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AbstractThe design of a high performance system requires an integrated environment to sim-ulate and analyze the performance of various design alternatives. In this thesis, wehave developed a generic disassembler for an integrated environment where Sim-nMLacts as the speci�cation language for processor performance model. The Sim-nML,an extension of nML machine description formalism, is a simple, elegant and powerfullanguage to model machine behavior at instruction level. As part of the thesis work,we have designed an interm ediate representation (IR ) for processor speci�cation writtenin Sim-nML language. The IR is simple and facilitates the development of varioustools such as assembler, compiler back-end generator, instruction set simulator, tracegenerator etc. based on the processor speci�cation. A tool, IR -Generator, is developedwhich takes a processor speci�cation written in Sim-nML language and produces itin the intermediate representation. Further, a Generic Symbolic Disassembler is de-veloped which takes the intermediate representation of a processor and a relocatablebinary �le in ELF format as input and produces an equivalent program in assemblylanguage of the processor. The disassembler is generic enough to be used for all typeof processors.
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Chapter 1
Introduction
The design of a high performance system requires complex software tools. Designersuse powerful and generic modeling tools to evaluate many alternative implementa-tions. In addition, designers need hardware and software codesign and other trade-o�sat early stages of the system design to keep the development cost down. Therefore,system designers need an integrated environment which allows them to simulate andanalyze the performance of various design alternatives.In this thesis, we have used Sim -nML language[14] which is primarily an extensionof the nML language[1] for processor modeling and designed a generic processor inde-pendent symbolic disassembler. For this purpose, we have also designed an interm ediaterepresentation (IR ) for the processor speci�cation written in the Sim-nML language.The IR is simple but powerful enough to facilitate the development of various toolssuch as assembler, compiler back-end generator, instruction simulator etc. based onthe processor speci�cation. We have designed a tool, IR -generator, which takes aprocessor speci�cation in the Sim-nML language and provides the intermediate rep-resentation of the processor speci�cation as output. The generic symbolic disassemblertakes the intermediate representation and a relocatable binary �le of a processor andprovides the corresponding assembly language program as output.
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1.1 MotivationA processor model provides means to facilitate hardware and software codesign andcoanalysis early in the system design process. To model the candidate application andprocessor model interaction, a systematic design process is required. A systematicdesign process starts with selecting the application and involves writing a model thatmeasures the performance of the system, testing the system, analyzing the resultsand re�ning the model to enhance performance. In this process, the model undergoesseveral changes till the desired performance is achieved. This approach requires tohave an environment where changes to the design are made at one place and thecorresponding changes in other tools are automated. Such an integrated environmentcan incorporate the model changes and validation rapidly.
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BACK-ENDFigure 2: System Overview with IRprocessor. Thus an integrated environment, as shown in �gure 1, is designed withSim-nML as the speci�cation language to automate the generation of various proces-sor speci�c tools. While it is convenient to describe processor models in Sim-nML, itis not so convenient for the tools to use Sim-nML speci�cation directly as input dueto hierarchical description formalism of Sim-nML. Further, the direct usage requiresall tools to duplicate the e�ort in processing of processor speci�cations. This mo-tivated us to design a simple interm ediate representation (IR ) for Sim-nML languagespeci�cation so that the design of various tools is simpli�ed. The system design canbe viewed as shown in �gure 2 with integration of the IR and previous view.In embedded applications, it is helpful to study the algorithm used by the applica-tion program and then change it to suit the speci�c needs. However, it is convenientto operate at assembly language level rather than at the binary executable level. This3



motivated us to design a symbolic generic disassembler to translate a relocatable bi-nary code to its assembly language counterpart. In the symbolic disassembly, symbolsare used to refer to the locations and functions rather than the absolute addressesin the assembly language program. The disassembler developed in this thesis usesthe processor models speci�ed in the IR (thus it is generic ). The assembly languageprogram helps in extracting a lot of hidden information and further improvements oranalysis can be done.1.2 Overview of Related WorkPerformance modeling of a system is a growing area and a lot of research has beenpursued in this area. These previous works have resulted in a set of performancemodeling tools using di�erent languages for processor speci�cation.VHDL [9] is an expressive language with full hierarchy and con�gurations that allowdevelopment and application of highly con�gurable and exible models. There arewealth of VHDL-based modeling tools as described in various works[9, 8].SLED [6], a Speci�cation Language for Encoding and Decoding, is used for ab-stract, binary and assembly-language representation of machine instructions. SLEDis suitable for describing both CISC and RISC machines. Processor representationfor MIPS, SPARC, Alpha, Pentium, PowerPC and Motorola 68000 are also written inSLED and a toolkit, the New Jersey Machine-Code (NJMC) Toolkit, is implementedto help programmers write applications that process machine code|assemblers, dis-assemblers, code generators, tracers, pro�lers, and debuggers. A Disassembler forSPARC is also implemented in the NJMC using SLED as processor speci�cationlanguage[7].Visualization based Microarchitecture Workbench (VMW )[13] is an infrastructurewhich facilitates the speci�cation of instruction set architecture and microarchitectureof a machine in concise manner. VMW provides all necessary infrastructure softwareto the designer, including generic simulation software, visualization support softwareand graphical user interface software. VMW automatically integrates the machinespeci�cation and infrastructure software to generate a customized performance simu-lator based on the trace-driven simulation approach. Thus VMW provides a powerfulenvironment for modern superscalar processor design.4



Trimaran System[11] is an integrated compilation and performance monitoring in-frastructure for Instruction Level Parallel (ILP) architectures. The ILP architecture(HPL-PD), parameterized by a machine description, allows the user to experimentwith di�erent machines. The HPL-PD architecture supports novel features such aspredication, control and data speculation and compiler controlled management of thememory hierarchy. A cycle-level HPL-PD simulator provides a detailed simulationenvironment to get various information. The information is used for pro�le-drivenoptimization and for validation of new optimization. The machine description is spec-i�ed in a high level textual language HMDES[12]. A compiler front-end (IMPACT)and a compiler back-end (Elcor), parameterized by the machine description, togetherprovides experimentation for new ILP architectures and the compiler modules neededto generate high-performance code for these architectures. The modular Elcor usesan intermediate representation throughout its module which enable the constructionand insertion of new compilation modules into the compiler in a easy way.Other than these complete machine simulation environments, many performancemodels exist for analyzing the individual components such as processors, caches etc.A Framework for Statistical Modeling of Super-scalar Processor Performance is dis-cussed in [10]. Performance Estimation for Real-Time Distributed Embedded Systemsis discussed in [15]. An ISS (Instruction Set Simulator)[5] is developed to simulate anarchitecture of a processor which is de�ned through \templates". Further, a perfor-mance simulator[5] is implemented using traces from the ISS as input which has beenused to evaluate the Ultra-SPARC-compatible architecture. A cycle accurate modelof Ultra-SPARC processor is written in C++ to verify the processor by cross checkingthe RTL model at run time as well as to provide accurate performance estimates[3].In the area of disassembling, several disassemblers have been implemented aslisted in [17]. Among these, IDA Pro[2] is a disassembler based on FLIRT (FastLibrary Identi�cation and Recognition Technology) and can disassemble binary �lesfor several processors.1.3 Goals AchievedIn this thesis work, we aimed at developing an integrated environment for processormodeling using Sim -nML language for processor speci�cation. The development ofa complete integrated environment is in progress where other tools (i.e. simulator,5



trace generator) are under development. The goals achieved in this thesis work arelisted below.� Interm ediate Representation (IR ) for Sim-nML language speci�cation is designedwhich is simple but powerful enough to facilitate the design of various processorspeci�c tools.� IR -Generator is designed and implemented which takes a processor speci�ca-tion in Sim-nML language and provides an intermediate representation of theprocessor speci�cation as output.� Symbolic Generic Disassembler is designed and implemented which takes theintermediate representation and a relocatable binary �le of a processor andprovides corresponding assembly language program of the processor as output.Work done in this thesis is also outlined in the �gure 2.1.4 Organization of ReportThe rest of the thesis is organized as follows. In chapter 2, we describe the designof the intermediate representation and the implementation of the IR-Generator aftergiving an overview of the Sim-nML language. In chapter 3, we describe the design andimplementation of the symbolic generic disassembler. Finally we conclude in chapter 4and provide the results. We also enumerate possible future work in this area. Context-free grammar of the Sim-nML language is listed in Appendix A. Detailed format ofthe intermediate representation is given in Appendix B. Lastly, user's manuals for theIR-Generator and the disassembler are given in Appendix C.
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Chapter 2
Intermediate Representation ofProcessor Models
One part of this thesis involves the development of Interm ediate Representation (IR )of the processor model. We developed a tool, IR -G enerator, which takes a proces-sor speci�cation written in Sim-nML language as input and produces correspondingintermediate representation of processor speci�cation as output. In order to haveintermediate representation usable by all front-end tools such as disassembler, assem-bler, simulator etc., certain goals were setup behind the design of the IR as listedbelow.� The IR should be as simple as possible.� The IR should not lose any useful information which is available in originalinput of Sim-nML speci�cation.� The IR should not have any unnecessary or redundant information.� The IR should be easy to understand as well as to use.� It should be easy and e�cient to retrieve the required information from the IR.� The IR should be exible and extensible.� The IR should facilitate the design of various processor speci�c tools such as as-sembler, disassembler, simulator, trace generator, compiler back-end generatoretc. 7



Before discussing the IR in detail, it is necessary to understand the structure of theinput. Sim -nML work by V.Rajesh [14] is primarily an extension of nML[1] (designedby Markus Freerick). Here we will discuss Sim-nML in brief for better understandingof our work. More information about Sim-nML can be found in relevant literature[14, 4].2.1 Sim-nML LanguageSim -nML [14] is an extensible formalism targeted for describing arbitrary single pro-cessor computer architecture. It facilitates the description at instruction set level andhides the implementation details. In Sim-nML, the instruction set is enumerated byan attribute grammar 1 . The semantic action of an instruction is composed of frag-ments that are distributed over the whole speci�cation tree, i.e. the common behaviorof a class of instructions is captured at the top level of the tree and the specializedbehavior of sub-classes is captured at the subsequent lower levels.2.1.1 Sim-nML GrammarSim-nML grammar has a �xed start symbol namely instruction and two kind ofproductions namely, or-ru le which looks like,op n0 = n1 | n2 | n3 | ...and and-rule which looks like,op n0 ( p1 : t1, p2 : t2, ... )a1 = e1a2 = e2...1An attribute grammar is a context free grammar in which for each non-terminal a �xed setof attributes and for each production a set of semantic rule is given. In Sim-nML grammar, allnon-terminals have to have derivations. So, we don't di�erentiate between productions and non-terminals.
8



let REGS = 4type long = card(32)type index = card(REGS)reg R[2**REGS,long]reg PC[1,long]reg AC[1,long]mode REG(i:index)=R[i]syntax = format("R%d",i)image = format("%4b",i)op instruction(x:instr_action)action = { PC = PC + 4;x.action; }syntax = x.syntaximage = x.imageop instr_action = move | storeop move(src:REG)action = { AC = src; }syntax = format("load %s",src.syntax)image = format("0010 %b",src.image)op store(src:REG)action = { src = AC; }syntax = format("store %s",src.syntax)image = format("0011 %b ",src.image)Figure 3: Sim-nML Speci�cation for a Simple Processorn0, n1, n2, n3,. . . are non-terminals and each ti is a token. Each ai is an attributename and ei is its de�nition. The pi are names of the parameters used in the attributede�nitions.Sim-nML grammar pre-de�nes some attributes namely syntax , image , action ,uses , volatile , alias , and init . The syntax attribute describes the textual syntax ofthe instruction. The image attribute describes the binary coding of the instruction.The action attribute describes the semantics of an instruction. The uses attribute is9



used to describe the resource usage model and the control ow of an instruction. Thevolatile , alias and init attributes are valid for memory variables. The init attributeis used to assign initial values to memory variables while volatile attribute is used tode�ne the volatile name of the memory.The Sim-nML description in �gure 3, is that of a simple machine with two instruc-tions, the load instruction which is used to load accumulator AC with the contentsof a register speci�ed by an argument, and the store instruction which is used tostore the value of the accumulator AC to the register speci�ed by an argument. Theregister PC has special semantics and points to the next-to-be-executed instruction.In the most processors, addressing modes and instructions are orthogonal to eachother. Therefore, describing an instruction with each of the possible addressing modesexplode the size of the description. Therefore, Sim-nML separates addressing modedescription as register addressing mode is described in �gure 3 with declaration ofmode-rule REG.The Sim-nML also supports resource and exception declaration which are usefulfor resource usage model. In addition, Sim-nML supports macros and declarationsfor types and constants. This enhances the clarity of the description. In appendix A,Sim-nML grammar is given in detail.The Sim-nML formalism helps in describing the processor concisely and precisely.Thus Sim-nML description of a processor can be used as input to various tools suchas assembler and disassembler generators, compiler back-end generators and generalpurpose instruction set simulators.2.2 Design of an Intermediate RepresentationA processor speci�cation in Sim-nML language is a human readable text �le. Severalconstructs are provided in Sim-nML to enhance the clarity and readability of thedescription. In order to retrieve the desired information from such a description, atool needs to perform parsing of input, variable substitution etc. An intermediaterepresentation helps in reducing such extra burden on the tool. Thus we need anintermediate representation keeping previously mentioned goals in mind. In thissection, we will discuss the design of the IR in detail.10



