CS-499 BTech Project

Final Project Report

TITLE: LINUX FOR INDIAN LANGUAGES

Guide: Dr. Rajat Moona

Submitted by Aravind Menon (98069), Gaurav Gupta (98133)

Introduction

Objective

The objective of this project is to produce a Linux distribution that has support
for a number of Indian languages.

Principal requirements

The following are the requirements that the new distribution should meet:

1. Existing X applications should be able to support Indian languages without
any modification in their binaries, i.e. they should be able to correctly display
ISCII [1] text.

2. There should be keyboard support for allowing user to enter Indian Language
text.

3. Internationalization: The new distribution should provide Indian language
support for already internationalized applications — i.e. those applications
whose output, or part of output, depends on the language selected.

4. Unicode/UTF-8 support: It should be possible to correctly display
Unicode/UTF-8 [3] encoded strings of Indian languages.

Approach

Since existing X applications are supposed to run unmodified in the new
distribution, the support has to be provided at an underlying low-level library. We have
decided to incorporate support for Indian languages at the level of “X1lib” — the client side
library of the X Windowing system [2,4].

The modified X library (1ibX11. so) provides the support for correct display
of ISCII strings and Unicode/UTF-8 strings of Indian languages.

Keyboard support is incorporated using the XKB mechanism of X. This
mechanism allows for defining various aspects of keyboard mapping like symbols of the
keyboard, types of keys, interpretations of the symbols etc. The XKB mechanism is
defined in greater detail in the Section Keyboard Mapping’. Actual details of the
implementation can be found the ‘Documentation” section.

Localization support for internationalized applications has been added using
the ‘locale’ mechanism of glibc. This mechanism allows one to define new ‘locales’,
which define the behaviour of internationalized applications for the ‘locale’.

The rest of the report is organized as follows. In section 1 we give a brief
summary of the work done in the previous semester. In section 2 we describe the XKB
mechanism [6], locale” mechanism [7] and Unicode/UTF-8 support. In section 3 we
show some snapshots of results we have obtained. The Appendix contains sections on
documentation, the programmers’ manual and the administrator’s manual.

Section 1: Summary of previous semester’s work

Work done in the previous semester mainly concentrated on the following two
aspects:

1. Modifying Xlib to support display of ISCII text

2. Investigation of the mechanisms for adding keyboard support.

We now briefly describe the two

1.1 Xlib modification

The principal task in adding support for ISCII is to first convert it to glyph coded
string before the display functions of X are called. This is because the display functions
of X, viz XDrawString, XDrawText and XDrawImageString expect their
input strings in glyph encoded form. For English and European languages, the character
string and glyph strings are identical, whereas this conversion has to be done explicitly in
the case of ISCII.

Similarly, while finding the text extents (text height, width, left and right bearings
and font ascent and descent) of a string, the string has to be first converted into the
glyph string in the appropriate font. This has to be done for the Xlib functions
XTextExtents, XTextHeight and XTextWidth.

The modified Xlib first checks if the font set in the graphics context corresponds
to an Indian language. In case it is, XIib assumes that its input string is an ISCII string
and converts it into the glyph string for the corresponding font. For this conversion, it
uses the “isciilib” conversion routines written by Jyotirmoy Saikia (MTech 99).

The X routines for finding text extents cannot determine the font name from the
font id because they do not have a parameter for connection with the server. However,
the font name is required for determining whether the current font corresponds to an
Indian language. Maintaining a font cache to store the mapping between font id and font
name for fonts that have been loaded solved this problem. This cache also improves the
overall speed of the display functions (XDrawString etc) because an expensive
communication between the X server and client is avoided.

12 Mechanisms for keyboard support

Keyboard support means that the user should be able to use the normal English
keyboard for inputting ISCII text. This means that an alternate keyboard layout be
provided for inputting ISCII text. The user should be able to switch between different
keyboard layouts by some keypress.

Keyboard mapping in Linux is handled differently for the two modes in which
the system can run:

1. Terminal mode
2. X Window system mode

In terminal mode, the keyboard mapping (i.e. conversion from scan-codes to
character codes) is handled by the Linux keyboard driver, whereas in X mode, it is
handled by the X server. Both these mappings are implemented by maintaining a
mapping table. There are utilities available which allow a user to write his own mapping
tables (in a particular syntax), these mappings cane be then loaded dynamically into the
system.

They are:

1. loadkeys for terminal mapping table
2. xmodmap for X mapping table.

Section 2: This semester’s work

This section discusses the following three aspects:

21 Keyboard support for X
2.2 Localized Indian support for internationalized applications
23 4-byte Unicode/UTF-8 support in X1ib

The keyboard section discusses the XKB mechanism of X, and how this
mechanism is used for incorporating support for Indian languages. In the localization
section, we discuss the GNU ‘gettext’ mechanism, which allows for defining
localized behaviour of internationalized applications. We also describe some new locales,
which have been added by the TDIL group at II'T Kanpur using this mechanism. Finally,
in the Unicode/UTF-8 section, we describe how the X localization mechanism has been
used to incorporate Unicode/UTE-8 support for Indian languages.

2.1 Keyboard support for X
Objective

To provide three keyboard layouts on a standard keyboard:

1. Normal US English layout
2. English Phonetic layout
3. Inscript layout

Behavioural requirement
The normal US English layout behaves exactly like the normal US keyboards.

