
Implementing the Se
urity Module of aSmart
ard Operating System �Ankit Jalote, Marghoob Mohiyuddin{ankit,marghoob}�
se.iitk.a
.inUnder the guidan
e of:Dr. Deepak GuptaDr. Rajat Moona{deepak,moona}�
se.iitk.a
.inDepartment of Computer S
ien
e and EngineeringIndian Institute of Te
hnology, KanpurKanpur,India-208016
Abstra
tIn this paper we des
ribe the implementation of the se
urity module of a smart
ard operating system. Wefollow the ar
hite
ture as des
ribed in the ISO/IEC standards and the SCOSTA (Smart Card Operating System forTransport Appli
ations) spe
i�
ations.The se
urity module involves the implementation of the se
urity related
ommands (as des
ribed in SCOSTA)and the se
urity
he
ks that need to be performed before any
ommand is exe
uted. The se
urity
he
ks determinewhether the
ommand
an be allowed in the
urrent
ontext. A
ommand (to be exe
uted by the
ard)
an beprote
ted by password(s)/key(s). The
ard reader must prove its knowledge of the required password(s)/key(s) (ifany) before the operation. At any point a se
urity status des
ribes the authenti
ation status with respe
t to thesetwo fa
tors i.e. password veri�
ation and key authenti
ation. Su

essful authenti
ation
hanges the se
urity statusto spe
ify that a parti
ular password/key has been authenti
ated. The se
urity attributes, whi
h
an be atta
hed toany operation,
omplemented with the se
urity environment des
ribe the se
urity status that should be e�e
tive atthe time a parti
ular operation is requested. A se
urity environment also des
ribes the keys to be used for operationslike en
ipherment et
.We start with the general ba
kground on smart
ards, the basi
 se
urity features in smart
ards, related workdone in this �eld. Then we des
ribe the details of the se
urity ar
hite
ture. Finally we give the implementationdetails followed by
on
lusions and future work.�This work was done as a B.Te
h. proje
t under the guidan
e of Dr. Deepak Gupta and Dr. Rajat Moona and was part of theSmart
ard Operating System whi
h is
urrently being developed at IIT Kanpur. This Smart
ard Operating System Proje
t is fundedby Ministry of Information Te
hnology of India.

3

1 Introdu
tion1.1 A Brief Overview of Smart CardsA smart
ard is a
ard that is embedded with either, a mi
ropro
essor and a memory
hip, or only a memory
hipwith non-programmable logi
. The mi
ropro
essor
ard
an add, delete, and otherwise manipulate information onthe
ard, while a memory-
hip
ard (for example, pre-paid phone
ards)
an only undertake a pre-de�ned operation.In this proje
t we deal with mi
ropro
essor
ards so any referen
es to smart
ard will be to a mi
ropro
essor
ard.At every point we assume following 3 types of memory:1. RAM: The the lo
al variables and the fun
tion parameters are stored here.2. ROM: The OS
ode and the
onstant variables are stored here.3. EEPROM: The �le system is stored here.Depending on the amount of available RAM, the se
urity environment and the se
urity status (explained later)may be stored in the RAM or in the EEPROM.To make a
omputer and a smart
ard
ommuni
ate, the smart
ard is pla
ed in a smart
ard reader. The smart
ard operating system is a passive entity. It waits for the
ommands that are given by the smart
ard reader.The
ommuni
ation between the
ard and a
ard reader follows a
ommand-response pattern. The reader issues a
ommand (depending on the appli
ation) to the
ard and the
ard responds depending on the ful�llment of
ertainse
urity requirements (whi
h again, are appli
ation dependent).The smart
ard reader and smart
ard follow aproto
ol to ex
hange messages in the form of
ommand requests and responses. The messages are en
apsulated inthe APDU (Appli
ation Proto
ol Data Unit) 1 pa
ket. The SCOSTA spe
i�
ation (derived from ISO/IEC-7816)des
ribes in detail the stru
ture of message APDU. Whenever a smart
ard re
eives a
ommand it initiates the
ommand handler spe
i�
 to the respe
tive
ommand. Se
urity
onditions
an be atta
hed to any operation spe
i�
to the �les or the
ommands itself. These se
urity
onditions
an be spe
i�ed with respe
t to any �le or dire
tory.In this paper we give referen
es to these standards as appropriate.The se
urity ar
hite
ture of a smart
ard is
on
erned with two system requirements: data se
urity and dataintegrity. Data se
urity means that a data value or a
omputational
apability
ontained on the
ard
an bea

