
Implementing the Seurity Module of aSmart ard Operating System �Ankit Jalote, Marghoob Mohiyuddin{ankit,marghoob}�se.iitk.a.inUnder the guidane of:Dr. Deepak GuptaDr. Rajat Moona{deepak,moona}�se.iitk.a.inDepartment of Computer Siene and EngineeringIndian Institute of Tehnology, KanpurKanpur,India-208016
AbstratIn this paper we desribe the implementation of the seurity module of a smart ard operating system. Wefollow the arhiteture as desribed in the ISO/IEC standards and the SCOSTA (Smart Card Operating System forTransport Appliations) spei�ations.The seurity module involves the implementation of the seurity related ommands (as desribed in SCOSTA)and the seurity heks that need to be performed before any ommand is exeuted. The seurity heks determinewhether the ommand an be allowed in the urrent ontext. A ommand (to be exeuted by the ard) an beproteted by password(s)/key(s). The ard reader must prove its knowledge of the required password(s)/key(s) (ifany) before the operation. At any point a seurity status desribes the authentiation status with respet to thesetwo fators i.e. password veri�ation and key authentiation. Suessful authentiation hanges the seurity statusto speify that a partiular password/key has been authentiated. The seurity attributes, whih an be attahed toany operation, omplemented with the seurity environment desribe the seurity status that should be e�etive atthe time a partiular operation is requested. A seurity environment also desribes the keys to be used for operationslike enipherment et.We start with the general bakground on smart ards, the basi seurity features in smart ards, related workdone in this �eld. Then we desribe the details of the seurity arhiteture. Finally we give the implementationdetails followed by onlusions and future work.�This work was done as a B.Teh. projet under the guidane of Dr. Deepak Gupta and Dr. Rajat Moona and was part of theSmart ard Operating System whih is urrently being developed at IIT Kanpur. This Smart ard Operating System Projet is fundedby Ministry of Information Tehnology of India.

3

1 Introdution1.1 A Brief Overview of Smart CardsA smart ard is a ard that is embedded with either, a miroproessor and a memory hip, or only a memory hipwith non-programmable logi. The miroproessor ard an add, delete, and otherwise manipulate information onthe ard, while a memory-hip ard (for example, pre-paid phone ards) an only undertake a pre-de�ned operation.In this projet we deal with miroproessor ards so any referenes to smart ard will be to a miroproessor ard.At every point we assume following 3 types of memory:1. RAM: The the loal variables and the funtion parameters are stored here.2. ROM: The OS ode and the onstant variables are stored here.3. EEPROM: The �le system is stored here.Depending on the amount of available RAM, the seurity environment and the seurity status (explained later)may be stored in the RAM or in the EEPROM.To make a omputer and a smart ard ommuniate, the smart ard is plaed in a smart ard reader. The smartard operating system is a passive entity. It waits for the ommands that are given by the smart ard reader.The ommuniation between the ard and a ard reader follows a ommand-response pattern. The reader issues aommand (depending on the appliation) to the ard and the ard responds depending on the ful�llment of ertainseurity requirements (whih again, are appliation dependent).The smart ard reader and smart ard follow aprotool to exhange messages in the form of ommand requests and responses. The messages are enapsulated inthe APDU (Appliation Protool Data Unit) 1 paket. The SCOSTA spei�ation (derived from ISO/IEC-7816)desribes in detail the struture of message APDU. Whenever a smart ard reeives a ommand it initiates theommand handler spei� to the respetive ommand. Seurity onditions an be attahed to any operation spei�to the �les or the ommands itself. These seurity onditions an be spei�ed with respet to any �le or diretory.In this paper we give referenes to these standards as appropriate.The seurity arhiteture of a smart ard is onerned with two system requirements: data seurity and dataintegrity. Data seurity means that a data value or a omputational apability ontained on the ard an beaessed by those entities that are authorized to aess it and not aessed by those entities that are not authorizedto aess it. Data integrity means that at all times the value of information stored on a ard is de�ned; the valueis not orrupted, even if power to the smart ard is ut during a omputation involving some piee of informationstored on the ard.1.2 Standards (ISO-7816 and SCOSTA)ISO-7816 is one of the major standards for smart ard operating system and we have followed it throughoutthe implementation. SCOSTA is a variant of ISO-7816 and it basially desribes the spei�ations for transportbased (e.g driving liense) appliations. Thus apart from some slight modi�ations to ISO-7816, the spei�ationis essentially the same as in ISO-7816. An overview of ISO 7816 follows. The standard spei�es:� The physial harateristis of the ard.� The allowed voltages, urrent and signal rates.1An APDU ontains either a ommand message or a response message, sent from the ard reader to the ard or onversely.4