2.2.1 Simpli�cation of Information by SubstitutionSim-nML language allows the constant de�nition using let-specification (i.e.letREGS = 4). In Sim-nML speci�cation �le, wherever a constant is referenced, its valueis substituted in the IR. For example, value of the constant REGS, i.e. 4, is substi-tuted where-ever REGS is used in the example given in �gure 3. Thus constants arenot referenced in the IR of the processor speci�cation. Therefore all such constantdeclarations can be eliminated from the IR. However some constant might be usedby the tools i.e. constant like byte order may be used by tools to de�ne the byteordering of a processor. As it is di�cult to guess what all constant de�nitions mightbe used by all such tools, it was decided to retain information about all constantdeclarations in the IR even if these are not referenced anywhere.Sim-nML language has some basic data types and allows new data type de�nitionsusing basic data types and previously de�ned user data types. Since all user de�neddata types can be built using only basic data types, all variables are rede�ned withonly basic data types in the IR. Thus all user de�ned data type declarations are ofno use and are eliminated from the IR. For example, parameter i in mode-rule REGis rede�ned with data type card(4). Now type de�nition index is eliminated fromthe IR.Sim-nML allows macro declarations (macro name and macro de�nition) in theprocessor speci�cation to save user's e�ort in writing it. These macro declarationmay have parameters and may use macros within the macro de�nition. Wherever amacro name is used in the speci�cation, corresponding macro de�nition is substitutedin the IR. Thus all macro declarations are eliminated from the IR.There are some other constructs in the Sim-nML which are simpli�ed in the IR.For example, in the Sim-nML, all memory variables, op-rules, attribute names, pa-rameter names in and-ru le etc. are given unique identi�er names and everywherecorresponding identi�er name is used for reference. As length of an identi�er nameis variable, it wastes a lot of processing time to retrieve the information about a par-ticular identi�er. Sim-nML also allows the use of some identi�er name for op-ruleseven before they are de�ned. This necessarily requires a tool to do multiples passesover processor speci�cation. Many of these identi�ers are not signi�cant at all (forexample, parameter names). In the IR, all signi�cant identi�ers are assigned a uniqueinteger key and all their references are replaced by the use of the corresponding key.11



It simpli�es the information retrieval from the IR. The mapping between the key andthe identi�er is also provided in the IR (though the tools may never need to refer tothese).2.2.2 Simplifying the HierarchyIn Sim-nML, information about an instruction is composed of fragments that aredistributed over the whole speci�cation tree with root node named as instruction . Toget information about one particular instruction, a complete path from root node toa leaf node is traversed with proper parameter substitution at all levels of the tree.If all such paths are traversed, then information about all possible instructions areobtained. This process is called attening of the tree. In the IR, information aboutthe instructions are attened using two di�erent algorithms.First algorithm performs attening of all or-rules and is described in �gure 4.Basically, all references of any or-rule are eliminated from all the or-rule and and-ru le de�nitions. Therefore, all or-rule de�nitions can be eliminated from the IR.But some or-rule de�nitions might be used by other tools. For example, if root nodeinstruction itself is an or-rule , then information about all its children will be useful forthe tools. Therefore, all or-rules resultant from the algorithm are stored collectivelyat one place in the IR, even if these or-rules will not be referenced anywhere.Elimination of or-ru le parameters from an and-rule de�nition results in generationof new and-rules . All attributes of the and-rule remain unchanged in the new and-ru les . To make the IR compact, these new and-rules are treated as sub-ru les of theoriginal and-rule. All sub-rules of an and-rule are stored along with the and-rule in theIR. The references for the attributes in the and-rule are not duplicated for sub-rules .Working of the algorithm can be understood with an example of Sim-nML programgiven in �gure 5. Figure 6 explains the working of the algorithm on or-rules . Figure7 shows the working of the algorithm on a particular and-rule .2.2.3 Representation of Attribute De�nitionIn Sim-nML language speci�cation, memory variables, mode-ru les and op-rules decla-rations de�ne attribute names and their de�nitions. The attribute de�nition is eitheran expression consisting of various operands and operator, or a sequence of statements12



Algorithm 1 :� For each or-rule Ri , do the following steps.1. For all child nodes of Ri , do the following step.2. If the child node is an or-rule Cithen replace the child node by all children node of Ci .� For each and-ru le Ai , do the following steps.1. For each parameter Pi of Ai , do the following step recursively.2. If Pi is an or-rule (say R where R has n-children namely C1 ; C2 : : : Cn),then create n-new sub-rules and associate them with the and-ru le Ai . Inthe ith sub-rule , the parameter Pi is declared of type Ci .Figure 4: Algorithm for Flattening of or-ru lesseparated by a semicolon. Each of these statements might be a simple assignmentstatement or a conditional statement or a function call or a use of an attribute fromsome op-rule . (Refer to appendix A for Sim-nML grammar)For syntax and image attributes, de�nition is always an expression which evalu-ates to a string. In the IR, a record is stored for each syntax and image attributede�nition. The record includes a string value corresponding to the expression. Thestring values are evaluated by algorithm 2 given in �gure 8. Basically, the algorithmperforms substitution of parameter values in the expression to evaluate the stringvalue. However, the expressions also have references to parameters which can only beknown at the run time of a tool. For example, syntax attribute de�nition of mode-ruleREG has reference \%d" for parameter i. In the IR, a tuple \fX.Y.Zg" is used after aparameter reference such as \%d". Each tuple represents a parameter which can beconverted using parameter reference. In the tuple, X denotes an and-rule , Y denotesa sub-rule and Z denotes a parameter number. Example in �gure 9 provides the IRtranslation for the syntax attribute de�nitions of a few and-rules in the example givenin �gure 5.The record holds another string called dot-expression as shown in �gure 9. Thedot-expression denotes the sequence of parameter substitution applied for calculatingsyntax and image attribute values. Each dot-expression contains a number of 2-tuples, each of type X.Y. All tuples except for the �rst one are put in parentheses. In13



type index=card(2)reg PC[1,card(32)]mode SHORT = MEM | REGmode MEM(i:index)=M[R[i]]syntax = format("(R%d)",i)image = format("0%2b",i)mode REG(i:index)=R[i]syntax = format("R%d",i)image = format("1%2b",i)op instruction(x:instr_action)syntax = x.syntaximage = x.imageop instr_action = alu_op | move_opop alu_op(src:SHORT,dst:SHORT,aa:alu_action)syntax = format("%s %s,%s",aa.syntax,src.syntax,dst.syntax)image = format("1%b %b %b",aa.image,src.image,dst.image)op alu_action = a_add | a_subop a_add()syntax = "add"image = "0"op a_sub()syntax = "sub"image = "1"op move_op = move | storeop move(src:SHORT,dst:SHORT)syntax = format("move %s,%s",src.syntax,dst.syntax)image = format("00 %b %b",dst.image,src.image)op store(src:SHORT,dst:SHORT)syntax = format("move %s,%s",src.syntax,dst.syntax)image = format("01 %b %b",src.image,dst.image)Figure 5: Sim-nML Program for a Hypothetical Processor14



Before application of algorithm 1 :op instr_action = alu_op | move_opop alu_action = a_add | a_subop move_op = move | storemode SHORT = REG | MEMAfter application of algorithm 1 :op instr_action = alu_op | move | storeop alu_action = a_add | a_subop move_op = move | storemode SHORT = REG | MEMFigure 6: Example of or-ru les FlatteningBefore application of algorithm 1:op alu_op(src:SHORT, dst:SHORT, aa:alu_action)After application of algorithm 1 :op alu_opsub-rule 0 : src : REG, dst : REG, aa : a_addsub-rule 1 : src : REG, dst : REG, aa : a_subsub-rule 2 : src : REG, dst : MEM, aa : a_addsub-rule 3 : src : REG, dst : MEM, aa : a_subsub-rule 4 : src : MEM, dst : REG, aa : a_addsub-rule 5 : src : MEM, dst : REG, aa : a_subsub-rule 6 : src : MEM, dst : MEM, aa : a_addsub-rule 7 : src : MEM, dst : MEM, aa : a_subFigure 7: Example of and-rule Flatteningthe �rst tuple X.Y, X denotes an and-ru le and Y denotes the corresponding sub-rule .Rest of the 2-tuples denote the parameters for the string. A 2-tuple (dot-expression )corresponding to a parameter is the dot-expression associated with the correspondingand-rule and sub-rule .In the Sim-nML, instructions are described in a hierarchical manner. The syntaxand image attribute records associated with all the nodes (i.e. op-rule and mode-rule )15



Algorithm 2 :For each and-ru le , repeat following steps.1. Chose2 an and-rule Ai2. Take the syntax /im age attribute de�nitions D of the and-rule Ai .3. For each sub-rule Si of A1 , repeat following steps.4. If attribute de�nition D takes no parameter, then D is the resultant stringvalue of syntax /im age attribute for Si .5. If D has reference to a parameter Pi of basic data type, then insert a tuple\Ai .Si .Pi" in D.6. If D has reference to a parameter Pi of type and-ru le (say A), where numberof syntax /im age attribute values associated with A3 are n, then create n newsyntax /im age attribute values by substituting each syntax /im age attributevalue in place of parameter reference Pi one by one. These n-new attributevalues are associated with the sub-ru le Si and so with the and-rule Ai .Figure 8: Algorithm for Flattening of Syntax /Im age Attribute De�nitionsin the speci�cation tree are evaluated. The syntax and image records of instructionsin the instruction set are given by the syntax and image attribute records of theop-rule named instruction. Rest of the records hold encoding of partial syntax andimage attribute strings. In the IR, the syntax and image attribute records for allthe and-rules are stored. Although tools such as assembler, disassembler, compiler,simulator etc. need only the attribute records of op-ru le instruction, other recordsmight be helpful for other purposes such as to build the speci�cation tree back.Other attributes in the Sim-nML are used to hold semantic action associated withthe instruction. For example, to simulate the behavior of an instruction, attributede�nition of action attribute is used. A tool such as the instruction set simulatorcould be made to run faster if such attribute de�nitions are represented di�erently.Usually expressions inside an attribute de�nition are written in an in�x notation usingpriority and associativity rules to decode an expression uniquely. However, pre�x or2And-rules are chosen by starting with all leaf nodes of speci�cation tree, then all nodes abovethe leaf nodes and so on.3Syntax/image attribute values associated with all sub-rules of an and-rule are called syn-tax/image attribute values of the and-rule. 16