essed by those entities that are authorized to a

ess it and not a

essed by those entities that are not authorizedto a

ess it. Data integrity means that at all times the value of information stored on a
ard is de�ned; the valueis not
orrupted, even if power to the smart
ard is
ut during a
omputation involving some pie
e of informationstored on the
ard.1.2 Standards (ISO-7816 and SCOSTA)ISO-7816 is one of the major standards for smart
ard operating system and we have followed it throughoutthe implementation. SCOSTA is a variant of ISO-7816 and it basi
ally des
ribes the spe
i�
ations for transportbased (e.g driving li
ense) appli
ations. Thus apart from some slight modi�
ations to ISO-7816, the spe
i�
ationis essentially the same as in ISO-7816. An overview of ISO 7816 follows. The standard spe
i�es:� The physi
al
hara
teristi
s of the
ard.� The allowed voltages,
urrent and signal rates.1An APDU
ontains either a
ommand message or a response message, sent from the
ard reader to the
ard or
onversely.4

� The a
tivation pro
ess of the
ard.� The basi
 model of a �le stru
ture, �le types and �le and data referen
e methods.� Sele
tion of appli
ations.� Se
urity ar
hite
ture.� Inter-industry
ommands, in
luding
ommands for �le sele
tion, reading and updating of �le
ontent,
ard-holder veri�
ation and authenti
ation
ommands.� Se
ure messaging me
hanisms to ensure data authenti
ation and data
on�dentiality.2 Related WorkMany e�orts have been made towards implementation of Smart
ard operating systems. Some of the
ompaniesworking in this �eld are S
hlumberger, Gemplus, Key
orp, Syprus, Data key et
. Gemplus and S
hlumberger
reate standardised operating systems like Smart Card for Windows, Java Card et
. Java Card te
hnology de�nesa platform on whi
h appli
ations written in a sub-set of Java language
an run in Smart Cards and other memory-limited devi
es. Java Card allows a user to download an applet written by the user onto the
ard. Multipleapplets whi
h
an handle multiple appli
ations
an be downloaded onto the
ard by the user. This o�ers a lot of�exibility to the
ard user at the
ost of having a
hip-independent Java Virtual Ma
hine running on the
ard.Another similar model of a generi
 smart
ard operating system is the MULTOS operating system developed bythe MAOSCO
onsortium. This is similar to the Java Card model and it allows the user to download his own
odewritten in a
hip independent form,
alled as the MEL (Multos Exe
ution Language). The
ost of su
h generality isthe in
rease in the �nal produ
tion
ost of the
ard. These
ards are 3 to 4 times
ostlier than ordinary appli
ation-spe
i�

ards. Most
ommer
ial implementations of Smart
ards, therefore, are appli
ation spe
if
 and are made tohandle individual appli
ations su
h as
redit/debit, loyalty, e-purse health, network a

ess et
. These have limitedfun
tionality (only few
ommands, �xed �le system et
.) but are
heap.3 Se
urity in a Smart CardThe se
urity of the
ard is
ontrolled by the
ard OS. The self-
ontainment of smart
ard makes it resistant toatta
k, as it does not need to depend upon potentially vulnerable external resour
es. At no point does a smart
ard reveal sensitive information e.g. the se
ret key of the
ard-holder, to the outside world.When a
ard
onne
ts to a
ard reader, the reader may need to prove its authenti
ity and identity to the
ardusing a
hallenge and response method. The
ard also proves its identity in the same way.As stated earlier, the behavior of the
ard follows a
ommand- response pattern. The
ard reader might need toauthenti
ate itself before it
an issue any
ommand(s). The
ard may send a response or may not send a responsedepending on whether se
urity requirements are met. Se
urity may be provided to the
ommands or to the �les.Smart
ard se
urity is based on the following me
hanisms:� Password Based Authenti
ation: The user/external agent must present the password to authenti
ateitself to the smart
ard. The smart
ard mat
hes the password given by the external agent with the onestored inside the
ard and modi�es its status e.g. password number 3 is veri�ed.5

� Key based Authenti
ation: This is a two-way me
hanism. Both the smart
ard and external agent proveto ea
h other the knowledge of a key
ommon to both of them. The external agent sends a
hallenge to thesmart
ard and asks it to verify the knowledge of a
ertain key. The smart
ard then en
rypts the
hallengeusing an en
ryption algorithm and the key and returns ba
k the result to the external agent. The externalagent then authenti
ates the
ard by the mat
hing the response that it gets from the smart
ard to the resultit gets by exe
uting the en
ryption algorithm itself with the key and the
hallenge. The smart
ard alsoauthenti
ates external agent in the similar way by issuing a
hallenge to it.� En
ryption/De
ryption: This allows for prote
tion of data as well as
ommand and response by en
ryptingthem.� Data authenti
ation: This is done using
ryptographi

