Disassembler using High Level Processor Models

A Thesis Submitted
in Partial Fulfillment of the Requirements

for the Degree of
Master of Technology

by
Nihal Chand Jain

to the

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur
Jan, 1999

Certificate

Certified that the work contained in the thesis entitled “ Dis-
assembler using High Level Processor Models”, by Mr.Nihal
Chand Jain, has been carried out under my supervision and

that this work has not been submitted elsewhere for a degree.

(Dr. Rajat Moona)

Associate Professor,

Department of Computer Science & Engineering,
Indian Institute of Technology,

Kanpur.

Jan, 1999

i1

Abstract

The design of a high performance system requires an integrated environment to sim-
ulate and analyze the performance of various design alternatives. In this thesis, we
have developed a generic disassembler for an integrated environment where Sim-nML
acts as the specification language for processor performance model. The Sim-nML,
an extension of nML machine description formalism, is a simple, elegant and powerful
language to model machine behavior at instruction level. As part of the thesis work,
we have designed an intermediate representation (IR) for processor specification written
in Sim-nML language. The IR is simple and facilitates the development of various
tools such as assembler, compiler back-end generator, instruction set simulator, trace
generator etc. based on the processor specification. A tool, IR-Generator, is developed
which takes a processor specification written in Sim-nML language and produces it
in the intermediate representation. Further, a Generic Symbolic Disassembler is de-
veloped which takes the intermediate representation of a processor and a relocatable
binary file in ELF format as input and produces an equivalent program in assembly
language of the processor. The disassembler is generic enough to be used for all type

of processors.

Acknowledgments

[am grateful to my thesis supervisor, Dr. Rajat Moona, who guided me at every
stage of this project with his valuable suggestions, whose qualities have attracted me
a lot. His ideas have been of great help in exploring the areas which otherwise would
have been impossible. I thank the Almighty for giving such a brotherly figure as my
guide.

This work is done as a part of the ongoing research in Cadence Research Center at
IIT Kanpur. I express my gratitude to Cadence India Ltd. for their enduring support
to this work. Apart from the ample financial support provided by the fellowship, it

has been a source of personal pride and motivation to be called a ”"Cadence Fellow”.

I am also greatly indebted to Dr. Deepak Gupta and Dr. Sanjeev Agarwal for
their guidance and support throughout my work. I express my heart-felt thanks to all

the faculty members for teaching the principles in most exciting and enjoyable way.

I am greatly indebted to my seniors specially Atul and Kshitiz for helping me out
in crucial situations. I would also like to thank V.Rajesh, Subhash and Shishir who
has helped me with lots of ideas throughout the work. I thank all my MTech97 class-
mates especially Professor (Zade), Bepari, Kapil, Atul, Manoj, Anna, Anjali, Uma,
Prasad, Srikar, Gopi, Girish, Prasanna, Kousik and Major Ajay, for being affectionate
and the source of inspiration for me. My gratitude goes to all of my MTech97 batch-
mates, who made my stay in Hall-V, [ITK a memorable one. 1 acknowledge the
MTech98 batch for their exciting company. I wish I could express my thankfulness

to all my old friends for their love, support and encouragement.

[thank my parents, my brothers, for their love and affection I have been receiving.
I am grateful to all of them for their efforts in building my career. Finally, I would

also like to thank God for being kind to me and driving me through this journey.

Contents

Acknowledgments

1 Introduction
1.1 Motivation L
1.2 Overview of Related Work
1.3 Goals Achieved

1.4 Organization of Report

2 Intermediate Representation of Processor Models
2.1 Sim-nML Language
2.1.1 Sim-nML Grammaro
2.2 Design of an Intermediate Representation
2.2.1 Simplification of Information by Substitution.
2.2.2 Simplifying the Hierarchy
2.2.3 Representation of Attribute Definition
2.2.4 Structure of the Intermediate Representation
2.3 Conversion from High Level to Intermediate Representation
2.3.1 Pass 1: Macro Preprocessor

2.3.2 Pass 2 : Parsing and Flattening the Hierarchy

3 Design and Implementation of Disassembler

i1

10
11
12
12
18
21
21
22

23

3.1 Input Binary File (ELF) Structure
3.2 Two Pass Design of Disassembler
3.2.1 Resolving References
3.3 Extracting Information from Intermediate Representation
3.3.1 Extracting Syntax and Image of instructions
3.3.2 Instruction Matching Algorithm
3.3.3 Extracting Control Transfer Instruction
3.3.4 Evaluation of Next Instruction Address
3.4 Implementation Details of the Disassembler
3.4.1 Initialization Phase 0.
3.4.2 First Pass of Disassembly
3.4.3 Second Pass of Disassembly
3.4.4 Disassembly of Other Sections

Results and Conclusion

4.1 Results. o
4.1.1 Example1l:
4.1.2 Example 2

4.2 Conclusiono

4.3 Future Work and Extensions
Grammar of Sim-nML Language

File Format of Intermediate Representation

B.1 Meta Table
B.2 Constant Table
B.3 Resource Tableo
B.4 Identifier Table
B.5 Attribute Table

il

38
38
40
42
45
45

46

B.6 Memory Table 59

B.7 And-Rule Table 60
B.8 Or-Rule Table 62
B.9 Syntax Table 63
B.10 Image Table 64
B.11 String Table 64
B.12 Integer Tableo 65
B.13 Prefix-Attribute-Definition Table 65
User’s Manual 70
C.1 IR-Generator 70

C.1.1 Usage 0 70
C.2 Disassembler. 71

C.2.1 Usage 71

v

List of Tables

N O Ot s W N

Test Results o oo 40
Encoding of data types Lo 61
Parameter Type for and-rule 62
Example of the String Table 65
Interpretation of the String Table 65
Interpretation of the tuple used in Prefix Notation 66
Operators Used in Prefix Attribute Definition 67

List of Figures

© o0 N O Ot ks W N

— = e
w N = O

System Overview L 2
System Overview with IR 3
Sim-nML Specification for a Simple Processor 9
Algorithm for Flattening of or-rules 13
Sim-nML Program for a Hypothetical Processor 14
Example of or-rules Flattening 15
Example of and-rule Flattening 15
Algorithm for Flattening of Syntax /Image Attribute Definitions . . . 16
Example of Syntax Attribute Definitions Flattening 17
Algorithm for Calculating Mask Values 29
Algorithm for Calculating More Mask Values 30
Algorithm to Find Data Encoding of the Host Processor 35
Example of the Configuration File 73

vi

Chapter 1

Introduction

The design of a high performance system requires complex software tools. Designers
use powerful and generic modeling tools to evaluate many alternative implementa-
tions. In addition, designers need hardware and software codesign and other trade-offs
at early stages of the system design to keep the development cost down. Therefore,
system designers need an integrated environment which allows them to simulate and

analyze the performance of various design alternatives.

In this thesis, we have used Sim-nM L language[14] which is primarily an extension
of the nML language[l] for processor modeling and designed a generic processor inde-
pendent symbolic disassembler. For this purpose, we have also designed an intermediate
representation (IR) for the processor specification written in the Sim-nML language.
The IR is simple but powerful enough to facilitate the development of various tools
such as assembler, compiler back-end generator, instruction simulator etc. based on
the processor specification. We have designed a tool, IR-generator, which takes a
processor specification in the Sim-nML language and provides the intermediate rep-
resentation of the processor specification as output. The generic symbolic disassembler
takes the intermediate representation and a relocatable binary file of a processor and

provides the corresponding assembly language program as output.

1.1 Motivation

A processor model provides means to facilitate hardware and software codesign and
coanalysis early in the system design process. To model the candidate application and
processor model interaction, a systematic design process is required. A systematic
design process starts with selecting the application and involves writing a model that
measures the performance of the system, testing the system, analyzing the results
and refining the model to enhance performance. In this process, the model undergoes
several changes till the desired performance is achieved. This approach requires to
have an environment where changes to the design are made at one place and the
corresponding changes in other tools are automated. Such an integrated environment

can incorporate the model changes and validation rapidly.

Processor
Specification in

Sim-nML

INSTRUCTION
SET

COMPILER TRACE

ASSEMBLER DIS-ASSEMBLER

BACK-END GENERATOR

SIMULATOR

Figure 1: System Overview

In this thesis, we are discussing the design of an integrated environment where
Sim-nML language[14] acts as the specification language for processors in a generic
way. The processor specification written in Sim-nML language can be used to gen-
erate various processor specific tools such as compiler back-end generator, assembler,
disassembler, trace generator, instruction set simulator (ISS) etc. The ISS can simu-
late the execution of a binary program using the processor specification. Therefore,
the ISS helps in performance modeling. A compiler back-end generator integrated

with a compiler front-end can be used to generate a complete compiler for the same

Sim-nML file
with macros

Sim-nML file
without macros

IR = Intermediate Representation

TRACE

INSTRUCTION \ | I COMPILER
I I

SET | | DISASSEMBLER |
I

SIMULATOR

GENERATOR

ASSEMBLER

BACK-END

Figure 2: System Overview with IR

processor. Thus an integrated environment, as shown in figure 1, is designed with
Sim-nML as the specification language to automate the generation of various proces-
sor specific tools. While it is convenient to describe processor models in Sim-nML, it
is not so convenient for the tools to use Sim-nML specification directly as input due
to hierarchical description formalism of Sim-nML. Further, the direct usage requires
all tools to duplicate the effort in processing of processor specifications. This mo-
tivated us to design a simple intermediate representation (IR) for Sim-nML language
specification so that the design of various tools is simplified. The system design can

be viewed as shown in figure 2 with integration of the IR and previous view.

In embedded applications, it is helpful to study the algorithm used by the applica-
tion program and then change it to suit the specific needs. However, it is convenient

to operate at assembly language level rather than at the binary executable level. This

motivated us to design a symbolic generic disassembler to translate a relocatable bi-
nary code to its assembly language counterpart. In the symbolic disassembly, symbols
are used to refer to the locations and functions rather than the absolute addresses
in the assembly language program. The disassembler developed in this thesis uses
the processor models specified in the IR (thus it is generic). The assembly language
program helps in extracting a lot of hidden information and further improvements or

analysis can be done.

1.2 Overview of Related Work

Performance modeling of a system is a growing area and a lot of research has been
pursued in this area. These previous works have resulted in a set of performance

modeling tools using different languages for processor specification.

VHDL[9] is an expressive language with full hierarchy and configurations that allow
development and application of highly configurable and flexible models. There are

wealth of VHDL-based modeling tools as described in various works[9, 8].

SLED[6], a Specification Language for Encoding and Decoding, is used for ab-
stract, binary and assembly-language representation of machine instructions. SLED
is suitable for describing both CISC and RISC machines. Processor representation
for MIPS, SPARC, Alpha, Pentium, PowerPC and Motorola 68000 are also written in
SLED and a toolkit, the New Jersey Machine-Code (NJMC) Toolkit, is implemented
to help programmers write applications that process machine code—assemblers, dis-
assemblers, code generators, tracers, profilers, and debuggers. A Disassembler for
SPARC is also implemented in the NJMC using SLED as processor specification
language][7].

Visualization based Microarchitecture Workbench (VMW)[13] is an infrastructure
which facilitates the specification of instruction set architecture and microarchitecture
of a machine in concise manner. VMW provides all necessary infrastructure software
to the designer, including generic simulation software, visualization support software
and graphical user interface software. VMW automatically integrates the machine
specification and infrastructure software to generate a customized performance simu-
lator based on the trace-driven simulation approach. Thus VMW provides a powerful

environment for modern superscalar processor design.

Trimaran System|[11] is an integrated compilation and performance monitoring in-
frastructure for Instruction Level Parallel (ILP) architectures. The ILP architecture
(HPL-PD), parameterized by a machine description, allows the user to experiment
with different machines. The HPL-PD architecture supports novel features such as
predication, control and data speculation and compiler controlled management of the
memory hierarchy. A cycle-level HPL-PD simulator provides a detailed simulation
environment to get various information. The information is used for profile-driven
optimization and for validation of new optimization. The machine description is spec-
ified in a high level textual language HMDES[12]. A compiler front-end (IMPACT)
and a compiler back-end (Elcor), parameterized by the machine description, together
provides experimentation for new ILP architectures and the compiler modules needed
to generate high-performance code for these architectures. The modular Elcor uses
an intermediate representation throughout its module which enable the construction

and insertion of new compilation modules into the compiler in a easy way.

Other than these complete machine simulation environments, many performance
models exist for analyzing the individual components such as processors, caches etc.
A Framework for Statistical Modeling of Super-scalar Processor Performance is dis-
cussed in [10]. Performance Estimation for Real-Time Distributed Embedded Systems
is discussed in [15]. An 1SS (Instruction Set Simulator)[5] is developed to simulate an
architecture of a processor which is defined through “templates”. Further, a perfor-
mance simulator[5] is implemented using traces from the ISS as input which has been
used to evaluate the Ultra-SPARC-compatible architecture. A cycle accurate model
of Ultra-SPARC processor is written in C++ to verify the processor by cross checking

the RTL model at run time as well as to provide accurate performance estimates[3].