Before application of algorithm 2 :For and rule 1, mode REGsub-rule 0 : i:indexsyntax = format("R(%d)",i)For and rule 2, mode MEMsub-rule 0 : i:indexsyntax = format("R%d",i)For and rule 3, op a_addsub-rule 0 : no parametersyntax = "add"For and rule 4, op a_subsub-rule 0 : no parametersyntax = "sub"For and rule 5, op alu_op(see figure 7 for sub-rules)syntax = format("%s %s %s",aa.syntax,src.syntax,dst.syntax)After application of algorithm 2 :For and rule 1, mode REG(sub-rule syntax--string dot-expr)0 "R(%d{1.0.0})" "1.0"For and rule 2, mode MEM0 "R%d{2.0.0}" "1.0"For and rule 3, op a_add0 "add" "1.0"For and rule 4, op a_sub0 "sub" "1.0"For and rule 5, op alu_op0 "add R(%d{1.0.0}) R(%d{1.0.0})" "5.0(1.0)(1.0)(3.0)"1 "sub R(%d{1.0.0}) R(%d{1.0.0})" "5.0(1.0)(1.0)(4.0)"2 "add R(%d{1.0.0}) R%d{2.0.0}" "5.0(1.0)(2.0)(3.0)"3 "sub R(%d{1.0.0}) R%d{2.0.0}" "5.0(1.0)(2.0)(4.0)"4 "add R%d{2.0.0} R(%d{1.0.0})" "5.0(2.0)(1.0)(3.0)"5 "sub R%d{2.0.0} R(%d{1.0.0})" "5.0(2.0)(1.0)(4.0)"6 "add R%d{2.0.0} R%d{2.0.0}" "5.0(2.0)(2.0)(3.0)"7 "sub R%d{2.0.0} R%d{2.0.0}" "5.0(2.0)(2.0)(4.0)"Figure 9: Example of Syntax Attribute De�nitions Flattening17



post�x notation is better for faster evaluation as the priority and associativity becomesimplicit.In the IR, pre�x notation is used for all attribute de�nitions except syntax andimage attributes. Using such a representation, tools like simulator, trace generator,compiler back-end generator etc. can be made to run fast.2.2.4 Structure of the Intermediate RepresentationAs it is evident, the structure of the IR should be capable of storing information aboutconstants, identi�ers, or-rules , and-rules and information about attributes such assyntax , image , action etc. Some of this information can be represented in a �xed sizedata structure whereas rest of the information requires variable size data structure.For faster retrieval of information, we separate out the variable size data structureand store it at one place.The IR structure is essentially a collection of various tables. Information of eachtype is stored in a di�erent table. The entries in most of these tables are �xedsize records. However, some tables hold variable size records. We have groupedthe similar type of information under same table by creating di�erent record. Also,at some places we created two di�erent tables for clarity although they both holdinformation in similar type of record. A table of contents is also added in the IRwhich contains the location and name of all the tables. This simpli�es the accessmechanism for all tables. In brief, the IR consists of following tables :� Meta table : This is a table of contents having a road map to know about thelocation and name of other tables in the IR.� Constant tab le : This table holds the all constant declarations in the Sim-nMLprocessor speci�cations. For the example given in �gure 5, this table will containthe following.(name type value)REGS integer 4� Resource tab le : This table holds the names of the resources which are declaredwith resource-declarations . Each resource is assigned a unique key by which itis referred to at other places. 18



� Attribute tab le : This table holds the name and the corresponding key of alldistinct attributes used in the input processor speci�cation. For the examplegiven in �gure 5, this table will contain the following.(key name)0 syntax1 image� Identi�er table : This table holds the name of all the identi�ers (other thanthose speci�ed in the constant table and in the resource table). Each identi�eris assigned a unique key to refer to the identi�er at other places. For the earlierexample, the following is the contents of the identi�er table.(key name type)0 PC reg-var1 MEM mode-and2 REG mode-and3 SHORT mode-or4 instruction op-and5 instr_action op-or6 alu_op op-and7 move_op op-or8 alu_action op-or9 a_add op-and10 a_sub op-and11 move op-and12 store op-and� Memory table : This table holds the information about all memory variablesdeclared with a reg or a mem declaration. It includes a unique key, type andsize of the data and information to locate various attributes (of the variable)stored in other tables. For the earlier example, the following is the contents ofthe identi�er table.(key Name-key type size attribute)0 0 card(32) 1 -19



Note that instead of storing the name of memory variable (i.e. PC), the keyassigned in the identi�er table is used.� Or-Rule tab le : This table holds the information about children of all or-ru les(mode-rules or or-ru les ). It holds records as speci�ed earlier in �gure 6.� And-Rule table : This table holds the information about all and-rules (mode-rules and op-ru les ) along with the sub-rules associated with them. It also holdsthe information to locate the attribute de�nitions stored in other tables. Itholds records as speci�ed earlier in �gure 7.� Syntax tab le : This table holds the syntax-record associated with the syntaxattribute de�nitions of all and-rules . It also holds the information to associatethe correspondence between the and-rule tab le and the syntax table as speci�edearlier in �gure 9.� Im age table : This table holds the image-record associated with the imageattribute de�nitions of all and-rules . It also holds the information to associatethe correspondence between the and-rule table and the image table. It holdsrecords similar to the syntax table.� String tab le : This table is used for storing variable length string (null termi-nated) such as identi�er names. This table helps in having �xed size entriesin other tables. For clarity, we used identi�er-names and strings in example oftables described earlier. In reality, all such strings are stored in the string tableand corresponding index into the string table is stored in other tables.� Integer tab le : This table is used for storing only integer values. These inte-gers are associated with other tables and represent di�erent meanings in di�er-ent contexts. This table helps in having �xed size entries in other table. Forexample, list of attributes present for an and-rule are stored as list of corre-sponding attribute-keys in the integer table. The and-rule holds the infor-mation which associates the list of integers stored in the integer table as list ofattribute-keys.� Pre�x-Attribute-D e�nition Table : This table holds the attribute de�nition of allthe attributes (except syntax and image attributes ) associated with memory-variables and and-rules . These de�nitions are stored in pre�x notation. Other20



tables store the information to locate the appropriate attribute de�nition cor-rectly.In Appendix B, we present the structure of each of the tables. The following twopoints are important.1. A crucial decision about the IR is whether it should be a human readable text�le or a binary �le. We decided to have a binary �le as output to enable fastprocessing by various tools.2. The data encoding of output �le is dependent on the processor on which itis created i.e. data encoding can be little endian or big endian depending onthe processor. A tool can �gure out the endian-ness of the IR by reading thetable of contents irrespective of the type of the machine on which the tools isrunning. For example, the records of a meta table contain three �elds, no-of-rec ,size-of-rec and size-of-table . These �elds in the �rst record represent the metatable entries itself. Therefore the no-of-rec contains the total number of tables,size-of-rec contains the size of each record in the meta table and size-of-tablecontains the total size of the meta table. A tool can read three values and checkif the following equation is satis�ed.no-of-rec * size-of-rec = size-of-tableIf this equation is not satis�ed, then the endian-ness of the IR and the machineon which the tool is running are not the same, otherwise they are the same.2.3 Conversion from High Level to IntermediateRepresentationThe conversion from Sim-nML to the IR is done in the following two passes.2.3.1 Pass 1 : Macro PreprocessorThe IR does not retain any macro de�nition from the source. For ease of implementa-tion, macro processing is implemented as a separate pass over Sim-nML speci�cation�le. This part is being done in another project by Y. Subhash Chandra[16] but we are21



also describing it here for the sake of continuity. The macro preprocessor takes theSim-nML �le with macro de�nitions as input and produces a Sim-nML �le withoutmacros. It gathers all macro de�nitions and converts them into equivalent m4[18]macro de�nitions. Then m4, a standard utility available on Unix, is run on this �leto get the Sim-nML �le without any macros.2.3.2 Pass 2 : Parsing and Flattening the HierarchyPass two takes a Sim-nML speci�cation �le for a processor as input and produces thespeci�cation in the IR for that processor. This pass proceeds in three phases.� The �rst phase involves the parsing of input �le. During the parsing, all relevantinformation is gathered in appropriate data structures. Attribute de�nitionsfor all attributes except syntax and image attributes are converted into pre�xnotations during the parsing time. As soon as a de�nition is complete, it isstored in the pre�x-attribute-de�nition table. In this pass, three temporary�les are used to store the string-table, the integer-table and the pre�x-attribute-de�nition table respectively. Each of these table are later merged into the IR.� In the second phase, �rst half of the tree attening is performed. It eliminatesreferences of all or-ru les .� In the third phase, second half of the tree attening is performed. All and-rulesare attened further and syntax and image attributes de�nition records arecreated with proper parameter substitutions as described earlier.At the end of the second pass, all tables are written in the output �le and all cor-responding data structures are freed. Temporary �les generated during this pass areconcatenated at proper places in the output �le. During this pass, all possible errorsat various places are also checked and appropriate error messages are generated. Incase of an error in the �rst phase, the second and the third phases are not performed.
22



Chapter 3
Design and Implementation ofDisassembler
A disassembler is a tool which takes a binary �le (relocatable object �le, executable�le etc.) as input and gives the corresponding assembly language program as output.We have designed and implemented a generic symbolic disassembler (referred to as adisassembler now onwards) which takes an ELF[18] binary �le for a processor andgenerates the assembly language program. The disassembler is generic and processorindependent. It takes a processor speci�cation in the IR as another input. Thedisassembler generates symbols to refer to the locations and functions rather thanthe absolute addresses in the output assembly language program. Thus the output�le resembles the original source from which the binary �le was produced. In theoutput �le, the format of assembler directives is the AT&T format[20] and that ofthe assembly language instructions is the one speci�ed in the processor speci�cation.The process of disassembly involves reading a binary instruction, searching in theinstruction set and generating assembly language instruction. The input binary �lecontains almost all (wel l most of ) the necessary information of the original source�le. Unfortunately, the process of disassembly is non-trivial as the binary �le isnot designed to undergo disassembly. Assemblers throw away a lot of informationpresent in the original source which is irrelevant to the execution of the program. Thegreatest problem in disassembling is to identify and distinguish code (instructions)and data, as both are represented as sequence of bytes. Furthermore designing ageneric disassembler involves extra e�ort because information about instruction set23



of a processor is coded in the processor speci�cation �le. Instruction set of theprocessor must be extracted in a format so that an instruction read from the binary�le can be identi�ed easily. In addition, information about number of instructions inthe instruction set, length of an instruction, parameters in an instruction etc. variesfrom processor to processor. Various di�erent processors evaluate the target addressfor jump instructions using bits available in the instruction in di�erent ways whicha�ects the design of a disassembler.Lastly, the complexity of the symbolic disassembler is high because it uses symbolsto refer to the locations. While programming, users normally use symbols (names) torefer to variables and functions. The compilers usually retain the names of functions(and global variables sometimes) in the compiled binary �les. However, symbolscorresponding to local variables or locations are not retained. Thus disassembler hasto generate new names if not available in the binary �le.In this chapter, we shall describe the algorithm used by the disassembler for thedisassembly. Basically the approach adopted is to point out what information isavailable and how it contributes in the generation of the �nal output.3.1 Input Binary File (ELF) StructureLet us begin by examining the structure of the binary �le in ELF format (which isan input to the disassembler) as taken from the manual[18].A �le in ELF format always begins with a header (cal led the ELF header) whichis in a machine independent format so that it can be read on any processor. Thisheader contains information which helps in interpreting the contents of the rest ofthe �le. Thus the ELF header is the master key to the rest of the information in the�le. A binary object �le contains information grouped together in logical units calledsections. There are numerous sections in the object �le each dedicated to holding aparticular kind of information (program data, code etc.). Each section has a sectionheader which holds the necessary information to interpret the section. The sectionheaders are collected and placed in a table called the section header table. The ELFheader contains information to locate this section header table.The sections which are relevant for the purpose of disassembly can be brieysummarized as follows. 24



