
Retargetable Pro�ling Tools and their Appliationin Cahe Simulation and Code Instrumentation
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

byRajiv A.R

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurDeember, 1999

Certi�ateThis is to ertify that the work ontained in the thesis entitled \RetargetablePro�ling Tools and their Appliation in Cahe Simulation and Code Instrumenta-tion", by Rajiv A.R, has been arried out under my supervision and that this workhas not been submitted elsewhere for a degree.
Deember, 1999 (Dr. Rajat Moona)Department of Computer Siene & Engineering,Indian Institute of Tehnology,Kanpur.

AbstratThe design proess for modern embedded systems requires automated modeling toolsfor faster design and for the study of various design trade-o�s. Suh tools togetheronstitute an integrated environment where the designer an write the high leveldesign spei�ations in a language and use these tools for automati generation ofsystem spei� tools. Sim-nML[15℄ is one of the spei�ation languages used fordeveloping proessor performane model.In this thesis, we have developed the following towards the integrated environment.� Designed and extended an Intermediate Representation (IR) of a proessor spe-i�ation written in Sim-nML. The IR is simple and failitates the developmentof various tools suh as assembler, disassembler, ompiler bak-end generator,instrution set simulator, trae generator, pro�lers et. based on the proessorspei�ation.� IR-Generator. It takes a proessor spei�ation written in Sim-nML and pro-dues its intermediate representation.� Cahe Simulator. This provides a mehanism to simulate various ahing poli-ies. The designer an use the simulator to study the trade-o�s between di�erentahing poliies.� Code Instrumentor. This implements a mehanism to perform analysis andpro�ling of appliation programs through the tehnique of ode instrumentation.� Motorola 68HC11 proessor spei�ation in Sim-nML.The Cahe Simulator and the Code Instrumentor were implemented on top of theRetargetable Funtional Simulator[1℄. They provide an arhiteture independent wayof onstruting pro�ling and analysis tools.

AknowledgementsI am grateful to my guide, Dr. Rajat Moona, who helped me at every stage of thiswork. His suggestions and innovative ideas helped me a lot in ompleting this work. Iam also grateful to Dr. Deepak Gupta, Dr. Sanjeev Aggarwal and Kshitiz Krishna fortheir valuable suggestions and omments during the thesis disussions. I would alsolike to thank other faulty members of CSE department for gaining better knowledgein di�erent �elds of omputer siene.This work has been done as a part of ongoing researh at Cadene Researh Centerat the Department of Computer Siene and Engineering, IIT Kanpur. I express mygratitude to Cadene India Ltd. for their support through fellowship.I would like to thank my seniors and fellow Cadene members speially V.Rajesh,Y. Subhash Chandra for their help throughout my work here. I would also like tothank other members of the Cadene Researh Group, Prashant Pogde and SarikaKumari. I am greatly indebted to all my omrades of the mteh'98 bath for givingme a great ompany during my stay here.Finally I would like to thank my parents and my brother for their support andenouragement.

Contents
1 Introdution 11.1 Overview . 11.2 Related Work . 31.3 Goals Ahieved . 41.4 Organization of Report . 52 The Sim-nML Integrated Environment 62.1 Overall Struture . 62.2 Sim-nML Language . 62.2.1 Sim-nML Model . 62.2.2 Sim-nML Grammar . 82.2.3 Resoure Usage Model . 102.2.4 Spei�ation of register ports 112.3 Current Work . 123 Intermediate Representation of Proessor Models 143.1 Overview of Earlier Work on IR . 153.2 Shortomings of Earlier IR . 163.3 Design of an Intermediate Representation 163.3.1 Simpli�ation of Information by Substitution 163.3.2 Representation of Attribute De�nition 173.3.3 Struture of the Intermediate Representation 213.3.4 Pass 1 : Maro Preproessor 243.3.5 Pass 2 : Parsing the Hierarhy 25ii

4 Cahe Simulation Environment 264.1 Cahe Con�guration . 274.2 Implementation . 285 Program Analysis and Pro�ling through Code Instrumentation 325.1 Introdution . 325.2 Appliation Programing Interfae - API 345.3 Implementation . 356 Motorola 68HC11 Spei�ation in Sim-nML 396.1 Overview of the Spei�ations . 407 Results and Conlusion 427.1 Results . 427.1.1 Cahing Example . 437.1.2 Pro�ling Example . 447.1.3 IR-Generator . 467.2 Conlusions . 477.3 Future Work . 47A Grammar of Sim-nML Language 50B File Format of Intermediate Representation 61B.1 IR Header . 62B.2 Meta Table . 63B.3 Constant Table . 64B.4 Resoure Table . 64B.5 Identi�er Table . 65B.6 Attribute Table . 66B.7 Memory Table . 66B.8 And-Rule Table . 68B.9 Or-Rule Table . 69B.10 Syntax Table . 70iii

B.11 Image Table . 71B.12 String Table . 72B.13 Integer Table . 72B.14 Pre�x-Attribute-De�nition Table . 72

iv

List of Tables7.1 Total number of instrutions simulated for test programs. 437.2 Performane Results of the funtional simulator 437.3 Results of pro�ling output for test programs. 447.4 Performane results of ahe pro�ling for test programs. 457.5 Pro�ling output for test programs. 467.6 Performane results of pro�ling of test programs. 46B.1 Enoding of data types . 68B.2 Parameter Type for and-rule . 69B.3 Example of the String Table . 72B.4 Interpretation of the String Table . 72B.5 Interpretation of the tuple used in Pre�x Notation 74B.6 Operators Used in Pre�x Attribute De�nition 75

v

List of Figures2.1 A View of Integrated Environment 72.2 Sim-nML Spei�ation for a Simple Proessor 92.3 Sim-nML Spei�ation for a Simple Proessor: ontinued 103.1 Sim-nML Program for a Hypothetial Proessor 183.2 Sim-nML Program for a Hypothetial Proessor: ontinued 193.3 Evaluating syntax and image attributes 204.1 Sample Cahe Simulation spei�ation �le 304.2 Sample Cahe Simulation spei�ation �le: ontinued 315.1 Algorithm to onstrut basi blok 375.2 Branh target spei�ation �le . 387.1 PowerPC603 Cahe on�guration �le 45

vi

Chapter 1
Introdution
1.1 OverviewIn the design of embedded systems, the use of automated modeling tools is gainingmomentum. They yield fast turn-around time with lower osts for the system designand simplify the proess of design hanges. In the past, many suh tools were systemspei�. However, with ever inreasing omplexity of systems and speial purposeproessors, a strong need is being felt for generi and modular tools. Suh tools replaethe system or proessor spei� tools and provide a generi integrated environment.This way, these tools also help in studying the impat of various hardware-softwareo-design trade-o�s. For a designer of the system, suh tools are useful as theyallow him to explore several alternatives early in the design phase. The bene�tsof suh high-level proessor models and proessor development methodology inludethe availability of appliation development tools, simulation tools and pro�ling toolseven before the proessor is ready. An uni�ed proessor model for the generationof appliation development tools, pro�lers and simulators not only redue the e�ortrequired but also eliminates the hanes of disrepanies among di�erent desriptions.The Sim-nML[15℄ language is used as a model to develop an integrated proessordevelopment environment. The integrated environment would inlude tools like as-semblers, disassemblers, ompiler bak-end generators, funtional simulators, ahesimulators, pro�lers, hardware synthesizers et. The instrution set arhiteture ofthe proessor at hand is desribed in Sim-nML from whih these tools are generated

1

automatially. For this purpose, we have designed an intermediate representation1for the Sim-nML language. The IR is simple but powerful enough to failitate thedevelopment of various tools based on the proessor spei�ation. The IR has beendesigned to ease the burden of eah tool to parse the Sim-nML language whih istedious and redundant. The IR enapsulates the Sim-nML desription in a set oftables. This would allow the tools to easily extrat the relevant information. Wehave designed a tool, IR-generator, whih takes a proessor spei�ation in Sim-nMLlanguage and provides the intermediate representation of the proessor model as out-put.In addition, a Cahe Simulator Environment has been developed. This would helpthe proessor designer to study the trade-o�s of implementing various ahing poliiesfor the appliation to be run on the proessor under development.We have also developed a pro�ling tool through ode instrumentation mehanism.This provides the designer with ode instrumentation mehanisms at the proedurelevel, or at the basi blok level or at the instrution level. The designer an usethis mehanism to study the run-time behavior of the appliation on the targetedproessor.Sine Sim-nML provides a generi way of desribing a proessor arhiteture, theahe simulator and pro�ler generator onstruted from Sim-nML spei�ation allowa exible and arhiteture independent way to generate pro�ling and analysis tools.Currently, most of suh tools are arhiteture dependent whih neessitates the de-velopment of separate set of tools for eah proessor model. It an be avoided withthe Sim-nML model as one the desription is ready the tools ould be automatiallygenerated and ustomized. Moreover, urrently these pro�ling tools also require pro-essor support. Our tools help to do the same without suh support or even beforethe atual proessor fabriation is done.This work is a ontinuation of the Retargetable Funtional Simulator[1℄ work doneby Y. Subhash Chandra. An initial version of the IR[5℄ was designed and imple-mented by Nihal Chand Jain. The ode instrumentation mehanism was inspiredfrom ATOM[13℄.1from now on we use the term IR to refer to the intermediate representation.
2

1.2 Related WorkPerformane modeling of a system is a growing area and a lot of researh has beenpursued in this area. These previous works have resulted in a set of performanemodeling tools using di�erent languages for proessor spei�ation.Instrution Set Desription Language (ISDL)[4℄ is a mahine desription languagewhih is similar to Sim-nML. ISDL provides onstruts for speifying instrution setand other arhitetural features. A desription in ISDL ontains the mahine wordformat used for the instrution assembly, semantis of the instrution, and onstraintssuh as the valid ombination of operations whih is useful for tools like assemblerto generate orret ode. These are aptured in separate setions. Currently anautomati assembler generator has been developed.Spei�ation language for enoding and deoding (SLED)[11℄ is a language fordesribing the abstrat, binary, and assembly-language representations for mahineinstrutions. Using SLED, a toolkit alled New Jersey Mahine-Code has been de-veloped whih generates bit-manipulating ode for use in appliations that proessmahine ode. Programmers an write suh appliations at an assembly level of ab-stration, and the toolkit enables the appliations to reognize and emit the binaryrepresentation used by the hardware. SLED is suitable for CISC and RISC type ofmahines. SLED deals with the instrution representation only, but not with anyother arhitetural details. Some tools like retargetable debugger, retargetable opti-mizing linker have been implemented.Visualization based Miroarhiteture Workbenh (VMW)[14℄ is an infrastru-ture whih failitates the spei�ation of instrution set arhiteture and miroarhi-teture of a mahine in a onise manner. VMW provides all neessary infrastruturesoftware to the designer, inluding generi simulation software, visualization sup-port software and graphial user interfae software. VMW automatially integratesthe mahine spei�ation and infrastruture software to generate a ustomized perfor-mane simulator based on the trae-driven simulation approah. Thus VMW providesa powerful environment for modern supersalar proessor design.SimOS[9℄ is a mahine simulation environment designed to study large omplexomputer systems. SimOS simulates the omputer hardware in suÆient detail andspeed to run existing system software and appliation programs.ATOM[13℄ provides a frame work for providing ustomized program analysistools. It provides a ommon infrastruture provided in all ode-instrumenting tools.3

ATOM organizes the �nal exeutable suh that the appliation program and user'sanalysis routines run in the same address spae. ATOM uses no simulation or inter-pretation. It has been used to build a diverse set of tools for basi blok ounting,pro�ling, dynami memory reording, instrution and data ahe simulation, pipelinesimulation, evaluating branh predition and instrution sheduling.Pixie[12℄ is a utility that allows you to trae, pro�le or generate dynami statistisfor any program that runs on a MIPS proessor. It works by annotating exeutableobjet ode with additional instrutions that ollet the dynami information duringrun time.Dinero IV[2℄ is a trae driven uniproessor ahe simulator for memory referene.QPT[6℄[7℄ is pro�ler and traing system. It rewrites a program's exeutable �le(a.out) by inserting ode to reord the exeution frequeny or sequene of every basiblok or ontrol-ow edge. From this information, another program QPT STATS analulate the exeution ost of proedures in the program.EEL[8℄ (Exeutable Editing Library) is a C++ library that hides muh of theomplexity and system-spei� detail of editing exeutables. EEL provides abstra-tions that allow a tool to analyze and modify exeutable programs without beingonerned with partiular instrution sets, exeutable �le formats, or onsequenes ofdeleting existing ode and adding foreign ode. EEL greatly simpli�es the onstru-tion of program measurement, protetion, translation, and debugging tools.1.3 Goals AhievedIn this work, we aimed at the development of an integrated environment for proessorperformane modeling using Sim-nML. The development of the omplete environmentis in progress. Many tools have been developed till now whih we will look at inChapter 2. The goals ahieved in this thesis are as follows.� Intermediate Representation (IR) for Sim-nML language spei�ation is ex-tended. This is simple but powerful enough to failitate the design of variousproessor spei� tools. This was an extension of an earlier version([5℄).� IR-Generator whih takes a proessor spei�ation in Sim-nML language andprovides an intermediate representation of the proessor spei�ation as outputwas extended and implemented. This was an extension of an earlier version([5℄).4