� The ativation proess of the ard.� The basi model of a �le struture, �le types and �le and data referene methods.� Seletion of appliations.� Seurity arhiteture.� Inter-industry ommands, inluding ommands for �le seletion, reading and updating of �le ontent, ard-holder veri�ation and authentiation ommands.� Seure messaging mehanisms to ensure data authentiation and data on�dentiality.2 Related WorkMany e�orts have been made towards implementation of Smart ard operating systems. Some of the ompaniesworking in this �eld are Shlumberger, Gemplus, Keyorp, Syprus, Data key et. Gemplus and Shlumbergerreate standardised operating systems like Smart Card for Windows, Java Card et. Java Card tehnology de�nesa platform on whih appliations written in a sub-set of Java language an run in Smart Cards and other memory-limited devies. Java Card allows a user to download an applet written by the user onto the ard. Multipleapplets whih an handle multiple appliations an be downloaded onto the ard by the user. This o�ers a lot of�exibility to the ard user at the ost of having a hip-independent Java Virtual Mahine running on the ard.Another similar model of a generi smart ard operating system is the MULTOS operating system developed bythe MAOSCO onsortium. This is similar to the Java Card model and it allows the user to download his own odewritten in a hip independent form, alled as the MEL (Multos Exeution Language). The ost of suh generality isthe inrease in the �nal prodution ost of the ard. These ards are 3 to 4 times ostlier than ordinary appliation-spei� ards. Most ommerial implementations of Smart ards, therefore, are appliation speif and are made tohandle individual appliations suh as redit/debit, loyalty, e-purse health, network aess et. These have limitedfuntionality (only few ommands, �xed �le system et.) but are heap.3 Seurity in a Smart CardThe seurity of the ard is ontrolled by the ard OS. The self-ontainment of smart ard makes it resistant toattak, as it does not need to depend upon potentially vulnerable external resoures. At no point does a smartard reveal sensitive information e.g. the seret key of the ard-holder, to the outside world.When a ard onnets to a ard reader, the reader may need to prove its authentiity and identity to the ardusing a hallenge and response method. The ard also proves its identity in the same way.As stated earlier, the behavior of the ard follows a ommand- response pattern. The ard reader might need toauthentiate itself before it an issue any ommand(s). The ard may send a response or may not send a responsedepending on whether seurity requirements are met. Seurity may be provided to the ommands or to the �les.Smart ard seurity is based on the following mehanisms:� Password Based Authentiation: The user/external agent must present the password to authentiateitself to the smart ard. The smart ard mathes the password given by the external agent with the onestored inside the ard and modi�es its status e.g. password number 3 is veri�ed.5

