, .mri, .scl,
.size, .sleb128, .tag, .type, .val, and .uleb128. which are meaningful in GNU assembler
while generating COFF[14] output. The asm accepts these directives and ignores them.

In addition, the asm provides some predefined constants which can be used anywhere
in the assembly language file. They are as follows.

13

1. __FILE is the name of the current assembly language file.

2. __LINE is the current physical line number of the assembly language file being
processed.

3. __PAGE is the page number of the generated listing.
4. __DATE is the system’s current date.

5. __TIME is the system’s current time.

3.3 Implementation Details

The compilation of the generated assembler requires some supporting files which are
machine independent. These files contain programs for command line parsing, evaluation
of assembly directive, preparation and manipulation of assembly sections, writing of object
file in ELF format etc.

3.3.1 Evaluation of Assembly Directives

The pseudoOp.c and pseudoOp.h are the two files which contain all the necessary infor-
mation for evaluation of assembly directives. In the first pass of assembly all directives
are inserted into a hash structured symbol table for faster reference. The informations
inserted are as follows.

e Name: This is a null terminated string that represents the name of the pseudo-op.
A symbol is compared against this name while parsing the input.

e Token: This is the corresponding token returned to the parser when a pseudo-op
is matched against the Name.

e Function pointer: This is a pointer to the corresponding function which is called
to process the recognized pseudo-op.

As soon as a pseudo-op is recognized and the corresponding statement in the as-
sembly language program is parsed, the function associated with that pseudo-op is called.
This function now takes care of further processing. For example, if “.byte 2+3” is found in
the assembly language program, the parser returns a token AS_BYTE. The corresponding
function as_byte is then called with the argument 5 (the result of parsing the expression
2+3). This function then calls appropriate routine to write value 5 in the specified section.
All routines for writing sections are defined in frags.c file, the corresponding header file is
frags.h. All writing is carried out in the second pass only and nothing is written in any
section in the first pass.

All sections are represented by contiguous blocks of memory. We have defined a
section structure which contains the pointer to this memory block, the size of the block

14

and the current offset in the section where the writing takes place. For all sections the
section pointer is set to NULL initially and, section size and section offset are set to zero.
While generating the output in a section, the byte order is changed if the endian-ness of
the target processor is not the same as that of the host processor.

The assembly is also controlled by two assembler directives .if and .else. The in-
structions are assembled only when the corresponding expression evaluates to true.

All writing routines have the following common structure.

1. if conditional assembly evaluates to false, return.
2. if the pass == first then compute the new offset and return.
3. else

(a) if the endian-ness of the target processor differ from the host processor, swap
bytes.

(b) write data in the section at the current offset.

(c) update offset in the section.

3.3.2 Symbol Table and Relocation Table Management

These tables are used for bookkeeping information about a symbol defined, used, or
relocated in the assembly language program. All these tables are hash structured.

Symbol Table

As soon as asm recognizes a symbol definition it inserts it into the symbol table. The
symbol is inserted only once and further definitions for the same symbol results in an
error. The symbols which are not defined but used are inserted into symbol table as
type undefined. asm treats all undefined symbols as external. The informations stored in
symbol table in the memory are as follows.

e Name: A character pointer to the first character of the name of the symbol.

e Value: This holds the address or the value of the symbol depending on the context.

e Length: This represents the size for the symbol defined using .comm or .lcomm
directives.

e Info: This consists of the TYPE and BIND information of the symbol. (see ELF
object format[2].)

e Section: This contains the symbolic name of the section in which the symbol was
defined or used.

15

e Type: This contains the type of the symbol which can be defined, undefined, defined
and used etc.

The operations performed on symbol table are look up, insertion and modification.
For each of these operations a hash index is calculated using the name of the symbol.
If the symbol found at this index is different from the one that is stored, the symbol on
the chain is examined until the symbol is found or the chain ends. The symbol is then
returned or modified depending on the function call. The insertion of the symbol is done
only if it doesn’t exist in the table.

Relocation Table

The symbols in relocation table are inserted as many times as they are used in the input
file. Thus a symbol in relocation table can have multiple entries each defining the distinct
use of the symbol. The type of relocation is machine specific and differs even in syntax
from one processor architecture to another. To provide a uniform behavior, asm defines
some generic relocation operations. User for specific processor provides a configuration
file which have a correspondence between the machine specific relocation types and the
generic operations. asm uses a command line option -c¢ to provide the name of the
configuration file.

The informations stored in Relocation Table are as follows.

e Name: A character pointer pointing to the first character of the name of the symbol.
e Value: This holds the address where the relocation is to be applied.
e Type: This holds the machine specific relocation type.

e Addend: This member specifies a constant addend used to compute the value to
be stored into the relocatable field.

e Section: This contains the symbolic name of the section in which the symbol was
used.

The operations performed on relocation table are look up, and insertion. For each
symbol reference in relocation table, a corresponding entry in symbol table for the symbol
is searched. The information required for relocation entry in the ELF format is calculated
and the entry is inserted in the relocation table.

3.3.3 The Big Numbers

The asm supports integer constants larger than the machine based integers. These are
called bignum. The bignum have the same syntax and semantics as an integer except
that the number (or its negative) takes more than 32 bits to represent in binary. The
distinction is made because in some places integers are permitted while bignums are not.

16

Two type of bignums are available in GAS and are provided in asm also. They are quad
and octa.

e quad bignum: The assembler directive .quad is used to refer to quad bignum.
Quadnums are 8-byte integers. The operations available for quadnums are addition,
subtraction, multiplication, bit-shift, bit-or, and bit-and. In asm these operations
are implemented using bit-shift, bit-and and bit-or operations on 4-byte integers.

e octa bignum: The assembler directive .octa is used to refer 16-byte integers. The
operations available for octanums are the same as those for quadnums. The oc-
tanums are viewed as a pair of quadnums and all these operations for octanum are
implemented using operations on quadnums.

3.3.4 Generation of the Output Object File

After the second pass of assembly, the output object file is written in the ELF format.
The formatting part of output file is implemented in file elf.c, the corresponding header
file is elf.h. The elf.h file contains the definitions for structure of ELF header and section
tables. Three sections .bss, .text and .data are written regardless of whether they are
present in the input file or not. Each section occupies one contiguous (possibly empty)
sequence of bytes within a file. They may not overlap, and no byte in a file resides in
more than one section.

