
Debugger For Hw/Sw Cosimulation Environment
A Report Submittedin Partial Ful�llment of the Requirementsfor the Degree ofBahelor of Tehnology

byMayank Gupta
to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology KanpurJanuary, 1999

Certi�ateCerti�ed that the work ontained in the report entitled \Debug-ger For Hw/Sw Cosimulation Environment", byMayank Gupta,has been arried out under my supervision and that this workhas not been submitted elsewhere for a degree.
Dr. Rajat MoonaJanuary, 1999

ii

PrefaeThe developers of modern embedded systems feel the need of automati developmenttools suh as Funtional Simulator, Timing Simulator, Cross ompiler, Disassembleret. for faster development. These tools help them in verifying their design early inthe design yle and for studying various design tradeo�s. Suh tools put togetheran form an integrated environment, where the designers an speify their designsin a high level language and use these tools for veri�ation and exploring variousdesign parameters. These tools are also heavily used by researhers for speifyingnext generation Instrution Sets and miroarhitetures.

iii

AknowledgementsI would like to express my gratitude to my supervisor Dr. Rajat Moona for his guid-ane, motivation and invaluable suggestions at all stages of this projet. I would liketo thank him for his enthusiasm throughout the disussions I had with him duringthe ourse of this projet.Apart from my projet supervisor, I would like to onvey speial thanks to Sou-vik Basu and A. R. Rajiv for the help they have given during the ourse of thisprojet. I would also like to thank my friends for the support they have given tome.

iv

Contents
Prefae iiiAknowledgements iv1 Introdution 11.1 Organization of report . 22 Overview of Proessor Desription Language 32.1 Sim nML . 32.2 Intermediate Representation(IR) . 52.3 Di�erne between old and new version of IR 53 Retargetable Funtional Simulator(Fsimg) 73.1 Overview of Funtional Simulation(Fsim) Generation 73.2 Struture of Funtional Simulator(Fsim) 93.3 Detailed Algorithim ForCode Generation 113.3.1 Extrating instrutions and Flattening 113.3.2 Hashing . 143.3.3 Generating Funtions for instrutions (Ation Flattening) . . . 143.3.4 Instrution Deoding and Funtion Pointer Table Generation . 153.3.5 Generation of Types and Memory Image 164 ARM Spei�ation in Sim nML 174.1 Overview of Arhiteture . 174.1.1 Registers . 17v

4.1.2 Instrution Set . 184.2 Overview of Spei�ation . 185 Debugger 196 TIPSIM 217 Conlusions 237.1 Conlusion . 237.2 Future Work . 23Bibliography 25

vi

Chapter 1IntrodutionThe developers of modern embedded systems feel the need of automati develop-ment tools suh as Funtional Simulator, Cross ompiler, Disassembler, HardwareSimulator et. for faster development. These tools help them in verifying their de-sign early in the design yle and for studying various design tradeo�s. Suh toolsput together an form an integrated environment, where the designers an speifytheir designs in a high level language and use these tools for veri�ation and explor-ing various design parameters. These tools are also heavily used by researhers forspeifying next generation Instrution Sets and miroarhitetures.In this work we have developed an enhaned version of Retargetable FuntionalSimulator for our environment whih uses Sim nML as the language for desribingproessor models (Instrution Set). Sim nML is an extension of nML mahine de-sription formalism and is powerful enough to speify instrution set of a proessor.The earlier version of Retargetable Funtional Simulator was developed by Y. SubashChandra [1℄ as part of his mteh thesis. The Funtional Simulator was earlier testedonly Power-PC instrution set but now we have also tested it for ARM instrutionset. For this we have spei�ed the ARM Instrution Set in Sim nML. We have alsoadded a Debugger to this system whih helps in traing the instrutions being ex-euted and is quite helpful for debugging at the lowest level. As part of this work,we have integrated this Funtional Simulator with TIPSIM (Hardware Simulation1

Environment) to develop a prototype of a HW/SW simulation environment.1.1 Organization of reportThe rest of the report is organized as follows. Chapter 2 gives an overview ofthe proessor desription language. Chapter 3 gives an overview of the FuntionalSimulator and desribes the di�erene between the present and the previous versionof the Funtional Simulator. In Chapter 4 we give an overview of the arhitetureand Sim nML spei�ation of ARM Instrution set. Chapter 5 disusses the debuggerommands and hapter 6 gives an overview of the TIPSIM environment.

