
Debugger For Hw/Sw Cosimulation Environment
A Report Submittedin Partial Ful�llment of the Requirementsfor the Degree ofBa
helor of Te
hnology

byMayank Gupta
to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology KanpurJanuary, 1999

Certi�
ateCerti�ed that the work
ontained in the report entitled \Debug-ger For Hw/Sw Cosimulation Environment", byMayank Gupta,has been
arried out under my supervision and that this workhas not been submitted elsewhere for a degree.
Dr. Rajat MoonaJanuary, 1999

ii

Prefa
eThe developers of modern embedded systems feel the need of automati
 developmenttools su
h as Fun
tional Simulator, Timing Simulator, Cross
ompiler, Disassembleret
. for faster development. These tools help them in verifying their design early inthe design
y
le and for studying various design tradeo�s. Su
h tools put together
an form an integrated environment, where the designers
an spe
ify their designsin a high level language and use these tools for veri�
ation and exploring variousdesign parameters. These tools are also heavily used by resear
hers for spe
ifyingnext generation Instru
tion Sets and mi
roar
hite
tures.

iii

A
knowledgementsI would like to express my gratitude to my supervisor Dr. Rajat Moona for his guid-an
e, motivation and invaluable suggestions at all stages of this proje
t. I would liketo thank him for his enthusiasm throughout the dis
ussions I had with him duringthe
ourse of this proje
t.Apart from my proje
t supervisor, I would like to
onvey spe
ial thanks to Sou-vik Basu and A. R. Rajiv for the help they have given during the
ourse of thisproje
t. I would also like to thank my friends for the support they have given tome.

iv

Contents
Prefa
e iiiA
knowledgements iv1 Introdu
tion 11.1 Organization of report . 22 Overview of Pro
essor Des
ription Language 32.1 Sim nML . 32.2 Intermediate Representation(IR) . 52.3 Di�ern
e between old and new version of IR 53 Retargetable Fun
tional Simulator(Fsimg) 73.1 Overview of Fun
tional Simulation(Fsim) Generation 73.2 Stru
ture of Fun
tional Simulator(Fsim) 93.3 Detailed Algorithim ForCode Generation 113.3.1 Extra
ting instru
tions and Flattening 113.3.2 Hashing . 143.3.3 Generating Fun
tions for instru
tions (A
tion Flattening) . . . 143.3.4 Instru
tion De
oding and Fun
tion Pointer Table Generation . 153.3.5 Generation of Types and Memory Image 164 ARM Spe
i�
ation in Sim nML 174.1 Overview of Ar
hite
ture . 174.1.1 Registers . 17v

4.1.2 Instru
tion Set . 184.2 Overview of Spe
i�
ation . 185 Debugger 196 TIPSIM 217 Con
lusions 237.1 Con
lusion . 237.2 Future Work . 23Bibliography 25

vi

Chapter 1Introdu
tionThe developers of modern embedded systems feel the need of automati
 develop-ment tools su
h as Fun
tional Simulator, Cross
ompiler, Disassembler, HardwareSimulator et
. for faster development. These tools help them in verifying their de-sign early in the design
y
le and for studying various design tradeo�s. Su
h toolsput together
an form an integrated environment, where the designers
an spe
ifytheir designs in a high level language and use these tools for veri�
ation and explor-ing various design parameters. These tools are also heavily used by resear
hers forspe
ifying next generation Instru
tion Sets and mi
roar
hite
tures.In this work we have developed an enhan
ed version of Retargetable Fun
tionalSimulator for our environment whi
h uses Sim nML as the language for des
ribingpro
essor models (Instru
tion Set). Sim nML is an extension of nML ma
hine de-s
ription formalism and is powerful enough to spe
ify instru
tion set of a pro
essor.The earlier version of Retargetable Fun
tional Simulator was developed by Y. SubashChandra [1℄ as part of his mte
h thesis. The Fun
tional Simulator was earlier testedonly Power-PC instru
tion set but now we have also tested it for ARM instru
tionset. For this we have spe
i�ed the ARM Instru
tion Set in Sim nML. We have alsoadded a Debugger to this system whi
h helps in tra
ing the instru
tions being ex-e
uted and is quite helpful for debugging at the lowest level. As part of this work,we have integrated this Fun
tional Simulator with TIPSIM (Hardware Simulation1