In the area of disassembling, several disassemblers have been implemented as
listed in [17]. Among these, IDA Pro[2] is a disassembler based on FLIRT (Fast
Library Identification and Recognition Technology) and can disassemble binary files

for several processors.

1.3 Goals Achieved

In this thesis work, we aimed at developing an integrated environment for processor
modeling using Sim-nML language for processor specification. The development of

a complete integrated environment is in progress where other tools (i.e. simulator,

trace generator) are under development. The goals achieved in this thesis work are
listed below.

e Intermediate Representation (IR) for Sim-nML language specification is designed
which is simple but powerful enough to facilitate the design of various processor

specific tools.

e IR-Generator is designed and implemented which takes a processor specifica-
tion in Sim-nML language and provides an intermediate representation of the

processor specification as output.

e Symbolic Generic Disassembler is designed and implemented which takes the
intermediate representation and a relocatable binary file of a processor and

provides corresponding assembly language program of the processor as output.

Work done in this thesis is also outlined in the figure 2.

1.4 Organization of Report

The rest of the thesis is organized as follows. In chapter 2, we describe the design
of the intermediate representation and the implementation of the IR-Generator after
giving an overview of the Sim-nML language. In chapter 3, we describe the design and
implementation of the symbolic generic disassembler. Finally we conclude in chapter 4
and provide the results. We also enumerate possible future work in this area. Context-
free grammar of the Sim-nML language is listed in Appendix A. Detailed format of
the intermediate representation is given in Appendix B. Lastly, user’s manuals for the

IR-Generator and the disassembler are given in Appendix C.

Chapter 2

Intermediate Representation of

Processor Models

One part of this thesis involves the development of Intermediate Representation (IR)
of the processor model. We developed a tool, IR-Generator, which takes a proces-
sor specification written in Sim-nML language as input and produces corresponding
intermediate representation of processor specification as output. In order to have
intermediate representation usable by all front-end tools such as disassembler, assem-
bler, simulator etc., certain goals were setup behind the design of the IR as listed

below.

e The IR should be as simple as possible.

e The IR should not lose any useful information which is available in original

input of Sim-nML specification.
e The IR should not have any unnecessary or redundant information.
e The IR should be easy to understand as well as to use.
e [t should be easy and efficient to retrieve the required information from the IR.
e The IR should be flexible and extensible.

e The IR should facilitate the design of various processor specific tools such as as-
sembler, disassembler, simulator, trace generator, compiler back-end generator

etc.

Before discussing the IR in detail, it is necessary to understand the structure of the
input. Sim-nML work by V.Rajesh [14] is primarily an extension of nML[1] (designed
by Markus Freerick). Here we will discuss Sim-nML in brief for better understanding

of our work. More information about Sim-nML can be found in relevant literature
(14, 4].

2.1 Sim-nML Language

Sim-nML[14] is an extensible formalism targeted for describing arbitrary single pro-
cessor computer architecture. It facilitates the description at instruction set level and
hides the implementation details. In Sim-nML, the instruction set is enumerated by
an attribute grammar'. The semantic action of an instruction is composed of frag-
ments that are distributed over the whole specification tree, i.e. the common behavior
of a class of instructions is captured at the top level of the tree and the specialized

behavior of sub-classes is captured at the subsequent lower levels.

2.1.1 Sim-nML Grammar

Sim-nML grammar has a fixed start symbol namely instruction and two kind of

productions namely, or-rule which looks like,
op n0 = nl | n2 | n3 |

and and-rule which looks like,

op n0 (p1l : t1, p2 : t2, ...)
al = el
a2 = e2

LAn attribute grammar is a context free grammar in which for each non-terminal a fixed set
of attributes and for each production a set of semantic rule is given. In Sim-nML grammar, all
non-terminals have to have derivations. So, we don’t differentiate between productions and non-
terminals.

let REGS = 4
type long = card(32)
type index = card(REGS)

reg R[2**REGS,long]
reg PC[1,long]
reg AC[1,long]

mode REG(i:index)=R[i]
syntax = format("R)d",i)
image = format("%4b",1i)

op instruction(x:instr_action)

action = { PC = PC + 4;
x.action; }

syntax = x.syntax

image = x.image

op instr_action = move | store

op move(src:REG)

action = { AC = src; }

syntax = format("load %s",src.syntax)
image = format("0010 %b",src.image)

op store(src:REG)

action = { src = AC; }

syntax = format("store %s",src.syntax)
image = format("0011 %b ",src.image)

Figure 3: Sim-nML Specification for a Simple Processor

n0, nl, n2, n3,...are non-terminals and each ti is a token. Each ai is an attribute
name and ei is its definition. The pi are names of the parameters used in the attribute

definitions.

Sim-nML grammar pre-defines some attributes namely syntax, image, action,
uses, volatile, alias, and init. The syntax attribute describes the textual syntax of
the instruction. The image attribute describes the binary coding of the instruction.

The action attribute describes the semantics of an instruction. The uses attribute is

used to describe the resource usage model and the control flow of an instruction. The
volatile, alias and init attributes are valid for memory variables. The init attribute
is used to assign initial values to memory variables while volatile attribute is used to

define the volatile name of the memory.

The Sim-nML description in figure 3, is that of a simple machine with two instruc-
tions, the load instruction which is used to load accumulator AC with the contents
of a register specified by an argument, and the store instruction which is used to
store the value of the accumulator AC to the register specified by an argument. The

register PC has special semantics and points to the next-to-be-executed instruction.

In the most processors, addressing modes and instructions are orthogonal to each
other. Therefore, describing an instruction with each of the possible addressing modes
explode the size of the description. Therefore, Sim-nML separates addressing mode
description as register addressing mode is described in figure 3 with declaration of
mode-rule REG.

The Sim-nML also supports resource and exception declaration which are useful
for resource usage model. In addition, Sim-nML supports macros and declarations
for types and constants. This enhances the clarity of the description. In appendix A,

Sim-nML grammar is given in detail.

The Sim-nML formalism helps in describing the processor concisely and precisely.
Thus Sim-nML description of a processor can be used as input to various tools such
as assembler and disassembler generators, compiler back-end generators and general

purpose instruction set simulators.

2.2 Design of an Intermediate Representation

A processor specification in Sim-nML language is a human readable text file. Several
constructs are provided in Sim-nML to enhance the clarity and readability of the
description. In order to retrieve the desired information from such a description, a
tool needs to perform parsing of input, variable substitution etc. An intermediate
representation helps in reducing such extra burden on the tool. Thus we need an
intermediate representation keeping previously mentioned goals in mind. In this

section, we will discuss the design of the IR in detail.

10

2.2.1 Simplification of Information by Substitution

Sim-nML language allows the constant definition using let-specification (i.e.let
REGS = 4). In Sim-nML specification file, wherever a constant is referenced, its value
is substituted in the IR. For example, value of the constant REGS, i.e. 4, is substi-
tuted where-ever REGS is used in the example given in figure 3. Thus constants are
not referenced in the IR of the processor specification. Therefore all such constant
declarations can be eliminated from the IR. However some constant might be used
by the tools i.e. constant like byte_order may be used by tools to define the byte
ordering of a processor. As it is difficult to guess what all constant definitions might
be used by all such tools, it was decided to retain information about all constant

declarations in the IR even if these are not referenced anywhere.

Sim-nML language has some basic data types and allows new data type definitions
using basic data types and previously defined user data types. Since all user defined
data types can be built using only basic data types, all variables are redefined with
only basic data types in the IR. Thus all user defined data type declarations are of
no use and are eliminated from the IR. For example, parameter i in mode-rule REG
is redefined with data type card(4). Now type definition index is eliminated from

the IR.

Sim-nML allows macro declarations (macro name and macro definition) in the
processor specification to save user’s effort in writing it. These macro declaration
may have parameters and may use macros within the macro definition. Wherever a
macro name is used in the specification, corresponding macro definition is substituted

in the IR. Thus all macro declarations are eliminated from the IR.

There are some other constructs in the Sim-nML which are simplified in the IR.
For example, in the Sim-nML, all memory variables, op-rules, attribute names, pa-
rameter names in and-rule etc. are given unique identifier names and everywhere
corresponding identifier name is used for reference. As length of an identifier name
is variable, it wastes a lot of processing time to retrieve the information about a par-
ticular identifier. Sim-nML also allows the use of some identifier name for op-rules
even before they are defined. This necessarily requires a tool to do multiples passes
over processor specification. Many of these identifiers are not significant at all (for
example, parameter names). In the IR, all significant identifiers are assigned a unique

integer key and all their references are replaced by the use of the corresponding key.

11

It simplifies the information retrieval from the IR. The mapping between the key and
the identifier is also provided in the IR (though the tools may never need to refer to
these).

2.2.2 Simplifying the Hierarchy

In Sim-nML, information about an instruction is composed of fragments that are
distributed over the whole specification tree with root node named as instruction. To
get information about one particular instruction, a complete path from root node to
a leaf node is traversed with proper parameter substitution at all levels of the tree.
If all such paths are traversed, then information about all possible instructions are
obtained. This process is called flattening of the tree. In the IR, information about

the instructions are flattened using two different algorithms.

First algorithm performs flattening of all or-rules and is described in figure 4.
Basically, all references of any or-rule are eliminated from all the or-rule and and-
rule definitions. Therefore, all or-rule definitions can be eliminated from the IR.
But some or-rule definitions might be used by other tools. For example, if root node
instruction itself is an or-rule, then information about all its children will be useful for
the tools. Therefore, all or-rules resultant from the algorithm are stored collectively

at one place in the IR, even if these or-rules will not be referenced anywhere.

Elimination of or-rule parameters from an and-rule definition results in generation
of new and-rules. All attributes of the and-rule remain unchanged in the new and-
rules. To make the IR compact, these new and-rules are treated as sub-rules of the
original and-rule. All sub-rules of an and-rule are stored along with the and-rule in the

IR. The references for the attributes in the and-rule are not duplicated for sub-rules.

Working of the algorithm can be understood with an example of Sim-nML program
given in figure 5. Figure 6 explains the working of the algorithm on or-rules. Figure

7 shows the working of the algorithm on a particular and-rule.

2.2.3 Representation of Attribute Definition

In Sim-nML language specification, memory variables, mode-rules and op-rules decla-
rations define attribute names and their definitions. The attribute definition is either

an expression consisting of various operands and operator, or a sequence of statements

12

Algorithm 1 :
e For each or-rule R;, do the following steps.

1. For all child nodes of R;, do the following step.
2. If the child node is an or-rule C;
then replace the child node by all children node of C;.

e For each and-rule A;, do the following steps.

1. For each parameter P; of A;, do the following step recursively.

2. If P; is an or-rule (say R where R has n-children namely C1;Cy::: C,,),
then create n-new sub-rules and associate them with the and-rule A;. In
the i’ sub-rule, the parameter P; is declared of type C;.

Figure 4: Algorithm for Flattening of or-rules

separated by a semicolon. Each of these statements might be a simple assignment
statement or a conditional statement or a function call or a use of an attribute from

some op-rule. (Refer to appendix A for Sim-nML grammar)

For syntax and image attributes, definition is always an expression which evalu-
ates to a string. In the IR, a record is stored for each syntax and image attribute
definition. The record includes a string value corresponding to the expression. The
string values are evaluated by algorithm 2 given in figure 8. Basically, the algorithm
performs substitution of parameter values in the expression to evaluate the string
value. However, the expressions also have references to parameters which can only be
known at the run time of a tool. For example, syntax attribute definition of mode-rule
REG has reference “%d” for parameter i. In the IR, a tuple “{X.Y.Z}” is used after a
parameter reference such as “%d”. Each tuple represents a parameter which can be
converted using parameter reference. In the tuple, X denotes an and-rule, Y denotes
a sub-rule and Z denotes a parameter number. Example in figure 9 provides the IR
translation for the syntax attribute definitions of a few and-rules in the example given
in figure 5.