� Key based Authentiation: This is a two-way mehanism. Both the smart ard and external agent proveto eah other the knowledge of a key ommon to both of them. The external agent sends a hallenge to thesmart ard and asks it to verify the knowledge of a ertain key. The smart ard then enrypts the hallengeusing an enryption algorithm and the key and returns bak the result to the external agent. The externalagent then authentiates the ard by the mathing the response that it gets from the smart ard to the resultit gets by exeuting the enryption algorithm itself with the key and the hallenge. The smart ard alsoauthentiates external agent in the similar way by issuing a hallenge to it.� Enryption/Deryption: This allows for protetion of data as well as ommand and response by enryptingthem.� Data authentiation: This is done using ryptographi heksum, whih an be used to verify that thedata has not been modi�ed by a third party.4 Seurity ArhitetureSCOSTA ompliant OS supports the following seurity arhiteture as de�ned in ISO/IEC 7816-4 [1℄, ISO/IEC7816-8 [3℄ and ISO/IEC 7816-9 [4℄.4.1 Seurity statusThe seurity status indiates whih password(s) and key(s) have been suessfully authentiated. The pass-word(s) and key(s) ould be global (ard spei�) or loal (appliation spei�). The SCOSTA ompliant OSsupports the following three seurity statuses:� Global seurity status (related to the ard authentiation proesses)� File-spei� seurity status (related to the appliation authentiation proesses)� Command spei� seurity status (related to the ommand authentiation proesses)4.2 Seurity attributesSeurity attributes de�ne the seurity onditions to be ful�lled before a ommand an be exeuted. Seurityattributes onsist of aess rules whih speify the seurity onditions (if any) to be ful�lled for a given ommand/aset of ommands. Seurity attributes are stored in the meta-data of �les (for �le related ommands and also forseurity ommands). Both ompat and expanded formats (as de�ned in ISO/IEC 7816 [4℄) for enoding seurityattributes are supported.4.2.1 Seurity to �lesAess to data is made through the logial �le struture of the ard. Assoiated with eah �le, there are File ControlParameters, whih also inlude the seurity attributes assoiated with the �le. The seurity attributes speify:� The seurity status of the ard to be in fore before aess to data is allowed.� Restrit aess to data to ertain funtions if the ard has a partiular status.� De�ne whih seurity funtions shall be performed to obtain a spei� seurity status.A Life Cyle Status (LCS) may also be assoiated with the �les and with the ard itself. Basially, this de�nes theprimary states of the life yle in the following order: 6

� Creation state: No seurity attributes in this ase.� Initialization state: Seurity attributes for this LCS apply.� Operational state: Seurity attributes for this LCS apply.� Termination state: No modi�ation of data allowed in this ase.The LCS an be hanged based on ertain operations but annot move bakward. The LCS is used by the ard,possibly in ombination with seurity attributes to determine whether a requested operation with the �le is inaordane with the spei�ed seurity poliy.4.2.2 Seurity to ommandsThe Seurity Environment (SE) is used to provide seurity to ommands. It is basially a mehanism to speifyto the ard system, the seurity funtions that are available to provide protetion to ommands for a spei�appliation of ard. The SE is a ontainer for seurity-related data and mehanisms. A SE spei�es:� Referenes to the ryptographi algorithm(s) to be exeuted� The mode(s) of operation� The key(s) to be used� Any additional data needed by a seurity mehanism� May also provide diretions of handling the data resulting from the omputation4.3 Seurity EnvironmentsAt any time, a seurity environment is ative for the ard. The seurity environments (SEs) de�ne the mehanismsto be used for seurity related ommands. This inludes the algorithms to be used, the key referenes and data forkey derivation. The seurity environments (SEs) are stored in elementary �les (EFs) or as meta-data of �les.4.4 Seurity mehanismsThe SCOSTA ompliant OS supports the following seurity mehanisms as desribed in ISO/IEC 7816-4:� Entity authentiation with password (VERIFY ommand)� Entity authentiation with key (EXTERNAL AUTHENTICATE, INTERNAL AUTHENTICATE and MU-TUAL AUTHENTICATE ommands)� Data authentiation (omputation/veri�ation of ryptographi heksum).� Data enipherment.� Data deipherment.Triple DES (3DES) algorithm in CBC (haining blok) mode is the algorithm used for data authentiation, dataenipherment and deipherment.
7