2

Chapter 2Overview of Proessor DesriptionLanguageThis hapter gives an overview of the Sim nML language used for proessor desrip-tion and the Intermediate Representation (IR) of this desription.2.1 Sim nMLIn Sim nML the proessor is desribed at instrution level. The instrution set isenumerated as an attribute grammar in a tree hierarhy apturing the semantis ofthe instrutions at di�erent levels of the hierarhy depending on the lass of instru-tions.Sim nML de�nes a top level node alled instrution and two kinds of produtionsor-rule, whose syntax is as follows:op n0 = n1 | n2 | n3and and-rule whose syntax is as followsop n0 (p1 : t1, p2 : t2, ...)a1 = e1 a2 = e2 ...3

where eah ni is a non-terminal and eah ti is a terminal. Eah ai is a attributeand ei is it's orresponding de�nition. pi's are the parameters used in the attributede�nitions.A sample Sim nML spei�ation of some hypothetial proessor is given as fol-lows.
mode REG_INDIRECT (i : ard (5)) = R [i ℄op instrution (x : instrution_ation)syntax = format (%s, x.syntax)image = format (%s, x.image)ation = {PC = PC + 1;x.ation;}op instrution_ation = add subop add (x : REG_INDIRECT)syntax = format (add %s, x.syntax)image = format (100000%s, x.image)ation = {AC = AC + x; }op sub (x : REG_INDIRECT)syntax = format (sub %s, x.syntax)image = format (100001%s, x.image)ation = {AC = AC + x; }The syntax attribute gives the assembly language syntax of the instrution. Theimage attribute de�nes the binary image of the instrution. The ation attribute4

gives the semanti ation assoiated with the instrution. Mode rule spei�es theaddressing modes for the proessor.2.2 Intermediate Representation(IR)The information in the Sim-nML spei�ation is aptured into a set of tables in IR.Eah table onsists of �xed or variable size reords representing a partiular type ofinformation. In this way it is easy to extrat out the information needed and reduesthe work of the tools whih intend to use Sim nML for proessor spei�ation. Theformat of this IR has hanged after the development of old Fsimg and so the oldversion of the Fsimg is not ompatible with the new version of IR. The new versionof Fsimg is ompatible with this new version of IR.2.3 Di�erne between old and new version of IRAs shown in Figure 1 the old version of IR generator had essentialy three parts. The�rst part parses the Sim nML spei�ation �le and does type heking, the next partattens the Sim nML hierarhy based on the image and the syntax attribute and thethird part generates the appropriate tables. By attening, we mean to enumerate allpossible instrutions by traversing the Sim nML hierarhy. In the new version of IRgenerator, the middle portion has been ompletely eliminated and the orrespondinghanges has been done in the format of the generated tables of IR.

5

PA
R

SE
R

 /

T
Y

PE
 C

H
E

C
K

E
R

FL
A

T
T

E
N

E
R

 T

A
B

L
E

S
G

E
N

E
R

A
T

O
R

 OLD IR Figure 1: Blok Diagram for Old IR Generator

PA
R

SE
R

 /

T
Y

PE
 C

H
E

C
K

E
R

 T

A
B

L
E

S
G

E
N

E
R

A
T

O
R

 NEW IR Figure 2: Blok Diagram for New IR Generator6

Chapter 3Retargetable FuntionalSimulator(Fsimg)In the past, funtional simulators (or ISS) were made for a spei� proessor arhi-teture. However, with ever inreasing speial purpose proessors and the need tospeify Instrution Set of proessors whih have not been realised in hardware, astrong need is being felt for retargetable funtional simulator generator. Suh a toolan be used to generate Instrution Set Simulator(ISS) for a partiular proessor.The idea behind suh a tool is to use proessor models for generating proessor spe-i� part of ISS. Figure 3 shows the blok diagram of the new Fsimg and subsequentsubsetions desribe the funtionality of eah part the Fsimg.3.1 Overview of Funtional Simulation(Fsim) Gen-eration
Fsimg �rst reads the IR �le to onstrut the tables. These tables apture theSim nML desription of the proessor's instrution set. The Fsimg then �nds al-l the instrutions by attening the image attribute of the Sim nML desription.The image attribute aptures the binary oding of instrutions. This part of the7

