
Retargetable Pro�ling Tools and their Appli
ationin Ca
he Simulation and Code Instrumentation
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

byRajiv A.R

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurDe
ember, 1999

Certi�
ateThis is to
ertify that the work
ontained in the thesis entitled \RetargetablePro�ling Tools and their Appli
ation in Ca
he Simulation and Code Instrumenta-tion", by Rajiv A.R, has been
arried out under my supervision and that this workhas not been submitted elsewhere for a degree.
De
ember, 1999 (Dr. Rajat Moona)Department of Computer S
ien
e & Engineering,Indian Institute of Te
hnology,Kanpur.

Abstra
tThe design pro
ess for modern embedded systems requires automated modeling toolsfor faster design and for the study of various design trade-o�s. Su
h tools together
onstitute an integrated environment where the designer
an write the high leveldesign spe
i�
ations in a language and use these tools for automati
 generation ofsystem spe
i�
 tools. Sim-nML[15℄ is one of the spe
i�
ation languages used fordeveloping pro
essor performan
e model.In this thesis, we have developed the following towards the integrated environment.� Designed and extended an Intermediate Representation (IR) of a pro
essor spe
-i�
ation written in Sim-nML. The IR is simple and fa
ilitates the developmentof various tools su
h as assembler, disassembler,
ompiler ba
k-end generator,instru
tion set simulator, tra
e generator, pro�lers et
. based on the pro
essorspe
i�
ation.� IR-Generator. It takes a pro
essor spe
i�
ation written in Sim-nML and pro-du
es its intermediate representation.� Ca
he Simulator. This provides a me
hanism to simulate various
a
hing poli-
ies. The designer
an use the simulator to study the trade-o�s between di�erent
a
hing poli
ies.� Code Instrumentor. This implements a me
hanism to perform analysis andpro�ling of appli
ation programs through the te
hnique of
ode instrumentation.� Motorola 68HC11 pro
essor spe
i�
ation in Sim-nML.The Ca
he Simulator and the Code Instrumentor were implemented on top of theRetargetable Fun
tional Simulator[1℄. They provide an ar
hite
ture independent wayof
onstru
ting pro�ling and analysis tools.

A
knowledgementsI am grateful to my guide, Dr. Rajat Moona, who helped me at every stage of thiswork. His suggestions and innovative ideas helped me a lot in
ompleting this work. Iam also grateful to Dr. Deepak Gupta, Dr. Sanjeev Aggarwal and Kshitiz Krishna fortheir valuable suggestions and
omments during the thesis dis
ussions. I would alsolike to thank other fa
ulty members of CSE department for gaining better knowledgein di�erent �elds of
omputer s
ien
e.This work has been done as a part of ongoing resear
h at Caden
e Resear
h Centerat the Department of Computer S
ien
e and Engineering, IIT Kanpur. I express mygratitude to Caden
e India Ltd. for their support through fellowship.I would like to thank my seniors and fellow Caden
e members spe
ially V.Rajesh,Y. Subhash Chandra for their help throughout my work here. I would also like tothank other members of the Caden
e Resear
h Group, Prashant Pogde and SarikaKumari. I am greatly indebted to all my
omrades of the mte
h'98 bat
h for givingme a great
ompany during my stay here.Finally I would like to thank my parents and my brother for their support anden
ouragement.

Contents
1 Introdu
tion 11.1 Overview . 11.2 Related Work . 31.3 Goals A
hieved . 41.4 Organization of Report . 52 The Sim-nML Integrated Environment 62.1 Overall Stru
ture . 62.2 Sim-nML Language . 62.2.1 Sim-nML Model . 62.2.2 Sim-nML Grammar . 82.2.3 Resour
e Usage Model . 102.2.4 Spe
i�
ation of register ports 112.3 Current Work . 123 Intermediate Representation of Pro
essor Models 143.1 Overview of Earlier Work on IR . 153.2 Short
omings of Earlier IR . 163.3 Design of an Intermediate Representation 163.3.1 Simpli�
ation of Information by Substitution 163.3.2 Representation of Attribute De�nition 173.3.3 Stru
ture of the Intermediate Representation 213.3.4 Pass 1 : Ma
ro Prepro
essor 243.3.5 Pass 2 : Parsing the Hierar
hy 25ii

4 Ca
he Simulation Environment 264.1 Ca
he Con�guration . 274.2 Implementation . 285 Program Analysis and Pro�ling through Code Instrumentation 325.1 Introdu
tion . 325.2 Appli
ation Programing Interfa
e - API 345.3 Implementation . 356 Motorola 68HC11 Spe
i�
ation in Sim-nML 396.1 Overview of the Spe
i�
ations . 407 Results and Con
lusion 427.1 Results . 427.1.1 Ca
hing Example . 437.1.2 Pro�ling Example . 447.1.3 IR-Generator . 467.2 Con
lusions . 477.3 Future Work . 47A Grammar of Sim-nML Language 50B File Format of Intermediate Representation 61B.1 IR Header . 62B.2 Meta Table . 63B.3 Constant Table . 64B.4 Resour
e Table . 64B.5 Identi�er Table . 65B.6 Attribute Table . 66B.7 Memory Table . 66B.8 And-Rule Table . 68B.9 Or-Rule Table . 69B.10 Syntax Table . 70iii

B.11 Image Table . 71B.12 String Table . 72B.13 Integer Table . 72B.14 Pre�x-Attribute-De�nition Table . 72

iv

List of Tables7.1 Total number of instru
tions simulated for test programs. 437.2 Performan
e Results of the fun
tional simulator 437.3 Results of pro�ling output for test programs. 447.4 Performan
e results of
a
he pro�ling for test programs. 457.5 Pro�ling output for test programs. 467.6 Performan
e results of pro�ling of test programs. 46B.1 En
oding of data types . 68B.2 Parameter Type for and-rule . 69B.3 Example of the String Table . 72B.4 Interpretation of the String Table . 72B.5 Interpretation of the tuple used in Pre�x Notation 74B.6 Operators Used in Pre�x Attribute De�nition 75

v

List of Figures2.1 A View of Integrated Environment 72.2 Sim-nML Spe
i�
ation for a Simple Pro
essor 92.3 Sim-nML Spe
i�
ation for a Simple Pro
essor:
ontinued 103.1 Sim-nML Program for a Hypotheti
al Pro
essor 183.2 Sim-nML Program for a Hypotheti
al Pro
essor:
ontinued 193.3 Evaluating syntax and image attributes 204.1 Sample Ca
he Simulation spe
i�
ation �le 304.2 Sample Ca
he Simulation spe
i�
ation �le:
ontinued 315.1 Algorithm to
onstru
t basi
 blo
k 375.2 Bran
h target spe
i�
ation �le . 387.1 PowerPC603 Ca
he
on�guration �le 45

vi

Chapter 1
Introdu
tion
1.1 OverviewIn the design of embedded systems, the use of automated modeling tools is gainingmomentum. They yield fast turn-around time with lower
osts for the system designand simplify the pro
ess of design
hanges. In the past, many su
h tools were systemspe
i�
. However, with ever in
reasing
omplexity of systems and spe
ial purposepro
essors, a strong need is being felt for generi
 and modular tools. Su
h tools repla
ethe system or pro
essor spe
i�
 tools and provide a generi
 integrated environment.This way, these tools also help in studying the impa
t of various hardware-software
o-design trade-o�s. For a designer of the system, su
h tools are useful as theyallow him to explore several alternatives early in the design phase. The bene�tsof su
h high-level pro
essor models and pro
essor development methodology in
ludethe availability of appli
ation development tools, simulation tools and pro�ling toolseven before the pro
essor is ready. An uni�ed pro
essor model for the generationof appli
ation development tools, pro�lers and simulators not only redu
e the e�ortrequired but also eliminates the
han
es of dis
repan
ies among di�erent des
riptions.The Sim-nML[15℄ language is used as a model to develop an integrated pro
essordevelopment environment. The integrated environment would in
lude tools like as-semblers, disassemblers,
ompiler ba
k-end generators, fun
tional simulators,
a
hesimulators, pro�lers, hardware synthesizers et
. The instru
tion set ar
hite
ture ofthe pro
essor at hand is des
ribed in Sim-nML from whi
h these tools are generated

1

automati
ally. For this purpose, we have designed an intermediate representation1for the Sim-nML language. The IR is simple but powerful enough to fa
ilitate thedevelopment of various tools based on the pro
essor spe
i�
ation. The IR has beendesigned to ease the burden of ea
h tool to parse the Sim-nML language whi
h istedious and redundant. The IR en
apsulates the Sim-nML des
ription in a set oftables. This would allow the tools to easily extra
t the relevant information. Wehave designed a tool, IR-generator, whi
h takes a pro
essor spe
i�
ation in Sim-nMLlanguage and provides the intermediate representation of the pro
essor model as out-put.In addition, a Ca
he Simulator Environment has been developed. This would helpthe pro
essor designer to study the trade-o�s of implementing various
a
hing poli
iesfor the appli
ation to be run on the pro
essor under development.We have also developed a pro�ling tool through
ode instrumentation me
hanism.This provides the designer with
ode instrumentation me
hanisms at the pro
edurelevel, or at the basi
 blo
k level or at the instru
tion level. The designer
an usethis me
hanism to study the run-time behavior of the appli
ation on the targetedpro
essor.Sin
e Sim-nML provides a generi
 way of des
ribing a pro
essor ar
hite
ture, the
a
he simulator and pro�ler generator
onstru
ted from Sim-nML spe
i�
ation allowa
exible and ar
hite
ture independent way to generate pro�ling and analysis tools.Currently, most of su
h tools are ar
hite
ture dependent whi
h ne
essitates the de-velopment of separate set of tools for ea
h pro
essor model. It
an be avoided withthe Sim-nML model as on
e the des
ription is ready the tools
ould be automati
allygenerated and
ustomized. Moreover,
urrently these pro�ling tools also require pro-
essor support. Our tools help to do the same without su
h support or even beforethe a
tual pro
essor fabri
ation is done.This work is a
ontinuation of the Retargetable Fun
tional Simulator[1℄ work doneby Y. Subhash Chandra. An initial version of the IR[5℄ was designed and imple-mented by Nihal Chand Jain. The
ode instrumentation me
hanism was inspiredfrom ATOM[13℄.1from now on we use the term IR to refer to the intermediate representation.
2

1.2 Related WorkPerforman
e modeling of a system is a growing area and a lot of resear
h has beenpursued in this area. These previous works have resulted in a set of performan
emodeling tools using di�erent languages for pro
essor spe
i�
ation.Instru
tion Set Des
ription Language (ISDL)[4℄ is a ma
hine des
ription languagewhi
h is similar to Sim-nML. ISDL provides
onstru
ts for spe
ifying instru
tion setand other ar
hite
tural features. A des
ription in ISDL
ontains the ma
hine wordformat used for the instru
tion assembly, semanti
s of the instru
tion, and
onstraintssu
h as the valid
ombination of operations whi
h is useful for tools like assemblerto generate
orre
t
ode. These are
aptured in separate se
tions. Currently anautomati
 assembler generator has been developed.Spe
i�
ation language for en
oding and de
oding (SLED)[11℄ is a language fordes
ribing the abstra
t, binary, and assembly-language representations for ma
hineinstru
tions. Using SLED, a toolkit
alled New Jersey Ma
hine-Code has been de-veloped whi
h generates bit-manipulating
ode for use in appli
ations that pro
essma
hine
ode. Programmers
an write su
h appli
ations at an assembly level of ab-stra
tion, and the toolkit enables the appli
ations to re
ognize and emit the binaryrepresentation used by the hardware. SLED is suitable for CISC and RISC type ofma
hines. SLED deals with the instru
tion representation only, but not with anyother ar
hite
tural details. Some tools like retargetable debugger, retargetable opti-mizing linker have been implemented.Visualization based Mi
roar
hite
ture Workben
h (VMW)[14℄ is an infrastru
-ture whi
h fa
ilitates the spe
i�
ation of instru
tion set ar
hite
ture and mi
roar
hi-te
ture of a ma
hine in a
on
ise manner. VMW provides all ne
essary infrastru
turesoftware to the designer, in
luding generi
 simulation software, visualization sup-port software and graphi
al user interfa
e software. VMW automati
ally integratesthe ma
hine spe
i�
ation and infrastru
ture software to generate a
ustomized perfor-man
e simulator based on the tra
e-driven simulation approa
h. Thus VMW providesa powerful environment for modern supers
alar pro
essor design.SimOS[9℄ is a ma
hine simulation environment designed to study large
omplex
omputer systems. SimOS simulates the
omputer hardware in suÆ
ient detail andspeed to run existing system software and appli
ation programs.ATOM[13℄ provides a frame work for providing
ustomized program analysistools. It provides a
ommon infrastru
ture provided in all
ode-instrumenting tools.3