In the English phonetic mode, the user is able to enter ISCII characters by
pressing their English phonetic equivalents. For example, ‘k” generates the ISCII code for
‘E’ K’ for’ ’, etc.

ow

#A| #A | #& + | +E| < <C = > @ | B
sh+x X sh+; | sh+a | alt+a alt+i sh+alt+i | alt+u | sh+alt+u | sh+alt+r | sh+z
B| B | B| +B| +B| +E | +Ek E JE M | E
sh+e | sh+alt+e | sh+2 | sh+ | alt+o | sh+alt+o | sh+\ k sh+k g sh+g
R| € | U| E| £Z| \E] : c f hE
q c sh+c | j sh+j sh+] alt+t | sh+alt+t | alt+d | sh+alt+d | sh+n
iE] 1IE | n | B £| AR E ; 33 E | E
t sh+t d |sh+d| n alt+n p sh+p b sh+b m
Bl A | ®| | £| ?2E A | E IE IE | °E
y sh+y r sh+r 1 sh+1 alt+1 \4 sh+s alt+s S
2| #E | # | #O| #O| #U | #b #a #a # | A
h a 1 sh+i u sh+u alt+r Z e sh+e 2
#h| #B | #kB| #k| #A| A

A 0 sh+o \ -]

In the Inscript layout mode, the user is able to enter ISCII characters according
to the Inscript layout, which is the recommended layout for ISCII. The following image
shows the Inscript overlay for Devanagari.

mode.

The user should be able to switch cyclically through the US English, English
Phonetic and Inscript layouts by pressing the ScrollLock key. The user should also be
able to switch temporarily from one layout to the other by pressing the AltGr key i.e. in
the US English mode, AltGr switches temporarily to the English Phonetic mode; in the
English Phonetic and Inscript mode, AltGr switches temporarily to the US English

The LED lights of ScrollLock and CapsLock should reflect the currently enabled
layout of the keyboard. In English Phonetic mode, the ScrollLock LED should be ON;
in the Inscript mode, both ScrollLock and CapsLock LEDs should be on.

Approach

The above support is incorporated using the XKB mechanism, which we
describe below.

XKB is the X server’s keyboard module. XKB is a highly configurable module
and its behaviour is determined by a database of configuration files. These configuration
files are read and compiled by the XKB module each time the X server starts. By
modifying these configuration files, or adding new configuration files, we can effectively
modify the X keyboard behaviour to suit our requirements.

XKB configuration database consists of the following 5 components. For a
greater description of the components, please refer to the documentation in the
Appendix.

keycodes

This consists of tables that define symbolic names for key scan-codes

Types

This describes what are known as key types. Each keyboard key is of a particular
key type. The key type of a key determines how the character code produced by the key
changes in the presence of ‘modifiers’ (Control, Shift and so on).

compat (abridgment from compatibility)

This describes the ‘behavior’ of modifiers. XKB has some internal variables that
store the state of the modifiers as well as the ‘group’. These internal variables, along with
the pressed key determine what character code is generated.

The 'compat' files describe how these internal variables change when any
modifier key is pressed.

symbols

This is the main table which specifies the mapping from scan-codes (symbolic
names defined in ‘keycodes’) to the set of all possible values (‘symbols’).

geometry

This file describes keyboard geometry — key placement on the physical keyboard.
Two keyboards that have different physical key placements will have two different
geometry files. Thus, the geometry file specifies the configuration of keyboards of
different manufacturers.

Using the XKB mechanism described above, Indian language support has been
introduced by writing a new ‘symbols” configuration file. Additional ‘compat” and “types’
configuration files have also been written to support this ‘symbols’ file. A typical entry in
the ‘symbols’ file would look like the following:

key <AB06> { (1,
type[Group2]= "IND_THREE", [n, 193, 198, 199],
type[Group3]= "IND_TWO", [n, 209, 210]

}i

This entry defines three groups for the key corresponding to the letter *n’ .The
first group is the US English group whose symbols are the same as the symbols for the
US keyboard. The second group is the English Phonetic group: the key is defined to be
of type “IND_TWO”, and the group defines four symbols — *n”’, and ISCII codes 193,
198 and 199.

IND_THREE is defined in ‘types’ as follows.

type "IND_THREE" {
modifiers = None+Shift+Alt;
map [None]= Level2;
map[Shift]= Level3;
map[Alt]= Level4;
bi

Thus, in the English Phonetic mode, a normal keypress produces code of
‘level2’,ie ISCII code193, *Shift’ + <ABO6> producescodeof *‘Level3’
i.e. ISCII code 198, *A1t’ +<AB06> produces ‘Leveld’ code ie. ISCII code 199,
and any other modifier+ <AB06> produces n'.

Similarly, the third group is defined for the Inscript layout.

We also require that the user should be able to switch between the three
keyboard layouts. This switching between groups is done by the ScrollLock key, which
has been defined as follows.

key <SCLK> { [ISO_Next_Group] };
ISO_Next_Group is defined in ‘compat’ as follows:

interpret ISO_Next_Group {
action= LockGroup (group=+1) ;

bi
i.e. On pressing, the group is incremented by one and locked.

For displaying the current layout of the keyboard, LEDs have been programmed.
Below, we show part of the code for handling this functionality

indicator "Scroll Lock" {
groups=All - groupl;
bi
This means that the ScrollLock LED is to be turned for groups 2 and 3, ie.
English Phonetic and Inscript keyboard.

