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Abstract

The design process for modern embedded systems requires automated modeling tools
for faster design and for the study of various design trade-offs. Such tools together
constitute an integrated environment where the designer can write the high level
design specifications in a language and use these tools for automatic generation of
system specific tools. Sim-nML[15] is one of the specification languages used for

developing processor performance model.

In this thesis, we have developed the following towards the integrated environment.

e Designed and extended an Intermediate Representation (IR) of a processor spec-
ification written in Sim-nML. The IR is simple and facilitates the development
of various tools such as assembler, disassembler, compiler back-end generator,
instruction set simulator, trace generator, profilers etc. based on the processor

specification.

e [R-Generator. It takes a processor specification written in Sim-nML and pro-

duces its intermediate representation.

e Cache Simulator. This provides a mechanism to simulate various caching poli-
cies. The designer can use the simulator to study the trade-offs between different

caching policies.

e Code Instrumentor. This implements a mechanism to perform analysis and

profiling of application programs through the technique of code instrumentation.

e Motorola 68HC11 processor specification in Sim-nML.

The Cache Simulator and the Code Instrumentor were implemented on top of the
Retargetable Functional Simulator[1]. They provide an architecture independent way

of constructing profiling and analysis tools.
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Chapter 1

Introduction

1.1 Overview

In the design of embedded systems, the use of automated modeling tools is gaining
momentum. They yield fast turn-around time with lower costs for the system design
and simplify the process of design changes. In the past, many such tools were system
specific. However, with ever increasing complexity of systems and special purpose
processors, a strong need is being felt for generic and modular tools. Such tools replace
the system or processor specific tools and provide a generic integrated environment.
This way, these tools also help in studying the impact of various hardware-software
co-design trade-offs. For a designer of the system, such tools are useful as they
allow him to explore several alternatives early in the design phase. The benefits
of such high-level processor models and processor development methodology include
the availability of application development tools, simulation tools and profiling tools
even before the processor is ready. An unified processor model for the generation
of application development tools, profilers and simulators not only reduce the effort

required but also eliminates the chances of discrepancies among different descriptions.

The Sim-nML[15] language is used as a model to develop an integrated processor
development environment. The integrated environment would include tools like as-
semblers, disassemblers, compiler back-end generators, functional simulators, cache
simulators, profilers, hardware synthesizers etc. The instruction set architecture of

the processor at hand is described in Sim-nML from which these tools are generated



automatically. For this purpose, we have designed an intermediate representation'
for the Sim-nML language. The IR is simple but powerful enough to facilitate the
development of various tools based on the processor specification. The IR has been
designed to ease the burden of each tool to parse the Sim-nML language which is
tedious and redundant. The IR encapsulates the Sim-nML description in a set of
tables. This would allow the tools to easily extract the relevant information. We
have designed a tool, IR-generator, which takes a processor specification in Sim-nML
language and provides the intermediate representation of the processor model as out-

put.

In addition, a Cache Simulator Environment has been developed. This would help
the processor designer to study the trade-offs of implementing various caching policies

for the application to be run on the processor under development.

We have also developed a profiling tool through code instrumentation mechanism.
This provides the designer with code instrumentation mechanisms at the procedure
level, or at the basic block level or at the instruction level. The designer can use
this mechanism to study the run-time behavior of the application on the targeted

processor.

Since Sim-nML provides a generic way of describing a processor architecture, the
cache simulator and profiler generator constructed from Sim-nML specification allow
a flexible and architecture independent way to generate profiling and analysis tools.
Currently, most of such tools are architecture dependent which necessitates the de-
velopment of separate set of tools for each processor model. It can be avoided with
the Sim-nML model as once the description is ready the tools could be automatically
generated and customized. Moreover, currently these profiling tools also require pro-
cessor support. Our tools help to do the same without such support or even before

the actual processor fabrication is done.

This work is a continuation of the Retargetable Functional Simulator][1] work done
by Y. Subhash Chandra. An initial version of the IR[5] was designed and imple-
mented by Nihal Chand Jain. The code instrumentation mechanism was inspired
from ATOM[13].

Lfrom now on we use the term IR to refer to the intermediate representation.




1.2 Related Work

Performance modeling of a system is a growing area and a lot of research has been
pursued in this area. These previous works have resulted in a set of performance

modeling tools using different languages for processor specification.

Instruction Set Description Language (ISDL)[4] is a machine description language
which is similar to Sim-nML. ISDL provides constructs for specifying instruction set
and other architectural features. A description in ISDL contains the machine word
format used for the instruction assembly, semantics of the instruction, and constraints
such as the valid combination of operations which is useful for tools like assembler
to generate correct code. These are captured in separate sections. Currently an

automatic assembler generator has been developed.

Specification language for encoding and decoding (SLED)[11] is a language for
describing the abstract, binary, and assembly-language representations for machine
instructions. Using SLED, a toolkit called New Jersey Machine-Code has been de-
veloped which generates bit-manipulating code for use in applications that process
machine code. Programmers can write such applications at an assembly level of ab-
straction, and the toolkit enables the applications to recognize and emit the binary
representation used by the hardware. SLED is suitable for CISC and RISC type of
machines. SLED deals with the instruction representation only, but not with any
other architectural details. Some tools like retargetable debugger, retargetable opti-

mizing linker have been implemented.

Visualization based Microarchitecture Workbench (VMW))[14] is an infrastruc-
ture which facilitates the specification of instruction set architecture and microarchi-
tecture of a machine in a concise manner. VMW provides all necessary infrastructure
software to the designer, including generic simulation software, visualization sup-
port software and graphical user interface software. VMW automatically integrates
the machine specification and infrastructure software to generate a customized perfor-
mance simulator based on the trace-driven simulation approach. Thus VMW provides
a powerful environment for modern superscalar processor design.

SimOS[9] is a machine simulation environment designed to study large complex
computer systems. SimQOS simulates the computer hardware in sufficient detail and
speed to run existing system software and application programs.

ATOM][13] provides a frame work for providing customized program analysis

tools. It provides a common infrastructure provided in all code-instrumenting tools.



ATOM organizes the final executable such that the application program and user’s
analysis routines run in the same address space. ATOM uses no simulation or inter-
pretation. It has been used to build a diverse set of tools for basic block counting,
profiling, dynamic memory recording, instruction and data cache simulation, pipeline
simulation, evaluating branch prediction and instruction scheduling.

Pixie[12] is a utility that allows you to trace, profile or generate dynamic statistics
for any program that runs on a MIPS processor. It works by annotating executable
object code with additional instructions that collect the dynamic information during
run time.

Dinero IV([2] is a trace driven uniprocessor cache simulator for memory reference.

QPTI6][7] is profiler and tracing system. It rewrites a program’s executable file
(a.out) by inserting code to record the execution frequency or sequence of every basic
block or control-flow edge. From this information, another program QPT_STATS can
calculate the execution cost of procedures in the program.

EEL[8] (Executable Editing Library) is a C++ library that hides much of the
complexity and system-specific detail of editing executables. EEL provides abstrac-
tions that allow a tool to analyze and modify executable programs without being
concerned with particular instruction sets, executable file formats, or consequences of
deleting existing code and adding foreign code. EEL greatly simplifies the construc-

tion of program measurement, protection, translation, and debugging tools.

1.3 Goals Achieved

In this work, we aimed at the development of an integrated environment for processor
performance modeling using Sim-nML. The development of the complete environment
is in progress. Many tools have been developed till now which we will look at in

Chapter 2. The goals achieved in this thesis are as follows.

e Intermediate Representation (IR) for Sim-nML language specification is ex-
tended. This is simple but powerful enough to facilitate the design of various

processor specific tools. This was an extension of an earlier version([5]).

e [R-Generator which takes a processor specification in Sim-nML language and
provides an intermediate representation of the processor specification as output

was extended and implemented. This was an extension of an earlier version([5]).
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e A Cache Simulating Environment has been developed to provide a basis for

benchmarking various caching policies of a given processor.

e A Code Instrumentation Mechanism has been developed for implementing var-

ious profiling techniques.

e Motorola 68HC11 Specification in Sim-nML
Model for Motorola 68HC11[17] processor has been developed in Sim-nML.

All the instructions have been specified with a simple resource usage model.

1.4 Organization of Report

The rest of the report is organized as follows. In Chapter 2 we give an overview
of the Sim-nML integrated environment. In Chapter 3, we discuss the design and
implementation of the IR. In Chapter 4, we look at the Cache Simulation Environ-
ment. In Chapter 5, the we discuss the Code Instrumentation Mechanism. A brief
overview of Motorola 68HC11 processor is given in Chapter 6. Finally, we conclude
in Chapter 7. In Appendix A we describe the Sim-nML grammar and give the IR
format in Appendix B.



Chapter 2

The Sim-nML Integrated

Environment

2.1 Overall Structure

The base language for our environment is Sim-nML, a generic processor modeling
language. Sim-nML is an extension of nML machine description formalism([3]). Pro-
cessor models are written in Sim-nML, using which, various processor specific tools
can be generated automatically. To make the tools’ design easy, the model specified
in Sim-nML is first converted into an intermediate representation (IR). For a tool,
intermediate form is simpler and easier to read and interpret when compared to a
specification in Sim-nML. The overall view of the environment is shown in the figure
2.1.

2.2 Sim-nML Language

2.2.1 Sim-nML Model

Sim-nML[15] is an extensible formalism designed to specify generic single processor
models. Stm-nML works at two levels of abstraction. The processor described by the
language could either be an existing one or an application specific processor being
developed. The designer team, depending on the application for which the processor

is being modeled, would either choose for an off-the shelf processor or design a new
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Figure 2.1: A View of Integrated Environment

one. At the functional level, the designer typically has an overview of the instruction
set that the processor should support to meet the application requirements. The
Stm-nML model is used to give an ISA level description which is the application pro-
grammer’s model of the processor. While modeling an existing processor the designer
would have the processor instruction set manual which he could use to describe the
instruction set, both the syntax and semantics, in Sim-nML. If a processor does not
exist, the Sim-nML language could be used to describe the intended instruction set
semantics.

At an alternate level of abstraction, Sim-nML could be used to expose the mi-
croarchitecture details. This could be used to detail out the various units within a
processor along with a timing estimate. When describing an existing processor, the
designer could abstractly specify the processor’s pipeline features, functional units

etc. The associated timing estimates could help the designer to evaluate multiple



processors in order to choose the optimal model satisfying the application at hand.
When designing a new processor model, the designer could give a rough estimate
of the microarchitecture features that he would like to incorporate along with the
associated timings. The process could be iterated until a satisfactory description is

obtained that meets the timing requirements of the application.

Sim-nML is an attributed grammar® with some predefined but optional attributes
like image, syntax, action and uses. The instruction set is described in a hierarchical
manner with fragments of each of the attributes being distributed over the whole
grammar tree. The common behavior of a class of instructions is captured at the top
level of the tree and the specialized behavior of the sub-classes are captured in the

subsequent lower levels.

