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Abstra
tMany pra
ti
al intera
tive voi
e response systems require speaker independent spee
hre
ognition. A
hieving speaker independen
e is diÆ
ult as we do not have dire
tmethods to prepare speaker independent referen
e patterns of the sub-units of thespee
h and 
ompare a given sub-unit of spee
h with them. Hidden Markov Modelsprovide better means than other methods to a
hieve speaker independen
e with thehelp of training spee
h by a suÆ
iently large number of speakers. Hidden Markovmodels have the inherent 
apability to model the variations in speed of the spee
h.We developed an intera
tive voi
e response system based on dis
rete Hidden MarkovModels. In our system we use a word dete
tor and a linear predi
tion based signalpro
essing front end whi
h are also developed in this work. We re
orded telephonequality spee
h with the help of modem interfa
e and prepared database of spokendigits of 160 speakers using modem for the training purpose to a
hieve speaker inde-penden
e. We also present di�erent �ne tuning methods to improve the performan
eof spee
h re
ognition. We also present word reje
tion 
riterion to improve 
on�den
eof the re
ognition. We also present an intera
tive voi
e response system whi
h isdeveloped using the te
hnology developed in this thesis.
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Chapter 1
Introdu
tion
1.1 Introdu
tionIntera
tive voi
e response systems are getting more and more deployed in appli
ations,espe
ially where query traÆ
 is very high and queries are to be attended twenty fourhours a day. For these reasons spee
h re
ognition has gained lot of interest in theresear
hers from various �elds. Despite this, spee
h re
ognition has been one of themost diÆ
ult problems to solve. In this work we develop a speaker independentisolated digit re
ognition system for telephone quality spee
h. We have used linearpredi
tion, ve
tor quantization and Hidden Markov Model to develop this system.We have 
olle
ted the required telephone quality spee
h for training purpose. Thisspee
h re
ognition system uses a modem as input and output devi
e for spee
h. Tointera
t with the system, the speaker has to dial the telephone number of the modemand intera
t with it using the telephone.1.2 Related WorkResear
h in automati
 spee
h re
ognition has been done for about �ve de
ades. The�rst spee
h re
ognition system was built in the year 1952 at Bell Laboratories. There
ognizer was built using a
ousti
 features to re
ognize the digits spoken by a singlespeaker. While the resear
h had been 
arried out with a
ousti
 phoneti
 approa
h,in mid 1970s, Itakura showed how linear predi
tion 
ould be applied to spee
h re
og-nition [5℄. In late 1970s and early 1980s, resear
hers at AT&T Bell Laboratories1




ondu
ted many experiments [10, 11, 16℄ to in
orporate speaker independen
e in thespee
h re
ognition systems. The te
hniques were re�ned over a de
ade. In 
ourseof developing an isolated spee
h spee
h re
ognition system, they developed an algo-rithm for word dete
tion [18℄. Although Hidden Markov Model (HMM) was initiallyintrodu
ed in 1960s, resear
hers at only a few laboratories 
ould apply it to spee
hre
ognition after a de
ade [1, 6℄. A de
ade later it was wide published [15℄ andbe
ame popular. Today almost every spee
h re
ognizer uses HMM. Wilpon [17℄, atAT&T Bell Laboratories studied on ability to automati
ally re
ognize the telephonequality spee
h in real world 
onditions. He reported a word dete
tion rate of 98% andspee
h re
ognition rate of 86% in online digit re
ognition. He used a total of 11,035digits of 3100 speakers.1.3 Goals� To develop a speaker independent isolated digit voi
e re
ognizer for telephonequality spee
h.� To built an appli
ation for Computer Intera
tive Voi
e Response system (CIVRS)that uses the te
hnology developed in this thesis.1.4 Organization of this workThe rest of the thesis is organized as follows.In 
hapter 2, we dis
uss di�erent approa
hes to spee
h re
ognition and the basi
spee
h re
ognition system in our implementation. We dis
uss di�erent parts of spee
hre
ognition system namely, signal pro
essing front end, ve
tor quantization and hid-den Markov model ba
k-end.In 
hapter 3, we present the design and implementation of the spee
h re
ognitionsystem. We also present the word-dete
tion algorithm and experimental results thathelped us to 
hoose various parameters for the spee
h re
ognition system.In 
hapter 4, we present various experiments for word reje
tion 
riterion and perfor-man
e �ne-tuning.In 
hapter 5, we present an intera
tive voi
e response system appli
ation, developedusing the spee
h re
ognition te
hnology presented in this thesis. Finally we 
on
lude2



this work in 
hapter 6
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Chapter 2
Basi
 Spee
h Re
ognitionTe
hniquesSpee
h re
ognition systems a

ept audio data as input and produ
e a sequen
e ofsymbols 
orresponding to the sequen
e of spoken words in the input spee
h.Spee
h signals are slowly varying time signal. When examined over a suÆ
iently shortinterval of time (say, 5 to 100 ms), a spee
h signal is fairly stationary. When examinedover a long interval of time, around 200 ms or more, the signal 
hara
teristi
s 
hangeto re
e
t the di�erent sounds spoken. A spee
h re
ognition system, therefore, shouldbe able to model the short time 
hara
teristi
s of the signal and their variations overlong periods of time.Even though extensive resear
h has been 
arried out during the past �ve de
ades, weare far from a
hieving the goal of a robust spee
h re
ognizer whi
h 
an understandspoken words on any subje
t by all speakers in all environments. Following are someof the reasons for the diÆ
ulty.� La
k of a sophisti
ated and yet tra
table model of spee
h.� Di�eren
es in the vo
al tra
t sizes among individual speakers 
ontribute to thevariability of spee
h and most of the parametri
 representations of spee
h arenot 
ompletely speaker independent.� Inherent mismat
h between training and test environments.� La
k of 
onsistent units of spee
h that are trainable and relatively insensitiveto 
ontext. 4



� Inadequate use of human knowledge of a
ousti
s and phoneti
s.Several speaker dependent re
ognition systems are available with a

eptable perfor-man
e. A
hieving speaker independen
e has been the most diÆ
ult task in realizingthe spee
h re
ognition systems. This is due to the speaker dependent nature ofparametri
 representations of spee
h, and a set of referen
e patterns suitable for onespeaker may perform poorly for another speaker.There are three approa
hes to a
hieve speaker independen
e. The �rst approa
his to �nd the per
eptually motivated spee
h parameters that are relatively invariantamong speakers. The se
ond approa
h is to use multiple representations for ea
hspee
h unit to 
apture the between-speaker variations. In this approa
h, for ea
hspee
h unit we have a very large database. Using this database, a model for ea
hspee
h unit is generated. During re
ognition spee
h-unit models for various spee
hunits are used for 
omparison. In the third approa
h, the re
ognizer knows various
hara
teristi
s of the speaker after a few senten
es and uses this knowledge to adaptthe system to the new speaker. Adaptation starts with an initial set of parameters.The new speaker is asked to speak known senten
es and the response is used to toadjust the set of parameters.In this work, the �rst two approa
hes are in
orporated up to some extent. Thespee
h pro
essing front-end generates di�erential 
epstral 
oeÆ
ients. These 
oeÆ-
ients in
orporate the formant slope information whi
h is relatively invariant amongspeakers. The ba
k-end of the spee
h re
ognition uses Hidden Markov Model (HMM),whi
h in
orporates several referen
e referen
e patterns for a spee
h unit.In this 
hapter di�erent parts of the spee
h re
ognition system are dis
ussed thatare implemented in this work. Among the di�erent parts are Linear Predi
tive Coding(LPC) model, Ve
tor Quantization and Hidden Markov Model.2.1 Approa
hes to Spee
h re
ognitionSpee
h re
ognition approa
hes 
an be broadly 
lassi�ed into three 
ategories [14℄.1. A
ousti
 phoneti
 approa
h2. Pattern re
ognition approa
h3. Arti�
ial intelligen
e approa
h 5



2.1.1 A
ousti
 Phoneti
 Approa
hThe A
ousti
 phoneti
 approa
h is based on the theory of a
ousti
 phoneti
s with theassumption that there exist �nite, distin
tive phoneti
 units in the spoken languageand these units 
an be broadly 
hara
terized by a set of properties. The a
ousti
properties of the phoneti
 units are highly variable, both with speakers and withother phoneti
 units. It is assumed that the rules governing these variations arestraight forward and 
an be learned and applied in pra
ti
al situations.
     FEATURE

DETECTOR 1

FEATURE 
DETECTOR 2

FEATURE 
DETECTOR Q

SPEECH

SYSTEM
ANALYSYS

SEGMENTATION
         AND

LABELLING
CONTROL
STRATEGY

RECOGNIZED
SPEECH

LPC 

FILTER BANK

FORMANTS
PITCH
VOICED/UNVOICED
ENERGY
NASALITY
FRICATION

PHONEME LATTICE
SEGMENT LATTICE

speech

S(n)

