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Preface

The developers of modern embedded systems feel the need of automatic development
tools such as Functional Simulator, Timing Simulator, Cross compiler, Disassembler
etc. for faster development. These tools help them in verifying their design early in
the design cycle and for studying various design tradeoffs. Such tools put together
can form an integrated environment, where the designers can specify their designs
in a high level language and use these tools for verification and exploring various
design parameters. These tools are also heavily used by researchers for specifying

next generation Instruction Sets and microarchitectures.
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Chapter 1
Introduction

The developers of modern embedded systems feel the need of automatic develop-
ment tools such as Functional Simulator, Cross compiler, Disassembler, Hardware
Simulator etc. for faster development. These tools help them in verifying their de-
sign early in the design cycle and for studying various design tradeoffs. Such tools
put together can form an integrated environment, where the designers can specify
their designs in a high level language and use these tools for verification and explor-
ing various design parameters. These tools are also heavily used by researchers for

specifying next generation Instruction Sets and microarchitectures.

In this work we have developed an enhanced version of Retargetable Functional
Simulator for our environment which uses Sim_nM L as the language for describing
processor models (Instruction Set). Sim_nML is an extension of nML machine de-
scription formalism and is powerful enough to specify instruction set of a processor.
The earlier version of Retargetable Functional Simulator was developed by Y. Subash
Chandra [1] as part of his mtech thesis. The Functional Simulator was earlier tested
only Power-PC instruction set but now we have also tested it for ARM instruction
set. For this we have specified the ARM Instruction Set in Sim nML. We have also
added a Debugger to this system which helps in tracing the instructions being ex-
ecuted and is quite helpful for debugging at the lowest level. As part of this work,
we have integrated this Functional Simulator with TIPSIM (Hardware Simulation



Environment) to develop a prototype of a HW/SW simulation environment.

1.1 Organization of report

The rest of the report is organized as follows. Chapter 2 gives an overview of
the processor description language. Chapter 3 gives an overview of the Functional
Simulator and describes the difference between the present and the previous version
of the Functional Simulator. In Chapter 4 we give an overview of the architecture
and Sim_nML specification of ARM Instrution set. Chapter 5 discusses the debugger

commands and chapter 6 gives an overview of the TIPSIM environment.



Chapter 2

Overview of Processor Description

Language

This chapter gives an overview of the Sim_nML language used for processor descrip-

tion and the Intermediate Representation (IR) of this description.

2.1 Sim nML

In Sim_nML the processor is described at instruction level. The instruction set is
enumerated as an attribute grammar in a tree hierarchy capturing the semantics of
the instructions at different levels of the hierarchy depending on the class of instruc-

tions.

Sim_nML defines a top level node called instruction and two kinds of productions

or-rule, whose syntax is as follows:

opnl =nl —n2 —nd ..
and and-rule whose syntax is as follows
op n0 (pl:t1, p2:t2 ... )

al = el a2 = e2 ...



where each ni is a non-terminal and each ti is a terminal. Each ai is a attribute
and ei is it’s corresponding definition. pi’s are the parameters used in the attribute

definitions.

A sample Sim_nML specification of some hypothetical processor is given as fol-

lows.

mode REG_INDIRECT ( i : card ( 5) ) =R [ i ]

op instruction ( x : instruction_action )
syntax = format (%s, x.syntax )
image = format ( %s, x.image )
action = {
PC = PC + 1;

x.action;

op instruction_action = add sub

op add ( x : REG_INDIRECT )

syntax = format ( add %s, x.syntax )
image = format ( 100000%s, x.image )
{AC = AC + x; }

action

op sub ( x : REG_INDIRECT )

syntax = format ( sub %s, x.syntax )
image = format ( 100001%s, x.image )
action = {AC = AC + x; }

The syntax attribute gives the assembly language syntax of the instruction. The

image attribute defines the binary image of the instruction. The action attribute
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gives the semantic action associated with the instruction. Mode rule specifies the

addressing modes for the processor.