2.2.2 Sim-nML Grammar

Sim-nML grammar has a fixed start symbol namely instruction and two kinds of
productions, namely or-rule which looks like,
op=mng | ng | ng | ...
and and-rule which looks like
op ng (p1 @ ty, po + to, ...)
ap = €1 a2 = €2
where each n; is a non-terminal, each #; is a token. Each a; is an attribute name

and e; their respective definitions.

The Sim-nML grammar predefines four attributes - syntax, image, action, uses.
The syntax describes the assembly language format of the instruction, image describes
the binary coding of the instruction, action describes the semantics of the instruction

while the uses describes the resource-usage model.

The Sim-nML grammar in example 1 (figure 2.2) describes a simple processor with
two instructions - add and multiply. All of these attributes are used for adding and
multiplying the contents of two general purpose registers respectively. PC refers to
the address from which the next instruction has to be fetched. Sim-nML supports a
special token, $, which is used to denote the address of the instruction in the definition

of various attributes.

lan attribute grammar is a context free grammar in which for each non-terminal a fixed set of
attributes and for each production a set of semantic rules is given. In grammar all non-teminals
have to be derivations. So we don’t diffrentiate between productions and non-terminals.



card(32)
card(8)

type addr
type byte

let REGS = 32
let byte_order = little

mem PC [1, addr]

mem M [2 *x 32, addr]
reg R [REGS, bytel
var tmp [1, bytel

resource Fetch_Unit, Exec_Unit[2], Retire_Unit

mode REG(index : card(5)) = R[index]
syntax = format("0%3b", index)
image = format("R)d", index)

mode MEM(Addr : addr) = M[addr]
syntax = format("1%32b", addr)
image = format("R%d", addr)
mode ADDRMODE = REG | MEM

op instruction(x : binaction)
uses = Fetch_Unit #{2}, x.uses, Retire_Unit #{2} : action
syntax = format("%s", x.syntax)
image = format("%s", x.image)
action = {
x.action;
}

Figure 2.2: Sim-nML Specification for a Simple Processor

The basic types of Sim-nML include card, int, bool, enum etc. The type declaration
is used to declare derived types. Addressing modes in the processor are described
using mode rule. In the above example, mode rule REG denotes register addressing
mode where R[i] denotes the i’ register of the register file R. The var declaration is
used to declare temporary variables. This processor assumes 2 instances of resource

Exec_unit, one of which is held by the instruction under execution. If one instance



op binaction = plus | multiply

op plus(src : ADDRMODE, dst : ADDRMODE)
uses = Exec_unit #{2}

syntax = format("add %s %s'", src.syntax, dst.syntax)
image = format("1010010%s%s", src.image, dst,image)
action = {

dst = src + dst;

PC = PC + 9;
}

op multiply(src : ADDRMODE, dst : ADDRMODE)
uses = Exec_unit #{6}

syntax = format("mult %s %s", src.syntax, dst.syntax)
image = format("0010101%s%s", src.image, dst.image)
action = {

dst = src * dst;

PC = PC + 9;
}

Figure 2.3: Sim-nML Specification for a Simple Processor: continued

is already acquired, then another instruction in the pipleline can acquire the second
instance. The following instructions remain stalled till one of the resource instance is

released. This models a simple superscalar processor with 2 execution units.

2.2.3 Resource Usage Model

The micro-architecture details of the processor can be specified using the resource-
usage model. Sim-nML assumes that entities within the processor like the functional
units, pipeline stages, registers, ports etc. constitutes a set of resources. The resources
can be acquired/released by any instruction in execution. The resource-usage model
is based on the assumption that at any instant, an instruction in execution, holds

some set of resources and does some action. The resources held by the instruction
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and the action taken change progressively.

In the resource usage model, the resource is an abstraction of a piece of hardware
such as registers, ALUs, functional blocks etc. for which instructions contend and
pipeline flow is nothing but a way of resolving such conflicts. When two instructions
wait simultaneously for a single resource, the conflict will be resolved by FIFO order,
i.e, the instruction that entered the pipeline earlier will be alloted the resource. This
model is powerful enough to describe pipelines, superscalars and other microarchi-
tectures. The uses attribute describes the resource usage model and the action taken
when the resource is acquired or released for an instruction. In Example 1 (figure
2.2), the resource definition is used to define the functional units like Fetch_Unit,
Exec_Unit, Retire_Unit. It specifies that all instructions use the Fetch_Unit for
2 units of time, the Exec_Unit for time depending on the type of instruction - 2
units for plus instruction while 6 units for multiply instruction and the Retire_Unit
for 2 units of time. The token action at the end of uses specifies that after the speci-
fied resources are used for the given time period, the function specified in the action
attribute is performed. The unit of time can be thought of as a machine clock cycle
although it is not imposed by Sim-nML. If an unit of time is same as machine clock

cycles, then we can estimate the number of clock cycles taken by the program.

2.2.4 Specification of register ports

Processors implement registers as register files with multiple read-only or write-only
ports. Access restrictions are imposed on registers within the register file depending
on hardware implementation. Superscalar processors allow multiple instructions to be
at the write-back stage. Two instructions with the same destination register should
block and execute in the program imposed order (WAW, Write-after-Write hazards).
Similarly, an instruction could read from a register which is being simultaneously
written by another instruction (WAR, RAW hazards). Multiple instructions however
could be allowed to read the same register as long as read ports are available. These

hazards can be modeled in Sim-nML with the uses attribute.

Assume Rfile is a register file with 32 registers, 32 bit each. Rfile is declared to

have 3 read ports and 2 write ports as follows.
reg Rfile[32, card(32)] ports = 3, 2
This would implicitly declare 2 resources Read Rfile[3], Write Rfile[2] which

11



represent the read and write ports of the register file Rfile with 3 and 2 instances
respectively. Apart from this, each register in the register file is assumed to have port
resource instances equal to the number of read ports of the register file, 3 in this case.

Assume an instruction with register R[0] as the source register. This could have
the following uses attribute

uses = Read Rfile, R[0]

This implies that two resources are to be acquired, one resource is Read_Rfile and
the other is any one of the port resource of register R[0]. Before reading the register
contents, any free read register port Read_Rfile is acquired followed by register R[0]
itself.

To model a write to register R[0], we could write

uses = Write_ Rfile, R[0][]

where a single instance of Write_Rfile port while all port resource instances of
register R[0] are acquired. This would prevent another instruction from accessing

register R[0] while it is being written.

2.3 Current Work

Following tools have been implemented till now in our environment.

Instruction Set Simulator Generator [15] takes Sim-nML specification and gen-
erates a performance simulator, which in turn takes a binary for that processor

and gives the performance based results.

Disassembler [5] takes Sim-nML processor specification and a binary for that pro-
cessor in ELF format and gives out the symbolic disassembly of the binary

which can be assembled back to the binary.

Compiler Back-End Generator [10] takes nML specification and generates LC-
C machine description which can used to generate the LCC compiler for the

specified processor.

Retargetable Functional Simulator [1] generates a functional simulator for a par-

ticular program to be run on a given processor description in Sim-nML.

The following tools are under development

12



Timing Simulator to analyze a particular program for timing performance and
resource usage. A compiled code simulator generator would generate a higher

performance timing simulator.

Assembler generator for a given processor described in Sim-nML is being developed.
This would generate an assembler, confirming to GNU assembler syntax, which

could produce FLF object code of the input assembly language program.

Compiler Back-End Generator to generate back-end for GNU-C by automatical-
ly generating GNU’s md file format description of a particular processor from
Stm-nML.

As part of this thesis work, Sim-nML specification for Motorola 68HC11[17] was
written. Its a simple 8-bit processor. This description was tested over the Retar-
getable Functional Simulator[1] and the generic disassembler]5]. Earlier, Sim-nML

specifications for PowerPc603 processor[1] and for Intel 8085 were written.

13



Chapter 3

Intermediate Representation of

Processor Models

One part of this thesis involves the development of an Intermediate Representation
(IR) of the processor model. We developed a tool, IR-Generator, which takes a proces-
sor specification written in Sim-nML language as input and produces corresponding
intermediate representation of the processor specification as output. In order to have
the intermediate representation usable by all front-end tools such as disassembler,
assembler, simulator etc., certain goals were setup behind the design of the IR as
listed below.

The IR should
e be as simple as possible.

e should not lose any useful information which is available in the original input

Sitm-nML specification.
e not have any unnecessary or redundant information.
e be easy to understand and use.
e be easy and efficient to retrieve the required information.
e be flexible and extensible.

e facilitate the design of various processor specific tools such as assembler, disas-

sembler, simulator, trace generator, compiler back-end generator etc.

14



3.1 Overview of Earlier Work on IR

The IR was designed and implemented as part of a master’s thesis by Nihal Chand
Jain[5]. The IR-generator so designed had 2 parts - the parser and the flattener. In
the first phase, the parser parsed the Sim-nML input specification and collected the

relevant information in tables. The flattener would then simplify the hierarchy.

In Sim-nML, information about an instruction is composed of fragments that are
distributed over the whole specification tree with the root node named as instruction.
To get information about one particular instruction, a complete path from root node
to a leaf node is traversed with proper parameter substitution at all levels of the tree.
If all such paths are traversed, then information about all possible instructions are
obtained. This process is called flattening of the tree. All references to or-rules are
eliminated from the or-rule and and-rule defintions. Elimination of or-rule parameters
from an and-rule definition results in generation of new and-rules. All attributes of
the and-rule remain unchanged in the new and-rules. To make the IR compact, these
new and-rules were treated as sub-rules of the original and-rule. In the IR, all sub-
rules of an and-rule were stored along with the and-rule itself. The references for the

attributes in the and-rule were not duplicated for sub-rules.

The syntar and image attribute defintions were then flattened with parameter
substitution and added to the syntax and image tables respectively. Corresponding to
each instruction node in the hierarchy all possible instructions that can be generated
were flattened and added to the syntax and image tables. The hierarchical information
was maintained using dot exprssions while the parameter details in syntax and image
fields of an instruction was represented using 3-tuples. So from a particular node
in the hierarchy tree, the images and syntaxes of each subtree could be listed. The
topmost node instruction would enumerate all possible syntaxes and images specified
for that processor. The parsed and flattened information extracted from Sim-nML
was then dumped onto tables in the output /R. The important tables include the
identifier table, and-rule table, memory table. Each of these tables had a unique key
to refer to each entry. The identifier table table had an id-key for each identifier. The

other tables referred to each identifier using this key.
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3.2 Shortcomings of Earlier IR

The earlier version of the IR[5] and Sim-nML was found to have the following short-

comings due to which they were extended.

e disallowed the use of expressions in format definitions in syntar and image

attributes.
e expressions were not allowed in bit selection operators.
e cach resource specified in Sim-nML was assumed to have a single instance.
e register and memory ports were not supported.
e the IR tables used multiple levels of indirection to retrieve information.

e information about the endian-ness of the generated IR could not be found in

an easy manner.

e flattening resulted in loss of information which were required by the tools during

instruction matching.