The record holds another string called dot-expression as shown in figure 9. The
dot-expression denotes the sequence of parameter substitution applied for calculating
syntax and image attribute values. Each dot-expression contains a number of 2-

tuples, each of type X.Y. All tuples except for the first one are put in parentheses. In

13

type index=card(2)
reg PC[1,card(32)]
mode SHORT = MEM | REG

mode MEM(i:index)=M[R[i]]
syntax = format (" (R)d)",1)
image = format("0%2b",1)

mode REG(i:index)=R[1i]
syntax = format("R)d",i)
image = format("1%2b",i)

op instruction(x:instr_action)
syntax = x.syntax
image = x.image

op instr_action = alu_op | move_op

op alu_op(src:SHORT,dst:SHORT,aa:alu_action)

syntax = format("%s %s,%s",aa.syntax,src.syntax,dst.syntax)
image = format("1%b %b %b",aa.image,src.image,dst.image)

op alu_action = a_add | a_sub

op a_add()
syntax = "add"
image = "0O"

op a_sub()
syntax = "sub"
image = "1"

op move_op = move | store

op move (src:SHORT,dst:SHORT)

syntax = format ("move Js,%s",src.syntax,dst.syntax)
image = format("00 %b %b",dst.image,src.image)

op store(src:SHORT,dst:SHORT)
syntax = format("move ¥%s,%s",src.syntax,dst.syntax)
image = format("01 %b %b",src.image,dst.image)

Figure 5: Sim-nML Program for a Hypothetical Processor

14

Before application of algorithm 1 :

op instr_action = alu_op | move_op
op alu_action = a_add | a_sub

op move_op = move | store

mode SHORT = REG | MEM

After application of algorithm 1 :

op instr_action = alu_op | move | store
op alu_action = a_add | a_sub

op move_op = move | store

mode SHORT = REG | MEM

Figure 6: Example of or-rules Flattening

Before application of algorithm 1:

op alu_op(src:SHORT, dst:SHORT, aa:alu_action)

After application of algorithm 1 :

op alu_op
sub-rule O : src : REG, dst : REG, aa :
sub-rule 1 : src : REG, dst : REG, aa :
sub-rule 2 : src : REG, dst : MEM, aa :
sub-rule 3 : src : REG, dst : MEM, aa :
sub-rule 4 : src : MEM, dst : REG, aa :
sub-rule 5 : src : MEM, dst : REG, aa :
sub-rule 6 : src : MEM, dst : MEM, aa :
sub-rule 7 : src : MEM, dst : MEM, aa :

a_add
a_sub
a_add
a_sub
a_add
a_sub
a_add
a_sub

Figure 7: Example of and-rule Flattening

the first tuple X.Y, X denotes an and-rule and Y denotes the corresponding sub-rule.
Rest of the 2-tuples denote the parameters for the string. A 2-tuple (dot-expression)

corresponding to a parameter is the dot-expression associated with the corresponding

and-rule and sub-rule.

In the Sim-nML, instructions are described in a hierarchical manner. The syntax

and image attribute records associated with all the nodes (i.e. op-rule and mode-rule)

15

Algorithm 2 :
For each and-rule, repeat following steps.

1. Chose? an and-rule A;
2. Take the syntax /image attribute definitions D of the and-rule A;.
3. For each sub-rule S; of Ay, repeat following steps.

4. If attribute definition D takes no parameter, then D is the resultant string
value of syntax /image attribute for S;.

5. If D has reference to a parameter P; of basic data type, then insert a tuple
“A’i-s’i-P’i” in D.

6. If D has reference to a parameter P; of type and-rule (say A), where number
of syntax /image attribute values associated with A* are n, then create n new
syntax /image attribute values by substituting each syntax /image attributg
value in place of parameter reference P; one by one. These n-new attribute
values are associated with the sub-rule S; and so with the and-rule A;.

=

Figure 8: Algorithm for Flattening of Syntax /Image Attribute Definitions

in the specification tree are evaluated. The syntax and image records of instructions
in the instruction set are given by the syntax and image attribute records of the
op-rule named instruction. Rest of the records hold encoding of partial syntax and
image attribute strings. In the IR, the syntax and image attribute records for all
the and-rules are stored. Although tools such as assembler, disassembler, compiler,
simulator etc. need only the attribute records of op-rule instruction, other records

might be helpful for other purposes such as to build the specification tree back.

Other attributes in the Sim-nML are used to hold semantic action associated with
the instruction. For example, to simulate the behavior of an instruction, attribute
definition of action attribute is used. A tool such as the instruction set simulator
could be made to run faster if such attribute definitions are represented differently.
Usually expressions inside an attribute definition are written in an infix notation using

priority and associativity rules to decode an expression uniquely. However, prefix or

2 And-rules are chosen by starting with all leaf nodes of specification tree, then all nodes above
the leaf nodes and so on.

3 Syntaz /image attribute values associated with all sub-rules of an and-rule are called syn-
taz /image attribute values of the and-rule.

16

Before application of algorithm 2 :

For and rule 1, mode REG
sub-rule 0 : i:index
syntax = format ("R(%d)",1)
For and rule 2, mode MEM
sub-rule 0 : i:index
syntax = format ("R%d",i)
For and rule 3, op a_add
sub-rule 0 : no parameter
syntax = "add"
For and rule 4, op a_sub
sub-rule 0 : no parameter
syntax = "sub"
For and rule 5, op alu_op
(see figure 7 for sub-rules)
syntax = format("%s %s ’%s",aa.syntax,src.syntax,dst.syntax)

After application of algorithm 2 :

For and rule 1, mode REG

(sub-rule syntax--string dot-expr)
0 "R(%kd{1.0.0})" "1.0"
For and rule 2, mode MEM

0 "R%d{2.0.0}" "1.0"
For and rule 3, op a_add

0 "add" "1.0"
For and rule 4, op a_sub

O ”Sub” Il1.0Il

For and rule 5, op alu_op

0 "add R(%d{1.0.0}) R(%d{1.0.0})" "5.0(1.0)(1.0)(3.
1 "sub R(%d{1.0.0}) R(%d{1.0.0})" "5.0(1.0)(1.0) (4.
2 "add R(%d{1.0.0}) R%d{2.0.0}" "5.0(1.0)(2.0) (3.
3 "sub R(%d{1.0.0}) R%d{2.0.0}" "5.0(1.0)(2.0) (4.
4 "add R%d{2.0.0} R(%d{1.0.03})" "5.0(2.0)(1.0) (3.
5 "sub R%d{2.0.0} R(%d{1.0.0})" "5.0(2.0)(1.0) (4.
6 "add R%d{2.0.0} R%d{2.0.0}" "5.0(2.0)(2.0) (3.
7 "sub R%d{2.0.0} R%d{2.0.0}" "5.0(2.0)(2.0) (4.

0)"
0"
0)"
0)"
0)"
0)"
0"
0)"

Figure 9: Example of Syntax Attribute Definitions Flattening

17

postfix notation is better for faster evaluation as the priority and associativity becomes

implicit.

In the IR, prefix notation is used for all attribute definitions except syntax and
image attributes. Using such a representation, tools like simulator, trace generator,

compiler back-end generator etc. can be made to run fast.

2.2.4 Structure of the Intermediate Representation

As it is evident, the structure of the IR should be capable of storing information about
constants, identifiers, or-rules, and-rules and information about attributes such as
syntax, image, action etc. Some of this information can be represented in a fixed size
data structure whereas rest of the information requires variable size data structure.
For faster retrieval of information, we separate out the variable size data structure

and store it at one place.

The IR structure is essentially a collection of various tables. Information of each
type is stored in a different table. The entries in most of these tables are fixed
size records. However, some tables hold variable size records. We have grouped
the similar type of information under same table by creating different record. Also,
at some places we created two different tables for clarity although they both hold
information in similar type of record. A table of contents is also added in the IR
which contains the location and name of all the tables. This simplifies the access

mechanism for all tables. In brief, the IR consists of following tables :

e Meta table : This is a table of contents having a road map to know about the

location and name of other tables in the IR.

e Constant table : This table holds the all constant declarations in the Sim-nML
processor specifications. For the example given in figure 5, this table will contain

the following.

(name type value)

REGS integer 4

e Resource table : This table holds the names of the resources which are declared
with resource-declarations. Each resource is assigned a unique key by which it

is referred to at other places.

18

e Attribute table : This table holds the name and the corresponding key of all
distinct attributes used in the input processor specification. For the example

given in figure 5, this table will contain the following.

(key name)
0 syntax
1 image

e Identifier table : This table holds the name of all the identifiers (other than
those specified in the constant table and in the resource table). Each identifier
is assigned a unique key to refer to the identifier at other places. For the earlier

example, the following is the contents of the identifier table.

(key name type)

0 PC reg-var

1 MEM mode-and

2 REG mode—and

3 SHORT mode-or

4 instruction op—and

5 instr_action op-or

6 alu_op op—and

7 move_op op-or

8 alu_action op-or

9 a_add op—and
10 a_sub op—and
11 move op—and
12 store op—and

e Memory table : This table holds the information about all memory variables
declared with a reg or a mem declaration. It includes a unique key, type and
size of the data and information to locate various attributes (of the variable)
stored in other tables. For the earlier example, the following is the contents of
the identifier table.

(key Name-key type size attribute)
0 0 card(32) 1 -

19

Note that instead of storing the name of memory variable (i.e. PC), the key

assigned in the identifier table is used.

Or-Rule table : This table holds the information about children of all or-rules

(mode-rules or or-rules). It holds records as specified earlier in figure 6.

And-Rule table : This table holds the information about all and-rules (mode—
rules and op-rules) along with the sub-rules associated with them. It also holds
the information to locate the attribute definitions stored in other tables. It

holds records as specified earlier in figure 7.

Syntax table : This table holds the syntax-record associated with the syntax
attribute definitions of all and-rules. It also holds the information to associate
the correspondence between the and-rule table and the syntax table as specified

earlier in figure 9.

Image table : This table holds the image-record associated with the image
attribute definitions of all and-rules. It also holds the information to associate
the correspondence between the and-rule table and the image table. It holds

records similar to the syntax table.

String table : This table is used for storing variable length string (null termi-
nated) such as identifier names. This table helps in having fixed size entries
in other tables. For clarity, we used identifier-names and strings in example of
tables described earlier. In reality, all such strings are stored in the string table

and corresponding index into the string table is stored in other tables.

Integer table : This table is used for storing only integer values. These inte-
gers are associated with other tables and represent different meanings in differ-
ent contexts. This table helps in having fixed size entries in other table. For
example, list of attributes present for an and-rule are stored as list of corre-
sponding attribute-keys in the integer table. The and-rule holds the infor-
mation which associates the list of integers stored in the integer table as list of

attribute-keys.

Prefix-Attribute-Definition Table : This table holds the attribute definition of all
the attributes (except syntax and image attributes) associated with memory-

variables and and-rules. These definitions are stored in prefix notation. Other

20

tables store the information to locate the appropriate attribute definition cor-

rectly.

In Appendix B, we present the structure of each of the tables. The following two

points are important.

1. A crucial decision about the IR is whether it should be a human readable text
file or a binary file. We decided to have a binary file as output to enable fast

processing by various tools.

2. The data encoding of output file is dependent on the processor on which it
is created i.e. data encoding can be little endian or big endian depending on
the processor. A tool can figure out the endian-ness of the IR by reading the
table of contents irrespective of the type of the machine on which the tools is
running. For example, the records of a meta table contain three fields, no-of-rec,
size-of-rec and size-of-table. These fields in the first record represent the meta
table entries itself. Therefore the no-of-rec contains the total number of tables,
size-of-rec contains the size of each record in the meta table and size-of-table
contains the total size of the meta table. A tool can read three values and check
if the following equation is satisfied.
no-of-rec * size-of-rec = size-of-table
If this equation is not satisfied, then the endian-ness of the IR and the machine

on which the tool is running are not the same, otherwise they are the same.

2.3 Conversion from High Level to Intermediate

Representation

The conversion from Sim-nML to the IR is done in the following two passes.

2.3.1 Pass 1 : Macro Preprocessor

The IR does not retain any macro definition from the source. For ease of implementa-
tion, macro processing is implemented as a separate pass over Sim-nML specification

file. This part is being done in another project by Y. Subhash Chandra[16] but we are

21

also describing it here for the sake of continuity. The macro preprocessor takes the
Sim-nML file with macro definitions as input and produces a Sim-nML file without
macros. It gathers all macro definitions and converts them into equivalent m4[18]
macro definitions. Then m4, a standard utility available on Unix, is run on this file

to get the Sim-nML file without any macros.

2.3.2 Pass 2 : Parsing and Flattening the Hierarchy

Pass two takes a Sim-nML specification file for a processor as input and produces the

specification in the IR for that processor. This pass proceeds in three phases.

e The first phase involves the parsing of input file. During the parsing, all relevant
information is gathered in appropriate data structures. Attribute definitions
for all attributes except syntax and image attributes are converted into prefix
notations during the parsing time. As soon as a definition is complete, it is
stored in the prefix-attribute-definition table. In this pass, three temporary
files are used to store the string-table, the integer-table and the prefix-attribute-
definition table respectively. Each of these table are later merged into the IR.

e In the second phase, first half of the tree flattening is performed. It eliminates

references of all or-rules.

e In the third phase, second half of the tree flattening is performed. All and-rules
are flattened further and syntax and image attributes definition records are

created with proper parameter substitutions as described earlier.

At the end of the second pass, all tables are written in the output file and all cor-
responding data structures are freed. Temporary files generated during this pass are
concatenated at proper places in the output file. During this pass, all possible errors
at various places are also checked and appropriate error messages are generated. In

case of an error in the first phase, the second and the third phases are not performed.

22

Chapter 3

Design and Implementation of

Disassembler

A disassembler is a tool which takes a binary file (relocatable object file, executable
file etc.) as input and gives the corresponding assembly language program as output.
We have designed and implemented a generic symbolic disassembler (referred to as
disassembler now onwards) which takes an ELF[18] binary file for a processor and
generates the assembly language program. The disassembler is generic and processor
independent. It takes a processor specification in the IR as another input. The
disassembler generates symbols to refer to the locations and functions rather than
the absolute addresses in the output assembly language program. Thus the output
file resembles the original source from which the binary file was produced. In the
output file, the format of assembler directives is the AT&T format[20] and that of

the assembly language instructions is the one specified in the processor specification.