� A Cahe Simulating Environment has been developed to provide a basis forbenhmarking various ahing poliies of a given proessor.� A Code Instrumentation Mehanism has been developed for implementing var-ious pro�ling tehniques.� Motorola 68HC11 Spei�ation in Sim-nMLModel for Motorola 68HC11[17℄ proessor has been developed in Sim-nML.All the instrutions have been spei�ed with a simple resoure usage model.1.4 Organization of ReportThe rest of the report is organized as follows. In Chapter 2 we give an overviewof the Sim-nML integrated environment. In Chapter 3, we disuss the design andimplementation of the IR. In Chapter 4, we look at the Cahe Simulation Environ-ment. In Chapter 5, the we disuss the Code Instrumentation Mehanism. A briefoverview of Motorola 68HC11 proessor is given in Chapter 6. Finally, we onludein Chapter 7. In Appendix A we desribe the Sim-nML grammar and give the IRformat in Appendix B.

5

Chapter 2
The Sim-nML IntegratedEnvironment
2.1 Overall StrutureThe base language for our environment is Sim-nML, a generi proessor modelinglanguage. Sim-nML is an extension of nML mahine desription formalism([3℄). Pro-essor models are written in Sim-nML, using whih, various proessor spei� toolsan be generated automatially. To make the tools' design easy, the model spei�edin Sim-nML is �rst onverted into an intermediate representation (IR). For a tool,intermediate form is simpler and easier to read and interpret when ompared to aspei�ation in Sim-nML. The overall view of the environment is shown in the �gure2.1.2.2 Sim-nML Language2.2.1 Sim-nML ModelSim-nML[15℄ is an extensible formalism designed to speify generi single proessormodels. Sim-nML works at two levels of abstration. The proessor desribed by thelanguage ould either be an existing one or an appliation spei� proessor beingdeveloped. The designer team, depending on the appliation for whih the proessoris being modeled, would either hoose for an o�-the shelf proessor or design a new6

IR

Generator

 IR

Generator

AssemblerCompiler
Backend
GeneratorGenerator

Disassembler

Generator

Simulator

Spec.
Sim-nML

Figure 2.1: A View of Integrated Environmentone. At the funtional level, the designer typially has an overview of the instrutionset that the proessor should support to meet the appliation requirements. TheSim-nML model is used to give an ISA level desription whih is the appliation pro-grammer's model of the proessor. While modeling an existing proessor the designerwould have the proessor instrution set manual whih he ould use to desribe theinstrution set, both the syntax and semantis, in Sim-nML. If a proessor does notexist, the Sim-nML language ould be used to desribe the intended instrution setsemantis.At an alternate level of abstration, Sim-nML ould be used to expose the mi-roarhiteture details. This ould be used to detail out the various units within aproessor along with a timing estimate. When desribing an existing proessor, thedesigner ould abstratly speify the proessor's pipeline features, funtional unitset. The assoiated timing estimates ould help the designer to evaluate multiple7

proessors in order to hoose the optimal model satisfying the appliation at hand.When designing a new proessor model, the designer ould give a rough estimateof the miroarhiteture features that he would like to inorporate along with theassoiated timings. The proess ould be iterated until a satisfatory desription isobtained that meets the timing requirements of the appliation.Sim-nML is an attributed grammar1 with some prede�ned but optional attributeslike image, syntax, ation and uses. The instrution set is desribed in a hierarhialmanner with fragments of eah of the attributes being distributed over the wholegrammar tree. The ommon behavior of a lass of instrutions is aptured at the toplevel of the tree and the speialized behavior of the sub-lasses are aptured in thesubsequent lower levels.2.2.2 Sim-nML GrammarSim-nML grammar has a �xed start symbol namely instrution and two kinds ofprodutions, namely or-rule whih looks like,op = n0 j n1 j n2 j ...and and-rule whih looks likeop n0 (p1 : t1, p2 : t2, ...)a1 = e1 a2 = e2 ...where eah ni is a non-terminal, eah ti is a token. Eah ai is an attribute nameand ei their respetive de�nitions.The Sim-nML grammar prede�nes four attributes - syntax, image, ation, uses.The syntax desribes the assembly language format of the instrution, image desribesthe binary oding of the instrution, ation desribes the semantis of the instrutionwhile the uses desribes the resoure-usage model.The Sim-nML grammar in example 1 (�gure 2.2) desribes a simple proessor withtwo instrutions - add and multiply. All of these attributes are used for adding andmultiplying the ontents of two general purpose registers respetively. PC refers tothe address from whih the next instrution has to be fethed. Sim-nML supports aspeial token, $, whih is used to denote the address of the instrution in the de�nitionof various attributes.1an attribute grammar is a ontext free grammar in whih for eah non-terminal a �xed set ofattributes and for eah prodution a set of semanti rules is given. In grammar all non-teminalshave to be derivations. So we don't di�rentiate between produtions and non-terminals.8

type addr = ard(32)type byte = ard(8)let REGS = 32let byte_order = littlemem PC [1, addr℄mem M [2 ** 32, addr℄reg R [REGS, byte℄var tmp [1, byte℄resoure Feth_Unit, Exe_Unit[2℄, Retire_Unitmode REG(index : ard(5)) = R[index℄syntax = format("0%3b", index)image = format("R%d", index)mode MEM(Addr : addr) = M[addr℄syntax = format("1%32b", addr)image = format("R%d", addr)mode ADDRMODE = REG | MEMop instrution(x : bination)uses = Feth_Unit #{2}, x.uses, Retire_Unit #{2} : ationsyntax = format("%s", x.syntax)image = format("%s", x.image)ation = {x.ation;} Figure 2.2: Sim-nML Spei�ation for a Simple ProessorThe basi types of Sim-nML inlude ard, int, bool, enum et. The type delarationis used to delare derived types. Addressing modes in the proessor are desribedusing mode rule. In the above example, mode rule REG denotes register addressingmode where R[i℄ denotes the ith register of the register �le R. The var delaration isused to delare temporary variables. This proessor assumes 2 instanes of resoureExe unit, one of whih is held by the instrution under exeution. If one instane9

op bination = plus | multiplyop plus(sr : ADDRMODE, dst : ADDRMODE)uses = Exe_unit #{2}syntax = format("add %s %s", sr.syntax, dst.syntax)image = format("1010010%s%s", sr.image, dst,image)ation = {dst = sr + dst;PC = PC + 9;}op multiply(sr : ADDRMODE, dst : ADDRMODE)uses = Exe_unit #{6}syntax = format("mult %s %s", sr.syntax, dst.syntax)image = format("0010101%s%s", sr.image, dst.image)ation = {dst = sr * dst;PC = PC + 9;}Figure 2.3: Sim-nML Spei�ation for a Simple Proessor: ontinuedis already aquired, then another instrution in the pipleline an aquire the seondinstane. The following instrutions remain stalled till one of the resoure instane isreleased. This models a simple supersalar proessor with 2 exeution units.2.2.3 Resoure Usage ModelThe miro-arhiteture details of the proessor an be spei�ed using the resoure-usage model. Sim-nML assumes that entities within the proessor like the funtionalunits, pipeline stages, registers, ports et. onstitutes a set of resoures. The resouresan be aquired/released by any instrution in exeution. The resoure-usage modelis based on the assumption that at any instant, an instrution in exeution, holdssome set of resoures and does some ation. The resoures held by the instrution
10

and the ation taken hange progressively.In the resoure usage model, the resoure is an abstration of a piee of hardwaresuh as registers, ALUs, funtional bloks et. for whih instrutions ontend andpipeline ow is nothing but a way of resolving suh onits. When two instrutionswait simultaneously for a single resoure, the onit will be resolved by FIFO order,i.e, the instrution that entered the pipeline earlier will be alloted the resoure. Thismodel is powerful enough to desribe pipelines, supersalars and other miroarhi-tetures. The uses attribute desribes the resoure usage model and the ation takenwhen the resoure is aquired or released for an instrution. In Example 1 (�gure2.2), the resoure de�nition is used to de�ne the funtional units like Feth Unit,Exe Unit, Retire Unit. It spei�es that all instrutions use the Feth Unit for2 units of time, the Exe Unit for time depending on the type of instrution - 2units for plus instrution while 6 units for multiply instrution and the Retire Unitfor 2 units of time. The token ation at the end of uses spei�es that after the spei-�ed resoures are used for the given time period, the funtion spei�ed in the ationattribute is performed. The unit of time an be thought of as a mahine lok ylealthough it is not imposed by Sim-nML. If an unit of time is same as mahine lokyles, then we an estimate the number of lok yles taken by the program.2.2.4 Spei�ation of register portsProessors implement registers as register �les with multiple read-only or write-onlyports. Aess restritions are imposed on registers within the register �le dependingon hardware implementation. Supersalar proessors allow multiple instrutions to beat the write-bak stage. Two instrutions with the same destination register shouldblok and exeute in the program imposed order (WAW, Write-after-Write hazards).Similarly, an instrution ould read from a register whih is being simultaneouslywritten by another instrution (WAR, RAW hazards). Multiple instrutions howeverould be allowed to read the same register as long as read ports are available. Thesehazards an be modeled in Sim-nML with the uses attribute.Assume R�le is a register �le with 32 registers, 32 bit eah. R�le is delared tohave 3 read ports and 2 write ports as follows.reg Rfile[32, ard(32)℄ ports = 3, 2This would impliitly delare 2 resoures Read R�le[3℄, Write R�le[2℄ whih11

represent the read and write ports of the register �le R�le with 3 and 2 instanesrespetively. Apart from this, eah register in the register �le is assumed to have portresoure instanes equal to the number of read ports of the register �le, 3 in this ase.Assume an instrution with register R[0℄ as the soure register. This ould havethe following uses attributeuses = Read Rfile, R[0℄This implies that two resoures are to be aquired, one resoure isRead R�le andthe other is any one of the port resoure of register R[0℄. Before reading the registerontents, any free read register port Read R�le is aquired followed by register R[0℄itself.To model a write to register R[0℄, we ould writeuses = Write Rfile, R[0℄[℄where a single instane of Write R�le port while all port resoure instanes ofregister R[0℄ are aquired. This would prevent another instrution from aessingregister R[0℄ while it is being written.2.3 Current WorkFollowing tools have been implemented till now in our environment.Instrution Set Simulator Generator [15℄ takes Sim-nML spei�ation and gen-erates a performane simulator, whih in turn takes a binary for that proessorand gives the performane based results.Disassembler [5℄ takes Sim-nML proessor spei�ation and a binary for that pro-essor in ELF format and gives out the symboli disassembly of the binarywhih an be assembled bak to the binary.Compiler Bak-End Generator [10℄ takes nML spei�ation and generates LC-C mahine desription whih an used to generate the LCC ompiler for thespei�ed proessor.Retargetable Funtional Simulator [1℄ generates a funtional simulator for a par-tiular program to be run on a given proessor desription in Sim-nML.The following tools are under development12

Timing Simulator to analyze a partiular program for timing performane andresoure usage. A ompiled ode simulator generator would generate a higherperformane timing simulator.Assembler generator for a given proessor desribed in Sim-nML is being developed.This would generate an assembler, on�rming to GNU assembler syntax, whihould produe ELF objet ode of the input assembly language program.Compiler Bak-End Generator to generate bak-end for GNU-C by automatial-ly generating GNU's md �le format desription of a partiular proessor fromSim-nML.As part of this thesis work, Sim-nML spei�ation for Motorola 68HC11[17℄ waswritten. Its a simple 8-bit proessor. This desription was tested over the Retar-getable Funtional Simulator[1℄ and the generi disassembler[5℄. Earlier, Sim-nMLspei�ations for PowerP603 proessor[1℄ and for Intel 8085 were written.