DECISION TREES
PARSING STRATEGIES

PROBABILSTIC LABELLINGFigure 2.1: An A
ousti
 Phoneti
 Spee
h Re
ognition SystemThe �rst task in this method is to segment the input spee
h into dis
rete regions.Ea
h of these regions 
orresponds to one or more phonemes. For this we analyze thespee
h in short intervals of time to study the spe
tral properties and then 
hara
terizethese spe
tral properties as a
ousti
 events, su
h as formants, pit
h, nasality, fri
ation,et
. (Figure 2.1). Using this a
ousti
 event information, we label the dis
rete regionsas one or more possible phonemes. The exa
t sequen
e of phonemes in the spee
his however not known at this stage. This is be
ause some regions might have beenlabeled as more than one possible phonemes. The exa
t 
ombination of phonemes inthe spee
h is determined by the di
tionary of words with their phoneme sequen
e.The grammar of the language also plays an important role in this pro
ess.
6
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ognition Spee
h Re
ognition System2.1.2 Pattern Re
ognition Approa
hIn the pattern re
ognition approa
h, spee
h patterns are used dire
tly without expli
ita
ousti
 
hara
terization of the spee
h spe
tral analysis information. This approa
hgenerally has two stages, namely spee
h pattern training and spee
h pattern re
og-nition. The 
on
ept is that if enough versions of a pattern to be re
ognized arein
luded in a training set, then the system should be able to adequately 
hara
terizethe a
ousti
 properties of the pattern. During pattern training, the system learnsa
ousti
 properties of the spee
h 
lass, reliable and repeatable for the given trainingset. In pattern re
ognition stage, the system 
ompares an unknown spee
h with alltrained patterns, and 
lassi�es the unknown spee
h a

ording to the goodness of themat
h.2.1.3 Arti�
ial Intelligen
e Approa
hThe basi
 idea of arti�
ial intelligen
e approa
h is to 
ompile and in
orporate knowl-edge from variety of sour
es to realize the di�erent stages of spee
h re
ognition system.This approa
h is a hybrid of the a
ousti
-phoneti
 approa
h and the pattern re
og-nition approa
h. It exploits the ideas and 
on
epts of both methods and attempts tome
hanize the re
ognition pro
edure a

ording to the way a person applies his intel-ligen
e. The following are some of the knowledge sour
es and their brief des
ription.� A
ousti
 knowledge: Eviden
e of whi
h phoneti
 units are spoken on the basisof spe
tral measurements and presen
e or absen
e of features.� Lexi
al knowledge: The 
ombination of a
ousti
 eviden
es so as to postulateword as spe
i�ed by a lexi
on that maps sounds into words.7



� Synta
ti
 knowledge: The 
ombination of words to form the grammati
ally
orre
t strings.� Semanti
 knowledge: Understanding of the task domain so as to be able to val-idate senten
es and phrases that are 
onsistent with the task being performed,and the previously de
oded senten
es.� Pragmati
 knowledge: Inferen
e ability ne
essary in resolving ambiguity ofmeaning based on ways in whi
h words are generally used.In this thesis we have implemented the se
ond approa
h, the pattern re
ognitionapproa
h.2.2 Liner Predi
tve CoeÆ
ients (LPC) Model forSpee
h Re
ognitionThe �rst task of the Pattern re
ognition approa
h is to parametri
ally represent thespee
h signal. Among the di�erent possibilities to represent the spee
h parametri
ally,spe
tral envelop for short duration of the spee
h is probably the best. The fun
tionof feature measurement blo
k in �gure 2.2 is to represent the spee
h signal in termsof 
ompa
t, eÆ
ient set of spee
h parameters.2.2.1 Introdu
tionThe theory of linear predi
tion [13℄ as applied to spee
h, has been well understoodfor many years. Following are some of the reasons underlying the widespread usageof LPC.1. LPC provides a good model of spee
h signal and provides a good approximationto the vo
al tra
t spe
tral envelop. During the unvoi
ed and the transientregions of spee
h, the LPC model is less e�e
tive than for the voi
e spee
h, butit still provides an a

eptably useful model for spee
h-re
ognition purposes.2. The way in whi
h LPC is applied to the analysis of spee
h signals leads toa reasonable sour
e-vo
al tra
t separation. This is important for a speakerindependent voi
e re
ognition system.8



3. LPC is an analyti
ally tra
table model. The method of LPC is mathemati
allypre
ise and is simple and straightforward to implement.4. The LPC model has been shown to work well in voi
e re
ognition appli
ations[4, 14℄.2.2.2 The ModelIn linear predi
tion, a sample in the signal is predi
ted as a linear 
ombination ofits past values. Let the predi
ted time series of the signal be ŝ1; ŝ2; � � � ; ŝn and thereal signal be s1; s2; � � � ; sn, then the predi
ted value ŝi of the ith sample is a linear
ombination of (si�1; si�2; � � � ; si�p), where p is 
alled the order of the LPC model.In LPC model, with an order p, only p 
oeÆ
ients are needed. These 
oeÆ
ients 
anbe 
omputed by solving a set of equations whi
h are well do
umented in the standardtexts [13, 19℄. This LPC 
oeÆ
ient ve
tor is spe
tral approximation of the spee
hsignal.2.3 Ve
tor Quantization2.3.1 Introdu
tionThe LPC 
oeÆ
ient ve
tors are generated for the waveform on a short time basis.These ve
tors are however very large. A te
hnique of ve
tor quantization helps inredu
ing this spa
e. In ve
tor quantization, a table 
alled 
ode book of �nite size ismaintained. Ea
h entry of the 
ode book is a ve
tor. The spe
tral LPC ve
tors arethen mapped on to one of these ve
tors and only the index is used to represent thewaveform instead of the entire LPC ve
tor.For ve
tor quantization, it is ne
essary to have a measurement of dissimilarity betweenthe two ve
tors. We expe
t su
h dissimilarity measure to 
on�rm to the knownlinguisti
 
hara
teristi
s.2.3.2 Distan
e Measure CriterionLet x; y be two feature ve
tors de�ned on a ve
tor spa
e �. We de�ne a metri
 ordistan
e fun
tion d on the ve
tor spa
e � as a real-valued fun
tion with the following9



properties.1. Positive de�niteness: 0 � d(x; y) <1 for x; y 2 � and d(x; y) = 0 if and onlyif x = y2. Symmetry: d(x; y) = d(y; x) for x; y 2 �3. Triangle inequality: d(x; y) � d(x; z) + d(y; z) for x; y; z 2 �4. Invarian
e: d(x+ z; y + z) = d(x; y)2.3.3 VQ training and 
lassi�
ation stru
tureTo build a VQ 
odebook and implement a VQ analysis pro
edure, we need the fol-lowing:
CLUSTERING 
ALGORITHM

CODE BOOK

TRAINING SET

OF VECTORS

{V1,V2,...,V  }
L

CODE BOOK
INDICES

QUANTIZER

d(. , .)

d(. , .)

INPUT SPEECH VECTORS

M=2  VECTORS
B

Figure 2.3: Ve
tor quantization training and 
lassi�
ation stru
ture1. A large set of spe
tral ve
tors, v1; v2; � � � ; vL, whi
h form a training set. Thetraining set is used to 
reate the optimal set of 
ode book ve
tors for representingthe spe
tral variability observed in the training set.2. A distan
e measure between a pair of spe
tral analysis ve
tors so as to be ableto 
luster the training set ve
tors as well as to 
lassify arbitrary spe
tral ve
torsinto unique 
ode book entries. 10



3. A 
entroid 
omputation pro
edure. On the basis of the partitioning that 
lassi-�es the training ve
tors into the M 
lusters, we 
hoose the M 
odebook ve
torsas the 
entroid of ea
h of the M 
lusters.4. A 
lassi�
ation pro
edure for arbitrary spee
h spe
tral analysis ve
tors that
hooses 
odebook ve
tor 
losest to the input ve
tor and uses the 
odebookindex as the resulting spe
tral representation.2.3.4 Clustering the Training Ve
torsThe way in whi
h set of L training ve
tors 
an be 
lustered into set of M 
odebookve
tors is as follows.� K-means Clustering Algorithm [14℄1. Initialization: Arbitrarily 
hose M training ve
tors as the initial set of 
odewords in the 
odebook.2. Nearest-Neighbor Sear
h: For ea
h training ve
tor, �nd the 
odeword inthe 
urrent 
odebook that is 
losest as measured by the distan
e measure,and assign that ve
tor to the 
orresponding 
luster, asso
iated with 
losest
ode word.3. Centroid Update: Update the 
ode word in ea
h 
luster using the 
entroidof the training ve
tors assigned to that 
luster.4. Iteration: Repeat the steps 2 and 3 until the relative of average distan
eof all training ve
tors to their 
orresponding 
ode word falls bellow somethreshold.� Binary Split Algorithm [14℄Instead of starting dire
tly with the M initial arbitrary training ve
tors, binarysplit algorithm starts with one initial ve
tor and a
hieves 
odebook of size Mafter log2M steps. At ea
h step it applies K-means 
lustering algorithm toa
hieve the optimum 
odebook entries. Then it splits ea
h 
odebook ve
torinto two, giving double the size of present 
odebook entries. These newly splitentries are used as initial ve
tors for the next step.
11



2.4 The Hidden Markov ModelHidden Markov Model (HMM) [15℄ approa
h is a widely used statisti
al methodfor 
hara
terizing the spe
tral properties of the frames of a pattern. The underlyingassumption of HMM is that the spee
h signal 
an be well 
hara
terized as a parametri
random pro
ess, and that the parameters of the sto
hasti
 pro
ess 
an be determined(estimated) in a pre
ise and well de�ned manner.2.4.1 De�nitionHidden Markov Model is a doubly embedded sto
hasti
 pro
ess with an underlyingsto
hasti
 pro
ess that is not dire
tly observable (it is hidden) but 
an be observedonly through another set of sto
hasti
 pro
esses that produ
e the sequen
e of obser-vations.A hidden Markov model is 
olle
tion of states 
onne
ted by transitions. Ea
h state
arries two sets of probabilities: a set of transition probabilities, whi
h provides theprobabilities of transitions from this state to all the states; and output probabilieswhi
h de�ne the 
onditional probability of emitting ea
h output symbol if the systemis in that state. Figure 2.4 shows an example of a HMM with two output symbols, Aand B.
1.00.6