Generation of .symtab and .relaname section

The information stored in .symtab section comprises of, name which is an index to .strtab
section, value, size, section name and info. The info member specifies the symbol’s type
and binding attributes. The algorithm used for preparation of .symtab section is discussed
below.

1. calculate total number (no) of symbols in symbol table.

2. initialize 1st entry (index 0) for .strtab section. This entry (STN_UNDEF) is reserve,
and serves as an undefined symbol index.

3. while no > 0
(a) read symbol from symbol table, and write .symtab section entry by taking care
of endian-ness.
(b) write symbol name in .strtab section.
(c) if symbol is relocatable, prepare relocation table entry.

(d) decrement no.

After writing the output file in ELF format asm exits normally. The default name
for output object file is b.out. It can be changed by using the -o command line option.
Conventionally, the object file name ends with ‘.0’.

17

3.3.5 Error Reporting

Two kinds of errors are reported by the asm. These are Warning Messages and Error
Messages. The asm writes the warnings and error messages to the standard error file
(usually the terminal).

Warning messages have the following format.

Warning:file_.name:NNN:Warning Message Text

Where NNN is the line number, file_name is the name of the current input file and the
message text provides the warning message.

Error messages have a format similar to the warning messages as represented below.

Fatal:file name:NNN:Error Message Text

The file name, line number and message text are derived as in the case of warning mes-
sages. The asm generates the output file for the assembly program even in the presence
of warnings. In case of errors, the output file is not generated.

3.4 List File Generation

The generated assembly listing includes assembly program, its equivalent machine code,
error messages, a section table, a relocation table and a cross-reference symbol table. An
example listing is shown in Figure 3.3 and Figure 3.4.

The first column in the listing shows the line number. The second column gives the
value of the location counter immediately before the corresponding statement is assem-
bled. The third column shows the machine code that the statement is assembled into,
and the remainder of each line is the source code just as it is presented to the assembler.
If an error is found, the error message is output on the line following the line containing
the error. The “R” in the line 16, 17 and 20 shows that these instructions use symbol
values which should be relocated by the linker.

The cross-reference symbol table summarizes the information regarding the iden-
tifiers in the program. The walue is the value of location counter where the symbol is
defined. Since printf is undefined it contains a value *UND*. The section specifies the
name of the section in which the symbol is defined and info provides the binding and type
information for the symbol as defined for ELF[2] file format. The relocation table contains
the name of the symbol, address where relocation should be applied, the section name
and the machine specific relocation type. The section table summarizes the information
regarding generated sections. It gives the start address, end address and the size of all
generated sections.

18

file

O© 00 NO O WN -

I e S N e e ol
O O 00O NO Ol WN = O

file

listing: ppc_test.s

00000000
00000000

00000000
00000000
00000000

00000000

00000000
00000000
00000000
00000000

00000000
00000004
00000008
0000000c
00000010
00000014

listing:

Symbol

53554d3a
25640a00

901£0010
3d200000
38690000
809f0010
4cc63182
48000001

ppc_test.

=)

S

Page number: 1

file
gcc2_compiled. :

"test.c"

.section ".rodata"
.align 2
.LCO:
.string "SUM:%d\n"
.section ".text"

.globl main

.type
main:

main,@function

stw 0,16(31)

addis 9,0, .LC00Q16:16
addi 3,9, .LC00@16:0
lwz 4,16(31)

crxor 6,6,6

bl printf

Page number: 2

Value

.LCO

gcc2_compiled.

main
printf
test.c

00000000
00000000
00000000
UND

00000000

Section Info(bind - type)
.rodata LOCAL-0BJECT
.text LOCAL-0BJECT
.text GLOBAL-0BJECT
.text

* ABS* LOCAL-FILE

Figure 3.3: A Sample Assembly Listing for PowerPC Processor

19

file listing: ppc_test.s Page number: 3

Symbol Address Section Relocation Type
printf 00000014 .text 8
.LCO 0000000a .text 4
.LCO 00000006 .text 6

file listing: ppc_test.s Page number: 4

Section Start End Size

.bss 00000034 00000034 00000000
.data 00000034 00000034 00000000
.rodata 00000034 0000003c 00000008
.shstrtab 0000003c 00000080 00000044
.strtab 00000080 000000b2 00000032
.symtab 000000b2 00000132 00000080
.text 00000132 0000018e 0000005¢
.rel.text 0000018e 000001a6 00000018

20

Figure 3.4: A Sample Assembly Listing Contd ...

Chapter 4

The Assembler Generator

In this chapter we discuss the design and implementation of the assembler generator
(asmg). The asmg takes a processor model in its IR form, and generates a two pass
assembler specific to that processor. The generated assembler consists of a file con-
taining specification for the Lex program[15], a file containing specification for the Yace
program|[16], and a keyword file used for the token generation. These specification files
are used for the lexical and syntactic analysis of the assembly language program. These
files are generated from the IR description of the processor model.

The generated files consist of all the information about the processor e.g. lengths
of the instructions, parameters for the instructions, binary representations of the instruc-
tions, endian-ness of the processor, which are all relevant to the assembler. In addition
to these, the assembler uses a C module to handle symbol table operations, a parser and
analyzer module for the pseudo operations, and a C module to write output file in ELF
format. These files are independent of the processor model and are the same for all as-
semblers that can be generated. We have already discussed the processor independent
files in Chapter 3. In this chapter, we describe the algorithms used in the generation of
specification files from the IR representation of the processor model.

4.1 Overview

The basic structure of the assembler generator is shown in Figure 4.1. The generation of
assembler is done in two passes over the IR. In order to generate the assembler following
steps are followed.

1. PASS ONE

(a) Initialization of asmg

i. identification of the data encoding (endian-ness) of the host processor on
which asmg is running.

ii. checking the integrity of the IR file by reading the magic number in IR
header.

21

| nput

Assenbl er
Gener at or

for

| R

gi ven
processor

Manual | y
creat ed
files

AN

Figure 4.1: Structure of the Assembler Generator asmg

asmyacc. y

AN

asniLex. |

/

asnkKey. c

cndl i ne. c
cndl i ne. h

check. c
check. h

SyniTabl e. c
SyniTabl e. hpp

pseudo(. ¢
pseudoOp. h

frags.c
frags.h

elf.c
el f.h

Bi gnum ¢
Bi gnum hpp

S NN

bi nary. c
bi nary. h

22

Y

Assenbl er
for the
speci fied
machi ne

iii. from IR header determine the data encoding used in the IR. If data en-
coding of the host processor is different from that in the IR, then a flag is
set to indicate that the data read from the IR file must be converted to
the host byte order before its use.