Environment) to develop a prototype of a HW/SW simulation environment.1.1 Organization of reportThe rest of the report is organized as follows. Chapter 2 gives an overview ofthe pro
essor des
ription language. Chapter 3 gives an overview of the Fun
tionalSimulator and des
ribes the di�eren
e between the present and the previous versionof the Fun
tional Simulator. In Chapter 4 we give an overview of the ar
hite
tureand Sim nML spe
i�
ation of ARM Instrution set. Chapter 5 dis
usses the debugger
ommands and
hapter 6 gives an overview of the TIPSIM environment.

2

Chapter 2Overview of Pro
essor Des
riptionLanguageThis
hapter gives an overview of the Sim nML language used for pro
essor des
rip-tion and the Intermediate Representation (IR) of this des
ription.2.1 Sim nMLIn Sim nML the pro
essor is des
ribed at instru
tion level. The instru
tion set isenumerated as an attribute grammar in a tree hierar
hy
apturing the semanti
s ofthe instru
tions at di�erent levels of the hierar
hy depending on the
lass of instru
-tions.Sim nML de�nes a top level node
alled instru
tion and two kinds of produ
tionsor-rule, whose syntax is as follows:op n0 = n1 | n2 | n3and and-rule whose syntax is as followsop n0 (p1 : t1, p2 : t2, ...)a1 = e1 a2 = e2 ...3

where ea
h ni is a non-terminal and ea
h ti is a terminal. Ea
h ai is a attributeand ei is it's
orresponding de�nition. pi's are the parameters used in the attributede�nitions.A sample Sim nML spe
i�
ation of some hypotheti
al pro
essor is given as fol-lows.
mode REG_INDIRECT (i :
ard (5)) = R [i ℄op instru
tion (x : instru
tion_a
tion)syntax = format (%s, x.syntax)image = format (%s, x.image)a
tion = {PC = PC + 1;x.a
tion;}op instru
tion_a
tion = add subop add (x : REG_INDIRECT)syntax = format (add %s, x.syntax)image = format (100000%s, x.image)a
tion = {AC = AC + x; }op sub (x : REG_INDIRECT)syntax = format (sub %s, x.syntax)image = format (100001%s, x.image)a
tion = {AC = AC + x; }The syntax attribute gives the assembly language syntax of the instru
tion. Theimage attribute de�nes the binary image of the instru
tion. The a
tion attribute4

gives the semanti
 a
tion asso
iated with the instru
tion. Mode rule spe
i�es theaddressing modes for the pro
essor.2.2 Intermediate Representation(IR)The information in the Sim-nML spe
i�
ation is
aptured into a set of tables in IR.Ea
h table
onsists of �xed or variable size re
ords representing a parti
ular type ofinformation. In this way it is easy to extra
t out the information needed and redu
esthe work of the tools whi
h intend to use Sim nML for pro
essor spe
i�
ation. Theformat of this IR has
hanged after the development of old Fsimg and so the oldversion of the Fsimg is not
ompatible with the new version of IR. The new versionof Fsimg is
ompatible with this new version of IR.2.3 Di�ern
e between old and new version of IRAs shown in Figure 1 the old version of IR generator had essentialy three parts. The�rst part parses the Sim nML spe
i�
ation �le and does type
he
king, the next part
attens the Sim nML hierar
hy based on the image and the syntax attribute and thethird part generates the appropriate tables. By
attening, we mean to enumerate allpossible instru
tions by traversing the Sim nML hierar
hy. In the new version of IRgenerator, the middle portion has been
ompletely eliminated and the
orresponding
hanges has been done in the format of the generated tables of IR.