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

R
E

A
D

 I
R

 F
IL

E

F
L

A
T

T
E

N
 I

R

G
E

N
E

R
A

T
E

F

U
N

C
T

IO
N

S
C

O
N

ST
R

U
C

T

D
E

C
O

D
E

IN

ST
R

U
C

T
IO

N
S

R
E

A
D

 E
L

F
 F

IL
E

H

A
SH

 T
A

B
L

E

These portions have been changed

This portion has been added in the new version

 in the new versionFigure 3: Blok Diagram Of Retargetable Funtional SimulatorFsimg was not present in the earlier desription sine the image attribute was al-ready attened in the IR as desribed in the previous hapter. A hash table is thenonstruted from the attened images of the instrutions. This hash table helps isquikly deoding the instrutions of the ELF �le.After this, the ation attribute of the Sim-nML spei�ation whih aptures thesemantis of the instrutions is attened. For this the Fsimg onverts all instru-tions semantis into respetive funtions by attening the hierarhial desription ofation attribute. The Fsimg then deodes the instrutions from the program using8

the hash table, extrats the parameters for the instrution and generates a all to therespetive funtion with these parameters. All these alls to funtions are apturedinto a table alled funtion-pointer-table whose entries are basially a set of param-eters and a funtion pointer pointing to the respetive funtion. The entries in thistable are in the order of the instrutions in the program. The simulation starts byalling the funtion for the �rst instrution along with its parameters. The alledfuntion returns the index of the next instrution into the funtion-pointer-table.In this way simulation ontinues till the program is terminated. Along with thistable Fsimg generates data strutures for the memory, registers and other memoryelements in the proessor, and a driving routine for the simulation whih initializesthe memory and registers. The driving routine also alls the �rst instrution of theprogram.3.2 Struture of Funtional Simulator(Fsim)The funtional simulator generated by the RetargetableFuntionalSimulator hasthe following �ve omponents ontained in separate �les as shown in Figure 4 .1. A set of funtions one for eah instrution in the proessor desription inInstr., Instr1.2. A funtion-pointer-table orresponding to instrutions in the program in Fun-s. .3. The memory image of the program in memory.img . This orresponds to thedata portion in the ELF �le.4. Data strutures for registers and other memory elements in Types.h andVars.h.5. The driving routine in Fsim. .6. The funtion for handling alls to dynami funtions in dyn. and dyn.h .
9

Figure 4: Fsim ComponentsThe funtion-pointer-table is an array of struture whose members are an array ofparameters and a pointer to a funtion. The C delaration of funtion-pointer-tableis as follows.strut fun_ptr {uint64 p [MAX_PARAMS℄;int (*fun)(uint64 *);};strut fun_ptr Fun_Pointers [MAX_POINTERS℄ = {{{13, 0, 388}, Fun38},10