ATOM organizes the �nal exe
utable su
h that the appli
ation program and user'sanalysis routines run in the same address spa
e. ATOM uses no simulation or inter-pretation. It has been used to build a diverse set of tools for basi
 blo
k
ounting,pro�ling, dynami
 memory re
ording, instru
tion and data
a
he simulation, pipelinesimulation, evaluating bran
h predi
tion and instru
tion s
heduling.Pixie[12℄ is a utility that allows you to tra
e, pro�le or generate dynami
 statisti
sfor any program that runs on a MIPS pro
essor. It works by annotating exe
utableobje
t
ode with additional instru
tions that
olle
t the dynami
 information duringrun time.Dinero IV[2℄ is a tra
e driven unipro
essor
a
he simulator for memory referen
e.QPT[6℄[7℄ is pro�ler and tra
ing system. It rewrites a program's exe
utable �le(a.out) by inserting
ode to re
ord the exe
ution frequen
y or sequen
e of every basi
blo
k or
ontrol-
ow edge. From this information, another program QPT STATS
an
al
ulate the exe
ution
ost of pro
edures in the program.EEL[8℄ (Exe
utable Editing Library) is a C++ library that hides mu
h of the
omplexity and system-spe
i�
 detail of editing exe
utables. EEL provides abstra
-tions that allow a tool to analyze and modify exe
utable programs without being
on
erned with parti
ular instru
tion sets, exe
utable �le formats, or
onsequen
es ofdeleting existing
ode and adding foreign
ode. EEL greatly simpli�es the
onstru
-tion of program measurement, prote
tion, translation, and debugging tools.1.3 Goals A
hievedIn this work, we aimed at the development of an integrated environment for pro
essorperforman
e modeling using Sim-nML. The development of the
omplete environmentis in progress. Many tools have been developed till now whi
h we will look at inChapter 2. The goals a
hieved in this thesis are as follows.� Intermediate Representation (IR) for Sim-nML language spe
i�
ation is ex-tended. This is simple but powerful enough to fa
ilitate the design of variouspro
essor spe
i�
 tools. This was an extension of an earlier version([5℄).� IR-Generator whi
h takes a pro
essor spe
i�
ation in Sim-nML language andprovides an intermediate representation of the pro
essor spe
i�
ation as outputwas extended and implemented. This was an extension of an earlier version([5℄).4

� A Ca
he Simulating Environment has been developed to provide a basis forben
hmarking various
a
hing poli
ies of a given pro
essor.� A Code Instrumentation Me
hanism has been developed for implementing var-ious pro�ling te
hniques.� Motorola 68HC11 Spe
i�
ation in Sim-nMLModel for Motorola 68HC11[17℄ pro
essor has been developed in Sim-nML.All the instru
tions have been spe
i�ed with a simple resour
e usage model.1.4 Organization of ReportThe rest of the report is organized as follows. In Chapter 2 we give an overviewof the Sim-nML integrated environment. In Chapter 3, we dis
uss the design andimplementation of the IR. In Chapter 4, we look at the Ca
he Simulation Environ-ment. In Chapter 5, the we dis
uss the Code Instrumentation Me
hanism. A briefoverview of Motorola 68HC11 pro
essor is given in Chapter 6. Finally, we
on
ludein Chapter 7. In Appendix A we des
ribe the Sim-nML grammar and give the IRformat in Appendix B.

5

Chapter 2
The Sim-nML IntegratedEnvironment
2.1 Overall Stru
tureThe base language for our environment is Sim-nML, a generi
 pro
essor modelinglanguage. Sim-nML is an extension of nML ma
hine des
ription formalism([3℄). Pro-
essor models are written in Sim-nML, using whi
h, various pro
essor spe
i�
 tools
an be generated automati
ally. To make the tools' design easy, the model spe
i�edin Sim-nML is �rst
onverted into an intermediate representation (IR). For a tool,intermediate form is simpler and easier to read and interpret when
ompared to aspe
i�
ation in Sim-nML. The overall view of the environment is shown in the �gure2.1.2.2 Sim-nML Language2.2.1 Sim-nML ModelSim-nML[15℄ is an extensible formalism designed to spe
ify generi
 single pro
essormodels. Sim-nML works at two levels of abstra
tion. The pro
essor des
ribed by thelanguage
ould either be an existing one or an appli
ation spe
i�
 pro
essor beingdeveloped. The designer team, depending on the appli
ation for whi
h the pro
essoris being modeled, would either
hoose for an o�-the shelf pro
essor or design a new6

IR

Generator

 IR

Generator

AssemblerCompiler
Backend
GeneratorGenerator

Disassembler

Generator

Simulator

Spec.
Sim-nML

Figure 2.1: A View of Integrated Environmentone. At the fun
tional level, the designer typi
ally has an overview of the instru
tionset that the pro
essor should support to meet the appli
ation requirements. TheSim-nML model is used to give an ISA level des
ription whi
h is the appli
ation pro-grammer's model of the pro
essor. While modeling an existing pro
essor the designerwould have the pro
essor instru
tion set manual whi
h he
ould use to des
ribe theinstru
tion set, both the syntax and semanti
s, in Sim-nML. If a pro
essor does notexist, the Sim-nML language
ould be used to des
ribe the intended instru
tion setsemanti
s.At an alternate level of abstra
tion, Sim-nML
ould be used to expose the mi-
roar
hite
ture details. This
ould be used to detail out the various units within apro
essor along with a timing estimate. When des
ribing an existing pro
essor, thedesigner
ould abstra
tly spe
ify the pro
essor's pipeline features, fun
tional unitset
. The asso
iated timing estimates
ould help the designer to evaluate multiple7

pro
essors in order to
hoose the optimal model satisfying the appli
ation at hand.When designing a new pro
essor model, the designer
ould give a rough estimateof the mi
roar
hite
ture features that he would like to in
orporate along with theasso
iated timings. The pro
ess
ould be iterated until a satisfa
tory des
ription isobtained that meets the timing requirements of the appli
ation.Sim-nML is an attributed grammar1 with some prede�ned but optional attributeslike image, syntax, a
tion and uses. The instru
tion set is des
ribed in a hierar
hi
almanner with fragments of ea
h of the attributes being distributed over the wholegrammar tree. The
ommon behavior of a
lass of instru
tions is
aptured at the toplevel of the tree and the spe
ialized behavior of the sub-
lasses are
aptured in thesubsequent lower levels.2.2.2 Sim-nML GrammarSim-nML grammar has a �xed start symbol namely instru
tion and two kinds ofprodu
tions, namely or-rule whi
h looks like,op = n0 j n1 j n2 j ...and and-rule whi
h looks likeop n0 (p1 : t1, p2 : t2, ...)a1 = e1 a2 = e2 ...where ea
h ni is a non-terminal, ea
h ti is a token. Ea
h ai is an attribute nameand ei their respe
tive de�nitions.The Sim-nML grammar prede�nes four attributes - syntax, image, a
tion, uses.The syntax des
ribes the assembly language format of the instru
tion, image des
ribesthe binary
oding of the instru
tion, a
tion des
ribes the semanti
s of the instru
tionwhile the uses des
ribes the resour
e-usage model.The Sim-nML grammar in example 1 (�gure 2.2) des
ribes a simple pro
essor withtwo instru
tions - add and multiply. All of these attributes are used for adding andmultiplying the
ontents of two general purpose registers respe
tively. PC refers tothe address from whi
h the next instru
tion has to be fet
hed. Sim-nML supports aspe
ial token, $, whi
h is used to denote the address of the instru
tion in the de�nitionof various attributes.1an attribute grammar is a
ontext free grammar in whi
h for ea
h non-terminal a �xed set ofattributes and for ea
h produ
tion a set of semanti
 rules is given. In grammar all non-teminalshave to be derivations. So we don't di�rentiate between produ
tions and non-terminals.8

type addr =
ard(32)type byte =
ard(8)let REGS = 32let byte_order = littlemem PC [1, addr℄mem M [2 ** 32, addr℄reg R [REGS, byte℄var tmp [1, byte℄resour
e Fet
h_Unit, Exe
_Unit[2℄, Retire_Unitmode REG(index :
ard(5)) = R[index℄syntax = format("0%3b", index)image = format("R%d", index)mode MEM(Addr : addr) = M[addr℄syntax = format("1%32b", addr)image = format("R%d", addr)mode ADDRMODE = REG | MEMop instru
tion(x : bina
tion)uses = Fet
h_Unit #{2}, x.uses, Retire_Unit #{2} : a
tionsyntax = format("%s", x.syntax)image = format("%s", x.image)a
tion = {x.a
tion;} Figure 2.2: Sim-nML Spe
i�
ation for a Simple Pro
essorThe basi
 types of Sim-nML in
lude
ard, int, bool, enum et
. The type de
larationis used to de
lare derived types. Addressing modes in the pro
essor are des
ribedusing mode rule. In the above example, mode rule REG denotes register addressingmode where R[i℄ denotes the ith register of the register �le R. The var de
laration isused to de
lare temporary variables. This pro
essor assumes 2 instan
es of resour
eExe
 unit, one of whi
h is held by the instru
tion under exe
ution. If one instan
e9

op bina
tion = plus | multiplyop plus(sr
 : ADDRMODE, dst : ADDRMODE)uses = Exe
_unit #{2}syntax = format("add %s %s", sr
.syntax, dst.syntax)image = format("1010010%s%s", sr
.image, dst,image)a
tion = {dst = sr
 + dst;PC = PC + 9;}op multiply(sr
 : ADDRMODE, dst : ADDRMODE)uses = Exe
_unit #{6}syntax = format("mult %s %s", sr
.syntax, dst.syntax)image = format("0010101%s%s", sr
.image, dst.image)a
tion = {dst = sr
 * dst;PC = PC + 9;}Figure 2.3: Sim-nML Spe
i�
ation for a Simple Pro
essor:
ontinuedis already a
quired, then another instru
tion in the pipleline
an a
quire the se
ondinstan
e. The following instru
tions remain stalled till one of the resour
e instan
e isreleased. This models a simple supers
alar pro
essor with 2 exe
ution units.2.2.3 Resour
e Usage ModelThe mi
ro-ar
hite
ture details of the pro
essor
an be spe
i�ed using the resour
e-usage model. Sim-nML assumes that entities within the pro
essor like the fun
tionalunits, pipeline stages, registers, ports et
.
onstitutes a set of resour
es. The resour
es
an be a
quired/released by any instru
tion in exe
ution. The resour
e-usage modelis based on the assumption that at any instant, an instru
tion in exe
ution, holdssome set of resour
es and does some a
tion. The resour
es held by the instru
tion
10

and the a
tion taken
hange progressively.In the resour
e usage model, the resour
e is an abstra
tion of a pie
e of hardwaresu
h as registers, ALUs, fun
tional blo
ks et
. for whi
h instru
tions
ontend andpipeline
ow is nothing but a way of resolving su
h
on
i
ts. When two instru
tionswait simultaneously for a single resour
e, the
on
i
t will be resolved by FIFO order,i.e, the instru
tion that entered the pipeline earlier will be alloted the resour
e. Thismodel is powerful enough to des
ribe pipelines, supers
alars and other mi
roar
hi-te
tures. The uses attribute des
ribes the resour
e usage model and the a
tion takenwhen the resour
e is a
quired or released for an instru
tion. In Example 1 (�gure2.2), the resour
e de�nition is used to de�ne the fun
tional units like Fet
h Unit,Exe
 Unit, Retire Unit. It spe
i�es that all instru
tions use the Fet
h Unit for2 units of time, the Exe
 Unit for time depending on the type of instru
tion - 2units for plus instru
tion while 6 units for multiply instru
tion and the Retire Unitfor 2 units of time. The token a
tion at the end of uses spe
i�es that after the spe
i-�ed resour
es are used for the given time period, the fun
tion spe
i�ed in the a
tionattribute is performed. The unit of time
an be thought of as a ma
hine
lo
k
y
lealthough it is not imposed by Sim-nML. If an unit of time is same as ma
hine
lo
k
y
les, then we
an estimate the number of
lo
k
y
les taken by the program.2.2.4 Spe
i�
ation of register portsPro
essors implement registers as register �les with multiple read-only or write-onlyports. A

ess restri
tions are imposed on registers within the register �le dependingon hardware implementation. Supers
alar pro
essors allow multiple instru
tions to beat the write-ba
k stage. Two instru
tions with the same destination register shouldblo
k and exe
ute in the program imposed order (WAW, Write-after-Write hazards).Similarly, an instru
tion
ould read from a register whi
h is being simultaneouslywritten by another instru
tion (WAR, RAW hazards). Multiple instru
tions however
ould be allowed to read the same register as long as read ports are available. Thesehazards
an be modeled in Sim-nML with the uses attribute.Assume R�le is a register �le with 32 registers, 32 bit ea
h. R�le is de
lared tohave 3 read ports and 2 write ports as follows.reg Rfile[32,
ard(32)℄ ports = 3, 2This would impli
itly de
lare 2 resour
es Read R�le[3℄, Write R�le[2℄ whi
h11

represent the read and write ports of the register �le R�le with 3 and 2 instan
esrespe
tively. Apart from this, ea
h register in the register �le is assumed to have portresour
e instan
es equal to the number of read ports of the register �le, 3 in this
ase.Assume an instru
tion with register R[0℄ as the sour
e register. This
ould havethe following uses attributeuses = Read Rfile, R[0℄This implies that two resour
es are to be a
quired, one resour
e isRead R�le andthe other is any one of the port resour
e of register R[0℄. Before reading the register
ontents, any free read register port Read R�le is a
quired followed by register R[0℄itself.To model a write to register R[0℄, we
ould writeuses = Write Rfile, R[0℄[℄where a single instan
e of Write R�le port while all port resour
e instan
es ofregister R[0℄ are a
quired. This would prevent another instru
tion from a

essingregister R[0℄ while it is being written.2.3 Current WorkFollowing tools have been implemented till now in our environment.Instru
tion Set Simulator Generator [15℄ takes Sim-nML spe
i�
ation and gen-erates a performan
e simulator, whi
h in turn takes a binary for that pro
essorand gives the performan
e based results.Disassembler [5℄ takes Sim-nML pro
essor spe
i�
ation and a binary for that pro-
essor in ELF format and gives out the symboli
 disassembly of the binarywhi
h
an be assembled ba
k to the binary.Compiler Ba
k-End Generator [10℄ takes nML spe
i�
ation and generates LC-C ma
hine des
ription whi
h
an used to generate the LCC
ompiler for thespe
i�ed pro
essor.Retargetable Fun
tional Simulator [1℄ generates a fun
tional simulator for a par-ti
ular program to be run on a given pro
essor des
ription in Sim-nML.The following tools are under development12

Timing Simulator to analyze a parti
ular program for timing performan
e andresour
e usage. A
ompiled
ode simulator generator would generate a higherperforman
e timing simulator.Assembler generator for a given pro
essor des
ribed in Sim-nML is being developed.This would generate an assembler,
on�rming to GNU assembler syntax, whi
h
ould produ
e ELF obje
t
ode of the input assembly language program.Compiler Ba
k-End Generator to generate ba
k-end for GNU-C by automati
al-ly generating GNU's md �le format des
ription of a parti
ular pro
essor fromSim-nML.As part of this thesis work, Sim-nML spe
i�
ation for Motorola 68HC11[17℄ waswritten. Its a simple 8-bit pro
essor. This des
ription was tested over the Retar-getable Fun
tional Simulator[1℄ and the generi
 disassembler[5℄. Earlier, Sim-nMLspe
i�
ations for PowerP
603 pro
essor[1℄ and for Intel 8085 were written.