� \.text" section: This section contains the program code.� \.data" section: This section contains the initialized global program data.� \.rodata" section: This section contains the initialized global read-only data(for example, constants).� \.bss" section: This section contains uninitialized global data.� \.symtab" section: This section contains information regarding various sym-bols used in the program (functions, global variab les etc.). Type, size and lex-emes are the chief pieces of information maintained for each entry. The location(section:o�set pair) is also stored for each entry.� \rel.text" section or \.rela.text" section : As the name suggests, thissection is the relocation section with respect to the .text section. This sectioncontains the information needed by the linker to allow it to �ll in values ofsymbols used in the .text section which are only available at the link time.Basically this section provides for a mechanism to associate a given o�set inthe code with an entry in the symbol table. This information is used in thedisassembly to regenerate the symbol names in the output.3.2 Two Pass Design of DisassemblerIn order to generate a full assembly �le as output, we need to generate :� instructions (preferably using symbolic nam es for memory and symbol refer-ences ) within the .text section.� initialized data (including size and type information along with symbol nam es )from the .data section.� read-only data (this could be character strings ) from the .rodata section.� the makeup of the .bss section (the section meant for uninitialized data, whichdoes not occupy any space in the object �le but whose makeup needs to be pre-served because symbols may be de�ned with respect to it).� the assembler directives to glue up the whole output.25



The processing of the .text section is almost independent from the rest. The.text section may contain data and other things apart from the program code. Al-though compilers do not mix data with code, an assembly language programmer maydo so. Apart from this, even simple actions like aligning the code for a new functionto the nearest 4-byte boundary, can introduce gaps in the .text section.The assembler �lls in these gaps by some random (or irrelevant) value since theselocations are never executed. The problem is that there is no way to distinguish datafrom gaps within instructions. If the normal process of disassembly is allowed to takeits own course by treating these gaps as genuine code, the opcode alignment may bedestroyed. Once misaligned, there is no way to recover and we may get unreliabledisassembly. Thus it is absolutely essential to prevent the processing of such gaps.We do this by identifying the basic blocks in the code section. Each basic blockconstitutes a valid address range in the .text section. This is achieved by makingone extra pass of code analysis on the .text section. Thus our disassembler is a twopass disassembler.For a generic disassembler, information about a processor's instruction set such assyntax and image of instructions must be extracted from the intermediate representa-tion of the processor speci�cation. When some instruction uses a reference which canbe a symbol, the disassembler needs to resolve the reference for symbolic disassem-bly and use the symbol-name in the assembly language output program. Therefore,before discussing about the working of �rst and second pass, we will discuss aboutreferences and then about the information extracted from the IR.3.2.1 Resolving ReferencesThe programmers normally code their applications by de�ning symbols in the programin various sections (.text, .data etc.). The basic purpose that these symbols serveis to associate a name with a location in one of the sections. The programmer canthen refer to these locations using symbol names.In the ELF �le, there is a relocation section (.rel.text or .rela.text). Thissection provides relocation information with respect to the .text section in most ofthe relocatable object �les. When the assembler encounters a symbol, say in the .textsection, it creates an entry in the relocation section which associates the occurrence(the o�set at which the symbol reference occurred in the relocatab le object �le and not26



the location of the actual symbol itself) with the symbol table entry of the symbol. Insome cases the assembler may even associate the occurrence with the symbol tableentry of the section with respect to which the symbol is de�ned and include the o�setof the symbol as the addend in the reference location. This primarily happens forstatic variables whose information is not exported at the link time. Both these casesmay arise and need to be handled separately.Now, when some instruction uses a reference which can be a symbol, the disas-sembler needs to resolve the occurrence of the reference and use the symbol-name.In the best case, the name used could be the same as the original symbol name.While resolving a reference to a location, we normally proceed to determine if thereis an entry in the relocation table corresponding to the occurrence, in which case itis enough to resolve whether the entry refers to an object (global data item ) or to asection (global-static item ). In the former case, the name is available in the symboltable itself. In the later case, we need to generate a name for the symbol, but onlyafter ensuring that no other name has already been generated for that symbol.3.3 Extracting Information from Intermediate Rep-resentationThe interm ediate representation (IR ) of a processor speci�cation provides a lot of in-formation about the processor. For the purpose of disassembly, we need the followinginformation about a processor's instruction set.� Syntax and Image : What is the assembly language syntax and correspondingbinary image for the instructions.� Arguments information : For each instruction, how many arguments areneeded, the type and length of each of the arguments, how to decode the argu-ments and how to present the arguments in the assembly language.� Control transfer instructions : which are the instructions which can trans-fer control from one place to another. These can be further subdivided as un-conditional or conditional jump instructions, unconditional or conditional callinstructions (to a procedure) and unconditional or conditional return (from aprocedure) instructions. 27



� O�set calculation : For a control transfer instruction, how does a processorencode the address of the next instruction.For a speci�c disassembler for a processor, all this information can be hard-coded.However for a generic disassembler, this information must be extracted from theintermediate representation of the processor speci�cation.3.3.1 Extracting Syntax and Image of instructionsThe IR of the processor speci�cation contains syntax and image records for all theinstructions. We extract these corresponding to the instruction op-ru le . Theserecords encode the syntax of an assembly language instruction, corresponding binaryimage and information about the arguments. Arguments type information is foundwith the help of the and-rule table.The image record includes a string corresponding to the binary image of theinstruction. The string does not hold the binary image of the instruction verbatim.For example, a record for add instruction described in �gure 5 has the syntax-string as\add r%df1.0.0g,r%df2.0.0g" and the image-string as \101%2bf1.0.0g1%2bf2.0.0g".The instruction is 8 bits long and it takes two arguments. Both arguments arerepresented in 2 bits (are card(2) type). If instruction \add r2,r3" is assembled,then its corresponding binary image will be \10110111". Therefore, we should havea way to associate the correspondence between the string stored in the image recordand the binary image of the instruction read from the input binary �le. Further, weshould be able to �nd the value of the arguments used by the instructions.For this purpose, we evaluate two binary strings, namely image and image-mask,for each of the image record. Basically the image can be taken as the string valuewhich results from the bit-wise and ing of the binary image of the instruction andthe image-mask. Length of image is equal to the instruction's length in bits. Thealgorithm is given in �gure 10. For the example of add instruction, the image will be\10100100" and the image-mask will be \11100100".Now it is easy to �nd out whether a given sequence of bits matches with any of theinstruction in the instruction set of the processor. It will be a sequential and ing andcomparing operations on the instruction set. Moreover, if an instruction is matched,then values of all the arguments can be computed to generate the assembly language28



Algorithm 3 :For each image record, repeat the following steps 1,2 and 3.1. Take the image-string from the image record.2. If a bit (0 or 1) is stored in the image-string,then f� copy the bit value as it is in the image.� copy bit `1' in the image-mask.g3. If a parameter reference such as \%d" is stored in the image string,then f� Find the length L of the parameter.� Copy L 0s in the image.� Copy L 0s in the image-mask.� Note the information about the parameter. It includes position, type,length, and-rule number, sub-rule number and parameter-number. Thelast three �elds are available in the image record as a tuple.g Figure 10: Algorithm for Calculating Mask Valuesinstruction.3.3.2 Instruction Matching AlgorithmAs we described earlier, we can identify whether a given sequence of bits represent aninstruction or not using the sequential and ing and comparing algorithm. This algo-rithm is simple but ine�cient. The ine�ciencies will be even higher if the instructionset have variable length instructions.We have designed an e�cient algorithm as given in �gure 11. This algorithm isbased on an observation that instruction set of a processor uses some �xed numberof bits for opcode in any instruction. By looking at these bits, all the instructionscan be divided uniquely into di�erent categories. All instructions will have same bit29



Algorithm 4 :� Find maximum length lmax of the instruction.� Initialize a general-mask G of length lmax with all 1's.� Do bitwise and ing of string image of all the instructions with G. At end, theG will have the required value.� Now repeat the following steps for all the instructions.1. Do bitwise and ing of the image with the G and call it R.2. if a bucket is having the bucket-value same as the R, then store theinstruction in the bucket.3. Otherwise, create a new bucket and store the instruction in the bucket.Assign R as the bucket-value for this bucket.� For each bucket, compute bucket-mask. The bucket-mask is a string resultingfrom the bitwise and ing of all image strings of the instructions stored in thebucket.� Sort the buckets according to the bucket-values.� Sort the instructions within each bucket according to the image string.Figure 11: Algorithm for Calculating More Mask Valuesvalues for the opcode in each category. In each category, again some �xed numberof bits di�erentiate among the instructions. We call these bits as subcode. Mostof the processors use this two-level of hierarchy in assignment of the opcode to theinstruction.In the algorithm, a binary string named general-mask is calculated to iden-tify the instruction category. We call these category as di�erent buckets. Thegeneral-mask will have 1 at bit positions used for opcodes. For example, we willget the general-mask value as 0xFC 0x00 0x00 0x00 for PowerPC603 processor[19]that has 32 bit long instruction with �rst 6 bits as an opcode. The instructions aregrouped in buckets. Each bucket is assigned a bucket-value which is the binarystring resultant from the bit-wise and ing of the binary string image of the instructionand the general-mask. Each bucket is assigned a bucket-mask to identify a instruc-tion among the instructions stored in each bucket. The bucket-mask has bit value30



1 at all those positions which are used for the opcode and the subcode. All bucketsand the instructions within each bucket are sorted with respect to the bucket-valueand the binary string image respectively to reduce the searching time.Now the instruction matching algorithm is described as follows.� Call given sequence of bits to be identi�ed as D.� Do the bitwise and ing of the D and general-mask.� Find the bucket B where the instruction might be stored. For this purpose, dothe binary search with comparison of resultant string and bucket-value.� If no bucket is found, then there is no such instruction.� Otherwise, do the bitwise and ing of the D and the bucket-mask associated withthe bucket B.� Find the instruction I. For this, do the binary search with comparison of theresultant string and the image.� If search fails, then there is no such instruction.3.3.3 Extracting Control Transfer InstructionIn the binary �le, there may be gaps in between the instructions due to the alignmentconstraints. Control of the program execution never reaches to such gaps. The ow ofa program is a�ected by the control transfer instructions. We have divided the controltransfer instructions under six categories, namely unconditional and conditional jumpinstructions, unconditional and conditional call (to a procedure) instructions andlastly unconditional and conditional return (from a procedure) instructions. Theprocess of disassembly takes care of such instructions. An occurance of an instructionof such type is used to identify the address ranges that contains the code. Otherwise,disassembled instructions sequence might be completely wrong. Therefore, we needthe information about all such instructions.Instructions under each category can be found by a simple method. The methodis based on the assumption that instructions are described in a hierarchical manner inthe processor speci�cation. If a complete instruction speci�cation tree is made, then31



instruction of a category can be marked under a subtree i.e. an instruction is putunder a particular category if the root node of the corresponding subtree is traversedduring attening of the instruction. If a processor speci�cation is not written in thismanner, then a little e�ort is needed to modify it. One can add an or-rule with allthe instructions of a category as children nodes of the or-rule .The disassembler takes an identi�er name for each category from the user. Theseidenti�ers denote nodes of various subtrees associated with various categories. Asdescribed earlier, the syntax and image records of an instruction hold dot-expressionswhich provide the sequence of nodes traversed during attening of the instruction. Ifan instruction belongs to any of these category, then the root node of the categorytree must be encoded in the dot-expression. If any of these nodes is found in the dot-expression, then the instruction is put under the corresponding category. Otherwisethe instruction is not a control transfer instruction and termed as a simple instruction.There can be a situation when an instruction belongs to two such subtrees. Thiswill happen if tree of one category is also a subtree of another category of tree. Forexample, the PowerPC processor does not have any call type instruction. It usesjump type of instructions itself to transfer the control to a subroutine. It stores areturn address in the link register and set some bits to treat the jump instructionas a call instruction. For such conditions, instructions are matched according toa priority rule. We have assigned the priority to unconditional jump, conditionaljump, unconditional call, conditional call, unconditional return and conditional returntype of instructions respectively in that order. If an instruction matches under twocategories, it is put under the higher priority category.3.3.4 Evaluation of Next Instruction AddressTo identify valid code address ranges, it is necessary to evaluate the target addressof the control transfer instructions. A control transfer instruction, either gives thestarting address of a new address range or causes the end of current address range.For a control transfer instruction, each processor encodes the address of the nextinstruction in a di�erent way. For example, the next instruction address for jump typeof instructions may be speci�ed relative to the current program counter. The relativeo�set value is encoded in the instruction itself. The encoding of o�set value mightbe di�erent on di�erent processors. In some cases, the next instruction address can32