he
ksum, whi
h
an be used to verify that thedata has not been modi�ed by a third party.4 Se
urity Ar
hite
tureSCOSTA
ompliant OS supports the following se
urity ar
hite
ture as de�ned in ISO/IEC 7816-4 [1℄, ISO/IEC7816-8 [3℄ and ISO/IEC 7816-9 [4℄.4.1 Se
urity statusThe se
urity status indi
ates whi
h password(s) and key(s) have been su

essfully authenti
ated. The pass-word(s) and key(s)
ould be global (
ard spe
i�
) or lo
al (appli
ation spe
i�
). The SCOSTA
ompliant OSsupports the following three se
urity statuses:� Global se
urity status (related to the
ard authenti
ation pro
esses)� File-spe
i�
 se
urity status (related to the appli
ation authenti
ation pro
esses)� Command spe
i�
 se
urity status (related to the
ommand authenti
ation pro
esses)4.2 Se
urity attributesSe
urity attributes de�ne the se
urity
onditions to be ful�lled before a
ommand
an be exe
uted. Se
urityattributes
onsist of a

ess rules whi
h spe
ify the se
urity
onditions (if any) to be ful�lled for a given
ommand/aset of
ommands. Se
urity attributes are stored in the meta-data of �les (for �le related
ommands and also forse
urity
ommands). Both
ompa
t and expanded formats (as de�ned in ISO/IEC 7816 [4℄) for en
oding se
urityattributes are supported.4.2.1 Se
urity to �lesA

ess to data is made through the logi
al �le stru
ture of the
ard. Asso
iated with ea
h �le, there are File ControlParameters, whi
h also in
lude the se
urity attributes asso
iated with the �le. The se
urity attributes spe
ify:� The se
urity status of the
ard to be in for
e before a

ess to data is allowed.� Restri
t a

ess to data to
ertain fun
tions if the
ard has a parti
ular status.� De�ne whi
h se
urity fun
tions shall be performed to obtain a spe
i�
 se
urity status.A Life Cy
le Status (LCS) may also be asso
iated with the �les and with the
ard itself. Basi
ally, this de�nes theprimary states of the life
y
le in the following order: 6

� Creation state: No se
urity attributes in this
ase.� Initialization state: Se
urity attributes for this LCS apply.� Operational state: Se
urity attributes for this LCS apply.� Termination state: No modi�
ation of data allowed in this
ase.The LCS
an be
hanged based on
ertain operations but
annot move ba
kward. The LCS is used by the
ard,possibly in
ombination with se
urity attributes to determine whether a requested operation with the �le is ina

ordan
e with the spe
i�ed se
urity poli
y.4.2.2 Se
urity to
ommandsThe Se
urity Environment (SE) is used to provide se
urity to
ommands. It is basi
ally a me
hanism to spe
ifyto the
ard system, the se
urity fun
tions that are available to provide prote
tion to
ommands for a spe
i�
appli
ation of
ard. The SE is a
ontainer for se
urity-related data and me
hanisms. A SE spe
i�es:� Referen
es to the
ryptographi
 algorithm(s) to be exe
uted� The mode(s) of operation� The key(s) to be used� Any additional data needed by a se
urity me
hanism� May also provide dire
tions of handling the data resulting from the
omputation4.3 Se
urity EnvironmentsAt any time, a se
urity environment is a
tive for the
ard. The se
urity environments (SEs) de�ne the me
hanismsto be used for se
urity related
ommands. This in
ludes the algorithms to be used, the key referen
es and data forkey derivation. The se
urity environments (SEs) are stored in elementary �les (EFs) or as meta-data of �les.4.4 Se
urity me
hanismsThe SCOSTA
ompliant OS supports the following se
urity me
hanisms as des
ribed in ISO/IEC 7816-4:� Entity authenti
ation with password (VERIFY
ommand)� Entity authenti
ation with key (EXTERNAL AUTHENTICATE, INTERNAL AUTHENTICATE and MU-TUAL AUTHENTICATE
ommands)� Data authenti
ation (
omputation/veri�
ation of
ryptographi

he
ksum).� Data en
ipherment.� Data de
ipherment.Triple DES (3DES) algorithm in CBC (
haining blo
k) mode is the algorithm used for data authenti
ation, dataen
ipherment and de
ipherment.
7