13

Chapter 3
Intermediate Representation ofPro
essor ModelsOne part of this thesis involves the development of an Intermediate Representation(IR) of the pro
essor model. We developed a tool, IR-Generator, whi
h takes a pro
es-sor spe
i�
ation written in Sim-nML language as input and produ
es
orrespondingintermediate representation of the pro
essor spe
i�
ation as output. In order to havethe intermediate representation usable by all front-end tools su
h as disassembler,assembler, simulator et
.,
ertain goals were setup behind the design of the IR aslisted below.The IR should� be as simple as possible.� should not lose any useful information whi
h is available in the original inputSim-nML spe
i�
ation.� not have any unne
essary or redundant information.� be easy to understand and use.� be easy and eÆ
ient to retrieve the required information.� be
exible and extensible.� fa
ilitate the design of various pro
essor spe
i�
 tools su
h as assembler, disas-sembler, simulator, tra
e generator,
ompiler ba
k-end generator et
.14

3.1 Overview of Earlier Work on IRThe IR was designed and implemented as part of a master's thesis by Nihal ChandJain[5℄. The IR-generator so designed had 2 parts - the parser and the
attener. Inthe �rst phase, the parser parsed the Sim-nML input spe
i�
ation and
olle
ted therelevant information in tables. The
attener would then simplify the hierar
hy.In Sim-nML, information about an instru
tion is
omposed of fragments that aredistributed over the whole spe
i�
ation tree with the root node named as instru
tion.To get information about one parti
ular instru
tion, a
omplete path from root nodeto a leaf node is traversed with proper parameter substitution at all levels of the tree.If all su
h paths are traversed, then information about all possible instru
tions areobtained. This pro
ess is
alled
attening of the tree. All referen
es to or-rules areeliminated from the or-rule and and-rule de�ntions. Elimination of or-rule parametersfrom an and-rule de�nition results in generation of new and-rules. All attributes ofthe and-rule remain un
hanged in the new and-rules. To make the IR
ompa
t, thesenew and-rules were treated as sub-rules of the original and-rule. In the IR, all sub-rules of an and-rule were stored along with the and-rule itself. The referen
es for theattributes in the and-rule were not dupli
ated for sub-rules.The syntax and image attribute de�ntions were then
attened with parametersubstitution and added to the syntax and image tables respe
tively. Corresponding toea
h instru
tion node in the hierar
hy all possible instru
tions that
an be generatedwere
attened and added to the syntax and image tables. The hierar
hi
al informationwas maintained using dot exprssions while the parameter details in syntax and image�elds of an instru
tion was represented using 3-tuples. So from a parti
ular nodein the hierar
hy tree, the images and syntaxes of ea
h subtree
ould be listed. Thetopmost node instru
tion would enumerate all possible syntaxes and images spe
i�edfor that pro
essor. The parsed and
attened information extra
ted from Sim-nMLwas then dumped onto tables in the output IR. The important tables in
lude theidenti�er table, and-rule table, memory table. Ea
h of these tables had a unique keyto refer to ea
h entry. The identi�er table table had an id-key for ea
h identi�er. Theother tables referred to ea
h identi�er using this key.
15

3.2 Short
omings of Earlier IRThe earlier version of the IR[5℄ and Sim-nML was found to have the following short-
omings due to whi
h they were extended.� disallowed the use of expressions in format de�nitions in syntax and imageattributes.� expressions were not allowed in bit sele
tion operators.� ea
h resour
e spe
i�ed in Sim-nML was assumed to have a single instan
e.� register and memory ports were not supported.� the IR tables used multiple levels of indire
tion to retrieve information.� information about the endian-ness of the generated IR
ould not be found inan easy manner.�
attening resulted in loss of information whi
h were required by the tools duringinstru
tion mat
hing.3.3 Design of an Intermediate RepresentationA pro
essor spe
i�
ation in Sim-nML language is a human readable text �le. Several
onstru
ts are provided in Sim-nML to enhan
e the
larity and readability of thedes
ription. In order to retrieve the desired information from su
h a des
ription, atool needs to perform parsing of input, variable substitution et
. An intermediaterepresentation helps in redu
ing su
h extra burden on the tool. Thus we need anintermediate representation keeping previously mentioned goals in mind. In thisse
tion, we will dis
uss the design of the IR in detail.3.3.1 Simpli�
ation of Information by SubstitutionThe Sim-nML language allows the
onstant de�nition using let-spe
i�
ation (eg: letREGS = 32). In the Sim-nML spe
i�
ation �le, wherever a
onstant is referen
ed,its value is substituted in the IR. For example, value of the
onstant REGS, i.e.32, is substituted whereever REGS is used in the example given in �gure 3.1. Thus16

onstants are not referen
ed in the IR of the pro
essor spe
i�
ation. Therefore allsu
h
onstant de
larations
an be eliminated from the IR. However, some
onstantsmight be used by the tools, i.e.,
onstants like byte order may be used by toolsto de�ne the byte ordering of a pro
essor. So the IR retains information about all
onstant de
larations.The Sim-nML language de�nes some basi
 data types and allows new data typede�nitions using basi
 data types and previously de�ned user data types. Sin
e all userde�ned data types
an be built using only basi
 data types, all variables are rede�nedwith only basi
 data types in the IR. Thus all user de�ned data type de
larations
anbe eliminated from the IR. For example in �gure 3.1, index is used to refer to datatype
ard(2). All o

urren
es of index
an be repla
ed by
ard(2).There are some other
onstru
ts in Sim-nML whi
h are simpli�ed in the IR.For example, names of Sim-nML memory variables, op-rules, attributes, parametersin and-rules are repla
ed by unique identi�ers and everywhere the
orrespondingidenti�er is used for the referen
e. Sim-nML allows the use of identi�er names forop-rules even before they are de�ned. This ne
essarily requires a tool to do multiplepasses over the pro
essor spe
i�
ation. Many of these identi�ers are not signi�
ant atall (for example, parameter names). In the IR, all signi�
ant identi�ers are maintainedin an identi�er-table and the index into the identi�er-table is used for the referen
e.It simpli�es the information retrieval from the IR.3.3.2 Representation of Attribute De�nitionIn the Sim-nML pro
essor spe
i�
ation, memory variables, mode-rule and op-rulede
larations de�ne attribute names and their de�nitions. The attribute de�nition iseither an expression
onsisting of various operands and operators, or a sequen
e ofstatements separated by a semi
olon. Ea
h of these statements might be a simpleassignment statement or a
onditional statement or a fun
tion
all or a use of anattribute from another related op-rule. (Refer to Appendix A for Sim-nML grammar)For syntax and image attributes, de�nitions
ould be an expression whi
h evaluatesto a string. The and-rule table entry
orresponding to these op-rules would
ontain anindex into the syntax table and image table respe
tively. In the IR, a re
ord is storedfor ea
h syntax and image attribute de�nition of an and-rule. The re
ord in
ludes astring value
orresponding to the expression. The string values are evaluated as in�gure 3.3. 17

type index =
ard(2)let REGS = 32resour
e eunit[2℄reg PC[1,
ard(32)℄mem R[REGS,
ard(32)℄mem MEM[1024,
ard(8)℄mode SHORT = MEM | REGmode MEM(i:index) = M[R[i℄℄syntax = format("(R%d)", i)image = format("0%5b", i)mode REG(i:index) = R[i℄syntax = format("R%d", i)image = format("1%5b", i)op instru
tion(x:instr_a
tion)syntax = x.syntaximage = x.imageop instr_a
tion = alu_op | move_opop alu_op(sr
:SHORT, dst:SHORT, aa:alu_a
tion)syntax = format("%s %s,%s", aa.syntax, sr
.syntax, dst.syntax)image = format("1%b %b %b", aa.image, sr
.image, dst.image)Figure 3.1: Sim-nML Program for a Hypotheti
al Pro
essorAn ex
eption to this en
oding is when the syntax/image attribute is en
oded asSYNIMGDOT TYPE (refer Appendix B for IR types) (like Pi.image or Pi.syntax),then the and-rule table entry for that op rule would
ontain the parameter numberi and the index into the attribute table
orresponding to the de�ned attribute (referAppendix B).For the example Sim-nML pro
essor model in �gure 3.2 the syntax table entry formove op rule would bemove %sf0.3g, %sf1.3g 18

op alu_a
tion = a_add | a_sub | jmpop a_add()syntax = "add"image = "0"op a_sub()syntax = "sub"image = "1"op move_op = move | storeop move(sr
:SHORT, dst:SHORT)syntax = format("move %s, %s", sr
.syntax, dst.syntax)image = format("00%s%s", dst.image, sr
.image)op store(sr
:SHORT, dst:SHORT)syntax = format("move %s,%s", sr
.syntax, dst.syntax)image = format("01%s%s", sr
.image<2..3>, dst.image)op jmp(dst:
ard(32))syntax = format("jmp %32b", dst)image = format("101%32b", $+dst)Figure 3.2: Sim-nML Program for a Hypotheti
al Pro
essor:
ontinuedwhere sr
 is parameter 0 and dst is parameter 1. 3 stands for index into the attributetable whi
h
orresponds to the attribute syntax.Similarly the syntax table entry
orresponding to the MEM op rule (�gure 3.2) is(R%df0.-1g)where 0 represents the �rst parameter (i) and sin
e i is of a basi
 type (
ard in this
ase), the se
ond integer is -1.In a similar way, the image table entry for jmp op rule would be101%32bf-14.3gwhere -14 indi
ates an index to the pre�x attribute table where the expression $ +sr
 is stored. This expression is stored as a 3-tuple in the pre�x attribute table (andhen
e the se
ond entry is 3). $ is stored in the pre�x attribute table as o�set into the19

� For a simple string it is pla
ed as it is in the syntax/image table.� If format de
laration is used, for ea
h format quanti�er(like %s, %nb, et
.)a 2-tuple of the form fX.Yg denoting the
orresponding de�ning parameterPi (where Pi denotes the ith parameter starting from left of that and-rule) isembedded in the syntax or image table as follows.1. if the parameter Pi is a basi
 type(like int,
ard, bool) then X woulddenote the parameter number i while Y would be -1.2. if the parameter Pi is of an and-rule or or-rule type and is spe
i�ed asPi.image or Pi.syntax then X would denote the parameter number i whileY would be the index into the attribute table
orresponding to the de�nedattribute.3. else if its an expression, then negative of X would be the index into thepre�x-attribute table while Y denotes the number of su
h tuples.Figure 3.3: Evaluating syntax and image attributesstring table, sr
 is stored as PARA TYPE with value 0 (parameter number).The image table entry for move op rule would be01%sf-8.6g%sf1.4gwhere -8 denotes an index to pre�x attribute table where the expression sr
.image<2..3>is stored as a 6-tuple whi
h in
ludes the parameter number, attribute index, and therange parameters (2 and 3).Other attributes in Sim-nML are used to hold semanti
 a
tion asso
iated withthe instru
tion. For example, to simulate the behavior of an instru
tion, attributede�nition of a
tion attribute is used. A tool su
h as the instru
tion set simulator
ould be made to run faster if su
h attribute de�nitions are represented di�erently.Usually expressions inside an attribute de�nition are written in an in�x notation usingpriority and asso
iativity rules to de
ode an expression uniquely. However, pre�x orpost�x notation is better for faster evaluation as the priority and asso
iativity be
omesimpli
it.In the IR, pre�x notation is used for all attribute de�nitions ex
ept syntax andimage attributes. Using su
h a representation, tools like simulator, tra
e generator,
ompiler ba
k-end generator et
.
an be made to run fast.20

3.3.3 Stru
ture of the Intermediate RepresentationThe stru
ture of the IR (refer Appendix B) should be
apable of storing informationabout
onstants, identi�ers, or-rules, and-rules and information about attributes su
has syntax, image, a
tion et
. They are represented in various �xed sized and variablesized data stru
tures.The IR stru
ture is essentially a
olle
tion of various tables. Information of ea
htype is stored in a di�erent table. The entries in most of these tables are �xed sizere
ords. However, some tables hold variable size re
ords. For an easy a

ess to thetables, a meta table is also added in the IR whi
h
ontains the lo
ation and name ofall the tables. This simpli�es the a

ess me
hanism for all tables. In brief, the IR
onsists of the following tables� Meta table . This is a table of
ontents having a road map to know about thelo
ation and name of other tables in the IR.� Constant table . This table holds all
onstant de
larations in the Sim-nMLpro
essor spe
i�
ation. For the example given in �gure 3.1, this table will
ontain the following.(Name Type value)REGS CONST_TABLE_INT_TYPE 32� Resour
e table . This table holds the names of the resour
es whi
h are de-
lared with resour
e de
laration along with the number of instan
es of ea
hresour
e. For the example given in �gure 3.1, this table will
ontain the follow-ing.(Name Num)eunit 2� Attribute table. This table holds the name of all distin
t attributes used inthe input pro
essor spe
i�
ation. For the example given in �gure 3.1, this tablewill
ontain the following.(Name)syntaximage 21