The process of disassembly involves reading a binary instruction, searching in the
instruction set and generating assembly language instruction. The input binary file
contains almost all (well most of) the necessary information of the original source
file. Unfortunately, the process of disassembly is non-trivial as the binary file is
not designed to undergo disassembly. Assemblers throw away a lot of information
present in the original source which is irrelevant to the execution of the program. The
greatest problem in disassembling is to identify and distinguish code (instructions)
and data, as both are represented as sequence of bytes. Furthermore designing a

generic disassembler involves extra effort because information about instruction set

23

a

of a processor is coded in the processor specification file. Instruction set of the
processor must be extracted in a format so that an instruction read from the binary
file can be identified easily. In addition, information about number of instructions in
the instruction set, length of an instruction, parameters in an instruction etc. varies
from processor to processor. Various different processors evaluate the target address
for jump instructions using bits available in the instruction in different ways which

affects the design of a disassembler.

Lastly, the complexity of the symbolic disassembler is high because it uses symbols
to refer to the locations. While programming, users normally use symbols (names) to
refer to variables and functions. The compilers usually retain the names of functions
(and global variables sometimes) in the compiled binary files. However, symbols
corresponding to local variables or locations are not retained. Thus disassembler has

to generate new names if not available in the binary file.

In this chapter, we shall describe the algorithm used by the disassembler for the
disassembly. Basically the approach adopted is to point out what information is

available and how it contributes in the generation of the final output.

3.1 Input Binary File (ELF) Structure

Let us begin by examining the structure of the binary file in ELF format (which is

an input to the disassembler) as taken from the manual[lS].

A file in ELF format always begins with a header (called the ELF header) which
is in a machine independent format so that it can be read on any processor. This
header contains information which helps in interpreting the contents of the rest of
the file. Thus the ELF header is the master key to the rest of the information in the
file. A binary object file contains information grouped together in logical units called
sections. There are numerous sections in the object file each dedicated to holding a
particular kind of information (program data, code etc.). Each section has a section
header which holds the necessary information to interpret the section. The section
headers are collected and placed in a table called the section header table. The ELF

header contains information to locate this section header table.

The sections which are relevant for the purpose of disassembly can be briefly

summarized as follows.

24

o “.text” section: This section contains the program code.
e “.data” section: This section contains the initialized global program data.

e “.rodata” section: This section contains the initialized global read-only data

(for example, constants).
e “.bss” section: This section contains uninitialized global data.

e “.symtab” section: This section contains information regarding various sym-
bols used in the program (functions, global variables etc.). Type, size and lex-
emes are the chief pieces of information maintained for each entry. The location

(section:offset pair) is also stored for each entry.

“.rela.text” section : As the name suggests, this

e “rel.text” section or
section is the relocation section with respect to the .text section. This section
contains the information needed by the linker to allow it to fill in values of
symbols used in the .text section which are only available at the link time.
Basically this section provides for a mechanism to associate a given offset in
the code with an entry in the symbol table. This information is used in the

disassembly to regenerate the symbol names in the output.

3.2 Two Pass Design of Disassembler

In order to generate a full assembly file as output, we need to generate :

e instructions (preferably using symbolic names for memory and symbol refer-

ences) within the .text section.

e initialized data (including size and type information along with symbol names)

from the .data section.
e read-only data (this could be character strings) from the .rodata section.

e the makeup of the .bss section (the section meant for uninitialized data, which
does not occupy any space in the object file but whose makeup needs to be pre-

served because symbols may be defined with respect to it).

e the assembler directives to glue up the whole output.

25

The processing of the .text section is almost independent from the rest. The
.text section may contain data and other things apart from the program code. Al-
though compilers do not mix data with code, an assembly language programmer may
do so. Apart from this, even simple actions like aligning the code for a new function

to the nearest 4-byte boundary, can introduce gaps in the .text section.

The assembler fills in these gaps by some random (or irrelevant) value since these
locations are never executed. The problem is that there is no way to distinguish data
from gaps within instructions. If the normal process of disassembly is allowed to take
its own course by treating these gaps as genuine code, the opcode alignment may be
destroyed. Once misaligned, there is no way to recover and we may get unreliable
disassembly. Thus it is absolutely essential to prevent the processing of such gaps.
We do this by identifying the basic blocks in the code section. Each basic block
constitutes a valid address range in the .text section. This is achieved by making
one extra pass of code analysis on the .text section. Thus our disassembler is a two

pass disassembler.

For a generic disassembler, information about a processor’s instruction set such as
syntax and image of instructions must be extracted from the intermediate representa-
tion of the processor specification. When some instruction uses a reference which can
be a symbol, the disassembler needs to resolve the reference for symbolic disassem-
bly and use the symbol-name in the assembly language output program. Therefore,
before discussing about the working of first and second pass, we will discuss about

references and then about the information extracted from the IR.

3.2.1 Resolving References

The programmers normally code their applications by defining symbols in the program
in various sections (.text, .data etc.). The basic purpose that these symbols serve
is to associate a name with a location in one of the sections. The programmer can

then refer to these locations using symbol names.

In the ELF file, there is a relocation section (.rel.text or .rela.text). This
section provides relocation information with respect to the .text section in most of
the relocatable object files. When the assembler encounters a symbol, say in the . text
section, it creates an entry in the relocation section which associates the occurrence

(the offset at which the symbol reference occurred in the relocatable object file and not

26

the location of the actual symbol itself) with the symbol table entry of the symbol. In
some cases the assembler may even associate the occurrence with the symbol table
entry of the section with respect to which the symbol is defined and include the offset
of the symbol as the addend in the reference location. This primarily happens for
static variables whose information is not exported at the link time. Both these cases

may arise and need to be handled separately.

Now, when some instruction uses a reference which can be a symbol, the disas-
sembler needs to resolve the occurrence of the reference and use the symbol-name.
In the best case, the name used could be the same as the original symbol name.
While resolving a reference to a location, we normally proceed to determine if there
is an entry in the relocation table corresponding to the occurrence, in which case it
is enough to resolve whether the entry refers to an object (global data item) or to a
section (global-static item). In the former case, the name is available in the symbol
table itself. In the later case, we need to generate a name for the symbol, but only

after ensuring that no other name has already been generated for that symbol.

3.3 Extracting Information from Intermediate Rep-

resentation

The intermediate representation (IR) of a processor specification provides a lot of in-
formation about the processor. For the purpose of disassembly, we need the following

information about a processor’s instruction set.

e Syntax and Image : What is the assembly language syntax and corresponding

binary image for the instructions.

e Arguments information : For each instruction, how many arguments are
needed, the type and length of each of the arguments, how to decode the argu-

ments and how to present the arguments in the assembly language.

e Control transfer instructions : which are the instructions which can trans-
fer control from one place to another. These can be further subdivided as un-
conditional or conditional jump instructions, unconditional or conditional call
instructions (to a procedure) and unconditional or conditional return (from a

procedure) instructions.

27

e Offset calculation : For a control transfer instruction, how does a processor

encode the address of the next instruction.

For a specific disassembler for a processor, all this information can be hard-coded.
However for a generic disassembler, this information must be extracted from the

intermediate representation of the processor specification.

3.3.1 Extracting Syntax and Image of instructions

The IR of the processor specification contains syntax and image records for all the
instructions. We extract these corresponding to the instruction op-rule. These
records encode the syntax of an assembly language instruction, corresponding binary
image and information about the arguments. Arguments type information is found
with the help of the and-rule table.

The image record includes a string corresponding to the binary image of the
instruction. The string does not hold the binary image of the instruction verbatim.
For example, a record for add instruction described in figure 5 has the syntax-string as
“add r%d{1.0.0},r%d{2.0.0}” and the image-string as “101%2b{1.0.0}1%2b{2.0.0}".
The instruction is 8 bits long and it takes two arguments. Both arguments are
represented in 2 bits (are card(2) type). If instruction “add r2,r3” is assembled,
then its corresponding binary image will be “10110111”. Therefore, we should have
a way to associate the correspondence between the string stored in the image record
and the binary image of the instruction read from the input binary file. Further, we

should be able to find the value of the arguments used by the instructions.

For this purpose, we evaluate two binary strings, namely image and image-mask,
for each of the image record. Basically the image can be taken as the string value
which results from the bit-wise anding of the binary image of the instruction and
the image-mask. Length of image is equal to the instruction’s length in bits. The
algorithm is given in figure 10. For the example of add instruction, the image will be
“10100100” and the image-mask will be “11100100”.

Now it is easy to find out whether a given sequence of bits matches with any of the
instruction in the instruction set of the processor. It will be a sequential and ing and
comparing operations on the instruction set. Moreover, if an instruction is matched,

then values of all the arguments can be computed to generate the assembly language

28

Algorithm 3 :
For each image record, repeat the following steps 1,2 and 3.

1. Take the image-string from the image record.

2. If a bit (0 or 1) is stored in the image-string,
then {

e copy the bit value as it is in the image.

e copy bit ‘1’ in the image-mask.

}

3. If a parameter reference such as “%d” is stored in the image string,

then {

e Find the length L of the parameter.

e Copy L 0Os in the image.

e Copy L 0Os in the image-mask.

e Note the information about the parameter. It includes position, type,
length, and-rule number, sub-rule number and parameter-number. The
last three fields are available in the image record as a tuple.

}
Figure 10: Algorithm for Calculating Mask Values
instruction.

3.3.2 Instruction Matching Algorithm

As we described earlier, we can identify whether a given sequence of bits represent an
instruction or not using the sequential and ing and comparing algorithm. This algo-
rithm is simple but inefficient. The inefficiencies will be even higher if the instruction

set have variable length instructions.

We have designed an efficient algorithm as given in figure 11. This algorithm is
based on an observation that instruction set of a processor uses some fixed number
of bits for opcode in any instruction. By looking at these bits, all the instructions

can be divided uniquely into different categories. All instructions will have same bit

29

Algorithm 4 :
¢ Find maximum length 1,,,, of the instruction.
e Initialize a general-mask G of length 1,,,, with all 1’s.

e Do bitwise and ing of string image of all the instructions with G. At end, the
G will have the required value.

e Now repeat the following steps for all the instructions.

1. Do bitwise and ing of the image with the G and call it R.

2. if a bucket is having the bucket-value same as the R, then store the
instruction in the bucket.

3. Otherwise, create a new bucket and store the instruction in the bucket.
Assign R as the bucket-value for this bucket.

e For each bucket, compute bucket-mask. The bucket-mask is a string resulting
from the bitwise anding of all image strings of the instructions stored in the
bucket.

e Sort the buckets according to the bucket-values.

e Sort the instructions within each bucket according to the image string.

Figure 11: Algorithm for Calculating More Mask Values

values for the opcode in each category. In each category, again some fixed number
of bits differentiate among the instructions. We call these bits as subcode. Most
of the processors use this two-level of hierarchy in assignment of the opcode to the

instruction.

In the algorithm, a binary string named general-mask is calculated to iden-
tify the instruction category. We call these category as different buckets. The
general-mask will have 1 at bit positions used for opcodes. For example, we will
get the general-mask value as 0xFC 0x00 0x00 0x00 for PowerPC603 processor[19]
that has 32 bit long instruction with first 6 bits as an opcode. The instructions are
grouped in buckets. Each bucket is assigned a bucket-value which is the binary
string resultant from the bit-wise and ing of the binary string image of the instruction
and the general-mask. Each bucket is assigned a bucket-mask to identify a instruc-

tion among the instructions stored in each bucket. The bucket-mask has bit value

30

1 at all those positions which are used for the opcode and the subcode. All buckets
and the instructions within each bucket are sorted with respect to the bucket-value

and the binary string image respectively to reduce the searching time.

Now the instruction matching algorithm is described as follows.

e (Call given sequence of bits to be identified as D.
e Do the bitwise and ing of the D and general-mask.

e Find the bucket B where the instruction might be stored. For this purpose, do

the binary search with comparison of resultant string and bucket-value.
e If no bucket is found, then there is no such instruction.

e Otherwise, do the bitwise and ing of the D and the bucket-mask associated with
the bucket B.

e Find the instruction I. For this, do the binary search with comparison of the

resultant string and the image.

e [f search fails, then there is no such instruction.

3.3.3 Extracting Control Transfer Instruction

In the binary file, there may be gaps in between the instructions due to the alignment
constraints. Control of the program execution never reaches to such gaps. The flow of
a program is affected by the control transfer instructions. We have divided the control
transfer instructions under six categories, namely unconditional and conditional jump
instructions, unconditional and conditional call (to a procedure) instructions and
lastly unconditional and conditional return (from a procedure) instructions. The
process of disassembly takes care of such instructions. An occurance of an instruction
of such type is used to identify the address ranges that contains the code. Otherwise,
disassembled instructions sequence might be completely wrong. Therefore, we need

the information about all such instructions.

Instructions under each category can be found by a simple method. The method
is based on the assumption that instructions are described in a hierarchical manner in

the processor specification. If a complete instruction specification tree is made, then

31

instruction of a category can be marked under a subtree i.e. an instruction is put
under a particular category if the root node of the corresponding subtree is traversed
during flattening of the instruction. If a processor specification is not written in this
manner, then a little effort is needed to modify it. One can add an or-rule with all

the instructions of a category as children nodes of the or-rule.