5 Se
urity related
ommands in SCOSTAThe following
ommands are supported by the SCOSTA
ompliant operating system:� VERIFY: Password based authenti
ation.� INTERNAL AUTHENTICATE: Responding to a
hallenge issued by the
ard reader.� EXTERNAL AUTHENTICATE: Key based authenti
ation.� MUTUAL AUTHENTICATE: Key based authenti
ation followed by response to
hallenge issued by the
ard reader.� GET CHALLENGE: Card issues a
hallenge (for purpose of key based authenti
ation) to the reader.� MANAGE SECURITY ENVIRONMENT (MSE): Set the Se
urity Environment (SE).� PERFORM SECURITY OPERATION (PSO): Perform en
ipherment, de
ipherment and data authen-ti
ation.� ENABLE VERIFICATION REQUIREMENT: Enable password based authenti
ation.� DISABLE VERIFICATION REQUIREMENT: Disable password based authenti
ation.� CHANGE REFERENCE DATA: Change password.� RESET RETRY COUNTER: Set the maximum number of retries allowed for authenti
ation.Details of the above
ommands
an be found in ISO/IEC-7816 [1℄, [3℄6 Implementation Details6.1 Limitations and IssuesWriting an implementation is plagued by the following limitations:� The amount of memory available is severely limited. For example, a typi
al 8-bit mi
ro-
ontroller has about128 bytes of internal (on-
hip) RAM. The
ode memory is also small typi
ally in the range of a few kilobytes.The
ard may also have an external (meaning o�-
hip) RAM whi
h might be a few kilobytes. This meansthat the
ode being written has to be e�
ient in terms of runtime spa
e required and also in terms of size of
ode.� The size of data that
an be handled is 8 bits. Typi
ally, all the instru
tions deal with 8-bit data. Thus,to implement handling a larger size data, one needs to write additional instru
tions thus adding to the
odesize. For example, we might need to write a routine to add two 32-bit numbers. Therefore the
ode has tobe `8 - bit friendly' whi
h again is a fa
tor whi
h in
reases the
ode size.� The maximum depth of fun
tion
alls has to be small. This means integrating as mu
h fun
tionality into amodule as possible as a greater depth of fun
tion
alls means we eat up more of runtime sta
k and hen
e theless of available internal RAM.
8

6.2 Command handlingThe main
ommand handler loop exe
utes in the following manner:1. For every
ommand read the
ommand header. Che
k if the
lass and the instru
tion bytes are
orre
t elsereturn error.2. Next
he
k if the data �eld of the
ommand
an be a

ommodated in the memory else fail.3. Che
k if the
ommand requires some input data to be read. In this
ase send an a
knowledgement to the
ard reader.4. Call the appropriate
ommand handler for the
ommand.5. Che
k if some output is to be sent to the
ard reader. If this is the
ase, send the output.6. Return the appropriate status bytes to the
ard reader. The status bytes indi
ate whether the
ommandsu

eeded or failed (in
ase of failure they might also spe
ify the
ause of failure).6.3 Stru
ture of a
ommand handler fun
tionAny
ommand handler has to follow
ertain guidelines to work properly.� If the
ommand handler fun
tion is handling an output
ommand and it needs to send some output, it storesthe output in a bu�er (sendBu�er). Then it sets the value of sendLength (length of the output) to indi
atethe total number of bytes available for sending (ex
luding the status bytes).� If the
ommand handler fun
tion is an input
ommand then it already has the
ommand data given ininputBu�er.� If the
ommand handler fun
tion requires both input and output, then it already has the input in inputBu�erwhen it is
alled. If it needs to send some output, it stores the output to be sent in a global bu�er (storeBu�er,whi
h is same as sendBu�er) for retrieval by a an immediate later GetResponse
ommand. It should alsoindi
ate the length of data stored (in storeLength).� Every
ommand-handler should set the value of the status bytes it needs to send in 2 variables (bSw1, bSw2),before returning. (Ex
ept in the
ase of normal response i.e. 90, 00).� Any
ommand handler might
all support routines for doing the �le spe
i�
 operations that it is supposed todo.The basi
 steps involved in a
ommand handler are:1. First
he
k (by
alling the fun
tion VerifySE) if this
ommand is allowed in the
urrent
ontext. If this
ommand is not allowed then fail with the appropriate status bytes.2. Exe
ute the
ommand.3. If the
ommand is related to password veri�
ation/key authenti
ation then update the se
urity status tore�e
t the su