Thus, with these new configuration files, we are able to achieve the desired
behaviour from the keyboard. However it is not possible to have keyboard input for,
characters that are not represented by a single ISCII code. Thus characters IE jEand YE
cannot be entered from the keyboard developed by us.

2.2 Localized Indian support for internationalized applications

An internationalized application is one whose output strings and output format
are not hard coded in the application. The output strings and format of an

internationalized application vary according to the language, i.e. in Linux according to the
environment variable LANG. For example, the ‘date’ program is internationalized and its
output is as follows (in Iterm):

bazh-2,04% date

Fri fpr 12 00322333 IST 2002
bash-2,04% LC_ALL=hi_IN date
MED @Iﬁﬁ 17 00322441 IST 2002

bash-2,04% L

DEYAMAGART

Here, the output string is different for Hindi. The format may also be specified to
be different.

Localization means adding support for a new language (or locale) for an already
internationalized application. In our case, it would mean adding support for Indian
languages for internationalized applications.

Below, we briefly describe the GNU mechanism for adding localization support.
Next, we describe how this mechanism has been used for Indian language support. This
implementation part of the work was done by the TDIL group at IIT Kanpur.

GNU gettext standard

The prevailing programming interface for internationalization in POSIX-
compatible systems is that specified in ISO C, and extended in POSIX.2. The
gettext standard defines lomles which are specified by a name string, and six
categories of localization information for which users may specify their locale of
choice. These categories define different aspects of the localized behaviour of
programs.

LC CTYPE

specifies the character set. The character set defines different categories of
characters for the locale e.g. lower characters, upper characters, digits etc.

LC_COLLATE

specifies the conventions for sorting order i.e. the order in which the
characters of the languages are to be sorted

LC_TIME

specifies the formatting of dates and times, including the day and month
names in the locale’s language..

LC_NUMERIC

specifies the formatting of numbers.
LC_MONETARY
specifies the formatting of monetary quantities.
LC_MESSAGES
specifies the message strings for different applications of the language.

Programs that want to use local conventions for their output use the setlocale
function to specify the locale used for each category of local conventions. The
specified locale is then used by the various C library functions like ‘toupper’,
‘strcoll’ etc

The gettext package functions *localeconv’ and ‘nl_langinfo’ can
be used by applications to retrieve items describing local conventions from the current
locale. Thus, these applications can display their output in the local conventions.

For writing locale descriptions POSIX.2 specifies a language. The
localedef program compiles these description files into locale specification files.
The language specified by POSIX.2 is for the Categories LC_CTYPE, LC_COLLATE,
LC_TIME, LC_NUMERIC and LC_MONETARY. A typical entry for a category looks
like the following,

Ex: (for hindi)

LC_NUMERIC
% This is the POSIX Locale definition for the LC_NUMERIC
category.

)
o

decimal_point "<UOOZE>"
thousands_sep "<uooze>"
grouping 3;2

°

END LC_NUMERIC

The above defines the decimal point for Hindi to be ™.” and “, ” as the
separator. It defines the first delimiter to be after the 3" digit and the subsequent
delimiters to be after every 2™ digit.

The values of <UO02E> and <U002C> have been mapped to corresponding
ISCII strings in a charmap file. This charmap file is used by 1ocaledef during
compilation of the locale.

The above categories for ISCII locales have been defined for the following
languages:

@) Assamese,
(i) Bengali,
(iii) Gujarati,

(iv) Hindi,

(v) Kannada,

(vi) Malayalam,
(vii) Oriya,
(vii) Punjabi,
(ix) Tamil and
(x) Telugu

This work has been done by the TDIL group at II'T Kanpur.

Message strings for applications (LC_MESSAGES)

The LC_MESSAGES category can be used for specifying the language specific
message strings of an application. This is done through the following steps:

1. The message strings appearing in the program are extracted using the
xgettext utility. This extracts the strings into a *po” (portable object) file.

2. The ‘po’ basically consists of pairs of ‘msgid’ and ‘msgstr’. The
‘msgid’ stands for the original string and ‘msgstr’ stands for the
translated string. For ‘msgid’ strings, which are to be translated, the
corresponding *msgstr’ field has to be filled. The following is an example
of part of a po file with a translated string;

#: main.cpp:36
msgid "KDE Floppy Disk utility"

msgstr "BibGC}HEObE *HHHIO

#: main.cpp:42
msgid “Kfloppy”

msgstr “Eﬁkﬂﬂﬁ@
3. The ‘po’ files are complied into ‘mo’ (machine object) files using the
utility ‘msgfmt’.

4. Finally, when the application runs, the gettext library returns to it the
translated string for the language selected.

Internationalized ~applications make call to gettext, dgettext, and
dcgettext functions of the glibc library and get the strings to be displayed for the
messages.

2.3 Unicode/UTF-8 support in X
Objective

To incorporate Unicode/UTF-8 support for Indian languages in Xlib.

Approach

Unicode/UTF-8 support has been added into the X localization framework of
Xlib. This framework allows the X developer to add new ‘locales” to X. We have
incorporated Indian language support in the existing UTF-8 locale of X. The following
subsections describe the X locale mechanism, and the additions we have made to add

support for Indian languages.

