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Abstract

Moving Picture Experts Group (MPEG) has developed two generic audio-video
standards till date, namely MPEG-1 and MPEG-2. While MPEG-1 was developed
for storage and retrieval of moving pictures and audio on storage media, MPEG-2
targeted at higher quality and bandwidth applications like digital television. With
the number of applications of MPEG-2 standard increasing everyday, there arises the
necessity of a stable and efficient decoder for MPEG-2 compatible bit-streams that

can overcome the bottleneck of speed in real-time applications.

In the current work, we have developed a real-time video decoder for MPEG-2
bit-streams with an emphasis on stability, efficiency and picture quality. We have ex-
perimented with several approaches to compute the inverse discrete cosine transform,
and chosen the most efficient one which takes O(N?log,N) time for a block size of
N x N. As the decoder should be able to display frames at the coded frame-rate, it
may intermittently discard some of the frames when otherwise the required frame-rate

can not be met.
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Chapter 1

Introduction

1.1 Motivation

The techniques of capturing images by cameras date long back. Traditional cine-
matography use techniques by which individual pictures called frames are displayed
at a rate that human being cannot distinguish separately due to persistence of vision,
thus giving an illusion of continuous motion picture. Therefore, the motion pictures
are basically a collection of frames displayed typically at a rate exceeding about 20
frames per second. With the advent of digital computers, it became inevitable to e-

volve techniques to store images and more importantly video in a non-volatile media.

A digital image is essentially an array of pixel values represented by a finite number
of bits. The term digital image processing generally refers to processing of a digital
image by a digital computer. Digital Signal Processing (DSP) techniques are the
most commonly used techniques for digital image processing. A digital video is a
collection of digital images stored in an efficient format so that it can be processed
in real-time and requires small space for storage. With increasing interest in multi-
media applications, audio is also added alongwith the video to get the flavor of real

movies in digital computers.

Several efforts have been undertaken in order to standardize the digital audio-
and-video coding technology. The Moving Picture Experts Group (MPEG) [11] has
developed two important standards, namely MPEG-1 and MPEG-2, which are the



most widely accepted ones in this direction. MPEG-2 is a logical extension of MPEG-
1 standard, incorporating further refinements and more functionalities. The standard
has certain inherent capabilities that have made it an automatic choice of the industry.
In this thesis we have developed a real-time video decoder for MPEG-2 coded motion

pictures.

1.2 Digital Compression

Compression is a technique to represent digital information in a compact form in
order to save precious storage space. For images and digital audio applications, the
compression also yields the minimization of the bit-rate. The compression in such
applications can even be lossy under the constraints of signal quality, implementation
complexity and compression/decompression speed. A considerable amount of statis-
tical redundancy exists in such data due to spatial and temporal correlation among

the different samples and therefore a large compression can be achieved.

1.2.1 Importance of compression

Usually an enormous amount of data is associated with audio-visual information, the
storage for which is not always affordable. Although the capacities of many digital
storage media are substantial, their access speeds usually vary inversely in relation to
their capacity. Therefore storage and transmission of image data require huge capacity
and bandwidth, which is often very expensive. The image compression techniques
have been of great significance by which the number of bits required to store or
transmit images can be reduced by orders of magnitude without any perceivable loss

of information.

A reasonable quality motion picture has spatial resolution of approximately 512 x
512 pixels per frame. At 8 bits per color component (i.e., 24 bits per pixel value)
and 30 frames per second, this translates into a rate of nearly 23 MBytes/sec of
uncompressed data. Therefore, an half hour (1800 seconds) movie will require a
storage space of about 40 GB. Further enhancements in the picture quality result in

even higher data rates.



1.2.2 Lossless versus Lossy compression

Compression methods may be either lossy or lossless. In lossless compression, the
reconstructed data is identical to the original data. But a majority of applications
in image processing do not require the reconstructed data to be identical to the
original data as long as the picture quality is within the acceptable limit. MPEG-2
video standard recommends the evaluation of the Discrete Cosine Transform (DCT)
for the compression [11]. Though inherently, the DCT itself is a lossless transform,
the reconstructed video is not necessarily identical to the original data due to the

quantization of the resultant values.
1.3 Discrete Cosine Transform
Discrete Cosine Transform (DCT) is a fundamental computation in many digital

signal processing applications, such as image data compression. For image data it

results in a compression in the range of about 10 to 100.

1.3.1 Definition of DCT

The N x N cosine transform matrix C' = ¢(k,n), called discrete cosine transform, is

defined as

1 — _
c(k,n) = vy 2n+1)k Fo0bsms N
ﬁcos(n;]’v)ﬂ, 1<k<N-1,0<n<N-1

For a given 2-d data sequence {z;; : 0 < i, < N—1}, the 2-d DCT sequence
{Yin : 0 <m,n < N — 1} is given by the following [1].

N-1N-1 : ,
21+ 1 2 1
Tij = u(m)u(n)Ymn cos( Z;N)mw cos( ‘7;]—\[ )nﬁ (1.2)




where

1 —
u(m) = 75 ifm=20
0, otherwise

In order to use DCT, the image is subdivided into 8 x8 block of samples. Each of
these 8x8 blocks of the original image is then mapped to the frequency domain, i.e., it
is represented as a compositions of DCT basis functions with 64 appropriately chosen
coefficients, representing different horizontal and vertical intensities. The figure 1.1
illustrates the corresponding spatial frequency! patterns. Each of these spatial fre-
quency patterns has a corresponding coefficient, the amplitude needed to represent

the contribution of that spatial frequency in the block of data being analyzed.
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Figure 1.1: Basis function patterns of an 8X8 cosine transforms

Several fast implementations of DCT and IDCT - both software and hardware
- have been proposed in the literature [2, 4, 6, 18]. We have used the row-column
approach proposed by [1] to transform the 2-d IDCT computation into 16 1-d ID-
CTs and then used the algorithm proposed by B.G.Lee [8] to compute 1-d IDCT
in O(Nlog,N) time. The overall complexity of the 2-d IDCT computation is then
O(N?logyN).