5 Seurity related ommands in SCOSTAThe following ommands are supported by the SCOSTA ompliant operating system:� VERIFY: Password based authentiation.� INTERNAL AUTHENTICATE: Responding to a hallenge issued by the ard reader.� EXTERNAL AUTHENTICATE: Key based authentiation.� MUTUAL AUTHENTICATE: Key based authentiation followed by response to hallenge issued by theard reader.� GET CHALLENGE: Card issues a hallenge (for purpose of key based authentiation) to the reader.� MANAGE SECURITY ENVIRONMENT (MSE): Set the Seurity Environment (SE).� PERFORM SECURITY OPERATION (PSO): Perform enipherment, deipherment and data authen-tiation.� ENABLE VERIFICATION REQUIREMENT: Enable password based authentiation.� DISABLE VERIFICATION REQUIREMENT: Disable password based authentiation.� CHANGE REFERENCE DATA: Change password.� RESET RETRY COUNTER: Set the maximum number of retries allowed for authentiation.Details of the above ommands an be found in ISO/IEC-7816 [1℄, [3℄6 Implementation Details6.1 Limitations and IssuesWriting an implementation is plagued by the following limitations:� The amount of memory available is severely limited. For example, a typial 8-bit miro-ontroller has about128 bytes of internal (on- hip) RAM. The ode memory is also small typially in the range of a few kilobytes.The ard may also have an external (meaning o�-hip) RAM whih might be a few kilobytes. This meansthat the ode being written has to be e�ient in terms of runtime spae required and also in terms of size ofode.� The size of data that an be handled is 8 bits. Typially, all the instrutions deal with 8-bit data. Thus,to implement handling a larger size data, one needs to write additional instrutions thus adding to the odesize. For example, we might need to write a routine to add two 32-bit numbers. Therefore the ode has tobe `8 - bit friendly' whih again is a fator whih inreases the ode size.� The maximum depth of funtion alls has to be small. This means integrating as muh funtionality into amodule as possible as a greater depth of funtion alls means we eat up more of runtime stak and hene theless of available internal RAM.
8

6.2 Command handlingThe main ommand handler loop exeutes in the following manner:1. For every ommand read the ommand header. Chek if the lass and the instrution bytes are orret elsereturn error.2. Next hek if the data �eld of the ommand an be aommodated in the memory else fail.3. Chek if the ommand requires some input data to be read. In this ase send an aknowledgement to theard reader.4. Call the appropriate ommand handler for the ommand.5. Chek if some output is to be sent to the ard reader. If this is the ase, send the output.6. Return the appropriate status bytes to the ard reader. The status bytes indiate whether the ommandsueeded or failed (in ase of failure they might also speify the ause of failure).6.3 Struture of a ommand handler funtionAny ommand handler has to follow ertain guidelines to work properly.� If the ommand handler funtion is handling an output ommand and it needs to send some output, it storesthe output in a bu�er (sendBu�er). Then it sets the value of sendLength (length of the output) to indiatethe total number of bytes available for sending (exluding the status bytes).� If the ommand handler funtion is an input ommand then it already has the ommand data given ininputBu�er.� If the ommand handler funtion requires both input and output, then it already has the input in inputBu�erwhen it is alled. If it needs to send some output, it stores the output to be sent in a global bu�er (storeBu�er,whih is same as sendBu�er) for retrieval by a an immediate later GetResponse ommand. It should alsoindiate the length of data stored (in storeLength).� Every ommand-handler should set the value of the status bytes it needs to send in 2 variables (bSw1, bSw2),before returning. (Exept in the ase of normal response i.e. 90, 00).� Any ommand handler might all support routines for doing the �le spei� operations that it is supposed todo.The basi steps involved in a ommand handler are:1. First hek (by alling the funtion VerifySE) if this ommand is allowed in the urrent ontext. If thisommand is not allowed then fail with the appropriate status bytes.2. Exeute the ommand.3. If the ommand is related to password veri�ation/key authentiation then update the seurity status tore�et the suessful ompletion of the ommand (if it was suessful).4. Return. 9