X Locale mechanism

Xlib provides the locale mechanism to provide support for localization (110n) in
text display. Non-English languages like Arabic, Chinese, Japanese etc require specialized
routines to handle text display. For example, Chinese text is written vertically, so a call to
XDrawString won't work. Similarly, Arabic text may be written right to left. Each
language - or locale, as we shall call it, therefore requires specialized routines for handling
text display.

Xlib 110n framework allows us to 'define' new locales - 'New_locale' can be
added by adding;

1. The loader for New locale' — this is a new C file which has to be added to
the X library, and X recompiled

2. The configuration file for the locale

Some definitions first:

Mutibvte daracters: Multibyte refers to an encoding in which each character might be
encoded in a variable number of bytes. In case of X localization, a multibyte char
represents text in the local encoding;

WideCharader string WideCharacter refers to an encoding in which each character takes
the same number of bytes. In case of X localization, this refers to Unicode 4-byte
encoding;

Charset: A charset refers to the set of displayable characters. The charset, is therefore, the
glyph encoding, e.g.: ISO8859-1, ISO8859-2, Latin-1, etc

An Xlib locale is defined for a single character encoding — usually the local
encoding of the language, for example Jis, Sjis are two different encodings for
Japanese - hence two different locales have to be defined for the two.

1. Locale loader - The locale loader sets conversion routines for interconversion
between character encoding, glyph encoding and wide character. The characters
to glyph conversion routines are called subsequently when localized text is to be
displayed. Note that conversion routines have to be defined for each charset the
locale supports.

2. The configuration file defines the set of charsets that the locale supports along
with the corresponding fonts for the charsets. Thus, a locale might support
multiple charsets. Additionally, other properties of the font (eg whether it is a
vertical script), and some properties of the charsets are defined in this file. A
configuration file entry may look like the following:

fsl {
charset {
name IS08859-1:GR
}
font {

primary ISO8859-1:GR

The entry says that for the charset named IS08859-1 the fonts that can be
used should end with IS08859-1 (case ignored). *£s1’ in the first line specifies the
fontset. GR specifies that the characters in the charset are unsigned.

When the application calls X functions to display the locale encoded strings, the
conversion routines of the current locale convert this string into the correct glyph string;
The configuration file has been parsed beforehand, so X knows which font to load for
the current locale. This font is loaded and the glyph string displayed using X DrawString;

If the string consists of substrings of different charsets, X correctly converts the
two substrings into different glyph encodings and displays them in the correct fonts.

Unicode/UTEF-8 support using X locale

The current release of X on which we have worked (4.0.2) defines a locale for
UTF-8 locale, among other locales. This locale was modified to add conversion routines
for the Unicode range of Indian languages. These converters convert the UTF-
8/Unicode string to ISCII strings. The modified XDrawString then handles display of
ISCII strings automatically.

As a result 9 new charsets have been added in the file 1cUTFS8. c (in the source of
X11). The names of the new locales are

@) Devanagari,
(ii) Punjabi,
(i) ~ Bengali,

(iv) Tamil,

) Telugy,

(vi) Gujarati,
(vii) Malayalam,
(viii) Kannada,
(ix) Oriya.

The conversion is table driven from UTF8 to ISCII. These conversion routines have
been added in the files dv.h, pn.h, bn.h, ta.h, tl.h,gj.h, ml.h, kn.h and
or.h inthe 1cUniConv directory of the X11 source.

A new configuration file has been added for the UTF-8 encoded Indian languages.
Further description of the exact nature of changes is in the documentation section

Section 3: Results

The XKB has been implemented successfully. Text input can be done in ISCII
format. Scroll-lock is used to shift between the English, English phonetic and the
Inscript keyboard. The right ALT key is used as a temporary shifting from one group
to another. Pressing the right ALT in English keyboard gives an English phonetic
keyboard. In the other two modes, pressing the right ALT takes one to the English
keyboard.

All the X applications are working with ISCII once the appropriate font is set.
For example, Netscape can display a mixture of English and Hindi text.

Fie Eat Wiew Bn Communiake HEIp

TR T 4 = om =+ & 0O 3
EE Oungn EORel CHphd Home - Seanch plekcape PRt SRCUR CEnop BT
_::' <@ Reckparis: A Locafion if;lt:.-'ul."ge'm: svgsteepfsuvidhn, hbnd lr 7 W' Relziest

IE ‘ ebhal g Caerdar J Pl g Poaple ,t Yelloe Pages ## Doimload g2 Cuslomies. .

hﬁrﬁiﬁﬁmmﬁmﬁ:&w&m%mﬁwmﬁ'mtl

g & O AEEETEE & 0. £, S, wEEe & odld g9 0% 89 £ o4s0 AT 47
|ﬁ1‘ﬁ"r11;.51=l{ir.i’rﬁﬁ‘|ﬂlsﬁ’r 4. g f@wm, 14 @r. 4T, & gH.-UH. 29,
At T, 17 BT AT) g g B | §EF affow OF 91T @A &1 ;T AT
ﬁ{ﬁiﬁmwtlﬂﬁwﬂgﬂ'uﬁ?ﬂﬁmmﬁ

& | #T TEET BRI & FRET d= ATE 7 9E £ ad wrd AT FHe A&
T EET FEET H9TY ATers agiyw &) franer gene f7 4 o, 47, 97, o,
#ir erae gfar & awaE o s &) i gy mEe, ury O e & s
SO ST £-H U7 T=TE Ar giEer v 2| BT S # g ueEre A

R e B i D | b e

J.

i

= ——— e e \a||

Now that both the input and display functions are properly modified, text editors
can also work be used to edit a text, which is a mixture of ISCII and ASCII text.
However, ATR characters are not yet supported. An example would be that text editors
are also working fine with the modified X library provided an Indian font can be set as
default. For example, we used kedit to make the HI'ML file seen in the Netscape window
above.