A  0.8

B  0.2

A  0.3

B  0.7
1 2

0.4

Figure 2.4: A simple HMM with two states and and two output symbols, A and BGiven an observation sequen
e (a string of A's and B's for the example in �gure2.4) generated by a HMM, we however 
annot determine the exa
t state transitionsequen
e. This is be
ause in ea
h state the output symbol is not unique (in 
ontrastwith the Markov 
hain). The output symbol is again a random variable. So, for agiven observation sequen
e, we 
annot see the underlying pro
ess. Hen
e this model12



has the Hidden Markov Model.A HMM is 
hara
terized by the following:1. N , the number of states in the model. We denote the individual states asS = fS1; S2; � � � ; Sng, and the system state at time t as qt2. M , the number of distin
t observation symbols per state, i.e., the dis
rete al-phabet size. We denote the individual symbols as V = fv1; v2; � � � ; vmg.3. The transition probability distribution A = faijg, where ea
h aij is the tran-sition probability from state Si to state Sj. Clearly, aij � 0; 8i; j andPj aij = 1; 8i4. The observation symbol probability distribution B = bjk, where ea
h bjk is theobservation symbol probability for symbol vk, when the system is in the stateSj. Clearly, bjk � 0; 8j; k and Pk bjk = 1; 8j5. The initial state distribution � = f�ig, where �i = P [q1 = Si℄; 1 � j � NWe 
an spe
ify an HMM model as � = (A;B; �;M;N; V ). In this thesis we howeverrepresent � = (A;B; �) and assume M , N and V to be impli
it.2.4.2 Use of HMM in Spee
h Re
ognitionHMM 
an be used to model a unit of spee
h, whether it is a phoneme, or a word, ora senten
e. LPC analysis followed by the ve
tor quantization of the unit of spee
h,gives a sequen
e of symbols (VQ indi
es). HMM is one of the ways to 
apture thestru
ture in this sequen
e of symbols. In order to use HMMs in spee
h re
ognition,we should have some means to a
hieve the following.� Evaluation: Given the observation sequen
e O = o1; o2; � � � ; oT , and a HMM� = (A;B; �), to eÆ
iently 
ompute P (Oj�), the probability of the observationgiven the HMM.� De
oding: Given the observation sequen
e O = o1; o2; � � � ; oT , and a HMM� = (A;B; �), to 
hoose a 
orresponding state sequen
e Q = q1; q2; � � � ; qTwhi
h is optimal in some meaningful sense, given the HMM.� Training: To adjust the HMM parameters � = (A;B; �) to maximize P (Oj�).13



The following are some of the assumptions in the hidden Markov modeling for spee
h.� Su

essive observations (frames of spee
h) are independent, and therefore theprobability of sequen
e of observations P (o1; o2; � � � ; oT ) 
an be written as aprodu
t of probabilities of individual observations, i.e.,P (o1; o2; � � � ; oT ) = �Ti=1P (oi)� Markov assumption:The probability of being in a state at time t, depends onlyon the state at time t-1EvaluationEvaluation is to �nd probability of generation of a given observation sequen
e by agiven model. The re
ognition result will be the spee
h unit 
orresponding to themodel that best mat
hes among the di�erent 
ompeting models. Now we have to�nd P (Oj�), the probability of observation sequen
e O = (o1; o2; � � � ; oT ) given themodel � i.e., P (Oj�).One 
ould, in prin
iple 
ompute P (Oj�) by 
omputing the joint probability, P (O; qjM)for ea
h possible state sequen
e, q, of length T and then summing over all state se-quen
es. Computationally this method is very 
ostly. However, there is an eÆ
ientway of 
omputing this probability using forward and ba
kward probabilities.Forward-Ba
kward Algorithm [15℄� The Forward Probabilities: 
onsider the forward variable �t(i) de�ned as�t(i) = P (o1o2 � � � ot; qt = ij�) (1)that is, the probability of the partial observation sequen
e,o1 o2 � � � ot (until timet) and state i at time t, given the model �. We 
an solve for �t indu
tively, asfollows:1. Initialization: �1(i) = �ibi(o1) 1 � i � N (2)2. Indu
tion :�t+1(j) = " NXi=1 �t(i)aij# bj(ot+1) 1 � t � T � 1; 1 � j � N (3)where N is the number of states in the model.14



� The Ba
kward Probabilities: Consider the ba
kward variable �t(i) de�ned as�t(i) = P (ot+1ot+2 � � � oT jqt = i; �) (4)that is, the probability of the partial observation sequen
e from t + 1 to theend, given state i at time t and the model �. Again, we 
an solve for �t(i)indu
tively as follows1. Initialization: �T (i) = 1; 1 � i � N (5)2. Indu
tion: �t(i) = NXj=1 aijbj(ot+1)�t+1(j); (6)t = T � 1; T � 2; � � � ; 1; 1 � i � NThe two forward and ba
kward probabilities 
an be used to 
ompute P (Oj�) a

ordingto P (Oj�) = nXi=1 NXj=1�t(i)aijbj(ot+1)�t+1(j) (7)for any t su
h that 1 � t � T � 1. Equations (3) to (7) are referred to as forward-ba
kward algorithm.Setting t = T � 1 in (7) gives P (Oj�) = NXi=1 �T (i) (8)so that the probability, P (Oj�) 
an be 
al
ulated form forward probabilities alone.Similarly P (Oj�) 
an be 
al
ulated from ba
kward probabilities alone, by setting t = 1.P (Oj�) = NXi=1 �ibi(o1)�1(i) (9)De
odingDe
oding is to �nd the single best state sequen
e, Q = (q1; q2 � � � qT ), for the givenobservation sequen
e O = (o1o2 � � � oT ). Consider Æt(i), de�ned asÆt(i) = maxq1; q2;���qt�1 P [q1q2 � � � qt = i; o1o2 � � � otj�℄ (10)15



that, is Æt(i) is the best s
ore along single path, at time t, whi
h a

ounts for the tobservations and ends in state i. By indu
tion, we haveÆt+1(j) = �maxi Æt(i)aij� bj(ot+1) (11)The 
omplete pro
edure is as followsThe Viterbi Algorithm [15℄1. Prepro
essing: ~�i = log(�i); 1 � i � N~bi(ot) = log [bi(ot)℄ ; 1 � i � N; 1 � t � T~aij = log(aij); 1 � i; j � N2. Initialization: ~Æ1(i) = log(Æ1(i)) = ~�i + ~bi(o1); 1 � i � N 1(i) = 0; 1 � i � N3. Re
ursion~Æt(j) = log(Æt(j)) = max1�i�N h~Æt�1(i) + ~aiji +~bi(o1) t(j) = argmax1�i�N h~Æt�1(i) + ~aiji 2 � t � T; 1 � j � N4. Termination ~P � = max1�i�N h~ÆT (i)iq�T = arg max1�i�N h~ÆT (i)i5. Ba
ktra
king q�t =  t+1(q�t+1); t = T � 1; T � 2; � � � ; 1The array q� 
ontains the required best state sequen
e.16



LearningLearning is to adjust the model parameters (A;B; �) to maximize the probabilityof the observation sequen
e given the model. It is the most diÆ
ult task of theHidden Markov Modeling, as there is no known analyti
al method to solve for theparameters in a maximum likelihood model. Instead, an iterative pro
edure shouldbe used. Baum-Wel
h algorithm [15℄ is the extensively used iterative pro
edure for
hoosing the model parameters. In this method we start with some initial estimatesof the model parameters and modify the model parameters to maximize the trainingobservation sequen
e in an iterative manner till the model parameters rea
h a 
riti
alvalue. We de�ne the variables �t(i; j) and 
t(i) as,�t(i; j) is the probability of being in state i at time t, and state j at time t+1, giventhe model and observation sequen
e.�t(i; j) = P (qt = i; qt+1 = jjO; �)�t(i; j) = �t(i)aijbj(ot+1)�t+1(j)PNi=1PNj=1 �t(i)aijbj(ot+1)�t+1(j) (12)where �t(i)aijbj(ot+1)�t+1(j) is equal to P (qt = i; qt+1 = j; Oj�).
t(i) is the probability of being in the state i at time t, given the observation sequen
eO, and the model � 
t(i) = P (qt = ijO; �)
t(i) = �t(i)�t(i)PNi=1 �t(i)�t(i) (13)where �t(i)�t(i) is equal to P (O; qt = ij�)By the de�nition of the variables �t(i; j) and 
t(i), the following relations are true,
t(i) = NXj=1 �t(i; j)T�1Xt=1 
t(i) = expe
ted number of transitions from state i in OT�1Xt=1 �t(i; j) = expe
ted number of transitions from state i to state j in OUsing the above formulas and the 
on
ept of 
ounting the event o

urren
e, theparameters of the model � = (A;B; �) 
an be re-estimated as ~� = ( ~A; ~B; ~�), as17



follows. ~�i = 
1(i) (14)~aij = PT�1t=1 �t(i; j)PT�1t=1 
t(i) (15)~bj(k) = PT�1t=1 s:t ot=vk 
t(i)PT�1t=1 
t(i) (16)It has been proved that one of the following two statements is true for � and ~�1. The initial model � de�nes a 
riti
al point of the likelihood fun
tion in whi
h
ase �=~�.2. model ~� is more likely than the model �, in the sense that P (Oj~�) > P (Oj�).In 
ase (1), we stop the iterative pro
edure de
laring � as the �nal trained modelfor the observation sequen
e O. In 
ase (2), we repla
e the the model � by ~� asthe initial model for the next iteration. The iteration is stopped when P (Oj~�)�P (Oj�)P (Oj�)rea
hes some minimum value and then the model, ~� is de
lared as the �nal trainedmodel for the observation sequen
e O.