luminance changes w.r.t. spatial coordinates




1.3.2 Merits of DCT

DCT is so useful because of its following properties :

e The cosine transform requires only real number arithmetic and sans handling

of complex numbers.

e The cosine transform is an orthogonal transform, i.e.,
Cfl — CT

e The computation of cosine transform is fast. The cosine transform of a vector

of N elements can be calculated using O(Nlog,N) operations.

e The cosine transform has excellent energy compaction for highly correlated data,
i.e., if there is considerable amount of correlation between different data-points,
the most of the information in the transformed data will be stored in small
number of data-points and so we can represent the original data with fewer

data-points.

e The cosine transform is very close to the statistically optimal Kerhunen-Loeve
transform (KLT) for highly correlated images [1]. This property of the cosine
transform together with the fact that it is a fast transform based on real opera-
tions has made it a useful substitute for the KL transform for highly correlated

image data.

1.4 MPEG Standards for Motion Pictures

MPEG is a working group of ISO?/IEC? consisting individuals operating in research,
academia and industry. The group is responsible for the development of international
standards for compression, decompression, processing, and coded representation of
moving pictures, audio and their combination. Established in January 1988, MPEG
has already developed two evolutionary standards MPEG-1 (Nov. 92) (formally,

“Information technology - Coding of moving pictures and associated audio for digital

International Standard Organization
3International Electrotechnical Commission



storage media at up to about 1,5 Mbits/s”), and MPEG-2 (Nov. 94) (formally,
“Information technology - Generic coding of moving pictures and associated audio
information”). Two more standards, namely MPEG-4, the standard for multimedia
applications and MPEG-7, the content representation standard for information search

are currently being developed.

Worldwide, the MPEG-1 and MPEG-2 audio/video coding standards have at-
tracted much attention over the past few years, with an increasing number of VLSI
and software implementations of these standards becoming commercially available.
While MPEG-1 has made a remarkable impact in audio/visual CD-ROM application-
s, with various implementations in both software and hardware, MPEG-2 standard
has changed the concepts of digital television with applications like DVD (Digital
Versatile Disk), HDTV (High-Definition Television) etc.

1.4.1 MPEG-2 Standard

MPEG-2 standard was developed with many video-coding algorithms integrated into
a single syntax to meet diverse applications requirements. As a rule, every MPEG-2
decoder should be able to decode a valid MPEG-1 bit-stream. New coding features
were added in MPEG-2 to achieve sufficient functionality and quality. However,
implementation of the whole syntax is not required for every application. Therefore,
MPEG-2 has defined subsets of the standard to address specific classes of applications
with similar functional requirements. This is accomplished by introducing the concept
of Profiles. A profile is thus a defined subset of the entire syntax of MPEG-2. MPEG-2
defines five different profiles, namely Simple profile (SP), Main profile (MP), SNR-
scalable profile (SNR), spatially-scalable profile (Spt) and High profile (HP) with the
relation SP € MP C SNR C Spt C HP. In general, each profile defines a new set of
algorithms added as a superset of the profile below.

Even with profiles to define specific subsets of the entire syntax and functionality,
the parameter ranges are quite large to achieve compliance over the whole range.
Therefore, Levels are introduced to put constraints on some of the parameters. A
Level specifies the ranges of parameters like frame-size, frame-rate, and bit-rate that
are to be supported by a particular application to conform to a specific profile. Four
levels are defined in MPEG-2 : low (LL), main (ML), high-1440 (H-14), and high
(HL). It is expected that most MPEG-2 implementations will at least conform to the



Main Profile at Main Level (MP@QML).

8 MPEG-2 Systems

MPEG-2 standard evolved from MPEG-1 standard. MPEG-1 was designed to work
with digital storage media that have minimum errors. On the other hand, MPEG-2
is designed to work through the communication networks also and therefore it need-
ed improved error resilience. MPEG-2 systems solved these diverse requirements
by defining two different data stream types : the program stream (PS) , optimized
for storage devices and personal computer implementations, resulting in long variable
length packets ¢ and the transport stream (TS), which uses short, fixed length packets
(188 bytes) in order to facilitate transmission over noisy channels. Both data-stream
types use the same packet structure called packetized elementary stream (PES) struc-
ture. Each PES contains exactly one video or audio elementary stream. A model for
MPEG-2 systems is shown in the figure 1.2.
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- Packetizer - pg
Data Encoder Program
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Figure 1.2: Model for MPEG-2 Systems encoding

‘long packets can be supported because of a presumed low media error rate. Resultant low
overheads allow processing of packet headers in software by a general purpose processor



The data streams are synchronized between the encoder and the decoder. For
this, MPEG standards provide a mechanism of timestamping each PES with respect
to a common reference point. The common reference point is first communicated

between the encoder and the decoder.

1 MPEG-2 Video

MPEG-2 video standard was originally intended for coding interlaced video at tele-
vision resolution in the bit-rate range of 4-9 Mbits/s. However, MPEG-2 video also
supports higher resolution such as those needed for HDTV, at higher bit-rates. In
MPEG-2, image frames are encoded into one of the four frame types I-frame (intra-
coded), P-frame (predictive-coded), B-frame (bi-directionally predictive-coded) and
D-frames (DC-coded). I-frames are are coded independently, i.e., without any refer-
ence to the other pictures. P- and B-frames are compressed by coding the differences
between the current frame and the reference® I-frame or P-frame, thereby exploiting
the temporal correlation between successive frames. P-frames calculate predictions
from a previous I-frame or P-frame, whereas B-frames obtain predictions from the
nearest and upcoming I-frame or P-frames. D-frames are allowed in the MPEG-1
compatibility mode only. They are coded using only the DC coefficients of the DCT
block.