5

PA
R

SE
R

 /

T
Y

PE
 C

H
E

C
K

E
R

FL
A

T
T

E
N

E
R

 T

A
B

L
E

S
G

E
N

E
R

A
T

O
R

 OLD IR Figure 1: Blo
k Diagram for Old IR Generator

PA
R

SE
R

 /

T
Y

PE
 C

H
E

C
K

E
R

 T

A
B

L
E

S
G

E
N

E
R

A
T

O
R

 NEW IR Figure 2: Blo
k Diagram for New IR Generator6

Chapter 3Retargetable Fun
tionalSimulator(Fsimg)In the past, fun
tional simulators (or ISS) were made for a spe
i�
 pro
essor ar
hi-te
ture. However, with ever in
reasing spe
ial purpose pro
essors and the need tospe
ify Instru
tion Set of pro
essors whi
h have not been realised in hardware, astrong need is being felt for retargetable fun
tional simulator generator. Su
h a tool
an be used to generate Instru
tion Set Simulator(ISS) for a parti
ular pro
essor.The idea behind su
h a tool is to use pro
essor models for generating pro
essor spe-
i�
 part of ISS. Figure 3 shows the blo
k diagram of the new Fsimg and subsequentsubse
tions des
ribe the fun
tionality of ea
h part the Fsimg.3.1 Overview of Fun
tional Simulation(Fsim) Gen-eration
Fsimg �rst reads the IR �le to
onstru
t the tables. These tables
apture theSim nML des
ription of the pro
essor's instru
tion set. The Fsimg then �nds al-l the instru
tions by
attening the image attribute of the Sim nML des
ription.The image attribute
aptures the binary
oding of instru
tions. This part of the7

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

R
E

A
D

 I
R

 F
IL

E

F
L

A
T

T
E

N
 I

R

G
E

N
E

R
A

T
E

F

U
N

C
T

IO
N

S
C

O
N

ST
R

U
C

T

D
E

C
O

D
E

IN

ST
R

U
C

T
IO

N
S

R
E

A
D

 E
L

F
 F

IL
E

H

A
SH

 T
A

B
L

E

These portions have been changed

This portion has been added in the new version

 in the new versionFigure 3: Blo
k Diagram Of Retargetable Fun
tional SimulatorFsimg was not present in the earlier des
ription sin
e the image attribute was al-ready
attened in the IR as des
ribed in the previous
hapter. A hash table is then
onstru
ted from the
attened images of the instru
tions. This hash table helps isqui
kly de
oding the instru
tions of the ELF �le.After this, the a
tion attribute of the Sim-nML spe
i�
ation whi
h
aptures thesemanti
s of the instru
tions is
attened. For this the Fsimg
onverts all instru
-tions semanti
s into respe
tive fun
tions by
attening the hierar
hi
al des
ription ofa
tion attribute. The Fsimg then de
odes the instru
tions from the program using8

the hash table, extra
ts the parameters for the instru
tion and generates a
all to therespe
tive fun
tion with these parameters. All these
alls to fun
tions are
apturedinto a table
alled fun
tion-pointer-table whose entries are basi
ally a set of param-eters and a fun
tion pointer pointing to the respe
tive fun
tion. The entries in thistable are in the order of the instru
tions in the program. The simulation starts by
alling the fun
tion for the �rst instru
tion along with its parameters. The
alledfun
tion returns the index of the next instru
tion into the fun
tion-pointer-table.In this way simulation
ontinues till the program is terminated. Along with thistable Fsimg generates data stru
tures for the memory, registers and other memoryelements in the pro
essor, and a driving routine for the simulation whi
h initializesthe memory and registers. The driving routine also
alls the �rst instru
tion of theprogram.3.2 Stru
ture of Fun
tional Simulator(Fsim)The fun
tional simulator generated by the RetargetableFun
tionalSimulator hasthe following �ve
omponents
ontained in separate �les as shown in Figure 4 .1. A set of fun
tions one for ea
h instru
tion in the pro
essor des
ription inInstr.
, Instr1.
2. A fun
tion-pointer-table
orresponding to instru
tions in the program in Fun
-s.
 .3. The memory image of the program in memory.img . This
orresponds to thedata portion in the ELF �le.4. Data stru
tures for registers and other memory elements in Types.h andVars.h.5. The driving routine in Fsim.
 .6. The fun
tion for handling
alls to dynami
 fun
tions in dyn.
 and dyn.h .
9