{{13, 13, 41916}, Fun146},};The funtion pointed to by the funtion pointer takes a pointer to the parameter-s and returns the index of the next instrution. When the simulation starts, thedriver routine initializes the oneptual program ounter (PC), stak pointer (SP),link register (LR) and memory. At this point PC points to the �rst instrution ofthe program and alls the respetive funtion with parameters. The funtion alledperforms the semanti ation assoiated with the instrution and returns the nextinstrution index to the driver routine. The driver routine uses this index to allthe next funtion. In this way the instrutions get exeuted (simulated) until theprogram terminates. The ode for the driver routine looks like the following.while((index = Fun Pointers[index℄.fun(Fun Pointers[index℄.p)) != -1);3.3 Detailed Algorithim ForCode Generation3.3.1 Extrating instrutions and FlatteningThe �rst step of the funtional simulator is to read the IR tables into the internaldata strutures. After this the image attribute has to be attened in order to get thebinary ode of the instrutions. It is used for deoding the instrution. This is heirar-ially spread over the spei�ation tree. The earlier IR used to stored the imagesof all possible instrutions after attening the above heirary while the present IRstores this information as spei�ed in the Sim nML spei�ations without attening.So the present Fsimg obtains the images for all instrutions by attening the imageattribute spei�ed in IR, whih was earlier done by the IR generator. The image at-tribute is attened in the bottom up fashion whih means that theRules(AndandOr)at the lower levels of the heirarhy are attened before the Rules at the upper level.First of all the Or rules are attened and then the And rules are attened. Whilethis attening is done additional information is generated for eah instrution whih11

indenti�es a unique path in the heirarhy for that instrution. This additional infor-mation is used by the AtionF latener for generating funtions for eah instrutionand for mapping the value supplied by the instrutions in the Elf �le to the or-responding parameters in the Sim nML heirarhy. The strutures used for storingthis additional information is as follows :typedef strut{uint32 depth;uint32 list_and[MAX_DEPTH℄;uint32 list_sub[MAX_DEPTH℄;uint32 len[MAX_PARAMS+1℄;int32 and_rule[MAX_PARAMS+1℄;int32 sub_rule[MAX_PARAMS+1℄;}dotExpr_Ent;typedef strut{uint32 depth;uint32 list_and[MAX_DEPTH℄;uint32 list_sub[MAX_DEPTH℄;uint32 no_params;int32 X[MAX_PARAMS℄;int32 Y[MAX_PARAMS℄;int32 type[MAX_PARAMS℄;int32 val1[MAX_PARAMS℄;int32 val2[MAX_PARAMS℄;}dotPart_Ent;typedef strut{uint32 msb;uint32 lsb; 12

uint32 no_flatrules;har **images;dotPart_Ent *dot_expr;uint32 *index;}andPart_Tbl_Ent;typedef strut{bool IsFlat;uint32 no_flatrules; // No of sub-rules in the flattened imagehar **images; // Flattened imagesdotExpr_Ent *dot_expr; // Inorder traversal of heirarhy for the orresponding imageuint32 no_params;int32 *X;int32 *Y;int32 *type;int32 *val1;int32 *val2;//used while flatteninguint32 no_andParams;int32 len[MAX_PARAMS + 1℄;// used if a part of the image of this AND rule is referred// by some higher level rule in its image using bit seletion operator.int32 no_parts;andPart_Tbl_Ent part[MAX_PART℄; 13

}andFlat_Tbl_Ent;3.3.2 HashingAfter this image masks are omputed for image of eah instrution. Image mask isbasially a bit string that has ones for the bit positions representing instrution andzeros in the parameter bit positions. In order to deode an instrution, we and itbit-wise with eah instrution mask and ompare the result with the image attributein the IR. This proess of deoding is, however time onsuming. To improve thedeoding performane the images are hashed into a hash table.First a global mask is omputed by bit-wise anding all instrution masks. Theglobal mask therefore represents the opode �eld of the instrutions. First levelhashing is done based on this opode �eld. However it is not very useful beauseinstrutions may not have distributed evenly to all the bukets. It may result inone buket having large number of instrutions while some other bukets having noinstrutions. For this reason instrutions in eah buket are further hashed based onthe remaining �xed �elds of those instrutions. This omes from the observation thatwhen we hash on opode all instrution of partiular type say integer instrutionsgets hashed to same buket. Now these instrution have additional �elds to identifydi�erent instrutions amongst themselves. These �elds are alled sub-opodes. Inthis way hashing is done several levels until single instrution is hashed to a buket.3.3.3 Generating Funtions for instrutions (Ation Flat-tening)After instrution hashing, Fsimg generates the funtions for the instrutions in thedesription. The semantis of an instrution is aptured in the ation attribute,whih is hierarhially spread. Starting at the top node till the leaf node, the de�ni-tion in the ation attributes is aptured as a C funtion. All the attribute de�nitionsare available in the PREFIX ATTRIBUTE DEFINITION table in the IR. The de�-nitions are in the pre�x notation whih are onverted in to the in�x notation during14