2.2 Intermediate Representation(IR)

The information in the Sim-nML specification is captured into a set of tables in IR.
Each table consists of fixed or variable size records representing a particular type of
information. In this way it is easy to extract out the information needed and reduces
the work of the tools which intend to use Sim_nML for processor specification. The
format of this IR has changed after the development of old F'simg and so the old
version of the F'simg is not compatible with the new version of IR. The new version

of F'simg is compatible with this new version of IR.

2.3 Differnce between old and new version of IR

As shown in Figure 1 the old version of IR generator had essentialy three parts. The
first part parses the Sim_nML specification file and does type checking, the next part
flattens the Sim_nML hierarchy based on the image and the syntax attribute and the
third part generates the appropriate tables. By flattening, we mean to enumerate all
possible instructions by traversing the Sim_nML hierarchy. In the new version of IR
generator, the middle portion has been completely eliminated and the corresponding

changes has been done in the format of the generated tables of IR.
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Figure 1: Block Diagram for Old IR Generator
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Figure 2: Block Diagram for New IR Generator



Chapter 3

Retargetable Functional

Simulator(Fsimg)

In the past, functional simulators (or ISS) were made for a specific processor archi-
tecture. However, with ever increasing special purpose processors and the need to
specify Instruction Set of processors which have not been realised in hardware, a
strong need is being felt for retargetable functional simulator generator. Such a tool
can be used to generate Instruction Set Simulator(ISS) for a particular processor.
The idea behind such a tool is to use processor models for generating processor spe-
cific part of ISS. Figure 3 shows the block diagram of the new Fsimg and subsequent

subsections describe the functionality of each part the Fsimg.

3.1 Overview of Functional Simulation(Fsim) Gen-

eration

Fsimg first reads the IR file to construct the tables. These tables capture the
Sim_nML description of the processor’s instruction set. The Fsimg then finds al-
| the instructions by flattening the image attribute of the Sim_nML description.

The image attribute captures the binary coding of instructions. This part of the
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READ ELF FILE

This portion has been added in the new version
These portions have been changed in the new version

Figure 3: Block Diagram Of Retargetable Functional Simulator

Fsimg was not present in the earlier description since the image attribute was al-
ready flattened in the IR as described in the previous chapter. A hash table is then
constructed from the flattened images of the instructions. This hash table helps is

quickly decoding the instructions of the ELF file.

After this, the action attribute of the Sim-nML specification which captures the
semantics of the instructions is flattened. For this the Fsimg converts all instruc-
tions semantics into respective functions by flattening the hierarchical description of

action attribute. The Fsimg then decodes the instructions from the program using



the hash table, extracts the parameters for the instruction and generates a call to the
respective function with these parameters. All these calls to functions are captured
into a table called function-pointer-table whose entries are basically a set of param-
eters and a function pointer pointing to the respective function. The entries in this
table are in the order of the instructions in the program. The simulation starts by
calling the function for the first instruction along with its parameters. The called
function returns the index of the next instruction into the function-pointer-table.
In this way simulation continues till the program is terminated. Along with this
table Fsimg generates data structures for the memory, registers and other memory
elements in the processor, and a driving routine for the simulation which initializes
the memory and registers. The driving routine also calls the first instruction of the

program.

3.2 Structure of Functional Simulator(Fsim)

The functional simulator generated by the Retargetable FunctionalSimulator has

the following five components contained in separate files as shown in Figure 4 .

1. A set of functions one for each instruction in the processor description in

Instr.c, Instrl.c ... .

2. A function-pointer-table corresponding to instructions in the program in Func-

S.C .

3. The memory image of the program in memory.img . This corresponds to the
data portion in the ELF file.

4. Data structures for registers and other memory elements in Types.h and
Vars.h.

5. The driving routine in Fsim.c .

6. The function for handling calls to dynamic functions in dyn.c and dyn.h .
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Figure 4: Fsim Components

The function-pointer-table is an array of structure whose members are an array of
parameters and a pointer to a function. The C declaration of function-pointer-table

is as follows.

struct func_ptr {
uint64 p [MAX_PARAMS];
int (*func) (uint64 *);
s

struct func_ptr Func_Pointers [MAX_POINTERS] = {
{{13, 0, 388}, Fun38},
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{{13, 13, 41916}, Funl46},
};