essful
ompletion of the
ommand (if it was su

essful).4. Return. 9

6.4 The Password FileThe referen
e data for the global data bank is stored in an EF(elementary �le or normal �le) immediately underthe MF(master �le or root dire
tory). This EF is identi�ed using a short EF identi�er of 1 (EF1). Similarly,the lo
al referen
e data for an appli
ation is stored in an EF immediately under a DF(dedi
ated �le) for thatappli
ation. The short EF identi�er of 1 (EF1) is used to identify this EF. The OS may �x any 16-bit identi�ersfor su
h �les. The
hanges in the EF1 may or may not be permitted depending upon the se
urity attributes forthat �le. However this �le will be referen
ed upon for validating the passwords. The EF1 will be a variable re
ord�le (up to a maximum of 32 re
ords) with the following stru
ture.� Pin identi�er: 1 Byte� Retry
ounter: 4 Bits (see below)� Max retry
ount: 4 Bits (see below)� Pin: Variable lengthRe
ords in the EF1 will have one byte
ontaining the Retry
ounter and Max retry
ount. The bits b8:b4 of thisbyte will provide the Retry
ounter while bits b4:b1 will provide the Max retry
ount. Bits b8 and b4 will be theMSB of their respe
tive �elds. A value F for the Max Retry
ount with non-zero Retry
ounter shall mean thatthere is no limit on the retries.The Pin identi�er will be
oded as follows.� Ref Data Number (b5:b1) represent the 5 bit password number.� V bit (bit 8) represents if the
orresponding entry is valid (1) or not (0).6.5 The key �leThe se
rets are stored in EF2 immediately under the MF or a DF. The se
rets stored in EF2 immediately underthe MF are the global se
rets. EF2 is a variable re
ord stru
tured �le with the following stru
ture.� Key identi�er: 1 Byte� Key Type: 1 Byte� Key Spe
i�
 Information: Variable length� Algorithm Referen
e: 1 Byte� Key: Variable lengthThe key identi�er is
oded as follows.� Se
ret Number(b5-b1): The se
ret number (by whi
h the key is referred to in various se
urity related oper-ations) will be unique for all keys. Thus there
an be only up to 32 keys in EF2. No two keys will have thesame se
ret number even if they are used for two di�erent purposes.� V bit: is used to denote if the
orresponding se
ret is valid or not. (0: invalid, 1: valid).The key type �eld provides the operations for whi
h the key
an be used. The value is
oded as follows. CC(b8),DS(b7), En
-Sym(b6), En
-Asym(b5), Hash(b4), Int Auth(b2) and Ext Auth(b1).If the CC bit is set to 1, the key
an be used for
omputation of the
ryptographi

he
ksum.10

If the DS bit is set to 1, the key
an be used for
omputation of digital signature. Sin
e in the
urrent versionof the SCOSTA, publi
 key
ryptography is not supported, this �eld should be treated as RFU.If the En
-Sym bit is set to 1, the key
an be used for symmetri
 en
ryption and de
ryption.If the En
-Asym bit is set to 1, the key
an be used for asymmetri
 en
ryption and de
ryption. Sin
e the publi
key
ryptography is not supported in this version, this �eld should be treated as RFU.If the Hash bit is set to 1, the key
an be used for the hashing operation.If the Int Auth bit is set to 1, the key
an be used for the internal authenti
ation.If the Ext Auth bit is set to 1, the key
an be used for the external authenti
ation.The type spe
i�
 information is of variable length and is de�ned as per the key type �eld. The value is madeavailable for ea
h bit set to 1 in the key type �eld. The values are provided in the order of the bits in the key type�eld. Thus if the CC bit is set to 1, the type spe
i�
 information will �rst
ontain the information regarding theusage of the key for the CC.The following type spe
i�
ation information is used.Operation InformationCC None (0 bytes)DS None (0 bytes)En
-Sym Usage Counter (2 Bytes)En
-Asym Usage Counter (2 Bytes)Hash None (0 bytes)Int Auth Usage Counter (2 Bytes)Ext Auth Retry Counter (4 bits)and Max Retry Count (4 bits)The Usage
ounter for the En
-Sym, En
-Asym and Int Auth is a monotoni
ally de
reasing
ounter. The
ounterif set to FFFF, means that the
ounter is not used (and therefore is not
hanged by the usage of the key). Valuesother than FFFF refer to the number of times that the key
an be used by the INTERNAL AUTHENTICATE
ommand. The key
an be used only if the Usage Counter is non-zero. Upon ea
h usage (whether su

essful orunsu

essful), one is subtra
ted from the
ounter (only if the
ounter is non FFFF). The initial value of the
ounteris set at the time writing the re
ord in the EF2. The value
an be
hanged by UPDATE RECORD
ommand if itsexe
ution is permitted by the se
urity
onditions.The Retry Counter and Max Retry Count are
oded as per the
oding given for the EF1. Bits b8:b5 providethe Retry Counter value while bits b4:b1 provide the Max Retry Count. These values are used only upon theuse of the EXTERNAL AUTHENTICATE
ommand. If the value of the Retry Counter is 0, the EXTERNALAUTHENTICATE
ommand results in a failure. If the Retry Counter is other than 0, it is de
remented by 1 (onlyif the Max Retry Count is not F) upon ea
h unsu

essful authenti
ation.The algorithm referen
e
odes the algorithm for whi
h the key usage is valid. A value of 00 for the algorithmreferen
e implies that the key is valid for all the algorithms available in the
ard. The
hanges in the EF2 may ormay not be permitted depending upon the se
urity attributes for that �le. However this �le will be referen
ed forvalidating the keys internally by the operating system.6.6 Global Data Stru
turesIn this se
tion we give the des
ription of some global variables used in our implementation.6.6.1 CurrentStatusDes
ription: The
urrent se
urity status is used by VerifySE fun
tion to determine if a
ommand
an be exe
utedunder the
urrent se
urity status. 11