18



Chapter 3
Design and ImplementationIn this 
hapter we dis
uss the design and implementation issues of realizing ea
h stageof our basi
 re
ognizer. We also present relevant experimental results where ever theyare required for justi�
ation and understanding.3.1 Word End Points Dete
tionFor isolated word re
ognition, it is assumed that the the words are spoken with asuÆ
ient pause so that no two su

essive words overlap with ea
h another. Givenan input spee
h, the problem of �nding the word boundaries in the time domain isword-dete
tion problem. Word boundaries are dete
ted by 
hara
terization of theenergy 
hanges over time. In our work, the end-point dete
tion algorithm is similarto the one given by Wilpon et
. [18℄. However we have evolved the algorithm bythe experien
e of manual editing of the end points and by di�erent trial and errorexperiments with the spee
h of 100 speakers. Figure 3.1 is the spee
h signal of atypi
al speaker sampled at the rate of 7:2KHz. The next �gure 3.2 is the plot ofthe energy of the sliding frame of the 
orresponding signal. The size of the frame is300 samples and the slide is 100 samples. Starting with the initial 300 samples as the�rst frame, at every step energy of the frame is 
al
ulated and the frame is moved100 samples forward. This way the energy is plotted for the spee
h signal in �gure3.2 and others.The spee
h signal in �gure 3.1 
ontains �ve isolated words, whi
h are the spoken19
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Figure 3.1: Telephone quality Spee
h signal of a speaker sampled at 7.2 KHz for digits0; 1; 2; 3; 4digits 0; 1; 2; 3 and 4. The small spikes are due to the presen
e of noise. By 
orrelat-ing the spee
h signal and its 
orresponding energy plot we 
an easily guess that theenergy 
an be used as a feature to determine the word boundaries. To start with, we
an formulate the algorithm to dete
t a word as a group of 
onse
utive frames wherethe log of energy of ea
h frame is above a threshold. While a high threshold 
an beused to avoid noise, some end points will not be re
ognized. Similarly a low thresholdmay result in re
ognizing noise as a word. To resolve this, a minimum number offrames 
riteria is introdu
ed in-order to qualify a group of 
onse
utive frames as aword. Though the duration of noise is small in the 
ase of noise like mouth 
li
kand swit
hing, it is likely to be long enough to qualify as a word. An example islong heavy breathing noise. To deal with su
h type of 
ases, a se
ond higher level ofthreshold is introdu
ed. The observation is that in most of the 
ases the maximumenergy of a frame in the noise is mu
h less than the maximum energy of a frame ofany spoken words unless the ba
kground noise is as strong as the spee
h itself. Withthis new additional 
riteria, it is possible to dete
t the word 
lose to the real endpoints unless the noise itself is as strong as the spee
h.20
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Figure 3.4: Energy of the sliding frame of size=300 samples, sliding size=100 samplesover the spee
h in �gure 3.3However this 
riterion fails in some 
ases, for example, 
onsider the spee
h signaland 
orresponding frame energy plot in the �gures 3.3 and 3.4. These �gures 
orre-spond to the digits 5; 6; 7; 8 and 9 respe
tively. In the �gure 3.4, two energy bandsthat appear between the frame numbers 800 and 900 
orrespond to the digit six andthe other two energy bands that appear between the frame numbers 1050 and 1150
orrespond to the spoken digit eight. The se
ond thinner band in these two pairs
orrespond to 'IX' of the spoken digit six and 'T' of the spoken digit eight respe
-tively. Under our 
riterion, these small bands will be dropped or at best re
ognizedas a separate word. However, these portions in the digits six and eight are 
riti
al forgood re
ognition rate. In our experiments in about 50% of the 
ases these two digitsappear as two di�erent bands in the energy plot. The number of frames between thetwo su

essive bands of the same word is 
onsiderably less than that between two
onse
utive words. Addition of this heuristi
 in our 
riterion works very well. In ourexperiment, with this new heuristi
, 'IX' portion of the spoken digit six is droppedin one amongst 90 speakers and 'T' portion of the spoken digit eight is dropped for4 amongst 90 speakers. In our algorithm, we restri
ted the number of energy pulses22



within a single utteran
e to a maximum of two, whi
h is good enough in 
ase ofdigit re
ognition. Out of 873 digits ospoken by 90 speakers, 17 digits were spoken in
onne
ted fashion, and were not isolated in the spee
h. Out of 856 isolated digits,844 digits were dete
ted without any type of error, 6 digits were dete
ted but the endpoints were not pla
ed exa
tly and 6 digits were not dete
ted. The total number ofdigits that are dete
ted are 850 out of 856, whi
h is 99.3% . These undete
ted wordsare mainly due to very low volume at whi
h they were spoken.Figures 3.5, 3.6, and 3.7 depi
t the �nite state ma
hine whi
h implements the worddete
tion algorithm. The algorithm is designed in su
h a way that both the word-dete
tion and re
ognition 
an go simultaneously running in two di�erent pro
esses.As soon as the word-dete
tion pro
ess enters the state 4, it 
an start sending theframes to the Re
ognition pro
ess for further pro
essing anti
ipating it to be a word.Later when the word-dete
tion pro
ess �nds a wrong dete
tion of the word, it 
anthen notify the re
ognition pro
ess to either retain it or dis
ard it. This design isdue to our initial mind-set to let word-dete
tion and rest of the re
ognition to goon parallel. Authors J. G. Wilpon, L. R. Rabiner in their arti
le [18℄, propose toexamine the whole spee
h of that parti
ular re
ording to determine minimum energylevel frame as the mean noise level and then depending on that set the �rst andse
ond level thresholds of energy. Sin
e we have de
ided that our algorithm shoulddete
t the words online, the �rst level threshold is determined prior to the start of there
ording. For this we examined the spee
h 
ontaining around 2300 spoken digits,and then �xed the �rst and the se
ond levels of thresholds. In order to qualify agroup of 
onse
utive frames, in our algorithm, at least four 
onse
utive frames should
ross the se
ond level threshold. J.G.Wilpon et
.[17℄ reported word-dete
tion rate of98%, as opposed to ours ( 99.3% ).State Diagram for the Word-dete
tion AlgorithmFigures 3.5 to 3.6 depi
t the �nite state diagram for the word-dete
tion algorithmdes
ribed above. Here we explain the terms used in the �nite state diagram and abrief explanation of it.� FC : Global frame 
ount� E : Energy of the 
urrent frame� PE : Energy of the previous frame 23



� bar : It is used alternatively for the term pulse� LthCFC : Low threshold 
onse
utive frame 
ount� HthCFC : High threshold 
onse
utive frame 
ount� MaxHthCFC : Maximum High threshold 
onse
utive frame 
ount within a word� LThE : Low threshold energy� HThE : High threshold energy� Thi
kBarLThE : LThE for Thi
k energy pulse� ThinBarLThE : LThE for Thin energy pulse� WordPending : if TRUE, this 
ag indi
ates that a thi
k pulse has been re
og-nized as word and waiting to re
ognize the end point. This indi
ates that thealgorithm is looking for thin pulse, within the allowed s
ope, to determine theend pointThe following is the brief explanation of the state diagram.� The statements under ea
h state are exe
uted by the system in that state� The loop 
overing the states 4 and 5 
ounts the number of low threshold 
on-se
utive frame 
ount� The loop 
overing the states 7, 8 and 9 
ounts the number of high threshold
onse
utive frame 
ount� states 2a and 2b 
ontrols whi
h thresholds to be used by the 
ounting loops.This is be
ause we are using di�erent low and high thresholds for thi
k and thinenergy bands.� The system will be in states 1 and 2� when the frame energies are below boththe thresholds.� State 2b 
olle
t the word boundaries if the thin energy band is not found withinthe spe
i�ed s
ope.� State 20a 
olle
ts the word boundaries when a thin band also quali�es its thresh-old energy frame 
ount 
riterion. This state restri
ts number of thin bands toa maximum of one. 24
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Figure 3.5: Finite State Diagram of Word dete
tion algorithm
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3.2 LPCIn this se
tion we des
ribe the implementation of LPC prepro
essor, whi
h 
omputesLPC and LPC derived 
epstral 
oeÆ
ients. We also present the experimental resultsto sele
t the order of the LPC.3.2.1 LPC Prepro
essorThe overall fun
tion of the LPC prepro
essor is to generate feature ve
tor for every tenmillise
onds of spee
h signal. This feature ve
tors are later used by ve
tor quantizerfor further pro
essing. In the feature ve
tor we generate LPC 
oeÆ
ients (Am(t)),Cepstral 
oeÆ
ients (Cm(t)), Weighted 
epstral 
oeÆ
ients(Ĉm(t)) and di�erential
epstral 
oeÆ
ients(4Ĉm).In this subse
tion di�erent phases of LPC prepro
essor (�gure 3.8) are brie
yexplained. The theoreti
al ba
kground for this is available in various referen
es ( [14℄,[3℄, [13℄).