The disassembler takes an identifier name for each category from the user. These
identifiers denote nodes of various subtrees associated with various categories. As
described earlier, the syntax and image records of an instruction hold dot-expressions
which provide the sequence of nodes traversed during flattening of the instruction. If
an instruction belongs to any of these category, then the root node of the category
tree must be encoded in the dot-expression. If any of these nodes is found in the dot-
expression, then the instruction is put under the corresponding category. Otherwise

the instruction is not a control transfer instruction and termed as a simple instruction.

There can be a situation when an instruction belongs to two such subtrees. This
will happen if tree of one category is also a subtree of another category of tree. For
example, the PowerPC processor does not have any call type instruction. It uses
jump type of instructions itself to transfer the control to a subroutine. It stores a
return address in the link register and set some bits to treat the jump instruction
as a call instruction. For such conditions, instructions are matched according to
a priority rule. We have assigned the priority to unconditional jump, conditional
jump, unconditional call, conditional call, unconditional return and conditional return
type of instructions respectively in that order. If an instruction matches under two

categories, it is put under the higher priority category.

3.3.4 Evaluation of Next Instruction Address

To identify valid code address ranges, it is necessary to evaluate the target address
of the control transfer instructions. A control transfer instruction, either gives the
starting address of a new address range or causes the end of current address range.
For a control transfer instruction, each processor encodes the address of the next
instruction in a different way. For example, the next instruction address for jump type
of instructions may be specified relative to the current program counter. The relative
offset value is encoded in the instruction itself. The encoding of offset value might

be different on different processors. In some cases, the next instruction address can

32

be determined only at the run time, for example, the case when the next instruction
address is taken from a processor register or memory. We are interested in finding out
the next instruction address from an instruction image of binary file if possible. If its
value can not be determined, we do not use it for the identification of code address

ranges.

The intermediate representation of the processor holds the attribute definitions
for all the instructions. The attribute definition corresponding to action attribute
simulates the semantic of an instruction. In the Sim-nML, a register called PC has
special semantic and normally points to the next-to-be executed instruction. For
control-transfer instructions, the attribute definition of action attribute must modify
the PC value in some way. In some processors, there are more than one such special

register (such as oldpc, newpc, currentpc).

The disassembler takes a set of identifier names from the user. These are essen-
tially the names of such special purpose registers. We extract the attribute definitions
corresponding to action attribute for all control-transfer instructions. If we have the
binary image of an instruction, we can get the address of the next instruction by
simulating the execution of the attribute definition. When a statement modifies the
value of the program counter (any of the identifier in set entered by the user), its new
value is taken as the address of the next instruction. If the statement requires a value

which is unknown, then we can not determine the address of the next instruction.

3.4 Implementation Details of the Disassembler

As we said earlier, the disassembler is a two pass disassembler. In reality, these two
passes are made over .text section only. While disassembling the .text section,
information is gathered which aid in disassembly of the other sections. In the first
pass, it gathers information like references, list of basic block etc. which is used to
produce output in the second pass using symbol name for references. The disassembler

proceeds in following phases.

33

3.4.1 Initialization Phase

As said earlier, the disassembler takes ELF binary file and processor specification in

the IR as input. The disassembler does the following tasks in this phase.

e [t identifies the data encoding of the host processor using the algorithm given

in figure 12.

e It checks the integrity of the IR file by looking for the “META TABLE” (table

of contents) at the start.

e [t then reads the Meta Table entry and detects the data encoding used in the
IR file as described in section 2.2.4. If the data encoding of the host processor
is different from that in the IR, then a flag is set to indicate that the data read

from the IR file must be converted to proper data encoding before its use.

e The disassembler then extracts the information required for disassembly from
the IR file as described in the section 3.3.

e It checks the integrity of the binary file by checking the magic number in the
ELF header.

e From the ELF header, it detects the data encoding of the binary file and sets
a flag if data encoding differs from the source architecture. This indicates that
data read from the binary file must be converted into proper data encoding

before its use.

e Lastly, it reads in the information from the binary file to be used for future ac-
cess. This information which includes things like the ELF header, symbol table
etc., is held in appropriate data structures so that all the required information

is easily available.

3.4.2 First Pass of Disassembly

In the first pass of disassembly, all basic blocks of the code are identified. The
identification process is based on the assumption that there must always be some

way (a path) to reach the code. If there is no such path (i.e. there is no jump/call

34

(Assume that the unsigned character is 1 byte long and the unsigned integer is 4
byte long)

e Take a unsigned character pointer P and unsigned integer pointer I. Let I and
P both points to the same 4-byte structure.

e Store 0 at P, P4+1 and P+2. Store OxFF at P+3.

e [f value at I is equal to 0xO000000FF,
then data-encoding of the processor is big-endian .

e [f value at I is equal to OxFF000000,
then data-encoding of the processor is little-endian .

Figure 12: Algorithm to Find Data Encoding of the Host Processor

to this code), it shall never get executed and hence we need not worry about it.
Since the ELF binary file contains the names of the functions in the symbol table,
these are taken as the basic blocks in the beginning. The algorithm then proceeds to
trace each one of these one by one in order to discover all possible program paths.
A stack is used for storing the unprocessed entry points. An instruction is identified
using the instruction matching algorithm described earlier in section 3.3.2. After
each instruction matching, instruction buffer pointer is moved ahead according to
instruction length of the matched instruction. No attempt is made to interpret the
contents of the instructions except that a constant vigil is kept over control transfer

instructions.

A control transfer instruction, either gives a new entry point or causes the end
of the current trace. If the instruction comes under the category of unconditional
return instruction or unconditional jump instruction, then the instruction is the last
instruction of the current trace. Otherwise tracing is continued. All control instruc-
tions except the instructions coming under the category of unconditional return and
conditional return, give a new entry point. The address of the next instruction is

found by the approach described in the section 3.3.4.

The information gathered in the first pass is stored for use in the second pass. The
disassembler maintains a list of pairs. Each association consists of one entry point
in the text section and the corresponding name by which it is referred. The list is

built up during this pass. Whenever a control transfer instruction refers to an offset

35

in the code section, an attempt is made to resolve the reference (using the approach
given in section 3.2.1). If the reference is not resolved, a new symbol is generated
and appended to the list. Future references to the same offset would resolve into this
new name. At the end, the information (about the symbols and the entry points) are

sorted with respect to the address of the entry points.

At the end of this pass, all adjacent basic blocks are merged to form a bigger
basic block. The intention is to obtain range of addresses which contain only code
and no data/gaps. After obtaining these ranges, the second pass simply processes
the regions covered by them. Lastly, all basic blocks are sorted with respect to the

starting address to ease the translation to the assembly instructions.

3.4.3 Second Pass of Disassembly

The objective of this pass is to generate assembly language instruction from their
binary counterpart. Since the address ranges of valid code have been identified in the
first pass, we only need to disassemble the instructions in each address range. The

instruction disassembly is carried out in the following steps.

e Symbol Generation : To perform the symbolic disassembly, at the beginning of
the disassembly of an instruction, it is checked whether a symbol is associated
with the address of the current instruction and if so, the symbol type (function
name or just a label) is also extracted. If the symbol refers to a function, further

information regarding the type and size of the function is also extracted.

e Instruction Generation : An instruction is matched using the instruction match-
ing algorithm (as described in section 3.3.2) and corresponding assembly lan-
guage instruction is output with appropriate parameters. If the instruction is
a control transfer instruction, a symbol is found from the symbol table con-
structed during the first pass and corresponding symbol name is used in the
disassembled instruction. Further, memory references to the .data, .rodata
and other such sections are found. In case of such a reference, we try to resolve
the address. The size of the operand and the symbol name is stored for the

reference.

This procedure is repeated for each instruction in all address ranges. The gaps

within the .text section are overlooked for the purpose of text disassembly. One

36

possibility is to simply ignore the bytes in the gaps and change the current location
counter so that it reaches the beginning of the next valid address range. However, it
is possible that these gaps contain initialized data (which are not referenced by the
normal methods, for instance using register indirection instead of symbols, otherwise
it would have been discovered during the first pass). In such a case, ignoring them
might break the intended equivalence between the relocatable object file and the
generated assembly code. Therefore, we simply output bytes in the gaps as data and

generate appropriate pseudo-ops to glue the code.

3.4.4 Disassembly of Other Sections

While making the second pass through the .text section, information is gathered
regarding the references made to the other sections. This information together with
the symbol table information is used to disassemble the .data section. We simply
scan the .data section looking for those offsets for which a symbol name is available.
At these offsets, the corresponding symbol name is output as a label. Moreover, the
length information gathered during the second pass is also output for the data item.
At all other offsets, the data is dumped byte by byte.

The .rodata section is dealt similarly except that the symbol names are not

retained in the binary file. Thus, they need to be generated afresh.

37

Chapter 4

Results and Conclusion

4.1 Results

We have discussed the design of the intermediate representation. The IR fulfills all
the goals which were setup behind the design of the IR. Some advantages of the IR

are enumerated below.

e All information which was available in the Sim-nML specification can be re-
trieved. Moreover, parsing effort needed in other tools to get the required

information has been saved.

e All forward references of identifiers have been resolved. Thus multiple passes

are not necessarily needed in the tools to resolve the references.

e Most of the tables in the IR contain fixed size records. Thus it is easy and

efficient to retrieve the required information from the IR.

e Hierarchy of the information has been flattened while retaining the path of

flattening. Therefore, processing needed in other tools is reduced.

e Allsyntax and image attribute definitions of the instructions are available collec-
tively in one table. Therefore design of the tools such as assembler, disassembler,
simulator etc. is simplified as they need to gather information only from one

place.

38

e In the IR, the attribute definitions for all the attributes except syntax and
image are represented in prefix notation. Therefore, tools such as simulator,

trace generator, compiler back-end generator etc. can be made to run fast.

e The IR is flexible enough for further extension. One can add more tables in the

IR without any problem.

The tool, IR-Generator, is tested for PowerPC603 processor specification[19]. The
IR-Generator is tried on Pentium (little-endian) based Linux machines, DEC-Alpha
(little-endian) based DEC machines and UltraSparc (big-endian) based Sun OS ma-

chines. The inter-operability among these machines is also tried and found to work.

We have also implemented the generic symbolic disassembler. The disassembler
can take the IR for a processor specification and ELF binary for that processor as

inputs. The salient features of the disassembler are as follows.

e The disassembler is generic and processor independent.

e The disassembler uses symbols to refer to the locations and functions. Therefore,

the output file resembles the original source from which binary file was produced.

The disassembler is tested for PowerPC603 IR generated through the IR-Generator.
The disassembler is also tried on the above mentioned architectures. It is also verified
that it can take the IR generated on a little-endian processor while running on big-

endian processor and vice-versa.

The disassembler is tested for several programs. Some of the test results are given
in the table 1. All the C programs are compiled using GNU C cross-compiler for
PowerPC603 processor running on Pentium based Linux machines. It is observed that
all the corresponding instructions are matching in the source assembly program and
output assembly programs except those instructions which are not implemented in
the specification. Differences in total line numbers are coming due to unimplemented
instructions because corresponding binary images are output byte by byte in different

lines in the output assembly program.

Some of the example outputs of the disassembler are given here.

39

Program Number | No. of Lines | No. of Lines in No. of Lines in
in C Program | Assembly Program | Output Assembly Program

1 68 202 232

2 171 472 505

3 212 664 740

4 224 889 1059

5 505 2487 2698

6 567 2733 4425

7 671 3118 3468

8 693 4262 4469

9 1245 5366 5827

10 2766 13040 15652

Table 1: Test Results

4.1.1 Example 1 :

The following C program compiled using GNU C cross-compiler for PowerPC603

processor running on Pentium based Linux machines.

/* file examplel.c */
main()
{ int a,b,c;
a = 20;
b = 30;

a + b;

C

The compilation results into the follwoing assembly program.

.file "examplel.c"
gcc2_compiled. :

.section .text

.align 2

.globl main

.type main,@function
main:

stwu 1,-32(1)

40

stw 31,28(1)
mr 31,1

1i 0,20

stw 0,8(31)
1i 0,30

stw 0,12(31)
lwz 0,8(31)
lwz 9,12(31)
add 0,0,9
stw 0,16(31)

.L1:
lwz 11,0(1)
lwz 31,-4(11)
mr 1,11
blr

The result of disassembling the corresponding relocatable file using our disassembler

is shown below :

.section .text
.align 4
.globl main
.size main, 60
.type main,Q@function
main:
gcc2_compiled. :
stwu 1,-32(1)
stw 31,28(1)
or 31,1,1
addi 0,0,20
stw 0,8(31)
addi 0,0,30
stw 0,12(31)
lwz 0,8(31)
lwz 9,12(31)

41

add 0,0,9
stw 0,16(31)
lwz 11,0(1)
lwz 31,-4(11)
or 1,11,11
bclr 20,0

As it evident, the disassembler generates a correct assembly language file with nec-
essary assembler directives. Moreover, the symbolic name of the function “main” is
retained together with its type, size and binding information. The unnecessary labels
used in the source assembly program have been removed. Instructions such as or and
mr are alias of each other. In the output file, or instruction is generated as that was
the one specified in the processor specification. The output file is cross-compiled and
disassembler is run on the corresponding binary file. The generated output is similar

to the original one.