(b) for each and-rule R in Sim-nML description; do,
i. read syntax string for R using integer table, and syntax table. Parse the
syntax string using algorithm described in section 4.2.2.

ii. if the processor description contains instructions with same syntax, remem-
ber the corresponding Sim-nML rules. Only one Yacc rule is generated for
all these instructions.

2. PASS TWO

a) Initialization of Yacc specification, and keyword file. The constant startin
y g
part of these files consisting of variable declarations, and some part of Yacc
definition section is written.

(b) For each rule in IR with distinct syntax string a corresponding Yacc rule is gen-
erated. The and-rule and the or-rule are considered differently for generation
of these rules.

c) Keywords are generated corresponding to each assembly mnemonic. They are
K d g ted ding t h bl ic. Th
used in token generation.

The asmg generates the following files.

e asmgYacc.y, which contains grammar rules.

e asmgKey.c, which contains assembly language mnemonics and the corresponding
tokens.

e asmglex.l, which contains the scanner rules.

The description of the asmg is best described using an example Sim-nML processor
specification. Since only the syntar and image attributes are relevant for asmg, other
attributes have been dropped from the Sim-nML model shown in Figure 4.2 and Figure
4.3.

4.2 Implementation Details

The relevant information from IR is extracted and machine dependent files are generated
using this information. These files after compilation produces the assembler for the spec-
ified processor. A shell script is provide to simplify the generation of the assembler. It
first generates the assembler files and then compiles them to produce the assembler.

23

type index = card(3)
reg PC[1, card(8)]

let byte_order = "big"
let processor_name = '"none"

mem M[1024, card(8)]
reg R[8, card(8)]

mode SHORT = MEM
| REG

mode MEM (a : index) = M[R[al]
syntax = format("(R%d)", a)
image = format("0%3b", a)

mode REG (i : index) = R[il
syntax = format("R%d", i)
image = format("1%3b", i)

mode IMM (n : card(8)) =n
syntax = format("%d", n)
image format ("%8b", n)

op instruction(x : instr_action)
syntax = x.syntax
image = x.image

op instr_action = alu_op

| jump
| test_op

op alu_op(src:SHORT, dst:SHORT, aa:alu_action)
syntax = format("%s %s,%s", aa.syntax, src.syntax, dst.syntax)
image = format("0000%s%s%s", aa.image, src.image, dst.image)

op alu_action = a_add
| a_sub

op a_add()
syntax = "add"
image = "0001"

Figure 4.2: Sim-nML specification for an example processor
24

op a_sub()
syntax = "sub"
image = "0010"

op jump (target : IMM)
syntax = format("jmp %s", target.syntax)
image = format("10000000%s", target.image)

op test_op(in:intype)
syntax = format("test J%s", in.syntax)
image = format("1111Y%s%s", in.image<2..3>, in.image)

op intype(src:REG, srcl:REG)
syntax = format("%s %s", src.syntax, srcl.syntax)
image = format("11Ys%s", srcl.image, src.image)

Figure 4.3: Sim-nML specification for an example processor contd ...

4.2.1 Generation of the Yacc Specification File

The format of the generated Yacc specification file is as follows.

[definitions]
Dot

[rules]

L %h

[user functions]

Here Definitions is the section where the variables are defined that are used later
in the grammar. It also contains #include directives. Rules is the section that contains
grammar rules for the parser. These rules are generated according to the processor spec-
ifications in the IR. User functions is the section that contains the definition of the
functions used in the rules section.

The hierarchical structure of processor description in Sim-nML is preserved in gen-
eration of Yacc rules. For each rule in processor description we get a corresponding
Yacc-rule (except in the case when two rules have the same syntax. This case is described
later). For the purpose of parsing and grammar rules generation, mode-rule and op-rule
in Sim-nML specification are not differentiated. Only the attributes syntaz and image in
op/mode rules are used by the assembler generator.

The syntazr attribute is used to generate the grammar rule where the name of the
non terminal (on the left side of the production) is same as the name of the op/mode rule.

25

The format string in the syntaz attribute is used for the token generation. The generated
keywords for the tokens are all in capital letters and are prefixed by the string AS_ to
avoid conflicts with predefined constants. For each non-terminal, a definition %type is
generated to specify the value returned by the rule. Similarly, for each terminal symbol, a
definition %token is generated to specify the value associated with the token. The mode
and-rule and op and-rule may differs in %type definition. The op rule returns a pointer to
a character array. The mode-rule returns an expression structure consists of the expression
tree created while parsing an expression or a pointer to a character array depending on
the context. The image attribute is used for the generation of the action-part in the Yacc
rule. The Yacc rules used for parsing of arithmetic expressions and assembly directives
are fixed and are independent of the processor under consideration.

The processor specific part of generated Yacc specification file for example processor
(Figure 4.2) is shown in Figure 4.4.

instruction : instr_action { $$ = $1; 2}
instr_action : alu_op { ¢ = 8%1; }
| jump { %8 =81, }
| test_op { ¢ = 8%1; }
test_op : AS_TEST intype {

string str;

str = "1111" + bitselect($2,2,3) + (string)$2;
$$ = new charl[str.size()+1];

strncpy($$, (char *)str.c_str(),str.size());
$$[str.size()]="\0";

delete [1 $2;

intype : REG REG {
string str;
str = "11" + (string)$2 + (string)$1;
$$ = new charl[str.size()+1];
strncpy($$, (char *)str.c_str(),str.size());
$$[str.size()1="\0";
delete [1 $2;
delete [1 $1;

Figure 4.4: Generated Yacc specification file for the example processor

26

REG : AS_R {
string str;
str = "1" + setsize(itosul($1l.val[0] ,3), 3);
$$ = new char[str.size()+1];
strncpy ($$, (char *)str.c_str(),str.size());
$$[str.size()]1="\0";

}
jump : AS_JMP IMM {
string str;
str = "10000000" + (string)$2;
$$ = new char[str.size()+1];
strncpy($$, (char *)str.c_str(),str.size());
$$[str.size()]="\0";
delete [1 $2;
}
IMM : expr {
if ($1.vall[0] < O || $1.val[0] > 255){
yyerror ("Value: %d Is out of range", $1.val[0]);
errorNo++;
$$ = new char[1];
$$L01="\0";
}
elseq{
//calculate image
string str;
sizelnstr = 8;
relocateSymbol (&$1) ;
str = setsize(itosul($1.val[0] ,8), 8);
$$ = new char[str.size()+1];
strncpy ($$, (char *)str.c_str(),str.size());
$$[str.size()]1="\0";
}
}
alu_op : alu_action SHORT ’,’ SHORT {

string str;

str = "0000" + (string)$1l + (string)$2 +
(string) $4;

$$ = new char[str.size()+1];

Figure 4.5: Generated Yacc specification file for the example processor contd ...