3.3 Design of an Intermediate Representation

A processor specification in Sim-nML language is a human readable text file. Several
constructs are provided in Sim-nML to enhance the clarity and readability of the
description. In order to retrieve the desired information from such a description, a
tool needs to perform parsing of input, variable substitution etc. An intermediate
representation helps in reducing such extra burden on the tool. Thus we need an
intermediate representation keeping previously mentioned goals in mind. In this

section, we will discuss the design of the IR in detail.

3.3.1 Simplification of Information by Substitution

The Sim-nML language allows the constant definition using let-specification (eg: let
REGS = 32). In the Sim-nML specification file, wherever a constant is referenced,
its value is substituted in the IR. For example, value of the constant REGS, i.e.
32, is substituted whereever REGS is used in the example given in figure 3.1. Thus
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constants are not referenced in the IR of the processor specification. Therefore all
such constant declarations can be eliminated from the IR. However, some constants
might be used by the tools, i.e., constants like byte_order may be used by tools
to define the byte ordering of a processor. So the IR retains information about all

constant declarations.

The Sim-nML language defines some basic data types and allows new data type
definitions using basic data types and previously defined user data types. Since all user
defined data types can be built using only basic data types, all variables are redefined
with only basic data types in the IR. Thus all user defined data type declarations can
be eliminated from the IR. For example in figure 3.1, index is used to refer to data

type card(2). All occurrences of index can be replaced by card(2).

There are some other constructs in Sim-nML which are simplified in the IR.
For example, names of Sim-nML memory variables, op-rules, attributes, parameters
in and-rules are replaced by unique identifiers and everywhere the corresponding
identifier is used for the reference. Sim-nML allows the use of identifier names for
op-rules even before they are defined. This necessarily requires a tool to do multiple
passes over the processor specification. Many of these identifiers are not significant at
all (for example, parameter names). In the IR, all significant identifiers are maintained
in an identifier-table and the index into the identifier-table is used for the reference.

It simplifies the information retrieval from the IR.

3.3.2 Representation of Attribute Definition

In the Sim-nML processor specification, memory variables, mode-rule and op-rule
declarations define attribute names and their definitions. The attribute definition is
either an expression consisting of various operands and operators, or a sequence of
statements separated by a semicolon. Each of these statements might be a simple
assignment statement or a conditional statement or a function call or a use of an

attribute from another related op-rule. (Refer to Appendix A for Sim-nML grammar)

For syntax and image attributes, definitions could be an expression which evaluates
to a string. The and-rule table entry corresponding to these op-rules would contain an
index into the syntaz table and image table respectively. In the IR, a record is stored
for each syntar and image attribute definition of an and-rule. The record includes a
string value corresponding to the expression. The string values are evaluated as in
figure 3.3.
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type index = card(2)
let REGS = 32
resource eunit[2]

reg PC[1, card(32)]
mem R[REGS, card(32)]
mem MEM[1024, card(8)]

mode SHORT = MEM | REG

mode MEM(i:index) = M[R[i]]
syntax = format("(R/%d)", i)
image = format("0%5b", i)

mode REG(i:index) = R[i]
syntax = format ("R%d", i)
image = format("1%5b", 1)

op instruction(x:instr_action)
syntax = x.syntax
image = x.image

op instr_action = alu_op | move_op

op alu_op(src:SHORT, dst:SHORT, aa:alu_action)

syntax = format("%s %s,%s", aa.syntax, src.syntax, dst.syntax)
image = format("1%b %b %b", aa.image, src.image, dst.image)

Figure 3.1: Sim-nML Program for a Hypothetical Processor

An exception to this encoding is when the syntaz/image attribute is encoded as
SYNIMGDOT-TYPE (refer Appendix B for IR types) (like P;.image or P;.syntax),

then the and-rule table entry for that op rule would contain the parameter number

i and the index into the attribute table corresponding to the defined attribute (refer
Appendix B).

For the example Sim-nML processor model in figure 3.2 the syntaz table entry for

move op rule would be

move %s{0.3}, %s{1.3}
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op alu_action = a_add | a_sub | jmp

op a_add()
syntax = "add"
image = "0"

op a_sub()
syntax = "sub"
image = "1"

op move_op = move | store

op move(src:SHORT, dst:SHORT)

syntax = format("move %s, %s", src.syntax, dst.syntax)
image = format("00%s%s", dst.image, src.image)

op store(src:SHORT, dst:SHORT)
syntax = format("move %s,%s", src.syntax, dst.syntax)
image = format("01%s%s", src.image<2..3>, dst.image)

op jmp(dst:card(32))
syntax = format("jmp %32b", dst)
image = format("101%32b", $+dst)

Figure 3.2: Sim-nML Program for a Hypothetical Processor: continued

where src is parameter 0 and dst is parameter 1. 3 stands for index into the attribute

table which corresponds to the attribute syntaz.

Similarly the syntax table entry corresponding to the MEM op rule (figure 3.2) is
(R%d{0.-1})

where 0 represents the first parameter (i) and since i is of a basic type (card in this
case), the second integer is -1.

In a similar way, the image table entry for jmp op rule would be

101%32b{-14.3}

where -14 indicates an index to the prefiz attribute table where the expression $§ +
src is stored. This expression is stored as a 3-tuple in the prefiz attribute table (and

hence the second entry is 3). $ is stored in the prefiz attribute table as offset into the
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e For a simple string it is placed as it is in the syntax/image table.

e If format declaration is used, for each format quantifier(like %s, %nb, etc.)
a 2-tuple of the form {X.Y} denoting the corresponding defining parameter
P; (where P; denotes the ith parameter starting from left of that and-rule) is
embedded in the syntaz or image table as follows.

1. if the parameter P; is a basic type(like int, card, bool) then X would
denote the parameter number ¢ while Y would be -1.

2. if the parameter P; is of an and-rule or or-rule type and is specified as
P;.image or P;.syntaz then X would denote the parameter number ¢ while
Y would be the index into the attribute table corresponding to the defined
attribute.

3. else if its an expression, then negative of X would be the index into the
prefiz-attribute table while Y denotes the number of such tuples.

Figure 3.3: Evaluating syntax and image attributes

string table, src is stored as PARA_TYPE with value 0 (parameter number).

The image table entry for move op rule would be

01%s{-8.6}%s{1.4}

where -8 denotes an index to prefiz attribute table where the expression src. image<2..3>

is stored as a 6-tuple which includes the parameter number, attribute index, and the

range parameters (2 and 3).

Other attributes in Sim-nML are used to hold semantic action associated with
the instruction. For example, to simulate the behavior of an instruction, attribute
definition of action attribute is used. A tool such as the instruction set simulator
could be made to run faster if such attribute definitions are represented differently.
Usually expressions inside an attribute definition are written in an infix notation using
priority and associativity rules to decode an expression uniquely. However, prefix or
postfix notation is better for faster evaluation as the priority and associativity becomes
implicit.

In the IR, prefix notation is used for all attribute definitions except syntaz and
image attributes. Using such a representation, tools like simulator, trace generator,

compiler back-end generator etc. can be made to run fast.
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3.3.3 Structure of the Intermediate Representation

The structure of the IR (refer Appendix B) should be capable of storing information
about constants, identifiers, or-rules, and-rules and information about attributes such
as syntaz, image, action etc. They are represented in various fixed sized and variable
sized data structures.

The IR structure is essentially a collection of various tables. Information of each
type is stored in a different table. The entries in most of these tables are fixed size
records. However, some tables hold variable size records. For an easy access to the
tables, a meta table is also added in the IR which contains the location and name of
all the tables. This simplifies the access mechanism for all tables. In brief, the IR

consists of the following tables

e Meta table . This is a table of contents having a road map to know about the

location and name of other tables in the IR.

e Constant table . This table holds all constant declarations in the Sim-nML
processor specification. For the example given in figure 3.1, this table will

contain the following.

(Name Type value)
REGS CONST_TABLE_INT_TYPE 32

e Resource table . This table holds the names of the resources which are de-
clared with resource declaration along with the number of instances of each
resource. For the example given in figure 3.1, this table will contain the follow-

ing.

(Name Num)

eunit 2

e Attribute table. This table holds the name of all distinct attributes used in
the input processor specification. For the example given in figure 3.1, this table

will contain the following.

(Name)
syntax

image
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e Identifier table . This table holds the name of all the identifiers (other than
those specified in the constant table and the resource table). An identifier
can be of MEM_TYPE, MODE_OR_TYPE, MODE_AND_TYPE, OP_-OR_TYPE,
OP_AND_TYPE etc. Depending on the types, the index into the corresponding
memory-table, and-rule table or or-rule table is stored. For the earlier example,

the following is the contents of the identifier table.

(Index Name Type)
0 PC MEM_TYPE
0 MEM MODE_AND_TYPE
1 REG MODE_AND_TYPE
0 SHORT MODE_OR_TYPE
2 instruction OP_AND_TYPE
1 instr_action OP_OR_TYPE
3 alu_op OP_AND_TYPE
3 move_op OP_OR_TYPE
2 alu_action OP_OR_TYPE
4 a_add OP_AND_TYPE
5 a_sub OP_AND_TYPE
6 move OP_AND_TYPE
7 store OP_AND_TYPE

e Memory table . This table holds the information about all memory variables
declared with a reg, mem or var declaration. It includes index into the identifier
table, type and size of the data and information to locate various attributes (of
the variable) stored in other tables. For the example shown in figure 3.1, the

following is the partial contents of the memory table.

(Name data-type type size valuel attribute)
R CARD_TYPE MEM 32 32 -
M CARD_TYPE MEM 1024 8 -

Note that instead of storing the name of memory variable (i.e. R), the index
into the identifier table is used.
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e Or-Rule table . This table holds the information about children of all or-rules.

The following is the partial contents of the or-rule table for the example shown

in figure 3.1
(Name total_children integer table index)
instr_action 3 97 (<AND_RULE_TYPE, 3(and table index)>,

Note that instead of storing the name of or op-rule variable (i.e. instr_action),

the index into the identifier table is used.

e And-Rule table. This table holds the information about all and-rules. It also
holds the information to locate the attribute definitions stored in other tables.
The following is the partial contents of the and-rule table for the example shown

in figure 3.2

(Name  total_para total_attr integer table index(attribute)

store 2 2 72(<syntax,7(syntax table offset),0(len)>, ..

integer table index(parameter))

78 (<OR_RULE_TYPE, O(or rule table offset), 0>, ...)

Note that instead of storing the name of and op-rule variable (i.e. store), the

index into the identifier table is used.

e Syntax table . This table holds the syntax record associated with the syntax
attribute definitions of all and-rules. It also holds the information to associate

the correspondence between the and-rule table and the syntazx table.

e Image table . This table holds the image record associated with the image
attribute definitions of all and-rules. It also holds the information to associate
the correspondence between the and-rule table and the image table. It holds

records similar to the syntazx table.

e String table . This table is used for storing variable length strings (null
terminated) such as identifier names. This table helps in having fixed size
entries in other tables. Identifier names and strings in other tables are stored

as offsets into the string table.
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e Integer table . This table is used for storing only integer values. These
integers are associated with other tables and represent different meanings in
different contexts. This table helps in having fixed size entries in other table.
For example in the or-rule table each child is represented with 2 values. The first
corresponding to whether the child is an OR-RULE-TYPE or AND-RULE-
TYPE and the second an index into the identifier table. The 2 values are stored
as 2 integers in the integer table. The number of such 2-tuples correspond to
the number of children for each or-rule type. Hence for n children there would
be 2n integer values stored in the integer table at the specified offset of this or

op-rule.

e Prefix-Attribute-Definition Table . This table holds the attribute defini-
tion of all the attributes (except syntar and image attributes) associated with
memory-variables and and-rules. These definitions are stored in prefix notation.
Other tables store the information to locate the appropriate attribute definition

correctly.