be determined only at the run time, for example, the case when the next instructionaddress is taken from a processor register or memory. We are interested in �nding outthe next instruction address from an instruction image of binary �le if possible. If itsvalue can not be determined, we do not use it for the identi�cation of code addressranges.The intermediate representation of the processor holds the attribute de�nitionsfor all the instructions. The attribute de�nition corresponding to action attributesimulates the semantic of an instruction. In the Sim-nML, a register called PC hasspecial semantic and normally points to the next-to-be executed instruction. Forcontrol-transfer instructions, the attribute de�nition of action attribute must modifythe PC value in some way. In some processors, there are more than one such specialregister (such as oldpc, newpc, currentpc).The disassembler takes a set of identi�er names from the user. These are essen-tially the names of such special purpose registers. We extract the attribute de�nitionscorresponding to action attribute for all control-transfer instructions. If we have thebinary image of an instruction, we can get the address of the next instruction bysimulating the execution of the attribute de�nition. When a statement modi�es thevalue of the program counter (any of the identi�er in set entered by the user), its newvalue is taken as the address of the next instruction. If the statement requires a valuewhich is unknown, then we can not determine the address of the next instruction.3.4 Implementation Details of the DisassemblerAs we said earlier, the disassembler is a two pass disassembler. In reality, these twopasses are made over .text section only. While disassembling the .text section,information is gathered which aid in disassembly of the other sections. In the �rstpass, it gathers information like references, list of basic block etc. which is used toproduce output in the second pass using symbol name for references. The disassemblerproceeds in following phases.
33



3.4.1 Initialization PhaseAs said earlier, the disassembler takes ELF binary �le and processor speci�cation inthe IR as input. The disassembler does the following tasks in this phase.� It identi�es the data encoding of the host processor using the algorithm givenin �gure 12.� It checks the integrity of the IR �le by looking for the \META TABLE"(tableof contents) at the start.� It then reads the Meta Table entry and detects the data encoding used in theIR �le as described in section 2.2.4. If the data encoding of the host processoris di�erent from that in the IR, then a ag is set to indicate that the data readfrom the IR �le must be converted to proper data encoding before its use.� The disassembler then extracts the information required for disassembly fromthe IR �le as described in the section 3.3.� It checks the integrity of the binary �le by checking the magic number in theELF header.� From the ELF header, it detects the data encoding of the binary �le and setsa ag if data encoding di�ers from the source architecture. This indicates thatdata read from the binary �le must be converted into proper data encodingbefore its use.� Lastly, it reads in the information from the binary �le to be used for future ac-cess. This information which includes things like the ELF header, symbol tableetc., is held in appropriate data structures so that all the required informationis easily available.3.4.2 First Pass of DisassemblyIn the �rst pass of disassembly, all basic blocks of the code are identi�ed. Theidenti�cation process is based on the assumption that there must always be someway (a path ) to reach the code. If there is no such path (i.e. there is no jump/call34



(Assume that the unsigned character is 1 byte long and the unsigned integer is 4byte long)� Take a unsigned character pointer P and unsigned integer pointer I. Let I andP both points to the same 4-byte structure.� Store 0 at P, P+1 and P+2. Store 0xFF at P+3.� If value at I is equal to 0x000000FF,then data-encoding of the processor is big-end ian .� If value at I is equal to 0xFF000000,then data-encoding of the processor is little-end ian .Figure 12: Algorithm to Find Data Encoding of the Host Processorto this code), it shall never get executed and hence we need not worry about it.Since the ELF binary �le contains the names of the functions in the symbol table,these are taken as the basic blocks in the beginning. The algorithm then proceeds totrace each one of these one by one in order to discover all possible program paths.A stack is used for storing the unprocessed entry points. An instruction is identi�edusing the instruction matching algorithm described earlier in section 3.3.2. Aftereach instruction matching, instruction bu�er pointer is moved ahead according toinstruction length of the matched instruction. No attempt is made to interpret thecontents of the instructions except that a constant vigil is kept over control transferinstructions.A control transfer instruction, either gives a new entry point or causes the endof the current trace. If the instruction comes under the category of unconditionalreturn instruction or unconditional jump instruction, then the instruction is the lastinstruction of the current trace. Otherwise tracing is continued. All control instruc-tions except the instructions coming under the category of unconditional return andconditional return, give a new entry point. The address of the next instruction isfound by the approach described in the section 3.3.4.The information gathered in the �rst pass is stored for use in the second pass. Thedisassembler maintains a list of pairs. Each association consists of one entry pointin the text section and the corresponding name by which it is referred. The list isbuilt up during this pass. Whenever a control transfer instruction refers to an o�set35



in the code section, an attempt is made to resolve the reference (using the approachgiven in section 3.2.1). If the reference is not resolved, a new symbol is generatedand appended to the list. Future references to the same o�set would resolve into thisnew name. At the end, the information (about the symbols and the entry points ) aresorted with respect to the address of the entry points.At the end of this pass, all adjacent basic blocks are merged to form a biggerbasic block. The intention is to obtain range of addresses which contain only codeand no data/gaps. After obtaining these ranges, the second pass simply processesthe regions covered by them. Lastly, all basic blocks are sorted with respect to thestarting address to ease the translation to the assembly instructions.3.4.3 Second Pass of DisassemblyThe objective of this pass is to generate assembly language instruction from theirbinary counterpart. Since the address ranges of valid code have been identi�ed in the�rst pass, we only need to disassemble the instructions in each address range. Theinstruction disassembly is carried out in the following steps.� Symbol Generation : To perform the symbolic disassembly, at the beginning ofthe disassembly of an instruction, it is checked whether a symbol is associatedwith the address of the current instruction and if so, the symbol type (functionname or just a label) is also extracted. If the symbol refers to a function, furtherinformation regarding the type and size of the function is also extracted.� Instruction Generation : An instruction is matched using the instruction match-ing algorithm (as described in section 3.3.2) and corresponding assembly lan-guage instruction is output with appropriate parameters. If the instruction isa control transfer instruction, a symbol is found from the symbol table con-structed during the �rst pass and corresponding symbol name is used in thedisassembled instruction. Further, memory references to the .data, .rodataand other such sections are found. In case of such a reference, we try to resolvethe address. The size of the operand and the symbol name is stored for thereference.This procedure is repeated for each instruction in all address ranges. The gapswithin the .text section are overlooked for the purpose of text disassembly. One36



possibility is to simply ignore the bytes in the gaps and change the current locationcounter so that it reaches the beginning of the next valid address range. However, itis possible that these gaps contain initialized data (which are not referenced by thenormal methods, for instance using register indirection instead of symbols, otherw iseit would have been discovered during the �rst pass ). In such a case, ignoring themmight break the intended equivalence between the relocatable object �le and thegenerated assembly code. Therefore, we simply output bytes in the gaps as data andgenerate appropriate pseudo-ops to glue the code.3.4.4 Disassembly of Other SectionsWhile making the second pass through the .text section, information is gatheredregarding the references made to the other sections. This information together withthe symbol table information is used to disassemble the .data section. We simplyscan the .data section looking for those o�sets for which a symbol name is available.At these o�sets, the corresponding symbol name is output as a label. Moreover, thelength information gathered during the second pass is also output for the data item.At all other o�sets, the data is dumped byte by byte.The .rodata section is dealt similarly except that the symbol names are notretained in the binary �le. Thus, they need to be generated afresh.
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Chapter 4
Results and Conclusion
4.1 ResultsWe have discussed the design of the intermediate representation. The IR ful�lls allthe goals which were setup behind the design of the IR. Some advantages of the IRare enumerated below.� All information which was available in the Sim-nML speci�cation can be re-trieved. Moreover, parsing e�ort needed in other tools to get the requiredinformation has been saved.� All forward references of identi�ers have been resolved. Thus multiple passesare not necessarily needed in the tools to resolve the references.� Most of the tables in the IR contain �xed size records. Thus it is easy ande�cient to retrieve the required information from the IR.� Hierarchy of the information has been attened while retaining the path ofattening. Therefore, processing needed in other tools is reduced.� All syntax and image attribute de�nitions of the instructions are available collec-tively in one table. Therefore design of the tools such as assembler, disassembler,simulator etc. is simpli�ed as they need to gather information only from oneplace. 38



� In the IR, the attribute de�nitions for all the attributes except syntax andimage are represented in pre�x notation. Therefore, tools such as simulator,trace generator, compiler back-end generator etc. can be made to run fast.� The IR is exible enough for further extension. One can add more tables in theIR without any problem.The tool, IR-Generator, is tested for PowerPC603 processor speci�cation[19]. TheIR-Generator is tried on Pentium (little-endian) based Linux machines, DEC-Alpha(little-endian) based DEC machines and UltraSparc (big-endian) based Sun OS ma-chines. The inter-operability among these machines is also tried and found to work.We have also implemented the generic symbolic disassembler. The disassemblercan take the IR for a processor speci�cation and ELF binary for that processor asinputs. The salient features of the disassembler are as follows.� The disassembler is generic and processor independent.� The disassembler uses symbols to refer to the locations and functions. Therefore,the output �le resembles the original source from which binary �le was produced.The disassembler is tested for PowerPC603 IR generated through the IR-Generator.The disassembler is also tried on the above mentioned architectures. It is also veri�edthat it can take the IR generated on a little-endian processor while running on big-endian processor and vice-versa.The disassembler is tested for several programs. Some of the test results are givenin the table 1. All the C programs are compiled using GNU C cross-compiler forPowerPC603 processor running on Pentium based Linux machines. It is observed thatall the corresponding instructions are matching in the source assembly program andoutput assembly programs except those instructions which are not implemented inthe speci�cation. Di�erences in total line numbers are coming due to unimplementedinstructions because corresponding binary images are output byte by byte in di�erentlines in the output assembly program.Some of the example outputs of the disassembler are given here.
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Program Number No. of Lines No. of Lines in No. of Lines inin C Program Assembly Program Output Assembly Program1 68 202 2322 171 472 5053 212 664 7404 224 889 10595 505 2487 26986 567 2733 44257 671 3118 34688 693 4262 44699 1245 5366 582710 2766 13040 15652Table 1: Test Results4.1.1 Example 1 :The following C program compiled using GNU C cross-compiler for PowerPC603processor running on Pentium based Linux machines./* file example1.c */main(){ int a,b,c;a = 20;b = 30;c = a + b;}The compilation results into the follwoing assembly program..file "example1.c"gcc2_compiled.:.section .text.align 2.globl main.type main,@functionmain: stwu 1,-32(1) 40



stw 31,28(1)mr 31,1li 0,20stw 0,8(31)li 0,30stw 0,12(31)lwz 0,8(31)lwz 9,12(31)add 0,0,9stw 0,16(31).L1: lwz 11,0(1)lwz 31,-4(11)mr 1,11blrThe result of disassembling the corresponding relocatable �le using our disassembleris shown below :.section .text.align 4.globl main.size main,60.type main,@functionmain:gcc2_compiled.:stwu 1,-32(1)stw 31,28(1)or 31,1,1addi 0,0,20stw 0,8(31)addi 0,0,30stw 0,12(31)lwz 0,8(31)lwz 9,12(31) 41



add 0,0,9stw 0,16(31)lwz 11,0(1)lwz 31,-4(11)or 1,11,11bclr 20,0As it evident, the disassembler generates a correct assembly language �le with nec-essary assembler directives. Moreover, the symbolic name of the function \main" isretained together with its type, size and binding information. The unnecessary labelsused in the source assembly program have been removed. Instructions such as or andmr are alias of each other. In the output �le, or instruction is generated as that wasthe one speci�ed in the processor speci�cation. The output �le is cross-compiled anddisassembler is run on the corresponding binary �le. The generated output is similarto the original one.4.1.2 Example 2Let us now take a more complicated example. The source C program is shown below.The program has a conditional if statement that gets compiled to multiple branches./* file "example2.c" */main(){ int a,b,min;a = 20;b = 30;if (a > b) min = b;else min = a;}The assembly program generated by the cross-compiler is shown below..file "example2.c"gcc2_compiled.: 42