13

Chapter 3
Intermediate Representation ofProessor ModelsOne part of this thesis involves the development of an Intermediate Representation(IR) of the proessor model. We developed a tool, IR-Generator, whih takes a proes-sor spei�ation written in Sim-nML language as input and produes orrespondingintermediate representation of the proessor spei�ation as output. In order to havethe intermediate representation usable by all front-end tools suh as disassembler,assembler, simulator et., ertain goals were setup behind the design of the IR aslisted below.The IR should� be as simple as possible.� should not lose any useful information whih is available in the original inputSim-nML spei�ation.� not have any unneessary or redundant information.� be easy to understand and use.� be easy and eÆient to retrieve the required information.� be exible and extensible.� failitate the design of various proessor spei� tools suh as assembler, disas-sembler, simulator, trae generator, ompiler bak-end generator et.14

3.1 Overview of Earlier Work on IRThe IR was designed and implemented as part of a master's thesis by Nihal ChandJain[5℄. The IR-generator so designed had 2 parts - the parser and the attener. Inthe �rst phase, the parser parsed the Sim-nML input spei�ation and olleted therelevant information in tables. The attener would then simplify the hierarhy.In Sim-nML, information about an instrution is omposed of fragments that aredistributed over the whole spei�ation tree with the root node named as instrution.To get information about one partiular instrution, a omplete path from root nodeto a leaf node is traversed with proper parameter substitution at all levels of the tree.If all suh paths are traversed, then information about all possible instrutions areobtained. This proess is alled attening of the tree. All referenes to or-rules areeliminated from the or-rule and and-rule de�ntions. Elimination of or-rule parametersfrom an and-rule de�nition results in generation of new and-rules. All attributes ofthe and-rule remain unhanged in the new and-rules. To make the IR ompat, thesenew and-rules were treated as sub-rules of the original and-rule. In the IR, all sub-rules of an and-rule were stored along with the and-rule itself. The referenes for theattributes in the and-rule were not dupliated for sub-rules.The syntax and image attribute de�ntions were then attened with parametersubstitution and added to the syntax and image tables respetively. Corresponding toeah instrution node in the hierarhy all possible instrutions that an be generatedwere attened and added to the syntax and image tables. The hierarhial informationwas maintained using dot exprssions while the parameter details in syntax and image�elds of an instrution was represented using 3-tuples. So from a partiular nodein the hierarhy tree, the images and syntaxes of eah subtree ould be listed. Thetopmost node instrution would enumerate all possible syntaxes and images spei�edfor that proessor. The parsed and attened information extrated from Sim-nMLwas then dumped onto tables in the output IR. The important tables inlude theidenti�er table, and-rule table, memory table. Eah of these tables had a unique keyto refer to eah entry. The identi�er table table had an id-key for eah identi�er. Theother tables referred to eah identi�er using this key.
15

3.2 Shortomings of Earlier IRThe earlier version of the IR[5℄ and Sim-nML was found to have the following short-omings due to whih they were extended.� disallowed the use of expressions in format de�nitions in syntax and imageattributes.� expressions were not allowed in bit seletion operators.� eah resoure spei�ed in Sim-nML was assumed to have a single instane.� register and memory ports were not supported.� the IR tables used multiple levels of indiretion to retrieve information.� information about the endian-ness of the generated IR ould not be found inan easy manner.� attening resulted in loss of information whih were required by the tools duringinstrution mathing.3.3 Design of an Intermediate RepresentationA proessor spei�ation in Sim-nML language is a human readable text �le. Severalonstruts are provided in Sim-nML to enhane the larity and readability of thedesription. In order to retrieve the desired information from suh a desription, atool needs to perform parsing of input, variable substitution et. An intermediaterepresentation helps in reduing suh extra burden on the tool. Thus we need anintermediate representation keeping previously mentioned goals in mind. In thissetion, we will disuss the design of the IR in detail.3.3.1 Simpli�ation of Information by SubstitutionThe Sim-nML language allows the onstant de�nition using let-spei�ation (eg: letREGS = 32). In the Sim-nML spei�ation �le, wherever a onstant is referened,its value is substituted in the IR. For example, value of the onstant REGS, i.e.32, is substituted whereever REGS is used in the example given in �gure 3.1. Thus16

onstants are not referened in the IR of the proessor spei�ation. Therefore allsuh onstant delarations an be eliminated from the IR. However, some onstantsmight be used by the tools, i.e., onstants like byte order may be used by toolsto de�ne the byte ordering of a proessor. So the IR retains information about allonstant delarations.The Sim-nML language de�nes some basi data types and allows new data typede�nitions using basi data types and previously de�ned user data types. Sine all userde�ned data types an be built using only basi data types, all variables are rede�nedwith only basi data types in the IR. Thus all user de�ned data type delarations anbe eliminated from the IR. For example in �gure 3.1, index is used to refer to datatype ard(2). All ourrenes of index an be replaed by ard(2).There are some other onstruts in Sim-nML whih are simpli�ed in the IR.For example, names of Sim-nML memory variables, op-rules, attributes, parametersin and-rules are replaed by unique identi�ers and everywhere the orrespondingidenti�er is used for the referene. Sim-nML allows the use of identi�er names forop-rules even before they are de�ned. This neessarily requires a tool to do multiplepasses over the proessor spei�ation. Many of these identi�ers are not signi�ant atall (for example, parameter names). In the IR, all signi�ant identi�ers are maintainedin an identi�er-table and the index into the identi�er-table is used for the referene.It simpli�es the information retrieval from the IR.3.3.2 Representation of Attribute De�nitionIn the Sim-nML proessor spei�ation, memory variables, mode-rule and op-ruledelarations de�ne attribute names and their de�nitions. The attribute de�nition iseither an expression onsisting of various operands and operators, or a sequene ofstatements separated by a semiolon. Eah of these statements might be a simpleassignment statement or a onditional statement or a funtion all or a use of anattribute from another related op-rule. (Refer to Appendix A for Sim-nML grammar)For syntax and image attributes, de�nitions ould be an expression whih evaluatesto a string. The and-rule table entry orresponding to these op-rules would ontain anindex into the syntax table and image table respetively. In the IR, a reord is storedfor eah syntax and image attribute de�nition of an and-rule. The reord inludes astring value orresponding to the expression. The string values are evaluated as in�gure 3.3. 17

type index = ard(2)let REGS = 32resoure eunit[2℄reg PC[1, ard(32)℄mem R[REGS, ard(32)℄mem MEM[1024, ard(8)℄mode SHORT = MEM | REGmode MEM(i:index) = M[R[i℄℄syntax = format("(R%d)", i)image = format("0%5b", i)mode REG(i:index) = R[i℄syntax = format("R%d", i)image = format("1%5b", i)op instrution(x:instr_ation)syntax = x.syntaximage = x.imageop instr_ation = alu_op | move_opop alu_op(sr:SHORT, dst:SHORT, aa:alu_ation)syntax = format("%s %s,%s", aa.syntax, sr.syntax, dst.syntax)image = format("1%b %b %b", aa.image, sr.image, dst.image)Figure 3.1: Sim-nML Program for a Hypothetial ProessorAn exeption to this enoding is when the syntax/image attribute is enoded asSYNIMGDOT TYPE (refer Appendix B for IR types) (like Pi.image or Pi.syntax),then the and-rule table entry for that op rule would ontain the parameter numberi and the index into the attribute table orresponding to the de�ned attribute (referAppendix B).For the example Sim-nML proessor model in �gure 3.2 the syntax table entry formove op rule would bemove %sf0.3g, %sf1.3g 18

op alu_ation = a_add | a_sub | jmpop a_add()syntax = "add"image = "0"op a_sub()syntax = "sub"image = "1"op move_op = move | storeop move(sr:SHORT, dst:SHORT)syntax = format("move %s, %s", sr.syntax, dst.syntax)image = format("00%s%s", dst.image, sr.image)op store(sr:SHORT, dst:SHORT)syntax = format("move %s,%s", sr.syntax, dst.syntax)image = format("01%s%s", sr.image<2..3>, dst.image)op jmp(dst:ard(32))syntax = format("jmp %32b", dst)image = format("101%32b", $+dst)Figure 3.2: Sim-nML Program for a Hypothetial Proessor: ontinuedwhere sr is parameter 0 and dst is parameter 1. 3 stands for index into the attributetable whih orresponds to the attribute syntax.Similarly the syntax table entry orresponding to the MEM op rule (�gure 3.2) is(R%df0.-1g)where 0 represents the �rst parameter (i) and sine i is of a basi type (ard in thisase), the seond integer is -1.In a similar way, the image table entry for jmp op rule would be101%32bf-14.3gwhere -14 indiates an index to the pre�x attribute table where the expression $ +sr is stored. This expression is stored as a 3-tuple in the pre�x attribute table (andhene the seond entry is 3). $ is stored in the pre�x attribute table as o�set into the19

� For a simple string it is plaed as it is in the syntax/image table.� If format delaration is used, for eah format quanti�er(like %s, %nb, et.)a 2-tuple of the form fX.Yg denoting the orresponding de�ning parameterPi (where Pi denotes the ith parameter starting from left of that and-rule) isembedded in the syntax or image table as follows.1. if the parameter Pi is a basi type(like int, ard, bool) then X woulddenote the parameter number i while Y would be -1.2. if the parameter Pi is of an and-rule or or-rule type and is spei�ed asPi.image or Pi.syntax then X would denote the parameter number i whileY would be the index into the attribute table orresponding to the de�nedattribute.3. else if its an expression, then negative of X would be the index into thepre�x-attribute table while Y denotes the number of suh tuples.Figure 3.3: Evaluating syntax and image attributesstring table, sr is stored as PARA TYPE with value 0 (parameter number).The image table entry for move op rule would be01%sf-8.6g%sf1.4gwhere -8 denotes an index to pre�x attribute table where the expression sr.image<2..3>is stored as a 6-tuple whih inludes the parameter number, attribute index, and therange parameters (2 and 3).Other attributes in Sim-nML are used to hold semanti ation assoiated withthe instrution. For example, to simulate the behavior of an instrution, attributede�nition of ation attribute is used. A tool suh as the instrution set simulatorould be made to run faster if suh attribute de�nitions are represented di�erently.Usually expressions inside an attribute de�nition are written in an in�x notation usingpriority and assoiativity rules to deode an expression uniquely. However, pre�x orpost�x notation is better for faster evaluation as the priority and assoiativity beomesimpliit.In the IR, pre�x notation is used for all attribute de�nitions exept syntax andimage attributes. Using suh a representation, tools like simulator, trae generator,ompiler bak-end generator et. an be made to run fast.20

3.3.3 Struture of the Intermediate RepresentationThe struture of the IR (refer Appendix B) should be apable of storing informationabout onstants, identi�ers, or-rules, and-rules and information about attributes suhas syntax, image, ation et. They are represented in various �xed sized and variablesized data strutures.The IR struture is essentially a olletion of various tables. Information of eahtype is stored in a di�erent table. The entries in most of these tables are �xed sizereords. However, some tables hold variable size reords. For an easy aess to thetables, a meta table is also added in the IR whih ontains the loation and name ofall the tables. This simpli�es the aess mehanism for all tables. In brief, the IRonsists of the following tables� Meta table . This is a table of ontents having a road map to know about theloation and name of other tables in the IR.� Constant table . This table holds all onstant delarations in the Sim-nMLproessor spei�ation. For the example given in �gure 3.1, this table willontain the following.(Name Type value)REGS CONST_TABLE_INT_TYPE 32� Resoure table . This table holds the names of the resoures whih are de-lared with resoure delaration along with the number of instanes of eahresoure. For the example given in �gure 3.1, this table will ontain the follow-ing.(Name Num)eunit 2� Attribute table. This table holds the name of all distint attributes used inthe input proessor spei�ation. For the example given in �gure 3.1, this tablewill ontain the following.(Name)syntaximage 21