27

strncpy($$, (char *)str.c_str(),str.size());
$$[str.size()]1="\0";

delete [1 $1;

delete [1 $2;

delete [1 $4;

SHORT : MEM

{ $$
| REG

{ $$

$1; }

$1; }

MEM : ’(’ AS_R ’)’ A
string str;
str = "O" + setsize(itosul($2.val[0] ,3), 3);
$$ = new char[str.size()+1];
strncpy($$, (char *)str.c_str(),str.size());
$$[str.size()]1="\0";
}
alu_action : a_add
{ 8% =81, }
| a_sub
{ 8% =81, }
a_sub : AS_SUB {
string str;
str = "0010";
$$ = new char[str.size()+1];
strncpy ($$, (char *)str.c_str(),str.size());
$$[str.size()]1="\0";
}
a_add : AS_ADD {
string str;
str = "0001";
$$ = new char[str.size()+1];
strncpy($$, (char *)str.c_str(),str.size());
$$[str.size()]1="\0";

Tolh

Figure 4.6: Generated Yacc specification file for the example processor contd ...

28

The algorithm for generation of Yacc-rules can be summarized as follows.

1. start from instruction node.
2. for each rule R in Sim-nML description; do,

(a) if R is an and-rule,

i. read number of parameters from and-rule table.

ii. read syntax string and the image string corresponding to R using integer
table, syntax table and image table.

iii. parse the syntax string using algorithm described in section 4.2.2 and write
the rule in Yacc file.

iv. parse the image string and write the action using the algorithm in section
4.2.2.

(b) if R is an or-rule,
i. Read number of children from or-rule table.
ii. for all children write a rule in Yacc file. The corresponding action is $$ =

$1.

The user defined function part of the Yacc specification is constant and appended at
the end of the generated file. This part consists of the functions to output the assembly
listing in a predefined format.

Merging of Yacc Rules

Only one Yacc rule is generated for all the instructions that have the same assembly lan-
guage syntax but generate different images depending upon the arguments. For example,
a processor can have an instruction JUMP target where, the target can take any integer
value. If the value of § - target is less than 2! the jump can be coded as a relative jump.
For target addresses larger than that, the assembler generates an absolute jump (if the
target can fit in 16 bits). The machine codes in two different cases are different. The
generated Yacc rule for each of these instructions is AS_JUMP ezpr. If we write two such
rules in the Yacc specification file the parser generated by this file contains a reduce-reduce
conflict. In the presence of this conflict the generated parser always recognizes only one
rule (the rule which comes first in the specification file) and ignores all other rules. To
avoid this we merge all these rule in one Yacc specification rule. The algorithm used is
given below.

1. Create a list of rules with the same syntax (the list is created for each rules in the
first pass of generation of specification file).

2. Sort this list on the size of the parameters.

3. Write the rule in Yacc specification file.

29

branch

AS_JUMP expr A{
if ('relocatableSymbol && $2.val[0] >= -32768
&& $2.val[0] <= 32767){
sizeInstr = 15;
relocateSymbol (&$2) ;
string str;
str = "000000001"

+ setsize(itosul($2.vall[0], 15), 15);
$$ = new char[str.size()+1];
strncpy ($$, (char *)str.c_str(),str.size());
$$[str.size()]="\0";

}
else if (!relocatableSymbol && $$2.val[0] >= -65536
&& $2.val[0] <= 65535)1
sizelInstr = 16;
relocateSymbol (&$2) ;
string str;
str = "10000001"

+ setsize(itosul($2.vall[0], 16), 16);
$$ = new char[str.size()+1];
strncpy ($$, (char *)str.c_str(),str.size());
$$[str.size()]1="\0";

else if (!relocatableSymbol){
yyerror ("Value: %d Is out of range" ,$2);
errorNo++;
$$ = new char[1];
$$001="\0";

else if(relocatableSymbol){
sizelInstr = 16;
relocateSymbol (&$2) ;
string str;
str = "10000001"

+ setsize(itosul($2.vall[0], 16), 16);
$$ = new char[str.size()+1];
strncpy ($$, (char *)str.c_str(),str.size());
$$[str.size()]1="\0";

Figure 4.7: An example merged Yacc Rule

30

4. For each rule in the list,

(a) Write a Yacc action corresponding to the rule with a condition on the param-
eter.

The generated rule for the example JUMP instruction is shown in Figure.4.7. The
relocatableSymbolis a boolean variable used by the Yacc specification to mark the variable
as relocatable. The variables which are undefined or whose value depends on where the
program is loaded in the memory are referred as relocatables. In case of relocatable
symbols the instruction with the largest parameter size is generated to give linker the
maximum flexibility.

4.2.2 Extraction of Syntax and Image of Instructions

The IR of the processor specification contains syntaxr and image records for all the in-
structions. We extract this information for each op-rule starting from instruction node.
These records encode the syntax of an assembly language instruction, corresponding bi-
nary image and information about the arguments. The information about the arguments
is found with the help of the and-rule table and integer table.

The expression corresponding to syntaz record of instructions does not contain the
verbatim syntax of the instructions. For example, in IR the jump instruction described in
Figure 4.3 has the syntax string as ”jump %s{0.3}”. The instruction takes one argument
specified by the %s. The first integer value enclosed in {} specifies the parameter number,
and the second value specifies the attribute name. For instruction “jump” the argument is
described by a mode-and rule named as IMM. The algorithm used to parse syntax string
is described below.

1. read syntax string corresponding to the current op-and-rule from syntax table.
2. for all characters in the syntax string; do,
3. if the character is a "%’,

(a) read the next character, it should be one of 'd’, or ’s’ or 'x’. Remember this
character.