A header is prepended to the IR which consists of 2 fields: a four byte magic
number which is currently initialised to ”IRV2” and a field to indicate whether the

IR file format is in big-endian or little-endian format.
In Appendix B, we present the structure of each of the tables in detail.

The conversion from Sim-nML to the IR is done in the following two passes.

3.3.4 Pass 1: Macro Preprocessor

The IR does not retain any macro definitions from the source. For ease of implemen-
tation, macro processing is implemented as a separate pass over the Sim-nML speci-
fication file. This part has been done in another project by Y. Subhash Chandra[l].
The macro preprocessor takes the Sim-nML file with macro definitions as input and
produces a Sim-nML file without macros. It gathers all macro definitions and con-
verts them into equivalent m4[16] macro definitions. Then m/, a standard utility
available on Uniz platforms, is run on this file to get the Sim-nML file without any

macros.
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3.3.5 Pass 2 : Parsing the Hierarchy

Pass two takes a Sim-nML specification file without macros as input and produces

the specification in the IR. This pass proceeds in two phases.

e The first phase involves the parsing of input file. During the parsing, all relevant
information is gathered in appropriate data structures. Attribute definitions
for all attributes except syntar and image attributes are converted into prefix
notations during the parsing time. As soon as a definition is complete, it is
stored in the prefix-attribute-definition table.

e In the second phase, the syntax and image table entries are created with ap-

propriate 2-tuples added to define each parameter.

At the end of the second pass, all tables are written in the output file while updating

the meta table to include information relevant to other tables.
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Chapter 4

Cache Simulation Environment

As a second part of this thesis work, we implemented a Cache Simulation Environ-
ment for processor models described in Sim-nML. The motivation behind this is to
implement a complete processor simulation environment. The cache simulator pro-
vides a mechanism to study the caching policies of the processor being modeled. For
an application, the designer could use the simulator to study the trade-offs between
different caching policies. He could measure the preformance of the processor under
various caching models by varying parameters like cache size, cache line size, asso-
ciativity, replacement policy, effects due to unified or split cache model, effects of
multi-level caching etc. The designer can simulate to get parameters such as cache
hit rates, miss rates, conflict misses, invalid misses, compulsary misses etc. The ad-
vantage of providing such a mechanism is that the designer could simulate and study
the caching behavior of the application programs to be run on the processor being de-
signed much before the actual implementation. The benchmarks could then be used
to select an ideal caching policy. This mechanism provides a generic architecture
independent cache performance analysis.

Cache simulation can be done on-line or off-line. On-line cache simulation tries
to keep track of the instruction and data addresses depending on the caching policy
at run time. This involves running the application on a processor simulator and
tracing the instruction and data memory references. In off-line cache simulation, the
simulator could be used to generate a trace of the memory references. The trace could
then be analyzed for cache references with suitable optimizations applied to speed up
the process.

The Cache Simulator is built upon the Retargetable Functional Simulator - Fsimg
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developed by Y. Subhash Chandrall] as part of his master’s thesis. The Fsimg
generates a processor specific function simulator using the processor models written
in Sim-nML. The generated functional simulator helps in the study of functional
correctness of the design. It can also produce the instruction trace which can be used
by other tools in studying other aspects of the design.

As the functional simulator simulates the execution of the given program, calls
could be made using canonical functions (refer section 4.2). The instruction or data
addresses are passed as parameters to cache simulation routines which simulates the

caching behavior by keeping track of the addresses.

4.1 Cache Configuration

The Cache Simulator uses a configuration file wherein the designer can specify the
caching policies. The simulator then reads the file to create the specified caching

environment before actual simulation. Figure 4.1 gives a sample configuration file.

The following are the standard definitions used in the specification file.

e levels: specifies the number of levels of cache. The first is named as L1, second

as L2 and so on.
e addrlen: specifies the physical address length.

e Level: is used to denote which level is being described. Level n stands for the

nth level.

e type: denotes cache type being defined. It could be INSTRCACHE for
instruction cache or DATACACHE for data cache or UNIFIED for a unified

cache architecture.

e associativity: specifies the associativity of the cache being described. For a
direct mapped cache it is given as 1. For a n-way set associative cache it should

be n. A keyword FULL can be used for describing a fully associative cache.

e size n: specifies the cache size. n can be suffixed with K(kilobytes) or M(megabytes).

Without the quantifier, n is assumed to be in bytes.

e line n: specifies the cache line size. n can be suffixed with K(kilobytes) or

M(megabytes). Without the quantifier, n is assumed to be in bytes.
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e replace: denotes the replacement policy for set associative cache systems. The
policy can be FIFO(first in first out), RANDOM or LRU (least recently used).

e subblock: denotes the subblock size within a cache line.

e write: specifies the write policy. Could be WB WA (write through with write
allocate) or WB NWA (write back - no write allocate) or WT WA (write
through with write allocate) or WT NWA (write through with no write allo-

cate).
e writebuffer: specifies the size of the write buffer in bytes.

e nonblocking: specifies the number of outstanding misses that a cache can

satisfy.

4.2 Implementation

The Sim-nML[15] language allows the use of canonical functions which are user de-
fined functions. These are used to describe features which are not directly specified
within Sim-nML. These are entities whose semantics would be realised by the tool
that processes the Sim-nML description. They can be used to model the external
environment like memory systems, caches, interrupts etc. The cache simulator uses
2 predefined canonical functions - icache and dcache.
For data addresses we use

"dcache" (address, type)
where address is the effective memory address(data) while type could be READ or
WRITE. This is used to specify whether the access to the given addressis a read or a
write. The specification writer adds dcache calls in various action attribute definitions
in the Sim-nML processor specification.
For instruction addresses, we use a similar function call as follows.

"icache" (address, type)
where address is the effective memory address(instruction) while type could be READ
or WRITE. The icache canonical function call however cannot be buried in the Sim-
nML specification. So icache is called by the functional simulator engine which is

always aware of the instruction virtual addresses as specified in the input ELF binary.
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Another possibility is to embed icache as a canonical function call within the top level

instruction node’s action attribute.

The cache simulator is run on-line along with the functional simulator. The func-
tional simulator generator Fsimg converts the canonical functions as direct C calls
to user defined routines. During the functional simulator generation process, Fsimg
generates icache calls for each instruction. While running the simulator, the canoni-
cal functions, dcache and icache are called which simulate the cache system. During
the first call to icache or dcache the cache simulator reads the configuration file and
initializes the caching environment according to the specification. As each address is

passed, the cache behavior is simulated and the performance metrics are sampled.

The simulator samples the following parameters - HITS, MISSES, CONFLICT
MISSES, INVALID MISSES, COMPULSARY MISSES. During simulation it
internally keeps track of the above metrics. At the end of the simulation, the statistics
are dumped into log files. Statistics are maintained for each cache type at each cache

level. They can be used later by the designer for performance analysis.
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#Cache Configuration File

# Number of Levels
levels 3

# Address length
addrlen 32

# Description for L1 Cache
Level 1

# Description for InstrCache of L1

type INSTRCACHE

associativity 4

size 32K

line 16

replace FIFO

subblock 4 # subblock size

write WB WA # Write Back, Write Allocate

writebuffer 32 # size of write buffer

nonblocking 2  # specifies number of outstanding misses

# Description for DataCache of L1
type DATACACHE

associativity 4

size 32K

line 16

subblock 4

replace FIFO

write WB WA

writebuffer 32

nonblocking 2

Figure 4.1: Sample Cache Simulation specification file

30




# Description for L2 Cache
Level 2

# Description for InstrCache of L2

type INSTRCACHE

associativity 8

size 512K

line 32

subblock 8

replace LRU

write WT NWA # Write through, No Write Allocate

# Description for DataCache of L2
type DATACACHE

associativity 8

size 512K

line 32

subblock 8

replace LRU

write WT WA

# Description for L3 Cache
Level 3

# Description for Unified L3 Cache
type UNIFIED

size 2M

line 64

associativity FULL

replace RANDOM

subblock 16

write WT WA

Figure 4.2: Sample Cache Simulation specification file: continued
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Chapter 5

Program Analysis and Profiling

through Code Instrumentation

5.1 Introduction

Program analysis tools are extremely useful for understanding program behavior.
Computer architects use such tools to evaluate how well the program performs on
new architectures. Software writers need such tools to analyze their programs and
identify critical pieces of code to optimize for efficiency. Compiler writers use such
tools to find out how well their instruction scheduling or branch prediction algorithms
are performing. As the third part of this thesis work, we implemented a mechanism
to perform analysis and profiling of application programs through the technique of
code instrumentation. This technique was inspired from ATOM]13] which is a frame-
work for building wide range of customized program analysis tools. The Retargetable
Functional Simulator[1] is used as a platform for performing program analysis.

We have tried to build a mechanism that provide architects and software devel-
opers to implement various profiling policies. These include basic block counting,
instruction counting, branch behavior etc. In our approach, the profiling of code is
accomplished by instrumenting application code at various points. For example, to
count the basic blocks traversed at run time, a counter could be placed at the end of
each basic block. Similarly to analyze branch behavior, routines could be added after

conditional branch instructions.

We have tried to provide a common infrastructure using which users can build
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custom profiling tools. In our approach, the program is viewed as a collection of
procedures each containing a collection of basic blocks each of which comprises of
processor instructions. A user defined procedure for instrumenting the application
program can be inserted before or after an instruction, a basic block, or a procedure.
This model provides a generic processor profiling mechanism. Using such an approach,
a custom profiling tool can be constructed. The Sim-nML language could be used to
model a processor from which custom architecture independent profiling tools can be

constructed.

The Retargetable Functional Simulator - Fsimg, generates a functional simulator
of a given processor for a particular program (compiled code simulator). For each
instruction in the input processor specification, a function is generated which is called
during the simulation process. Each such function simulates the semantic action
of that instruction. Code instrumentation can be done by inserting calls to the
user defined procedures within each such function. The functional simulator engine
maintains a table of function pointers which points to the functions each of which
simulates a processor instruction. For each instruction in the input program, a pointer
to the corresponding function for that instruction is maintained. Instrumentation can
be done between such instruction calls. This allows instrumentation at instruction
boundaries of the input binary. It can also be used for basic block profiling as well as

the procedure level profiling.