DS

[Fe ' fulfgauravgitemprsuvidhahtml - KEdit
Eile Edit Go Taols Settlngs Help

NEE S D&

<html=

I

<body>

hello BIEEIE
TS i

farT @t oot angfe |watTamerd 1 39 gww W
4 o5 fofiece & WY, ¥ & IoegRud ¥dY, UH.T.
guft & AR v W 130 9.9 dfeww-2,3 g o4) gof
T FEIEY Bl 9T 20 $RgeR fiwe emmfen RyweH
X Zell & Sl gih! [Ul BRgey oEad ST
Recd W zoe 5 94l Aemgqyl wvedaR Wi fd
qISHIEIRE Y, fogerd 9 we- we, o.9.9.
e ey W OB U g R W e

T WOT THiTenenl 3 SUoed 2| 3 Bl # 9e
[INS [Line: 7 Col: 22

X localization support is also complete. Thus a mixture of multiple languages in
UTEFE8 or Unicode encoding can be displayed. We have written a small application that
displays a mixture of UTF-8 Hindi and English text using X locale. This application is
successfully able to display the text.

— <4 Helio i UEE He

Hello . Gauraw iz here

C localization has been implemented. However, we are unable to change the
MenuBar etc. of KDE applications to display ISCII strings. This is probably because
qtlib, the toolkit which KDE applications use, does some preprocessing of its own on
the strings it has to display.

Conclusion

We have been mostly successful in our objective of providing support for Indian
languages in Linux. All our stated objectives have been satisfied except for the
internationalization of X window applications.

Acknowledgements

We would like to thank our guide, Dr. Rajat Moona, for his immense help and
able guidance throughout the project. We would like to thank Jyotirmoy Saikia for
providing “isciilib” and for personally clarifying any doubts we had about its usage.
Finally, we would like to thank the TDIL group at II'T Kanpur for their cooperation and
support in the project work.

References

1. IS 13194: 1991, Indian Standard, Indian Script Code for Information
Interchange — ISCII.

X source

http: //www.Unicode.org - for resources on UTF-8 /Unicode

http: //www.Xfree86.org

http: / /www.Linux.org

http: //www.tswru/~pascal/en/xkb/ - xkb documentation

http: //www.gnu.org/software/gettext/ - GNU gettext documentation

NSOk W

Appendix

Section 1: Documentation

Changes made to Xlib distribution
The changes made to the Xlib distribution fall into three major categories:

1. Functions pertaining to display for ISCII text
2. Functions related to display for UTF-8 text

3. Keyboard mapping

1.1ISCII Text handling

Modifications have been made to Xlib so that it can successfully handle ISCII
text, and therefore all Indian languages, which are based on the Brahmi script. The

modified Xlib is to meet the following requirement: It should correctly display both pure
ISCII text, and ISCII text interspersed with ASCII (English) text.

The following functions of libX11 have been modified for this purpose:

Function name File

a XDrawString Text.c

b. XDrawText PolyTxt.c

C. XDrawImageText ImText.c

d. XTextExtents TextExt.c

e. XTextWidth TextExt.c

f. XTextHeight TextExt.c
and also

g XLoadFont LoadFont.c

h. XLoadQueryFont Font.c

1. XUnLoadFont UnldFont.c

j- XFreeFont Font.c

Files named font cache.h, font_struct.h, and AltFont.c have
been added. A1tFont . c defines the following functions

char * getFontName (const int fid);

XFontStruct * getFontStruct (const int fid);

XFontStruct * getAltFontStruct (const int fid);

char * queryFont (const int fid, Display *dpy);

void storeFont (const int fid, char *fontname,
Display *dpy);

void freeFont (const int fid);

char * getAltFont (const char *iscii_font);

First we describe the functionality of the modified functions:

The first six functions do tasks related to text display and finding extents of text.
The modifications done to these functions are very identical in nature.

a XDrawString (display, d, gc, x, y, string, length);
The parameters of relevance are gc, %, y, string, length.

The default functionality of XDrawString is to display 'string' at
position x, y in the font 'gc->values.font'.The 'string' is assumed
to be the "glyph' string

Modified functionality: XDrawString assumes that the 'string' passed is
ISCIT + ASCII string if 'gc->values.font' corresponds to an Indian
font, ie if the 'getencodingbyname' function call succeeds for this font.
("getencodingbyname' is afunction of *isciilib’, which returns the
name of the encoding file for the Indian font).

Next, assume that 'string' is a sequence of alternating ISCII and
ASCII substrings, starting with either an ISCIT or ASCII substring, If the first
substring is ISCII, (i.e. ‘codeconversionbyencoding (string) ' is
successful in parsing some characters), the font remains the Indian font, else the
corresponding English font is set (using ' get A1tFont "). The first substring is
then displayed at (x, y). x is incremented by the amount
XTextWidth (first substring). XDrawString is then recursively
called to display the rest of the string at the incremented x position.

b. XDrawText (display, d, gc, x, y, TextItems, nitems);

Textltems is an array of 'nitems' number of 'strings’, each of
which is to be displayed successively in a DIFFERENT font.