6.4 The Password FileThe referene data for the global data bank is stored in an EF(elementary �le or normal �le) immediately underthe MF(master �le or root diretory). This EF is identi�ed using a short EF identi�er of 1 (EF1). Similarly,the loal referene data for an appliation is stored in an EF immediately under a DF(dediated �le) for thatappliation. The short EF identi�er of 1 (EF1) is used to identify this EF. The OS may �x any 16-bit identi�ersfor suh �les. The hanges in the EF1 may or may not be permitted depending upon the seurity attributes forthat �le. However this �le will be referened upon for validating the passwords. The EF1 will be a variable reord�le (up to a maximum of 32 reords) with the following struture.� Pin identi�er: 1 Byte� Retry ounter: 4 Bits (see below)� Max retry ount: 4 Bits (see below)� Pin: Variable lengthReords in the EF1 will have one byte ontaining the Retry ounter and Max retry ount. The bits b8:b4 of thisbyte will provide the Retry ounter while bits b4:b1 will provide the Max retry ount. Bits b8 and b4 will be theMSB of their respetive �elds. A value F for the Max Retry ount with non-zero Retry ounter shall mean thatthere is no limit on the retries.The Pin identi�er will be oded as follows.� Ref Data Number (b5:b1) represent the 5 bit password number.� V bit (bit 8) represents if the orresponding entry is valid (1) or not (0).6.5 The key �leThe serets are stored in EF2 immediately under the MF or a DF. The serets stored in EF2 immediately underthe MF are the global serets. EF2 is a variable reord strutured �le with the following struture.� Key identi�er: 1 Byte� Key Type: 1 Byte� Key Spei� Information: Variable length� Algorithm Referene: 1 Byte� Key: Variable lengthThe key identi�er is oded as follows.� Seret Number(b5-b1): The seret number (by whih the key is referred to in various seurity related oper-ations) will be unique for all keys. Thus there an be only up to 32 keys in EF2. No two keys will have thesame seret number even if they are used for two di�erent purposes.� V bit: is used to denote if the orresponding seret is valid or not. (0: invalid, 1: valid).The key type �eld provides the operations for whih the key an be used. The value is oded as follows. CC(b8),DS(b7), En-Sym(b6), En-Asym(b5), Hash(b4), Int Auth(b2) and Ext Auth(b1).If the CC bit is set to 1, the key an be used for omputation of the ryptographi heksum.10

If the DS bit is set to 1, the key an be used for omputation of digital signature. Sine in the urrent versionof the SCOSTA, publi key ryptography is not supported, this �eld should be treated as RFU.If the En-Sym bit is set to 1, the key an be used for symmetri enryption and deryption.If the En-Asym bit is set to 1, the key an be used for asymmetri enryption and deryption. Sine the publikey ryptography is not supported in this version, this �eld should be treated as RFU.If the Hash bit is set to 1, the key an be used for the hashing operation.If the Int Auth bit is set to 1, the key an be used for the internal authentiation.If the Ext Auth bit is set to 1, the key an be used for the external authentiation.The type spei� information is of variable length and is de�ned as per the key type �eld. The value is madeavailable for eah bit set to 1 in the key type �eld. The values are provided in the order of the bits in the key type�eld. Thus if the CC bit is set to 1, the type spei� information will �rst ontain the information regarding theusage of the key for the CC.The following type spei�ation information is used.Operation InformationCC None (0 bytes)DS None (0 bytes)En-Sym Usage Counter (2 Bytes)En-Asym Usage Counter (2 Bytes)Hash None (0 bytes)Int Auth Usage Counter (2 Bytes)Ext Auth Retry Counter (4 bits)and Max Retry Count (4 bits)The Usage ounter for the En-Sym, En-Asym and Int Auth is a monotonially dereasing ounter. The ounterif set to FFFF, means that the ounter is not used (and therefore is not hanged by the usage of the key). Valuesother than FFFF refer to the number of times that the key an be used by the INTERNAL AUTHENTICATEommand. The key an be used only if the Usage Counter is non-zero. Upon eah usage (whether suessful orunsuessful), one is subtrated from the ounter (only if the ounter is non FFFF). The initial value of the ounteris set at the time writing the reord in the EF2. The value an be hanged by UPDATE RECORD ommand if itsexeution is permitted by the seurity onditions.The Retry Counter and Max Retry Count are oded as per the oding given for the EF1. Bits b8:b5 providethe Retry Counter value while bits b4:b1 provide the Max Retry Count. These values are used only upon theuse of the EXTERNAL AUTHENTICATE ommand. If the value of the Retry Counter is 0, the EXTERNALAUTHENTICATE ommand results in a failure. If the Retry Counter is other than 0, it is deremented by 1 (onlyif the Max Retry Count is not F) upon eah unsuessful authentiation.The algorithm referene odes the algorithm for whih the key usage is valid. A value of 00 for the algorithmreferene implies that the key is valid for all the algorithms available in the ard. The hanges in the EF2 may ormay not be permitted depending upon the seurity attributes for that �le. However this �le will be referened forvalidating the keys internally by the operating system.6.6 Global Data StruturesIn this setion we give the desription of some global variables used in our implementation.6.6.1 CurrentStatusDesription: The urrent seurity status is used by VerifySE funtion to determine if a ommand an be exeutedunder the urrent seurity status. 11