(b) read two integer values enclosed in between { and }. The first integer gives the
parameter number and the second integer gives the index for corresponding
attribute. Read the name of the parameter in the variable name using integer
table and identifier table.

(c) if the remembered character was ’s’ write this name in Yacc specification file,
for the above jump instruction the name corresponds to IMM.

(d) If the remembered character was 'd’ or 'x’; the parameter index to the integer
table gives the type and value for the parameter. Write these values as expr
in Yacc specification file. ezpr is a predefined Yacc rule for evaluation of the
integer expressions.

31

4. else if the scanned character is an alphanumeric character append it into a string
variable nameStr.

5. else if the scanned character is a blank, write the value of nameStr in the Yacc
specification file after prefixing it with AS_ string. This represents a TOKEN. The
generated tokens are changed into upper case if the generated assembler is non
case-sensitive otherwise they are retained as extracted from the syntax expression.
Corresponding entry in keyword file is also made for this TOKEN.

6. else if the scanned character is any punctuation mark e.g ’(’, '@’ ’)’ etc., it is written
in Yacc file as it is.

Similarly, the string corresponding to the image record of instructions also does not
contain the binary information for instructions verbatim. For the same jump instruction
the image expression is ”10000000%s{0.4}”. If instruction ”jump 20” is assembled, then
the corresponding generated binary image should be ”1000000000010100” The algorithm
used to parse image string is as follows.

1. read image string corresponding to current op-and-rule from image table.
2. for all characters in the image string; do,

3. if the character is a ’0” or "1, write it in the Yacc specification file.

4. else if the character is a '%’,

(a) read the next character, if it is 'd’ or s’ or 'x’ remember the character. Other-
wise the image is of type %integerb e.g. %2b. The associated integer value is
used to check the size of the operand at the time of assembly.

(b) read two integer values enclosed in between { and }.

i. if the first value read is negative then it is an index to prefiz attribute
table and second value is the length of corresponding expression. Read the

expression from prefix attribute table and write it into the Yacc specification
file.

ii. else write the Yacc parameter number.

4.2.3 Generation of the Lex Specification File

The generated Lex specification file works as a scanner. The rules are written in the form
of regular expression. The format of generated Lex specification file is,

definitions
hoth

rules

Dot

user_subroutines

32

Definitions is the section which contains definition for all the variables used in
rules section. The definitions section in the generated Lex specification file is shown
below. Here, the left hand side shows the variable name and the right hand side provides
its definition.

L [a-zA-7Z_]
D [0-9]
oP [1-&(-/:-Q[-~{-}]

HEXDIGIT [0-9a-fA-F]
OCTAL [0-7]

DEC wou
DOLLAR "g"
EXP [eE]
PLUS o
MINUS n_n

In the rules section, these variable names are used within braces {}.

Rules is the section which provides the way of handling tokens. In this section, the
left hand side contains the pattern to be recognized and the right hand side contains the
C program fragment executed when that pattern is recognized. Some example generated
rules are shown in Figure.4.8 and Figure.4.9.

{L}({L} [{D} |{DEC} | {DOLLAR}) */":" { /x a label */
copy(yytext, textptr);
copy (yytext) ;
strncpy(textptr, ":", 1);
textptr++;
return LABELID;
delete []1 yylval.sym;

}
"//"["\nlx* { /* one-line comment */
copy (yytext) ;
return COMMENT;
delete []1 yylval.sym;
}
{D}+ { /* numbers having digits 0-9 */
copy(yytext, textptr);
copy (yytext) ;
return INTEGER;
delete []1 yylval.sym;
}

Figure 4.8: Generated Lex rules

33

/* The operators + — x / | & << >> Q@ # $§), , etc */
{
*textptr++ = yytext[0];
if (yytext [0]=="<"){
SBYTE c= yyinput();
if (c=="<?)
return SHL;
else
unput (c) ;
}
if (yytext [0]==">"){
SBYTE c= yyinput();
if (c==">7)
return SHR;
else
unput (c) ;
}
return yytext[0] ;
}

/* a keyword a macro name or a variable */

{L}({L}|{D} |{DEC} | {DOLLAR})* <

/* check for macro name */

mac = macTbl.look(yylval.sym) ;

if (mac){
/* function to parse macro call x/
return MACRO;

}

/* search the variable into the keyword table */
name = keywordTbl.look(yylval.sym, !sensitiveCase);
if (name) {

/* return token corresponding to this keyword */

}

/* check for a defined variable */
var = symbolTbl.look(yylval.sym);

if (var)q{
/* return defined variable token */
}
/* undefined symbol */
else{
return UNDEFINED;
}
+

Figure 4.9: Generated Lex rules contd ...
34

User_Subroutines is the section that contains supporting functions, called in the
rules section. For example, the routines copy to copy the content of yytext into yylval,
create Buffer to create a new buffer for yyin, macParse to parse the macro use etc. are
used in the rules section and defined here.

4.2.4 Generation of the Keyword File

Keywords are assembly mnemonics which are extracted from IR while parsing syntax
expression in Sim-nML description of the processor. We use the terms keywords and
assembly mnemonics both to refer to the string obtained by parsing a syntaz expression
interchangeably. As described earlier syntax strings are parsed and corresponding tokens
are generated. Characters such as space, comma etc. work as delimiter while parsing the
syntax strings.

static struct { // keywords
char * name;
int token;

} keywords[] = {
"TEST", AS_TEST,
"R", AS_R,
"JMP", AS_JMP,
"SUB", AS_SUB,
"ADD", AS_ADD,
0, 0,

I

initialize_keywords (){
for(int i=0; keywords[i] .name;++i)
keywordTbl.insert (keywords[i] .name, keywords[il.token);

Figure 4.10: Generated Keywords for the example processor

If the assembler is generated to be a case-sensitive one, the generated keywords are
same as obtained from syntaz expression. Otherwise the keywords are first converted into
upper-case and then written in keyword file. e.g. if add is embedded in the syntax-string
in the IR, the generated keyword for a case-sensitive assembler will be add and that for a
case-insensitive one will be ADD.

The token names are also generated corresponding to each assembly mnemonics. A
token name is generated by prefixing AS_ to each generated keyword. This way conflicts

35

in the predefined names are avoided.