CONVERSION
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X  (n)

R  (t)

t

~

m

W(t)

C   (t)

A  (t)m

m
C   (t)m C   (t)m

^^

~

tX  (n)

Figure 3.8: LPC prepro
essorPREEMPHASIS : The digitized spee
h signal S(n), is put through a a �rst-orderFIR �lter, to spe
trally 
atten the signal and to make it less sus
eptible to �nitepre
ision e�e
ts later in the signal pro
essing. the 
omputation performed atthis stage are,Ŝ(n) = S(n)� aS(n) ( a is taken to be between 0:9 and 1:0 )28



whi
h refers to a transfer fun
tion,H(z) = 1� az�1FRAME BLOCKING : The preemphasized spee
h signal is 
onverted into framesof subsequent samples. For this window size is equal to number of samples in30ms of spee
h. Neighboring frames overlap with number of samples in 20msof spee
h.WINDOWING : Ea
h individual frame is windowed to minimize the signal dis-
ontinuities at the beginning and the end of ea
h frame. We use the hammingwindow for this whi
h is transfer fun
tion,W (n) = 0:54� 0:46 
os(2�n=(N � 1)) 0 <= n <= N (1)AUTOCORRELATION ANALYSIS : Ea
h frame of the windowed signal isnext auto
orrelated to get the 
orrelation 
oeÆ
ients using the following for-mula. R(m) = PN�l�mn=0 S(n)S(n+m) m = 0; 1; : : : ; pLPC ANALYSIS : In this step, we 
onvert ea
h frame of p + 1 auto
orrelationsinto LPC parameter set. The LPC parameter set, whi
h is the set of �lter
oeÆ
ients, 
an be obtained by solving the set of auto
orrelation equations asdes
ribed earlier.LPC Parameter Conversion to Cepstral CoeÆ
ients : LPC 
epstral 
oeÆ
ientsset is a very important parameter and 
an be dire
tly derived from the LPC
oeÆ
ients. Cepstral 
oeÆ
ients are 
oeÆ
ients of Fourier transform represen-tation of log magnitude spe
trum. Cepstral 
oeÆ
ients are most robust andreliable [14℄ among all the forms of LPC 
oeÆ
ients. Our experiments havealso given 
onsiderably good performan
e when 
epstral 
oeÆ
ients are used.The 
epstral 
onversion is spe
i�ed as follows.C0 = E0 = R0 (2)C1 = �A1 (3)29



Ci = �Ai � i�1Xk=1 i� ki Ci�kAk ; 2 � i � p (4)Ci = � i�1Xk=1 i� ki Ci�kAk ; i > p (5)Generally, the size of 
epstrum 
oeÆ
ient ve
tor, q is 
hose a

ording to q ' 3pParameter Weighting or Littering : The lower order 
epstral 
oeÆ
ients aresensitive to overall spe
tral slope and the higher order 
epstral 
oeÆ
ients aresensitive to the noise. The weighting fun
tion Wt(m), essentially deemphasizesthe lower and higher order 
epstral 
oeÆ
ients i.e around m = 1 and m = q,by bandpass liftering, i.e, �ltering in the 
epstral domain. It is des
ribed asfollows. Ĉm = Wt(m)Cm ; 1 � m � q (6)Wt(m) = "1 + q2 sin �mq !# ; 1 � m � q (7)Temporal Cepstral derivatives : It has been observed that di�erential parame-ters are useful when they are used along with ordinary 
epstral 
oeÆ
ients. Thisis be
ause while the absolute formant lo
ations are sensitive to the speaker vari-ation, the formant slopes are relatively less sensitive to the speaker variation.We therefore 
ompute and use the di�erential 
oeÆ
ients ÆĈm(t) along withCm(t) in our system.3.2.2 LPC order sele
tionIn this se
tion we des
ribe how we sele
ted the values for LPC parameters. For thiswe examined the linear predi
tion that approximated the real spe
trum of the spee
hand how it 
hanged with the in
rease of the order of the LPC. In �gures 3.9 to 3.15we show the FFT of a frame in spoken digit six of a parti
ular speaker in IITKdigit1database. The broken line in ea
h �gure shows the LPC predi
tor spe
trum. Aswe 
an see in the see �gures, the approximation improves with the order of theLPC. The last �gure 3.15 is the best approximated one, when LPC order is equalto the number of samples. The LPC smoothens the spe
trum with the number of
ontrol points determined by the order of the LPC. Visually, it is 
lear that the LPC1The details of this and other spee
h databases are given in appendix A.30



order six or less is not a good approximation. From LPC order eight and above, thespe
trum approximation seems reasonably good and improving. In our experiments,re
ognition results are better near LPC order 12 ( see tables 3.1 and 3.2). Furtherit is noti
ed that the re
ognition rate does not vary mu
h around the LPC order12 (see table 3.2). Low order LPC �tted spe
trum envelops the long peaks of thea
tual spe
trum without pi
king the details of short peaks of the spe
trum. Theselong peaks 
ontain the spee
h information and the short peaks 
ontain the speaker(pit
h) information. As the LPC order is in
reased, the short peaks of the spe
trumwhi
h are not required for the spee
h re
ognition are also pi
ked by the LPC model.This is the reason for de
rease in re
ognition rate at LPC order 18 (see table 3.1).The plots and the �nal results show that the LPC system 
an e�e
tively 
ompressthe data for spe
tral information for spee
h re
ognition. It 
ould represent spe
trumof 216 samples using 12 numbers, whi
h is an order of magnitude smaller.
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LPC order Per
ent Re
ognition8 88.712 91.418 89.0Table 3.1: Initial re
ognition results with IITKdigitSp73to162 as training databaseand IITKdigitSp31to72 as testing database with 
epstrum 
ode book of size 512LPC order Per
ent Re
ognition10 82.9612 82.516 82.9Table 3.2: Initial re
ognition results with IITKdigitSp0to72F as training databaseand IITKdigitSp0to72S as testing database with pure LPC 
ode book of size 643.3 Ve
tor QuantizationAs dis
ussed earlier, ve
tor quantizer is an important step of the spee
h re
ognition.The HMM is built upon the the sequen
e of symbols whi
h are the 
ode book indi
es
oming from the ve
tor quantizer. Thus even if the feature ve
tor is 
hanged, theHMM implementation remains un
hanged.In this se
tion, we des
ribe in brief the two di�erent ve
tor quantizers, one basedon the pure LPC 
oeÆ
ients and another one based on LPC derived 
epstral 
oeÆ-
ients. The basi
 me
hanism of the ve
tor quantizer has already been des
ribed in the
hapter 2. Here we des
ribe the distan
e metri
 and 
entroid 
omputation. We usedthe IITKdigitSp31to72 and IITKdigitSp73to163 databases whi
h generate a total of83330 training ve
tors.3.3.1 VQ Based on Pure LPC 
oeÆ
ientsIn this method, the 
ode book is generated using the pure LPC 
oeÆ
ients. Thequantizer uses only the spe
tral shape information in generating the 
ode book.Distan
e ComputationWe have used likelihood-ratio-distan
e metri
 in our implementation of this quan-tizer. The likelihood-ratio-distan
e, d(aR; aT ), between two LPC ve
tors, aR and aT35



is de�ned as, d(aR; aT ) = aRVT �aRaTVT �aT � 1; (8)where VT is the auto
orrelation matrix of the frame that gave rise to the LPC ve
toraT .The auto
orrelation matrix VT is de�ned as follows [13℄.26666666664
R0 R1 R2 � � � Rp�1R1 R0 R1 � � � Rp�2R2 R1 R0 � � � Rp�3... ... ... ...Rp�1 Rp�2 Rp�3 � � � R0

37777777775 (9)
Ve
tors, �aR and �aT are transpose of the LPC ve
tors aR and aT respe
tively. Theexpression aTVT �aT is the residual error or the energy of the error signal. Sin
e aT is
al
ulated using the least squares method, minimizing the error residual, the followingexpressions holds, aRVT �aR � aTVT �aT (10)and hen
e, d(aR; aT ) � 0 (11)Updating CentroidIn-order to 
ompute the LPC ve
tor of the 
entroid of a 
ell, 
orrelation 
oeÆ
ients forthe 
entroid are 
al
ulated as the mean of the respe
tive auto
orrelation 
oeÆ
ientsof all the members of the 
ell. Then, the Durbin's method des
ribed in referen
e [13℄is used to 
ompute the LPC 
oeÆ
ients.Quantizer Spe
trum Approximation ResultsIn �gures 3.16 to 3.19, we present the spe
trum represented by the quantizers ofvarying sizes. We have used the LPC order of 12 and the same frame that was usedin the �gures 3.9 to 3.15. The �gures show the regenerated spe
trum from the 
odebook after ve
tor quantization in broken line.
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3.3.2 VQ Based on LPC Cepstrum 
oeÆ
ientsImplementation of ve
tor quantizer based on 
epstrum 
oeÆ
ients is relatively easyas the distan
e and 
entroid 
omputations are simple. The 
omputations remain thesame for distan
e and 
entroid, whether the 
epstral derivatives used or not. Howeverthe ve
tor length n is di�erent.Distan
e ComputationThe distan
e d(
; �
), between two 
epstrum ve
tors (
0; 
1; � � � ; 
n) and (�
0; �
1; � � � ; �
n)is 
al
ulated as, d(
; �
) = nXi=0(�
i � 
i)2 (12)
entroid UpdateThe 
entroid 
omputation for a 
ell 
ontaining m 
epstral ve
tors is same as the
entroid 
omputation of m points of n-dimensional Eu
ledion spa
e.3.3.3 Code book and its size sele
tionIn our work, we 
hose a ve
tor quantization 
ode book size of 512. The spee
h re
og-nition based on 
epstral 
oeÆ
ients always outperformed the spee
h re
ognition basedon pure LPC 
oeÆ
ients (see tables 3.3 and 3.4). The 
ode book sele
tion betweenthe pure LPC based one and 
epstrum based one is was 
learly indi
ated by the ex-perimental results, as 
epstral 
oeÆ
ients based one has been always outperformingthe pure LPC based one. Table 3.3 shows the results of su
h an experiment. while theoverall performan
e of 
epstrum based re
ognizer is satisfa
tory over the pure LPCbased one, the performan
e for the digit six has been very good whi
h was an im-provement from 72.1% to 86.0%. So we have de
ided to go ahead with the 
epstrumbased ve
tor quantizer. The size of the 
ode book for the 
epstrum based ve
torquantizer has been 
hosen as 512 based on the experimental results in the table 3.4.
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Spoken Number of Corre
tly Corre
tlydigit utteran
es re
ognized re
ognized(pure LPC ve
tor (
epstrum ve
torof 18 
oeÆ
ients) of 18 
oeÆ
ients)0 86 86 851 86 78 772 84 72 783 84 74 734 73 56 585 86 76 756 86 62 747 85 74 808 86 71 729 86 77 79TOTAL 840 726 745PERCENT 86.4 89.0Table 3.3: Re
ognition results with IITKSp73to162 as training database andIITKSp30to72 as test test database to sele
t the quantizer type
Codebook Size Per
ent Re
ognition128 89.4256 90.1512 92.51024 92.4Table 3.4: Re
ognition results with using 
epstral 
oeÆ
ients with varying 
ode booksize using IITKdigitSp73to162 as training database and IITKdigitSp30to72 as testingdatabase
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3.4 Hidden Markov ModelIn this se
tion we dis
uss the implementation of the Hidden Markov Model.3.4.1 Implementation IssuesHMM TypeIn the experiments 
ondu
ted by the S. E. Levinson and others [11℄, the left-rightmodel performed slightly better than the un
onstrained model. The left-right modelalso provides ease of implementation and easy of 
hara
terization of the states to thereal utteran
e. We therefore 
hose the stri
t left-right model. It has the followingadditional 
onstraints in the implementation.1. The �rst observation is produ
ed while the Markov 
hain is in a distinguishedstate, designated as q1. This implies that for the initial state distribution �, theprobability of starting in any other state is zero.� = (1; 0; 0; � � � ; 0)and � is not re-estimated.2. The last observation is produ
ed while the Markov 
hain is in the distinguishedlast state designated as qN . This implies,�T (i) = 8<: 1 if i=10 otherwisefor initialization part of the ba
kward probabilities 
omputation as des
ribed in
hapter 2.3. On
e the Markov 
hain leaves a state, that state 
an not be revisited later. Thisindi
ates that ea
h state in the HMM models a small 
ontinuous portion of thespee
h.3.4.2 Number of Iterations and Stability of ParametersThe transition probability ve
tor and symbol probability ve
tor for ea
h state aredetermined over a number of iterations. The stability of transition probability ve
torwith number of iterations is given in �gure 3.20. Similarly symbol probability ve
tor41