� Identi�er table . This table holds the name of all the identi�ers (other thanthose spe
i�ed in the
onstant table and the resour
e table). An identi�er
an be ofMEM TYPE, MODE OR TYPE, MODE AND TYPE, OP OR TYPE,OP AND TYPE et
. Depending on the types, the index into the
orrespondingmemory-table, and-rule table or or-rule table is stored. For the earlier example,the following is the
ontents of the identi�er table.(Index Name Type)0 PC MEM_TYPE0 MEM MODE_AND_TYPE1 REG MODE_AND_TYPE0 SHORT MODE_OR_TYPE2 instru
tion OP_AND_TYPE1 instr_a
tion OP_OR_TYPE3 alu_op OP_AND_TYPE3 move_op OP_OR_TYPE2 alu_a
tion OP_OR_TYPE4 a_add OP_AND_TYPE5 a_sub OP_AND_TYPE6 move OP_AND_TYPE7 store OP_AND_TYPE� Memory table . This table holds the information about all memory variablesde
lared with a reg, mem or var de
laration. It in
ludes index into the identi�ertable, type and size of the data and information to lo
ate various attributes (ofthe variable) stored in other tables. For the example shown in �gure 3.1, thefollowing is the partial
ontents of the memory table.(Name data-type type size value1 attribute)R CARD_TYPE MEM 32 32 -M CARD_TYPE MEM 1024 8 -Note that instead of storing the name of memory variable (i.e. R), the indexinto the identi�er table is used. 22

� Or-Rule table . This table holds the information about
hildren of all or-rules.The following is the partial
ontents of the or-rule table for the example shownin �gure 3.1(Name total_
hildren integer table index)instr_a
tion 3 97 (<AND_RULE_TYPE, 3(and table index)>, ...Note that instead of storing the name of or op-rule variable (i.e. instr a
tion),the index into the identi�er table is used.� And-Rule table. This table holds the information about all and-rules. It alsoholds the information to lo
ate the attribute de�nitions stored in other tables.The following is the partial
ontents of the and-rule table for the example shownin �gure 3.2(Name total_para total_attr integer table index(attribute)store 2 2 72(<syntax,7(syntax table offset),0(len)>, ...)integer table index(parameter))78(<OR_RULE_TYPE, 0(or rule table offset), 0>, ...)Note that instead of storing the name of and op-rule variable (i.e. store), theindex into the identi�er table is used.� Syntax table . This table holds the syntax re
ord asso
iated with the syntaxattribute de�nitions of all and-rules. It also holds the information to asso
iatethe
orresponden
e between the and-rule table and the syntax table.� Image table . This table holds the image re
ord asso
iated with the imageattribute de�nitions of all and-rules. It also holds the information to asso
iatethe
orresponden
e between the and-rule table and the image table. It holdsre
ords similar to the syntax table.� String table . This table is used for storing variable length strings (nullterminated) su
h as identi�er names. This table helps in having �xed sizeentries in other tables. Identi�er names and strings in other tables are storedas o�sets into the string table. 23

� Integer table . This table is used for storing only integer values. Theseintegers are asso
iated with other tables and represent di�erent meanings indi�erent
ontexts. This table helps in having �xed size entries in other table.For example in the or-rule table ea
h
hild is represented with 2 values. The �rst
orresponding to whether the
hild is an OR-RULE-TYPE or AND-RULE-TYPE and the se
ond an index into the identi�er table. The 2 values are storedas 2 integers in the integer table. The number of su
h 2-tuples
orrespond tothe number of
hildren for ea
h or-rule type. Hen
e for n
hildren there wouldbe 2n integer values stored in the integer table at the spe
i�ed o�set of this orop-rule.� Pre�x-Attribute-De�nition Table . This table holds the attribute de�ni-tion of all the attributes (ex
ept syntax and image attributes) asso
iated withmemory-variables and and-rules. These de�nitions are stored in pre�x notation.Other tables store the information to lo
ate the appropriate attribute de�nition
orre
tly.A header is prepended to the IR whi
h
onsists of 2 �elds: a four byte magi
number whi
h is
urrently initialised to "IRV2" and a �eld to indi
ate whether theIR �le format is in big-endian or little-endian format.In Appendix B, we present the stru
ture of ea
h of the tables in detail.The
onversion from Sim-nML to the IR is done in the following two passes.3.3.4 Pass 1 : Ma
ro Prepro
essorThe IR does not retain any ma
ro de�nitions from the sour
e. For ease of implemen-tation, ma
ro pro
essing is implemented as a separate pass over the Sim-nML spe
i-�
ation �le. This part has been done in another proje
t by Y. Subhash Chandra[1℄.The ma
ro prepro
essor takes the Sim-nML �le with ma
ro de�nitions as input andprodu
es a Sim-nML �le without ma
ros. It gathers all ma
ro de�nitions and
on-verts them into equivalent m4[16℄ ma
ro de�nitions. Then m4, a standard utilityavailable on Unix platforms, is run on this �le to get the Sim-nML �le without anyma
ros.
24

3.3.5 Pass 2 : Parsing the Hierar
hyPass two takes a Sim-nML spe
i�
ation �le without ma
ros as input and produ
esthe spe
i�
ation in the IR. This pass pro
eeds in two phases.� The �rst phase involves the parsing of input �le. During the parsing, all relevantinformation is gathered in appropriate data stru
tures. Attribute de�nitionsfor all attributes ex
ept syntax and image attributes are
onverted into pre�xnotations during the parsing time. As soon as a de�nition is
omplete, it isstored in the pre�x-attribute-de�nition table.� In the se
ond phase, the syntax and image table entries are
reated with ap-propriate 2-tuples added to de�ne ea
h parameter.At the end of the se
ond pass, all tables are written in the output �le while updatingthe meta table to in
lude information relevant to other tables.

25

Chapter 4
Ca
he Simulation EnvironmentAs a se
ond part of this thesis work, we implemented a Ca
he Simulation Environ-ment for pro
essor models des
ribed in Sim-nML. The motivation behind this is toimplement a
omplete pro
essor simulation environment. The
a
he simulator pro-vides a me
hanism to study the
a
hing poli
ies of the pro
essor being modeled. Foran appli
ation, the designer
ould use the simulator to study the trade-o�s betweendi�erent
a
hing poli
ies. He
ould measure the preforman
e of the pro
essor undervarious
a
hing models by varying parameters like
a
he size,
a
he line size, asso-
iativity, repla
ement poli
y, e�e
ts due to uni�ed or split
a
he model, e�e
ts ofmulti-level
a
hing et
. The designer
an simulate to get parameters su
h as
a
hehit rates, miss rates,
on
i
t misses, invalid misses,
ompulsary misses et
. The ad-vantage of providing su
h a me
hanism is that the designer
ould simulate and studythe
a
hing behavior of the appli
ation programs to be run on the pro
essor being de-signed mu
h before the a
tual implementation. The ben
hmarks
ould then be usedto sele
t an ideal
a
hing poli
y. This me
hanism provides a generi
 ar
hite
tureindependent
a
he performan
e analysis.Ca
he simulation
an be done on-line or o�-line. On-line
a
he simulation triesto keep tra
k of the instru
tion and data addresses depending on the
a
hing poli
yat run time. This involves running the appli
ation on a pro
essor simulator andtra
ing the instru
tion and data memory referen
es. In o�-line
a
he simulation, thesimulator
ould be used to generate a tra
e of the memory referen
es. The tra
e
ouldthen be analyzed for
a
he referen
es with suitable optimizations applied to speed upthe pro
ess.The Ca
he Simulator is built upon the Retargetable Fun
tional Simulator - Fsimg26

developed by Y. Subhash Chandra[1℄ as part of his master's thesis. The Fsimggenerates a pro
essor spe
i�
 fun
tion simulator using the pro
essor models writtenin Sim-nML. The generated fun
tional simulator helps in the study of fun
tional
orre
tness of the design. It
an also produ
e the instru
tion tra
e whi
h
an be usedby other tools in studying other aspe
ts of the design.As the fun
tional simulator simulates the exe
ution of the given program,
alls
ould be made using
anoni
al fun
tions (refer se
tion 4.2). The instru
tion or dataaddresses are passed as parameters to
a
he simulation routines whi
h simulates the
a
hing behavior by keeping tra
k of the addresses.4.1 Ca
he Con�gurationThe Ca
he Simulator uses a
on�guration �le wherein the designer
an spe
ify the
a
hing poli
ies. The simulator then reads the �le to
reate the spe
i�ed
a
hingenvironment before a
tual simulation. Figure 4.1 gives a sample
on�guration �le.The following are the standard de�nitions used in the spe
i�
ation �le.� levels: spe
i�es the number of levels of
a
he. The �rst is named as L1, se
ondas L2 and so on.� addrlen: spe
i�es the physi
al address length.� Level: is used to denote whi
h level is being des
ribed. Level n stands for thenth level.� type: denotes
a
he type being de�ned. It
ould be INSTRCACHE forinstru
tion
a
he or DATACACHE for data
a
he or UNIFIED for a uni�ed
a
he ar
hite
ture.� asso
iativity: spe
i�es the asso
iativity of the
a
he being des
ribed. For adire
t mapped
a
he it is given as 1. For a n-way set asso
iative
a
he it shouldbe n. A keyword FULL
an be used for des
ribing a fully asso
iative
a
he.� size n: spe
i�es the
a
he size. n
an be suÆxed withK(kilobytes) orM(megabytes).Without the quanti�er, n is assumed to be in bytes.� line n: spe
i�es the
a
he line size. n
an be suÆxed with K(kilobytes) orM(megabytes). Without the quanti�er, n is assumed to be in bytes.27

� repla
e: denotes the repla
ement poli
y for set asso
iative
a
he systems. Thepoli
y
an be FIFO(�rst in �rst out),RANDOM or LRU(least re
ently used).� subblo
k: denotes the subblo
k size within a
a
he line.� write: spe
i�es the write poli
y. Could be WB WA(write through with writeallo
ate) or WB NWA(write ba
k - no write allo
ate) or WT WA(writethrough with write allo
ate) or WT NWA(write through with no write allo-
ate).� writebu�er: spe
i�es the size of the write bu�er in bytes.� nonblo
king: spe
i�es the number of outstanding misses that a
a
he
ansatisfy.4.2 ImplementationThe Sim-nML[15℄ language allows the use of
anoni
al fun
tions whi
h are user de-�ned fun
tions. These are used to des
ribe features whi
h are not dire
tly spe
i�edwithin Sim-nML. These are entities whose semanti
s would be realised by the toolthat pro
esses the Sim-nML des
ription. They
an be used to model the externalenvironment like memory systems,
a
hes, interrupts et
. The
a
he simulator uses2 prede�ned
anoni
al fun
tions - i
a
he and d
a
he.For data addresses we use"d
a
he"(address, type)where address is the e�e
tive memory address(data) while type
ould be READ orWRITE. This is used to spe
ify whether the a

ess to the given address is a read or awrite. The spe
i�
ation writer adds d
a
he
alls in various a
tion attribute de�nitionsin the Sim-nML pro
essor spe
i�
ation.For instru
tion addresses, we use a similar fun
tion
all as follows."i
a
he"(address, type)where address is the e�e
tive memory address(instru
tion) while type
ould beREADorWRITE. The i
a
he
anoni
al fun
tion
all however
annot be buried in the Sim-nML spe
i�
ation. So i
a
he is
alled by the fun
tional simulator engine whi
h isalways aware of the instru
tion virtual addresses as spe
i�ed in the input ELF binary.28

Another possibility is to embed i
a
he as a
anoni
al fun
tion
all within the top levelinstru
tion node's a
tion attribute.The
a
he simulator is run on-line along with the fun
tional simulator. The fun
-tional simulator generator Fsimg
onverts the
anoni
al fun
tions as dire
t C
allsto user de�ned routines. During the fun
tional simulator generation pro
ess, Fsimggenerates i
a
he
alls for ea
h instru
tion. While running the simulator, the
anoni-
al fun
tions, d
a
he and i
a
he are
alled whi
h simulate the
a
he system. Duringthe �rst
all to i
a
he or d
a
he the
a
he simulator reads the
on�guration �le andinitializes the
a
hing environment a

ording to the spe
i�
ation. As ea
h address ispassed, the
a
he behavior is simulated and the performan
e metri
s are sampled.The simulator samples the following parameters -HITS,MISSES,CONFLICTMISSES, INVALID MISSES, COMPULSARY MISSES. During simulation itinternally keeps tra
k of the above metri
s. At the end of the simulation, the statisti
sare dumped into log �les. Statisti
s are maintained for ea
h
a
he type at ea
h
a
helevel. They
an be used later by the designer for performan
e analysis.