The modified function loops over the 'nitems' calling XDrawString
for each of the 'strings’

c.XDrawImageString (display, d, gc, x, y, string, length);

This is exactly identical to XDrawSt ring except that the background
of the display is set to some colour other than white. The changes made to this
function are exactly the same as those made to XDrawString.

d XTextExtents (fontstruct, string, nchars, dir,
font_ascent, font_descent, XCharStruct);

This function finds the extents of the 'string' of 'nchars'
number of characters for the font 'fontstruct->fid'. The 'dir’,
'font_ascent' and 'font_descent’ can be found directly from the
'fontstruct '. Other information that is returned in the ' XCharStruct '
is the total width, maximum ascent, maximum descent, and left and right
bearings of the 'string’.

Here also, the modification done is of the same nature as that done to
XDrawString. Only difference is that instead of a recursive call to
XTextExtents, loop iteration is done.

e. XTextWidth (fontstruct, string, count);

This returns the width of the 'string.

Modification: Similar to X TextE xtents

f. XTextHeight (fontstruct, string, count);

Return the height of 'string.
Modification: Similar to X TextE xtents

The next four functions handle tasks related to font loading and unloading;
These functions have been modified to cache the some data related to Indian fonts. The
reason for this modification is the following:

Functions d, e and f — i.e. the functions pertaining to text extents, do not have a
handle to the display. Therefore, these functions cannot determine the fontname from
the font id. The fontname is required for determining whether the current text is
ISCIT+ASCII or pure ASCII. Therefore, a cache is maintained for Indian fonts. The
cache entry of a font contains its fid, name, fontstruct and altfontstruct. ‘altfontstruct' is
the fontstruct for the corresponding English font.

g XLoadFont (display, name);

Loads the font and returns fid.
Modification: call storeFont (fid, fontname) - storeFont caches the
required data if fontname corresponds to an Indian font.

h. XLoadQueryFont (display, fid);

Loads and queries font, returns fontstruct
Modification: same as above

i XUnloadFont (display, fid)

Unload font.
Modification: call freeFont - freeFont removes font information from cache
if it was there

j- XFreeFont (display, fontstruct)
Same as above, additionally, font st ruct is freed.

The cache is maintained as a simple linked list. The function declarations to
maintain the cache can be found in font_cache.h, definitions can be found in AltFont.c.

1.2 UTF-8/Unicode text handling

Requirement

Modified Xlib should correctly display UTF-8/Unicode text corresponding to
any Indian language + English.

Approach
Adding a new locale named “in_IN.UTF-8”
Source files modified: 1cUTF8.c

Filesadded: In directory lcUniConv
dv.h, bnh, gj.h,
kn.h, mlLh, or.h,

pnh, tLh, tmh,
isciih
Configuration files added:

XLC_LOCALE in new directory
/ust/X11R6/lib/X11 /locale/in_IN.UTF-8

Xlib provides an elaborate mechanism to provide support for localization (110n)
in text display. Non-English languages like Arabic, Chinese, Japanese etc require
specialized routines to handle text display. For example, Chinese text is written vertically,
so a call to XDrawString won't work. Similarly, Arabic text may be written right to left.

Each language - or locale, as we shall call it, therefore requires specialized routines for
handling text display.

Xlib 110n framework allows us to 'define’ new locales - 'New locale' can be
added by adding;

1. The loader for 'New._locale' - IcNew._locale.c
2. The configuration file XLC_LOCALE for the locale in
/usr/X11R6/lib/X11 /locale/New._locale directory

An Xlib locale is defined for a single character encoding — usually the local
encoding of the language, for example Jis, Sjis are two different encodings for Japanese -
hence two different locales have to be defined for the two.

1. Locale loader - The locale loader sets conversion routines for interconversion between
character encoding, glyph encoding, UTF-8 and Unicode. The character to glyph
conversion routines are called subsequently when localized text is to be displayed.

2. XLC_LOCALE file defines the set of charsets that the locale supports along with the
corresponding fontname extensions. Additionally, other properties of the font (eg
whether it is a vertical script), and some properties of the charsets are defined in this file.

The current release of X on which we have worked (4.0.2) defines a locale for
UTF-8 locale, among other locales. We have modified this locale to add UTF-8 /Unicode
to ISCII converters for nine Indian scripts - Devanagari, Oriya, Malayalam, Punjabi,
Bengali, Gujarati, Telugu, Tamil and Kannada. A separate converter was not added for
Assamese because its Unicode range is the same as that of Bengali.

1.3: Keyboard mapping
Objective

To provide two alternate keyboard layouts for typing of Indian scripts:

1. Inscript keyboard
2. Phonetic keyboard

Both these layouts are keyboard overlays on a normal English keyboard.
The following is a description of the 5 components of XKB database
keycodes

This consists of tables that define symbolic names for key scan-codes
For example

<TLDE>= 49;

<AEQ01> = 10;
<AEQ02> = 11;
<AEQ03> = 12;

Additionally, symbolic names are defined for the led indicators. Eg.