The function pointed to by the function pointer takes a pointer to the parameter-
s and returns the index of the next instruction. When the simulation starts, the
driver routine initializes the conceptual program counter (PC), stack pointer (SP),
link register (LR) and memory. At this point PC points to the first instruction of
the program and calls the respective function with parameters. The function called
performs the semantic action associated with the instruction and returns the next
instruction index to the driver routine. The driver routine uses this index to call
the next function. In this way the instructions get executed (simulated) until the

program terminates. The code for the driver routine looks like the following.

while((index = Func_Pointers[index].func(Func_Pointers[index|.p)) != -1);

3.3 Detailed Algorithim ForCode Generation

3.3.1 Extracting instructions and Flattening

The first step of the functional simulator is to read the IR tables into the internal
data structures. After this the image attribute has to be flattened in order to get the
binary code of the instructions. It is used for decoding the instruction. This is heirar-
ically spread over the specification tree. The earlier IR used to stored the images
of all possible instructions after flattening the above heirarcy while the present IR

stores this information as specified in the Sim_nML specifications without flattening.

So the present Fsimg obtains the images for all instructions by flattening the image
attribute specified in IR, which was earlier done by the IR generator. The image at-
tribute is flattened in the bottom up fashion which means that the Rules(AndandOr)
at the lower levels of the heirarchy are flattened before the Rules at the upper level.
First of all the Or rules are flattened and then the And rules are flattened. While

this flattening is done additional information is generated for each instruction which
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indentifies a unique path in the heirarchy for that instruction. This additional infor-
mation is used by the ActionF'latener for generating functions for each instruction
and for mapping the value supplied by the instructions in the Elf file to the cor-
responding parameters in the Sim_nML heirarchy. The structures used for storing

this additional information is as follows :

typedef struct{
uint32 depth;
uint32 list_and [MAX_DEPTH];
uint32 list_sub[MAX_DEPTH];

uint32 len[MAX_PARAMS+1];

int32 and_rule[MAX_PARAMS+1];

int32 sub_rule[MAX_PARAMS+1];
}dotExpr_Ent;

typedef struct{
uint32 depth;
uint32 list_and [MAX_DEPTH] ;
uint32 list_sub[MAX_DEPTH];

uint32 no_params;

int32 X[MAX_PARAMS];

int32 Y[MAX_PARAMS];

int32 type[MAX_PARAMS];

int32 vall[MAX_PARAMS];

int32 val2[MAX_PARAMS];
}dotPart_Ent;

typedef struct{
uint32 msb;

uint32 1sb;
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uint32 no_flatrules;
char *ximages;

dotPart_Ent *dot_expr;

uint32 *index;

}andPart_Tbl_Ent;

typedef struct{
bool IsFlat;

uint32 no_flatrules; // No of sub-rules in the flattened image
char *ximages; // Flattened images

dotExpr_Ent *dot_expr; // Inorder traversal of heirarchy for the corresponding imag

uint32 no_params;
int32 *X;

int32 xY;

int32 *type;
int32 *vall;
int32 *val2;

//used while flattening
uint32 no_andParams;

int32 len[MAX_PARAMS + 1];

// used if a part of the image of this AND rule is referred
// by some higher level rule in its image using bit selection operator.
int32 no_parts;

andPart_Tbl_Ent part[MAX_PART];

13



}andFlat_Tbl_Ent;

3.3.2 Hashing

After this image masks are computed for image of each instruction. Image mask is
basically a bit string that has ones for the bit positions representing instruction and
zeros in the parameter bit positions. In order to decode an instruction, we and it
bit-wise with each instruction mask and compare the result with the image attribute
in the IR. This process of decoding is, however time consuming. To improve the

decoding performance the images are hashed into a hash table.