the ode generation. The generated funtions take pointer to parameters and re-turns the index of next instrution into the funtion-pointer-table.
3.3.4 Instrution Deoding and Funtion Pointer Table Gen-erationThe Fsimg reads the required information from the given program whih is in ELFformat into the internal data strutures. Depending on the proessor type, num-ber of funtion-pointer-table entries are alulated. If it is a proessor with �xedinstrution length, then the alulation is as follows.no-of-entries = text-setion-size-in-bytes / instrution-lengthIf it is a proessor with variable instrution length, then the alulation is asfollows. no-of-entries = text-setion-size-in-bytesNow the deoding of the instrutions in the program is done using the hash tablereated earlier. One a instrution is reognized the operand values are extratedfrom the instrution and a funtion-pointer-table entry is generated with these valuesand the orresponding funtion for the instrution. In ase of a proessor withvariable instrution length, number of entries generated are equal to the length ofthe instrution in bytes. In this manner all the instrutions in all text setions of theprogram are deoded and funtion pointer table is generated. If an instrution getsunreognized then a dummy entry is reated in that position of the funtion-pointer-table. If the ontrol reahes this entry during the simulation, then it generatesan error message and simply returns the index of next instrution to the drivingroutine. This may lead to inorret results and unpredited behaviour of the Fsim.To avoid this the spei�ation has to over all the instrutions needed for runningthe program. 15

3.3.5 Generation of Types and Memory ImageThe Sim-nML types are onverted into orresponding C types, like unsigned int forard and int for int et. But the problem omes with the sizes of these delarations.Sim-nML allows the delaration of variables of arbitrary bit sizes. Consider thefollowing Sim-nML delaration.mem TEMP [1 , int (4) ℄This delares TEMP as a memory loation of type integer and size 4 bits. Wehave to alloate exatly 4 bits for the orretness of the value held by this loation.For this the C feature of bit-�elds inside the struture delaration is used. For theabove delaration the ode generated is as follows.typedef har int8;typedef strut {int8 val:4;}Int4;Int4 TEMP;Whenever TEMP ours in any attribute de�nition, TEMP.val is generated in thatplae. Thus whenever a variable is delared whih is not a multiple of 8 bits, nearestC-data struture larger than the one being used in Sim-nML, for example, a 12 bitvariable in Sim-nML is delared using int16 type.Fsimg omposes the memory image for Fsim by ombining all the data setionsof the program and is written to a �le. When Fsim starts it loads this memory im-age in to its memory. All memory referenes are redireted relative to the loationwhere it is loaded.Finally ode for the driver routine is generated whih onsists of the ode thatinitializes the PC, SP, LR and memory and the ode for the simulation as we haveseen earlier. 16

Chapter 4ARM Spei�ation in Sim nMLIn this hapter we present a brief overview of ARM arhiteture [2℄ and disuss theARM spei�ations in Sim-nML.4.1 Overview of ArhitetureThe ARM is a RISC proessor, and have the following features :� A large uniform register �le.� A load-store arhiteture.� Uniform and �xed length instrution �elds.4.1.1 RegistersARM has thirty-one, 32-bit registers. But at any one time, only sixteen are visible.The other registers are used to speed up exeption proessing. All register spei�ersin the ARM instrutions an address any of the 16 registers. The sixteenth regis-ter(i.e R15) is used as the program ounter and �fteenth(R14) register is used as thelink register. Moreover, R13 is generally treated as stak pointer. Apart from this,there is a status register alled CPSR whih stores the ondition ode, ProessorMode and Interrupt enable bits. 17

4.1.2 Instrution SetThe ARM instrution set an be divided into four broad lasses of instrution:� dataproessing� branh� load and store� multiplyAll ARM instrutions may be onditionally exeuted depending upon the 16ondition onditions. Also there are a number of addressing modes for eah type ofinstrutions.4.2 Overview of Spei�ationThe desription of instrution heirarhy is as follows. The top level node is instru-tion. The instrutions are divided depending on their instrution type as desribedin the previous setion. Around 8144 instrutions have been spei�ed for the ARMinstrution set whih overs all the user level instrutions.