1 MPEG-2 Audio

The MPEG audio compression standard defines a family of algorithms appropriate
for a wide range of audio material, like speech, music, and the range of special ef-
fects that might be expected on a movie soundtrack. MPEG-2 audio extends the
two-channel stereo capability of MPEG-1 audio (ISO/IEC 11172-3) to five-channel
surround sound, with the option of a sixth low-frequency enhancement (LFE) channel

which can be used to produce loud sound effects.

%a preceding and upcoming anchor (I-frame and P frame) frame w.r.t. which the difference are
calculated



1.4.2 Emergence of MPEG-4 for multimedia applications

Anticipating the rapid convergence of telecommunications, computer, and television,
the MPEG group has officially initiated a new standardization effort in 1994 with
an eye to standardize algorithms and tools for coding and to provide a flexible rep-
resentation of audio-visual information to meet the challenges of future multimedia

applications. This effort is formally known as MPEG-4.

8 MPEG-4 Video

1. MPEG-4 video standard is intended to support various formats, bit-rates and

resolution.

2. MPEG-4 video is expected to achieve compression ratio higher than the existing

standards.

3. MPEG-4 video is expected to provide content-based functionalities like random-

access scalability of texture, images and video.

1 MPEG-4 Audio

The new features that will be supported by MPEG-4 audio are features like synthe-

sized speech, trick-mode functionalities like pause, resume, forward and backward.

1.5 Related work

Before the official release of MPEG-1 and MPEG-2, MPEG Software Simulation
Group (MSSG) developed decoders for them and tested the standards thoroughly to
check for any hidden flaws. After the actual release of the standard, many hardware
and software vendors and research groups have implemented these standards. The
Berkeley Plateau Multimedia Research [13] developed the first widely-distributed
software decoder for MPEG-1 video in November 1992. Neil Gray of University
of Wollongong, Australia, has implemented an MPEG-1 motion picture decoder in
C++ [14]. Researchers in the Vision and Neural Networks Lab. of Wayne State
University has developed MPEG Developing Classes (MDC) to help people implement

9



their own MPEG related softwares without actually going into minute details of
MPEG [15].

1.6 Current Work

In the current work, we have implemented an MPEG-2 video decoder. The video
decoder decodes video frames and then displays them at a speed reasonable enough
for real-time video. However, if it cannot meet the frame-rate requirement for a
particular bit-stream, the decoder discards some of the frames to adaptively catch up
with the required speed. In this current work, the audio data is not decoded. Instead
the audio information is read and sent to an MP3 [16] audio decoder in a form
understandable by it. Thus audio and video are played by two different processes.
However, if no audio player is available it discards the audio and displays the video
only. In the decoder, the image decompression algorithms are developed in such a way
that we get the best quality of video at a reasonable speed. The decoder can also play
from a VideoCD [19] instead of a file on the hard disk. The decoder can also display
the video frames at any size, including the Full-Screen size. Trick-mode functionalities
like Rewind, Fast/Slow Reverse, Fast/Slow Forward and Pause/Resume are provided
with the video player. A user-friendly graphical user-interface is also provided with

the video decoder.

1.7 Organization of this report

The rest of this report is organized as follows. In chapter 2, we describe the design
of the video decoder and discuss the related issues. In chapter 3, we present the
implementation details of the decoder and provide the outlines of the algorithms. In

chapter 4, we conclude this thesis and provide test setup, results and conclusions.

10



Chapter 2

Design of the Video Decoder

2.1 Overview

The design of decoder has been kept as simple as possible. We have followed the data
flow as described in the MPEG-2 standard. Any valid MPEG-2 bit-stream contains
at least one PES that consists of either a video or an audio stream. Since an MPEG-2
decoder should be able to decode an MPEG-1 bit-stream also, the video bit-stream

structure shown in the figure 2.1 is valid for MPEG-2 standard also.

VIDEO SEQUENCE

sequence header ISO/IEC 11172-2 video syntax
(MPEG-1 constrained parameters)

sequence_end code

Figure 2.1: MPEG-1 video syntax

MPEG-2 syntax for a typical coded video sequence is defined in a hierarchical

representation with six layers as shown in the figure 2.2.

Every valid MPEG-2 video bit-stream starts with a sequence header. A sequence
header may optionally be followed by sequence extension For true MPEG-2 video bit-

streams the sequence extension is necessary part of the sequence layer. For MPEG-1

11




ISO/IEC 13818-2 video sequence

sequence sequer.nce GOP header * sequence GOP header * sequence sequence layer
header extension and picture(s) header and picture(s) end_code
GOP user group of pictures layer
, | data*
header (GOP header and user
”””” data are optional)
picture picture 9oding extension dice dice R ! dice ! picture layer
header extension | ansuser data o 3
slice | | b .
header macroblock macroblock ' macroblock ' macroblock | s e *. 1 macroblock | slice layer
n;%%)block block(0) | block(1) | block(2) | block(3) | block(4) | block(5) | macroblock layer
er
(if block coded)
differential DC coeff| run-level VLC i run-level VLC i i\\ ......... end of block block layer

(if intra macroblock)

Figure 2.2: MPEG-2 video syntax
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video bit-streams, it is never needed. Thus the decoder can identify the type of bit
stream (MPEG-1 or MPEG-2) and decompress it accordingly. In essence, the possible
routes in the MPEG-2 video bit-stream syntax can be one of the two shown in the
figure 2.3.

MPEG-1
ISO/IEC 11172-2

Y

Sequence Header | » Bitstream

Extended
Sequence

Y

Figure 2.3: Possible routes in MPEG-2 video syntax

Since the syntax of the MPEG-1 video standard already supported very large size
pictures and wide range of bit-rates, it became necessary to define a minimum set
of universal parameters, which could be decoded by any decoder. Those parameters
are called “constrained parameters” and the bit-stream satisfying them are called
“constrained bit-streams”. The MPEG-1 constrained parameter set is shown in the
table 2.1.