.section .text.align 2.globl main.type main,@functionmain: stwu 1,-32(1)stw 31,28(1)mr 31,1li 0,20stw 0,8(31)li 0,30stw 0,12(31)lwz 0,8(31)lwz 9,12(31)cmpw 1,0,9bc 4,5,.L2lwz 0,12(31)stw 0,16(31)b .L3.L2: lwz 0,8(31)stw 0,16(31).L3:.L1: lwz 11,0(1)lwz 31,-4(11)mr 1,11blrThe result of disassembling the corresponding relocatable �le using our disassembleris shown below :.section .text.align 4.globl main 43



.size main,80.type main,@functionmain:gcc2_compiled.:stwu 1,-32(1)stw 31,28(1)or 31,1,1addi 0,0,20stw 0,8(31)addi 0,0,30stw 0,12(31)lwz 0,8(31)lwz 9,12(31)cmp 1,0,0,0bc 4,5,text0lwz 0,12(31)stw 0,16(31)b text1text0: lwz 0,8(31)stw 0,16(31)text1: lwz 11,0(1)lwz 31,-4(11)or 1,11,11bclr 20,0For this example, we can observe that the sequence of instructions generated by thedisassembler is almost similar to the original except for a few symbol names whichare generated by the disassembler. New labels like text0, text1 have the format<section-name, counter>. These symbols are not there in the binary �le as these areconsidered local and thrown away by the assembler.
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4.2 ConclusionSim-nML language, an extension of nML machine description formalism, is a simple,elegant and powerful enough to model machine behavior at instruction level. In thisthesis, we have discussed an integrated environment where Sim-nML acts as the spec-i�cation language for processor performance model in a generic way. The integratedenvironment helps in automatic generation of compiler, assembler, disassembler, in-struction set simulator and trace generator.As part of the thesis work, we have designed an interm ediate representation (IR )for processor speci�cation written in Sim-nML language. We have demonstrated howthe intermediate representation simpli�es the development of various tools such ascompiler, assembler, disassembler, instruction set simulator, trace generator etc. Wehave also developed a tool, IR -Generator, which takes a processor speci�cation writ-ten in Sim-nML language and produces the intermediate representation of processorspeci�cation. Further, a Generic Symbolic Disassembler is developed which takes anintermediate representation of a processor and a relocatable binary �le in ELF formatas input and produces an equivalent program in assembly language of the processor.We have also given the test results for PowerPC603 processor. Although these toolsare tested only for PowerPC603 processor speci�cations, their design is generic enoughto be used for all type of RISC and CISC processor speci�cations.4.3 Future Work and ExtensionsThere are many things which can be undertaken as an extension of this work.� Flatten ing of all Attributes : In the IR, all except syntax and image attributede�nitions are stored without any attening involving parameter substitution.If attribute de�nitions of all the attributes can be attened, then it might furthersimplify the design of some tools such as compiler back-end generator.� Support for Other File Format : Currently the disassembler can only acceptrelocatable object �les in the ELF format. It would be nice if it could beextended to understand other format also such as COFF, a.out etc.
45



Appendix A
Grammar of Sim-nML Language
Convention : We have used following convention in describing the Context Free Gram-mar (CFG) of Sim-nML language.� rule1 : X jY means either X or Y is derived from rule1. We have written X andY in separate lines.� Keywords are written in small-case letters.� The start symbol is MachineSpec.� X Y means the derivation of Y where X is used as a quali�er. For example,Let Identi�er means an identi�er speci�ed in LetDef, Const Expr means a con-stant expression, Card Expr means an expression of card type.� X Y Z means the derivation of Z where X and Y both are used as quali-�ers. For example, Card Const Expr means a constant expression of card type,Para Mode Identi�er means an identi�er used as a parameter name which is ofmode type.� Following are the terminal symbols used in describing the grammar. We haveused regular grammar notation here.letter : [a-zA-Z_]digit : [0-9]bin : [01] 46



hex : [0-9a-f]alpha : [0-9a-zA-Z_]Identifier : {letter} {alpha}*CARD_CONSTANT : {digit}+FIXED_CONSTANT : {digit}+ . {digit}+BINARY_CONSTANT : 0b{bin}+HEX_CONSTANT : 0x{hex}+STRING_CONSTANT : sequence of characters written in double-quotes (" ")Following is the Context Free Grammar for Sim-nML language.MachineSpec :| MachineSpec LetDef| MachineSpec MacroDef| MachineSpec TypeSpec| MachineSpec ResourceSpec| MachineSpec ExceptionSpec| MachineSpec MemorySpec| MachineSpec ModeSpec| MachineSpec OpSpecLetDef : let Let_Identifier = Const_ExprMacroDef : macro ( Macro_Identifier_List ) = Macro_ExprTypeSpec : type Type_Identifier = TypeDefTypeDef : bool| int ( Card_Const_Expr )| card ( Card_Const_Expr )| fix ( Card_Const_Expr , Card_Const_Expr )| float ( Card_Const_Expr , Card_Const_Expr )| [ Int_Const_Expr .. Int_Const_Expr ]| enum ( Enum_IdentifierList )| instid_typeIdentifierList : Identifier| IdentifierList , IdentifierResourceSpec : resource Resource_IdentifierListExceptionSpec : exception Exception_IdentifierList47



MemorySpec : MemRegPart [ Card_Const_Expr , Type ] OptMemAttrListMemRegPart : mem Mem_Identifier| reg Mem_IdentiferType : TypeDef| Type_IdentifierOptMemAttrList :| MemAttrDefListMemAttrDefList : MemAttrDef| MemAttrDefList MemAttrDefMemAttrDef : volatile = String_Const_Expr| alias = MemLocation| initial = Const_Expr| uses = UsesDefMemLocation : Mem_Identifier Const_OptBitOptr| Mem_Identifier [ Card_Const_Expr ] Const_OptBitOptrModeSpec : mode Mode_Identifier ModeSpecPartModeSpecPart : AndRule OptionModeExpr AttrDefList| OrRuleOptionModeExpr :| = ExprOpSpec : op Op_Identifier OpRulePartOpRulePart : AndRule AttrDefList| OrRuleOrRule : = Or_IdentifierListAndRule : ( ParamList )ParamList :| ParamListPart| ParamList , ParamListPartParamListPart : ParamIdentifier : ParamTypeParamIdentifier : Param_Rule_Identifier| Param_Mem_IdentifierParamType : Type| Rule_IdentifierRule_Identifier : Op_Identifier 48



| Mode_IdentifierAttrDefList :| AttrDefList AttrDefAttrDef : Attr_Identifier = AttrDefPart| syntax = AttrStringExpr| image = AttrStringExpr| action = { Sequence }| uses = UsesDefAttrDefPart : Expr| { Sequence }UsesDef : UsesOrSequence| UsesDef , UsesOrSequenceUsesOrSequence : UsesIfAtom| UsesOrSequence | UsesIfAtomUsesIfAtom : UsesCondAtom| if Bool_Expr then UsesIfAtom OptionElseAtom endifOptionElseAtom :| else UsesIfAtomUsesCondAtom : UsesAndAtom| { Bool_Expr } UsesAndAtomUsesAndAtom : UsesActionAtom| UsesAndAtom & UsesActionAtomUsesActionAtom : UsesDefAtom| UsesDefAtom : UsesActionAttr OptionalTimeUsesActionAttr : Attr_Identifier| action| Param_Rule_Identifier . action| Param_Rule_Identifier . Attr_IdentifierOptionalTime :| # { Card_Expr }UsesLocation : Mem_Identifier OptBitOptr| Resource_Identifier| Mem_Identifier [ Card_Expr ] OptBitOptrUsesDefAtom : UsesLocation OptionalTime49



| Param_Rule_Identifier . uses| ( UsesOrSequence )AttrStringExpr : Param_Rule_Identifier . syntax| Param_Rule_Identifier . image| String_Const_Expr| format ( STRING_CONST , FormatIdlist )FormatIdlist : FormatId| FormatIdlist , FormatIdFormatId : Param_Mem_Identifier| Param_Rule_Identifier. image| Param_Rule_Identifier. syntaxSequence :| StatementList ;StatementList : Statement| StatementList ; StatementStatement :| nop| action| Attr_Identifier| Param_Rule_Identifier . action| Param_Rule_Identifier . Attr_Identifier| Location = Expr| CondStatement| FunctionName ( ArgList )| error ( STRING_CONST )FunctionName : STRING_CONSTArgList :| Expr| ArgList , ExprOptBitOptr :| < Card_Expr .. Card_Expr >Location : MemLocation| ParaLocation| Location :: Location50



MemLocation : Mem_Identifier OptBitOptr| Mem_Identifier [ Card_Expr ] OptBitOptrParaLocation : Para_Mem_Identifier OptBitOptr| Para_Mem_Identifier [ Card_Expr ] OptBitOptrCondStatement : if Bool_Expr then Sequence OptionalElse endif| switch ( Expr ) { CaseList }OptionalElse :| else SequenceCaseList : CaseStat| CaseList CaseStatCaseStat : CaseOption : SequenceCaseOption : case Const_Expr| defaultExpr : UnconditionalExpr| AttrExpr| if Bool_Expr then Expr OptionElseExpr endif| switch ( Expr ) { CaseExprList }AttrExpr : Param_Rule_Identifier . syntax| Param_Rule_Identifier . image| Param_Rule_Identifier . Attr_IdentifierOptionElseExpr :| else ExprCaseExprList : CaseExprStat| CaseExprList CaseExprStatCaseExprStat : CaseOption : ExprUnconditionalExpr : ExprPart| coerce ( Type , Expr )| format ( String_Expr , ArgList )| FunctionName ( ArgList )ExprPart : LogAndExpr| ExprPart || LogAndExprLogAndExpr : NotExpr| LogAndExpr && NotExprNotExpr : InclusiveOrExpr 51



| ! InclusiveOrExprInclusiveOrExpr : ExclusiveOrExpr| InclusiveOrExpr | ExclusiveOrExprExclusiveOrExpr : AndExpr| ExclusiveOrExpr ^ AndExprAndExpr : EqualityExpr| AndExpr & EqualityExprEqualityExpr : RelationalExpr| EqualityExpr == RelationalExpr| EqualityExpr != RelationalExprRelationalExpr : ShiftExpr| RelationalExpr < ShiftExpr| RelationalExpr > ShiftExpr| RelationalExpr <= ShiftExpr| RelationalExpr >= ShiftExprShiftExpr : AddExpr| ShiftExpr << AddExpr| ShiftExpr >> AddExpr| ShiftExpr <<< AddExpr| ShiftExpr >>> AddExprAddExpr : MulExpr| AddExpr + MulExpr| AddExpr - MulExprMulExpr : PowerExpr| MulExpr * PowerExpr| MulExpr / PowerExpr| MulExpr % PowerExprPowerExpr : SimpleExpr| SimpleExpr ** Card_ExprSimpleExpr : ( Expr )| - SimpleExpr| + SimpleExpr| ~ SimpleExpr| LocationOpd 52



| SimpleOpearandLocationOpd : MemLocationOpd| ParamLocationOpd| LocationOpd :: LocationOpdMemLocationOpd : Mem_Identifier [ Card_Expr ] OptBitOptr| Mem_Identifier OptBitOptrParamLocationOpd : Param_Mem_Identifier [ Card_Expr ] OptBitOptr| Param_Mem_Identifier OptBitOptrSimpleOperand : FIXED_CONST| CARD_CONST| STRING_CONST| BINARY_CONST| HEX_CONST� Note 1 : Following operators give the boolean result in an expression :!;&&; jj; >; >=; <; <=;==; ! = :� Note 2 : We have used the zero value as false and the non-zero value as true forboolean expression.� Note 3 : For MemSpec, one new attribute, initial is de�ned to store the initialvalues of a memory variable.
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Appendix B
File Format of IntermediateRepresentation
In this appendix, we will discuss the layout of the �le for the intermediate representa-tion. The �le consists of various �xed or variable size tables where the name of eachtable is �xed. A table, named as meta table, is always the �rst table in the �le. Allother tables can reside anywhere in the �le and can be located using the meta table.The following are the tables available presently in the IR.� \META TABLE"� \CONSTANT TABLE"� \ATTRIBUTE TABLE"� \RESOURCE TABLE"� \IDENTIFIER TABLE"� \MEMORY TABLE"� \AND RULE TABLE"� \OR RULE TABLE"� \SYNTAX TABLE" 54