First a global mask is computed by bit-wise anding all instruction masks. The
global mask therefore represents the opcode field of the instructions. First level
hashing is done based on this opcode field. However it is not very useful because
instructions may not have distributed evenly to all the buckets. It may result in
one bucket having large number of instructions while some other buckets having no
instructions. For this reason instructions in each bucket are further hashed based on
the remaining fixed fields of those instructions. This comes from the observation that
when we hash on opcode all instruction of particular type say integer instructions
gets hashed to same bucket. Now these instruction have additional fields to identify
different instructions amongst themselves. These fields are called sub-opcodes. In

this way hashing is done several levels until single instruction is hashed to a bucket.

3.3.3 Generating Functions for instructions (Action Flat-

tening)

After instruction hashing, Fsimg generates the functions for the instructions in the
description. The semantics of an instruction is captured in the action attribute,
which is hierarchically spread. Starting at the top node till the leaf node, the defini-
tion in the action attributes is captured as a C function. All the attribute definitions
are available in the PREFIX ATTRIBUTE DEFINITION table in the IR. The defi-

nitions are in the prefix notation which are converted in to the infix notation during
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the code generation. The generated functions take pointer to parameters and re-

turns the index of next instruction into the function-pointer-table.

3.3.4 Instruction Decoding and Function Pointer Table Gen-

eration

The Fsimg reads the required information from the given program which is in ELF
format into the internal data structures. Depending on the processor type, num-
ber of function-pointer-table entries are calculated. If it is a processor with fixed

instruction length, then the calculation is as follows.
no-of-entries = text-section-size-in-bytes / instruction-length

If it is a processor with variable instruction length, then the calculation is as

follows.
no-of-entries = text-section-size-in-bytes

Now the decoding of the instructions in the program is done using the hash table
created earlier. Once a instruction is recognized the operand values are extracted
from the instruction and a function-pointer-table entry is generated with these values
and the corresponding function for the instruction. In case of a processor with
variable instruction length, number of entries generated are equal to the length of
the instruction in bytes. In this manner all the instructions in all text sections of the
program are decoded and function pointer table is generated. If an instruction gets
unrecognized then a dummy entry is created in that position of the function-pointer-
table. If the control reaches this entry during the simulation, then it generates
an error message and simply returns the index of next instruction to the driving
routine. This may lead to incorrect results and unpredicted behaviour of the Fsim.
To avoid this the specification has to cover all the instructions needed for running

the program.
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3.3.5 Generation of Types and Memory Image

The Sim-nML types are converted into corresponding C types, like unsigned int for
card and int for int etc. But the problem comes with the sizes of these declarations.
Sim-nML allows the declaration of variables of arbitrary bit sizes. Consider the

following Sim-nML declaration.
mem TEMP [ 1 , int ( 4 ) ]

This declares TEMP as a memory location of type integer and size 4 bits. We
have to allocate exactly 4 bits for the correctness of the value held by this location.
For this the C feature of bit-fields inside the structure declaration is used. For the

above declaration the code generated is as follows.

typedef char int$8;
typedef struct {

int8 val:4;
}Int4;

Int4 TEMP;

Whenever TEMP occurs in any attribute definition, TEMP.val is generated in that
place. Thus whenever a variable is declared which is not a multiple of 8 bits, nearest
C-data structure larger than the one being used in Sim-nML, for example, a 12 bit

variable in Sim-nML is declared using int16 type.

Fsimg composes the memory image for Fsim by combining all the data sections
of the program and is written to a file. When Fsim starts it loads this memory im-
age in to its memory. All memory references are redirected relative to the location

where it is loaded.
Finally code for the driver routine is generated which consists of the code that

initializes the PC, SP, LR and memory and the code for the simulation as we have

seen earlier.
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Chapter 4

ARM Specification in Sim nML

In this chapter we present a brief overview of ARM architecture [2] and discuss the
ARM specifications in Sim-nML.

4.1 Overview of Architecture

The ARM is a RISC processor, and have the following features :
e A large uniform register file.
e A load-store architecture.

e Uniform and fixed length instruction fields.