Parameter Upper Bound
Horizontal resolution 720 pixels/line
Vertical resolution 576 lines/frame

No. of macroblocks per frame 396
No. of macroblocks per second 396 x 25

Frame rate 30 Hz
Motion vector range +64
Bit rate 1.856 Mbps

Table 2.1: MPEG-1 Constrained Parameter Bounds

13



Though MPEG-2 video decoder should be able to decode any MPEG-1 video bit-
stream, the standard expects that it should be able to decode at least the constrained

bit-streams.

2.2 Different Syntax Layers

The layered structure of the MPEG-2 data stream facilitates flexibility and efficiency
in the decoder. Coding process can be logically distinct and the layers can be decoded

systematically. Each layer supports a specific function as described in the table 2.2.

Layers Functions

Sequence layer One or more groups of pictures
Group of pictures layer Random access into the sequence
Picture layer Primary coding unit

Slice layer Resynchronization unit
Macroblock layer Motion compensation unit

Block layer DCT unit

Table 2.2: Functional comparison of six layers

The top coding layer is called Sequence Layer because the video bit-stream is
referred to as a sequence in MPEG-2 terminology. It consists of a sequence header,
one or more groups of pictures (GOP), and an end-of-sequence code. Any valid video

sequence must end with the sequence-end-code.

The GOP Layer is a set of pictures in the contiguous display order. A GOP
contains at least one I-frame. In MPEG-2, GOP headers are optional. The figure
2.4 shows the structure of a typical GOP, along with the prediction dependencies

between different types of frames.

The Picture Layer is a primary coding unit that consists of the luminance and
chrominance components of a frame. It defines the coding information for each pic-
ture. Picture header contains a temporal reference number that defines the display
order of the picture. In addition to that, it contains information about the picture

type (I,P,B or P). Each picture is divided into slices. A slice is a string of consecutive

14
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uw

Bidirectional
Forward Prediction

P B

Prediction

Figure 2.4: MPEG-2 GOP structure

macroblocks of arbitrary length from left to right across the whole picture. MPEG-2
requires that the slices begin and end in the same macroblock row. The slice header

contains information about its position in the picture and the quantizer scale factor.

The Slice Layer is important in handling errors. The decoder can skip the corrupt-
ed slices and go to the start of the next slice, if the bit-stream is corrupted somehow.
[t contains a number (> 1) of macroblocks (MB). A macroblock is a 16pizel X 16pizel
motion compensation unit. Each macroblock begins with a Header which defines the
macroblock type, motion vector type, quantizer scale code and a coded block pattern
(CBP) indicating which blocks in the macroblock are actually coded. Macroblock
coding is a complex operation, but all the overhead is in the encoder. It is the re-
sponsibility of the encoder to decide where a picture should be coded as I-frame,
P-frame or B-frame. In fact even within an individual I-frame, P-frame or B-frame,
macroblocks can be coded differently. The job of the decoder is to follow the coding

of the encoder and process the macroblocks accordingly.

The Macroblock Layer defines a number of blocks depending on the chroma format
(maximum is 6 for 4:2:0, 8 for 4:2:2 and 12 for 4:4:4) used. Some of the blocks may
not be coded as indicated in CBP.

15



The Block Layer contains the actual data for the quantized DCT coefficients of an
8x8 block in the macroblock. The blocks are coded using variable length code (VLC)
tables. The overhead of choosing which blocks are to be coded in bestowed upon the
encoder. The decoder only needs to decode the CBP and use the VLC tables to find
out the DCT data and then perform inverse quantization and 8 x8 IDCT operation

respectively on it.

2.3 Inverse DCT

The IDCT coefficients are not always the actual pixel® values as many of the MPEG-2
frames (P-frames and B-frames) are inter-coded to take the advantages of temporal
redundancies between successive frames in a normal video sequence. However, if the
frame is intra-coded, then the IDCT values are directly sent for processing required

for display.

input bitstream

Lo}
5 4]
8
=2
Vlaﬁa%e inverse DOT post e
ENEl B » + . . | 5
decoding quenfizaton Processmg e
' o

form || reference

predictor frames

MFPEG-2 Decader

Figure 2.5: A typical MPEG-2 decoder structure

As shown in the figure 2.5, the IDCT coefficients for inter-coded frames are then
added to the predictions generated by the form predictor to generate the actual frame
if the frame is inter-coded. The form predictor takes the the motion-vectors coded
in the bit-stream and reference frames to generate the predictions for the next frame
in the coding order. If this decoded frame is not a B-frame, then it is stored in the

buffer because it will be the next reference frame.

'pel in MPEG terminology
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The frame is then displayed on the VDU if it is the next frame in the display
order, i.e. a frame rearrangement is done prior to the final display. Some additional

processing is required for the frame in case the user wants to see it in zoom mode.

2.4 Design Issues

The design decisions of the video decoder were largely affected by the following issues.

e Speed - The speed (rather frame-rate) is a big issue for any real-time application.
We tried to meet the deadline of the coded frame-rate. We have used integer-
arithmetic wherever possible because it is much faster compared to the floating-
point arithmetic. For a slow processor or system, the decoder may discard some
of the frames and meet the frame-rate requirement of the particular video-
sequence in order to achieve the coded frame-rate. The current implementation
discards only the B-frames. If the number of skipped frames become very large,

there may be some kind of jerkiness in the display.

e Picture quality - Due care has been taken to preserve the required picture
quality. The overall quality of the reconstructed frames should be as similar as
possible to the original ones. Many implementations do not take into account
all the IDCT basis functions during the IDCT computations in order to achieve
greater frame-rate. But that may affect the overall video quality. In the current

implementation, we take all the IDCT basis functions for computations.

e Precision - In MPEG-2, pixel values of one picture are often used in the re-
construction of the subsequent pictures. So careful attention should be paid
to the accuracy of the all arithmetic computations, such that the noise due to

arithmetic precision does not influence the overall picture quality.

e Compatibility - The decoder should be forward (a new generation decoder’s
capability to decode bit-streams created by an existing encoder) and upward (a
higher-resolution decoder’s capability to decode bit-streams created by a low-
resolution encoder) compatible with the exiting MPEG-1 encoders, meaning it
should be able to decode the bit-streams created by the MPEG-1 encoders.

e Error resilience - The decoder should be able to understand and if possible,

recover any kind of eventual errors.
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Chapter 3
Implementation Detalils

In the current implementation, the MPEG-2 decoder decodes the video data by itself
and sends the audio data to an audio decoder in its expected format for playing. It is
however the responsibility of the video decoder to ensure real-time operation of the

player. In this chapter the outlines of the various algorithms have been presented.