4.1.2 Example 2

Let us now take a more complicated example. The source C program is shown below.

The program has a conditional if statement that gets compiled to multiple branches.

/* file "example2.c" */
main()

{ int a,b,min;

a = 20;
b = 30;
if (a > b) min = b;
else min = a;

The assembly program generated by the cross-compiler is shown below.

.file '"example2.c"

gcc2_compiled. :

42

.section .text
.align 2
.globl main
.type main,@function
main:
stwu 1,-32(1)
stw 31,28(1)
mr 31,1
1i 0,20
stw 0,8(31)
1i 0,30
stw 0,12(31)
lwz 0,8(31)
lwz 9,12(31)
cmpw 1,0,9
bc 4,5,.L2
lwz 0,12(31)
stw 0,16(31)
b .L3
.L2:
lwz 0,8(31)
stw 0,16(31)
.L3:
.L1:
lwz 11,0(1)
lwz 31,-4(11)
mr 1,11
blr

The result of disassembling the corresponding relocatable file using our disassembler

is shown below :

.section .text
.align 4
.globl main

43

.size main,80
.type main,@function
main:
gcc2_compiled. :
stwu 1,-32(1)
stw 31,28(1)
or 31,1,1
addi 0,0,20
stw 0,8(31)
addi 0,0,30
stw 0,12(31)
lwz 0,8(31)
lwz 9,12(31)
cmp 1,0,0,0
bc 4,5,text0
lwz 0,12(31)
stw 0,16(31)
b textl
textO:
lwz 0,8(31)
stw 0,16(31)
textl:
lwz 11,0(1)
lwz 31,-4(11)
or 1,11,11
bclr 20,0

For this example, we can observe that the sequence of instructions generated by the
disassembler is almost similar to the original except for a few symbol names which
are generated by the disassembler. New labels like text0, textl have the format
isection-name, counter;. These symbols are not there in the binary file as these are

considered local and thrown away by the assembler.

44

4.2 Conclusion

Sim-nML language, an extension of nML machine description formalism, is a simple,
elegant and powerful enough to model machine behavior at instruction level. In this
thesis, we have discussed an integrated environment where Sim-nML acts as the spec-
ification language for processor performance model in a generic way. The integrated
environment helps in automatic generation of compiler, assembler, disassembler, in-

struction set simulator and trace generator.

As part of the thesis work, we have designed an intermediate representation (IR)
for processor specification written in Sim-nML language. We have demonstrated how
the intermediate representation simplifies the development of various tools such as
compiler, assembler, disassembler, instruction set simulator, trace generator etc. We
have also developed a tool, IR-Generator, which takes a processor specification writ-
ten in Sim-nML language and produces the intermediate representation of processor
specification. Further, a Generic Symbolic Disassembler is developed which takes an
intermediate representation of a processor and a relocatable binary file in ELF format
as input and produces an equivalent program in assembly language of the processor.
We have also given the test results for PowerPC603 processor. Although these tools
are tested only for PowerPC603 processor specifications, their design is generic enough
to be used for all type of RISC and CISC processor specifications.

4.3 Future Work and Extensions

There are many things which can be undertaken as an extension of this work.

e Flattening of all Attributes : In the IR, all except syntax and image attribute
definitions are stored without any flattening involving parameter substitution.
If attribute definitions of all the attributes can be flattened, then it might further

simplify the design of some tools such as compiler back-end generator.

e Support for Other File Format : Currently the disassembler can only accept
relocatable object files in the ELF format. It would be nice if it could be

extended to understand other format also such as COFF, a.out etc.

45

Appendix A

Grammar of Sim-nML Language

Convention : We have used following convention in describing the Context Free Gram-
mar (CFG) of Sim-nML language.

e rulel : X|Y means either X or Y is derived from rulel. We have written X and

Y in separate lines.
e Keywords are written in small-case letters.
e The start symbol is MachineSpec.

e X_Y means the derivation of Y where X is used as a qualifier. For example,
Let_Identifier means an identifier specified in LetDef, Const_Expr means a con-

stant expression, Card_Expr means an expression of card type.

e X_Y _Z means the derivation of Z where X and Y both are used as quali-
fiers. For example, Card_Const_Expr means a constant expression of card type,
Para_Mode_ldentifier means an identifier used as a parameter name which is of

mode type.

e Following are the terminal symbols used in describing the grammar. We have

used regular grammar notation here.

letter : [a-zA-Z_]
digit : [0-9]
bin : [01]

46

hex : [0-9a-f]

alpha : [0-9a-zA-Z_]

Identifier : {letter} {alphal}*

CARD_CONSTANT : {digit}+

FIXED_CONSTANT : {digit}+ . {digitl}+

BINARY_CONSTANT : Ob{bin}+

HEX_CONSTANT : Ox{hex}+

STRING_CONSTANT : sequence of characters written in double-quotes (" ")

Following is the Context Free Grammar for Sim-nML language.

MachineSpec
| MachineSpec LetDef
| MachineSpec MacroDef
| MachineSpec TypeSpec
| MachineSpec ResourceSpec
| MachineSpec ExceptionSpec
| MachineSpec MemorySpec
| MachineSpec ModeSpec
| MachineSpec OpSpec
LetDef : let Let_Identifier = Const_Expr
MacroDef : macro (Macro_Identifier_List) = Macro_Expr
TypeSpec : type Type_Identifier = TypeDef
TypeDef : bool
| int (Card_Const_Expr)
| card (Card_Const_Expr)
| fix (Card_Const_Expr , Card_Const_Expr)
| float (Card_Const_Expr , Card_Const_Expr)
| [Int_Const_Expr .. Int_Const_Expr]
| enum (Enum_IdentifierList)
| instid_type
IdentifierList : Identifier
| IdentifierList , Identifier
ResourceSpec : resource Resource_IdentifierList

ExceptionSpec : exception Exception_IdentifierList

47

MemorySpec
MemRegPart

Type

OptMemAttrList

MemAttrDefList

MemAttrDef

MemLocation

ModeSpec
ModeSpecPart

OptionModeExpr

OpSpec
OpRulePart

OrRule

AndRule

ParamList

ParamListPart

ParamIdentifier

ParamType

Rule_Identifier

: MemRegPart [Card_Const_Expr , Type] OptMemAttrList

: mem Mem_Identifier

reg Mem_Identifer

: TypeDef

Type_Identifier

MemAttrDefList

: MemAttrDef

MemAttrDefList MemAttrDef

: volatile = String_Const_Expr

alias = MemLocation
initial = Const_Expr

uses = UsesDef

: Mem_Identifier Const_OptBitOptr

Mem_Identifier [Card_Const_Expr] Const_OptBitOptr

: mode Mode_Identifier ModeSpecPart
: AndRule OptionModeExpr AttrDeflist

OrRule

= Expr
op Op_Identifier OpRulePart

: AndRule AttrDefList

OrRule

: = Or_IdentifierList

(ParamList)

ParamlListPart

ParamlList , ParamListPart

: ParamIdentifier : ParamType

: Param_Rule_Identifier

Param_Mem_Identifier

: Type

Rule_Identifier

Op_Identifier

48

| Mode_Identifier

AttrDeflist

| AttrDefList AttrDef
AttrDef : Attr_Identifier = AttrDefPart

| syntax = AttrStringExpr

| image = AttrStringExpr

| action = { Sequence }

| uses = UsesDef
AttrDefPart : Expr

| { Sequence }
UsesDef : UsesOrSequence

| UsesDef , UsesOrSequence
UsesOrSequence : UsesIfAtom

| UsesOrSequence | UsesIfAtom
UsesIfAtom : UsesCondAtom

| if Bool_Expr then UsesIfAtom OptionElseAtom endif
OptionElseAtom

| else UsesIfAtom
UsesCondAtom : UsesAndAtom

| { Bool_Expr } UsesAndAtom
UsesAndAtom : UsesActionAtom

| UsesAndAtom & UsesActionAtom
UsesActionAtom : UsesDefAtom

| UsesDefAtom : UsesActionAttr OptionalTime
UsesActionAttr : Attr_Identifier

| action

| Param_Rule_Identifier . action

| Param_Rule_Identifier . Attr_Identifier
OptionalTime

| # { Card_Expr }
UsesLocation : Mem_Identifier OptBitOptr

| Resource_Identifier

| Mem_Identifier [Card_Expr] OptBitOptr
UsesDefAtom : UsesLocation OptionalTime

49

AttrStringExpr

FormatIdlist

FormatId

Sequence

StatementList

Statement

FunctionName

Arglist

OptBitOptr

Location

Param_Rule_Identifier . uses

(UsesOrSequence)
Param_Rule_Identifier . syntax
Param_Rule_Identifier . image
String_Const_Expr

format (STRING_CONST , FormatIdlist)
FormatId

FormatIdlist , FormatId
Param_Mem_Identifier
Param_Rule_Identifier. image

Param_Rule_Identifier. syntax

StatementList ;
Statement

StatementList ; Statement

nop
action

Attr_Identifier

Param_Rule_Identifier . action
Param_Rule_Identifier . Attr_Identifier
Location = Expr

CondStatement

FunctionName (ArgList)

error (STRING_CONST)

STRING_CONST

Expr
Arglist , Expr

< Card_Expr .. Card_Expr >

: MemLocation

Paralocation

Location :: Location

20

MemLocation

Paral.ocation

CondStatement

OptionalElse

Caselist

CaseStat

CaselOption

Expr

AttrExpr

OptionElseExpr

CaseExprList

CaseExprStat

UnconditionalExpr :

ExprPart

LogAndExpr

NotExpr

: Mem_Identifier OptBitOptr

Mem_Identifier [Card_Expr] OptBitOptr

: Para_Mem_Identifier OptBitOptr

Para_Mem_Identifier [Card_Expr] OptBitOptr
if Bool_Expr then Sequence OptionalElse endif
switch (Expr) { Caselist }

else Sequence
CaseStat

Caselist CaseStat
CaseOption : Sequence
case Const_Expr

default

: UnconditionalExpr

AttrExpr
if Bool_Expr then Expr OptionElseExpr endif
switch (Expr) { CaseExprlList }

: Param_Rule_Identifier . syntax

Param_Rule_Identifier . image

Param_Rule_Identifier . Attr_Identifier

else Expr

CaseExprStat

CaseExprList CaseExprStat
Caselption : Expr

ExprPart

coerce (Type , Expr)

format (String Expr , ArgList)

FunctionName (ArgList)

: LogAndExpr

ExprPart || LogAndExpr

: NotExpr

LogAndExpr && NotExpr

InclusiveOrExpr

ol

| ! InclusiveOrExpr
InclusiveOrExpr : ExclusiveOrExpr

| InclusiveOrExpr | ExclusiveOrExpr

ExclusiveOrExpr : AndExpr

| ExclusiveOrExpr ~ AndExpr
AndExpr : EqualityExpr

| AndExpr & EqualityExpr
EqualityExpr : RelationalExpr

| EqualityExpr == RelationalExpr

| EqualityExpr != RelationalExpr
RelationalExpr : ShiftExpr

| RelationalExpr < ShiftExpr
| RelationalExpr > ShiftExpr
| RelationalExpr <= ShiftExpr
| RelationalExpr >= ShiftExpr
ShiftExpr : AddExpr
| ShiftExpr << AddExpr
| ShiftExpr >> AddExpr
| ShiftExpr <<< AddExpr
| ShiftExpr >>> AddExpr

AddExpr : MulExpr
| AddExpr + MulExpr
| AddExpr - MulExpr
MulExpr : PowerExpr

| MulExpr #* PowerExpr
| MulExpr / PowerExpr
| MulExpr % PowerExpr

PowerExpr : SimpleExpr

| SimpleExpr ** Card_Expr
SimpleExpr : (Expr)

| - SimpleExpr

| + SimpleExpr
| ~ SimpleExpr
| LocationOpd

52

| SimpleOpearand

LocationOpd : MemLocation(Opd

| ParamLocationOpd

| LocationOpd :: LocationOpd
MemLocationOpd : Mem_Identifier [Card_Expr] OptBitOptr

| Mem_Identifier OptBitOptr
ParamlocationOpd : Param Mem_Identifier [Card_Expr] OptBitOptr
| Param_Mem_Identifier OptBitOptr
SimpleOperand : FIXED_CONST
| CARD_CONST
| STRING_CONST
| BINARY_CONST
| HEX_CONST

e Note 1 : Following operators give the boolean result in an expression :
L&&s] o5 i=iii= == =

e Note 2 : We have used the zero value as false and the non-zero value as true for

boolean expression.

e Note 3 : For MemSpec, one new attribute, initial is defined to store the initial

values of a memory variable.

23

Appendix B

File Format of Intermediate

Representation

In this appendix, we will discuss the layout of the file for the intermediate representa-
tion. The file consists of various fixed or variable size tables where the name of each
table is fixed. A table, named as meta table, is always the first table in the file. All
other tables can reside anywhere in the file and can be located using the meta table.