Indicator 3 = “Scroll Lock”;

Types

This describes what are known as key types. Each keyboard key is of a
particular key type. The key type of a key determines how the character code
produced by the key changes in the presence of ‘modifiers’ (Control, Shift and so
on).

For example the 'letter' keys are of type "ALPHABETIC" which is
defined as follows:

type "ALPHABETIC" {
modifiers = Shift+Lock;

map[Shift] = Level2;
preserve[Lock]= Lock;
level_name[Levell] = "Base";
level_name[Level2] = "Caps";

}i

This is interpreted to mean that the *Shift’ and ‘*Lock’ (Capslock)
modifiers affect the code produced on pressing an ALPHABETIC key. The code
to be generated if the *Shift’ stateis set is defined to be that of *Level2”.
The actual code corresponding to *Level2’ will be foundinthe *symbols’
database.

compat (abridgment from compatibility)

This describes the ‘behavior’ of modifiers. XKB has some internal
variables that store the state of the modifiers as well as the ‘group’. These internal
variables, along with the pressed key determine what character code is generated.
The ‘compat' files describe how these internal variables change when any
modifier key is pressed. For example,

interpret Mode_switch {
action= SetGroup (group=+1) ;
}i

This means that the when the key which is mapped onto
‘Mode_switch’ is pressed, the action should be to temporarily increment the
group number by one. Essentially, the ‘group’ decides the keyboard layout. We
have defined ‘group’ 1 to be US English layout, ‘group’ 2 to be Phonetic layout
and ‘group’ 3 to be Inscript layout. These definitions are written in the ‘symbols’
database.

This file also describes the behavior of LED-indicators on the keyboard.

indicator "Caps Lock"™ {
modifiers= Lock;

}i

This means that when the Lock (Capslock) is pressed, the “Caps Lock”
indicator is to be turned on.

symbols

This is the main table which specifies the mapping from scan-codes
(symbolic names defined in ‘keycodes’) to the set of all possible values
(‘symbols’). A typical entry in the symbols file looks like the following;

key <AEO1> {[1, exclam] };

This simple entry defines the set of symbols for the key ‘< AE01>". Only
one group is defined for this key. By default, this key is defined to be of type
TWO_LEVEL’, which is defined in the “types’ file as follows:

type "TWO_LEVEL" {
modifiers = Shift;

map[Shift] = Level2;
level_name[Levell] = "Base";
level _name[Level2] = "Shift";

}i

Therefore, this key, when pressed without any modifiers, will produce the
symbol *1’. When the shift modifier is pressed, the symbol generated would be
the level2 symbol i.e. *exclam’.

geometry

This file describes keyboard geometry — key placement on the physical
keyboard. Two keyboards that have different physical key placements will have
two different geometry files. Thus, the geometry file specifies the configuration
of keyboards of different manufacturers.

The following is the list of files that have been added/modified for keyboard

support in X. The directory is w.r.t the root directory of xkb /usr/X11R6/lib/X11 /xkb

Directory Added file/Modification

Rules xfree86 modified to define new default files
for ‘compat’ and ‘ind’ for ‘in’ layout

Compat 1509995 modified to define new symbols:

ISO_Last_Group_Lock,
ISO_First_Group_lock and
ISO_Prev_Group_Lock

Misc_in added for leds

Ind added as default configuration file for ‘in’
layout

Types ‘indian’ file added to define new key types
‘ind’ file added as default configuration file for

‘in’ layout
symbols ‘in’ file added for defining Indian keyboard
keymap ‘xfree86’ modified to add an entry for

Indian keymap.

Section 2: Programmer’s manual for Xlib
Writing programs using modified Xlib:
e ISCII Text: ISCII text can be directly displayed using XDrawSt ring.

There is no change in the usage.

One needs to set the corresponding Hindi font and call the XDrawString function.
Even if the text contains part of English text, the corresponding matching English font
(found in the fonttable used by Isciilib) is loaded and the entire ISCIT string gets printed
properly. In case the matching font found in fonttable is could not be loaded, the English
text is displayed using the Hindi font only. In case the ISCII text could not be properly
parsed, then the unparsed string is printed using the font last used.

e UTEFS string: UTFS8 string can be displayed using XmbDrawString

In this case the Text to be displayed is in UTF8 format and may be a mixture of
multiple languages (depending on the UTFS range). This involves the following steps

1. Setting the Indian locale. The Indian locale is loaded using the set1ocale ()
function.

2. Creating the fontset: A fontset containing both the Indian scripts and an
English script is created. XmbDrawString is used after creating the
appropriate fontset. The extension of fonts (specifying the charset) for the Indian
languages should be the same language (Ex: a font for devanagari would end with
—devanagari-).