All these generated keywords and the corresponding tokens are installed in a hash
structure keyword table. The hash key is calculated using the name of the keyword, and
the conflicts in the hashing are resolved using chains. While parsing an assembly language
file whenever Yacc recognizes a string it hashes it into keyword table, if it gets matched
the corresponding token value is returned to the parser. The generated keywords file for
the example processor description (Figure 4.2) is shown in Figure 4.10.

36

Chapter 5

Relocation Handling

Consider the following example of assembly language program segment for PowerPC pro-
Ccessor.

.LCO: addis 9, 0, .LCOQ16:16
addis 3, 9, .LC0@16:1
bl printf

The following points are important. The definition of the printf routine is typically
provided in the library and therefore the address of printf is not known at the time of
assembly. Further, the program segment may be put at any address and therefore .LCO
value is determined only at the time of linking. Thus these addresses should be assigned
typically at the time of linking or loading the program into memory. Accordingly wherever
these symbols are used in the instructions, instruction operand should be adjusted at the
same time.

The process of adjusting instruction operands prior to running the program is called
relocation. Relocation requires to locate the usage of symbolic addresses within the sec-
tion and adjust them so that they refer to the proper run-time addresses. The adjustment
of the addresses is typically processor specific. For example, a program instruction may
require 24 bits of an address to be loaded in a register (such as in Dec Alpha) where a 32
bit address is loaded in a register using two instructions - first to load 24 bits and then to
load 12 bits. Similarly, in the example of the code given earlier, 16 bits of .LCO are loaded
in two separate instructions for Power PC. Since the address is not known at the time of
assembly, the corresponding load instruction necessarily require adjustment (referred to
as relocation now onwards) that is processor specific.

The relocation method is typically denoted by an integer called relocation type.
Therefore the relocation types are also processor-specific (as per the ELF documentation)
and vary from one processor to another. Since the values of the symbols are not known at
the time of assembly, the values of the expressions involving them can not be computed.
The assembler prepares a relocation table entry for each of these usage of symbolic ad-

37

dresses in expressions using a relocation type. The value of this expression is calculated
by the linker depending on the associated relocation type.

We need a generic way to describe the relocation type to facilitate the automatic
generation of assembler for all the processors. Keeping this in mind in our method we
have designed a generic way to describe all kinds of relocations.

5.1 Generic Expressions for Assembly Program

We have defined generic expressions which involve symbolic addresses. The only operators
permitted in these generic expressions are extract, signed extension, unsigned extension,
shift left, shift right, addition of a constant and subtraction of a constant. The generic
expressions are not evaluated by the asm. Instead the machine specific relocation types
are found for these expressions as described in the next section. The syntax for operators
on symbolic addresses is given below.

Extend(symbol@abs_expl:abs_exp2, abs_exp3) opl abs_exp4 op2 abs_exp5

Two types of Fxtend operators are supported - signed-extension and unsigned-
extension. It is specified using string SN (for signed-extension) and UN (for unsigned-
extension). abs_expd gives the size for extension.

The extract operator is used to specify the extraction of a number of bits from the
value of the symbol starting from some bit position. “@” is used to represent an extract
operator. abs_expl gives the size and abs_exp?2 provides the start bit position for the
extract. In the example given above .LC0@16:16 is an expression used to extract 16 bits
from the value of .LCO0 starting from bit position 16.

Four arithmetic operators are supported. Shift Left n specifies a left shift by n bits.
The operator is represented by “<<” in the assembly language program. Shift Right n
specifies a right shift by n bits. This operator is represented by “>>” in the assembly
language program. The op! specifies a Shift Left or Shift Right and abs_exp4 gives the
number of bits. The Add n specifies an addition of a constant n to the expression. It
is represented by the use of “+” in the assembly program. Similarly the Subtract n
represents a subtraction of a constant from the value of the expression and is represented
using “—” in the assembly program. In the syntax string given above, the op2 represents
an Add or Subtract operator with a value abs_expd.

The grammar used to parse the expression in the assembly language program which
use relocatable symbols is given in Figure.5.1.

The tokens SIGN, UNSIGN represent the signed-extension and the unsigned-extension
operators and INTEGER is a token that represents an integer. The tokens SHL, SHR repre-
sent the shift-left and shift-right operators respectively. The expr is the integer expression
involving any arithmetic and boolean operators supported by the assembler.

Examples of a few expressions involving a symbolic address are .LC0, .LC0@Q16:16,

38

extract: symbol

| symbol ’@’ expr ’:’ expr
extend: SIGN ’(’ extract ’,’ INTEGER ’)’
| UNSIGN ’(’ extract ’,’ INTEGER ’)’
| extract

opfirst: extend SHL INTEGER

extend SHR INTEGER

’(? extend SHL INTEGER ’)’ SHR INTEGER
’(? extend SHR INTEGER ’)’ SHL INTEGER
’(> extend SHL INTEGER ’)’ SHL INTEGER
>(> extend SHR INTEGER ’)’ SHR INTEGER
extend

opfinal: opfirst ’+’ INTEGER

| opfirst ’-’ INTEGER

| opfirst ’+’ ’(’ expr ’)’
| opfirst ’-’ ’(’ expr ’)’
| opfirst

Figure 5.1: Grammar used for parsing relocatable symbols

SN(.LC0@16:16, 32), .LCO + 10 etc.

In case an operator is missed out, corresponding identity operation is assumed (for
example << 0 or >> 0). If no extract operator is specified a default extract is used
with the size of the expression as specified in the Sim-nML processor description for the
corresponding instruction.

In addition the asm also supports two operators Direct and Relative to represent
the direct and relative relocation types. The asm identifies these operations using the
Sim-nML description and depending on whether the corresponding image for the binary
of the instruction uses relative or direct addressing.

Since generic expressions are not evaluated we need to know what value to write in
place of these expressions in the output binary generated by the asm. Also the address
where the relocation should be applied is not known. For example, the instruction bl takes
a 24 bit parameter. The instruction is assembled assuming the value of the expression
(printf) as zero. The address in the relocation table entry where the relocation is to
be performed is the start address for this instruction. While in addis instruction the
expression is assembled with its value taken as zero and the relocation address is calculated
after adding two to the start address of the instruction. The start address for these
instructions corresponds to the start address at the time of assembly. The configuration
file provides, both, the value to be substituted for the expression and the address to be

39

written in the relocation table in addition to the relocation type to be generated.