18

Chapter 5DebuggerOn entering the debugging mode, the debugger displays a ommand line as shownbelow :Exeuted last instrution <Opode of Instrution> at address <address>Type ``help'' to see the ommandsType ``quit'' to exit from the debuggerThe debugger supports single stepping and an be used to set breakpoints. Itan also be used to display the present ontents of the registers and memory memoryloations.The list of ommands supported by the debugger and their funtionality is desribedbelow :step [N℄ - This ommand exeutes next N instrutions and thenenters the debuging mode. The default value of N is 1.break <address> - This sets a breakpoint at the speified addressdelete <address> - This removes the breakpoint from the speified addressdisplay - This ommand shows the breakpoints.19

dr [<register-list>℄ - This ommand shows the ontent of the registers.If no registers are speified then it shows ontentof all the registers.dmw [address℄ [len℄ - This ommand displays the value of the ``len'' wordsin memory starting at the speified address. Thedefault value of len is one and the default value ofaddress is the previously speified address.dmh [address℄ [len℄ - This ommand displays the value of the ``len'' halfwords in memory starting at the speified address.The default value of len is one and the default valueof address is the previously speified address.dmb [address℄ [len℄ - This ommand displays the value of the ``len'' bytesin memory starting at the speified address. Thedefault value of len is one and the default value ofaddress is the previously speified address.

20

Chapter 6TIPSIM
 C MODEL

(SOFTWARE
 APPLICATION)

 C ADAPTOR

TPI DRIVER
COMODELING MACROS

RTL TRANSACTOR

DUT - design under test
virtual communication

transactions

basic data transport

TIPSIMSOFTWARE SIMULATION

TIPSIM SIMULATION ENVIRONMENTFigure 5: Protool stak of TIPSIM osimulation environmentTIPSIM provides low level abstration using whih ommuniation an be es-tablished between a software appliation and the Verilog hardware simulator. The21

TIP API of TIPSIM provides a library for sending data to the hardware simulationenvironment and the COMODELING MACROS provide the neessary Verilog odefor sending data to the sofware simulation part. Thus these two provide a basi datatransport link between the hardware and software simulation environment. The CADAPTOR ats as a link between the C Model(appliation software) and the TIPAPI inorder to send the data to the hardware part. The RTL TRANSACTOR doesthe same thing for the hardware design.So for making a HW/SW osimulation environment using TIPSIM we have re-plaed the C Model with our Funtional simulator. For this, we have implementedC Adaptor to make it ompatible with the Funtional simulator.

22

Chapter 7Conlusions
7.1 ConlusionAs a part of this work we have developed an enhaned version of RetargetableFuntional Simulator for our environment whih uses Sim nML as the language fordesribing proessor models (Instrution Set). We have desribed almost the entireARM Instrution Set in Sim nML, whih shows that Sim nML is powerful enoughto desribe the semantis of an Instrution Set. Also, a debugger has been addedwhih inreases the utility of the Funtional Simulator. We also have integrated theFuntional Simulator with TIPSIM (Hardware Simulation Environment) to developa prototype of a HW/SW osimulation environment.7.2 Future WorkFollowing points an be onsidered as an extension to this work.� The algorithim used for generating funtions for instrutions is quite ineÆientsine it generates a lot of redundant ode. So one an try to �nd a more eÆientalgorithim whih redues the amount of ode being generated.� The debugger an be futher enhaned to do symboli debugging.23

� One an work on the prototype of the Hw/Sw osimulation environment de-veloped to further enhane its utility and performane.

24

Bibliography[1℄ Y. Subhash Chandra. Retargetable funtional simulator. Master's thesis, IITKanpur, 1999.[2℄ Dave Jaggar. ARM Arhiteture Referene Manual. Prentie Hall.

25