� \IMAGE TABLE"� \STRING TABLE"� \INTEGER TABLE"� \PREFIX ATTR DEF TABLE"Each table consists of an array of records. Each record in a table constitutes of various�elds. For each table, all the �elds of �rst records are written �rst in the �le. Thenall the �elds of second record are written and so on. We have used the word recordand entry interchangeably. The �elds might be stored either in little-endian encodingor big-endian encoding depending on the processor on which the �le is created.� Convention : Each table is described by de�ning its record format. We haveused a C-like struct de�nition to describe a record. For each record, �elds arewritten from top to bottom in the �le. In describing the record, following datatypes are being used :Byte = unsigned charWord = unsigned short intDword = unsigned intSByte = signed charSWord = signed short intSDWord = signed intString = Null terminated array of charactersAddress = DwordOffset = DwordB.1 Meta TableThe Meta table holds the table of contents for all the tables which are present in the�le. Each record of the meta table stores the information to locate a table. Eachrecord has the following format.typedef struct f 55



String tab le nam e ;Dword table size ;Address table o�set ;Dword total record ;Dword record size ;g Meta Record;table nam e : This �eld stores the �xed name of a table which is a 32 byte nullterminated string. Name of all the tables are written earlier.table size : This �eld holds the size (in bytes) of a table.table o�set : This �eld holds the starting o�set (in bytes) of a table in the �le.total record : This �eld holds the number of record stored in a table. For thestring table, it holds the value 0.record size : This �eld holds the size of a record (in bytes) of a table. If arecord for a table is variable in size, then this �eld contains thevalue 0.The data encoding of the IR is dependent on the processor on which it is createdi.e. data encoding can be little endian or big endian depending on the processor.A tool can �gure out the endian-ness of the IR by reading the table of contentsirrespective of the type of the machine on which the tools is running. First record ofthe table represent the meta table entries itself. Therefore the no-of-rec contains thetotal number of tables including the meta table, size-of-rec contains the size of eachrecord in the meta table and size-of-table contains the total size of the meta tableincluding the �rst record. A tool can read these values and check if the followingequation is satis�ed.no-of-rec * size-of-rec = size-of-tableIf this equation is not satis�ed, then the endian-ness of the IR and the machine onwhich the tool is running are not the same, otherwise they are the same. In theformer case, this equation must be satis�ed after the endian-ness conversion of the�elds values.
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B.2 Constant TableEach record of the constant table holds the informations about the constants (seesection 2.2.1) in the following format.typedef struct fO�set id nam e ;Dword val typ ;SDword value ;g Const Record;id nam e : This �eld holds the index into the string table. As discussedearlier, string table holds null terminated strings. Thus this�eld represents a reference to the constant name.val typ : This �eld indicates type of the value associated with the constant(0 for integer type or 1 for a string type).value : If the val typ �eld represents integer , then this �eld holds thecorresponding signed integer value. If the val typ �eld representsstring , then this �eld holds the unsigned integer index into thestring table from where a null terminated string value can beretrieved.B.3 Resource TableEach entry of this table holds the information about a resource. Each resource isassigned a unique integer key by which it is referenced at other places. Each recordhas the following format.typedef struct fO�set res nam e ;Dword res key ;g Resource Record;res nam e : This �eld holds the index into the string table. In thestring table, the name of the resource is stored at this in-dex.res key : This �eld holds the key value assigned to the resource.57



B.4 Identi�er TableThis table holds the informations about all the identi�ers used in the processor spec-i�cation �le (other than those speci�ed in the constant table and the resourcetable). Each identi�er is assigned a unique integer key which is used to refer to theidenti�er at other places. Each record has the following format.typedef struct fO�set id nam e ;Dword id typ ;Dword id key ;g Identi�er Record;id nam e : This �eld holds an index into the string table. The stringtable holds a null terminated string at this index which is thename of the identi�er.id typ : This �eld indicates the type of the identi�er and may have oneof the following values.0 : Unde�ned Identi�er1 : Name of a memory Variable2 : Name of an or-rule of mode type3 : Name of an and-ru le of mode type4 : Name of an or-rule of op type.5 : Name of an and-ru le of op type.6 : Name of an Exceptionothers : Unspeci�edid key : This �eld holds the key value assigned to the identi�er.B.5 Attribute TableEach entry of this table holds the name of an attribute. Each attribute is assigned aunique integer key to refer to it at other places. Each record has the following format.typedef struct f 58



O�set attr nam e ;Dword attr key ;g Attribute Record;attr nam e : This �eld holds an index into the string table. The stringtable holds a null terminated string at this index which is thename of the attribute.attr key : This �eld holds the key value assigned to the attribute.Note : For mode speci�cation, one new attribute , val , is de�ned to store theoptional expression associated with =.B.6 Memory TableEach entry of this table holds the information about a memory variable speci�edwith reg or mem speci�cation construct of Sim-nML language. Each record has thefollowing format.typedef struct fDword id key ;Dword siz ;Dword tot attr ;Dword mem reg ;Dword data typ ;Dword value1 ;Dword value2 ;Dword attr list index ;g Memory Record;id key : This �eld stores the key value associated with the identi�ername of a memory variable. The key value is assigned in theidentifier table.siz : A memory declaration de�nes a memory base i.e. a set of mem-ory locations accessible under a name and an index. This �eldspeci�es the number of such locations.59



tot attr : A memory declaration may also de�ne values for some prede�nedattributes. This �eld speci�es how many attributes are de�nedfor the memory variable.mem reg : This �eld holds a value 0 if the memory identi�er is declaredusing Reg speci�cation. It holds 1 if the memory identi�er isdeclared using mem speci�cation. Both type of identi�ers aresimilar in nature except that �rst type of identi�ers refer to pro-cessor registers and second type of identi�ers refer to memorylocations.data typ :value1 :value2 : A memory location might hold values of di�erent data types.The data type is encoded in a tuple <data typ, value1, value2 >First �eld, data typ , speci�es what type of values can be storedin a memory location. Second and third �eld stores the valueaccording to the data typ �eld. Table 2 shows the possible valuesfor these �eld.attr list index : If the tot attr �eld has a value 0, then this �eld is ignored andshould be 0. Otherwise it speci�es an index into the integertable. At this index, three integers are stored for each of the at-tributes. Therefore, the total number of integers are 3�total attr .Each integer triple indicates <attr key, o�set, len > where theattr key , is the key corresponding to attribute nam e assigned inthe attribute table. The second �eld of triple, o�set, is thestarting tuple number into the prefix-attribute-definitiontable where de�nition of the attribute is stored in pre�x nota-tion. Third �eld of triple, len , is the number of tuples for itsattribute de�nition.B.7 And-Rule TableThis table holds the information about all the and-rules (mode and op type). Itincludes the information about sub-ru les1 and attributes. The sub-rules of anand-rule are numbered from 0 to n and parameters are numbered as 0 to m from1Refer to section 2.2.2 60



Data Type data typ value1 value2bool 0 0 0card(n) 1 n 0int(n) 2 n 0�x(n; m ) 3 n moat(n; m ) 4 n mrange[n::m ] 5 n menum(id 1. . . id m) 6 0 m � 1Table 2: Encoding of data typesleft to right. Each record has the following format.typedef struct fDword and key ;Dword id key ;Dword total sub ru le ;Dword total para ;Dword total attr ;Dword attr list index ;Dword para list index ;gAnd Rule Record;and key : This �eld holds an integer which is a unique key assigned to anand-rule. This key is used later to refer to the and-rule.id key : This �eld holds the key value which is assigned to the identi�ername of the and-rule in the identifier table.total sub rule : This �eld holds the number of sub-ru les generated by atteningof the and-rule.total para : This �eld holds the number of parameters taken by the and-rule.total attr : This �eld speci�es the number of attributes de�ned for the and-rule.attr list index : If total attr �eld has value 0, then this �eld is ignored and has avalue 0, otherwise it speci�es an index into the integer table.At this index, three integers are stored for each of the attributes.Each integer triple indicates <attr key, o�set and len > similarto the one described in the memory table. There are two excep-tions here. If attr key refers to a syntax or image attribute,61



then o�set �eld contains the starting index in the syntax tableor the image table and len �eld contains the total number ofsyntax or image records corresponding to the and-ru le.para list index : If total para �eld has value 0, then this �eld is ignored. Other-wise it speci�es an index into the integer table. At this index,three integers are stored for each of the parameter. Initially, allparameters triples of �rst sub-rule are written, then all parame-ter triples of second sub-ru le are written and so on. Thus if wehave n sub-ru les and m parameters, then there will be n*m suchinteger triples. Each integer triple indicates <data typ, value1,value2 > i.e. the data type of parameter. Table 3 shows possiblevalues for �elds of the triples.Data Type data typ value1 value2bool 0 0 0card(n) 1 n 0int(n) 2 n 0�x(n; m ) 3 n moat(n; m ) 4 n mrange[n::m ] 5 n menum(id 1. . . id m) 6 0 m � 1and-rule 7 and key 0Table 3: Parameter Type for and-ruleB.8 Or-Rule TableThis table holds the information of all or-ru les (mode or op type). Each entry de-scribes the children nodes of an or-ru le2 . Each record has the following format.typedef struct fDword or key ;Dword id key ;Dword total child ;Dword child list index ;gOr Rule Record;2Refer to section 2.2.2 62



or key : This �eld holds an integer which is a unique key assigned toan or-rule.id key : This �eld holds the key value associated with the identi�ername of the or-rule in the identifier table.total child : This �eld holds the integer number which indicate number ofchildren generated by the attening procedure for the or-rule .ch ild list index : This �eld holds the index into the integer table where a listof and key values are stored. Number of such and key valuesis given by the value of total ch ild . These and key are uses torefer to the and-ru le (assigned in the and-rule table).B.9 Syntax TableThis table holds the syntax records associated with the syntax attribute de�nition ofall and-ru les. Each record has the following format.typedef struct fDword syn key;Dword dot expr len;O�set dot expr o�set;Dword syn expr len;O�set syn expr o�set;g Syntax Record;syn key : This �eld holds an integer which is a unique key assigned toa syntax record . In the and-rule table, the key is used toget the attribute information of syntax attribute.dot expr len : This �eld holds the length of a character string, named asdot-expression (Refer to section 2.2.3).dot expr o�set : This �eld holds the o�set in bytes into the string tablewhere actual dot-expression is stored as a sequence of charac-ters.syn expr len : This �eld holds the length of the character string, named assyntax-string of the instruction.syn expr o�set : This �eld holds the o�set in bytes into the string tablewhere the syntax-string is stored as a sequence of characters.63