4.1.1 Registers

ARM has thirty-one, 32-bit registers. But at any one time, only sixteen are visible.
The other registers are used to speed up exception processing. All register specifiers
in the ARM instructions can address any of the 16 registers. The sixteenth regis-
ter(i.e R15) is used as the program counter and fifteenth(R14) register is used as the
link register. Moreover, R13 is generally treated as stack pointer. Apart from this,
there is a status register called CPSR which stores the condition code, Processor

Mode and Interrupt enable bits.
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4.1.2 Instruction Set

The ARM instruction set can be divided into four broad classes of instruction:

dataprocessing
e branch

load and store

multiply

All ARM instructions may be conditionally executed depending upon the 16
condition conditions. Also there are a number of addressing modes for each type of

instructions.

4.2 Overview of Specification

The description of instruction heirarchy is as follows. The top level node is instruc-
tion. The instructions are divided depending on their instruction type as described
in the previous section. Around 8144 instructions have been specified for the ARM

instruction set which covers all the user level instructions.
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Chapter 5
Debugger

On entering the debugging mode, the debugger displays a command line as shown

below :

Executed last instruction <Opcode of Instruction> at address <address>
Type ‘‘help’’ to see the commands

4

Type ‘‘quit’’ to exit from the debugger

The debugger supports single stepping and can be used to set breakpoints. It
can also be used to display the present contents of the registers and memory memory

locations.

The list of commands supported by the debugger and their functionality is described

below :

step [N] - This command executes next N instructions and then
enters the debuging mode. The default value of N is 1.

break <address> - This sets a breakpoint at the specified address

delete <address> - This removes the breakpoint from the specified address

display - This command shows the breakpoints.
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dr [<register-list>]

dmw [address] [len]

dmh [address] [len]

dmb [address] [len]

This command shows the content of the registers.
If no registers are specified then it shows content

of all the registers.

This command displays the value of the ‘‘len’’ words
in memory starting at the specified address. The
default value of len is one and the default value of

address is the previously specified address.

This command displays the value of the ‘‘len’’ half
words in memory starting at the specified address.
The default value of len is one and the default value

of address is the previously specified address.

This command displays the value of the ‘‘len’’ bytes
in memory starting at the specified address. The
default value of len is one and the default value of

address is the previously specified address.
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Chapter 6

TIPSIM

SOFTWARE SIMULATION TIPSIM
(SOFTWARE
APPLICATION)  ------------------3 DUT - design under test
C MODEL virtual communication

i

CADAPTOR = |=-----------------3 RTL TRANSACTOR
transactions

COMODELING MACROS

TR DRIVER basic data transport

TIPSIM SIMULATION ENVIRONMENT

Figure 5: Protocol stack of TIPSIM cosimulation environment

TTPSIM provides low level abstraction using which communication can be es-

tablished between a software application and the Verilog hardware simulator. The
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TIP API of TIPSIM provides a library for sending data to the hardware simulation
environment and the COMODELING MACROS provide the necessary Verilog code
for sending data to the sofware simulation part. Thus these two provide a basic data
transport link between the hardware and software simulation environment. The C
ADAPTOR acts as a link between the C Model(application software) and the TIP
APT inorder to send the data to the hardware part. The RTL TRANSACTOR does

the same thing for the hardware design.
So for making a HW/SW cosimulation environment using TIPSIM we have re-

placed the C Model with our Functional simulator. For this, we have implemented

C Adaptor to make it compatible with the Functional simulator.
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Chapter 7

Conclusions

7.1 Conclusion

As a part of this work we have developed an enhanced version of Retargetable
Functional Simulator for our environment which uses Sim_nML as the language for
describing processor models (Instruction Set). We have described almost the entire
ARM Instruction Set in Sim_nML, which shows that Sim nML is powerful enough
to describe the semantics of an Instruction Set. Also, a debugger has been added
which increases the utility of the Functional Simulator. We also have integrated the
Functional Simulator with TIPSIM (Hardware Simulation Environment) to develop

a prototype of a HW/SW cosimulation environment.

7.2 Future Work

Following points can be considered as an extension to this work.

e The algorithim used for generating functions for instructions is quite inefficient
since it generates a lot of redundant code. So one can try to find a more efficient

algorithim which reduces the amount of code being generated.

e The debugger can be futher enhanced to do symbolic debugging.
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e One can work on the prototype of the Hw/Sw cosimulation environment de-

veloped to further enhance its utility and performance.
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