29

#Ca
he Configuration File# Number of Levelslevels 3# Address lengthaddrlen 32# Des
ription for L1 Ca
heLevel 1# Des
ription for InstrCa
he of L1type INSTRCACHEasso
iativity 4size 32Kline 16repla
e FIFOsubblo
k 4 # subblo
k sizewrite WB WA # Write Ba
k, Write Allo
atewritebuffer 32 # size of write buffernonblo
king 2 # spe
ifies number of outstanding misses# Des
ription for DataCa
he of L1type DATACACHEasso
iativity 4size 32Kline 16subblo
k 4repla
e FIFOwrite WB WAwritebuffer 32nonblo
king 2Figure 4.1: Sample Ca
he Simulation spe
i�
ation �le
30

Des
ription for L2 Ca
heLevel 2# Des
ription for InstrCa
he of L2type INSTRCACHEasso
iativity 8size 512Kline 32subblo
k 8repla
e LRUwrite WT NWA # Write through, No Write Allo
ate# Des
ription for DataCa
he of L2type DATACACHEasso
iativity 8size 512Kline 32subblo
k 8repla
e LRUwrite WT WA# Des
ription for L3 Ca
heLevel 3# Des
ription for Unified L3 Ca
hetype UNIFIEDsize 2Mline 64asso
iativity FULLrepla
e RANDOMsubblo
k 16write WT WAFigure 4.2: Sample Ca
he Simulation spe
i�
ation �le:
ontinued
31

Chapter 5
Program Analysis and Pro�lingthrough Code Instrumentation
5.1 Introdu
tionProgram analysis tools are extremely useful for understanding program behavior.Computer ar
hite
ts use su
h tools to evaluate how well the program performs onnew ar
hite
tures. Software writers need su
h tools to analyze their programs andidentify
riti
al pie
es of
ode to optimize for eÆ
ien
y. Compiler writers use su
htools to �nd out how well their instru
tion s
heduling or bran
h predi
tion algorithmsare performing. As the third part of this thesis work, we implemented a me
hanismto perform analysis and pro�ling of appli
ation programs through the te
hnique of
ode instrumentation. This te
hnique was inspired fromATOM[13℄ whi
h is a frame-work for building wide range of
ustomized program analysis tools. The RetargetableFun
tional Simulator[1℄ is used as a platform for performing program analysis.We have tried to build a me
hanism that provide ar
hite
ts and software devel-opers to implement various pro�ling poli
ies. These in
lude basi
 blo
k
ounting,instru
tion
ounting, bran
h behavior et
. In our approa
h, the pro�ling of
ode isa

omplished by instrumenting appli
ation
ode at various points. For example, to
ount the basi
 blo
ks traversed at run time, a
ounter
ould be pla
ed at the end ofea
h basi
 blo
k. Similarly to analyze bran
h behavior, routines
ould be added after
onditional bran
h instru
tions.We have tried to provide a
ommon infrastru
ture using whi
h users
an build32

ustom pro�ling tools. In our approa
h, the program is viewed as a
olle
tion ofpro
edures ea
h
ontaining a
olle
tion of basi
 blo
ks ea
h of whi
h
omprises ofpro
essor instru
tions. A user de�ned pro
edure for instrumenting the appli
ationprogram
an be inserted before or after an instru
tion, a basi
 blo
k, or a pro
edure.This model provides a generi
 pro
essor pro�ling me
hanism. Using su
h an approa
h,a
ustom pro�ling tool
an be
onstru
ted. The Sim-nML language
ould be used tomodel a pro
essor from whi
h
ustom ar
hite
ture independent pro�ling tools
an be
onstru
ted.The Retargetable Fun
tional Simulator - Fsimg, generates a fun
tional simulatorof a given pro
essor for a parti
ular program (
ompiled
ode simulator). For ea
hinstru
tion in the input pro
essor spe
i�
ation, a fun
tion is generated whi
h is
alledduring the simulation pro
ess. Ea
h su
h fun
tion simulates the semanti
 a
tionof that instru
tion. Code instrumentation
an be done by inserting
alls to theuser de�ned pro
edures within ea
h su
h fun
tion. The fun
tional simulator enginemaintains a table of fun
tion pointers whi
h points to the fun
tions ea
h of whi
hsimulates a pro
essor instru
tion. For ea
h instru
tion in the input program, a pointerto the
orresponding fun
tion for that instru
tion is maintained. Instrumentation
anbe done between su
h instru
tion
alls. This allows instrumentation at instru
tionboundaries of the input binary. It
an also be used for basi
 blo
k pro�ling as well asthe pro
edure level pro�ling.The user de�nes the tool spe
i�
 parts in a prede�ned Instrument fun
tion. Aset of prede�ned routines - an appli
ation programming interfa
e (API) is provid-ed whi
h allows the user to add his pro
edure
alls before or after instru
tions. Aset of Basi
blo
k analysis routines are provided for pro�ling at the level of pro
e-dures, basi
 blo
ks or instru
tions within basi
 blo
ks. The pro�ling takes pla
e in2 phases. In the �rst phase, the user adds his instrumentation routines through theinstrumentation-API. During generation of the fun
tional simulator, the API
allsare used to instrument the appli
ation program at appropriate pla
es in the gener-ated simulator. In the se
ond phase, the user runs the simulator whi
h exe
utes theinstrumented
ode while simulating the input program. This would then provide thepro�ling information.
33

5.2 Appli
ation Programing Interfa
e - APIIn order to perform
ode instrumentation, we provide the following instrumentation-api to the user.The api
urrently provided are as follows:1. AddCallFun
byName(iname, type, fun
, pos): Fsimg de�nes a fun
tionfor ea
h instru
tion in the input pro
essor spe
i�
ation in Sim-nML. AddCall-Fun
byName adds the user pro
edure fun
 within the fun
tion de�ntion
orre-sponding to iname. Thus this fun
tion
an be used to instrument a parti
ularpro
essor instru
tion in the appli
ation program whenever it is exe
uted.� iname:
ould be the name of an instru
tion or a node in the Sim-nMLhierar
hy.� type: the type
ould be INSTR TYPE or NODE TYPE to spe
ifywhether iname is of instru
tion or node type.� fun
: is the name of the user routine whi
h is to added.� pos:
ould be BEFORE or AFTER to spe
ify whether fun
 has to beexe
uted before or after the exe
ution of iname in the fun
tional simulator.2. AddCallFun
(inst, fun
, pos): The fun
tional simulator engine maintainsfor ea
h instru
tion in the input program, a fun
tion pointer to the de�ningfun
tion. AddCallFun
 is used to add fun
 before or after the instru
tion addressinst in the input program. Thus this fun
tion
an be used to instrument theappli
ation program for a spe
if
 address, i.e, whenever an instru
tion is fet
hedfrom the address inst.� inst - instru
tion address: Ea
h instru
tion in the input program has aninstru
tion address. This is the virtual address of the instru
tion in theinput program.� fun
: is the name of the user routine whi
h is to added.� pos:
ould be BEFORE or AFTER to spe
ify whether fun
 has to beinstrumented before or after inst.3. AddTrailerFun
(fun
): The user
an add any routines(fun
) to be exe
utedafter simulation. Fsimg adds these routines after the simulation engine. They34

an be used by the user to
olle
t the �nal statisti
s, dump pro�ling informationet
.4. GetFirstPro
: Used to get the �rst pro
edure as listed in the ELF tables inthe program.5. GetNextPro
(p): Gets the next pro
edure after the
urrent pro
edure p.6. GetFirstBlo
k(p): Gets the �rst basi
 blo
k in pro
edure p.7. GetNextBlo
k(b): Gets the next basi
 blo
k after the
urrent blo
k b.8. GetLastInst(b): Gets the last instru
tion of the basi
 blo
k b.Se
tion 5.3 dis
usses the usage and implementation details.5.3 ImplementationThe instrumentation routines are added in 3 �les - instrument.
, bblo
kanal.
, user-fun
s.
. The �rst �le
ontains a
all to a prede�ned routine Instrument in whi
h theuser adds the api
alls to add fun
tions after parti
ular instru
tions.Suppose the user wants to
ount the o

urren
es of add instru
tions exe
uted in theprogram, he usesvoid Instrument(){ AddCallFun
byName("add", INSTR_TYPE, "add
ounter", AFTER);AddTrailerFun
("printadd
nt");}Here a user de�ned fun
tion add
ounter is added within the add instru
tion de�ntionat its end. The �le userfun
s.

ontains the user de�ned routines. The fun
tionadd
ounter
ould be de�ned as follows:long add
nt = 0; 35

void add
ounter(){ add
nt++;}where add
nt is a global
ounter. AddTrailerFun
 is used to add the user fun
tionprintadd
nt at the end of simulation whi
h
ould be de�ned as followsvoid printadd
nt(){ printf("num of add instru
ions exe
uted : %d\n", add
nt);}The �le bblo
kanal.

ontains the instrumentation routines asso
iated with basi
blo
k related analysis. It
ontains a
all to a prede�ned routine Basi
blo
kAnal inwhi
h the user adds the api
alls to add fun
tions relating to basi
 blo
k pro�ling.Suppose the user wants to
ount the number of basi
 blo
ks that are traversed duringprogram exe
ution, he usesvoid Basi
blo
kAnal(){ Pro
 *p;Blo
k *b;Inst inst;for (p = GetFirstPro
(); p; p = GetNextPro
(p)) {for (b = GetFirstBlo
k(p); b; b = GetNextBlo
k(b)) {inst = GetLastInst(b);AddCallFun
(inst, "
ountbb", AFTER);}}AddTrailerFun
("printbb");} 36

The user de�ned fun
tion
ountbb is added after the last instru
tion in ea
h basi
blo
k. The user might want to
all di�erent fun
tions at the same address boundary.Multiple user de�ned instru
tions
an be engineered at address boundaries by
allingAddCallFun
 with di�erent fun
tion names at the same instru
tion address.For basi
 blo
k oriented pro�ling, the Fsmig analyzes the input program to obtainbasi
 blo
ks in the input program. A basi
 blo
k is a sequen
e of
onse
utive state-ments in whi
h
ow of
ontrol enters at the beginning and leaves at the end withouthalt or possibility of bran
hing ex
ept at the end. A basi
 blo
k is obtained using analgorithm shown in �gure 5.1.1. Determine the set of leaders, the �rst statements of ea
h basi
 blo
k.2. The rules used are.� the �rst statement is a leader.� any statement that is the target of a
onditional or un
onditional goto isa leader.� any statement that immediately follows a goto or
onditional goto state-ment is a leader.3. For ea
h basi
 blo
k, its basi
 blo
k
onsists of the leader and all statementsup to but not in
luding the next leader or end of the program.Figure 5.1: Algorithm to
onstru
t basi
 blo
kThis is done by providing the Fsimg with the
onditional and un
onditional
ontrol
ow instru
tions(bran
h/
all/jmp) of the pro
essor instru
tion set. Sin
e Sim-nMLis a hierar
hi
al des
ription, if the hierar
hy allows, we
an provide the top levelbran
h node instead. The a
tual bran
h instru
tions
an then be enumerated fromthis. On
e a list of bran
h instru
tions are enumerated, we split the input instru
tionstream at pro
edure boundaries. For a given pro
edure, the basi
 blo
k boundariesare marked just after every bran
h instru
tion.To
al
ulate the bran
h target addresses, a
on�guration �le has to be providedwhi
h spe
i�es the relevant bran
h instru
tion with the bran
h target
al
ulationme
hanism. A sample
on�guration is shown in �gure 5.2In the
on�guration �le, $ refers to the
urrent instru
tion address, %n refers to37

onfiguration file for bran
h/jump target spe
ifi
ation#instru
tion name target addressb $ + (%0 << 2)ba %0 << 2Figure 5.2: Bran
h target spe
i�
ation �lethe nth parameter of the instru
tion spe
i�
ation in Sim-nML 'and' rule. Parametersare
ounted from left to right starting from 0.During generation, Fsimg
alls Instrument to add instrumentation routines. Itthen performs basi
 blo
k analysis where pro
edures and basi
 blo
ks within ea
hpro
edure are enumerated. It then
alls Basi
blo
kAnal to add the relevant user de-�ned routines. The Fsimg[1℄ implements ea
h instru
tion in the Sim-nML pro
essordes
ription as a fun
tion de�nition. The fun
tional simulator engine
ontains a ta-ble of pointers to fun
tions
orresponding to the instru
tions in the input program.AddCallFun
byName essentially modi�es the fun
tion de�ntion for the relevant in-stru
tion by adding a
all to the user de�ned routine. AddCallFun
 modi�es thetable of fun
tion pointers by adding a
all to an alternate routine whi
h embeds a
all to the relevant user de�ned routine along with the
all to the a
tual instru
tionde�nition fun
tion. During simulation, the fun
tional simulator simulates the inputprogram by
alling the routines
orresponding to ea
h instru
tion. The pro
ing isdone by
alling the user engineered routines.

38

Chapter 6
Motorola 68HC11 Spe
i�
ation inSim-nMLIn this
hapter, we brie
y survey theMotorola 68HC11[17℄ pro
essor ar
hite
ture andits Sim-nML spe
i�
ation.The Motorola 68HC11, is a family of mi
ro-
ontroller units with a simple 8-bitpro
essor
ore. The programmer's model
onsists of the following� A

umulators(A, B and D): A and B are two general purpose 8-bit a

u-mulators used to hold operands and results of arithmeti

al
ulations and datamanipulations. Some instru
tions treat the
ombinations of these two as a 16-bitdouble a

umulator (a

umulator D). The higher order byte of D is equivalentto a

umulator A while the lower order byte
orresponds to the a

umulatorB.� Index Registers (X and Y): The 16-bit index registers X and Y are used forindex addressing mode. In the indexed addressing mode, the e�e
tive address isobtained by adding the
ontents of a 16-bit index register to an 8-bit immediateo�set in the instru
tion.� Sta
k Pointer (SP): The M68HC11 CPU supports a program sta
k whi
hmay be lo
ated anywhere in the 64-Kbyte address spa
e and may be of any sizeup to the amount of memory available in the system.� Program Counter (PC): The program
ounter is a 16-bit register that holdsthe address of the next instru
tion to be exe
uted.39

� Condition Code Registers (CCR): This register
ontains �ve status indi
a-tors, two interrupt masking bits, and a STOP disable bit. The �ve
ags re
e
tthe results of arithmeti
 and other operations. The �ve
ags are half
arry (H),negative (N), zero (Z), over
ow (V) and
arry/borrow (C).� Addressing Modes:1. Immediate. The a
tual argument is
ontained in the byte(s) immediatelyfollowing the instru
tions.2. Extended. The e�e
tive address of the operand appears expli
itly in thetwo bytes following the op
ode.3. Dire
t. The least signi�
ant byte of the e�e
tive address of the instru
tionappears in the byte following the op
ode. The higher order byte of thee�e
tive address is 0.4. Indexed (INDX, INDY). The e�e
tive address is the
ontents of eitherof the index registers X, Y plus a �xed 8-bit unsigned o�set
ontained inthe instru
tion.5. Inherent. Contains impli
it operands. For example, the instru
tionABAadds the
ontents of a

umulator A with a

umulator B and stores theresults in A.6. Relative. For bran
h instru
tions, the target address is the address of thenext instru
tion plus a 8-bit signed o�set spe
i�ed in the instru
tion.6.1 Overview of the Spe
i�
ationsWe have spe
i�ed the Motorola 68HC11 spe
i�
ation in Sim-nML. A simple resour
eusage model has been assumed. A single instan
e of a resour
e exe
 unit is de
lared.Any instru
tion in exe
ution a
quires this resour
e for the time period depending onthe number of
lo
k
y
les required for exe
ution of that instru
tion.The instru
tion set of the 68HC11 CPU is organized in a hierar
hy in the Sim-nML spe
i�
ation. The des
ription hierar
hy is as follows. Top level node is theinstru
tion. Instru
tion
an be arithmeti
, sta
k
ontrol, program
ontrol,
onditionalinstru
tions, load-store instru
tions. Arithmeti
 instru
tions
an furthur be
lassi�edinto add-subtra
t, multiply-divide, shift-rotate, data test bit instru
tions. Program40

ontrol instru
tions
onsist of bran
h, jump, subroutine
alls et
. These instru
tionsoperate on both 8-bit and 16-bit data. Instru
tions involving external interfa
es likeinterrupts, serial/parallel data transfers have not been spe
i�ed.