Every diretory has its respetive password and key �le. A maximum of 32 passwords/keys are possible foreah depth. Eah bit in the 4 bytes for password/key status represents a unique password/key. If Verify/ExternalAuthentiate sueeds, the orresponding password/key status bit is set indiating that the partiular password/keyhas been authentiated.When a diretory is hanged the Current Seurity Status is leared on the path starting from the lowest ommonanestor of the urrent and previous diretory till the previous diretory.6.6.2 Last ChallengeDesription: The last hallenge maintains the last hallenge issued by the ard as a result of a GET CHAL-LENGE ommand. The last hallenge is required for external authentiation (where the external agent sends theresponse to the hallenge) or for deriving a session key (if MSE ommand spei�es so). This response is deryptedand ompared with the last hallenge to verify the ard reader's knowledge of a ertain key. The length of thelast hallenge is used as a �ag to indiate the validity of the last hallenge. If the last hallenge is invalid then itannot be used. The last hallenge eases to be valid after the next ommand following the GET CHALLENGEommand.6.6.3 Derived KeyDesription: The derived key (same as a session key) is used when the MSE 'set' ommand states that a sessionkey be omputed. Derived Key is generated by the MSE set ommand if the CRT2 in the urrent SE being setspei�es that the key referene be used diretly (key referene with tag 83) or for deriving a session key (keyreferene with tag 84). If the key is to be used for deriving the session key then the CRT spei�es how to derivethe session key. The data for deriving the key may be given in the CRT (DO with tag 94) or the last hallenge(whih should be valid) issued by the ard an be used. The length of the hallenge or the data should be equal tothe length of a 3DES key. The session key is then enrypted with the key spei�ed to generate the session key.In External/Internal Authentiate if the key referene reeived mathes with the derived key referene and thederived key is valid for External/Internal Authentiate then the derived key is used otherwise the key is the readfrom the Key �le as usual.In Enipher/Deipher/Verify-CCT/Compute-CCT if the Current SE in the orresponding CRT ontains keyreferene with 84 tag (i.e. ompute the session key) then the derived key is used. If the CRT ontains key referenewith 83 tag (i.e. use the key diretly) then use the key from the key �le as usual.The derived key is invalid in the beginning and one derived remains valid till :1. Another key is derived (in whih ase the new key beomes valid).2. The urrentDF is hanged by selet �le ommand (in whih ase the key is made invalid).6.6.4 Seurity EnvironmentIntrodution: The seurity environment (SE) de�nes the seurity mehanisms that are available for referene inseurity related ommands and in seure messaging. An SE shall speify referenes to the ryptographi algorithm(s)to be used, the mode(s) of operation, the key(s) to be used and any additional data needed by a seurity mehanism.An SE might also ontain mehanism to perform initialization of non-persistent data e.g. session key.At any time during operation of the ard a urrent SE is ative (by default or as a result of ommands fromthe interfae devie). The urrent SE an be set or replaed with the MANAGE SECURITY ENVIRONMENTommand.2A CRT is a omponent of an SE. CRT spei�es the seurity mehanisms to be used. The tag of the CRT spei�es the funtion (e.g.enryption) for whih this CRT an be used. A CRT itself ontains DOs. A DO (Data Objet) enapsulates an objet. The objet isidenti�ed by the tag of the DO. The length �eld of the DO spei�es the length of the objet. The objet might be a simple plain valueor a ombination of DOs. 12