Every dire
tory has its respe
tive password and key �le. A maximum of 32 passwords/keys are possible forea
h depth. Ea
h bit in the 4 bytes for password/key status represents a unique password/key. If Verify/ExternalAuthenti
ate su

eeds, the
orresponding password/key status bit is set indi
ating that the parti
ular password/keyhas been authenti
ated.When a dire
tory is
hanged the Current Se
urity Status is
leared on the path starting from the lowest
ommonan
estor of the
urrent and previous dire
tory till the previous dire
tory.6.6.2 Last ChallengeDes
ription: The last
hallenge maintains the last
hallenge issued by the
ard as a result of a GET CHAL-LENGE
ommand. The last
hallenge is required for external authenti
ation (where the external agent sends theresponse to the
hallenge) or for deriving a session key (if MSE
ommand spe
i�es so). This response is de
ryptedand
ompared with the last
hallenge to verify the
ard reader's knowledge of a
ertain key. The length of thelast
hallenge is used as a �ag to indi
ate the validity of the last
hallenge. If the last
hallenge is invalid then it
annot be used. The last
hallenge
eases to be valid after the next
ommand following the GET CHALLENGE
ommand.6.6.3 Derived KeyDes
ription: The derived key (same as a session key) is used when the MSE 'set'
ommand states that a sessionkey be
omputed. Derived Key is generated by the MSE set
ommand if the CRT2 in the
urrent SE being setspe
i�es that the key referen
e be used dire
tly (key referen
e with tag 83) or for deriving a session key (keyreferen
e with tag 84). If the key is to be used for deriving the session key then the CRT spe
i�es how to derivethe session key. The data for deriving the key may be given in the CRT (DO with tag 94) or the last
hallenge(whi
h should be valid) issued by the
ard
an be used. The length of the
hallenge or the data should be equal tothe length of a 3DES key. The session key is then en
rypted with the key spe
i�ed to generate the session key.In External/Internal Authenti
ate if the key referen
e re
eived mat
hes with the derived key referen
e and thederived key is valid for External/Internal Authenti
ate then the derived key is used otherwise the key is the readfrom the Key �le as usual.In En
ipher/De
ipher/Verify-CCT/Compute-CCT if the Current SE in the
orresponding CRT
ontains keyreferen
e with 84 tag (i.e.
ompute the session key) then the derived key is used. If the CRT
ontains key referen
ewith 83 tag (i.e. use the key dire
tly) then use the key from the key �le as usual.The derived key is invalid in the beginning and on
e derived remains valid till :1. Another key is derived (in whi
h
ase the new key be
omes valid).2. The
urrentDF is
hanged by sele
t �le
ommand (in whi
h
ase the key is made invalid).6.6.4 Se
urity EnvironmentIntrodu
tion: The se
urity environment (SE) de�nes the se
urity me
hanisms that are available for referen
e inse
urity related
ommands and in se
ure messaging. An SE shall spe
ify referen
es to the
ryptographi
 algorithm(s)to be used, the mode(s) of operation, the key(s) to be used and any additional data needed by a se
urity me
hanism.An SE might also
ontain me
hanism to perform initialization of non-persistent data e.g. session key.At any time during operation of the
ard a
urrent SE is a
tive (by default or as a result of
ommands fromthe interfa
e devi
e). The
urrent SE
an be set or repla
ed with the MANAGE SECURITY ENVIRONMENT
ommand.2A CRT is a
omponent of an SE. CRT spe
i�es the se
urity me
hanisms to be used. The tag of the CRT spe
i�es the fun
tion (e.g.en
ryption) for whi
h this CRT
an be used. A CRT itself
ontains DOs. A DO (Data Obje
t) en
apsulates an obje
t. The obje
t isidenti�ed by the tag of the DO. The length �eld of the DO spe
i�es the length of the obje
t. The obje
t might be a simple plain valueor a
ombination of DOs. 12

The default SE is a
tive if the
urrent SE has not been set by an MSE
ommand.Components: Control Referen
e Templates (CRT) are used to des
ribe the various
omponents of a SE. Fivetemplates have been de�ned in ISO/IEC 7816:� Cryptographi
 Che
ksum� Digital Signature� Con�dentiality� Hash� Authenti
ationImplementation Details: In our implementation, we are handling only the Cryptographi
 Che
ksum Template(CCT), Con�dentiality Template (CT) and the Authenti
ation Template (AT).The SEs are stored as re
ords (and a