3.1 Inverse Discrete Cosine Transform

Inverse Discrete Cosine Transform computation is one of the most important part
of MPEG-2 decoding. As IDCT operation on the whole image at a time is highly
compute-intensive, MPEG-2 recommends IDCT on the basis of 8 x8 block size. Thus

the pixel values are computed by :

LI (20 +1)m (27 +1)n

1
Zij = 3 >N u(m)u(n)Yomm €08~ o~ W COS——— ——T (3.1)

where 0 <i,5 < 7.

It may be noted that for most of the blocks, the DCT coefficients Y,,, exhibit
high energy compaction, i.e., the most significant values are contained in just a few

coefficients and the rest of them are insignificant as shown in the figure 3.1.

As shown in the figure 3.1, on an average only a small number of DCT coefficients

need to be transmitted to the receiver to obtain a valuable approximate reconstruction
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Figure 3.1: Typical energy distribution of DCT

of the image blocks. Moreover, the most significant DCT coefficients are concentrat-
ed around the upper left corner (low DCT coefficients) and the significance of the
coefficients decays with increased distance. This implies that higher DCT coefficients
are less important for reconstruction than lower coefficients. Keeping this in mind, it

was possible to optimize the IDCT computations significantly.

We have observed that in many cases, the entire 8 x 8 block contains only one
non-zero DCT coefficient Yyq. Therefore, the pixel values of all the 64 elements in the
block is same (= §Ypo). However if the 8 x8 block contains more than one non-zero
coefficients then we need to transform the 2-d IDCT computation into into 16 1-D
IDCTs using row-column approach. For 1-d IDCT we used the algorithm proposed
by B.G.Lee [8] whose complexity is O(Nlog,N) for one N-point IDCT. And so the
time complexity of 2-d IDCT computation for a single block in our implementation is
O(N?log,N) which is fairly good as compared to the O(N*) complexity of the original
IDCT formula given by the equation 3.1. Therefore the overall time complexity of
evaluating one frame comes out to be O(M?log,N) where the frame size is M x M
and block size is N x N.
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3.1.1 Lee’s Algorithm to evaluate 1-d IDCT

If we denote the DCT of the data sequence z(k),k = 0,1,..., N — 1, by X(n),n =
0,1,...,N — 1, then we have [1]

=l (2k +1)n

z(k) = e(n)X(n) cos A (3.2)

where

1 e
=4 v Th
0, otherwise

We consider the equation 3.2, which is the inverse DCT (IDCT), and define C

such that (2% + 1)
C(2k+1)n . cosin

2N - 2N .

Then N-point IDCT becomes

xwzﬁﬁw@%% (3.3)

where X (n) = e(n)X (n)

Now if we define,

N/2-1
g(k) = > X(2n) CiN7y)", (3.4)
n=0
and
Ne O > 2k+1)n
h(k) = 3 [X(2n—1)+ X (2n+ 1) CFE" (3.5)
n=0

k=0,1,2,...,N—1

then it has been shown [8] that the N-point IDCT in the equation 3.3 can be rewritten

x(k) = g(k) + (1/(2C35"1)h(k)

o(N —1—k) = g(k) - (1/2C5K)h(k),
k=0,1,2,...,N—1
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Therefore, the N-point IDCT in the equation 3.3 can be decomposed into sum of
two N/2-point IDCT’s in the equations 3.4 and 3.5. By repeating this process, we
can decompose the IDCT further.

The figure 3.2 shows the flow graph for an eight-point IDCT using Lee’s algorithm.

X G(0) \/ Q) x(0)
X(4) o o - - v/ x(1)
X(2) G(1) v(2c)) X EE) W/ x(3)
Q( 6) G3) vack) 1 ) 1 o) W x(2)
X(1) H(0) \/ h((;)(zqg >©<\ x(7)
X(5) e vech 1 ><>< h(jj)(z = .1\ X(6)
. H(1) o X h(jj)(zc;g - \ X(4)
X(7) - v(ch) = (e 1 h(jj(zc/?é * "

Figure 3.2: Flow graph for 8-point IDCT

It is evident that the structure shown is recursive and simple. In the current imple-
mentation, table-lookup approach is used wherever possible to avoid CPU-intensive

cosine computations and multiplications.

The number of real multiplication is (N/2)log,(NN) for an N-point IDCT where
N = 2™, which is about half the number required by existing efficient algorithms.
The number of additions, however, is (3N/2)log,(N) — N + 1.

Since only a discrete number of cosine function values are needed, these are pre-
computed and kept in a table. Later this table is used instead of re-computing the

cosine functions. This save enormous amount of computation.
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3.1.2 Pseudocode to calculate IDCT

The pseudocode given below calculates IDCT for an 8x8 block. The DCT coefficients
are stored in an one-dimensional array block and the output IDCT coefficients are

also returned in block.

idct (block)
{
if (eob_pos == 0) /* if only DC coefficient */
{
for(ii=0; ii<64; ii++)
block[ii] = block[0]/8;
}
else
{
for(row=0; row<8; row++)
idctrow(row) ;
for(col=0; col<8; col++)
idctcol(col);
}

3.2 Bit-stream decoding

3.2.1 Start codes

In MPEG-2 data stream, the system and video layers contain unique byte-aligned
32-bit patterns called start codes. There are 256 start codes provided in MPEG-2,
some of which are not used. Some of these start codes are given in the table 3.1.
The video start codes (0x00000100 through 0x000001B8) are found only in the video
syntax layers while the system start codes (0x000001B9 through 0x000001FF) are

found only in the system syntax.