Figure 4: Fsim ComponentsThe fun
tion-pointer-table is an array of stru
ture whose members are an array ofparameters and a pointer to a fun
tion. The C de
laration of fun
tion-pointer-tableis as follows.stru
t fun
_ptr {uint64 p [MAX_PARAMS℄;int (*fun
)(uint64 *);};stru
t fun
_ptr Fun
_Pointers [MAX_POINTERS℄ = {{{13, 0, 388}, Fun38},10

{{13, 13, 41916}, Fun146},};The fun
tion pointed to by the fun
tion pointer takes a pointer to the parameter-s and returns the index of the next instru
tion. When the simulation starts, thedriver routine initializes the
on
eptual program
ounter (PC), sta
k pointer (SP),link register (LR) and memory. At this point PC points to the �rst instru
tion ofthe program and
alls the respe
tive fun
tion with parameters. The fun
tion
alledperforms the semanti
 a
tion asso
iated with the instru
tion and returns the nextinstru
tion index to the driver routine. The driver routine uses this index to
allthe next fun
tion. In this way the instru
tions get exe
uted (simulated) until theprogram terminates. The
ode for the driver routine looks like the following.while((index = Fun
 Pointers[index℄.fun
(Fun
 Pointers[index℄.p)) != -1);3.3 Detailed Algorithim ForCode Generation3.3.1 Extra
ting instru
tions and FlatteningThe �rst step of the fun
tional simulator is to read the IR tables into the internaldata stru
tures. After this the image attribute has to be
attened in order to get thebinary
ode of the instru
tions. It is used for de
oding the instru
tion. This is heirar-i
ally spread over the spe
i�
ation tree. The earlier IR used to stored the imagesof all possible instru
tions after
attening the above heirar
y while the present IRstores this information as spe
i�ed in the Sim nML spe
i�
ations without
attening.So the present Fsimg obtains the images for all instru
tions by
attening the imageattribute spe
i�ed in IR, whi
h was earlier done by the IR generator. The image at-tribute is
attened in the bottom up fashion whi
h means that theRules(AndandOr)at the lower levels of the heirar
hy are
attened before the Rules at the upper level.First of all the Or rules are
attened and then the And rules are
attened. Whilethis
attening is done additional information is generated for ea
h instru
tion whi
h11

indenti�es a unique path in the heirar
hy for that instru
tion. This additional infor-mation is used by the A
tionF latener for generating fun
tions for ea
h instru
tionand for mapping the value supplied by the instru
tions in the Elf �le to the
or-responding parameters in the Sim nML heirar
hy. The stru
tures used for storingthis additional information is as follows :typedef stru
t{uint32 depth;uint32 list_and[MAX_DEPTH℄;uint32 list_sub[MAX_DEPTH℄;uint32 len[MAX_PARAMS+1℄;int32 and_rule[MAX_PARAMS+1℄;int32 sub_rule[MAX_PARAMS+1℄;}dotExpr_Ent;typedef stru
t{uint32 depth;uint32 list_and[MAX_DEPTH℄;uint32 list_sub[MAX_DEPTH℄;uint32 no_params;int32 X[MAX_PARAMS℄;int32 Y[MAX_PARAMS℄;int32 type[MAX_PARAMS℄;int32 val1[MAX_PARAMS℄;int32 val2[MAX_PARAMS℄;}dotPart_Ent;typedef stru
t{uint32 msb;uint32 lsb; 12