41

Chapter 7
Results and Con
lusionIn this
hapter we dis
uss a few sample
a
he pro�ling and
ode instrumentationme
hanisms along with their performan
e impa
ts on the speed of the fun
tionalsimulator.7.1 ResultsThe
a
hing and pro�ling me
hanisms were tested on PowerPC603 Sim-nML inputspe
i�
ation. The test
ases were run on an� Intel P-II 233MHz, a little-endian pro
essor with 32MB RAM running GNU-Linux Kernel 2.2.13.Following are the test programs written in C. The PowerPC603 ELF binarieswere
reated using the GNU-C
ross-
ompiler.� mmul.
 : Matrix multipli
ation program. This program initializes two integermatri
es of 100x100 size and multiplies these two.� bsort.
 : Bubble sort program. This program initializes an array of 1500integers in des
ending order and sorts them to as
ending order using bubblesort algorithm.� qs.
 : Qui
k sort program. This program initializes array of 1,00,000 integers indes
ending order and sorts them to as
ending order using qui
k sort algorithm.42

� fmmul.
 : Matrix multipli
ation for
oating-point numbers. Initializes andmultiplies two
oating point matri
es of size 100x100.� nqueen.
 : This program �nds all the possible ways that N queens
an bepla
ed on an NxN
hess board so that the queens
annot
apture one another.Here N is taken as 12.The total number of dynami
ally exe
uted instru
tions during the simulation ofea
h of these programs are given in the table 7.1 and the performan
e of the fun
tionalsimulator without the
a
he simulation and pro�ling is given in table 7.2.Program Total No. of Instru
tionsmmul.
 91,531,966bsort.
 60,759,034qs.
 80,773,862fmmul.
 92,131,966nqueen.
 204,916,928Table 7.1: Total number of instru
tions simulated for test programs.Program Total Time in Se
onds Instru
tions per se
ondmmul.
 62 1,476,322bsort.
 106 573,198qs.
 109 741,044fmmul.
 64 1,439,549nqueen.
 225 910,741Table 7.2: Performan
e Results of the fun
tional simulator7.1.1 Ca
hing ExampleWe have used the sample
on�guration �le as spe
i�ed in the �gure 7.1 and the
orresponding output metri
s measured are given in table 7.3. In table 7.3,� Ca
he type indi
ates whether the
a
he is a data or instru
tion
a
he.43

� Level denotes the
a
he level in the
a
he hierar
hy.� Hits denote the % of the total memory a

ess that resulted in a
a
he hit.� Misses denote the % of the total memory a

ess that resulted in a
a
he miss.� Con
i
t Miss denote the % of the total memory a

ess that resulted in a
on
i
tmiss (i.e, the
a
he entry was marked valid) in the
a
he.� Invalid Miss denote the % of the total memory a

ess that resulted in a invalidmiss (i.e, the
a
he entry was marked invalid) in the
a
he.� Compulsary Miss denote the % of the total memory a

ess that resulted in a
ompulsary or
old miss (i.e, the address was being a

essed for the �rst time)in the
a
he.Program Ca
he type Level Hits Misses Con
i
t Invalid Compulsary(%) (%) misses(%) misses(%) misses(%)mmul.
 Data 1 98.5 1.3 1.3 0 .02Instr 1 99.95 0.04 0.04 0 0bsort.
 Data 1 99.9 0.001 0.001 0 0Instr 1 99.9 0.001 0.001 0 0qs.
 Data 1 99.75 0.24 .24 0 0.01Instr 1 99.89 0.1 0.1 0 0fmmul.
 Data 1 98.5 1.3 1.3 0 0.02Instr 1 99.9 0.04 0.04 0 0nqueen.
 Data 1 99.9 0 0 0 0Instr 1 99.9 0 0 0 0Table 7.3: Results of pro�ling output for test programs.The performan
e of the fun
tional simulator with on-line
a
he simulation givenin table 7.4.7.1.2 Pro�ling ExampleWe have implemented a simple pro�ling tool whi
h
ounts the number of basi
 blo
ksthat are traversed at run time. At the same time, the number of PowerPC addi44

#PowerPC603 Ca
he Configuration# Number of Levelslevels 1# Address lengthaddrlen 32# Des
ription for L1 Ca
heLevel 1# Des
ription for InstrCa
he of L1type INSTRCACHEasso
iativity 2size 8Kline 32repla
e LRUwrite WB WA # Write Ba
k, Write Allo
ate# Des
ription for DataCa
he of L1type DATACACHEasso
iativity 2size 8Kline 32repla
e LRUwrite WB WAFigure 7.1: PowerPC603 Ca
he
on�guration �leProgram Total Time in Se
onds Instru
tions per se
ond slowdown fa
tormmul.
 549 166,72 8.8bsort.
 546 111,280 5.1qs.
 809 99,844 7.4fmmul.
 522 176,498 8.1nqueen.
 1138 180,06 5.0Table 7.4: Performan
e results of
a
he pro�ling for test programs.45

instru
tions that are exe
uted is also found. The
ode instrumentation te
hniquethat is used is spe
i�ed in se
tion 4.2.The pro�ling output is given in table 7.5.Program Total No. of Total No: ofbasi
 blo
k traversed addi instru
tions exe
utedmmul.
 2081207 1030305bsort.
 4506008 2253005qs.
 7315513 242144fmmul.
 2081207 1110305nqueen.
 40030204 60766515Table 7.5: Pro�ling output for test programs.The performan
e of the fun
tional simulator with this pro�ling is given in table7.6. Program Instru
tions per se
ond Slowdown fa
tormmul.
 1,452,888 1.01bsort.
 573,198 1qs.
 734,307 1.01fmmul.
 1,439,549 1nqueen.
 898,758 1.01Table 7.6: Performan
e results of pro�ling of test programs.7.1.3 IR-GeneratorThe IR ful�lls all the goals that were setup behind the design and extension of theIR. The short
omings of the earlier IR were removed.The IR-generatorwas tested for pro
essor models of PowerPC603,Motorola 68HC11& Intel 8085. It was run on Linux/Intel and Solaris/Ultraspar
 platforms.
46

7.2 Con
lusionsIn this thesis we have dis
ussed the Sim-nML language for modeling pro
essors at in-stru
tion level. It is powerful enough to spe
ify any modern pro
essor with pipelines,bran
h predi
tion, et
. at the instru
tion level. We have also dis
ussed the inte-grated environment where generi
 tools - assembler, simulator,
ompiler, et
.
an beautomati
ally generated using Sim-nML pro
essor models.As part of this thesis work, we have extended the IR for pro
essor des
riptionusing Sim-nML language. The IR simpli�es the development of tools like
ompilerba
k-end generators, assemblers, disassemblers, simulators et
. An IR generator hasbeen developed whi
h takes the Sim-nML spe
i�
ation as input and produ
es the IRof the pro
essor spe
i�
ation. We have also implemented a me
hanism for programanalysis. This in
ludes a me
hanism for
a
he simulation and an infrastru
ture forprogram pro�ling through
ode instrumentation. These tools help in generating apro
essor independent platform for program analysis. It was implemented over theRetargetable Fun
tional Simulator - Fsimg. The tools were tested for the PowerPC603spe
i�
ation.7.3 Future WorkWe visualize the following that
an be used to build a
omplete pro
essor simulationenvironment.A
omplete simulation of the external environment of the pro
essor
an be done.This would involve developing separate simulation modules for memory,
a
he system-s, bus et
. whi
h would intera
t with the pro
essor fun
tional or timing simulator.The fun
tional or timing simulator would then only simulate the pro
essor. Thiswould make the system more modular, s
alable and
exible.

47

Bibliography[1℄ Chandra, Y. S. Retargetable Fun
tional Simulator. Master's the-sis, Department of Computer S
ien
e and Engg., IIT Kanpur, June 1999.http://www.
se.iitk.a
.in/resear
h/mte
h1997/9711121.html.[2℄ Edler, J., and Hill, M. D. Dinero IV Tra
e-Driven Unipro
essor Ca
heSimulator.[3℄ Freeri
k, M. The nML Ma
hine Des
ription Formalism, July 1993.http://www.
s.tu-berlin.de/~mfx/dvi do
s/nml 2.dvi.gz.[4℄ George Hadjiyiannis, S. H., and Devadas, S. ISDL An Instru
tion setDes
ription Language for Retargetability. Pro
eedings of the 34th Annual Con-feren
e on Design Automation Conferen
e (1997), 299.[5℄ Jain, N. C. Disassembler using High Level Pro
essor Models. Master'sthesis, Department of Computer S
ien
e and Engg., IIT Kanpur, Jan 1999.http://www.
se.iitk.a
.in/resear
h/mte
h1997/9711113.html.[6℄ Larus, J. R. EÆ
ient Program Tra
ing. Computer 26, 5 (May 1993), 52{61.[7℄ Larus, J. R., and Ball, T. Rewriting Exe
utable Files to Measure ProgramBehavior. Software Pra
ti
e & Experien
e 24, 2 (Feb 1994), 197{218.[8℄ Larus, J. R., and S
hnarr, E. EEL: Ma
hine-Independent Exe
utable Edit-ing. SIGPLAN Conferen
e on Programming Language Design and Implementa-tion (PLDI) (June 1995).[9℄ Mendel Rosenblum, Edouard Bugnion, S. D., and Herrod, S. A. Us-ing the SimOS Ma
hine Simulator to Study Complex Computer Systems. ACMTransa
tions on Modeling and Computer Simulation 7, 1 (Jan 1997), 78{103.http://simos.stanford.edu. 48

[10℄ Mondal, S. Compiler Ba
k-end Generation using nML Ma
hine Des
ription.Master's thesis, Department of Computer S
ien
e and Eng., IIT Kanpur, June1999. http://www.
se.iitk.a
.in/resear
h/mte
h1997/9711117.html.[11℄ Raksey, N., and Fernandez. Spe
ifying Representations of Ma
hine Instru
-tions. ACM Transa
tions on Programming Langauges and Systems 19, 3 (May1997), 492{594. http://www.
s.virginia.edu/~nr/pubs/spe
ifying-abstra
t.html.[12℄ Smith, M. D. Tra
ing with Pixie. Memo from Center for Integrated Systems,Stanford Univ. (April 1991).[13℄ Srivastava, A., and Wall, D. ATOM: A system for building
ustomizedanalysis tools. Pro
eedings of the SIGPLAN '94 Conferen
e of ProgrammingLanguage Design and Implementation (PLDI) (June 1994), 196{205.[14℄ Trung A., D., and John Paul, S. VMW: A Visualization-Based Mi
roar-
hite
ture Workben
h. IEEE Computer (De
 1995), 57{64.[15℄ V.Rajesh. A Generi
 Approa
h to Performan
e Modeling and its Appli
ationto Simulator Generator. Master's thesis, Department of Computer S
ien
e andEngg., IIT Kanpur, July 1998. http://www.
se.iitk.a
.in/resear
h/mte
h1996/9611123.html.[16℄ UNIX System V Release 4, Programmers Guide : ANSI C and ProgrammingSupport Tools. Prenti
e-Hall of India Private Ltd., New Delhi, 1992. Exe
utableand Linkable Format (ELF), Tools Interfa
e Standards (TIS), Portable FormatsSpe
i�
ation, Version 1.1.[17℄ M68h
11 Referen
e Manual. Motorola In
., 1994. http://mot-sps.
om/m
u/do
umentation/pdf/h
11rmr3.pdf.