In the MPEG-2 bit-stream, start codes are aligned at the byte boundaries by
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Start code

Value
(in Hexadecimal representation)

video start codes

PICTURE_START_CODE 0x00000100
SLICE_START_CODE 1 0x00000101
SLICE_START_CODE 175 0x000001AF
RESERVED 0x000001B0
RESERVED 0x000001B1
USER_DATA_START_CODE 0x000001B2
SEQUENCE_HEADER_CODE 0x000001B3
SEQUENCE_ERROR_CODE 0x000001B4
EXTENSION_START_CODE 0x000001B5
RESERVED 0x000001B6
SEQUENCE_END_CODE 0x000001B7
GROUP_START_CODE 0x000001B8
system start codes
ISO_END_CODE 0x000001B9
PACK_START_CODE 0x000001BA
SYSTEM_HDR_START_CODE 0x000001BB
packet start codes
RESERVED 0x000001BC
PRIVATE_STREAM 1 0x000001BD
PADDING_STREAM 0x000001BE
PRIVATE_STREAM 2 0x000001BF
AUDIO_STREAM 0 0x000001CO0
AUDIO_STREAM 31 0x000001DF
VIDEO_STREAM 0 0x000001E0
VIDEO_STREAM 15 0x000001EF
RESERVED 0 0x000001F0
RESERVED 05 0x000001FF

Table 3.1: Start Codes used in MPEG-2




inserting necessary number of bits as 0. The decoder therefore requires to align at
byte boundaries. The next_start_code() procedure shown below positions the bit-

stream pointer at the start of the next start code.

next_start_code()

{
while(!bytealigned())
zero_bit();
while (Nextbits(24) !'= 0x000001)
zero_byte();
}
The bytealigned() returns whether the bit-stream pointer is at a byte boundary
or not.
bytealigned()
{
if (bit-stream pointer % 8 == 0)
return 1;
else
return 0;
}

The functions Nextbits looks ahead in the bit-stream and returns the next n bits

of the bit-stream without altering the current position of the bit-stream buffer.
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3.2.2 System Layer

Though a video bit-stream is fully decodable, but by itself, is an incomplete specifica-
tion. The MPEG system layer contains the control information that enables parsing
and precise control of the playback of the bit-stream. It is used to multiplex one or
more video and audio streams into a single bit-stream. From system perspective, an

MPEG bit-stream is made up of a system layer and compression layers.

The highest level in systems layer consists of a sequence of packs followed by a four-
byte ISO_.END_CODE (0x1B9). Each pack consists of a unique 32-bit byte-aligned
PACK_START_CODE (0x1BA) and a header. Following pack header is a variable-
length system header. A pack is further subdivided into a number of packets. A
packet starts with a 32-bit PACKET_START_CODE (0x1BC-0x1FF), followed by a
packet header. Part of the packet header is packet-length which is the length of the
rest of the packet. The video, audio, padding or private streams follow the packet
header as packet-data-bytes. All of the streams in a given packet are of same type,

as specified by the stream-id (final byte of packet_start_code).
The figure 3.3 shows the layered structure of MPEG-2 system.

System layer

Video Stream

Audio Stream

Figure 3.3: Layered structure of MPEG-2 system

In the current implementation, the video decoder parses the bit-stream and de-

codes the data by itself when it gets video data, but in case of audio data, it sends the
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data to an audio decoder which then plays the audio. The system layer information
is taken into account and used to demultiplex the video and the audio data and to
achieve synchronized play-back of the movie clips. The overall operation of the video

decoder is depicted in the following pseudocode.

for(;;)
{
next_pack();
nextval = Nextbits(32);
switch(nextval)
{
case PACK_START_CODE
pack-header () ;
break;
case PADDING_STREAM :
case PRIVATE_STREAM :
discard_data();
break;
case SYSTEM_HDR_START_CODE
system_header () ;
break;
case VIDEO_STREAM :
video_data() ;
break;
case AUDIO_STREAM :
audio_data();
sendto_audioplayer();
break;
case ISO_END_CODE :
show_statistics();

break;
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3.2.3 Video Stream

MPEG-2 follows a layered structure as described in the section 2.2. The figure 3.4
shows the inter-connection between different structures. A group of pictures comprises
of several frames (or pictures). A picture contains several slices of macroblocks. Each
macroblock comprises of four blocks of size 8 pixel by 8 pixel.

‘ Video Sequence |

‘<— Group of Pictures —>‘

Block
Picture

o ‘ ‘ ‘ ‘ '\L ‘ ‘ ‘ Macroblock

/

pixels

Figure 3.4: MPEG-2 video structure

The pseudocode below defines the syntax for an MPEG-2 video sequence.

video_sequence ()

{
next_start_code();
sequence_header () ;

if (Nextbits(32) == EXTENSION_START_CODE)

{
sequence_extension();
do
{
extension_and_user_data_V();
do
{
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if (Nextbits(32) == GROUP_START_CODE)
{
group_of_pictures_header();
extension_and_user_data_G();
}
picture_header();
picture_coding_extension();
extension_and_user_data_P();

picture_data();

} while((Nextbits(32) == PICTURE_START_CODE) ||
(Nextbits(32) == GROUP_START_CODE))

if (Nextbits(32) != SEQUENCE_END_CODE)
{
sequence_header () ;

sequence_extension() ;

} while(Nextbits(32) != SEQUENCE_END_CODE)

else

/* MPEG-1 bit-stream*/
}

sequence_end_code () ;

As it can be observed in the pseudocode, every valid MPEG-2 bit-stream must
start with sequence header and end with sequence_end_code. If the first sequence
header in the bit-stream is followed immediately by the extension_start_code, then
every sequence header must be followed by the sequence extension. Optional extension

and user data often follow the sequence extension.
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The video decoder extracts the basic 8 x8 block data (DCT coefficients) from the
video-stream. The 8x8 DCT coefficients are arranged in a special 1-d sequence called
scanning order. An order called zigzag order (figure 3.5) is used in both MPEG-1 and
MPEG-2. In this order, the DCT coefficients are stored in the order of increasing

spatial frequency.

incteasing hotizontal frequency

-

VDD DD
SIS
IS
SIS
DD
DD

increasing vettical frequency

Figure 3.5: Zigzag scan order

MPEG-2 also defines another scan order, known as alternate or vertical scan order
that may be specified by the encoder on a picture to picture basis. The alternate

scanning order is shown in the figure 3.6.