uint32 no_flatrules;
har **images;dotPart_Ent *dot_expr;uint32 *index;}andPart_Tbl_Ent;typedef stru
t{bool IsFlat;uint32 no_flatrules; // No of sub-rules in the flattened image
har **images; // Flattened imagesdotExpr_Ent *dot_expr; // Inorder traversal of heirar
hy for the
orresponding imageuint32 no_params;int32 *X;int32 *Y;int32 *type;int32 *val1;int32 *val2;//used while flatteninguint32 no_andParams;int32 len[MAX_PARAMS + 1℄;// used if a part of the image of this AND rule is referred// by some higher level rule in its image using bit sele
tion operator.int32 no_parts;andPart_Tbl_Ent part[MAX_PART℄; 13

}andFlat_Tbl_Ent;3.3.2 HashingAfter this image masks are
omputed for image of ea
h instru
tion. Image mask isbasi
ally a bit string that has ones for the bit positions representing instru
tion andzeros in the parameter bit positions. In order to de
ode an instru
tion, we and itbit-wise with ea
h instru
tion mask and
ompare the result with the image attributein the IR. This pro
ess of de
oding is, however time
onsuming. To improve thede
oding performan
e the images are hashed into a hash table.First a global mask is
omputed by bit-wise anding all instru
tion masks. Theglobal mask therefore represents the op
ode �eld of the instru
tions. First levelhashing is done based on this op
ode �eld. However it is not very useful be
auseinstru
tions may not have distributed evenly to all the bu
kets. It may result inone bu
ket having large number of instru
tions while some other bu
kets having noinstru
tions. For this reason instru
tions in ea
h bu
ket are further hashed based onthe remaining �xed �elds of those instru
tions. This
omes from the observation thatwhen we hash on op
ode all instru
tion of parti
ular type say integer instru
tionsgets hashed to same bu
ket. Now these instru
tion have additional �elds to identifydi�erent instru
tions amongst themselves. These �elds are
alled sub-op
odes. Inthis way hashing is done several levels until single instru
tion is hashed to a bu
ket.3.3.3 Generating Fun
tions for instru
tions (A
tion Flat-tening)After instru
tion hashing, Fsimg generates the fun
tions for the instru
tions in thedes
ription. The semanti
s of an instru
tion is
aptured in the a
tion attribute,whi
h is hierar
hi
ally spread. Starting at the top node till the leaf node, the de�ni-tion in the a
tion attributes is
aptured as a C fun
tion. All the attribute de�nitionsare available in the PREFIX ATTRIBUTE DEFINITION table in the IR. The de�-nitions are in the pre�x notation whi
h are
onverted in to the in�x notation during14

the
ode generation. The generated fun
tions take pointer to parameters and re-turns the index of next instru
tion into the fun
tion-pointer-table.
3.3.4 Instru
tion De
oding and Fun
tion Pointer Table Gen-erationThe Fsimg reads the required information from the given program whi
h is in ELFformat into the internal data stru
tures. Depending on the pro
essor type, num-ber of fun
tion-pointer-table entries are
al
ulated. If it is a pro
essor with �xedinstru
tion length, then the
al
ulation is as follows.no-of-entries = text-se
tion-size-in-bytes / instru
tion-lengthIf it is a pro
essor with variable instru
tion length, then the
al
ulation is asfollows. no-of-entries = text-se
tion-size-in-bytesNow the de
oding of the instru
tions in the program is done using the hash table
reated earlier. On
e a instru
tion is re
ognized the operand values are extra
tedfrom the instru
tion and a fun
tion-pointer-table entry is generated with these valuesand the
orresponding fun
tion for the instru
tion. In
ase of a pro
essor withvariable instru
tion length, number of entries generated are equal to the length ofthe instru
tion in bytes. In this manner all the instru
tions in all text se
tions of theprogram are de
oded and fun
tion pointer table is generated. If an instru
tion getsunre
ognized then a dummy entry is
reated in that position of the fun
tion-pointer-table. If the
ontrol rea
hes this entry during the simulation, then it generatesan error message and simply returns the index of next instru
tion to the drivingroutine. This may lead to in
orre
t results and unpredi
ted behaviour of the Fsim.To avoid this the spe
i�
ation has to
over all the instru
tions needed for runningthe program. 15