49

Appendix A
Grammar of Sim-nML LanguageFollowing is the Context Free Grammar for Sim-nML language.Ma
hineSpe
 :| Ma
hineSpe
 LetDef| Ma
hineSpe
 TypeSpe
| Ma
hineSpe
 MemorySpe
| Ma
hineSpe
 RegisterSpe
| Ma
hineSpe
 VarSpe
| Ma
hineSpe
 ModeSpe
| Ma
hineSpe
 OpSpe
| Ma
hineSpe
 Resour
eSpe
| Ma
hineSpe
 Ex
eptionSpe
| Ma
hineSpe
 error;LetDef : LET ID'=' LetExpr;Resour
eSpe
: RESOURCEResour
eList;Resour
eList:ID| ID '[' CARD_CONST '℄'50

| Resour
eList ',' ID| Resour
eList ',' ID '[' CARD_CONST '℄';Ex
eptionSpe
: EXCEPTIONIdentifierList;IdentifierList: ID| IdentifierList ',' ID;TypeSpe
: TYPE ID'=' TypeExpr;TypeExpr: BOOL| INT '(' LetExpr')'| CARD '(' LetExpr')'| FIX '(' LetExpr ',' LetExpr')'| FLOAT '(' LetExpr ',' LetExpr')'| '[' LetExpr DOUBLE_DOT LetExpr '℄'| ENUM '(' IdentifierList ')';LetExpr: Expr;MemorySpe
: MEM ID'[' MemPart '℄' OptionalMemAttrDefList;RegisterSpe
: REG ID'[' RegPart '℄' OptionalMemAttrDefList;VarSpe
: VAR ID'[' RegPart '℄';MemPart: LetExpr ',' Type| LetExpr 51

;RegPart: LetExpr ',' Type| Type;Type : TypeExpr| ID;OptionalMemAttrDefList:| MemAttrDefList;MemAttrDefList:MemAttrDef| MemAttrDefList MemAttrDef;MemAttrDef:VOLATILE '=' LetExpr| PORTS '=' CARD_CONST ',' CARD_CONST| ALIAS '=' MemLo
ation| INITIALA '=' LetExpr| USES '=' UsesDef;MemLo
ation :ID Opt_Bit_Optr| ID '[' Expr '℄' Opt_Bit_Optr;ModeSpe
: MODE IDModeSpe
Part;ModeSpe
Part: AndRule OptionalModeExpr AttrDefList| OrRule;OptionalModeExpr :| '='Expr 52

;OpSpe
: OP IDOpRulePart;OpRulePart: AndRule AttrDefList| OrRule;OrRule: '='Identifier_Or_List;Identifier_Or_List:ID| Identifier_Or_List '|' ID;AndRule: '(' ParamList ')';ParamList:| ParamListPart| ParamList ',' ParamListPart;ParamListPart:ID':' ParaType;ParaType : TypeExpr| ID;AttrDefList:| AttrDefList AttrDef;AttrDef :ID '=' AttrDefPart| SYNTAX '=' AttrExpr| IMAGE '=' AttrExpr 53

| ACTION '=' '{' Sequen
e '}'| USES '=' UsesDef;AttrDefPart:Expr| '{' Sequen
e '}';AttrExpr :ID '.' SYNTAX| ID '.' IMAGE| STRING_CONST| FORMAT '(' STRING_CONST ',' FormatIdlist ')';FormatIdlist:FormatId| FormatIdlist ',' FormatId;FormatId:ID| ID '.' IMAGE OptBitSele
t| ID '.' SYNTAX| DOLLAR '+' ID;OptBitSele
t:| BIT_LEFT CARD_CONST DOUBLE_DOT CARD_CONST BIT_RIGHT;Sequen
e:| StatementList ';';StatementList:Statement| StatementList ';' Statement;Statement: 54

| ACTION| ID| ID '.' ACTION| ID '.' ID| Lo
ation '=' Expr| ConditionalStatement| STRING_CONST '(' ArgList ')'| ERROR '(' STRING_CONST ')';ArgList :| Expr| ArgList ',' Expr;Opt_Bit_Optr :| BIT_LEFT Bit_Expr DOUBLE_DOT Bit_Expr BIT_RIGHT;Lo
ation :ID Opt_Bit_Optr| ID '[' Expr '℄' Opt_Bit_Optr| Lo
ation DOUBLE_COLON Lo
ation;ConditionalStatement:IF Expr THEN Sequen
e OptionalElse ENDIF| SWITCH '(' Expr ')' '{' CaseList '}';OptionalElse:| ELSE Sequen
e;CaseList:CaseStat| CaseList CaseStat;CaseStat:CaseOption ':' Sequen
e 55

;CaseOption:CASE Expr| DEFAULT;Expr :COERCE '(' Type ','Expr')'| FORMAT '(' STRING_CONST ',' ArgList ')'| STRING_CONST '(' ArgList ')'| ID '.' SYNTAX| ID '.' IMAGE| ID '.' ID| Expr DOUBLE_COLON Expr| ID '[' Expr '℄' Opt_Bit_Optr| ID Opt_Bit_Optr| Expr '+' Expr| Expr '-' Expr| Expr '*' Expr| Expr '/' Expr| Expr '%' Expr| Expr DOUBLE_STAR Expr| Expr LEFT_SHIFT Expr| Expr RIGHT_SHIFT Expr| Expr ROTATE_LEFT Expr| Expr ROTATE_RIGHT Expr| Expr '<' Expr| Expr '>' Expr| Expr LEQ Expr| Expr GEQ Expr| Expr EQ Expr| Expr NEQ Expr| Expr '&' Expr| Expr '^' Expr 56

| Expr '|' Expr| '!' Expr| '~' Expr| '+' Expr %pre
 '~'| '-' Expr %pre
 '~'| Expr AND Expr| Expr OR Expr| '(' Expr ')'| FIXED_CONST| CARD_CONST| STRING_CONST| DOLLAR| BINARY_CONST| HEX_CONST| IF Expr THEN Expr OptionalElseExpr ENDIF| SWITCH '(' Expr ')' '{' CaseExprList '}';Bit_Expr :ID| Bit_Expr '+' Bit_Expr| Bit_Expr '-' Bit_Expr| Bit_Expr '*' Bit_Expr| Bit_Expr '/' Bit_Expr| Bit_Expr '\%' Bit_Expr| Bit_Expr DOUBLE_STAR Bit_Expr| '(' Bit_Expr ')'| FIXED_CONST| CARD_CONST| STRING_CONST| BINARY_CONST| HEX_CONST;CaseExprList:CaseExprStat 57

| CaseExprList CaseExprStat;CaseExprStat:CaseOption ':' Expr;OptionalElseExpr:| ELSE Expr;UsesDef:UsesOrSequen
e| UsesDef ',' UsesOrSequen
e;UsesOrSequen
e:UsesIfAtom| UsesOrSequen
e '|' UsesIfAtom;UsesIfAtom:UsesIndire
tAtom| IF Expr THEN UsesIfAtom OptionalElseAtom ENDIF;OptionalElseAtom :| ELSE UsesIfAtom;UsesIndire
tAtom:UsesCondAtom| ID '.' USES| '(' UsesDef ')'| UsesLo
ationList AND ID '.' USES| UsesLo
ationList AND '(' UsesDef ')';UsesCondAtom:UsesAndAtom| '{' Expr '}' UsesAndAtom; 58

UsesAndAtom :UsesLo
ationList UsesA
tionList;UsesA
tionList :| A
tionTimeList OptionalA
tion| TimeA
tionList OptionalTime;A
tionTimeList :'#' '{' Expr '}'| A
tionTimeList ':' UsesA
tionAttr '#' '{' Expr '}';TimeA
tionList :':' UsesA
tionAttr| TimeA
tionList '#' '{' Expr '}' ':' UsesA
tionAttr;OptionalA
tion :| ':' UsesA
tionAttr;OptionalTime :| '#' '{' Expr '}';UsesA
tionAttr:ID| ACTION;UsesLo
ationList :UsesLo
ation| UsesLo
ationList '&' UsesLo
ation;UsesLo
ation :ID Opt_Bit_Optr| ID '[' Expr '℄' Opt_Se
Dim Opt_Bit_Optr;
59

Opt_Se
Dim :| '[' '℄'

60

Appendix B
File Format of IntermediateRepresentationIn this appendix, we will dis
uss the layout of the �le for the intermediate represen-tation. The �le
onsists of two parts. The �rst part is the IR header and the se
ondpart is essentially a
olle
tion of various �xed or variable size tables where the nameof ea
h table is �xed. A table, named as meta table, is always the �rst table. Allother tables
an reside anywhere in the se
ond part and
an be lo
ated using themeta table. The following are the tables available presently in the IR.� \META TABLE"� \CONSTANT TABLE"� \ATTRIBUTE TABLE"� \RESOURCE TABLE"� \IDENTIFIER TABLE"� \MEMORY TABLE"� \AND RULE TABLE"� \OR RULE TABLE"� \SYNTAX TABLE" 61

� \IMAGE TABLE"� \STRING TABLE"� \INTEGER TABLE"� \PREFIX ATTRIBUTE DEFNITION TABLE"Ea
h table
onsists of an array of re
ords. Ea
h re
ord in a table
onstitutes ofvarious �elds. The �elds might be stored either in little-endian or big-endian en
odingusing the native data storage order of the host pro
essor.� Convention : Ea
h table is des
ribed by de�ning its re
ord format. We haveused a C-like stru
t de�nition to des
ribe a re
ord. Refer to tables.h for
ompletede�nition for the stru
tures and prede�ned
onstants. In des
ribing the re
ord,following data types are being used.uint8 = unsigned
har - 8 bitsuint16 = unsigned integer - 16 bitsuint32 = unsigned integer - 32 bitsint8 = signed
har - 8 bitsint16 = signed integer - 16 bitsint32 = signed integer - 32 bitsB.1 IR HeaderThe IR header
ontains 2 �elds as shown below. The �rst is a magi
 number. For the
urrent version it is set to "IRV2". The se
ond �eld is used to denote the endiannessof the host pro
essor on whi
h the IR was
reated. The possible values for endian areLITTLE END and BIG END, two
onstants de�ned in tables.h.typedef stru
t {uint8 magi
[4℄;uint8 endian;} IR_Header;
62

B.2 Meta TableThe Meta table holds the table of
ontents for all the tables whi
h are present in the�le. Ea
h re
ord of the meta table stores the information to lo
ate a table. Ea
hre
ord has the following format.typedef stru
t {uint8 table_name[32℄;uint32 table_size;uint32 table_offset;uint32 total_re
ords;uint32 re
ord_size;} MetaTable_t;� table name : This �eld stores the �xed name of a table whi
h is a 32 bytenull terminated string. Name of all the tables are :META TABLE, CON-ST TABLE, ATTRIBUTE TABLE, RESOURCE TABLE, IDENTI-FIER TABLE, MEMORY TABLE, AND RULE TABLE, OR RULE TABLE,SYNTAX TABLE, IMAGE TABLE STRING TABLE, INTEGER TABLE,PREFIX TABLE. The �rst entry in the table is for META TABLE itself.� table size : This �eld holds the size (in bytes) of a table.� table o�set : This �eld holds the starting o�set (in bytes) of a table in the �lefrom the beginning of the �le.� total re
ord : This �eld holds the number of �xed size re
ords stored in a table.Tables with variable size re
ords like string table, integer table have this �eldset to 0.� re
ord size : This �eld holds the size of a �xed size re
ord (in bytes) in a table.Tables with variable size re
ords like string table and integer table have this �eldset to 0.
63

B.3 Constant TableEa
h re
ord of the
onstant table holds the informations about the
onstant expres-sions in the following format.typedef stru
t {uint32 id_name;int8 val_type;int32 value;} ConstTable_t;� id name: This �eld holds the index into the string table. The string table holdsnull terminated strings. Thus this �eld represents a referen
e to the
onstantname.� val type: This �eld indi
ates the type of the value asso
iated with the
onstant.Currently it
an be one of the two
onstants CONST TBL INT TYPE,CONST TBL STRING TYPE as de�ned in tables.h� value: If the val type �eld represents CONST TBL INT TYPE, then this�eld holds the
orresponding int32 value. If the val type isCONST TBL STRING TYPE, then this �eld holds the index into thestring table.B.4 Resour
e TableEntries of this table hold the information about resour
e. Ea
h entry indi
ates theresour
e name and the number of instan
es of ea
h resour
e. Ea
h re
ord has thefollowing format.typedef stru
t {uint32 res_name;uint32 res_num;} Resour
eTable_t; 64

� res name : This �eld holds the index into the string table where the resour
ename is stored.� res num : This �eld stores the number of instan
es of this resour
e (� 1).B.5 Identi�er TableThis table holds the information about all the identi�ers used in the pro
essor spe
i-�
ation �le (other than those spe
i�ed in the
onstant table and the resour
e table).Ea
h re
ord has the following format.typedef stru
t {uint32 id_ptr;uint32 id_name;uint32 id_type;} Identifier_t;� id name : This �eld holds an index into the string table. The string table holdsa null terminated string at this index whi
h is the name of the identi�er.� id type : This �eld indi
ates the type of the identi�er and may have one of thefollowing values as de�ned in tables.h.UNDEFINED Unde�ned Identi�erMEM TYPE Memory VariableMODE OR TYPE Mode Or RuleMODE AND TYPE Mode And RuleOP OR TYPE Op Or Rule type.OP AND TYPE Op And Rule type.EXCEPTION TYPE Ex
eption� id ptr : This �eld holds the pointer to other tables depending on id type valueassigned to the identi�er.
65

MEM TYPE: index into the memory tableMODE OR TYPE: index into the or rule tableMODE AND TYPE: index into the and rule tableOP OR TYPE: index into the or rule tableOP AND TYPE: index into the and rule tableB.6 Attribute TableEa
h entry of this table holds the name of an attribute. Ea
h re
ord has the followingformat.typedef stru
t {uint32 attr_name;} Attribute_t;� attr name : This �eld holds an index into the string table where the attributename is storedB.7 Memory TableEa
h entry of this table holds the information about a memory variable spe
i�ed withreg or mem or var spe
i�
ation
onstru
t of Sim-nML. Ea
h re
ord has the followingformat.typedef stru
t {uint32 id_index;uint32 size;uint32 total_attr;uint8 type;uint8 data_type;uint32 value1;uint32 value2;uint32 attr_list_index;66