essed by their number) in the SE Template �les in DFs or in the FCP ofthe
urrent DF. SE is a
on
atenation of all the
omponents (CRTs) present in the SE Template. The
urrent SE(en
oded in the variable
urrentSE)
ontains the SE as a
on
atenation of CRTs.An SE is modi�ed expli
itly through the MANAGE SECURITY ENVIRONMENT (MSE)
ommand (set, re-store, erase, store SE). In
ase of set' in the MSE
ommand, all the
omponents (DOs) in the new value of theCRT spe
i�ed in the data �eld, should already be present in the
urrent SE. Furthermore, the lengths of the DOsin the data �eld should also mat
h with the lengths of the
orresponding DOs in the
urrent SE. Only when these
onditions are satis�ed, the
urrent SE will be
hanged. In the implementation of the MSE 'restore'
ommand, weload the re
ord with the mat
hing SE number from the SE Template �le in the
urrent DF. MSE 'store' is similarlyimplemented by
opying the
urrent SE into a re
ord in the SE Template �le. MSE 'erase' results in the deletionof the re
ord for the SE number being deleted from the SE Template �le.Whenever, the
urrent SE
hanges or a
omponent of the
urrent SE
hanges, we look at the SE to generate thesession key (if required). The data required to generate the session key (also known as the derived key) is given aspart of a
omponent of the SE. The session key me
hanism is spe
i�ed in the SE whi
h is used to generate it andkeep it in the RAM as long as it is valid.Only 3DES is being used in all the
ryptographi
 algorithms.The
urrent SE is a

essed when se
urity operations like en
ipher, de
ipher,
ryptographi

he
ksum, authenti-
ation are performed.The use of the SE in di�erent
ontexts is des
ribed below:� Authenti
ation: The AT in the SE spe
i�es the key referen
e and whether the key is to be used dire
tly orfor generating a session key, the algorithm referen
e (3DES is used by default), data for
omputing the sessionkey. The key referen
e is mandatory while the rest are optional. The CRT usage quali�er DO in the AT givesfurther information about the appli
ability of the CRT (whether it
an be used for external authenti
ation,internal authenti
ation). If the key is to be used dire
tly then it is dire
tly used to authenti
ate. If the use isfor
omputing a session key, then all referen
es to this key impli
itly mean that the session key is to be used.� Con�dentiality: The CT in the SE spe
i�es the key referen
e and whether the key is to be used dire
tly orfor generating a session key, the algorithm referen
e (3DES is used by default), the mode of operation anddata for
omputing the session key. The key referen
e is mandatory while the rest are optional. 3DES in
hained blo
k mode is used for en
ryption/de
ryption. As in AT, the CRT usage quali�er DO in the CT givesinformation about the appli
ability of the CRT (whether it
an be used for en
ryption, de
ryption). The useof the session key is same as mentioned in authenti
ation. Furthermore, only CT-sym is being supported.13

� Cryptographi
 Che
ksum: The CCT in this
ase gives the required information whi
h is the same as inCon�dentiality
ase.6.7 Implementation of Major Command HandlersWe have merged the
ommand handlers of similar
ommands to redu
e the
ode size and to avoid the overheadof passing parameters to fun
tions sin
e RAM size is limited. We have merged Verify, External Authenti
ate,Internal Authenti
ate and Mutual Authenti
ate
ommands into one fun
tion. Similarly, we have merged En
ipher,De
ipher, Cal
ulate Cryptographi
 Che
ksum and Verify Cryptographi
 Che
ksum into one fun
tion. We have alsomerged Enable and Disable Veri�
ation requirement
ommands into one fun
tion. Following we des
ribe the �owof some
ommands.6.7.1 Implementation of Verify and External Authenti
ate CommandsFirst VerifySE is
alled to
he
k whether the
ommand is allowed under the
urrent Se
urity Status. The pass-word/key referen
e (spe
i�ed in the
ommand header) indi
ates the password/key (whi
h may be stored in lo-
al/global data bank) to be used. In
ase of any error appropriate Status Bytes are set and the
ommand returns.In
ase of VERIFY, the input data is
ompared against the stored password for veri�
ation. In
ase of EXTERNALAUTHENTICATE, the last
hallenge is en
rypted with the spe
i�ed key and then the result is
ompared againstthe last
hallenge (whi
h should be valid) for key authenti
ation. On failing, appropriate error
onditions are set.The retry
ounters (whi
h spe
ify the number of further allow retries). On su