onvergen
e is given in �gure 3.21 and 
onvergen
e of log probability of whole trainingobservation sequen
e is given in �gure 3.22. We experimented the spee
h re
ognitionrates with number of iterations (�g. 3.23) and from that the best re
ognition ratesare obtained around the iteration 
ount being 15 or 50.
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ode book size=128No. of states in HMM Per
ent Re
ognition6 84:87 84:58 87:249 88:2Table 3.5: Per
ent re
ognition with number of states with TrainDB=OGISp0to79,TestDB=OGISp80to149, LPC order=12, Cepstrum size=16, VQ Code book size=64or ensure the initial estimates to give the optimum �nal trained parameters. Fromthe information of the experimental results from the literature [10℄, [11℄ and [8℄, it isevident that any random initial estimates (subje
ted to our statisti
al 
onstraints) ofstate distribution �, and transition probabilities aij would result in 
orre
t parame-ters after a few iterations. However the same is not true for the symbol probabilities.A good initial estimates for symbol probabilities would give a better performan
eof the spee
h re
ognition. A good estimate is a
hieved by manually segmenting theobservation sequen
e into states. However a uniform probability distribution for allthe observation symbols is good alternative for the initial estimates. Sin
e it is easyto start with uniform probabilities, we have used it as initial estimates of symbol44



probabilities. In summary the following are the initial estimates we have used.� Initial state distribution� = (1; 0; 0; � � � ; 0)� is not re-estimated as we have used left-right model.� Transition Probabilities ai(j) = 8>>>>><>>>>>: 1 if i, j = N0:8 if i=j0:2 if j=i+10 otherwise� symbol Probabilitybij = 1M , where M is the number of symbols in ea
h state or (i.e. the 
odebook size).3.4.3 the Basi
 Spee
h Re
ognizerThe basi
 spee
h re
ognition system uses the steps des
ribed earlier. In this se
tionwe present the results for the basi
 spee
h re
ognition system.Spoken Number of Corre
tdigit utteran
es per
ent 0 1 2 3 4 5 6 7 8 90 86 100.0 86 0 0 0 0 0 0 0 0 01 86 93.02 0 80 0 1 0 2 0 0 0 32 84 92.85 3 0 78 0 2 0 0 1 0 03 84 96.42 1 0 0 81 0 0 2 0 0 04 73 82.19 0 9 1 0 60 0 0 3 0 05 86 86.04 0 2 0 0 0 74 0 1 0 96 86 84.88 0 0 0 3 1 0 73 0 8 17 85 95.29 0 0 0 0 0 0 0 81 0 48 86 91.86 0 0 1 0 0 0 3 0 79 39 86 97.67 0 0 0 0 0 2 0 0 0 84TOTAL 842 92.16Table 3.6: Results for the basi
 spee
h re
ognizer: TrainDB=IITKSp73to162,TestDB=IITKSp30to72, LPC order =12, 
epstrum size =16, 
ode book size=512The results in the table 3.6 are presented for telephone quality spee
h. The train-ing was 
arried out using the spee
hes of 90 speakers and testing was 
arried out with45



the spee
hes of 40 di�erent speakers. It was observed that the most of the faultyre
ognitions are for the digit six whi
h is re
ognized as eight, the digit �ve whi
h is
onfused as digit nine and digit four whi
h is 
onfused with one. Interestingly the
onverse was not true, that the re
ognition rate for the digits one, eight and nine arenot 
onfused with the digits four, six and �ve respe
tively. The re
ognition rate is100% for digit zero in the tested database.Similar experiment was done with OGI database whi
h is mi
rophone (
onne
teddire
tly to 
omputer) quality database with laboratory 
lean re
ording 
onditions.As expe
ted, the OGI database has shown higher re
ognition rate of 96.45% (table3.7), whi
h is almost 4.0% more than the telephone quality IITK spee
h database.The experiment was also tried with inter
hanging the training and testing database(table 3.8) with almost no di�eren
e in the re
ognition rate. The spee
h re
ognitionrate is 99.84% when same database is used for both training and testing (table 3.9).Spoken Number of Corre
tly Corre
tdigit utteran
es re
ognized per
ent0 65 64 98.461 65 65 100.02 65 58 89.233 65 63 96.924 65 64 98.465 64 62 96.876 65 63 96.927 65 62 96.878 65 63 96.929 65 62 96.87TOTAL 649 626 96.45Table 3.7: Results for the basi
 spee
h re
ognizer: TrainDB=OGISp0to84,TestDB=OGISp85to149, LPC order=12, 
epstrum size=16, 
ode book size=512
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Spoken Number of Corre
tly Corre
tdigit utteran
es re
ognized per
ent0 85 84 98.821 85 84 98.822 85 80 94.113 85 85 100.04 85 83 97.645 85 82 96.476 85 84 98.827 85 84 98.828 85 78 91.769 85 83 97.64TOTAL 850 815 95.88Table 3.8: Results for the basi
 spee
h re
ognizer: TrainDB=OGISp85to149,TestDB=OGISp0to84, LPC order =12, 
epstrum size =16, 
ode book size=512
Spoken Number of Corre
tly Corre
tdigit utteran
es re
ognized per
ent0 65 65 100.01 65 65 100.02 65 65 100.03 65 65 100.04 65 65 100.05 64 64 100.06 65 64 98.467 65 65 100.08 65 65 100.09 65 65 100.0TOTAL 649 648 99.84Table 3.9: Results for basi
 spee
h re
ognizer: TrainDB=TestDB=OGISp85to149,LPC order =12, 
epstrum size =16, 
ode book size=512
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Chapter 4
Experiments for Word Reje
tionand Performan
e Fine TuningWith an en
ouraging result of 92.16% re
ognition, we have tried to develop heuristi
sto remove the 
onfusion among various pairs of digits (eight and six, four and one, �veand nine). We �rst dis
uss our word reje
tion 
riterion before des
ribing the other�ne-tuning experiments. In this 
hapter we fo
us our experiments on the telephonequality spee
h databases 
olle
ted at IIT Kanpur.4.1 Word Reje
tionIn an online system, speakers may also speak words other than the spoken digits.Su
h words should be reje
ted without whi
h they will map on to one of the digits.This problem of word reje
tion is not trivial. The problem in formulating the wordreje
tion 
riterion is that we have to use the digit probability in the re
ognition whi
hitself is a fun
tion of number of observation symbols and the duration of the utteran
e.We should some how normalize probability s
ore to number of observation symbols inthe utteran
e. We approximated normalized probability (NP ) in the following way.NP = P 1N (1)Here P is the forward probability s
ore and N is the number of observation symbolsin the utteran
e. We observed that the normalized probability of 
orre
tly re
ognizedwords is signi�
antly higher than the in
orre
tly re
ognized words. The normalized48