A typical DCT array in the scan order will have significant values only in the
beginning and zeros at the end. Since typically there are many zeros in a DCT block,
these need not be stored. For this feature, a special symbol called End-of-block (EOB)
is used in MPEG-2 as well as in MPEG-1. When this symbol is used, it represents
that all remaining DCT coefficients for the block are zero. However, when the entire
block of DCT data contains only zero, the bit corresponding to the block is reset to
zero in the coded block pattern (CBP) and the entire block is not stored. Sometimes,
even a whole macroblock is skipped if all the blocks of the macroblock are zero. This is

accomplished by simply setting the macroblock_address_increment to a value greater
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Figure 3.6: Alternate scan order
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than one (the number of macroblocks skipped minus one). However, in an I-frame,

macroblock skipping is not permitted.

3.2.4 Awudio Stream

The MPEG audio coders, aimed for generic audio coding, are perceptual audio coders,
rather than ‘waveform coders’. In a perceptual audio coder, the codec does not retain
the input signal exactly after encoding, rather it tries to ensure that the output sig-
nal sounds the same as the original to a human listener. The primary psychoacoustic
effect that the perceptual audio coder uses is called ‘auditory masking’, where some
parts of the input signal are not audible due to the inherent nature of the human
auditory system. The parts of the signal that are masked are commonly called ‘irrel-
evant’, as opposed to the parts of the signal that are treated as ‘redundant’ and so
removed by a source coder. Three layers have been defined for MPEG audio, namely
Layer I, Layer 1T and Layer III. These layers represent a set of coding algorithms,
with encoder/decoder complexity increases from Layer I to Layer III. In all the lay-

ers, the audio data is a sequence of audio-frames. Each frame starts with a 32-bit
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frame-header, first 12 bits (all 1s) of which is called syncword. The other bits of
the frame-header contains information like layer-code, bit-rate, sampling frequency,
etc. Following the frame-header, a 16-bit Cyclic Redundancy Code can be optionally
present. Next the actual audio-data is coded, the size of which can be calculated from

the header information itself.

In the current implementation the audio-decoding is not handled by the video
decoder. Instead the audio data is extracted from the bit-stream, formatted and
arranged in a sequence of audio-frames as expected by an audio-only decoder [16]

and then sent to an audio decoder for playing.

3.3 VideoCD Support

As the cost of CD-ROMs are decreasing with the invention of better technologies for
mass-production, a significant number of customers are now switching to CD-ROMs
as general purpose storage and so Philips has developed a new standard for storage
of MPEG data on CD-ROM called White Book, commonly known as video-CD or
VCD [19]. A Linux kernel that can read VCDs is required to play from VCD. In
the current implementation, the xreadved [20] tool is used to read from VideoCD.
The tool is developed by Ales Makarov who is the author of the kernel patch to read

VideoCD which is included in Linux version 2.2.

3.4 Graphical User Interface

The current implementation provides a graphical user interface for the easy use of the
decoder. The GUI was developed using XForms [21], a GUI toolkit based on Xlib for
X Window Systems. The form was designed by fdesign, an interactive GUI builder
bundled with the XForms Library. The interface screen is shown in the figure 3.7. It
was generated by the tool fd2ps of the package.

A brief overview of the menus and the buttons are given below.

e File - The File menu has three options, namely ”Play File”, ”Play VCD” and
"Exit”. If the user selects ”Play File”, a file selector window comes up and the

user can choose an MPEG file to view. If "Play VCD” option is chosen, it plays
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Figure 3.7: Graphical User Interface

the MPEG data on the VideoCD. On choosing ”Exit”, the user can quit the

application.

Zoom - The Zoom menu has three options, namely ”Normal”, "Double Size”

and ”Full Screen”. The video will be displayed at the size as chosen by the user.

Statistics - The user can click on this button, if he wants to see the statistics
like the number of frames played, time elapsed, frame-rate, etc. anytime during

the current run.

Help - The user can click on this button, if he wants to get some help about the

video decoder.

Rewind - The user can click on this button, if he wants to view the last played

MPEG file again from the beginning again.

Reverse - Two buttons have been provided for this purpose. One is for normal
reverse and another is for fast reverse. The user can click on these buttons, if

he wants to view the current movie again from a previous frame.

Forward - Two buttons have been provided for this purpose. One is for normal
forward and another is for fast forward. The user can click on these button,
if he wants to skip some part of the current movie and view it from a future

frame.

Pause - The user can click on this button, if he wants to stop the current run

for a while. Once pressed, the label of the button is changed to ”Resume”.
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e Resume - The user can click on this button, if he wants to resume the current

run again. Once pressed, the label of the button is changed to ”Pause”.

e End - The user can click on this button, if he wants to end the current run of
the decoder. If this button is pressed, the Image window is removed, but the

MPEG file can be viewed again by clicking on "Rewind” button.
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Chapter 4

Results and Conclusions

4.1 Test Setup

The current implementation of the MPEG-2 video decoder was developed on Linux
2.2.5. The decoder was thoroughly tested to check its efficiency and robustness. The
table 4.1 shows the configuration of the system.

Resource Configuration
Processor Pentium-1T (i686)
CPU Clock Speed 350 MHz
Memory 64 MB RAM
Video RAM 4 MB

Table 4.1: Test System configuration

The decoder also needs 8-bit display depth which is supported by all available
graphics-cards. It supports 16-bit display mode also.