The user defines the tool specific parts in a predefined Instrument function. A
set of predefined routines - an application programming interface (API) is provid-
ed which allows the user to add his procedure calls before or after instructions. A
set of Basicblock analysis routines are provided for profiling at the level of proce-
dures, basic blocks or instructions within basic blocks. The profiling takes place in
2 phases. In the first phase, the user adds his instrumentation routines through the
instrumentation- A PI. During generation of the functional simulator, the API calls
are used to instrument the application program at appropriate places in the gener-
ated simulator. In the second phase, the user runs the simulator which executes the
instrumented code while simulating the input program. This would then provide the

profiling information.
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5.2 Application Programing Interface - API

In order to perform code instrumentation, we provide the following instrumentation-

api to the user.

The api currently provided are as follows:

1. AddCallFuncbyName(iname, type, func, pos): Fsimg defines a function
for each instruction in the input processor specification in Sim-nML. AddCall-
FuncbyName adds the user procedure func within the function defintion corre-
sponding to tname. Thus this function can be used to instrument a particular

processor instruction in the application program whenever it is executed.

e iname: could be the name of an instruction or a node in the Sim-nML

hierarchy.
e type: the type could be INSTR_TYPE or NODE_TYPE to specify

whether iname is of instruction or node type.
e func: is the name of the user routine which is to added.

e pos: could be BEFORE or AFTER to specify whether func has to be

executed before or after the execution of iname in the functional simulator.

2. AddCallFunc(inst, func, pos): The functional simulator engine maintains
for each instruction in the input program, a function pointer to the defining
function. AddCallFuncis used to add func before or after the instruction address
inst in the input program. Thus this function can be used to instrument the
application program for a specifc address, i.e, whenever an instruction is fetched

from the address inst.

e inst - instruction address: Each instruction in the input program has an
instruction address. This is the virtual address of the instruction in the
input program.

e func: is the name of the user routine which is to added.

e pos: could be BEFORE or AFTER to specify whether func has to be

instrumented before or after inst.

3. AddTrailerFunc(func): The user can add any routines(func) to be executed

after simulation. Fsimg adds these routines after the simulation engine. They
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can be used by the user to collect the final statistics, dump profiling information

etc.

4. GetFirstProc: Used to get the first procedure as listed in the ELF tables in

the program.
5. GetNextProc(p): Gets the next procedure after the current procedure p.
6. GetFirstBlock(p): Gets the first basic block in procedure p.
7. GetNextBlock(b): Gets the next basic block after the current block b.

8. GetLastInst(b): Gets the last instruction of the basic block b.

Section 5.3 discusses the usage and implementation details.

5.3 Implementation

The instrumentation routines are added in 3 files - instrument.c, bblockanal.c, user-
funcs.c. The first file contains a call to a predefined routine Instrument in which the

user adds the api calls to add functions after particular instructions.

Suppose the user wants to count the occurrences of add instructions executed in the

program, he uses

void Instrument ()

{
AddCallFuncbyName ("add", INSTR_TYPE, "addcounter", AFTER);

AddTrailerFunc("printaddcnt") ;
Here a user defined function addcounter is added within the add instruction defintion

at its end. The file userfuncs.c contains the user defined routines. The function

addcounter could be defined as follows:

long addcnt = 0;
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void addcounter ()

{

addcnt++;

where addcnt is a global counter. AddTrailerFunc is used to add the user function

printaddcent at the end of simulation which could be defined as follows

void printaddcnt ()
{

printf("num of add instrucions executed : %d\n", addcnt);

The file bblockanal.c contains the instrumentation routines associated with basic
block related analysis. It contains a call to a predefined routine BasicblockAnal in
which the user adds the api calls to add functions relating to basic block profiling.
Suppose the user wants to count the number of basic blocks that are traversed during

program execution, he uses

void BasicblockAnal()

{
Proc *p;
Block *b;
Inst inst;
for (p = GetFirstProc(); p; p = GetNextProc(p)) {
for (b = GetFirstBlock(p); b; b = GetNextBlock(b)) {
inst = GetLastInst(b);
AddCallFunc(inst, '"countbb", AFTER);
}
}
AddTrailerFunc("printbb") ;
}
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The user defined function countbb is added after the last instruction in each basic
block. The user might want to call different functions at the same address boundary.
Multiple user defined instructions can be engineered at address boundaries by calling

AddCallFunc with different function names at the same instruction address.

For basic block oriented profiling, the Fsmig analyzes the input program to obtain
basic blocks in the input program. A basic block is a sequence of consecutive state-
ments in which flow of control enters at the beginning and leaves at the end without
halt or possibility of branching except at the end. A basic block is obtained using an

algorithm shown in figure 5.1.

1. Determine the set of leaders, the first statements of each basic block.
2. The rules used are.

e the first statement is a leader.

e any statement that is the target of a conditional or unconditional goto is
a leader.

e any statement that immediately follows a goto or conditional goto state-

ment is a leader.

3. For each basic block, its basic block consists of the leader and all statements
up to but not including the next leader or end of the program.

Figure 5.1: Algorithm to construct basic block

This is done by providing the Fisimg with the conditional and unconditional control
flow instructions(branch/call/jmp) of the processor instruction set. Since Sim-nML
is a hierarchical description, if the hierarchy allows, we can provide the top level
branch node instead. The actual branch instructions can then be enumerated from
this. Once a list of branch instructions are enumerated, we split the input instruction
stream at procedure boundaries. For a given procedure, the basic block boundaries
are marked just after every branch instruction.

To calculate the branch target addresses, a configuration file has to be provided
which specifies the relevant branch instruction with the branch target calculation
mechanism. A sample configuration is shown in figure 5.2

In the configuration file, $ refers to the current instruction address, %n refers to
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# configuration file for branch/jump target specification

#instruction name target address
b $ + (%0 << 2)
ba %0 << 2

Figure 5.2: Branch target specification file

the n'” parameter of the instruction specification in Sim-nML *and’ rule. Parameters

are counted from left to right starting from 0.

During generation, Fsimg calls Instrument to add instrumentation routines. It
then performs basic block analysis where procedures and basic blocks within each
procedure are enumerated. It then calls BasicblockAnal to add the relevant user de-
fined routines. The Fsimg[l] implements each instruction in the Sim-nML processor
description as a function definition. The functional simulator engine contains a ta-
ble of pointers to functions corresponding to the instructions in the input program.
AddCallFuncbyName essentially modifies the function defintion for the relevant in-
struction by adding a call to the user defined routine. AddCallFunc modifies the
table of function pointers by adding a call to an alternate routine which embeds a
call to the relevant user defined routine along with the call to the actual instruction
definition function. During simulation, the functional simulator simulates the input
program by calling the routines corresponding to each instruction. The profling is

done by calling the user engineered routines.
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Chapter 6

Motorola 68HC11 Specification in
Sim-nML

In this chapter, we briefly survey the Motorola 68HC11[17] processor architecture and

its Stm-nML specification.

The Motorola 68HC11, is a family of micro-controller units with a simple 8-bit

processor core. The programmer’s model consists of the following

Accumulators(A, B and D): A and B are two general purpose 8-bit accu-
mulators used to hold operands and results of arithmetic calculations and data
manipulations. Some instructions treat the combinations of these two as a 16-bit
double accumulator (accumulator D). The higher order byte of D is equivalent

to accumulator A while the lower order byte corresponds to the accumulator
B.

Index Registers (X and Y): The 16-bit index registers X and Y are used for
index addressing mode. In the indexed addressing mode, the effective address is
obtained by adding the contents of a 16-bit index register to an 8-bit immediate

offset in the instruction.

Stack Pointer (SP): The M68HC11 CPU supports a program stack which
may be located anywhere in the 64-Kbyte address space and may be of any size

up to the amount of memory available in the system.

Program Counter (PC): The program counter is a 16-bit register that holds

the address of the next instruction to be executed.
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e Condition Code Registers (CCR): This register contains five status indica-
tors, two interrupt masking bits, and a STOP disable bit. The five flags reflect
the results of arithmetic and other operations. The five flags are half carry (H),

negative (N), zero (Z), overflow (V) and carry/borrow (C).
e Addressing Modes:

1. Immediate. The actual argument is contained in the byte(s) immediately

following the instructions.

2. Extended. The effective address of the operand appears explicitly in the
two bytes following the opcode.

3. Direct. The least significant byte of the effective address of the instruction
appears in the byte following the opcode. The higher order byte of the

effective address is 0.

4. Indexed (INDX, INDY). The effective address is the contents of either
of the index registers X, Y plus a fixed 8-bit unsigned offset contained in

the instruction.

5. Inherent. Contains implicit operands. For example, the instruction ABA
adds the contents of accumulator A with accumulator B and stores the

results in A.

6. Relative. For branch instructions, the target address is the address of the

next instruction plus a 8-bit signed offset specified in the instruction.

6.1 Overview of the Specifications

We have specified the Motorola 68HC11 specification in Sim-nML. A simple resource
usage model has been assumed. A single instance of a resource exec_unit is declared.
Any instruction in execution acquires this resource for the time period depending on
the number of clock cycles required for execution of that instruction.

The instruction set of the 68HC11 CPU is organized in a hierarchy in the Sim-
nML specification. The description hierarchy is as follows. Top level node is the
instruction. Instruction can be arithmetic, stack control, program control, conditional
instructions, load-store instructions. Arithmetic instructions can furthur be classified

into add-subtract, multiply-divide, shift-rotate, data test bit instructions. Program
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control instructions consist of branch, jump, subroutine calls etc. These instructions
operate on both 8-bit and 16-bit data. Instructions involving external interfaces like

interrupts, serial/parallel data transfers have not been specified.
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Chapter 7
Results and Conclusion

In this chapter we discuss a few sample cache profiling and code instrumentation
mechanisms along with their performance impacts on the speed of the functional

simulator.

7.1 Results

The caching and profiling mechanisms were tested on PowerPC603 Sim-nML input

specification. The test cases were run on an

e Intel P-II 233MHz, a little-endian processor with 32MB RAM running GNU-
Linux Kernel 2.2.13.

Following are the test programs written in C. The PowerPC603 ELF binaries

were created using the GNU-C cross-compiler.

e mmul.c : Matrix multiplication program. This program initializes two integer

matrices of 100x100 size and multiplies these two.

e bsort.c : Bubble sort program. This program initializes an array of 1500
integers in descending order and sorts them to ascending order using bubble

sort algorithm.

e ¢s.c: Quick sort program. This program initializes array of 1,00,000 integers in

descending order and sorts them to ascending order using quick sort algorithm.
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e fmmul.c : Matrix multiplication for floating-point numbers. Initializes and

multiplies two floating point matrices of size 100x100.

e nqueen.c : This program finds all the possible ways that N queens can be
placed on an NxN chess board so that the queens cannot capture one another.
Here N is taken as 12.

The total number of dynamically executed instructions during the simulation of
each of these programs are given in the table 7.1 and the performance of the functional

simulator without the cache simulation and profiling is given in table 7.2.

‘ Program ‘ Total No. of Instructions ‘

mmul.c 91,531,966
bsort.c 60,759,034

gs.c 80,773,862
fmmul.c 92,131,966
nqueen.c 204,916,928

Table 7.1: Total number of instructions simulated for test programs.