probability of in
orre
tly re
ognized words is signi�
antly less than that of 
orre
tlyre
ognized words. We found another interesting phenomenon des
ribed as follows.Let NP0; NP1; � � � ; NP8 and NP9 be the normalized probabilities for a given ut-teran
e 
al
ulated with the HMMs 
orresponding to the digits 0; 1; � � � ; 8 and 9respe
tively. We usually re
ognize the given utteran
e as the digit whose 
orrespond-ing normalized probability is the highest. Let this highest probability be NPMax1.Similarly ;et the se
ond highest normal probability be denoted by NPMax2. Thenwe de�ne DNP as the di�eren
e between the two as follows,DNP = NPMax1�NPMax2 (2)It was seen that the DNP for an in
orre
tly re
ognized utteran
e is 
onsiderablysmall 
ompared to a 
orre
tly re
ognized utteran
e. The �gure 4.1 is plot of NPand DNP of the utteran
es re
ognized as zero. The 'diamond' is plotted when theutteran
e is a
tually ZERO and re
ognized as ZERO. The '
ross' is plotted when theutteran
e is not a
tually ZERO but re
ognized as ZERO. In the 
ategory of '
ross' wein
luded non-digit utteran
es and other sounds also, whi
h are found in the re
ord-ing. Figures 4.2 to 4.10 are the similar plots for the digits ONE to NINE. From these�gures we 
an see that most of the in
orre
tly re
ognized utteran
es are lo
ated nearthe origin and x-axis. We therefore imposed additional 
riterion that the terms NPand DNP should be above some minimum individual thresholds. We have 
hosenthese thresholds di�erently for di�erent digits (table 4.1. This s
heme improves theoverall re
ognition 
on�den
e level to 93.5%. The re
ognition and reje
tion resultsare shown in the table 4.2, ignoring the non-digit input. All the data and results pre-sented in this se
tion are based on training database IITKdigitSp73to162 and testingdone with the dire
t spee
h re
ording sessions whi
h are used to 
reate the databaseIITKdigitSp31to72. Considering only the digit utteran
es, overall re
ognition rateis 90.7%, in whi
h 83.2% utteran
es are a

epted and remaining 7.5% are reje
ted.Among the 9.3% wrongly re
ognized utteran
es, 4.1% are are a

epted and 5.2% arereje
ted. It means when a digit is a

epted, the 
on�den
e level is 95.3%, whi
h is asigni�
ant improvement against 90.7% when reje
tion 
riterion is not used.4.2 Performan
e Fine-tuningOur experiments to improve the performan
e of the re
ognition 
an be 
lassi�ed intotwo 
ategories. In one 
ategory of experiments we tried to improve the performan
e49
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Digit NP Threshold DNP Threshold0 0.015 0.0061 0.017 0.0042 0.025 0.0023 0.017 0.0044 0.0145 0.0035 0.012 0.0016 0.0155 0.0047 0.017 0.0048 0.02 0.0059 0.02 0.005Table 4.1: NP and DNP thresholds used with IITKdigitSp73to162 as trainingdatabase and Testing with dire
t re
ordingDigit Corre
tly Wrongly Wrongly Corre
tlyDigit A

epted A

epted Reje
ted Reje
ted0 81 0 5 01 74 7 3 22 75 4 4 13 70 3 6 54 58 3 7 65 65 6 6 66 73 2 6 37 70 0 5 88 56 5 13 89 66 4 7 4TOTAL 688 34 62 43PERCENT 83.2 4.1 7.5 5.2PERCENT 95.3 4.7(Within A

epted)Table 4.2: Re
ognition and reje
tion results for digit inputs with IITKdigitSp73to162as training database and Testing with dire
t re
ordingby fo
using on the signal pro
essing front end The other 
ategory of experiments werefo
ussed on HMM ba
k end.4.2.1 Experiments with Signal Pro
essing Front endIn these experiments we introdu
ed a few new features in the feature ve
tor as follows.55



Frame EnergyThe energy of the frame is appropriately s
aled and added to the feature ve
tor. Intable 4.3, 
olumn III, the re
ognition results are given with this additional parameter.Spoken Number of re
ognition re
ognition re
ognition with with durationdigit utteran
es with energy with duration relative position and rel.pos.0 86 86 85 85 861 86 76 78 79 812 84 76 77 80 763 84 78 77 79 804 73 67 63 62 625 86 75 76 79 776 86 78 69 75 747 85 81 81 82 798 86 76 78 74 799 86 83 83 83 85TOTAL 842 776 767 778 779PERCENT 92.16 90.09 92.39 92.51Table 4.3: Re
ognition results of basi
 re
ognizer with additional features usingTrainDB=IITKSp73to162, TestDB=IITKSp30to72Utteran
e DurationThe duration of the utteran
e was added in the the feature ve
tors of all the framesof that utteran
e. In table 4.3, 
olumn IV, the re
ognition results are given with thisadditional parameter.Frame Relative PositionThe relative position of the frame with in the utteran
e is added to the featureve
tor. In table 4.3, 
olumn V, the re
ognition results are given with this additionalparameter.
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CombinationsVarious 
ombinations of these three features were used in getting the re
ognitionrates. We got the best re
ognition rate of 92.51% when utteran
e duration andrelative frame position were 
ombined as shown in table 4.3, 
olumn VI.4.2.2 Experiments with trained HMMsIn this se
tion we present the experiments and results for improving the performan
eof trained HMMs. In all these experiments, we had in
orporated the extension offeatures set by in
orporating the duration of utteran
e and relative position of theframe. We present here only those experiments whi
h gave us the best re
ognitionresults. We �rst de�ne three basi
 operations that we used in these experiments.1. HMM state Tie: In this operation, given state s1 in some trained HMM andstate s2 in other trained HMM, we manually for
e the symbol probability dis-tribution in these states to be identi
al. To understand its usefulness, 
onsiderthe HMM models trained for digits FIVE and NINE. These two spoken digitshave 
ommon phoneme /ai/. Let us assume that the states 
orresponding tothe phone /ai/ are not trained well enough for the HMM model of digit FIVE,whereas the 
orresponding states in the HMM model for digit NINE are trainedvery well. Now it is possible that many of the spoken digits 'FIVE' are re
og-nized as 'NINE' be
ause of the better performan
e of states 
orresponding to/ai/ in its HMM model. This situation 
an be handled better by for
ing therespe
tive pair of states in the two HMMs to have the same symbol probabilitydistribution. Let us say states si and si+1 
orrespond to phoneme /ai/ in HMMtrained for digit 'FIVE' and states sj and sj+1 
orrespond to phoneme /ai/ inHMM trained for digit 'NINE'. We 
an tie the states si and sj together. Simi-larly the states si+1 and sj+1 are tied together. Let us represent the above tieoperation HMMTye((d1; s1); (d2; s2)).2. HMM embedded s
aling: It is some times desirable to either emphasize or deem-phasize 
ertain portions of the utteran
e while 
al
ulating the observation se-quen
e probability. Following are some of the 
ases where it 
an be useful.� If the HMM tying results in poor re
ognition rate for the two digits involvedin the tying, as many of these two digits are re
ognized as some other third57



digit. In su
h a 
ase we may wish to emphasize the symbol probabilitiesof the states involved in the HMM tying.� If the HMM tying results in poor re
ognition rate for some digit other thanthe two digits involved in the tying, as many of the utteran
es of the thirddigit are re
ognized as one of the two digits involved in the tying. In su
ha 
ase we may wish to de-emphasize the symbol probabilities of the statesinvolved in the HMM tying.� In 
ase of 
onfusion between digits 'FIVE' and 'NINE', instead of ty-ing states 
orresponding to /ai/, we may deemphasize these states sym-bol probabilities and/or emphasize the state symbol probabilities of otherstates.Let us denote the above s
aling operation as HMMEmbedS
ale(d; s; f).3. Minimum Probability Criterion Given a HMM trained for the digit d and states, this operation ensures ea
h and every symbol probability in that state to begreater than or equal to �. Let us denote this operation as MinB(d; s).In the following dis
ussion, we represent these operations as follows.� HMMTye((d1; s1); (d2; s2)): To tie state s1 of HMM of digit d1 to state s2 ofHMM of digit d2� HMMEmbedS
ale(d; s; f): To s
ale the observation probability of ea
h symbolin state s by a fa
tor of f .� MinB(d; s): To put the minimum limit on the symbol probabilities in state sof digit d.1. Experiment 1: State 6 of digit 9 is deemphasized and limit is put on the symbolprobabilities as follows.(a) HMMEmbedS
ale(9; 6; 0:01)(b) MinB(9; 6)This step improved overall re
ognition rate from 92.51% to 92.63% (table 4.4).2. Experiment 2: State 6 of digits 0 and 6 are tied together and then deemphasized.These are then put through the minimum limit as follows.58