5.1.1 Configuration File

The configuration file helps in mapping generic relocation operations to machine relocation
types. The configuration file also provides information like what value to substitute in
place of the expression involving the symbol and what address to put in the relocation
table. The format of the configuration file is fixed. All the fields in the configuration
file must be separated by blanks or tabs and must be written in a specified order. One
line is provided for each type of machine specific relocation. All the four field in the
configuration file for a relocation type must be present. Comments can also be written in
the configuration file using C or C++ type comment style. The asm accepts the name of
this file using -¢ command-line option.

genericOp: opr ’(’ extractConfig change shift arith ’)’

// relocation type
opr: DIRECT
| RELATIVE

// extraction operator
extractConfig: ’<’ INTEGER ’:’ INTEGER ’>’

// sign and un-signed extension operator
change: // null statement

| SIGN

| UNSIGN

// shift operator

shift: // null statement
| SHIFTLEFT
| SHIFTRIGHT

// addition and subtraction operator
arith: // null statement

| >+’ INTEGER

| >-> INTEGER

Figure 5.2: The grammar used to parse Generic Operations

In the configuration file, the extend operator is specified using one of the two strings
SN const_int or UNconst_int. The const_int gives the size for extension and it repre-
sents a constant integer. SN specifies a signed-extension and UN specifies an unsigned-
extension.

40

The extract operator is represented by a pattern like < size : start_bit >. Here size
and start_bit provide the parameters for the extraction. Both of these are represented
using constant integer values.

The arithmetic operations shift left and shift right are represented by SHL const_int
and SHR const_int respectively. The add and subtract operations are represented using
+const_int and —const_int respectively. The grammar used to parse the generic expres-
sions in the configuration file is shown in Figure 5.2.

The token SHIFTLEFT, SHIFTRIGHT represent the shift-left and shift-right operators
respectively. For example, DIRECT(< 32 : 0 >) SN32 SHR16 + 16 and RELATIVE(<

32: 0 >) SN32 - 32 are valid generic operations.

Any of the generic relocation operators except eztract can be omitted while describ-
ing a relocation expression in the configuration file. The example configuration file for
PowerPC 603 is shown in Figure 5.3.

/* generic m/c specific generated address in the x/
/* expr relocation code in place relocation table */
/% of symbol x/

DIRECT(<32:0>) 1 0 $
DIRECT (<24:0>) 2 0 $ + 1
DIRECT(<16:0>) 4 0 $ +2
DIRECT(<16:16>) 6 0 $ +2
DIRECT (<14:0>) 7 0 $
RELATIVE(<24:0>) 10 0 $
RELATIVE(<14:0>) 11 0 $
RELATIVE(<32:0>) 26 0 $

Figure 5.3: An example configuration file for the PowerPC Processor

The symbol § is used in the configuration file to indicate the value of current location
counter (i.e. the address of the instruction). @ is used to represent the value of the symbol
as known at the time of assembly of the program. For example, the first line in the example
configuration file represents that whenever an expression involving a symbol is found in
the assembly program which uses 32 bits of the symbol for direct addressing, relocation
type is 1 and 0 is substituted for the expression while assembly. The address to emit is
the address of the current instruction.

Whenever asm finds a symbolic address reference in assembly language program it
searches for a corresponding entry in the configuration file depending on the operators
applied on the symbol. If an entry gets matched it generates the relocation table using
the information specified in the configuration file.

41

5.1.2 An example Relocation for PowerPC Processor

An Example assembly language program fragment with relocations for Power PC proces-
sor is shown below.

.LCO:

addis 9, 0, .LCOQ@16:16
addis 3, 9, .LCoe@16:1
addi 3, 9, .LCO

bl printf

Figure 5.4: An example file with relocations

The generated relocation table entries are as follows.

e .LC0@16:16: This expression gets matched with the fourth entry (i.e. DIRECT
(16:16)) and therefore the generated relocation type is 6, the instruction is assembled
as addis 9,0,0 and the address in the relocation entry is 2 + the address of the current
instruction.

e .LC0@16:1: The assembler tries to match it but the configuration file doesn’t have
an entry DIRECT(< 16 : 1 >) so an error is flagged.

e .LCO: Since nothing is specified assembler gets its size using the information avail-
able in Sim-nML specification of the processor. The Sim-nML specification for
PowerPC 603 shows that the size of argument for instruction addi should be 16
bits. Hence the size for symbol .LCO is 16. The third entry of configuration file
corresponds to this relocation operation and the generated relocation type is 4.

e printf: The symbol value is undefined. The Sim-nML specification file shows that
the instruction b/ is a relative branch instruction and it uses a 24 bit operand. In the
configuration it matches with the sixth entry and therefore the generated relocation
type is 10.

Let us assume that the location counter for the first instruction is 0x00000034. After
removal of error line the generated assembly listing is shown in the Figure 5.5.

00000034 3d200000 R addis 9,0,.LC0016:16
00000038 38690000 R addi 3,9, .LCO
0000003¢c 48000001 R bl printf

Figure 5.5: The generated assembly listing

42

In this example for the first instruction the value assembled in place of .LC0@Q16:16
is zero as specified in the configuration file and the address for relocation is $+2 which
evaluates to 0x36. Similarly the value assembled in place of .LCO in the second instruction
is also zero and the address is $+2 (i.e. 0x3a) as specified by the third entry in the
configuration file. For the last instruction the value substituted is zero while the address
for relocation is § (i.e. 3c).

Symbol Address Section Reloc-Type
printf 0000003c .text 10

.LCO 0000003a .text 4

.LCO 00000036 .text 6

Figure 5.6: The generated relocation information

The generated relocation table is shown in Figure 5.6. The section in relocation
table specifies the section in which the symbol was found.

43

Chapter 6

Results and Conclusion

6.1 Results

The assembler generator(asmg) is tested for PowerPC 603, 68HC11, 8085 and Hitachi
H/8 processor models in Sim-nML. For each of these processor description an assembler
is generated and verified for different assembly language programs. It is also verified that
the asmg takes care of processor endian-ness conversion by running it on Pentium (little-
endian) based Linux machines as well as on Sparc (big-endian) based machines. The
assembly listing and ELF generated by the assembler have been successfully matched
with those generated by the GNU assembler. In case of PowerPC 603 assembler, the
output ELF file was also verified with GNU objdump.