‘ Program ‘ Total Time in Seconds ‘ Instructions per second ‘

mmul.c 62 1,476,322
bsort.c 106 573,198
gs.c 109 741,044

fmmul.c 64 1,439,549
nqueen.c 225 910,741

Table 7.2: Performance Results of the functional simulator

7.1.1 Caching Example

We have used the sample configuration file as specified in the figure 7.1 and the

corresponding output metrics measured are given in table 7.3. In table 7.3,

e (Cache type indicates whether the cache is a data or instruction cache.
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e Level denotes the cache level in the cache hierarchy.

e Hits denote the % of the total memory access that resulted in a cache hit.

e Misses denote the % of the total memory access that resulted in a cache miss.

e Conflict Miss denote the % of the total memory access that resulted in a conflict

miss (i.e, the cache entry was marked valid) in the cache.

e Invalid Miss denote the % of the total memory access that resulted in a invalid

miss (i.e, the cache entry was marked invalid) in the cache.

o Compulsary Miss denote the % of the total memory access that resulted in a

compulsary or cold miss (i.e, the address was being accessed for the first time)

in the cache.

Program | Cache type | Level | Hits | Misses | Conflict Invalid | Compulsary
(%) (%) | misses(%) | misses(%) | misses(%)
mmul.c Data 1 98.5 1.3 1.3 0 .02
Instr 1 99.95 | 0.04 0.04 0 0
bsort.c Data 1 99.9 | 0.001 0.001 0 0
Instr 1 99.9 | 0.001 0.001 0 0
gs.c Data 1 99.75 | 0.24 24 0 0.01
Instr 1 99.89 | 0.1 0.1 0 0
fmmul.c Data 1 98.5 1.3 1.3 0 0.02
Instr 1 99.9 | 0.04 0.04 0 0
nqueen.c Data 1 99.9 0 0 0 0
Instr 1 99.9 0 0 0 0

Table 7.3: Results of profiling output for test programs.

The performance of the functional simulator with on-line cache simulation given

in table 7.4.

7.1.2 Profiling Example

We have implemented a simple profiling tool which counts the number of basic blocks

that are traversed at run time. At the same time, the number of PowerPC addi
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#PowerPC603 Cache Configuration

# Number of Levels
levels 1

# Address length
addrlen 32

# Description for L1 Cache
Level 1

# Description for InstrCache of L1
type INSTRCACHE
associativity 2

size 8K

line 32

replace LRU

write WB WA # Write Back, Write Allocate

# Description for DataCache of L1
type DATACACHE
associativity 2

size 8K
line 32
replace LRU
write WB WA

Figure 7.1: PowerPC603 Cache configuration file

‘ Progranl‘ Total Time in Seconds ‘Instmjcﬁons per second ‘shnwdo“nlfactor‘

mmul.c 549 166,72 8.8
bsort.c 546 111,280 5.1

gs.c 809 99,844 7.4
fmmul.c 522 176,498 8.1
nqueen.c 1138 180,06 5.0

Table 7.4: Performance results of cache profiling for test programs.
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instructions that are executed is also found. The code instrumentation technique
that is used is specified in section 4.2.

The profiling output is given in table 7.5.

Program Total No. of Total No: of
basic block traversed | addi instructions executed
mmul.c 2081207 1030305
bsort.c 4506008 2253005
gs.c 7315513 242144
fmmul.c 2081207 1110305
nqueen.c 40030204 60766515

Table 7.5: Profiling output for test programs.

The performance of the functional simulator with this profiling is given in table

7.6.

‘ Program ‘ Instructions per second ‘ Slowdown factor ‘

mmul.c 1,452,888 1.01
bsort.c 573,198 1
gs.c 734,307 1.01
fmmul.c 1,439,549 1
nqueen.c 898,758 1.01

Table 7.6: Performance results of profiling of test programs.

7.1.3 IR-Generator

The IR fulfills all the goals that were setup behind the design and extension of the
IR. The shortcomings of the earlier /R were removed.

The IR-generator was tested for processor models of PowerPC603, Motorola 68HC11
& Intel 8085. 1t was run on Linuz/Intel and Solaris/Ultrasparc platforms.
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7.2 Conclusions

In this thesis we have discussed the Sim-nML language for modeling processors at in-
struction level. It is powerful enough to specify any modern processor with pipelines,
branch prediction, etc. at the instruction level. We have also discussed the inte-
grated environment where generic tools - assembler, simulator, compiler, etc. can be

automatically generated using Sim-nML processor models.

As part of this thesis work, we have extended the IR for processor description
using Sim-nML language. The IR simplifies the development of tools like compiler
back-end generators, assemblers, disassemblers, simulators etc. An IR generator has
been developed which takes the Sim-nML specification as input and produces the IR
of the processor specification. We have also implemented a mechanism for program
analysis. This includes a mechanism for cache simulation and an infrastructure for
program profiling through code instrumentation. These tools help in generating a
processor independent platform for program analysis. It was implemented over the
Retargetable Functional Simulator - Fsimg. The tools were tested for the PowerPC603

specification.

7.3 Future Work

We visualize the following that can be used to build a complete processor simulation
environment.

A complete simulation of the external environment of the processor can be done.
This would involve developing separate simulation modules for memory, cache system-
s, bus etc. which would interact with the processor functional or timing simulator.
The functional or timing simulator would then only simulate the processor. This

would make the system more modular, scalable and flexible.
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Appendix A
Grammar of Sim-nML Language

Following is the Context Free Grammar for Sim-nML language.

MachineSpec :
| MachineSpec LetDef
| MachineSpec TypeSpec
| MachineSpec MemorySpec
| MachineSpec RegisterSpec
| MachineSpec VarSpec
| MachineSpec ModeSpec
| MachineSpec OpSpec
| MachineSpec ResourceSpec
| MachineSpec ExceptionSpec

| MachineSpec error

LetDef : LET ID
’=7 LetExpr
ResourceSpec: RESOURCE
Resourcelist
Resourcelist:
ID
| ID [’ CARD_CONST ]’

20



| ResourcelList ’,’ ID
| Resourcelist ’,’ ID ’[’> CARD_CONST °’]°
ExceptionSpec: EXCEPTION
IdentifierList
IdentifierList:
ID
| IdentifierList ’,’ 1ID
TypeSpec: TYPE ID
’=’ TypeExpr
TypeExpr: BOOL
| INT ’(’ LetExpr’)’
| CARD ’(’ LetExpr’)’
| FIX ’(’ LetExpr ’,’ LetExpr’)’
| FLOAT °’(’ LetExpr ’,’ LetExpr’)’
| ’[’ LetExpr DOUBLE_DOT LetExpr ’]°
| ENUM ’(’ IdentifierList ’)’
LetExpr: Expr
MemorySpec: MEM ID
’[? MemPart ’]’ OptionalMemAttrDefList
RegisterSpec: REG ID
>[? RegPart ’]’ OptionalMemAttrDefList

VarSpec: VAR ID
>[’ RegPart ’]’
MemPart: LetExpr ’,’ Type
| LetExpr

ol



RegPart: LetExpr ’,’ Type
| Type
Type : TypeExpr
| ID
OptionalMemAttrDefList:
| MemAttrDefList

H

MemAttrDefList:
MemAttrDef
| MemAttrDefList MemAttrDef
MemAttrDef:
VOLATILE ’=’ LetExpr
| PORTS ’=’ CARD_CONST ’,’ CARD_CONST
| ALIAS ’=’ MemLocation
| INITIALA ’=’ LetExpr
| USES ’=’ UsesDef
MemlLocation :

ID Opt_Bit_Optr
| ID ’ [’ Expr ’]’ Opt_Bit_Optr
ModeSpec: MODE ID
ModeSpecPart
ModeSpecPart: AndRule OptionalModeExpr AttrDeflList
| OrRule

OptionalModeExpr :
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OpSpec: 0P ID
OpRulePart
OpRulePart: AndRule AttrDeflist
| OrRule
OrRule: ’=’
Identifier_Or_List
Identifier_Or_List:
ID
| Identifier_Or_List
AndRule: ’(’ ParamList ’)’

b

ParamList:
| ParamListPart
| ParamList ’,’ ParamListPart
ParamListPart:
ID
’:? ParaType

ParaType : TypeExpr
| ID

H

AttrDeflList:
| AttrDeflList  AttrDef
AttrDef
ID ’=’ AttrDefPart
| SYNTAX ’=’ AttrExpr
| IMAGE ’=’ AttrExpr

93
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| ACTION ’=’ ’{’ Sequence ’}’
| USES ’=’ UsesDef
AttrDefPart:
Expr
| °{’ Sequence ’}’

H

AttrExpr :
ID ’.’ SYNTAX
| ID ’.’ IMAGE
| STRING_CONST
| FORMAT °(’ STRING_CONST °’,’ FormatIdlist ’)’
FormatIdlist:
FormatId
| FormatIdlist °’,’ FormatId
FormatId:
ID
| ID ’.’ IMAGE OptBitSelect
| ID ’.’ SYNTAX
| DOLLAR ’+’ ID
OptBitSelect:
| BIT_LEFT CARD_CONST DOUBLE_DOT CARD_CONST BIT_RIGHT
Sequence:
| StatementList ’;°
StatementList:
Statement
| StatementList ’;’ Statement
Statement:
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| ACTION

| ID

| ID ’.’ ACTION

| ID °.° ID

| Location ’=’ Expr

| ConditionalStatement
| STRING_CONST ’(’ ArgList ’)’
| ERROR ’(’ STRING_CONST ’)°

Arglist :
| Expr
| ArgList ’,’ Expr
Opt_Bit_Optr :
| BIT_LEFT Bit_Expr DOUBLE_DOT Bit_Expr BIT_RIGHT
Location :
ID Opt_Bit_Optr
| ID ° [’ Expr ’]’ Opt_Bit_Optr
| Location DOUBLE_COLON Location
ConditionalStatement:
IF Expr THEN Sequence OptionalElse  ENDIF
| SWITCH ’(’ Expr ’)’ ’{’ CaselList ’}’
OptionalElse:
| ELSE Sequence
CaseList:
CaseStat
| CaselList CaseStat
CaseStat:

Case0ption ’:’ Sequence

)



b

CaseOption:

Expr :

CASE Expr
| DEFAULT

COERCE ’ (’ Type ’,’