3.3.5 Generation of Types and Memory ImageThe Sim-nML types are
onverted into
orresponding C types, like unsigned int for
ard and int for int et
. But the problem
omes with the sizes of these de
larations.Sim-nML allows the de
laration of variables of arbitrary bit sizes. Consider thefollowing Sim-nML de
laration.mem TEMP [1 , int (4) ℄This de
lares TEMP as a memory lo
ation of type integer and size 4 bits. Wehave to allo
ate exa
tly 4 bits for the
orre
tness of the value held by this lo
ation.For this the C feature of bit-�elds inside the stru
ture de
laration is used. For theabove de
laration the
ode generated is as follows.typedef
har int8;typedef stru
t {int8 val:4;}Int4;Int4 TEMP;Whenever TEMP o

urs in any attribute de�nition, TEMP.val is generated in thatpla
e. Thus whenever a variable is de
lared whi
h is not a multiple of 8 bits, nearestC-data stru
ture larger than the one being used in Sim-nML, for example, a 12 bitvariable in Sim-nML is de
lared using int16 type.Fsimg
omposes the memory image for Fsim by
ombining all the data se
tionsof the program and is written to a �le. When Fsim starts it loads this memory im-age in to its memory. All memory referen
es are redire
ted relative to the lo
ationwhere it is loaded.Finally
ode for the driver routine is generated whi
h
onsists of the
ode thatinitializes the PC, SP, LR and memory and the
ode for the simulation as we haveseen earlier. 16

Chapter 4ARM Spe
i�
ation in Sim nMLIn this
hapter we present a brief overview of ARM ar
hite
ture [2℄ and dis
uss theARM spe
i�
ations in Sim-nML.4.1 Overview of Ar
hite
tureThe ARM is a RISC pro
essor, and have the following features :� A large uniform register �le.� A load-store ar
hite
ture.� Uniform and �xed length instru
tion �elds.4.1.1 RegistersARM has thirty-one, 32-bit registers. But at any one time, only sixteen are visible.The other registers are used to speed up ex
eption pro
essing. All register spe
i�ersin the ARM instru
tions
an address any of the 16 registers. The sixteenth regis-ter(i.e R15) is used as the program
ounter and �fteenth(R14) register is used as thelink register. Moreover, R13 is generally treated as sta
k pointer. Apart from this,there is a status register
alled CPSR whi
h stores the
ondition
ode, Pro
essorMode and Interrupt enable bits. 17

4.1.2 Instru
tion SetThe ARM instru
tion set
an be divided into four broad
lasses of instru
tion:� datapro
essing� bran
h� load and store� multiplyAll ARM instru
tions may be
onditionally exe
uted depending upon the 16
ondition
onditions. Also there are a number of addressing modes for ea
h type ofinstru
tions.4.2 Overview of Spe
i�
ationThe des
ription of instru
tion heirar
hy is as follows. The top level node is instru
-tion. The instru
tions are divided depending on their instru
tion type as des
ribedin the previous se
tion. Around 8144 instru
tions have been spe
i�ed for the ARMinstru
tion set whi
h
overs all the user level instru
tions.