The complete procedure to generate an assembler from Sim-nML specification is
encapsulated into a shell script. When this script is run with IR of a processor as an
argument, the first phase of generation of machine dependent files is executed. This phase
creates some intermediate files specific to that processor. In the next phase, the assembler
is generated using the machine specific generated files and the machine independent files.

For PowerPC 603 processor the input assembly language programs are generated
using GNU C cross-compiler running on Pentium based Linux machines. The generated
assembly language file consists of some instructions which are not part of PowerPC 603
Sim-nML specification since those instructions for PowerPC 603 are alternative names
of some other instructions. For example, a generated instruction can be blt target which
is equivalent to the instruction bc 12, 0, target. Similarly the instruction mr 31, t is
equivalent to or 31, 1, t and the instruction [z s, d is equivalent to add: s, d.

In the gcc generated assembly programs, these instructions can be edited to their
equivalent instructions. As an alternative these instructions can be added in the Sim-nML
model. We tried both approaches and both seems to work fine.

In case of PowerPC 603, the compiler generates a few machine specific operations
in the expressions. For example .LC'0@ha which is equivalent to .LC0@16 : 16 in our
assembler. Prior to the assembly, we edit the gcc generated programs and replace all such
machine specific operations to their counterparts.

44

6.2 Conclusion

In this thesis we have developed an assembler generator which takes an IR of Sim-nML
basic model for a processor and generates an assembler. The generated assembler takes
an assembly language program specific to that processor and generates a relocatable ELF
binary object file. The assembler is generated and tested for PowerPC 603, 68HC11 and
8085 processors.

The availability of an assembler allows assembly programs to be written and tested
on the functional simulator[12], even when no compiler is available.

6.3 Future Work and Extensions

Using Lex and Yacc for the assembler implies that the assembly syntax must be single
token lookahead since the parsers generated by the Yacc can only look one token ahead.
Also the assembler can produce relocatable object file in ELF format only. It could be
useful if extended to generate other format such as COFF, a.out etc.

45

Appendix A

User’s Manual

A.1 Assembler Generator

The generation and compilation of assembler files to get the final executable assem-
bler(asm) is done with the help of a shell script which is available as a command name
asmg. The assembler generator requires a processor specification in the IR form, option-
ally we can name the generated intermediate files. A string CS in command line is used
to make the generated assembler case-sensitive. By default it is none case-sensitive.

A.1.1 Usage

Usage: asmg [ir-file] {yacc-file} {key-file} {lex-file} {CS}

ir-file: This is the name of the input IR file.

yacc-file: Generate the intermediate Yacc specification file in a file name yacc-file. The
default name is asmgYacc.y.

key-file: Generate the intermediate keywords file in a file name key-file. The default
name is asmgKey.c.

lex-file: Generate the intermediate Lex specification file in a file name lez-file. The
default name is asmgLex.l.

A.2 Assembler

The assembler is used to translate an assembly language program to its relocatable binary
counterpart in ELF format. The generated assembler has a command line interface that is
conventional for the utilities/commands in a Unix system. If the assembler is run without
any arguments, it displays a small help giving all the options.

46

A.2.1 Usage

Usage: asm {-h} {-p} {-m machinename} {-o output_file} {-c configfile} {-1 list_file}
[files]

-h: This is an optional argument to print the usage message. If this option is specified,
all other arguments are ignored.

-p: This is an optional argument. It prints the name of all supporting processors as
described in the ELF documentation.

-o output_file: Generate the ELF output in a file name output_file. Default name is
b.out.

-m machine name: Specify the target machine name. This name is used in the ELF
header.

-1 list_file: Generate the assembly listing in list_file. Default is stdout if listing is on.
-c config_file: Use configuration file config_file for machine specific relocations.

files: These are the name of input assembly language files. The names are separated
by spaces. These files specify exactly one source program. The source program is a
concatenation of all the files in the order specified from left file name to right.

47

Bibliography

[1] V.Rajesh. A Generic Approach to Performance Modeling and its Application to
Simulator Generator. Master’s thesis, Department of Computer Science and Engg.,
IIT Kanpur, July 1998. http://kshitiz.cse.iitk.ac.in/~cares/projects/simnml/.

[2] ELF Object File Format. http://www.sco.com/developer/gabi/contents.html.
[3] GNU Assembler Manual. http://www.gnu.org/manual /binutils-2.9.1/binutils. html.

[4] Rajiv A. R. Retargetable Profiling Tools and their Application in Cache Simulation
and Code Instrumentation. Master’s thesis, Department of Computer Science and
Engg., IIT Kanpur, Dec 1999. http://kshitiz.cse.iitk.ac.in/~cares/projects/simnml/.

[5] ISDL - An Instruction Set Description Language for Retargetability.
http://www.ee.princeton.edu/spam/pubs/ISDL-TR.html.

(6] ISDL - An Instruction Set Description Language. http://caa.lcs.mit.edu/caa/.

[7] D. E. Ferguson. The evolution of the meta-assembly program. Communications of
the ACM, 9(3):190-193, 1966.

8] SLED - Specification = Language for Encoding and Decoding.
http://www.eecs.harvard.edu/~nr/toolkit /.

9] LISA - Language for Instruction Set Architectures. http://www.ert.rwth-
aachen.de/lisa/lisa.html.

[10] SuperSim Processor Simulators. http://www.ert.rwth-aachen.de/lisa/supersim.html.

[11] Nihal Chand Jain. Disassembler using High Level Processor Models. Mas-
ter’s thesis, Department of Computer Science and Engg., IIT Kanpur, Jan 1999.
http://kshitiz.cse.iitk.ac.in/~cares/projects/simnml/.

[12] Y. Subhash Chandra. Retargetable Functional Simulator. = Master’s the-
sis, Department of Computer Science and Engg., IIT Kanpur, June 1999.
http://kshitiz.cse.iitk.ac.in/~cares/projects/simnml/.

[13] Markus Freerick. The nML Machine Description Formalism, July 1993.
http://www.cs.tu-berlin.de/“mfx/dvi_docs/nml_2.dvi.gz.

[14] Common Object File Format. http://msdn.microsoft.com/library/specs/msdn_pecoff.htm.

48

[15] A Lexical Analyzer. http://www.gnu.org/manual /flex-
2.5.4/html_chapter/flex_toc.html.

[16] Yet Another Compiler Compiler. http://www.ma.adfa.oz.au/Local/Info/bison/bison_toc.html.

49