Expr’)’

| FORMAT ’(’ STRING_CONST ’,’ ArgList
| STRING_CONST ’(’ ArgList ’)’
| ID .’ SYNTAX

| ID ’.’ IMAGE

| ID >.’ ID

| Expr DOUBLE_COLON Expr

| ID °[’ Expr ’]’ Opt_Bit_Optr
| ID Opt_Bit_Optr

| Expr ’+’ Expr

| Expr -’ Expr

| Expr %’ Expr

| Expr ’/’ Expr

| Expr ’%’ Expr

| Expr DOUBLE_STAR Expr

| Expr LEFT_SHIFT Expr

| Expr RIGHT_SHIFT Expr

| Expr ROTATE_LEFT Expr

| Expr ROTATE_RIGHT Expr

| Expr ’<’ Expr

| Expr ’>’ Expr

| Expr LEQ Expr

| Expr GEQ Expr

| Expr EQ Expr

| Expr NEQ Expr

| Expr ’&’ Expr

| Expr "’ Expr

26
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| Expr ’|’ Expr

| !’ Expr

| 7’ Expr

| ’+’ Expr Y%prec ™’

| ’-? Expr Y%prec ™’

| Expr AND Expr

| Expr OR Expr

| > Expr ’)’

| FIXED_CONST

| CARD_CONST

| STRING_CONST

| DOLLAR

| BINARY_CONST

| HEX_CONST

| IF Expr THEN Expr OptionalElseExpr  ENDIF

| SWITCH °’(’ Expr ’)’ ’{’ CaseExprList ’}’

Bit_Expr :
ID
| Bit_Expr ’+’ Bit_Expr
| Bit_Expr ’-’ Bit_Expr
| Bit_Expr ’#*’ Bit_Expr
| Bit_Expr ’/’ Bit_Expr
| Bit_Expr ’\%’ Bit_Expr
| Bit_Expr DOUBLE_STAR Bit_Expr
| >’ Bit_Expr ’)°
| FIXED_CONST
| CARD_CONST
| STRING_CONST
| BINARY_CONST
| HEX_CONST
CaseExprList:
CaseExprStat
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| CaseExprList  CaseExprStat
CaseExprStat:
CaseOption ’:’ Expr
OptionalElseExpr:
| ELSE Expr

UsesDef:
UsesOrSequence
| UsesDef ’,’ UsesOrSequence
UsesOrSequence:
UsesIfAtom
| UsesOrSequence ’|’ UsesIfAtom
UsesIfAtom:
UsesIndirectAtom

| IF Expr THEN UsesIfAtom OptionalElseAtom ENDIF

H

OptionalElseAtom :
| ELSE UsesIfAtom

UsesIndirectAtom:

UsesCondAtom

| ID ’.’ USES

| >’ UsesDef )’

| UsesLocationList AND ID .’ USES

| UsesLocationList AND ’(’ UsesDef )’
UsesCondAtom:

UsesAndAtom

| °{’ Expr ’}’ UsesAndAtom

o8



UsesAndAtom :

UsesLocationlList UsesActionList

b

UsesActionList :
| ActionTimeList OptionalAction
| TimeActionList OptionalTime
ActionTimeList :
)#) ){) Expr )})
| ActionTimeList ’:’ UsesActionAttr ’#’ ’{’ Expr '}’
TimeActionList :
7:? UsesActionAttr
| TimeActionList ’#’ ’{’ Expr ’}’ ’:’ UsesActionAttr
OptionalAction :
| ?:? UsesActionAttr
OptionalTime
| T ){) EXpI‘ ;};
UsesActionAttr:
ID
| ACTION
UsesLocationList :
UsesLocation
| UsesLocationList °’&’ UsesLocation
UsesLocation :

ID Opt_Bit_Optr

| ID [’ Expr ]’ Opt_SecDim Opt_Bit_Optr
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Opt_SecDim :
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Appendix B

File Format of Intermediate

Representation

In this appendix, we will discuss the layout of the file for the intermediate represen-
tation. The file consists of two parts. The first part is the IR header and the second
part is essentially a collection of various fixed or variable size tables where the name
of each table is fixed. A table, named as meta table, is always the first table. All
other tables can reside anywhere in the second part and can be located using the

meta table. The following are the tables available presently in the IR.

e “META TABLE”

e “CONSTANT TABLE”
e “ATTRIBUTE TABLE”
e “RESOURCE TABLE”
e “IDENTIFIER TABLE”
e “MEMORY TABLE”

e “AND RULE TABLE”
e “OR RULE TABLE”

e “SYNTAX TABLE”
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e “IMAGE TABLE”
e “STRING TABLE”
e “INTEGER TABLE”

e “PREFIX ATTRIBUTE DEFNITION TABLE”

Each table consists of an array of records. Each record in a table constitutes of
various fields. The fields might be stored either in little-endian or big-endian encoding

using the native data storage order of the host processor.

e Convention : Each table is described by defining its record format. We have
used a C-like struct definition to describe a record. Refer to tables.h for complete
definition for the structures and predefined constants. In describing the record,

following data types are being used.

uint8 = unsigned char - 8 bits
uintl6 = wunsigned integer - 16 bits
uint32 = unsigned integer - 32 bits
int8 = signed char - 8 bits
int16 = signed integer - 16 bits
int32 = signed integer - 32 bits

B.1 IR Header

The IR header contains 2 fields as shown below. The first is a magic number. For the
current version it is set to "IRV2”. The second field is used to denote the endianness
of the host processor on which the IR was created. The possible values for endian are
LITTLE_END and BIG_END, two constants defined in tables.h.

typedef struct {
uint8 magic[4];
uint8 endian;

} IR_Header;
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B.2 Meta Table

The Meta table holds the table of contents for all the tables which are present in the
file. Each record of the meta table stores the information to locate a table. Each

record has the following format.

typedef struct {
uint8 table_name[32];
uint32 table_size;
uint32 table_offset;
uint32 total_records;
uint32 record_size;

} MetaTable_t;

e table name : This field stores the fixed name of a table which is a 32 byte
null terminated string. Name of all the tables are :META _TABLE, CON-
ST _TABLE, ATTRIBUTE_TABLE, RESOURCE_TABLE, IDENTI-
FIER TABLE, MEMORY TABLE, AND RULE TABLE, OR_RULE TABLE,
SYNTAX TABLE,IMAGE _TABLE STRING _TABLE, INTEGER _TABLE,
PREFIX_TABLE. The first entry in the table is for META TABLFE itself.

e table size : This field holds the size (in bytes) of a table.

e table offset : This field holds the starting offset (in bytes) of a table in the file
from the beginning of the file.

e total_record : This field holds the number of fixed size records stored in a table.
Tables with variable size records like string table, integer table have this field
set to 0.

e record size : This field holds the size of a fixed size record (in bytes) in a table.
Tables with variable size records like string table and integer table have this field
set to 0.
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B.3 Constant Table

Each record of the constant table holds the informations about the constant expres-

sions in the following format.

typedef struct {
uint32 id_name;
int8 val_type;
int32 value;

} ConstTable_t;

e id_name: This field holds the index into the string table. The string table holds
null terminated strings. Thus this field represents a reference to the constant

name.

e val_type: This field indicates the type of the value associated with the constant.
Currently it can be one of the two constants CONST_TBL_INT TYPE,
CONST_TBL_STRING_TYPE as defined in tables.h

e value: If the val_type field represents CONST_TBL_INT_TYPE, then this
field holds the corresponding nt32 value. If the waltype is
CONST_TBL_STRING_TYPE, then this field holds the index into the

string table.

B.4 Resource Table

Entries of this table hold the information about resource. Each entry indicates the
resource name and the number of instances of each resource. Each record has the
following format.

typedef struct {
uint32 res_name;
uint32 res_num;

} ResourceTable_t;
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e res_name : This field holds the index into the string table where the resource

name is stored.

e res_num : This field stores the number of instances of this resource (> 1).

B.5 Identifier Table

This table holds the information about all the identifiers used in the processor speci-
fication file (other than those specified in the constant table and the resource table).

Each record has the following format.

typedef struct {
uint32 id_ptr;
uint32 id_name;
uint32 id_type;
} Identifier_t;

e id_name : This field holds an index into the string table. The string table holds

a null terminated string at this index which is the name of the identifier.

e id_type : This field indicates the type of the identifier and may have one of the
following values as defined in tables.h.

UNDEFINED Undefined Identifier
MEM_TYPE Memory Variable
MODE OR_TYPE Mode Or Rule
MODE_AND _TYPE Mode And Rule
OP_OR_TYPE Op Or Rule type.
OP_AND_TYPE Op And Rule type.
EXCEPTION _TYPE Exception

e id_ptr : This field holds the pointer to other tables depending on id_type value
assigned to the identifier.
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MEM_TYPE: index into the memory table
MODE_OR_TYPE: index into the or rule table
MODE_AND_TYPE: index into the and rule table
OP_OR_TYPE: index into the or rule table
OP_AND _TYPE: index into the and rule table

B.6 Attribute Table

Each entry of this table holds the name of an attribute. Each record has the following

format.

typedef struct {
uint32 attr_name;

} Attribute_t;

e attr_name : This field holds an index into the string table where the attribute

name is stored

B.7 Memory Table

Each entry of this table holds the information about a memory variable specified with
reg or mem or var specification construct of Sim-nML. Each record has the following

format.

typedef struct {
uint32 id_index;
uint32 size;
uint32 total_attr;
uint8 type;
uint8 data_type;
uint32 valuel;
uint32 value2;

uint32 attr_list_index;
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} MemTable_t;

id_index : This field stores the index into the identifier table.

size : A memory declaration defines a memory base, i.e., a set of memory
locations accessible with a name and an index. This field specifies the number

of such locations.

total_attr : A memory declaration may also define values for some predefined
attributes. This field specifies how many attributes are defined for the memory

variable.

type : This field holds a constant which can be REG if the identifier is de-
clared using reg specification, MEM if the identifier is declared using mem

specification and VAR if the identifier is declared using var declaration.

data_type, valuel, value2 : A memory location might hold values of different da-
ta types. The data type is encoded in a tuple <data_typ, valuel, value2>. First
field, data_type, specifies what type of values can be stored in a memory loca-
tion. Second and third field stores the value according to the data_type field. da-
ta_type can be BOOL_TYPE, CARD_TYPE, INT_TYPE, FIX_TYPE,
FLOAT_TYPE, RANGE_TYPE, ENUM_TYPE.

Table B.1 shows the possible of other two fields.

attr_list_index : If the total_attr field has a value 0, then this field is ignored and
should be 0. Otherwise it specifies an index into the integer table. At this index,
three integers are stored for each of the attributes. Therefore, the total number
of integers are 3 x total_attr. Each integer tuple indicates <indez, offset, len>
where indez, is the index into the attribute table corresponding to that attribute.
The second field of the tuple, offset, is the starting tuple number into the prefiz
attribute definition table where definition of the attribute is stored in prefix
notation. Third field of the triple, len, is the number of tuples for its attribute
definition. Each tuple in the prefiz attribute table is of type PrefixTuple_t
(refer section B.14).