� Identi�er table . This table holds the name of all the identi�ers (other thanthose spei�ed in the onstant table and the resoure table). An identi�eran be ofMEM TYPE, MODE OR TYPE, MODE AND TYPE, OP OR TYPE,OP AND TYPE et. Depending on the types, the index into the orrespondingmemory-table, and-rule table or or-rule table is stored. For the earlier example,the following is the ontents of the identi�er table.(Index Name Type)0 PC MEM_TYPE0 MEM MODE_AND_TYPE1 REG MODE_AND_TYPE0 SHORT MODE_OR_TYPE2 instrution OP_AND_TYPE1 instr_ation OP_OR_TYPE3 alu_op OP_AND_TYPE3 move_op OP_OR_TYPE2 alu_ation OP_OR_TYPE4 a_add OP_AND_TYPE5 a_sub OP_AND_TYPE6 move OP_AND_TYPE7 store OP_AND_TYPE� Memory table . This table holds the information about all memory variablesdelared with a reg, mem or var delaration. It inludes index into the identi�ertable, type and size of the data and information to loate various attributes (ofthe variable) stored in other tables. For the example shown in �gure 3.1, thefollowing is the partial ontents of the memory table.(Name data-type type size value1 attribute)R CARD_TYPE MEM 32 32 -M CARD_TYPE MEM 1024 8 -Note that instead of storing the name of memory variable (i.e. R), the indexinto the identi�er table is used. 22

� Or-Rule table . This table holds the information about hildren of all or-rules.The following is the partial ontents of the or-rule table for the example shownin �gure 3.1(Name total_hildren integer table index)instr_ation 3 97 (<AND_RULE_TYPE, 3(and table index)>, ...Note that instead of storing the name of or op-rule variable (i.e. instr ation),the index into the identi�er table is used.� And-Rule table. This table holds the information about all and-rules. It alsoholds the information to loate the attribute de�nitions stored in other tables.The following is the partial ontents of the and-rule table for the example shownin �gure 3.2(Name total_para total_attr integer table index(attribute)store 2 2 72(<syntax,7(syntax table offset),0(len)>, ...)integer table index(parameter))78(<OR_RULE_TYPE, 0(or rule table offset), 0>, ...)Note that instead of storing the name of and op-rule variable (i.e. store), theindex into the identi�er table is used.� Syntax table . This table holds the syntax reord assoiated with the syntaxattribute de�nitions of all and-rules. It also holds the information to assoiatethe orrespondene between the and-rule table and the syntax table.� Image table . This table holds the image reord assoiated with the imageattribute de�nitions of all and-rules. It also holds the information to assoiatethe orrespondene between the and-rule table and the image table. It holdsreords similar to the syntax table.� String table . This table is used for storing variable length strings (nullterminated) suh as identi�er names. This table helps in having �xed sizeentries in other tables. Identi�er names and strings in other tables are storedas o�sets into the string table. 23

� Integer table . This table is used for storing only integer values. Theseintegers are assoiated with other tables and represent di�erent meanings indi�erent ontexts. This table helps in having �xed size entries in other table.For example in the or-rule table eah hild is represented with 2 values. The �rstorresponding to whether the hild is an OR-RULE-TYPE or AND-RULE-TYPE and the seond an index into the identi�er table. The 2 values are storedas 2 integers in the integer table. The number of suh 2-tuples orrespond tothe number of hildren for eah or-rule type. Hene for n hildren there wouldbe 2n integer values stored in the integer table at the spei�ed o�set of this orop-rule.� Pre�x-Attribute-De�nition Table . This table holds the attribute de�ni-tion of all the attributes (exept syntax and image attributes) assoiated withmemory-variables and and-rules. These de�nitions are stored in pre�x notation.Other tables store the information to loate the appropriate attribute de�nitionorretly.A header is prepended to the IR whih onsists of 2 �elds: a four byte maginumber whih is urrently initialised to "IRV2" and a �eld to indiate whether theIR �le format is in big-endian or little-endian format.In Appendix B, we present the struture of eah of the tables in detail.The onversion from Sim-nML to the IR is done in the following two passes.3.3.4 Pass 1 : Maro PreproessorThe IR does not retain any maro de�nitions from the soure. For ease of implemen-tation, maro proessing is implemented as a separate pass over the Sim-nML spei-�ation �le. This part has been done in another projet by Y. Subhash Chandra[1℄.The maro preproessor takes the Sim-nML �le with maro de�nitions as input andprodues a Sim-nML �le without maros. It gathers all maro de�nitions and on-verts them into equivalent m4[16℄ maro de�nitions. Then m4, a standard utilityavailable on Unix platforms, is run on this �le to get the Sim-nML �le without anymaros.
24

3.3.5 Pass 2 : Parsing the HierarhyPass two takes a Sim-nML spei�ation �le without maros as input and produesthe spei�ation in the IR. This pass proeeds in two phases.� The �rst phase involves the parsing of input �le. During the parsing, all relevantinformation is gathered in appropriate data strutures. Attribute de�nitionsfor all attributes exept syntax and image attributes are onverted into pre�xnotations during the parsing time. As soon as a de�nition is omplete, it isstored in the pre�x-attribute-de�nition table.� In the seond phase, the syntax and image table entries are reated with ap-propriate 2-tuples added to de�ne eah parameter.At the end of the seond pass, all tables are written in the output �le while updatingthe meta table to inlude information relevant to other tables.

25

Chapter 4
Cahe Simulation EnvironmentAs a seond part of this thesis work, we implemented a Cahe Simulation Environ-ment for proessor models desribed in Sim-nML. The motivation behind this is toimplement a omplete proessor simulation environment. The ahe simulator pro-vides a mehanism to study the ahing poliies of the proessor being modeled. Foran appliation, the designer ould use the simulator to study the trade-o�s betweendi�erent ahing poliies. He ould measure the preformane of the proessor undervarious ahing models by varying parameters like ahe size, ahe line size, asso-iativity, replaement poliy, e�ets due to uni�ed or split ahe model, e�ets ofmulti-level ahing et. The designer an simulate to get parameters suh as ahehit rates, miss rates, onit misses, invalid misses, ompulsary misses et. The ad-vantage of providing suh a mehanism is that the designer ould simulate and studythe ahing behavior of the appliation programs to be run on the proessor being de-signed muh before the atual implementation. The benhmarks ould then be usedto selet an ideal ahing poliy. This mehanism provides a generi arhitetureindependent ahe performane analysis.Cahe simulation an be done on-line or o�-line. On-line ahe simulation triesto keep trak of the instrution and data addresses depending on the ahing poliyat run time. This involves running the appliation on a proessor simulator andtraing the instrution and data memory referenes. In o�-line ahe simulation, thesimulator ould be used to generate a trae of the memory referenes. The trae ouldthen be analyzed for ahe referenes with suitable optimizations applied to speed upthe proess.The Cahe Simulator is built upon the Retargetable Funtional Simulator - Fsimg26

developed by Y. Subhash Chandra[1℄ as part of his master's thesis. The Fsimggenerates a proessor spei� funtion simulator using the proessor models writtenin Sim-nML. The generated funtional simulator helps in the study of funtionalorretness of the design. It an also produe the instrution trae whih an be usedby other tools in studying other aspets of the design.As the funtional simulator simulates the exeution of the given program, allsould be made using anonial funtions (refer setion 4.2). The instrution or dataaddresses are passed as parameters to ahe simulation routines whih simulates theahing behavior by keeping trak of the addresses.4.1 Cahe Con�gurationThe Cahe Simulator uses a on�guration �le wherein the designer an speify theahing poliies. The simulator then reads the �le to reate the spei�ed ahingenvironment before atual simulation. Figure 4.1 gives a sample on�guration �le.The following are the standard de�nitions used in the spei�ation �le.� levels: spei�es the number of levels of ahe. The �rst is named as L1, seondas L2 and so on.� addrlen: spei�es the physial address length.� Level: is used to denote whih level is being desribed. Level n stands for thenth level.� type: denotes ahe type being de�ned. It ould be INSTRCACHE forinstrution ahe or DATACACHE for data ahe or UNIFIED for a uni�edahe arhiteture.� assoiativity: spei�es the assoiativity of the ahe being desribed. For adiret mapped ahe it is given as 1. For a n-way set assoiative ahe it shouldbe n. A keyword FULL an be used for desribing a fully assoiative ahe.� size n: spei�es the ahe size. n an be suÆxed withK(kilobytes) orM(megabytes).Without the quanti�er, n is assumed to be in bytes.� line n: spei�es the ahe line size. n an be suÆxed with K(kilobytes) orM(megabytes). Without the quanti�er, n is assumed to be in bytes.27

� replae: denotes the replaement poliy for set assoiative ahe systems. Thepoliy an be FIFO(�rst in �rst out),RANDOM or LRU(least reently used).� subblok: denotes the subblok size within a ahe line.� write: spei�es the write poliy. Could be WB WA(write through with writealloate) or WB NWA(write bak - no write alloate) or WT WA(writethrough with write alloate) or WT NWA(write through with no write allo-ate).� writebu�er: spei�es the size of the write bu�er in bytes.� nonbloking: spei�es the number of outstanding misses that a ahe ansatisfy.4.2 ImplementationThe Sim-nML[15℄ language allows the use of anonial funtions whih are user de-�ned funtions. These are used to desribe features whih are not diretly spei�edwithin Sim-nML. These are entities whose semantis would be realised by the toolthat proesses the Sim-nML desription. They an be used to model the externalenvironment like memory systems, ahes, interrupts et. The ahe simulator uses2 prede�ned anonial funtions - iahe and dahe.For data addresses we use"dahe"(address, type)where address is the e�etive memory address(data) while type ould be READ orWRITE. This is used to speify whether the aess to the given address is a read or awrite. The spei�ation writer adds dahe alls in various ation attribute de�nitionsin the Sim-nML proessor spei�ation.For instrution addresses, we use a similar funtion all as follows."iahe"(address, type)where address is the e�etive memory address(instrution) while type ould beREADorWRITE. The iahe anonial funtion all however annot be buried in the Sim-nML spei�ation. So iahe is alled by the funtional simulator engine whih isalways aware of the instrution virtual addresses as spei�ed in the input ELF binary.28

Another possibility is to embed iahe as a anonial funtion all within the top levelinstrution node's ation attribute.The ahe simulator is run on-line along with the funtional simulator. The fun-tional simulator generator Fsimg onverts the anonial funtions as diret C allsto user de�ned routines. During the funtional simulator generation proess, Fsimggenerates iahe alls for eah instrution. While running the simulator, the anoni-al funtions, dahe and iahe are alled whih simulate the ahe system. Duringthe �rst all to iahe or dahe the ahe simulator reads the on�guration �le andinitializes the ahing environment aording to the spei�ation. As eah address ispassed, the ahe behavior is simulated and the performane metris are sampled.The simulator samples the following parameters -HITS,MISSES,CONFLICTMISSES, INVALID MISSES, COMPULSARY MISSES. During simulation itinternally keeps trak of the above metris. At the end of the simulation, the statistisare dumped into log �les. Statistis are maintained for eah ahe type at eah ahelevel. They an be used later by the designer for performane analysis.