The following are the tables available presently in the IR.

e “META TABLE”

e “CONSTANT TABLE”
e “ATTRIBUTE TABLE”
e “RESOURCE TABLE”
e “IDENTIFIER TABLE”
¢ “MEMORY TABLE”

e “AND RULE TABLE”
e “OR RULE TABLE”

e “SYNTAX TABLE”

o4

e “IMAGE TABLE”
e “STRING TABLE”
e “INTEGER TABLE”

e “PREFIX ATTR DEF TABLE”

Each table consists of an array of records. Each record in a table constitutes of various
fields. For each table, all the fields of first records are written first in the file. Then
all the fields of second record are written and so on. We have used the word record
and entry interchangeably. The fields might be stored either in little-endian encoding

or big-endian encoding depending on the processor on which the file is created.

e Convention : Each table is described by defining its record format. We have
used a C-like struct definition to describe a record. For each record, fields are
written from top to bottom in the file. In describing the record, following data

types are being used :

Byte — unsigned char

Word = unsigned short int

Dword = unsigned int

SByte = signed char

SWord = signed short int

SDWord = signed int

String = Null terminated array of characters
Address = Dword

Offset = Dword

B.1 Meta Table

The Meta table holds the table of contents for all the tables which are present in the
file. Each record of the meta table stores the information to locate a table. Each
record has the following format.

typedef struct {

)

String table_name;

Dword table_size;

Address table_offset ;

Dword total_record;

Dword record_size;
} Meta_Record;

table_name : 'This field stores the fixed name of a table which is a 32 byte null
terminated string. Name of all the tables are written earlier.

table_size : This field holds the size (in bytes) of a table.

table_offset : This field holds the starting offset (in bytes) of a table in the file.

total_record : 'This field holds the number of record stored in a table. For the
string table, it holds the value 0.

record _size : This field holds the size of a record (in bytes) of a table. If a

record for a table is variable in size, then this field contains the

value 0.

The data encoding of the IR is dependent on the processor on which it is created
i.e. data encoding can be little endian or big endian depending on the processor.
A tool can figure out the endian-ness of the IR by reading the table of contents
irrespective of the type of the machine on which the tools is running. First record of
the table represent the meta table entries itself. Therefore the no-of-rec contains the
total number of tables including the meta table, size-of-rec contains the size of each
record in the meta table and size-of-table contains the total size of the meta table
including the first record. A tool can read these values and check if the following
equation is satisfied.

* gize-of-rec = size-of-table

no-of-rec
If this equation is not satisfied, then the endian-ness of the IR and the machine on
which the tool is running are not the same, otherwise they are the same. In the
former case, this equation must be satisfied after the endian-ness conversion of the

fields values.

26

B.2 Constant Table

Each record of the constant table holds the informations about the constants (see

section 2.2.1) in the following format.

typedef struct {
Offset id_name;
Dword val_typ;
SDword value;
} Const_Record;

id_name : This field holds the index into the string table. As discussed
earlier, string table holds null terminated strings. Thus this
field represents a reference to the constant name.

val_typ : This field indicates type of the value associated with the constant
(0 for integer type or 1 for a string type).

value . If the val_typ field represents integer, then this field holds the
corresponding signed integer value. If the val_typ field represents
string, then this field holds the unsigned integer index into the
string table from where a null terminated string value can be

retrieved.

B.3 Resource Table

Each entry of this table holds the information about a resource. Each resource is
assigned a unique integer key by which it is referenced at other places. Each record

has the following format.

typedef struct {
Offset res_name;
Dword res_key;

} Resource_Record,;

res_name : This field holds the index into the string table. In the
string table, the name of the resource is stored at this in-
dex.

res_key . This field holds the key value assigned to the resource.

o7

B.4 Identifier Table

This table holds the informations about all the identifiers used in the processor spec-
ification file (other than those specified in the constant table and the resource
table). Each identifier is assigned a unique integer key which is used to refer to the

identifier at other places. Each record has the following format.

typedef struct {
Offset id_name;
Dword id_typ;
Dword id_key ;

} Identifier_Record;

id_name : This field holds an index into the string table. The string
table holds a null terminated string at this index which is the
name of the identifier.

id_typ . This field indicates the type of the identifier and may have one

of the following values.

Undefined Identifier

Name of a memory Variable

Name of an or-rule of mode type
Name of an and-rule of mode type
Name of an or-rule of op type.

Name of an and-rule of op type.

D Ot = W N = O

Name of an Exception

others : Unspecified

id_key : This field holds the key value assigned to the identifier.

B.5 Attribute Table

Each entry of this table holds the name of an attribute. Each attribute is assigned a

unique integer key to refer to it at other places. Each record has the following format.

typedef struct {

28

Offset attr_name;
Dword attr_key ;
} Attribute_Record;

attr_name : This field holds an index into the string table. The string
table holds a null terminated string at this index which is the
name of the attribute.

attr_key : This field holds the key value assigned to the attribute.

Note : For mode specification, one new attribute ,_val_, is defined to store the

optional expression associated with =.

B.6 Memory Table

Each entry of this table holds the information about a memory variable specified
with reg or mem specification construct of Sim-nML language. Each record has the

following format.

typedef struct {
Dword id _key ;
Dword siz ;
Dword tot_attr;
Dword mem _reg ;
Dword data_typ;
Dword valuel ;
Dword value? ;
Dword attr_list_index;

} Memory_Record;

id_key : This field stores the key value associated with the identifier
name of a memory variable. The key value is assigned in the
identifier table.

siz . A memory declaration defines a memory base i.e. a set of mem-
ory locations accessible under a name and an index. This field

specifies the number of such locations.

29

tot_attr

mem _reg

data_typ
valuel

value2

attr_list _index

A memory declaration may also define values for some predefined
attributes. This field specifies how many attributes are defined
for the memory variable.

This field holds a value 0 if the memory identifier is declared
using Reg specification. It holds 1 if the memory identifier is
declared using mem specification. Both type of identifiers are
similar in nature except that first type of identifiers refer to pro-
cessor registers and second type of identifiers refer to memory

locations.

A memory location might hold values of different data types.
The data type is encoded in a tuple jdata_typ, valuel, value2
First field, data_typ, specifies what type of values can be stored
in a memory location. Second and third field stores the value
according to the data_typ field. Table 2 shows the possible values
for these field.

If the tot_attr field has a value 0, then this field is ignored and
should be 0. Otherwise it specifies an index into the integer
table. At this index, three integers are stored for each of the at-
tributes. Therefore, the total number of integers are 3xtotal _attr.
Each integer triple indicates jattr_key, offset, len; where the
attr_key, is the key corresponding to attribute name assigned in
the attribute table. The second field of triple, offset, is the
starting tuple number into the prefix-attribute-definition
table where definition of the attribute is stored in prefix nota-
tion. Third field of triple, len, is the number of tuples for its
attribute definition.

B.7 And-Rule Table

This table holds the information about all the and-rules (mode and op type). It

includes the information about sub-rules' and attributes. The sub-rules of an

and-rule are numbered from 0 to n and parameters are numbered as 0 to m from

1Refer to section 2.2.2

60

Data Type data_typ |valuel ‘Value2

bool 0

card(n)

int(n)

ﬂoat(n; m)

range[n::m |

0
1
2
ﬁX(n; m) 3
4
5
6

BIB|E|E|@ ==

o |B|RE BB

enum(id_1...id_m)

Table 2: Encoding of data types

left to right. Each record has the following format.

typedef struct {

Dword and _key ;
Dword id _key ;

Dword total_sub_rule;

Dword total_para;

Dword total_attr;

Dword attr_list_index ;

Dword para_list _index ;

}And_Rule_Record;

and _key

id _key

total_sub _rule

total_para

total_attr

attr_list _index

This field holds an integer which is a unique key assigned to an
and-rule. This key is used later to refer to the and-rule.

This field holds the key value which is assigned to the identifier
name of the and-rule in the identifier table.

This field holds the number of sub-rules generated by flattening
of the and-rule.

This field holds the number of parameters taken by the and-rule.
This field specifies the number of attributes defined for the and-
rule.

If total_attr field has value 0, then this field is ignored and has a
value 0, otherwise it specifies an index into the integer table.
At this index, three integers are stored for each of the attributes.
Each integer triple indicates jattr_key, offset and len; similar
to the one described in the memory table. There are two excep-

tions here. If attr_key refers to a syntax or image attribute,

61

then offset field contains the starting index in the syntax table
or the image table and len field contains the total number of
syntax or image records corresponding to the and-rule.

para_list_index : If total_para field has value 0, then this field is ignored. Other-
wise it specifies an index into the integer table. At this index,
three integers are stored for each of the parameter. Initially, all
parameters triples of first sub-rule are written, then all parame-
ter triples of second sub-rule are written and so on. Thus if we
have n sub-rules and m parameters, then there will be n*m such
integer triples. Each integer triple indicates jdata_typ, valuel,
value?2 ; i.e. the data type of parameter. Table 3 shows possible
values for fields of the triples.

‘ Data Type ‘ data_typ | valuel ‘valueZ ‘
bool 0 0 0
card(n) 1 n 0
int(n) 2 n 0
fix(n; m) 3 n m
ﬁoat(n; m) 4 n m
range[n::m] 5 n m
enum(id_1...id_m) | 6 0 m— 1
and-rule 7 and _key ‘ 0

Table 3: Parameter Type for and-rule

B.8 Or-Rule Table

This table holds the information of all or-rules (mode or op type). Each entry de-
scribes the children nodes of an or-rule?. Each record has the following format.

typedef struct {
Dword or_key ;
Dword id _key ;
Dword total_child ;
Dword child _list_index ;
}Or_Rule_Record;

2Refer to section 2.2.2

62

or_key : This field holds an integer which is a unique key assigned to
an or-rule.

id _key . This field holds the key value associated with the identifier
name of the or-rule in the identifier table.

total_child : This field holds the integer number which indicate number of
children generated by the flattening procedure for the or-rule.

child_list_index : 'This field holds the index into the integer table where a list
of and_key values are stored. Number of such and_key values
is given by the value of total_child. These and _key are uses to

refer to the and-rule (assigned in the and-rule table).

B.9 Syntax Table

This table holds the syntax records associated with the syntax attribute definition of

all and-rules. Each record has the following format.

typedef struct {
Dword syn_key;
Dword dot_expr_len;
Offset dot_expr_offset;
Dword syn_expr_len;
Offset syn_expr_offset;
} Syntax_Record;

syn _key : This field holds an integer which is a unique key assigned to
a syntax record. In the and-rule table, the key is used to

get the attribute information of syntax attribute.

dot_expr_len . This field holds the length of a character string, named as
dot-expression (Refer to section 2.2.3).

dot_expr_offset : This field holds the offset in bytes into the string table
where actual dot-expression is stored as a sequence of charac-
ters.

syn_expr_len : This field holds the length of the character string, named as

syntax-string of the instruction.
syn_expr_offset : This field holds the offset in bytes into the string table

where the syntax-string is stored as a sequence of characters.

63

B.10 Image Table

This table holds the image records associated with the image attribute definition of

all and-rules. Each record has the following format.

typedef struct {
Dword img_key:
Dword dot_expr_len;
Offset dot_expr_offset;
Dword syn_expr_len;
Offset img_expr _offset;
} Image_Record;

img_key : This is the unique integer assigned to each image record. In
the and-rule table, this value is used to get the attribute

information of image attribute.

dot_expr_len : This field holds the length of the character string, named as
dot-expression (Refer to section 2.2.3).

dot_expr_offset : This field holds the offset in bytes into the string table
where actual dot-expression is stored as a sequence of charac-
ters.

syn_expr_len : This field holds the length of the character string, named as

image-string of the instruction.
syn_expr_offset : This field holds the offset in bytes into the string table

where the image-string is stored as a sequence of characters.

B.11 String Table

This table holds null terminated character sequences, commonly called strings. These
strings are referred to by an index into the string table. The first byte at index
zero always contains a null character. Similarly, the last byte also contains a null
character, ensuring null termination for all strings. A string whose index is zero
specifies either no name or a null name depending on the context. We show one
example of the string table of size 30 bytes in table 4 and the strings associated

with various indices in table 5.

64

null 1 dl| e n t 1 f 1 e
r null | P | C | null | null | i n S t
r u c |t i 0 n|null 1] null

Table 4: Example of the String Table

‘ Index ‘ string

1 identifier
12 pPC

16 instruction
18 struction

0 null

Table 5: Interpretation of the String Table

B.12 Integer Table

This table holds list of unsigned integer values (Dword type). These integers represent

different meanings in different contexts. The integers are referred to by an index into

the integer table. The first entry always stored in this table contains 0. The index

refers to the starting entry and not the starting offset. The offset can be found by

multiplying the index and the the size of Dword.

B.13 Prefix-Attribute-Definition Table

This table holds various attribute definitions in prefix notation. All attributes ex-

cept the syntax and image are converted into the prefix notation and stored in this

table. Each item of the prefix expression is stored in the following record of type

Tuple_Record.

typedef struct {

Word typ;

SDword value;
} Tuple_Record;

typ : This field holds an integer value to indicate the type of tuple i.e.

an operator tuple or operand tuple. If tuple is of operand type,

then this field also encodes the type of operand.