The default SE is ative if the urrent SE has not been set by an MSE ommand.Components: Control Referene Templates (CRT) are used to desribe the various omponents of a SE. Fivetemplates have been de�ned in ISO/IEC 7816:� Cryptographi Cheksum� Digital Signature� Con�dentiality� Hash� AuthentiationImplementation Details: In our implementation, we are handling only the Cryptographi Cheksum Template(CCT), Con�dentiality Template (CT) and the Authentiation Template (AT).The SEs are stored as reords (and aessed by their number) in the SE Template �les in DFs or in the FCP ofthe urrent DF. SE is a onatenation of all the omponents (CRTs) present in the SE Template. The urrent SE(enoded in the variable urrentSE) ontains the SE as a onatenation of CRTs.An SE is modi�ed expliitly through the MANAGE SECURITY ENVIRONMENT (MSE) ommand (set, re-store, erase, store SE). In ase of set' in the MSE ommand, all the omponents (DOs) in the new value of theCRT spei�ed in the data �eld, should already be present in the urrent SE. Furthermore, the lengths of the DOsin the data �eld should also math with the lengths of the orresponding DOs in the urrent SE. Only when theseonditions are satis�ed, the urrent SE will be hanged. In the implementation of the MSE 'restore' ommand, weload the reord with the mathing SE number from the SE Template �le in the urrent DF. MSE 'store' is similarlyimplemented by opying the urrent SE into a reord in the SE Template �le. MSE 'erase' results in the deletionof the reord for the SE number being deleted from the SE Template �le.Whenever, the urrent SE hanges or a omponent of the urrent SE hanges, we look at the SE to generate thesession key (if required). The data required to generate the session key (also known as the derived key) is given aspart of a omponent of the SE. The session key mehanism is spei�ed in the SE whih is used to generate it andkeep it in the RAM as long as it is valid.Only 3DES is being used in all the ryptographi algorithms.The urrent SE is aessed when seurity operations like enipher, deipher, ryptographi heksum, authenti-ation are performed.The use of the SE in di�erent ontexts is desribed below:� Authentiation: The AT in the SE spei�es the key referene and whether the key is to be used diretly orfor generating a session key, the algorithm referene (3DES is used by default), data for omputing the sessionkey. The key referene is mandatory while the rest are optional. The CRT usage quali�er DO in the AT givesfurther information about the appliability of the CRT (whether it an be used for external authentiation,internal authentiation). If the key is to be used diretly then it is diretly used to authentiate. If the use isfor omputing a session key, then all referenes to this key impliitly mean that the session key is to be used.� Con�dentiality: The CT in the SE spei�es the key referene and whether the key is to be used diretly orfor generating a session key, the algorithm referene (3DES is used by default), the mode of operation anddata for omputing the session key. The key referene is mandatory while the rest are optional. 3DES inhained blok mode is used for enryption/deryption. As in AT, the CRT usage quali�er DO in the CT givesinformation about the appliability of the CRT (whether it an be used for enryption, deryption). The useof the session key is same as mentioned in authentiation. Furthermore, only CT-sym is being supported.13

� Cryptographi Cheksum: The CCT in this ase gives the required information whih is the same as inCon�dentiality ase.6.7 Implementation of Major Command HandlersWe have merged the ommand handlers of similar ommands to redue the ode size and to avoid the overheadof passing parameters to funtions sine RAM size is limited. We have merged Verify, External Authentiate,Internal Authentiate and Mutual Authentiate ommands into one funtion. Similarly, we have merged Enipher,Deipher, Calulate Cryptographi Cheksum and Verify Cryptographi Cheksum into one funtion. We have alsomerged Enable and Disable Veri�ation requirement ommands into one funtion. Following we desribe the �owof some ommands.6.7.1 Implementation of Verify and External Authentiate CommandsFirst VerifySE is alled to hek whether the ommand is allowed under the urrent Seurity Status. The pass-word/key referene (spei�ed in the ommand header) indiates the password/key (whih may be stored in lo-al/global data bank) to be used. In ase of any error appropriate Status Bytes are set and the ommand returns.In ase of VERIFY, the input data is ompared against the stored password for veri�ation. In ase of EXTERNALAUTHENTICATE, the last hallenge is enrypted with the spei�ed key and then the result is ompared againstthe last hallenge (whih should be valid) for key authentiation. On failing, appropriate error onditions are set.The retry ounters (whih speify the number of further allow retries). On suess, the seurity status is updatedto re�et the suessful veri�ation/authentiation.6.7.2 Implementation of Manage Seurity EnvironmentThrough this ommand we an:� Set: Modify a omponent of the urrent SE. Sine only modi�ation is allowed, the lengths and tags of thenew DOs should math with those in the urrentSE. replae the urrent seurity environment with anotherSE (stored either in a SE template �le or in the File Control Parameters for the urrent diretory). Thisommand may result in the omputation of a derived key as desribed previously.� Store: Store the urrent SE. Again, the DOs in the urrent SE should already be present in the SE (in whihthe urrent Se is being stored).� Restore: Load an SE into the urrent SE.� Erase: Erase an SE.6.8 Implementation of Perform Seurity OperationThis ommand may speify one of the following operations:� Enipher:Enrypt the data given as input.� Deipher:Derypt the data given as input.� Compute Cryptographi Cheksum:Compute the ryptographi heksum.� Verify Cryptographi Cheksum:Verify whether ryptographi heksum of the plain data mathes the ryp-tographi heksum value given in the input.The keys required for the above operations are obtained from the urrent SE.14