29

#Cahe Configuration File# Number of Levelslevels 3# Address lengthaddrlen 32# Desription for L1 CaheLevel 1# Desription for InstrCahe of L1type INSTRCACHEassoiativity 4size 32Kline 16replae FIFOsubblok 4 # subblok sizewrite WB WA # Write Bak, Write Alloatewritebuffer 32 # size of write buffernonbloking 2 # speifies number of outstanding misses# Desription for DataCahe of L1type DATACACHEassoiativity 4size 32Kline 16subblok 4replae FIFOwrite WB WAwritebuffer 32nonbloking 2Figure 4.1: Sample Cahe Simulation spei�ation �le
30

Desription for L2 CaheLevel 2# Desription for InstrCahe of L2type INSTRCACHEassoiativity 8size 512Kline 32subblok 8replae LRUwrite WT NWA # Write through, No Write Alloate# Desription for DataCahe of L2type DATACACHEassoiativity 8size 512Kline 32subblok 8replae LRUwrite WT WA# Desription for L3 CaheLevel 3# Desription for Unified L3 Cahetype UNIFIEDsize 2Mline 64assoiativity FULLreplae RANDOMsubblok 16write WT WAFigure 4.2: Sample Cahe Simulation spei�ation �le: ontinued
31

Chapter 5
Program Analysis and Pro�lingthrough Code Instrumentation
5.1 IntrodutionProgram analysis tools are extremely useful for understanding program behavior.Computer arhitets use suh tools to evaluate how well the program performs onnew arhitetures. Software writers need suh tools to analyze their programs andidentify ritial piees of ode to optimize for eÆieny. Compiler writers use suhtools to �nd out how well their instrution sheduling or branh predition algorithmsare performing. As the third part of this thesis work, we implemented a mehanismto perform analysis and pro�ling of appliation programs through the tehnique ofode instrumentation. This tehnique was inspired fromATOM[13℄ whih is a frame-work for building wide range of ustomized program analysis tools. The RetargetableFuntional Simulator[1℄ is used as a platform for performing program analysis.We have tried to build a mehanism that provide arhitets and software devel-opers to implement various pro�ling poliies. These inlude basi blok ounting,instrution ounting, branh behavior et. In our approah, the pro�ling of ode isaomplished by instrumenting appliation ode at various points. For example, toount the basi bloks traversed at run time, a ounter ould be plaed at the end ofeah basi blok. Similarly to analyze branh behavior, routines ould be added afteronditional branh instrutions.We have tried to provide a ommon infrastruture using whih users an build32

ustom pro�ling tools. In our approah, the program is viewed as a olletion ofproedures eah ontaining a olletion of basi bloks eah of whih omprises ofproessor instrutions. A user de�ned proedure for instrumenting the appliationprogram an be inserted before or after an instrution, a basi blok, or a proedure.This model provides a generi proessor pro�ling mehanism. Using suh an approah,a ustom pro�ling tool an be onstruted. The Sim-nML language ould be used tomodel a proessor from whih ustom arhiteture independent pro�ling tools an beonstruted.The Retargetable Funtional Simulator - Fsimg, generates a funtional simulatorof a given proessor for a partiular program (ompiled ode simulator). For eahinstrution in the input proessor spei�ation, a funtion is generated whih is alledduring the simulation proess. Eah suh funtion simulates the semanti ationof that instrution. Code instrumentation an be done by inserting alls to theuser de�ned proedures within eah suh funtion. The funtional simulator enginemaintains a table of funtion pointers whih points to the funtions eah of whihsimulates a proessor instrution. For eah instrution in the input program, a pointerto the orresponding funtion for that instrution is maintained. Instrumentation anbe done between suh instrution alls. This allows instrumentation at instrutionboundaries of the input binary. It an also be used for basi blok pro�ling as well asthe proedure level pro�ling.The user de�nes the tool spei� parts in a prede�ned Instrument funtion. Aset of prede�ned routines - an appliation programming interfae (API) is provid-ed whih allows the user to add his proedure alls before or after instrutions. Aset of Basiblok analysis routines are provided for pro�ling at the level of proe-dures, basi bloks or instrutions within basi bloks. The pro�ling takes plae in2 phases. In the �rst phase, the user adds his instrumentation routines through theinstrumentation-API. During generation of the funtional simulator, the API allsare used to instrument the appliation program at appropriate plaes in the gener-ated simulator. In the seond phase, the user runs the simulator whih exeutes theinstrumented ode while simulating the input program. This would then provide thepro�ling information.
33

5.2 Appliation Programing Interfae - APIIn order to perform ode instrumentation, we provide the following instrumentation-api to the user.The api urrently provided are as follows:1. AddCallFunbyName(iname, type, fun, pos): Fsimg de�nes a funtionfor eah instrution in the input proessor spei�ation in Sim-nML. AddCall-FunbyName adds the user proedure fun within the funtion de�ntion orre-sponding to iname. Thus this funtion an be used to instrument a partiularproessor instrution in the appliation program whenever it is exeuted.� iname: ould be the name of an instrution or a node in the Sim-nMLhierarhy.� type: the type ould be INSTR TYPE or NODE TYPE to speifywhether iname is of instrution or node type.� fun: is the name of the user routine whih is to added.� pos: ould be BEFORE or AFTER to speify whether fun has to beexeuted before or after the exeution of iname in the funtional simulator.2. AddCallFun(inst, fun, pos): The funtional simulator engine maintainsfor eah instrution in the input program, a funtion pointer to the de�ningfuntion. AddCallFun is used to add fun before or after the instrution addressinst in the input program. Thus this funtion an be used to instrument theappliation program for a speif address, i.e, whenever an instrution is fethedfrom the address inst.� inst - instrution address: Eah instrution in the input program has aninstrution address. This is the virtual address of the instrution in theinput program.� fun: is the name of the user routine whih is to added.� pos: ould be BEFORE or AFTER to speify whether fun has to beinstrumented before or after inst.3. AddTrailerFun(fun): The user an add any routines(fun) to be exeutedafter simulation. Fsimg adds these routines after the simulation engine. They34

an be used by the user to ollet the �nal statistis, dump pro�ling informationet.4. GetFirstPro: Used to get the �rst proedure as listed in the ELF tables inthe program.5. GetNextPro(p): Gets the next proedure after the urrent proedure p.6. GetFirstBlok(p): Gets the �rst basi blok in proedure p.7. GetNextBlok(b): Gets the next basi blok after the urrent blok b.8. GetLastInst(b): Gets the last instrution of the basi blok b.Setion 5.3 disusses the usage and implementation details.5.3 ImplementationThe instrumentation routines are added in 3 �les - instrument., bblokanal., user-funs.. The �rst �le ontains a all to a prede�ned routine Instrument in whih theuser adds the api alls to add funtions after partiular instrutions.Suppose the user wants to ount the ourrenes of add instrutions exeuted in theprogram, he usesvoid Instrument(){ AddCallFunbyName("add", INSTR_TYPE, "addounter", AFTER);AddTrailerFun("printaddnt");}Here a user de�ned funtion addounter is added within the add instrution de�ntionat its end. The �le userfuns. ontains the user de�ned routines. The funtionaddounter ould be de�ned as follows:long addnt = 0; 35

void addounter(){ addnt++;}where addnt is a global ounter. AddTrailerFun is used to add the user funtionprintaddnt at the end of simulation whih ould be de�ned as followsvoid printaddnt(){ printf("num of add instruions exeuted : %d\n", addnt);}The �le bblokanal. ontains the instrumentation routines assoiated with basiblok related analysis. It ontains a all to a prede�ned routine BasiblokAnal inwhih the user adds the api alls to add funtions relating to basi blok pro�ling.Suppose the user wants to ount the number of basi bloks that are traversed duringprogram exeution, he usesvoid BasiblokAnal(){ Pro *p;Blok *b;Inst inst;for (p = GetFirstPro(); p; p = GetNextPro(p)) {for (b = GetFirstBlok(p); b; b = GetNextBlok(b)) {inst = GetLastInst(b);AddCallFun(inst, "ountbb", AFTER);}}AddTrailerFun("printbb");} 36

The user de�ned funtion ountbb is added after the last instrution in eah basiblok. The user might want to all di�erent funtions at the same address boundary.Multiple user de�ned instrutions an be engineered at address boundaries by allingAddCallFun with di�erent funtion names at the same instrution address.For basi blok oriented pro�ling, the Fsmig analyzes the input program to obtainbasi bloks in the input program. A basi blok is a sequene of onseutive state-ments in whih ow of ontrol enters at the beginning and leaves at the end withouthalt or possibility of branhing exept at the end. A basi blok is obtained using analgorithm shown in �gure 5.1.1. Determine the set of leaders, the �rst statements of eah basi blok.2. The rules used are.� the �rst statement is a leader.� any statement that is the target of a onditional or unonditional goto isa leader.� any statement that immediately follows a goto or onditional goto state-ment is a leader.3. For eah basi blok, its basi blok onsists of the leader and all statementsup to but not inluding the next leader or end of the program.Figure 5.1: Algorithm to onstrut basi blokThis is done by providing the Fsimg with the onditional and unonditional ontrolow instrutions(branh/all/jmp) of the proessor instrution set. Sine Sim-nMLis a hierarhial desription, if the hierarhy allows, we an provide the top levelbranh node instead. The atual branh instrutions an then be enumerated fromthis. One a list of branh instrutions are enumerated, we split the input instrutionstream at proedure boundaries. For a given proedure, the basi blok boundariesare marked just after every branh instrution.To alulate the branh target addresses, a on�guration �le has to be providedwhih spei�es the relevant branh instrution with the branh target alulationmehanism. A sample on�guration is shown in �gure 5.2In the on�guration �le, $ refers to the urrent instrution address, %n refers to37

onfiguration file for branh/jump target speifiation#instrution name target addressb $ + (%0 << 2)ba %0 << 2Figure 5.2: Branh target spei�ation �lethe nth parameter of the instrution spei�ation in Sim-nML 'and' rule. Parametersare ounted from left to right starting from 0.During generation, Fsimg alls Instrument to add instrumentation routines. Itthen performs basi blok analysis where proedures and basi bloks within eahproedure are enumerated. It then alls BasiblokAnal to add the relevant user de-�ned routines. The Fsimg[1℄ implements eah instrution in the Sim-nML proessordesription as a funtion de�nition. The funtional simulator engine ontains a ta-ble of pointers to funtions orresponding to the instrutions in the input program.AddCallFunbyName essentially modi�es the funtion de�ntion for the relevant in-strution by adding a all to the user de�ned routine. AddCallFun modi�es thetable of funtion pointers by adding a all to an alternate routine whih embeds aall to the relevant user de�ned routine along with the all to the atual instrutionde�nition funtion. During simulation, the funtional simulator simulates the inputprogram by alling the routines orresponding to eah instrution. The proing isdone by alling the user engineered routines.

38

Chapter 6
Motorola 68HC11 Spei�ation inSim-nMLIn this hapter, we briey survey theMotorola 68HC11[17℄ proessor arhiteture andits Sim-nML spei�ation.The Motorola 68HC11, is a family of miro-ontroller units with a simple 8-bitproessor ore. The programmer's model onsists of the following� Aumulators(A, B and D): A and B are two general purpose 8-bit au-mulators used to hold operands and results of arithmeti alulations and datamanipulations. Some instrutions treat the ombinations of these two as a 16-bitdouble aumulator (aumulator D). The higher order byte of D is equivalentto aumulator A while the lower order byte orresponds to the aumulatorB.� Index Registers (X and Y): The 16-bit index registers X and Y are used forindex addressing mode. In the indexed addressing mode, the e�etive address isobtained by adding the ontents of a 16-bit index register to an 8-bit immediateo�set in the instrution.� Stak Pointer (SP): The M68HC11 CPU supports a program stak whihmay be loated anywhere in the 64-Kbyte address spae and may be of any sizeup to the amount of memory available in the system.� Program Counter (PC): The program ounter is a 16-bit register that holdsthe address of the next instrution to be exeuted.39

� Condition Code Registers (CCR): This register ontains �ve status india-tors, two interrupt masking bits, and a STOP disable bit. The �ve ags reetthe results of arithmeti and other operations. The �ve ags are half arry (H),negative (N), zero (Z), overow (V) and arry/borrow (C).� Addressing Modes:1. Immediate. The atual argument is ontained in the byte(s) immediatelyfollowing the instrutions.2. Extended. The e�etive address of the operand appears expliitly in thetwo bytes following the opode.3. Diret. The least signi�ant byte of the e�etive address of the instrutionappears in the byte following the opode. The higher order byte of thee�etive address is 0.4. Indexed (INDX, INDY). The e�etive address is the ontents of eitherof the index registers X, Y plus a �xed 8-bit unsigned o�set ontained inthe instrution.5. Inherent. Contains impliit operands. For example, the instrutionABAadds the ontents of aumulator A with aumulator B and stores theresults in A.6. Relative. For branh instrutions, the target address is the address of thenext instrution plus a 8-bit signed o�set spei�ed in the instrution.6.1 Overview of the Spei�ationsWe have spei�ed the Motorola 68HC11 spei�ation in Sim-nML. A simple resoureusage model has been assumed. A single instane of a resoure exe unit is delared.Any instrution in exeution aquires this resoure for the time period depending onthe number of lok yles required for exeution of that instrution.The instrution set of the 68HC11 CPU is organized in a hierarhy in the Sim-nML spei�ation. The desription hierarhy is as follows. Top level node is theinstrution. Instrution an be arithmeti, stak ontrol, program ontrol, onditionalinstrutions, load-store instrutions. Arithmeti instrutions an furthur be lassi�edinto add-subtrat, multiply-divide, shift-rotate, data test bit instrutions. Program40

ontrol instrutions onsist of branh, jump, subroutine alls et. These instrutionsoperate on both 8-bit and 16-bit data. Instrutions involving external interfaes likeinterrupts, serial/parallel data transfers have not been spei�ed.