The audio player used to play the audio data is famous mpgl123 [16] written by
Michael Hipp and Oliver Fromme. It is a real time MPEG audio player for Unix.

In order to achieve the coded frame-rate, the current implementation of the video
decoder discards some frames when otherwise real-time deadline cannot be met. So
if the system is slow, many frames will be discarded causing somewhat jerkiness in
the video.
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4.2 Results

The decoder was run with many MPEG files as input for several times. The table 4.2
and 4.3 show the average results taken after 10 different runs for each of the sample
MPEG files.

We list in the table 4.2 the frame-size, the total number of frames and the percent-
age of the frames skipped by the decoder in order to achieve the coded frame-rate in
Normal mode, Double Size Zoom and Full Screen Zoom for each sample. It is evident

that the computational overhead for zoom mode display causes more frames to be

skipped.
Sample | Frame | Total no. % of frames skipped
no. Size of frames | Normal Double Size Zoom Full Screen Zoom
1. 352 x 288 1150 10 15 20
2. 352 x 240 1004 5 14 18
3. 352 x 240 60 11 20 25
4. 320 x 240 278 0 0 0
5. 512 x 320 215 19 25 30

Table 4.2: Results : Percentages of frames skipped at different zoom levels

We list in the table 4.3 the coded frame-rate (number of frames per second) and
the achieved frame-rate for each sample in Normal mode, Double Size Zoom and

FullScreen Zoom.

Sample Coded Achieved frame-rates
no. frame-rate | Normal Double Size Zoom Full Screen Zoom
1. 25.000 25.003 24.989 25.012
2. 30.000 30.267 30.078 30.257
3. 30.000 30.142 30.642 30.045
4. 22.977 22.399 22.399 22.399
5. 25.000 25.087 25.128 25.141

Table 4.3: Results : Achieved frame-rates at different zoom levels
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4.3 Comparison with existing players

In the table 4.4 a comparitative study with two existing MPEG players for linux, viz.
xanim and mpeg-tv is presented. Though they differ fundamentally with our work in
that they do not support MPEG-2 standard, some other features have been compared

here.

Important Features

Different MPEG Players

mplay xanim mpeg-tv
video quality’ smooth jerky smooth
picture quality good not good moderate
audio support supported unsupported | supported

frame-types supported

all

only I-frame

all

frame-rate

nominal (coded)

non-uniform

less in zoom mode

frames skipped less n/a not documented
VCD support supported unsupported | supported

GUI support good few features | good

zoom levels supported | any (dynamic) | any (static) | Double (2x2) only
Full Screen zoom supported not truly supported

Table 4.4: Comparison with existing players

4.4 Conclusions

In spite of considerable effort to make the decoder very efficient, for many cases it was
not possible to achieve the coded frame-rate without dropping some of the frames.
Yet we think the current implementation is reasonable taking into account the overall

video quality and speed. The IDCT computations are also extremely accurate.

Lcomparisons are qualitative only
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Appendix A

A.1 List of Acronyms

AAC Advanced Audio Coding

CBP Coded Block Pattern

CD-ROM Compact Disk - Read Only Memory
CPB Constrained Parameter Bit-stream

DCT Discrete Cosine Transform

DSM Digital Storage Media

DSP Digital Signal Processing

DVD Digital Versatile Disk

EOB End Of Block

FDCT Forward Discrete Cosine Transform
FFT Fast Fourier Transform

FPS Frame Per Second

GOP Group Of Pictures

GUI Graphical User Interface

HDTV High Definition Television

HVS Human Visual System

IDCT Inverse Discrete Cosine Transform

IEC International Electrotechnical Commission
IQ Inverse Quantization

IS International Standard

ISO International Organization for Standardization
ITU International Telecommunications Union
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JPEG
JTC
KLT
LFE
MB
MBA
MC
MPEG
MSSG
MV
PES
PS
RLC
SCR
SIF
SM
SNR
STC
™
TS
VBR
VBV
VCD
VDU
VLC(D)
VLSI
WG

Joint Photographic Experts Group
Joint Technical Committee
Kerhunen-Loeve transform
Low-Frequency Enhancement
Macroblock

Macroblock Address

Motion Compensation

Moving Picture Experts Group
MPEG Software Simulation Group
Motion Vector

Packetsized Elementary Stream
Program Stream

Run-Length Coding

System Clock Reference

Source Input Format

Simulation Model

Signal-to-Noise Ratio

System Time Clock

Test Model

Transport Stream

Variable Bit Rate

Video Buffering Verifier

Video CD

Video Display Unit

Veriable Length Coding (Decoding)
Very Large Scale Integration
Working Group
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Inverse discrete cosine transform, 18-19
definition of, 3

Layer
block, 15
group of pictures, 14
macroblock, 15
pack, 25
packet, 25
picture, 14
sequence, 14
slice, 15
system, 25

Low-frequency enhancement, 8

Macroblock, 15
address-increment, 29
coding, 15
header, 15
layer, 15

Motion picture, 1

MPEG, 5

MPEG-1, 5
constrained parameters, 13

MPEG-2, 6-8
audio, 8

levels, 6



profiles, 6 pack, 25

systems, 7 packet, 25
video, 8 system, 22
MPEG-4, 9 video, 22
audio, 9 Stream-id, 25
video, 9 System
header, 25
Orthogonal transform, 5
layer, 25
P-frame, 8 startcode, 22
Pack, 25
header, 25 Transport Stream, 7
layer, 25 VideoCD, 31
startcode, 25
Packet, 25
header, 25
layer, 25
length, 25

startcode, 25
Packetized Elementary Stream, 7
Picture

header, 14

layer, 14

Program Stream, 7

Scan order, 28
alternate, 29
vertical, 29
zigzag, 28

Sequence, 14
end-code, 28
header, 14, 28
layer, 14

Slice, 14
layer, 15

Start code, 22

extension, 28
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