B.10 Image TableThis table holds the image records associated with the image attribute de�nition ofall and-ru les. Each record has the following format.typedef struct fDword img key;Dword dot expr len;O�set dot expr o�set;Dword syn expr len;O�set img expr o�set;g Image Record;img key : This is the unique integer assigned to each image record . Inthe and-rule table, this value is used to get the attributeinformation of image attribute.dot expr len : This �eld holds the length of the character string, named asdot-expression (Refer to section 2.2.3).dot expr o�set : This �eld holds the o�set in bytes into the string tablewhere actual dot-expression is stored as a sequence of charac-ters.syn expr len : This �eld holds the length of the character string, named asimage-string of the instruction.syn expr o�set : This �eld holds the o�set in bytes into the string tablewhere the image-string is stored as a sequence of characters.B.11 String TableThis table holds null terminated character sequences, commonly called strings. Thesestrings are referred to by an index into the string table. The �rst byte at indexzero always contains a nul l character. Similarly, the last byte also contains a nul lcharacter, ensuring nul l termination for all strings. A string whose index is zerospeci�es either no name or a null name depending on the context. We show oneexample of the string table of size 30 bytes in table 4 and the strings associatedwith various indices in table 5. 64



null i d e n t i f i er null P C null null i n s tr u c t i o n null 1 nullTable 4: Example of the String TableIndex string1 identi�er12 PC16 instruction18 struction0 nullTable 5: Interpretation of the String TableB.12 Integer TableThis table holds list of unsigned integer values (Dword type). These integers representdi�erent meanings in di�erent contexts. The integers are referred to by an index intothe integer table. The �rst entry always stored in this table contains 0. The indexrefers to the starting entry and not the starting o�set. The o�set can be found bymultiplying the index and the the size of Dword.B.13 Pre�x-Attribute-De�nition TableThis table holds various attribute de�nitions in pre�x notation. All attributes ex-cept the syntax and image are converted into the pre�x notation and stored in thistable. Each item of the pre�x expression is stored in the following record of typeTuple Record.typedef struct fWord typ ;SDword value ;g Tuple Record;typ : This �eld holds an integer value to indicate the type of tuple i.e.an operator tuple or operand tuple. If tuple is of operand type,then this �eld also encodes the type of operand.65



value : This �eld holds a integer value which will be interpreted accord-ing to the value of typ �eld.An attribute de�nition is stored in the and-rule table and in the memory tablewith the starting index into the prefix-attribute-definition table and the num-ber of items in the pre�x notation of the de�nition. Table 6 shows the possible valuesof typ �eld and corresponding interpretation of value �eld. If the typ �eld holds thevalue 0, then the tuple is operator tuple, otherwise the tuple is operand tuple. If thetuple is of operator type, then value �eld holds an integer which indicates operatorname and arity. Table 7 shows all possible values for this �eld and correspondingarity of the operator.Type of the tuple typ �eld value �eldOperator 0 operator number (see table 7)Fixed constant 1 signed integer value ofoperandCard constant 2 unsigned integer value ofoperandBinary constant 3 O�set into the string tableHex constant 4 O�set into the string tableString constant 5 O�set into the string tableMemory variable 6 key of the identi�er as assigned inthe memory tableAttribute type 7 key of the attribute name as as-signed in the attribute tableParameter type 8 parameter number (left most isassigned number 0).Resource type 9 key of the resource name as as-signed in the resource tableException type 10 Key of the identi�er as assignedin the identifier tableTable 6: Interpretation of the tuple used in Pre�x NotationThere are as many operands available as needed for an operator. Since the arity foran operator is �xed, the number of arguments is implicit. For example, an expressionP C = P C +2 is = P C +P C 2 in pre�x notation and it has 5 items. The �rst item isan operator '='. Second is a memory variable with value �eld being the index into thememory table. Third item is again an operator '+'. The last �eld is a �xed-constant2. 66



value Name of Operator Symbol Arity of Operator0 Addition + Binary1 Subtraction - Binary2 Multiplication * Binary3 Division / Binary4 MOD % Binary5 EXP ** Binary6 Greator than > Binary7 Less than < Binary8 Equal to == Binary9 Not equal to != Binary10 GEQ >= Binary11 LEQ <= Binary12 Logical AND & Binary13 Logical OR j Binary14 Logical XOR ^ Binary15 AND && Binary16 OR jj Binary17 Left Shift << Binary18 Right Shift >> Binary19 Rotate Left <<< Binary20 Rotate Right >>> Binary21 Dot . Binary22 Concatenation :: Binary23 Indexing [] Binary24 Assignment = Binary25 Statement Separator ; Binary26 Unary Addition + Unary27 UNOT OPERATOR ! Unary28 Unary Subtraction - Unary29 Bitwise NOT ~ Unary30 Bit Range .. Ternary31 IF if then else Ternary32 Function canonical function n-ary33 Switch switch n-ary34 default Expression default 0-ary35 NULL nothing 0-ary36 Hash # Binary37 Comma , Binary38 Condition fg Unary39 Colon : BinaryTable 7: Operators Used in Pre�x Attribute De�nition67



For detailed description of each operator, read the Sim-nML speci�cation givenin Appendix A. There are some special cases which are described here.� The �rst case is for Bit Range operator which has the in�x notation asopd1 < opd2::opd3 >.Equivalent pre�x notation used is as follows.(operator; bitrang eoperator; opd1; opd2; opd3):� The second case is for \if then else". If there is no operand in else part, thenNULL operator (0-ary) (see table 7) is being used.� The third case is when there is a no attribute expression for an attribute. Wehave used NULL operator to denote it.� The fourth case is that of a switch operator. General in�x notation for this isswitch (expr){ case Expr_1 : Sequence_1 ;case Expr_2 : Sequence_2 ;.default : Sequence_i ;.case Expr_n : Sequence_n ;}The corresponding pre-�x notation is as follows :(operator, switch)(n, expr,Expr_1, Sequence_1,Expr_2, Sequence_2,....DEFAULT OPERATOR, Sequence_i,....Expr_n, Sequence_n)68



The �rst item is an operator with operator name as switch. Then next item isa simple operand tuple of Card constant type and value as n. After that, exprwill be again written in pre�x notation. It will be followed by n-operands whereeach operand is an expression in pre�x notation and sequence of statements inpre�x notation. Default operator is a 0-ary operator so it can be taken as apre-�x expression.� The �fth case is that of a canonical function. General notation for this is asfollows.\function name" (Arg1; A rg2; A rg3; :::::::::; A rgn)where each argument is again an expression. The corresponding pre-�x notationis as follows. (operator, function)(length of name, "function name" string,n, Arg1, Arg2,........Argn)The �rst item is a function operator. Second tuple is a string constant type (typ= String constant, value = byte o�set into the string table where function nameis written). Next item is a simple operand tuple with typ as Card constant andvalue as n. Then each argument is represented in pre�x notation.There is one special case with function operator where the function name iscoerce . This function takes �rst argument as a data type. In the IR, we con-vert data types to the basic data types and represent them using three numbers,data type, value1 and value2 as described in table 2. Thus, the data type param-eter for the coerce function is converted to three integers internally. Therefore,we have two extra parameters for this function. Thus number of parametersare increased by two.
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Appendix C
User's Manual
In this thesis, we developed two tools, IR-Generator and disassembler. Both the toolshave a command line interface that is conventional for the utilities/commands in aUnix system. If a tool is run without any arguments, then it displays a small helpgiving all the options.C.1 IR-GeneratorThe IR-Generator is used to translate Sim-nML speci�cation into the IR. It is avail-able as a command called `irg'.C.1.1 UsageUse : irg [-d] [-h] [-w] [-o ir_file_name] Sim_nML_input_file-d : To get debug info in debug.tmp-h : to get this message-w : to get warning messages. Default no warning-o ir_file_name : IR will be in file ir_file_name otherwisedefault file name is IR.Descriptions for all options are as follows.70



� -d : This is an optional argument. It makes available a lot of debugging informa-tion in the \debug.tmp" �le in the current directory. By default, no debugginginformation is generated.� -h : This is an optional argument. If this option is speci�ed, then a small helpmessage is generated and all other arguments are ignored.� -w : This option is used to see the warning messages. These message are gener-ated while translating the Sim-nML speci�cation �le into the IR. By default, nowarning messages are displayed. These messages provide the information whichmight be useful for the speci�cation writers. For example, action attribute forall and-rules must be speci�ed. If there is an and-rule with no action attributede�nition, then a warning is displayed. Sometime this may be the intention ofthe user while sometime this may be an error.� -o ir �le nam e : This option is used to set the output �le name. By default,output �le named \IR" is created in the current directory.� Sim -nML input �le : This argument must always be present which representsthe input Sim-nML �le without macros .If some errors occur in the translation, then appropriate error messages are displayedand tool exits.C.2 DisassemblerThe disassembler is used to translate a relocatable binary code to its assembly lan-guage counterpart. The input binary �le must be in the ELF format. The disassem-bler also requires a processor speci�cation in the IR. The disassembler is available asa command `disa'.C.2.1 UsageUse : disa [-d] [-h] -w] [-o output_file_name] [-i ir_input_file][-c config_file] objfile_name-d : To get debug info in debug.tmp 71



-h : to get this message-w : to get warning messages. Default no warning-o output_file_name : output assembly language file nameotherwise default file name is outfile.s-i ir_file_name : input file having IR of processor specificationotherwise default file name is IR-c config_file : input file having various arguments for Disassemblerotherwise default file name is CONFIGobj_file_name : input relocatable ELF file to be disassembledDescriptions for all options are as follows.� -d : This is an optional argument. It makes available a lot of debugging informa-tion in the \debug.tmp" �le in the current directory. By default, no debugginginformation is generated.� -h : This is an optional argument. If this option is speci�ed, then a small helpmessage is generated and all other arguments are ignored.� -w : This option is used to see the warning messages. These message aregenerated while disassembling the binary �le. By default, no warning messagesare displayed.� -o output �le nam e : This option is used to name the output �le containing theassembly language program. By default, output �le is named \out�le.s" and iscreated in the current directory.� -i ir �le nam e : This option is used to name the processor speci�cation �le inthe IR. By default, input �le named \IR" is used in the current directory.� -c con�g �le : This option is used to name the con�guration �le. This �lecontains the list of identi�ers corresponding to control transfer instructions.By default, input �le named \CONFIG" in the current directory is used ascon�guration �le. The format of each line in the con�guration �le is as follows.%identifier_type identifier_nameEach line starts with \%" followed by a type name. This type name providesthe type of identi�er followed and can be one of the following.72



{ BRANCH UNCOND{ BRANCH COND{ CALL UNCOND{ CALL COND{ RETURN UNCOND{ RETURN CONDAfter the identi�er type, name of an identi�er is followed. Basically, each iden-ti�er name corresponds to the category of control transfer instructions given byidenti�er type1 and represents a sub-tree for its class in the speci�cation �le.The con�g �le also holds the names of identi�ers which are used as programcounter in the processor speci�cation. Format for specifying this information issimilar except that a list of identi�er names can be given separated by commas.The identi�er type �eld will have the value PC CLASS. All these lines can be inany order. An example �le is given in �gure 13 for more clarity. Here CIA andNIA are the names of the PC CLASS registers used in the speci�cation �le.%PC_CLASS CIA, NIA%BRANCH_UNCOND branch_uncond%BRANCH_COND branch_cond%CALL_UNCOND call_uncond%CALL_COND call_cond%RETURN_UNCOND bran_cond_lr%RETURN_COND ret_condFigure 13: Example of the Con�guration File� obj �le nam e : This mandatory option provide the ELF binary �le name to bedisassembled.
1Refer to section 3.3.3 73
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