41

Chapter 7
Results and ConlusionIn this hapter we disuss a few sample ahe pro�ling and ode instrumentationmehanisms along with their performane impats on the speed of the funtionalsimulator.7.1 ResultsThe ahing and pro�ling mehanisms were tested on PowerPC603 Sim-nML inputspei�ation. The test ases were run on an� Intel P-II 233MHz, a little-endian proessor with 32MB RAM running GNU-Linux Kernel 2.2.13.Following are the test programs written in C. The PowerPC603 ELF binarieswere reated using the GNU-C ross-ompiler.� mmul. : Matrix multipliation program. This program initializes two integermatries of 100x100 size and multiplies these two.� bsort. : Bubble sort program. This program initializes an array of 1500integers in desending order and sorts them to asending order using bubblesort algorithm.� qs. : Quik sort program. This program initializes array of 1,00,000 integers indesending order and sorts them to asending order using quik sort algorithm.42

� fmmul. : Matrix multipliation for oating-point numbers. Initializes andmultiplies two oating point matries of size 100x100.� nqueen. : This program �nds all the possible ways that N queens an beplaed on an NxN hess board so that the queens annot apture one another.Here N is taken as 12.The total number of dynamially exeuted instrutions during the simulation ofeah of these programs are given in the table 7.1 and the performane of the funtionalsimulator without the ahe simulation and pro�ling is given in table 7.2.Program Total No. of Instrutionsmmul. 91,531,966bsort. 60,759,034qs. 80,773,862fmmul. 92,131,966nqueen. 204,916,928Table 7.1: Total number of instrutions simulated for test programs.Program Total Time in Seonds Instrutions per seondmmul. 62 1,476,322bsort. 106 573,198qs. 109 741,044fmmul. 64 1,439,549nqueen. 225 910,741Table 7.2: Performane Results of the funtional simulator7.1.1 Cahing ExampleWe have used the sample on�guration �le as spei�ed in the �gure 7.1 and theorresponding output metris measured are given in table 7.3. In table 7.3,� Cahe type indiates whether the ahe is a data or instrution ahe.43

� Level denotes the ahe level in the ahe hierarhy.� Hits denote the % of the total memory aess that resulted in a ahe hit.� Misses denote the % of the total memory aess that resulted in a ahe miss.� Conit Miss denote the % of the total memory aess that resulted in a onitmiss (i.e, the ahe entry was marked valid) in the ahe.� Invalid Miss denote the % of the total memory aess that resulted in a invalidmiss (i.e, the ahe entry was marked invalid) in the ahe.� Compulsary Miss denote the % of the total memory aess that resulted in aompulsary or old miss (i.e, the address was being aessed for the �rst time)in the ahe.Program Cahe type Level Hits Misses Conit Invalid Compulsary(%) (%) misses(%) misses(%) misses(%)mmul. Data 1 98.5 1.3 1.3 0 .02Instr 1 99.95 0.04 0.04 0 0bsort. Data 1 99.9 0.001 0.001 0 0Instr 1 99.9 0.001 0.001 0 0qs. Data 1 99.75 0.24 .24 0 0.01Instr 1 99.89 0.1 0.1 0 0fmmul. Data 1 98.5 1.3 1.3 0 0.02Instr 1 99.9 0.04 0.04 0 0nqueen. Data 1 99.9 0 0 0 0Instr 1 99.9 0 0 0 0Table 7.3: Results of pro�ling output for test programs.The performane of the funtional simulator with on-line ahe simulation givenin table 7.4.7.1.2 Pro�ling ExampleWe have implemented a simple pro�ling tool whih ounts the number of basi bloksthat are traversed at run time. At the same time, the number of PowerPC addi44

#PowerPC603 Cahe Configuration# Number of Levelslevels 1# Address lengthaddrlen 32# Desription for L1 CaheLevel 1# Desription for InstrCahe of L1type INSTRCACHEassoiativity 2size 8Kline 32replae LRUwrite WB WA # Write Bak, Write Alloate# Desription for DataCahe of L1type DATACACHEassoiativity 2size 8Kline 32replae LRUwrite WB WAFigure 7.1: PowerPC603 Cahe on�guration �leProgram Total Time in Seonds Instrutions per seond slowdown fatormmul. 549 166,72 8.8bsort. 546 111,280 5.1qs. 809 99,844 7.4fmmul. 522 176,498 8.1nqueen. 1138 180,06 5.0Table 7.4: Performane results of ahe pro�ling for test programs.45

instrutions that are exeuted is also found. The ode instrumentation tehniquethat is used is spei�ed in setion 4.2.The pro�ling output is given in table 7.5.Program Total No. of Total No: ofbasi blok traversed addi instrutions exeutedmmul. 2081207 1030305bsort. 4506008 2253005qs. 7315513 242144fmmul. 2081207 1110305nqueen. 40030204 60766515Table 7.5: Pro�ling output for test programs.The performane of the funtional simulator with this pro�ling is given in table7.6. Program Instrutions per seond Slowdown fatormmul. 1,452,888 1.01bsort. 573,198 1qs. 734,307 1.01fmmul. 1,439,549 1nqueen. 898,758 1.01Table 7.6: Performane results of pro�ling of test programs.7.1.3 IR-GeneratorThe IR ful�lls all the goals that were setup behind the design and extension of theIR. The shortomings of the earlier IR were removed.The IR-generatorwas tested for proessor models of PowerPC603,Motorola 68HC11& Intel 8085. It was run on Linux/Intel and Solaris/Ultraspar platforms.
46

7.2 ConlusionsIn this thesis we have disussed the Sim-nML language for modeling proessors at in-strution level. It is powerful enough to speify any modern proessor with pipelines,branh predition, et. at the instrution level. We have also disussed the inte-grated environment where generi tools - assembler, simulator, ompiler, et. an beautomatially generated using Sim-nML proessor models.As part of this thesis work, we have extended the IR for proessor desriptionusing Sim-nML language. The IR simpli�es the development of tools like ompilerbak-end generators, assemblers, disassemblers, simulators et. An IR generator hasbeen developed whih takes the Sim-nML spei�ation as input and produes the IRof the proessor spei�ation. We have also implemented a mehanism for programanalysis. This inludes a mehanism for ahe simulation and an infrastruture forprogram pro�ling through ode instrumentation. These tools help in generating aproessor independent platform for program analysis. It was implemented over theRetargetable Funtional Simulator - Fsimg. The tools were tested for the PowerPC603spei�ation.7.3 Future WorkWe visualize the following that an be used to build a omplete proessor simulationenvironment.A omplete simulation of the external environment of the proessor an be done.This would involve developing separate simulation modules for memory, ahe system-s, bus et. whih would interat with the proessor funtional or timing simulator.The funtional or timing simulator would then only simulate the proessor. Thiswould make the system more modular, salable and exible.

47

Bibliography[1℄ Chandra, Y. S. Retargetable Funtional Simulator. Master's the-sis, Department of Computer Siene and Engg., IIT Kanpur, June 1999.http://www.se.iitk.a.in/researh/mteh1997/9711121.html.[2℄ Edler, J., and Hill, M. D. Dinero IV Trae-Driven Uniproessor CaheSimulator.[3℄ Freerik, M. The nML Mahine Desription Formalism, July 1993.http://www.s.tu-berlin.de/~mfx/dvi dos/nml 2.dvi.gz.[4℄ George Hadjiyiannis, S. H., and Devadas, S. ISDL An Instrution setDesription Language for Retargetability. Proeedings of the 34th Annual Con-ferene on Design Automation Conferene (1997), 299.[5℄ Jain, N. C. Disassembler using High Level Proessor Models. Master'sthesis, Department of Computer Siene and Engg., IIT Kanpur, Jan 1999.http://www.se.iitk.a.in/researh/mteh1997/9711113.html.[6℄ Larus, J. R. EÆient Program Traing. Computer 26, 5 (May 1993), 52{61.[7℄ Larus, J. R., and Ball, T. Rewriting Exeutable Files to Measure ProgramBehavior. Software Pratie & Experiene 24, 2 (Feb 1994), 197{218.[8℄ Larus, J. R., and Shnarr, E. EEL: Mahine-Independent Exeutable Edit-ing. SIGPLAN Conferene on Programming Language Design and Implementa-tion (PLDI) (June 1995).[9℄ Mendel Rosenblum, Edouard Bugnion, S. D., and Herrod, S. A. Us-ing the SimOS Mahine Simulator to Study Complex Computer Systems. ACMTransations on Modeling and Computer Simulation 7, 1 (Jan 1997), 78{103.http://simos.stanford.edu. 48

[10℄ Mondal, S. Compiler Bak-end Generation using nML Mahine Desription.Master's thesis, Department of Computer Siene and Eng., IIT Kanpur, June1999. http://www.se.iitk.a.in/researh/mteh1997/9711117.html.[11℄ Raksey, N., and Fernandez. Speifying Representations of Mahine Instru-tions. ACM Transations on Programming Langauges and Systems 19, 3 (May1997), 492{594. http://www.s.virginia.edu/~nr/pubs/speifying-abstrat.html.[12℄ Smith, M. D. Traing with Pixie. Memo from Center for Integrated Systems,Stanford Univ. (April 1991).[13℄ Srivastava, A., and Wall, D. ATOM: A system for building ustomizedanalysis tools. Proeedings of the SIGPLAN '94 Conferene of ProgrammingLanguage Design and Implementation (PLDI) (June 1994), 196{205.[14℄ Trung A., D., and John Paul, S. VMW: A Visualization-Based Miroar-hiteture Workbenh. IEEE Computer (De 1995), 57{64.[15℄ V.Rajesh. A Generi Approah to Performane Modeling and its Appliationto Simulator Generator. Master's thesis, Department of Computer Siene andEngg., IIT Kanpur, July 1998. http://www.se.iitk.a.in/researh/mteh1996/9611123.html.[16℄ UNIX System V Release 4, Programmers Guide : ANSI C and ProgrammingSupport Tools. Prentie-Hall of India Private Ltd., New Delhi, 1992. Exeutableand Linkable Format (ELF), Tools Interfae Standards (TIS), Portable FormatsSpei�ation, Version 1.1.[17℄ M68h11 Referene Manual. Motorola In., 1994. http://mot-sps.om/mu/doumentation/pdf/h11rmr3.pdf.

49

Appendix A
Grammar of Sim-nML LanguageFollowing is the Context Free Grammar for Sim-nML language.MahineSpe :| MahineSpe LetDef| MahineSpe TypeSpe| MahineSpe MemorySpe| MahineSpe RegisterSpe| MahineSpe VarSpe| MahineSpe ModeSpe| MahineSpe OpSpe| MahineSpe ResoureSpe| MahineSpe ExeptionSpe| MahineSpe error;LetDef : LET ID'=' LetExpr;ResoureSpe: RESOURCEResoureList;ResoureList:ID| ID '[' CARD_CONST '℄'50

| ResoureList ',' ID| ResoureList ',' ID '[' CARD_CONST '℄';ExeptionSpe: EXCEPTIONIdentifierList;IdentifierList: ID| IdentifierList ',' ID;TypeSpe: TYPE ID'=' TypeExpr;TypeExpr: BOOL| INT '(' LetExpr')'| CARD '(' LetExpr')'| FIX '(' LetExpr ',' LetExpr')'| FLOAT '(' LetExpr ',' LetExpr')'| '[' LetExpr DOUBLE_DOT LetExpr '℄'| ENUM '(' IdentifierList ')';LetExpr: Expr;MemorySpe: MEM ID'[' MemPart '℄' OptionalMemAttrDefList;RegisterSpe: REG ID'[' RegPart '℄' OptionalMemAttrDefList;VarSpe: VAR ID'[' RegPart '℄';MemPart: LetExpr ',' Type| LetExpr 51

;RegPart: LetExpr ',' Type| Type;Type : TypeExpr| ID;OptionalMemAttrDefList:| MemAttrDefList;MemAttrDefList:MemAttrDef| MemAttrDefList MemAttrDef;MemAttrDef:VOLATILE '=' LetExpr| PORTS '=' CARD_CONST ',' CARD_CONST| ALIAS '=' MemLoation| INITIALA '=' LetExpr| USES '=' UsesDef;MemLoation :ID Opt_Bit_Optr| ID '[' Expr '℄' Opt_Bit_Optr;ModeSpe: MODE IDModeSpePart;ModeSpePart: AndRule OptionalModeExpr AttrDefList| OrRule;OptionalModeExpr :| '='Expr 52