} MemTable_t;� id index : This �eld stores the index into the identi�er table.� size : A memory de
laration de�nes a memory base, i.e., a set of memorylo
ations a

essible with a name and an index. This �eld spe
i�es the numberof su
h lo
ations.� total attr : A memory de
laration may also de�ne values for some prede�nedattributes. This �eld spe
i�es how many attributes are de�ned for the memoryvariable.� type : This �eld holds a
onstant whi
h
an be REG if the identi�er is de-
lared using reg spe
i�
ation, MEM if the identi�er is de
lared using memspe
i�
ation and VAR if the identi�er is de
lared using var de
laration.� data type, value1, value2 : A memory lo
ation might hold values of di�erent da-ta types. The data type is en
oded in a tuple <data typ, value1, value2>. First�eld, data type, spe
i�es what type of values
an be stored in a memory lo
a-tion. Se
ond and third �eld stores the value a

ording to the data type �eld. da-ta type
an be BOOL TYPE, CARD TYPE, INT TYPE, FIX TYPE,FLOAT TYPE, RANGE TYPE, ENUM TYPE.Table B.1 shows the possible of other two �elds.� attr list index : If the total attr �eld has a value 0, then this �eld is ignored andshould be 0. Otherwise it spe
i�es an index into the integer table. At this index,three integers are stored for ea
h of the attributes. Therefore, the total numberof integers are 3 � total attr. Ea
h integer tuple indi
ates <index, o�set, len>where index, is the index into the attribute table
orresponding to that attribute.The se
ond �eld of the tuple, o�set, is the starting tuple number into the pre�xattribute de�nition table where de�nition of the attribute is stored in pre�xnotation. Third �eld of the triple, len, is the number of tuples for its attributede�nition. Ea
h tuple in the pre�x attribute table is of type Pre�xTuple t(refer se
tion B.14).For mode spe
i�
ation (refer Sim-nML spe
i�
ation[15℄), one new attribute,val , is de�ned to store the optional expression asso
iated with the mode spe
i-�
ation. The expression is de
lared using =. For example, in �gure 2.2, the and67

rule mode REG(index :
ard(5)) = R[index℄, has an asso
iated attributeval whi
h de�nes the expression R[index℄.Data Type data type value1 value2bool BOOL TYPE 0 0
ard(n) CARD TYPE n 0int(n) INT TYPE n 0�x(n;m) FIX TYPE n m
oat(n;m) FLOAT TYPE n mrange[n::m℄ RANGE TYPE n menum(id 1. . . id m) ENUM TYPE 0 m� 1Table B.1: En
oding of data types
B.8 And-Rule TableThis table holds the information about all the and-rules (mode and op type). Itholds information about attributes and parameters of ea
h and rule. Parameters arenumbered from 0 to n from left to right. Ea
h re
ord has the following format.typedef stru
t {uint32 id_index;uint32 total_para;uint32 total_attr;uint32 attr_list_index;uint32 para_list_index;} AndTable_t;� id index : This �eld holds the index into the identi�er table
orresponding tothis and-rule.� total para : This �eld holds the number of parameters asso
iated with theand-rule.� total attr : This �eld spe
i�es the number of attributes de�ned for the and-rule.68

� attr list index : If total attr �eld has value 0, then this �eld is ignored andhas a value 0, otherwise it spe
i�es an index into the integer table. At thisindex, three integers are stored for ea
h of the attributes. Ea
h integer tripleindi
ates <index, o�set and len> similar to the one des
ribed in the memorytable. There are two ex
eptions here. If index refers to a syntax or imageattribute, then o�set �eld
ontains the index into the syntax table or the imagetable, as the
ase might be, and len �eld is 0.� para list index : If total para �eld has value 0, then this �eld is ignored. Oth-erwise it spe
i�es an index into the integer table. At this index, three integersare stored for ea
h of the parameter. Ea
h integer triple indi
ates <data type,value1, value2> i.e. the data type of parameter. data type takes the samevalue as of memory table data types. In addition it
ould take the valueAND RULE TYPE, OR RULE TYPE. Table B.2 shows possible valuesfor �elds of the triples.Data Type data type value1 value2bool BOOL TYPE 0 0
ard(n) CARD TYPE n 0int(n) INT TYPE n 0�x(n;m) FIX TYPE n m
oat(n;m) FLOAT TYPE n mrange[n::m℄ RANGE TYPE n menum(id 1. . . id m) ENUM TYPE 0 m� 1and-rule AND RULE TYPE and table index 0or-rule OR RULE TYPE or table index 0Table B.2: Parameter Type for and-rule
B.9 Or-Rule TableThis table holds the information of all or-rules (mode or op type). Ea
h entry des
ribesthe
hild nodes of an or-rule. Ea
h re
ord has the following format.typedef stru
t {uint32 id_index; 69

uint32 total_
hild;uint32
hild_list_index;} OrTable_t;� id index : This �eld holds the index into the identi�er table
orresponding tothis or-rule.� total
hild : This �eld holds the number of
hildren for this or rule.�
hild list index : This �eld holds the index into the integer table where alist of integer values are stored. For ea
h
hild 2 integers are stored. The�rst integer indi
ates the
hild type whi
h
ould be AND RULE TYPE orOR RULE TYPE. The se
ond integer denotes the index into the and ruletable or or rule table depending on the
hild type.B.10 Syntax TableThis table holds the syntax re
ords asso
iated with the syntax attribute de�nition ofall and-rules. Ea
h re
ord has the following format.typedef stru
t {uint8 type;uint32 str_len;uint32 str_off;} SynImg_t;� type : This �eld holds the type of the syntax re
ord. It
ould be SYNIMG-DOT TYPE or SYNIMGSTR TYPE For example, if the syntax attributeis de�ned as syntax = x.syntaxwhere x is a parameter, then the type is SYNIMGDOT TYPE, else if itis de�ned as a string or using the format keyword then the type is SYN-IMGSTR TYPE. 70

� str len : If type is SYNIMGDOT TYPE then this �eld holds the parameternumber (of x in the above example). If type is SYNIMGSTR TYPE thenthis �eld holds the format string length.� str o� : If type is SYNIMGDOT TYPE then this �eld holds the index intothe attribute table (of syntax in the above example) while if type is SYN-IMGSTR TYPE then this holds the o�set into the string table where theformat string is stored.B.11 Image TableThis table holds the image re
ords asso
iated with the image attribute de�nition ofall and-rules. Ea
h re
ord has the following format.typedef stru
t {uint8 type;uint32 str_len;uint32 str_off;} SynImg_t;� type : This �eld holds the type of the image re
ord. It
ould be SYNIMG-DOT TYPE or SYNIMGSTR TYPE. For example, if the image attributeis de�ned as image = x.imagewhere x is a parameter, then the type is SYNIMGDOT TYPE, else if itis de�ned as a string or using the format keyword then the type is SYN-IMGSTR TYPE.� str len : If type is SYNIMGDOT TYPE then this �eld holds the parameternumber (of x in the above example). If type is SYNIMGSTR TYPE thenthis �eld holds the format string length.� str o� : If type is SYNIMGDOT TYPE then this �eld holds the indexinto the attribute table (of image in the above example). If type is SYN-IMGSTR TYPE then this �eld holds the o�set into the string table wherethe format string is stored. 71

B.12 String TableThis table holds null terminated
hara
ter sequen
es,
ommonly
alled strings. Thesestrings are referred to by an index into the string table. for all strings. A string whoseindex is zero spe
i�es either no name or a null name depending on the
ontext. Weshow one example of the string table of size 30 bytes in table B.3 and the stringsasso
iated with various indi
es in table B.4.i d e n t i f i e rnull P C null i n s t r u
 t i o n null null null null nullTable B.3: Example of the String TableIndex string0 identi�er11 PC14 instru
tionTable B.4: Interpretation of the String Table
B.13 Integer TableThis table holds list of signed or unsigned integer values (int32 or uint32 type).These integers represent di�erent meanings in di�erent
ontexts. The integers arereferred in other tables by an index into the integer table. The index refers to thestarting o�set(index) into the integer table where the list of integers is stored.B.14 Pre�x-Attribute-De�nition TableThis table holds various attribute de�nitions in pre�x notation. All attributes ex
eptthe syntax and image are
onverted into the pre�x notation and stored in this table.It
ontains an array of re
ords where ea
h re
ord of the pre�x expression is stored asfollows.typedef stru
t { 72

uint16 type;int32 value;} PrefixTuple_t;� type : This �eld holds an integer value to indi
ate the type of tuple, i.e., anoperator tuple or operand tuple. For a tuple of operand type, this �eld alsoen
odes the type of the operand.� value : This �eld holds an integer value whose interpretation depends on thevalue of the type �eld.An attribute de�nition is stored in the and-rule table and in the memory tablewith the starting index into the pre�x-attribute-de�nition table and the number oftuples in the pre�x notation of the de�nition. Table B.5 shows the possible values oftype �eld and the
orresponding interpretation for the value �eld. If the type �eld isset to a value 0, then the tuple is an operator tuple. In all other
ases, the tuple is anoperand tuple. If the tuple is an operator tuple, then the value �eld holds an integerwhi
h indi
ates operator's name and its arity. Table B.6 shows all possible values forthis �eld and the
orresponding arity.There are as many operands available as needed for an operator. Sin
e the arity foran operator is known a-priori, the number of its arguments is impli
it. For example,an expression ' PC = PC + 2 ' is represented as ' = PC + PC 2 ' in pre�x notation.The expression has 5 items. The �rst item is an operator '=' with arity 2. The se
onditem is a memory variable with the value �eld being the index into the memory table.The third item is again an operator '+'. The fourth item is a memory variable whilethe last item is a �xed-
onstant with value 2.The detailed des
ription of ea
h operator is given in the Sim-nML spe
i�
ationgiven in Appendix A. There are some spe
ial
ases whi
h are des
ribed here.� The �rst
ase is for Bit Range operator whi
h has the in�x notation asopd1 < opd2::opd3 >. It is
onsidered as a ternary operator with three param-eters as opd1, opd2 and opd3 for pre�x notation.� The se
ond
ase is for \if then else". It is
onsidered as a ternary operator IF.If there is no operand in else part, then NULL operator (0-ary) (see table B.6)is used in its pla
e. 73

Type of the tuple type �eld value �eldOperator 0 operator number (see table B.6)Fixed
onstant 1 int32 value of operandCard
onstant 2 uint32 value of operandBinary
onstant 3 O�set into the string tableHex
onstant 4 O�set into the string tableString
onstant 5 O�set into the string tableMemory variable 6 index of the identi�er as assignedin the identi�er tableAttribute type 7 index of the attribute name in theattribute tableParameter type 8 parameter number (left most isassigned number 0).Resour
e type 9 index of the resour
e name as as-signed in the resour
e tableEx
eption type 10 index of the identi�er as assignedin the identi�er tableTable B.5: Interpretation of the tuple used in Pre�x Notation� The third
ase is when there is no attribute expression for an attribute. TheNULL operator is used to denote it.� The fourth
ase is that of a swit
h operator. General in�x notation for this isswit
h (expr){
ase Expr_1 : Sequen
e_1 ;
ase Expr_2 : Sequen
e_2 ;.default : Sequen
e_i ;.
ase Expr_n : Sequen
e_n ;}The
orresponding pre-�x notation is as follows :(operator, swit
h)(n, expr, 74

value Name of Operator Symbol Arity of Operator0 Addition + Binary1 Subtra
tion - Binary2 Multipli
ation * Binary3 Division / Binary4 MOD % Binary5 EXP ** Binary6 Greator than > Binary7 Less than < Binary8 Equal to == Binary9 Not equal to != Binary10 GEQ >= Binary11 LEQ <= Binary12 Logi
al AND & Binary13 Logi
al OR j Binary14 Logi
al XOR ^ Binary15 AND && Binary16 OR jj Binary17 Left Shift << Binary18 Right Shift >> Binary19 Rotate Left <<< Binary20 Rotate Right >>> Binary21 Dot . Binary22 Con
atenation :: Binary23 Indexing [℄ Binary24 Assignment = Binary25 Statement Separator ; Binary26 Unary Addition + Unary27 UNOT OPERATOR ! Unary28 Unary Subtra
tion - Unary29 Bitwise NOT ~ Unary30 Bit Range .. Ternary31 IF if then else Ternary32 Fun
tion
anoni
al fun
tion n-ary33 Swit
h swit
h n-ary34 default default 0-ary35 NULL nothing 0-ary36 Hash # Binary37 Comma , Binary38 Condition fg Unary39 Colon : BinaryTable B.6: Operators Used in Pre�x Attribute De�nition75

Expr_1, Sequen
e_1,Expr_2, Sequen
e_2,....default, Sequen
e_i,....Expr_n, Sequen
e_n)The �rst item is an operator with operator name as swit
h. Then next item isa simple operand tuple of Card
onstant type and value as n. After that, exprwill be again written in pre�x notation. It will be followed by n-operands whereea
h operand is an expression in pre�x notation and sequen
e of statements inpre�x notation. Default operator is a 0-ary operator (see table B.6).� The �fth
ase is that of a
anoni
al fun
tion. General notation for this is asfollows.\fun
tion name" (Arg1; Arg2; Arg3; :::::::::; Argn)where ea
h argument is again an expression. The
orresponding pre-�x notationis as follows. (operator, fun
tion)("fun
tion name" string, n, Arg1, Arg2,........Argn)The �rst item is a fun
tion operator. Se
ond tuple is a string
onstant type (type= String
onstant, value = byte o�set into the string table where fun
tion nameis stored). Next item n is a simple operand tuple with type as Card
onstant andvalue as n. Following whi
h, ea
h argument is represented in pre�x notation.There is one spe
ial
ase with fun
tion operator where the fun
tion name is
oer
e. This fun
tion takes �rst argument as a data type. In the IR, we
onvertdata types to the basi
 data types and represent them using three numbers, da-ta type, value1 and value2 as des
ribed in table B.1. Thus, the data type param-eter for the
oer
e fun
tion is
onverted to three integers internally. Therefore,we have two extra parameters for this fun
tion. Thus number of parameters istwo more than the a
tual number of parameters for ea
h o

uren
e of
oer
efun
tion. 76