3. Call to XmbDrawString: XmbDrawString is called with the fontset and
other arguments.

Example code:

#include <locale.h>
#include<X11l/X1lib.h>

void main () {
XFontSet fs;
char **missing_charset_list, *def_ string;
int missing charset_count;

Display *p_disp;

Window Main;

GC theGC;

int x,y;

//location on the screen where the text would
be printed

char *base_fontname_ list = “dv_ttyogesh,
as_ttyogesh, fixed”

/*for mixture of devanagari, Assamese and English
text */

char *msgtext = “Hello \xe0\xa4\x85\xelO\xad\
\xb0\xe0\xad4\xb5\xe0\xad\xbf\xe0\
\xa4\xa8\xel0\xab\xb0\xe0\xad\xa6";
char *locale;

locale = setlocale(LC_ALL, “in_ IN.UTF-8");
if (locale == NULL) {
printf (“unable to load locale\n”);
exit (-1);

fs = XCreateFontSet (p_disp, \
base_fontname_list, &missing_charset_list, \
&missing_ charset_count, &def_ string);

XmbDrawString (p_disp,Main, fs, theGC, x, y, msgtext\
, strlen (msgtext));

}

Please note that the Indian locale has charsets defined for all the Indian scripts and
for English scripts. Thus the list of missing charsets could contain the list of all those
that could not be loaded. In case it contains the language that you intend to display then
it means that there is no font that matched the proper extension. This needs to be
handled. There is no separate Assamese range in UTF8. The Bengali range is used. Thus
Assamese fonts will also have an extension of —bengali-.

¢ 4-byte Unicode string: Using XwcDrawString

The method is identical to printing UTF8 string except that one calls
XwcDrawString instead on XmbDrawSt ring.

For further details about programming in X, please refer to the X programming
Manual.

Section 3: Administrator’s Manual

3.1 Installing Xiscii

The Xiscii RPM contains the 1ibX11. so library and some locale specific files.
When the Xiscii RPM is installed this file in the /usr/X11R6/1ib directory is
overwritten. Also the file locale.alias in the directory
/usr/X11R6/1ib/X11/locale is overwritten. Thus f you are installing Xiscii for
the first times using an RPM you might like to save these file so that you can revert to
the unmodified X if you feel so.

To revert to the unmodified X just replace the file 1ibX11.s0. 6.2 with the file
that you have saved. Also replace the 1ocale.alias file. Some locale specific
information might remain in the system but this would not have any affect on the
functioning of X in any fashion.

3.2 Adding new Indian fonts

For the display of string using XmbDrawSt ring, it is important that every font has
the extension of the corresponding charset. However most fonts do not have any
extension like the TS08859-1 for some English fonts. As a result it is important to
give a different name to the font. This can be done my manually modifying the
fonts.dir file in the directory in which the font is installed.

We suggest that you add another entry corresponding to the new name. Thus for a
Devanagari font add an entry like the following;

#Default entries created in the font directory

DVYGOXTT.TTF -altsys-DV_TTYogesh-bold-i-normal--0-0-0-0-p-0-1is08859-1
DEV1.pfa —unknown-shreedev00l-medium-r-normal--0-0-0-0-p—-0-adobe-
fontspecific

#Entries after changes are made manually

DVYGOXTT.TTF -altsys-DV_TTYogesh-bold-i-normal--0-0-0-0-p-0-is08859-1
DVYGOXTT.TTF -altsys—-DV_TTYogesh-bold-i-normal--0-0-0-0-p-0-devanagari-—
DEV1.pfa —unknown-shreedev00l-medium-r-normal--0-0-0-0-p—-0—-adobe-
fontspecific

DEV1.pfa -unknown-shreedev00l-medium—-r—-normal--0-0-0-0-p-0-devanagari-

3.3 Updating fonttable

As and when new fonts are added to the system, the fonttable (generallyin the
directory /usr/share/fonts) file might need some changes. A typical entry in the
file is as follows:

dv_tt ISFOC_DEV —adobe—-courier—*—-o—-normal—-——22-
220-75-75-m-130-1is08859-1 0.75

The meaning of this entry is that font-names matching *dv_tt* have a
configuration file ISFOC_DEV, the English font to be used in case of ASCII characters
is the 3" column and the 4™ column gives the multiplication factor by which the point
size of the Indian font should be multiplied to get an English font of the right point size.

If the names of the new fonts added do not match any of the existing entries in the
fonttable youwill need to make an entry so that the right matches are found by the

ISCIILIB as and when needed. If the configuration file is also different you might need
to write a new configuration file depending on the font. (Please refer to the ISCITLIB
manual to learn how to write a configuration file). One needs to be very careful when
giving English font-names for two reasons.

1. The fontname must be complete, i.e. it must have all the fields. In case you leave
a wildcard (*) for a particular field, then the corresponding field of the ISCII font
is substituted. The fields of point-size, point-size ten times and average width
would always be computed from the ISCII font by multiplying it with the
multiplication factor. You also need to do some experimenting regarding the
multiplication factor to be used.

2. Sometimes X fails to loads fonts even though one finds them listed using
xlsfonts. In this case you need to again do some experimenting and see if the
English text is being displayed properly. In case the matching font does not
match, the English text would be displayed using ISCII font only.

3.4 Installing X keyboard

If you install the Indian keyboard using the RPM, you will also need to do some
changes manually to start using the Indian keyboard. The RPM installs the Indian
keyboard files at the appropriate places. The configuration file of X needs to be changed
to start using this keyboard once it is installed. To do this, modify the file
/etc/X11/XF86Config-4

Keyboard section as it would appear before.

#***************k‘k**************************************

Keyboard section
#**

Section "InputDevice"
Identifier "Keyboardl"
Driver "Keyboard"
Option "AutoRepeat™ "250 30"

Option "XkbRules" "xfree86"

Option "XkbModel" "pclO5"

Option "XkbLayout" "us"
EndSection

modify the line

< Option “XkbLayout” “us”
> Option “XkbLayout” “in”

Once these changes are done, you can start using the Indian keyboard when X
restarts. (Typically on logging off.)