6.8.1 Implementation of VerifySEVerifySE is alled by every ommand handler to determine of the urrent ommand is allowed. This is determinedby heking the urrent seurity status against the seurity status as required by the seurity attributes. The �lewhere the seurity attributes are present is supplied as a parameter. The basi implementation of the VerifySEfuntion follows:� First hek the life yle status (LCS) of the �le to determine whether the seurity attributes apply. For thereation state, the seurity attributes do not apply.� If the seurity attributes apply, then they are read from the FCP of the �le.� Depending on the format of the seurity attributes (the format may be ompat or expanded), the attributesare sanned to hek whether the urrent ommand is allowed. The seurity attributes might refer to aSeurity Environment (whih basially will speify the key/password referenes whih need to have beenveri�ed/authentiated). The key referenes might also be spei�ed in the seurity attributes. Furthermore,the onditions to be satis�ed might be OR/AND of sub-onditions.� If there is an aess rule whih is satis�ed for the ommand, then VerifySE sueeds else fails.6.9 Algorithms ImplementedWe implemented the following algorithms:� 3DES for enryption/deryption/ryptographi heksum.� MD5 [6℄ for hashing.7 Conlusions and Future WorkWe were suessful in implementing the seurity module of the Smart Card OS as spei�ed by SCOSTA. Theseurity module is a very important part of a Smart Card OS sine it provides omplete protetion to the smartard from outside world. Things get more ompliated due to the fat that we have only limited memory RAM andROM available on a Smart Card. For this reason an e�ient, lean and ompat implementation of this module isa neessity. The major ompliations while oding arose due to the fat that we had to look at a number of erroronditions and to set appropriate status bytes.Future Work an inlude implementing the Seure Messaging Extensions as de�ned in the ISO/IEC-7816 stan-dards (seure messaging has not been overed in SCOSTA). Seure messaging involves the enryption/deryption/authentiationof ommands.8 AknowledgementsWe would like to express our deep gratitude to our supervisors Dr. Deepak Gupta and Dr. Rajat Moona,for their guidane and invaluable suggestions at all stages of this projet. We would like to thank them for theirenthusiasm and motivation throughout the disussions we had with them during our meetings whih saw us throughsome rough pathes during the oding stage of the projet.We are also thankful to Dr. Manindra Agarwal for giving valuable tips and help related to e�ient implementationof 3DES algorithm and helping us in understanding the standards.15

We are also thankful to Mr. S. Ravinder who provided us with the support funtions to aess the reords in the�le et. and also for helping us in integrating the seurity module with the rest of the OS. Finally, we would alsolike to thank Mr. Kapileshwar Rao Bolisetti and Mr. S. Ravinder for providing us the Linux based testing toolwhih made testing very fast and lean.Referenes[1℄ ISO/IEC 7816-4:1995 Information tehnology � Identi�ation ards � Integrated iruit(s) ards with ontats� Part 4: Interindustry ommands for interhange[2℄ ISO/IEC 7816-4:1995/Amd 1:1997 seure messaging on the strutures of APDU messages[3℄ ISO/IEC 7816-8:1999 Identi�ation ards � Integrated iruit(s) ards with ontats � Part 8: Seurity relatedinterindustry ommands (available in English only)[4℄ ISO/IEC 7816-9:2000 Identi�ation ards � Integrated iruit(s) ards with ontats � Part 9: Additionalinterindustry ommands and seurity attributes.[5℄ SCOSTA doument version 1.2b[6℄ RFC 1321 MD5 Message-Digest Algorithm

16