65

value : This field holds a integer value which will be interpreted accord-

ing to the value of typ field.

An attribute definition is stored in the and-rule table and in the memory table
with the starting index into the prefix-attribute-definition table and the num-
ber of items in the prefix notation of the definition. Table 6 shows the possible values
of typ field and corresponding interpretation of value field. If the typ field holds the
value 0, then the tuple is operator tuple, otherwise the tuple is operand tuple. If the
tuple is of operator type, then value field holds an integer which indicates operator
name and arity. Table 7 shows all possible values for this field and corresponding

arity of the operator.

Type of the tuple | typ field ‘Value field ‘

Operator 0 operator number (see table 7)

Fixed constant 1 signed integer value of
operand

Card constant 2 unsigned integer value of
operand

Binary constant 3 Offset into the string table

Hex constant 4 Offset into the string table

String constant 5 Offset into the string table

Memory variable 6 key of the identifier as assigned in
the memory table

Attribute type 7 key of the attribute name as as-
signed in the attribute table

Parameter type 8 parameter number (left most is
assigned number 0).

Resource type 9 key of the resource name as as-
signed in the resource table

Exception type 10 Key of the identifier as assigned
in the identifier table

Table 6: Interpretation of the tuple used in Prefix Notation

There are as many operands available as needed for an operator. Since the arity for
an operator is fixed, the number of arguments is implicit. For example, an expression
PC =PC +2is =PC 4 PC2 in prefix notation and it has 5 items. The first item is
an operator '=". Second is a memory variable with value field being the index into the
memory table. Third item is again an operator '+’. The last field is a fixed-constant
2.

66

‘ value ‘ Name of Operator ‘ Symbol ‘ Arity of Operator
0 Addition + Binary
1 Subtraction - Binary
2 Multiplication * Binary
3 Division / Binary
4 | MOD % Binary
5 EXP ok Binary
6 Greator than . Binary
7 Less than i Binary
8 Equal to == Binary
9 Not equal to = Binary
10 | GEQ = Binary
11 LEQ = Binary
12 | Logical AND & Binary
13 | Logical OR | Binary
14 | Logical XOR) Binary
15 | AND && Binary
16 | OR [l Binary
17 | Left Shift i ‘ Binary
18 | Right Shift i | Binary
19 | Rotate Left i | Binary
20 | Rotate Right i | Binary
21 Dot . Binary
22 | Concatenation = Binary
23 | Indexing] Binary
24 | Assignment = Binary
25 | Statement Separator ; Binary
26 | Unary Addition + Unary
27 | UNOT OPERATOR ! Unary
28 | Unary Subtraction - Unary
29 | Bitwise NOT - Unary
30 | Bit Range " Ternary
31 | IF if then else Ternary
32 | Function canonical function | n-ary
33 | Switch switch n-ary
34 | default Expression default 0-ary
35 | NULL nothing 0-ary
36 | Hash # Binary
37 | Comma , Binary
38 | Condition {} Unary
39 | Colon : Binary

Table 7: Operators Used in Prefix Attribute Definition

67

For detailed description of each operator, read the Sim-nML specification given

in Appendix A. There are some special cases which are described here.

e The first case is for Bit Range operator which has the infix notation as
opdl j opd2::0pd3 ;.
Equivalent prefix notation used is as follows.

(operator; bitrangeoperator; opd1; opd2; opd3):

e The second case is for “if then else”. If there is no operand in else part, then
NULL operator (0-ary) (see table 7) is being used.

e The third case is when there is a no attribute expression for an attribute. We

have used NULL operator to denote it.
e The fourth case is that of a switch operator. General infix notation for this is

switch (expr)

{
case Expr_1 : Sequence_1l ;
case Expr_2 : Sequence_2 ;
default : Sequence_i ;
case Expr_n : Sequence_n ;
b

The corresponding pre-fix notation is as follows :

(operator, switch)

(n, expr,
Expr_1, Sequence_1,
Expr_2, Sequence_2,

DEFAULT OPERATOR, Sequence_i,

Expr_n, Sequence_n)

68

The first item is an operator with operator name as switch. Then next item is
a simple operand tuple of Card constant type and value as n. After that, expr
will be again written in prefix notation. It will be followed by n-operands where
each operand is an expression in prefix notation and sequence of statements in
prefix notation. Default operator is a 0-ary operator so it can be taken as a

pre-fix expression.

The fifth case is that of a canonical function. General notation for this is as

follows.

where each argument is again an expression. The corresponding pre-fix notation

is as follows.

(operator, function)
(length of name, "function name" string,

n, Argl, Arg2,........ Argn)

The first item is a function operator. Second tuple is a string constant type (typ
= String constant, value = byte offset into the string table where function name
is written). Next item is a simple operand tuple with typ as Card constant and

value as n. Then each argument is represented in prefix notation.

There is one special case with function operator where the function name is
coerce. This function takes first argument as a data type. In the IR, we con-
vert data types to the basic data types and represent them using three numbers,
data_type, valuel and value2 asdescribed in table 2. Thus, the data type param-
eter for the coerce function is converted to three integers internally. Therefore,
we have two extra parameters for this function. Thus number of parameters

are increased by two.

69

Appendix C

User’s Manual

In this thesis, we developed two tools, IR-Generator and disassembler. Both the tools
have a command line interface that is conventional for the utilities/commands in a
Unix system. If a tool is run without any arguments, then it displays a small help

giving all the options.

C.1 IR-Generator

The IR-Generator is used to translate Sim-nML specification into the IR. It is avail-

able as a command called ‘irg’.

C.1.1 Usage

Use : irg [-d] [-h] [-w] [-o ir_file_name] Sim_nML_input_file
-d : To get debug info in debug.tmp
-h : to get this message
-w : to get warning messages. Default no warning
-0 ir_file_name : IR will be in file ir_file_name otherwise

default file name is IR.

Descriptions for all options are as follows.

70

e -d : This is an optional argument. It makes available a lot of debugging informa-
tion in the “debug.tmp” file in the current directory. By default, no debugging

information is generated.

e -h : This is an optional argument. If this option is specified, then a small help

message is generated and all other arguments are ignored.

e -w : This option is used to see the warning messages. These message are gener-
ated while translating the Sim-nML specification file into the IR. By default, no
warning messages are displayed. These messages provide the information which
might be useful for the specification writers. For example, action attribute for
all and-rules must be specified. If there is an and-rule with no action attribute
definition, then a warning is displayed. Sometime this may be the intention of

the user while sometime this may be an error.

e o ir_file_name : This option is used to set the output file name. By default,

output file named “IR” is created in the current directory.

e Sim-nML_input_file : This argument must always be present which represents

the input Sim-nML file without macros.

If some errors occur in the translation, then appropriate error messages are displayed

and tool exits.

C.2 Disassembler

The disassembler is used to translate a relocatable binary code to its assembly lan-
guage counterpart. The input binary file must be in the ELF format. The disassem-
bler also requires a processor specification in the IR. The disassembler is available as

a command ‘disa’.

C.2.1 Usage

Use : disa [-d] [-h] -w] [-o output_file_name] [-i ir_input_file]
[-c config_file]l objfile_name

-d : To get debug info in debug.tmp

71

-h : to get this message

-w : to get warning messages. Default no warning

-0 output_file_name : output assembly language file name
otherwise default file name is outfile.s

-1 ir_file_name : input file having IR of processor specification
otherwise default file name is IR

-c config_file : input file having various arguments for Disassembler
otherwise default file name is CONFIG

obj_file_name : input relocatable ELF file to be disassembled

Descriptions for all options are as follows.

e -d : This is an optional argument. It makes available a lot of debugging informa-
tion in the “debug.tmp” file in the current directory. By default, no debugging

information is generated.

e -h : This is an optional argument. If this option is specified, then a small help

message is generated and all other arguments are ignored.

e -w : 'This option is used to see the warning messages. These message are
generated while disassembling the binary file. By default, no warning messages

are displayed.

e -0 output_file_name : This option is used to name the output file containing the
assembly language program. By default, output file is named “outfile.s” and is

created in the current directory.

e -i ir_file_name : This option is used to name the processor specification file in

the IR. By default, input file named “IR” is used in the current directory.

e ¢ config_file : This option is used to name the configuration file. This file
contains the list of identifiers corresponding to control transfer instructions.
By default, input file named “CONFIG” in the current directory is used as

configuration file. The format of each line in the configuration file is as follows.
hidentifier_type identifier_name

Each line starts with “%” followed by a type name. This type name provides
the type of identifier followed and can be one of the following.

72

— BRANCH_UNCOND
— BRANCH_COND
— CALL_UNCOND
— CALL_COND

— RETURN_UNCOND

— RETURN_COND

After the identifier_type, name of an identifier is followed. Basically, each iden-
tifier name corresponds to the category of control transfer instructions given by

identifier_type! and represents a sub-tree for its class in the specification file.

The config_file also holds the names of identifiers which are used as program
counter in the processor specification. Format for specifying this information is
similar except that a list of identifier names can be given separated by commas.
The identifier_type field will have the value PC_CLASS. All these lines can be in
any order. An example file is given in figure 13 for more clarity. Here CIA and

NIA are the names of the PC_CLASS registers used in the specification file.

%PC_CLASS CIA, NIA
%BRANCH_UNCOND branch_uncond
%BRANCH_COND branch_cond
%CALL_UNCOND call_uncond
%CALL_COND call_cond
%RETURN_UNCOND bran_cond_lr
%RETURN_COND ret_cond

Figure 13: Example of the Configuration File

e obj_file_name : This mandatory option provide the ELF binary file name to be

disassembled.

IRefer to section 3.3.3

73

Bibliography

1]

[9]

FREERICK, M. The nML Machine Description Formalism, July 1993.
http://www.cs.tu-berlin.de/ "mfx/dvi_docs/nml_2.dvi.gz.

GUILFANOV, 1. IDA-Pro : The Multi-Processor Multi-OS Interactive Disassem-

bler. http://www.datarescue.com/ida.htm.

MATURANA, JAMES, AND JEFFERY. A Cycle Accurate Model of UltraSPARC.
In Proceedings of the 1995 International Conference on Computer Design (ICCD
'95) (1995). http://www.computer.org/conferen/proceed/iccd95/abstract.htm.

MoONA, R., AND V.RAJESH. Processor Modeling for Hardware-Software Code-
sign. International Conf. on VLSI Design (Jan 1999).

MSLEE. Processor Modeling and Verification, May 1997.
http://camars.kaist.ac.kr/“mslee/abstract /mod_ver.html.

RAKSEY, N., AND FERNANDEZ. Specifying Representations of Machine In-
structions. ACM Transaction on Programming Langauges and Systems 19
(May 1997). http://www.cs.virginia.edu/~nr/pubs/specifying-abstract.html,
http://www.cs.virginia.edu/“nr/toolkit /examples/sparc/sparcdis.html.

Ramsey, N., aAnND CirUENTES, C. SPARC Disassembler.
http://www.cs.virginia.edu/“nr/toolkit /examples/sparc/sparcdis.html.

RoOSE, STEEVES, AND CARPENTER. VHDL Performance Modelling, Aug 1997.
http://www.htc.honeywell.com /projects/rassp/RASSP94 /conf94_1.html.

Processor Models. References to VHDL Tools : http://rassp.scra.org
/vhdl/models/modsl_quick_index.html.

74

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

SHEN, J. P., AND NoONBURG, D. B. A Framework for Sta-
tistical Modeling of Superscalar Processor Performance. Third IEEE
Symposium on High-Performance Computer Architecture (HPCA-3) (1997).
http://www.foolabs.com/derekn/.

Trimaran : An Infrastructure for Research in Instruction-Level Parallelism, Sep

1998. http://www.trimaran.org.
MDES Manual. http://www.trimaran.org/docs/mdes_manual.pdf.

TrUNG A., D., AND JOHN PauL, S. VMW: A Visualization-Based Microar-
chitecture Workbench. IEEE Computer (Dec 1995), 57-64.

V.RAJESH. A Generic Approach to Performance Modeling and its Application
to Simulator Generator. Master’s thesis, Department of Computer Science and

Eng., IIT Kanpur, July 1998. http://www.cse.iitk.ac.in/users/vrajesh /simnml.

WoLF, AND YEN. Performance Estimation for Real- Time Dis-
tributed Embedded Systems. In Proceedings of the 1995 In-
ternational ~ Conference on Computer Design (ICCD '95) (1995).
http://www.computer.org/conferen/proceed/iccd95/abstract.htm.

Y. SuBHAsH, C. M.Tech. Thesis Work, yet to be submitted. Master’s thesis,
Department of Computer Science and Eng., [IT Kanpur, April 1999.

Disassembling. References to various Disassembler : http://www.it.uq.edu.au
/MENU/RESEARCH_GROUPS/csm/decompilation/ disasm.html.

UNIX System V Release 4, Programmers Guide : ANSI C and Programming
Support Tools, 1992.

PowerPC 603 RISC Microprocessor User’s Manual, 1994.

GNU Assembler Manual. http://www.freebsd.org/info/as-all /as-all.info.
Manual.html.

75