For mode specification (refer Sim-nML specification[15]), one new attribute,
_val_, is defined to store the optional expression associated with the mode speci-

fication. The expression is declared using =. For example, in figure 2.2, the and
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rule mode REG(index : card(5)) = R[index], has an associated attribute

_val_ which defines the expression R[index].

| Data Type | data_type | valuel | value2
bool BOOL_TYPE 0 0
card(n) CARD_TYPE |n 0
it (n) INT_TYPE n 0
fix(n, m) FIX_TYPE n m
float(n, m) FLOAT_TYPE |n m
range[n..m| RANGE_TYPE | n m
enum(id_1...id-m) | ENUM_TYPE |0 m—1

Table B.1: Encoding of data types

B.8 And-Rule Table

This table holds the information about all the and-rules (mode and op type). It
holds information about attributes and parameters of each and rule. Parameters are

numbered from 0 to n from left to right. Each record has the following format.

typedef struct {
uint32 id_index;
uint32 total_para;
uint32 total_attr;
uint32 attr_list_index;
uint32 para_list_index;
} AndTable_t;

e id_index : This field holds the index into the identifier table corresponding to

this and-rule.

e total_para : This field holds the number of parameters associated with the

and-rule.

e total_attr : This field specifies the number of attributes defined for the and-rule.
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e attr_list_index : If total_attr field has value 0, then this field is ignored and
has a value 0, otherwise it specifies an index into the integer table. At this
index, three integers are stored for each of the attributes. Each integer triple
indicates <index, offset and len> similar to the one described in the memory
table. There are two exceptions here. If indexr refers to a syntar or image
attribute, then offset field contains the index into the syntax table or the image

table, as the case might be, and [en field is 0.

e para_list_index : If total_para field has value 0, then this field is ignored. Oth-
erwise it specifies an index into the integer table. At this index, three integers
are stored for each of the parameter. Each integer triple indicates <data_type,
valuel, value2> i.e. the data type of parameter. data_type takes the same
value as of memory table data types. In addition it could take the value
AND _RULE_TYPE, OR_RULE_TYPE. Table B.2 shows possible values
for fields of the triples.

‘ Data Type ‘ data_type ‘ valuel ‘ value2 ‘
bool BOOL_TYPE 0 0
card(n) CARD_TYPE n 0
int(n) INT_TYPE n 0
fix(n, m) FIX_TYPE n m
float(n, m) FLOAT_TYPE n m
range[n..m| RANGE_TYPE n m
enum(id_1...id-m) | ENUM_TYPE 0 m—1
and-rule AND_RULE_TYPE | and table index | 0
or-rule OR_RULE_TYPE or table index | 0

Table B.2: Parameter Type for and-rule

B.9 Or-Rule Table

This table holds the information of all or-rules (mode or op type). Each entry describes

the child nodes of an or-rule. Each record has the following format.

typedef struct {

uint32 id_index;
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uint32 total_child;
uint32 child_list_index;
} OrTable_t;

e id_index : This field holds the index into the identifier table corresponding to

this or-rule.
e total_child : This field holds the number of children for this or rule.

e child list_index : This field holds the index into the integer table where a
list of integer values are stored. For each child 2 integers are stored. The
first integer indicates the child type which could be AND RULE_TYPE or
OR_RULE_TYPE. The second integer denotes the index into the and rule
table or or rule table depending on the child type.

B.10 Syntax Table

This table holds the syntax records associated with the syntax attribute definition of

all and-rules. Each record has the following format.

typedef struct {
uint8 type;
uint32 str_len;
uint32 str_off;
} SynImg_t;

e type : This field holds the type of the syntax record. It could be SYNIMG-
DOT_TYPE or SYNIMGSTR_TYPE For example, if the syntax attribute

is defined as syntax = x.syntax

where z is a parameter, then the type is SYNIMGDOT_TYPE, else if it
is defined as a string or using the format keyword then the type is SYN-
IMGSTR_TYPE.
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e str_len : If type is SYNIMGDOT _TYPE then this field holds the parameter
number (of z in the above example). If type is SYNIMGSTR_TYPE then
this field holds the format string length.

e str_off : If type is SYNIMGDOT_TYPE then this field holds the index into
the attribute table (of syntaz in the above example) while if type is SYN-
IMGSTR_TYPE then this holds the offset into the string table where the

format string is stored.

B.11 Image Table

This table holds the image records associated with the image attribute definition of

all and-rules. Each record has the following format.

typedef struct {
uint8 type;
uint32 str_len;
uint32 str_off;
} SynImg_t;

e type : This field holds the type of the image record. It could be SYNIMG-
DOT_TYPE or SYNIMGSTR_TYPE. For example, if the image attribute

is defined as image = x.image

where z is a parameter, then the type is SYNIMGDOT_TYPE, else if it
is defined as a string or using the format keyword then the type is SYN-
IMGSTR_TYPE.

e str_len : If type is SYNIMGDOT_TYPE then this field holds the parameter
number (of z in the above example). If type is SYNIMGSTR_TYPE then
this field holds the format string length.

e strooff : If type is SYNIMGDOT_TYPE then this field holds the index
into the attribute table (of image in the above example). If type is SYN-
IMGSTR_TYPE then this field holds the offset into the string table where

the format string is stored.
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B.12 String Table

This table holds null terminated character sequences, commonly called strings. These
strings are referred to by an index into the string table. for all strings. A string whose
index is zero specifies either no name or a null name depending on the context. We
show one example of the string table of size 30 bytes in table B.3 and the strings

associated with various indices in table B.4.

i d| e n t i f i e r
null | P | C | null | i n S t r u
C t | 1 0 n | null | null | null | null | null

Table B.3: Example of the String Table

‘ Index ‘ string ‘

0 identifier
11 PC
14 instruction

Table B.4: Interpretation of the String Table

B.13 Integer Table

This table holds list of signed or unsigned integer values (int32 or uint32 type).
These integers represent different meanings in different contexts. The integers are
referred in other tables by an index into the integer table. The index refers to the

starting offset(index) into the integer table where the list of integers is stored.

B.14 Prefix-Attribute-Definition Table

This table holds various attribute definitions in prefix notation. All attributes except
the syntaz and image are converted into the prefix notation and stored in this table.
It contains an array of records where each record of the prefix expression is stored as

follows.

typedef struct {
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uintl6 type;
int32 value;

} PrefixTuple_t;

e type : This field holds an integer value to indicate the type of tuple, i.e., an
operator tuple or operand tuple. For a tuple of operand type, this field also
encodes the type of the operand.

e value : This field holds an integer value whose interpretation depends on the

value of the type field.

An attribute definition is stored in the and-rule table and in the memory table
with the starting index into the prefiz-attribute-definition table and the number of
tuples in the prefix notation of the definition. Table B.5 shows the possible values of
type field and the corresponding interpretation for the value field. If the type field is
set to a value 0, then the tuple is an operator tuple. In all other cases, the tuple is an
operand tuple. 1f the tuple is an operator tuple, then the wvalue field holds an integer
which indicates operator’s name and its arity. Table B.6 shows all possible values for

this field and the corresponding arity.

There are as many operands available as needed for an operator. Since the arity for
an operator is known a-priori, the number of its arguments is implicit. For example,
an expression ’ PC' = PC + 2 7 is represented as ' = PC' + PC 2’ in prefix notation.
The expression has 5 items. The first item is an operator '=’ with arity 2. The second
item is a memory variable with the value field being the index into the memory table.
The third item is again an operator '+’. The fourth item is a memory variable while

the last item is a fized-constant with value 2.

The detailed description of each operator is given in the Sim-nML specification

given in Appendiz A. There are some special cases which are described here.

e The first case is for Bit Range operator which has the infix notation as
opdl < opd2..opd3 >. It is considered as a ternary operator with three param-
eters as opd1, opd2 and opd3 for prefix notation.

e The second case is for “if then else”. It is considered as a ternary operator IF.
If there is no operand in else part, then NULL operator (0-ary) (see table B.6)

is used in its place.
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Type of the tuple ‘ type field ‘ value field ‘

Operator 0 operator number (see table B.6)

Fixed constant 1 int32 value of operand

Card constant 2 uint32 value of operand

Binary constant 3 Offset into the string table

Hex constant 4 Offset into the string table

String constant 5 Offset into the string table

Memory variable 6 index of the identifier as assigned
in the identifier table

Attribute type 7 index of the attribute name in the
attribute table

Parameter type 8 parameter number (left most is
assigned number 0).

Resource type 9 index of the resource name as as-
signed in the resource table

Exception type 10 index of the identifier as assigned
in the identifier table

Table B.5: Interpretation of the tuple used in Prefix Notation

e The third case is when there is no attribute expression for an attribute. The
NULL operator is used to denote it.

e The fourth case is that of a switch operator. General infix notation for this is

switch (expr)

{
case Expr_1 : Sequence_1l ;
case Expr_2 : Sequence_2 ;
default : Sequence_i ;
case Expr_n : Sequence_n ;
}

The corresponding pre-fix notation is as follows :

(operator, switch)

(n, expr,
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‘ value ‘ Name of Operator ‘ Symbol ‘ Arity of Operator
0 Addition + Binary
1 Subtraction - Binary
2 Multiplication * Binary
3 Division / Binary
4 MOD % Binary
5 EXP ok Binary
6 Greator than > Binary
7 Less than < Binary
8 Equal to == Binary
9 Not equal to I= Binary
10 GEQ >= Binary
11 LEQ <= Binary
12 Logical AND & Binary
13 | Logical OR | Binary
14 Logical XOR ) Binary
15 AND && Binary
16 | OR I Binary
17 | Left Shift << Binary
18 Right Shift >> Binary
19 Rotate Left <<< Binary
20 Rotate Right >>> Binary
21 Dot . Binary
22 Concatenation " Binary
23 | Indexing ] Binary
24 Assignment = Binary
25 Statement Separator ; Binary
26 | Unary Addition + Unary
27 | UNOT OPERATOR ! Unary
28 Unary Subtraction - Unary
29 Bitwise NOT N Unary
30 Bit Range . Ternary
31 IF if then else Ternary
32 Function canonical function | n-ary
33 Switch switch n-ary
34 default default 0-ary
35 NULL nothing 0-ary
36 Hash # Binary
37 | Comma , Binary
38 | Condition {} Unary
39 Colon : Binary

Table B.6: Operators Used in Prefix Attribute Definition
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Expr_1, Sequence_1,

Expr_2, Sequence_2,
default, Sequence_i,

Expr_n, Sequence_n)

The first item is an operator with operator name as switch. Then next item is
a simple operand tuple of Card constant type and value as n. After that, expr
will be again written in prefix notation. It will be followed by n-operands where
each operand is an expression in prefix notation and sequence of statements in

prefix notation. Default operator is a 0-ary operator (see table B.6).

The fifth case is that of a canonical function. General notation for this is as
follows.

“function name” (Argl, Arg2, Arg3, ......... , Argn)

where each argument is again an expression. The corresponding pre-fix notation

is as follows.

(operator, function)

("function name" string, n, Argl, Arg2,........ Argn)

The first item is a function operator. Second tuple is a string constant type (type
= String constant, value = byte offset into the string table where function name
is stored). Next item n is a simple operand tuple with type as Card constant and

value as n. Following which, each argument is represented in prefix notation.

There is one special case with function operator where the function name is
coerce. This function takes first argument as a data type. In the IR, we convert
data types to the basic data types and represent them using three numbers, da-
ta_type, valuel and value2 as described in table B.1. Thus, the data type param-
eter for the coerce function is converted to three integers internally. Therefore,
we have two extra parameters for this function. Thus number of parameters is
two more than the actual number of parameters for each occurence of coerce

function.
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