18

Chapter 5DebuggerOn entering the debugging mode, the debugger displays a
ommand line as shownbelow :Exe
uted last instru
tion <Op
ode of Instru
tion> at address <address>Type ``help'' to see the
ommandsType ``quit'' to exit from the debuggerThe debugger supports single stepping and
an be used to set breakpoints. It
an also be used to display the present
ontents of the registers and memory memorylo
ations.The list of
ommands supported by the debugger and their fun
tionality is des
ribedbelow :step [N℄ - This
ommand exe
utes next N instru
tions and thenenters the debuging mode. The default value of N is 1.break <address> - This sets a breakpoint at the spe
ified addressdelete <address> - This removes the breakpoint from the spe
ified addressdisplay - This
ommand shows the breakpoints.19

dr [<register-list>℄ - This
ommand shows the
ontent of the registers.If no registers are spe
ified then it shows
ontentof all the registers.dmw [address℄ [len℄ - This
ommand displays the value of the ``len'' wordsin memory starting at the spe
ified address. Thedefault value of len is one and the default value ofaddress is the previously spe
ified address.dmh [address℄ [len℄ - This
ommand displays the value of the ``len'' halfwords in memory starting at the spe
ified address.The default value of len is one and the default valueof address is the previously spe
ified address.dmb [address℄ [len℄ - This
ommand displays the value of the ``len'' bytesin memory starting at the spe
ified address. Thedefault value of len is one and the default value ofaddress is the previously spe
ified address.

20

Chapter 6TIPSIM
 C MODEL

(SOFTWARE
 APPLICATION)

 C ADAPTOR

TPI DRIVER
COMODELING MACROS

RTL TRANSACTOR

DUT - design under test
virtual communication

transactions

basic data transport

TIPSIMSOFTWARE SIMULATION

TIPSIM SIMULATION ENVIRONMENTFigure 5: Proto
ol sta
k of TIPSIM
osimulation environmentTIPSIM provides low level abstra
tion using whi
h
ommuni
ation
an be es-tablished between a software appli
ation and the Verilog hardware simulator. The21

TIP API of TIPSIM provides a library for sending data to the hardware simulationenvironment and the COMODELING MACROS provide the ne
essary Verilog
odefor sending data to the sofware simulation part. Thus these two provide a basi
 datatransport link between the hardware and software simulation environment. The CADAPTOR a
ts as a link between the C Model(appli
ation software) and the TIPAPI inorder to send the data to the hardware part. The RTL TRANSACTOR doesthe same thing for the hardware design.So for making a HW/SW
osimulation environment using TIPSIM we have re-pla
ed the C Model with our Fun
tional simulator. For this, we have implementedC Adaptor to make it
ompatible with the Fun
tional simulator.

22

Chapter 7Con
lusions
7.1 Con
lusionAs a part of this work we have developed an enhan
ed version of RetargetableFun
tional Simulator for our environment whi
h uses Sim nML as the language fordes
ribing pro
essor models (Instru
tion Set). We have des
ribed almost the entireARM Instru
tion Set in Sim nML, whi
h shows that Sim nML is powerful enoughto des
ribe the semanti
s of an Instru
tion Set. Also, a debugger has been addedwhi
h in
reases the utility of the Fun
tional Simulator. We also have integrated theFun
tional Simulator with TIPSIM (Hardware Simulation Environment) to developa prototype of a HW/SW
osimulation environment.7.2 Future WorkFollowing points
an be
onsidered as an extension to this work.� The algorithim used for generating fun
tions for instru
tions is quite ineÆ
ientsin
e it generates a lot of redundant
ode. So one
an try to �nd a more eÆ
ientalgorithim whi
h redu
es the amount of
ode being generated.� The debugger
an be futher enhan
ed to do symboli
 debugging.23

� One
an work on the prototype of the Hw/Sw
osimulation environment de-veloped to further enhan
e its utility and performan
e.

24

Bibliography[1℄ Y. Subhash Chandra. Retargetable fun
tional simulator. Master's thesis, IITKanpur, 1999.[2℄ Dave Jaggar. ARM Ar
hite
ture Referen
e Manual. Prenti
e Hall.

25