;OpSpe: OP IDOpRulePart;OpRulePart: AndRule AttrDefList| OrRule;OrRule: '='Identifier_Or_List;Identifier_Or_List:ID| Identifier_Or_List '|' ID;AndRule: '(' ParamList ')';ParamList:| ParamListPart| ParamList ',' ParamListPart;ParamListPart:ID':' ParaType;ParaType : TypeExpr| ID;AttrDefList:| AttrDefList AttrDef;AttrDef :ID '=' AttrDefPart| SYNTAX '=' AttrExpr| IMAGE '=' AttrExpr 53

| ACTION '=' '{' Sequene '}'| USES '=' UsesDef;AttrDefPart:Expr| '{' Sequene '}';AttrExpr :ID '.' SYNTAX| ID '.' IMAGE| STRING_CONST| FORMAT '(' STRING_CONST ',' FormatIdlist ')';FormatIdlist:FormatId| FormatIdlist ',' FormatId;FormatId:ID| ID '.' IMAGE OptBitSelet| ID '.' SYNTAX| DOLLAR '+' ID;OptBitSelet:| BIT_LEFT CARD_CONST DOUBLE_DOT CARD_CONST BIT_RIGHT;Sequene:| StatementList ';';StatementList:Statement| StatementList ';' Statement;Statement: 54

| ACTION| ID| ID '.' ACTION| ID '.' ID| Loation '=' Expr| ConditionalStatement| STRING_CONST '(' ArgList ')'| ERROR '(' STRING_CONST ')';ArgList :| Expr| ArgList ',' Expr;Opt_Bit_Optr :| BIT_LEFT Bit_Expr DOUBLE_DOT Bit_Expr BIT_RIGHT;Loation :ID Opt_Bit_Optr| ID '[' Expr '℄' Opt_Bit_Optr| Loation DOUBLE_COLON Loation;ConditionalStatement:IF Expr THEN Sequene OptionalElse ENDIF| SWITCH '(' Expr ')' '{' CaseList '}';OptionalElse:| ELSE Sequene;CaseList:CaseStat| CaseList CaseStat;CaseStat:CaseOption ':' Sequene 55

;CaseOption:CASE Expr| DEFAULT;Expr :COERCE '(' Type ','Expr')'| FORMAT '(' STRING_CONST ',' ArgList ')'| STRING_CONST '(' ArgList ')'| ID '.' SYNTAX| ID '.' IMAGE| ID '.' ID| Expr DOUBLE_COLON Expr| ID '[' Expr '℄' Opt_Bit_Optr| ID Opt_Bit_Optr| Expr '+' Expr| Expr '-' Expr| Expr '*' Expr| Expr '/' Expr| Expr '%' Expr| Expr DOUBLE_STAR Expr| Expr LEFT_SHIFT Expr| Expr RIGHT_SHIFT Expr| Expr ROTATE_LEFT Expr| Expr ROTATE_RIGHT Expr| Expr '<' Expr| Expr '>' Expr| Expr LEQ Expr| Expr GEQ Expr| Expr EQ Expr| Expr NEQ Expr| Expr '&' Expr| Expr '^' Expr 56

| Expr '|' Expr| '!' Expr| '~' Expr| '+' Expr %pre '~'| '-' Expr %pre '~'| Expr AND Expr| Expr OR Expr| '(' Expr ')'| FIXED_CONST| CARD_CONST| STRING_CONST| DOLLAR| BINARY_CONST| HEX_CONST| IF Expr THEN Expr OptionalElseExpr ENDIF| SWITCH '(' Expr ')' '{' CaseExprList '}';Bit_Expr :ID| Bit_Expr '+' Bit_Expr| Bit_Expr '-' Bit_Expr| Bit_Expr '*' Bit_Expr| Bit_Expr '/' Bit_Expr| Bit_Expr '\%' Bit_Expr| Bit_Expr DOUBLE_STAR Bit_Expr| '(' Bit_Expr ')'| FIXED_CONST| CARD_CONST| STRING_CONST| BINARY_CONST| HEX_CONST;CaseExprList:CaseExprStat 57

| CaseExprList CaseExprStat;CaseExprStat:CaseOption ':' Expr;OptionalElseExpr:| ELSE Expr;UsesDef:UsesOrSequene| UsesDef ',' UsesOrSequene;UsesOrSequene:UsesIfAtom| UsesOrSequene '|' UsesIfAtom;UsesIfAtom:UsesIndiretAtom| IF Expr THEN UsesIfAtom OptionalElseAtom ENDIF;OptionalElseAtom :| ELSE UsesIfAtom;UsesIndiretAtom:UsesCondAtom| ID '.' USES| '(' UsesDef ')'| UsesLoationList AND ID '.' USES| UsesLoationList AND '(' UsesDef ')';UsesCondAtom:UsesAndAtom| '{' Expr '}' UsesAndAtom; 58

UsesAndAtom :UsesLoationList UsesAtionList;UsesAtionList :| AtionTimeList OptionalAtion| TimeAtionList OptionalTime;AtionTimeList :'#' '{' Expr '}'| AtionTimeList ':' UsesAtionAttr '#' '{' Expr '}';TimeAtionList :':' UsesAtionAttr| TimeAtionList '#' '{' Expr '}' ':' UsesAtionAttr;OptionalAtion :| ':' UsesAtionAttr;OptionalTime :| '#' '{' Expr '}';UsesAtionAttr:ID| ACTION;UsesLoationList :UsesLoation| UsesLoationList '&' UsesLoation;UsesLoation :ID Opt_Bit_Optr| ID '[' Expr '℄' Opt_SeDim Opt_Bit_Optr;
59

Opt_SeDim :| '[' '℄'

60

Appendix B
File Format of IntermediateRepresentationIn this appendix, we will disuss the layout of the �le for the intermediate represen-tation. The �le onsists of two parts. The �rst part is the IR header and the seondpart is essentially a olletion of various �xed or variable size tables where the nameof eah table is �xed. A table, named as meta table, is always the �rst table. Allother tables an reside anywhere in the seond part and an be loated using themeta table. The following are the tables available presently in the IR.� \META TABLE"� \CONSTANT TABLE"� \ATTRIBUTE TABLE"� \RESOURCE TABLE"� \IDENTIFIER TABLE"� \MEMORY TABLE"� \AND RULE TABLE"� \OR RULE TABLE"� \SYNTAX TABLE" 61

� \IMAGE TABLE"� \STRING TABLE"� \INTEGER TABLE"� \PREFIX ATTRIBUTE DEFNITION TABLE"Eah table onsists of an array of reords. Eah reord in a table onstitutes ofvarious �elds. The �elds might be stored either in little-endian or big-endian enodingusing the native data storage order of the host proessor.� Convention : Eah table is desribed by de�ning its reord format. We haveused a C-like strut de�nition to desribe a reord. Refer to tables.h for ompletede�nition for the strutures and prede�ned onstants. In desribing the reord,following data types are being used.uint8 = unsigned har - 8 bitsuint16 = unsigned integer - 16 bitsuint32 = unsigned integer - 32 bitsint8 = signed har - 8 bitsint16 = signed integer - 16 bitsint32 = signed integer - 32 bitsB.1 IR HeaderThe IR header ontains 2 �elds as shown below. The �rst is a magi number. For theurrent version it is set to "IRV2". The seond �eld is used to denote the endiannessof the host proessor on whih the IR was reated. The possible values for endian areLITTLE END and BIG END, two onstants de�ned in tables.h.typedef strut {uint8 magi[4℄;uint8 endian;} IR_Header;
62

B.2 Meta TableThe Meta table holds the table of ontents for all the tables whih are present in the�le. Eah reord of the meta table stores the information to loate a table. Eahreord has the following format.typedef strut {uint8 table_name[32℄;uint32 table_size;uint32 table_offset;uint32 total_reords;uint32 reord_size;} MetaTable_t;� table name : This �eld stores the �xed name of a table whih is a 32 bytenull terminated string. Name of all the tables are :META TABLE, CON-ST TABLE, ATTRIBUTE TABLE, RESOURCE TABLE, IDENTI-FIER TABLE, MEMORY TABLE, AND RULE TABLE, OR RULE TABLE,SYNTAX TABLE, IMAGE TABLE STRING TABLE, INTEGER TABLE,PREFIX TABLE. The �rst entry in the table is for META TABLE itself.� table size : This �eld holds the size (in bytes) of a table.� table o�set : This �eld holds the starting o�set (in bytes) of a table in the �lefrom the beginning of the �le.� total reord : This �eld holds the number of �xed size reords stored in a table.Tables with variable size reords like string table, integer table have this �eldset to 0.� reord size : This �eld holds the size of a �xed size reord (in bytes) in a table.Tables with variable size reords like string table and integer table have this �eldset to 0.
63

B.3 Constant TableEah reord of the onstant table holds the informations about the onstant expres-sions in the following format.typedef strut {uint32 id_name;int8 val_type;int32 value;} ConstTable_t;� id name: This �eld holds the index into the string table. The string table holdsnull terminated strings. Thus this �eld represents a referene to the onstantname.� val type: This �eld indiates the type of the value assoiated with the onstant.Currently it an be one of the two onstants CONST TBL INT TYPE,CONST TBL STRING TYPE as de�ned in tables.h� value: If the val type �eld represents CONST TBL INT TYPE, then this�eld holds the orresponding int32 value. If the val type isCONST TBL STRING TYPE, then this �eld holds the index into thestring table.B.4 Resoure TableEntries of this table hold the information about resoure. Eah entry indiates theresoure name and the number of instanes of eah resoure. Eah reord has thefollowing format.typedef strut {uint32 res_name;uint32 res_num;} ResoureTable_t; 64

� res name : This �eld holds the index into the string table where the resourename is stored.� res num : This �eld stores the number of instanes of this resoure (� 1).B.5 Identi�er TableThis table holds the information about all the identi�ers used in the proessor spei-�ation �le (other than those spei�ed in the onstant table and the resoure table).Eah reord has the following format.typedef strut {uint32 id_ptr;uint32 id_name;uint32 id_type;} Identifier_t;� id name : This �eld holds an index into the string table. The string table holdsa null terminated string at this index whih is the name of the identi�er.� id type : This �eld indiates the type of the identi�er and may have one of thefollowing values as de�ned in tables.h.UNDEFINED Unde�ned Identi�erMEM TYPE Memory VariableMODE OR TYPE Mode Or RuleMODE AND TYPE Mode And RuleOP OR TYPE Op Or Rule type.OP AND TYPE Op And Rule type.EXCEPTION TYPE Exeption� id ptr : This �eld holds the pointer to other tables depending on id type valueassigned to the identi�er.
65

MEM TYPE: index into the memory tableMODE OR TYPE: index into the or rule tableMODE AND TYPE: index into the and rule tableOP OR TYPE: index into the or rule tableOP AND TYPE: index into the and rule tableB.6 Attribute TableEah entry of this table holds the name of an attribute. Eah reord has the followingformat.typedef strut {uint32 attr_name;} Attribute_t;� attr name : This �eld holds an index into the string table where the attributename is storedB.7 Memory TableEah entry of this table holds the information about a memory variable spei�ed withreg or mem or var spei�ation onstrut of Sim-nML. Eah reord has the followingformat.typedef strut {uint32 id_index;uint32 size;uint32 total_attr;uint8 type;uint8 data_type;uint32 value1;uint32 value2;uint32 attr_list_index;66