ess, the se
urity status is updatedto re�e
t the su

essful veri�
ation/authenti
ation.6.7.2 Implementation of Manage Se
urity EnvironmentThrough this
ommand we
an:� Set: Modify a
omponent of the
urrent SE. Sin
e only modi�
ation is allowed, the lengths and tags of thenew DOs should mat
h with those in the
urrentSE. repla
e the
urrent se
urity environment with anotherSE (stored either in a SE template �le or in the File Control Parameters for the
urrent dire
tory). This
ommand may result in the
omputation of a derived key as des
ribed previously.� Store: Store the
urrent SE. Again, the DOs in the
urrent SE should already be present in the SE (in whi
hthe
urrent Se is being stored).� Restore: Load an SE into the
urrent SE.� Erase: Erase an SE.6.8 Implementation of Perform Se
urity OperationThis
ommand may spe
ify one of the following operations:� En
ipher:En
rypt the data given as input.� De
ipher:De
rypt the data given as input.� Compute Cryptographi
 Che
ksum:Compute the
ryptographi

he
ksum.� Verify Cryptographi
 Che
ksum:Verify whether
ryptographi

he
ksum of the plain data mat
hes the
ryp-tographi

he
ksum value given in the input.The keys required for the above operations are obtained from the
urrent SE.14

6.8.1 Implementation of VerifySEVerifySE is
alled by every
ommand handler to determine of the
urrent
ommand is allowed. This is determinedby
he
king the
urrent se
urity status against the se
urity status as required by the se
urity attributes. The �lewhere the se
urity attributes are present is supplied as a parameter. The basi
 implementation of the VerifySEfun
tion follows:� First
he
k the life
y
le status (LCS) of the �le to determine whether the se
urity attributes apply. For the
reation state, the se
urity attributes do not apply.� If the se
urity attributes apply, then they are read from the FCP of the �le.� Depending on the format of the se
urity attributes (the format may be
ompa
t or expanded), the attributesare s
anned to
he
k whether the
urrent
ommand is allowed. The se
urity attributes might refer to aSe
urity Environment (whi
h basi
ally will spe
ify the key/password referen
es whi
h need to have beenveri�ed/authenti
ated). The key referen
es might also be spe
i�ed in the se
urity attributes. Furthermore,the
onditions to be satis�ed might be OR/AND of sub-
onditions.� If there is an a

ess rule whi
h is satis�ed for the
ommand, then VerifySE su

eeds else fails.6.9 Algorithms ImplementedWe implemented the following algorithms:� 3DES for en
ryption/de
ryption/
ryptographi

he
ksum.� MD5 [6℄ for hashing.7 Con
lusions and Future WorkWe were su

essful in implementing the se
urity module of the Smart Card OS as spe
i�ed by SCOSTA. These
urity module is a very important part of a Smart Card OS sin
e it provides
omplete prote
tion to the smart
ard from outside world. Things get more
ompli
ated due to the fa
t that we have only limited memory RAM andROM available on a Smart Card. For this reason an e�
ient,
lean and
ompa
t implementation of this module isa ne
essity. The major
ompli
ations while
oding arose due to the fa
t that we had to look at a number of error
onditions and to set appropriate status bytes.Future Work
an in
lude implementing the Se
ure Messaging Extensions as de�ned in the ISO/IEC-7816 stan-dards (se
ure messaging has not been
overed in SCOSTA). Se
ure messaging involves the en
ryption/de
ryption/authenti
ationof
ommands.8 A
knowledgementsWe would like to express our deep gratitude to our supervisors Dr. Deepak Gupta and Dr. Rajat Moona,for their guidan
e and invaluable suggestions at all stages of this proje
t. We would like to thank them for theirenthusiasm and motivation throughout the dis
ussions we had with them during our meetings whi
h saw us throughsome rough pat
hes during the
oding stage of the proje
t.We are also thankful to Dr. Manindra Agarwal for giving valuable tips and help related to e�
ient implementationof 3DES algorithm and helping us in understanding the standards.15

We are also thankful to Mr. S. Ravinder who provided us with the support fun
tions to a

ess the re
ords in the�le et
. and also for helping us in integrating the se
urity module with the rest of the OS. Finally, we would alsolike to thank Mr. Kapileshwar Rao Bolisetti and Mr. S. Ravinder for providing us the Linux based testing toolwhi
h made testing very fast and
lean.Referen
es[1℄ ISO/IEC 7816-4:1995 Information te
hnology � Identi�
ation
ards � Integrated
ir
uit(s)
ards with
onta
ts� Part 4: Interindustry
ommands for inter
hange[2℄ ISO/IEC 7816-4:1995/Amd 1:1997 se
ure messaging on the stru
tures of APDU messages[3℄ ISO/IEC 7816-8:1999 Identi�
ation
ards � Integrated
ir
uit(s)
ards with
onta
ts � Part 8: Se
urity relatedinterindustry
ommands (available in English only)[4℄ ISO/IEC 7816-9:2000 Identi�
ation
ards � Integrated
ir
uit(s)
ards with
onta
ts � Part 9: Additionalinterindustry
ommands and se
urity attributes.[5℄ SCOSTA do
ument version 1.2b[6℄ RFC 1321 MD5 Message-Digest Algorithm

16