} MemTable_t;� id index : This �eld stores the index into the identi�er table.� size : A memory delaration de�nes a memory base, i.e., a set of memoryloations aessible with a name and an index. This �eld spei�es the numberof suh loations.� total attr : A memory delaration may also de�ne values for some prede�nedattributes. This �eld spei�es how many attributes are de�ned for the memoryvariable.� type : This �eld holds a onstant whih an be REG if the identi�er is de-lared using reg spei�ation, MEM if the identi�er is delared using memspei�ation and VAR if the identi�er is delared using var delaration.� data type, value1, value2 : A memory loation might hold values of di�erent da-ta types. The data type is enoded in a tuple <data typ, value1, value2>. First�eld, data type, spei�es what type of values an be stored in a memory loa-tion. Seond and third �eld stores the value aording to the data type �eld. da-ta type an be BOOL TYPE, CARD TYPE, INT TYPE, FIX TYPE,FLOAT TYPE, RANGE TYPE, ENUM TYPE.Table B.1 shows the possible of other two �elds.� attr list index : If the total attr �eld has a value 0, then this �eld is ignored andshould be 0. Otherwise it spei�es an index into the integer table. At this index,three integers are stored for eah of the attributes. Therefore, the total numberof integers are 3 � total attr. Eah integer tuple indiates <index, o�set, len>where index, is the index into the attribute table orresponding to that attribute.The seond �eld of the tuple, o�set, is the starting tuple number into the pre�xattribute de�nition table where de�nition of the attribute is stored in pre�xnotation. Third �eld of the triple, len, is the number of tuples for its attributede�nition. Eah tuple in the pre�x attribute table is of type Pre�xTuple t(refer setion B.14).For mode spei�ation (refer Sim-nML spei�ation[15℄), one new attribute,val , is de�ned to store the optional expression assoiated with the mode spei-�ation. The expression is delared using =. For example, in �gure 2.2, the and67

rule mode REG(index : ard(5)) = R[index℄, has an assoiated attributeval whih de�nes the expression R[index℄.Data Type data type value1 value2bool BOOL TYPE 0 0ard(n) CARD TYPE n 0int(n) INT TYPE n 0�x(n;m) FIX TYPE n moat(n;m) FLOAT TYPE n mrange[n::m℄ RANGE TYPE n menum(id 1. . . id m) ENUM TYPE 0 m� 1Table B.1: Enoding of data types
B.8 And-Rule TableThis table holds the information about all the and-rules (mode and op type). Itholds information about attributes and parameters of eah and rule. Parameters arenumbered from 0 to n from left to right. Eah reord has the following format.typedef strut {uint32 id_index;uint32 total_para;uint32 total_attr;uint32 attr_list_index;uint32 para_list_index;} AndTable_t;� id index : This �eld holds the index into the identi�er table orresponding tothis and-rule.� total para : This �eld holds the number of parameters assoiated with theand-rule.� total attr : This �eld spei�es the number of attributes de�ned for the and-rule.68

� attr list index : If total attr �eld has value 0, then this �eld is ignored andhas a value 0, otherwise it spei�es an index into the integer table. At thisindex, three integers are stored for eah of the attributes. Eah integer tripleindiates <index, o�set and len> similar to the one desribed in the memorytable. There are two exeptions here. If index refers to a syntax or imageattribute, then o�set �eld ontains the index into the syntax table or the imagetable, as the ase might be, and len �eld is 0.� para list index : If total para �eld has value 0, then this �eld is ignored. Oth-erwise it spei�es an index into the integer table. At this index, three integersare stored for eah of the parameter. Eah integer triple indiates <data type,value1, value2> i.e. the data type of parameter. data type takes the samevalue as of memory table data types. In addition it ould take the valueAND RULE TYPE, OR RULE TYPE. Table B.2 shows possible valuesfor �elds of the triples.Data Type data type value1 value2bool BOOL TYPE 0 0ard(n) CARD TYPE n 0int(n) INT TYPE n 0�x(n;m) FIX TYPE n moat(n;m) FLOAT TYPE n mrange[n::m℄ RANGE TYPE n menum(id 1. . . id m) ENUM TYPE 0 m� 1and-rule AND RULE TYPE and table index 0or-rule OR RULE TYPE or table index 0Table B.2: Parameter Type for and-rule
B.9 Or-Rule TableThis table holds the information of all or-rules (mode or op type). Eah entry desribesthe hild nodes of an or-rule. Eah reord has the following format.typedef strut {uint32 id_index; 69

uint32 total_hild;uint32 hild_list_index;} OrTable_t;� id index : This �eld holds the index into the identi�er table orresponding tothis or-rule.� total hild : This �eld holds the number of hildren for this or rule.� hild list index : This �eld holds the index into the integer table where alist of integer values are stored. For eah hild 2 integers are stored. The�rst integer indiates the hild type whih ould be AND RULE TYPE orOR RULE TYPE. The seond integer denotes the index into the and ruletable or or rule table depending on the hild type.B.10 Syntax TableThis table holds the syntax reords assoiated with the syntax attribute de�nition ofall and-rules. Eah reord has the following format.typedef strut {uint8 type;uint32 str_len;uint32 str_off;} SynImg_t;� type : This �eld holds the type of the syntax reord. It ould be SYNIMG-DOT TYPE or SYNIMGSTR TYPE For example, if the syntax attributeis de�ned as syntax = x.syntaxwhere x is a parameter, then the type is SYNIMGDOT TYPE, else if itis de�ned as a string or using the format keyword then the type is SYN-IMGSTR TYPE. 70

� str len : If type is SYNIMGDOT TYPE then this �eld holds the parameternumber (of x in the above example). If type is SYNIMGSTR TYPE thenthis �eld holds the format string length.� str o� : If type is SYNIMGDOT TYPE then this �eld holds the index intothe attribute table (of syntax in the above example) while if type is SYN-IMGSTR TYPE then this holds the o�set into the string table where theformat string is stored.B.11 Image TableThis table holds the image reords assoiated with the image attribute de�nition ofall and-rules. Eah reord has the following format.typedef strut {uint8 type;uint32 str_len;uint32 str_off;} SynImg_t;� type : This �eld holds the type of the image reord. It ould be SYNIMG-DOT TYPE or SYNIMGSTR TYPE. For example, if the image attributeis de�ned as image = x.imagewhere x is a parameter, then the type is SYNIMGDOT TYPE, else if itis de�ned as a string or using the format keyword then the type is SYN-IMGSTR TYPE.� str len : If type is SYNIMGDOT TYPE then this �eld holds the parameternumber (of x in the above example). If type is SYNIMGSTR TYPE thenthis �eld holds the format string length.� str o� : If type is SYNIMGDOT TYPE then this �eld holds the indexinto the attribute table (of image in the above example). If type is SYN-IMGSTR TYPE then this �eld holds the o�set into the string table wherethe format string is stored. 71

B.12 String TableThis table holds null terminated harater sequenes, ommonly alled strings. Thesestrings are referred to by an index into the string table. for all strings. A string whoseindex is zero spei�es either no name or a null name depending on the ontext. Weshow one example of the string table of size 30 bytes in table B.3 and the stringsassoiated with various indies in table B.4.i d e n t i f i e rnull P C null i n s t r u t i o n null null null null nullTable B.3: Example of the String TableIndex string0 identi�er11 PC14 instrutionTable B.4: Interpretation of the String Table
B.13 Integer TableThis table holds list of signed or unsigned integer values (int32 or uint32 type).These integers represent di�erent meanings in di�erent ontexts. The integers arereferred in other tables by an index into the integer table. The index refers to thestarting o�set(index) into the integer table where the list of integers is stored.B.14 Pre�x-Attribute-De�nition TableThis table holds various attribute de�nitions in pre�x notation. All attributes exeptthe syntax and image are onverted into the pre�x notation and stored in this table.It ontains an array of reords where eah reord of the pre�x expression is stored asfollows.typedef strut { 72

uint16 type;int32 value;} PrefixTuple_t;� type : This �eld holds an integer value to indiate the type of tuple, i.e., anoperator tuple or operand tuple. For a tuple of operand type, this �eld alsoenodes the type of the operand.� value : This �eld holds an integer value whose interpretation depends on thevalue of the type �eld.An attribute de�nition is stored in the and-rule table and in the memory tablewith the starting index into the pre�x-attribute-de�nition table and the number oftuples in the pre�x notation of the de�nition. Table B.5 shows the possible values oftype �eld and the orresponding interpretation for the value �eld. If the type �eld isset to a value 0, then the tuple is an operator tuple. In all other ases, the tuple is anoperand tuple. If the tuple is an operator tuple, then the value �eld holds an integerwhih indiates operator's name and its arity. Table B.6 shows all possible values forthis �eld and the orresponding arity.There are as many operands available as needed for an operator. Sine the arity foran operator is known a-priori, the number of its arguments is impliit. For example,an expression ' PC = PC + 2 ' is represented as ' = PC + PC 2 ' in pre�x notation.The expression has 5 items. The �rst item is an operator '=' with arity 2. The seonditem is a memory variable with the value �eld being the index into the memory table.The third item is again an operator '+'. The fourth item is a memory variable whilethe last item is a �xed-onstant with value 2.The detailed desription of eah operator is given in the Sim-nML spei�ationgiven in Appendix A. There are some speial ases whih are desribed here.� The �rst ase is for Bit Range operator whih has the in�x notation asopd1 < opd2::opd3 >. It is onsidered as a ternary operator with three param-eters as opd1, opd2 and opd3 for pre�x notation.� The seond ase is for \if then else". It is onsidered as a ternary operator IF.If there is no operand in else part, then NULL operator (0-ary) (see table B.6)is used in its plae. 73

Type of the tuple type �eld value �eldOperator 0 operator number (see table B.6)Fixed onstant 1 int32 value of operandCard onstant 2 uint32 value of operandBinary onstant 3 O�set into the string tableHex onstant 4 O�set into the string tableString onstant 5 O�set into the string tableMemory variable 6 index of the identi�er as assignedin the identi�er tableAttribute type 7 index of the attribute name in theattribute tableParameter type 8 parameter number (left most isassigned number 0).Resoure type 9 index of the resoure name as as-signed in the resoure tableExeption type 10 index of the identi�er as assignedin the identi�er tableTable B.5: Interpretation of the tuple used in Pre�x Notation� The third ase is when there is no attribute expression for an attribute. TheNULL operator is used to denote it.� The fourth ase is that of a swith operator. General in�x notation for this isswith (expr){ ase Expr_1 : Sequene_1 ;ase Expr_2 : Sequene_2 ;.default : Sequene_i ;.ase Expr_n : Sequene_n ;}The orresponding pre-�x notation is as follows :(operator, swith)(n, expr, 74

value Name of Operator Symbol Arity of Operator0 Addition + Binary1 Subtration - Binary2 Multipliation * Binary3 Division / Binary4 MOD % Binary5 EXP ** Binary6 Greator than > Binary7 Less than < Binary8 Equal to == Binary9 Not equal to != Binary10 GEQ >= Binary11 LEQ <= Binary12 Logial AND & Binary13 Logial OR j Binary14 Logial XOR ^ Binary15 AND && Binary16 OR jj Binary17 Left Shift << Binary18 Right Shift >> Binary19 Rotate Left <<< Binary20 Rotate Right >>> Binary21 Dot . Binary22 Conatenation :: Binary23 Indexing [℄ Binary24 Assignment = Binary25 Statement Separator ; Binary26 Unary Addition + Unary27 UNOT OPERATOR ! Unary28 Unary Subtration - Unary29 Bitwise NOT ~ Unary30 Bit Range .. Ternary31 IF if then else Ternary32 Funtion anonial funtion n-ary33 Swith swith n-ary34 default default 0-ary35 NULL nothing 0-ary36 Hash # Binary37 Comma , Binary38 Condition fg Unary39 Colon : BinaryTable B.6: Operators Used in Pre�x Attribute De�nition75

Expr_1, Sequene_1,Expr_2, Sequene_2,....default, Sequene_i,....Expr_n, Sequene_n)The �rst item is an operator with operator name as swith. Then next item isa simple operand tuple of Card onstant type and value as n. After that, exprwill be again written in pre�x notation. It will be followed by n-operands whereeah operand is an expression in pre�x notation and sequene of statements inpre�x notation. Default operator is a 0-ary operator (see table B.6).� The �fth ase is that of a anonial funtion. General notation for this is asfollows.\funtion name" (Arg1; Arg2; Arg3; :::::::::; Argn)where eah argument is again an expression. The orresponding pre-�x notationis as follows. (operator, funtion)("funtion name" string, n, Arg1, Arg2,........Argn)The �rst item is a funtion operator. Seond tuple is a string onstant type (type= String onstant, value = byte o�set into the string table where funtion nameis stored). Next item n is a simple operand tuple with type as Card onstant andvalue as n. Following whih, eah argument is represented in pre�x notation.There is one speial ase with funtion operator where the funtion name isoere. This funtion takes �rst argument as a data type. In the IR, we onvertdata types to the basi data types and represent them using three numbers, da-ta type, value1 and value2 as desribed in table B.1. Thus, the data type param-eter for the oere funtion is onverted to three integers internally. Therefore,we have two extra parameters for this funtion. Thus number of parameters istwo more than the atual number of parameters for eah ourene of oerefuntion. 76