(a) HMMTye((0; 6); (6; 6))(b) HMMEmbedS
ale(0; 6; 0:01)(
) HMMEmbedS
ale(6; 6; 0:01)(d) MinB(0; 6)(e) MinB(6; 6)This step improved overall re
ognition rate from 92.63% to 93.35% (table 4.5).3. Experiment 3: In order to redu
e 
onfusion between digits 5 and 9, state 5 ofthese two digits are tied and passed through minimum limit as follows.(a) HMMTye((5; 5); (9; 5))(b) MinB(5; 5)(
) MinB(9; 5)This step improved re
ognition rate from 93.35% to 93.47% (table 4.6). As aside e�e
t, the re
ognition rate of digit7 was also improved.4. Experiment 4: The digit 4 was 
onfused with other utteran
es. States 4, 7 and9 of digit 4 were emphasized as follows.(a) HMMEmbedS
ale(4; 6; 2)(b) HMMEmbedS
ale(4; 7; 2)(
) HMMEmbedS
ale(4; 9; 2)This step improved re
ognition rate from 93.47% to 93.94% (table 4.7)5. Experiment 5: States 6,7 and 9 of digit 2 are emphasized.(a) HMMEmbedS
ale(2; 6; 2)(b) HMMEmbedS
ale(2; 7; 2)(
) HMMEmbedS
ale(2; 9; 2)This experiment improved re
ognition rate from 93.94% to 94.3% (table 4.8).
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Spoken Number of Corre
tlydigit utteran
es re
ognized0 86 861 86 812 84 763 84 804 73 625 86 786 86 747 85 798 86 799 86 85TOTAL 842 780PERCENT 92.63Table 4.4: Re
ognition results after experiment 1, using TrainDB=IITKSp73to162,TestDB=IITKSp30to72
Spoken Number of Corre
tlydigit utteran
es re
ognized0 86 861 86 812 84 763 84 844 73 625 86 776 86 747 85 798 86 829 86 85TOTAL 842 786PERCENT 93.35Table 4.5: Re
ognition results after experiment 2, using TrainDB=IITKSp73to162,TestDB=IITKSp30to72
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Spoken Number of Corre
tlydigit utteran
es re
ognized0 86 861 86 812 84 763 84 844 73 625 86 766 86 747 85 818 86 829 86 85TOTAL 842 786PERCENT 93.47Table 4.6: Re
ognition results after experiment 3, using TrainDB=IITKSp73to162,TestDB=IITKSp30to72
Spoken Number of Corre
tlydigit utteran
es re
ognized0 86 861 86 812 84 723 84 844 73 705 86 766 86 747 85 818 86 829 86 85TOTAL 842 791PERCENT 93.94Table 4.7: Re
ognition results after experiment 4, using TrainDB=IITKSp73to162,TestDB=IITKSp30to72
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Spoken Number of Corre
tlydigit utteran
es re
ognized0 86 851 86 812 84 783 84 834 73 695 86 766 86 747 85 818 86 829 86 85TOTAL 842 794PERCENT 94.3Table 4.8: Re
ognition results after experiment 5, using TrainDB=IITKSp73to162,TestDB=IITKSp30to72

62



Chapter 5
An Appli
ation: Intera
tive Voi
eResponse System for EnquiringJEE Appli
ation StatusIn this 
hapter we dis
uss the design and implementation of an intera
tive voi
eresponse system (IVR) appli
ation, whi
h we developed for answering the queriesregarding the JEE appli
ation status. We �rst dis
uss the dialogue design and thenits implementation using the te
hnology developed.5.1 Dialog DesignHere we present the dialog designed for a single intera
tive session between the IVRand the user. The user dials the spe
i�ed number to the IVR through the modem.The following the dialog design for the IVR.� IVR : Wel
ome to the IIT Kanpur IVR for answering the queries for your JEEappli
ation status. Please speak the digits in the appli
ation number slowly oneat a time after the beep.� IVR : Plays the beep� Caller : Speaks the individual digits of appli
ation number.� IVR : Your appli
ation number ***** has rea
hed the JEE oÆ
e.63



5.2 Implementation
Modem Digit RecognitionIVR 

user interface

Applications
Database

Speech of

User

Spoken

Digits

Word detection

Code Book
for VQ

Trained 
Database

IVR Speech
HMMs

Engine

Recognized

Digits
Telephone

Figure 5.1: Intera
tive Voi
e Response System for JEE Appli
ation Status EnquiryThe blo
k diagram of the intera
tive voi
e response system that we implementedis shown in the �gure 5.1. The user interfa
e part of the IVR monitors modem andwhen there is an in
oming 
all from the user, it pi
ks up the phone and plays thepre-re
orded wel
ome message and then generates a beep. The IVR then re
ordsthe voi
e of the speaker for ten se
onds in a bu�er. The re
orded voi
e is thenpassed to the word-dete
tion module. Word-dete
tion module extra
ts the isolatedspoken digits and passes them to the digit re
ognition engine. Digit re
ognitionengine a

epts one spoken digit at a time and re
ognizes the digit in the spokenspee
h. The re
ognized digit is then passed to the IVR user interfa
e module. IVRuser interfa
e module assembles the digits into number and sear
hes it in the databaseof re
eived appli
ations numbers. An appropriate message is played ba
k. For digits,pre-re
orded messages are played. Finally the 
all is dis
onne
ted and the entirepro
ess is repeated for another 
all.
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Chapter 6
Con
lusions and future workIn this thesis we implemented an isolated speaker independent spoken digit re
ogni-tion system for telephone quality spee
h. In parti
ular we have been able to a
hievethe following.1. Spee
h Database: We built spoken digit database of 163 speakers.2. Spee
h Re
ognizer: We implemented every part of the spee
h re
ognizer. wewere able to formulate word reje
tion 
riterion. We 
ould improve the spee
hre
ognition rate by �ne-tuning di�erent parts of the basi
 spee
h re
ognizer.Based on our experiments, we 
an 
on
lude the following.6.1 Con
lusions� The heuristi
s used in word dete
tion improved the word dete
tion rate andspee
h re
ognition rate.� Cepstral 
oeÆ
ients are better than the LPC 
oeÆ
ients.� Addition of di�erential features improved the performan
e.� HMM tye and embedded weight heuristi
s improved the re
ognition rate.� Our word reje
tion 
riterion is valid and improved the 
on�den
e of the re
og-nized digit. 65



� Relatively 
lean telephone quality spee
h has better re
ognition rate than therelatively noisy telephone quality spee
h.6.2 Limitations� The IITKdigit spee
h database has very few female speakers and the re
ognizerbuilt using this database as training database may perform poorly for femalespeakers.� The energy thresholds used in the word dete
tion algorithm are spe
i�
 to ourmodem and may need to be 
hanged if the modem is repla
ed.6.3 Future Work� Spee
h of the female speakers 
an be added to the IITKdigit database� Word dete
tion algorithm 
an be modi�ed to dynami
ally adopt the energythresholds.� The re
ognition rate 
an be studied, how it is e�e
ted with HMM states morethan nine.� The re
ognizer 
an be enhan
ed to re
ognize the 
ontinuous spee
h.� Initiative 
an be taken to start building IITK spee
h tool kit and IITK spee
hdatabase for future resear
h.
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Appendix A
Des
ription of Spee
h DatabasesIn this appendix we des
ribe the spee
h databases that we have used in this thesis.We also des
ribe how we 
olle
ted our own digit database at I.I.T Kanpur, whi
h 
anbe informative for the future resear
h.A.1 IITK Telephone-Quality Spoken Digit DatabasesRe
ording Setup : We have 
olle
ted the spee
h samples from the IIT Kanpurinternal telephone network within IIT Kanpur. For re
ording purpose, we haveused a Zyxel voi
e modem on a PC running Linux. The modem supplied Ro
k-well ADPCM 
ompressed data (at 7:2K samples per se
ond) and are stored inthe raw format. In order to re
ord a spee
h session, the speaker has to dialthe phone number of the modem. As soon as it is 
onne
ted, the speaker isprompted with a wel
ome message and is asked to speak after the beep. Thespee
h is then re
orded and saved in a �le.Mobilizing The Speakers : We have mobilized around a total of 200 speakers.Ea
h speaker was asked to speak the digits zero to nine in English. Out ofthese, the re
ordings for only 163 speakers were good enough and the remainingwere dis
arded.Re
ording 
onditions : Sin
e the speakers are mostly the students 
alling fromhostels and laboratories, the external and ba
kground noises are expe
ted.These in
lude noise due to somebody else speaking in the ba
kground, noises69



due to the running air 
onditioners and other 
ommon noises in the laboratoriesand hostel 
orridors.Spee
h editing to extra
t the digits : Initially, we manually edited all the re
ord-ings. Later we developed the word dete
tion algorithm and used it. In fa
t themanual editing experien
e had been extremely useful in designing the worddete
tion algorithm.Overall Database Des
ription : This database 
onsists of telephone quality spee
hof 163 speakers. The �rst 73 speakers have spoken ea
h digit twi
e in Englishand the later 90 speakers have spoken ea
h digit on
e in English.Subset Databases : In this se
tion we des
ribe the di�erent databases, whi
h aresubset of the above des
ribed 
olle
tion. The names des
ribed here are used indis
ussion throughout the thesis.IITKdigitSp0to30 : This database is the spoken digit database of the speak-ers numbered 04 to 30 from a single phone. Ea
h speaker has spoken ea
hdigit twi
e. Ea
h re
ording 
ontains high amount of noise generated bythe equipment. Later, this database was not used and dropped due to high
ontent of noise.IITKdigitSp31to72 : This database is the spoken digit database of speakersnumbered 31 to 72. Ea
h speaker spoke ea
h digit twi
e.IITKdigitSp0to72F : This database is a 
olle
tion of �rst instan
e of thedigits spoken by the speakers numbered 0 to 72.IITKdigitSp0to72S : This database is a 
olle
tion of se
ond instan
e of ea
hdigits spoken by speakers numbered 0 to 72.IITKdigitSp73to162 : This database is a 
olle
tion of spoken digits by speak-ers from speaker 73 to speaker162. Ea
h digit is spoken only on
e by aspeaker.A.2 OGI Spoken Digit DatabaseThis database is prepared by 
enter for Spoken Language Understanding, OregonGraduate Institute of S
ien
e and Te
hnology.70



Re
ording Setup : This is also telephone quality spee
h. The spee
h signal issampled at 8.0 kHz.Re
ording 
onditions : The re
ording was 
ondu
ted under ideal laboratory 
on-ditions with no ba
kground noise.Overall Des
ription : This database 
ontains spoken digits of 150 speakers. Ea
hspeaker has spoken a digit only on
e.Subset Databases :OGIdigitSp0to119 : This database 
onsists of spoken digits of 120 speakers0 to 119.OGIdigitSp120to149 : This database 
onsists of spoken digits of 130 speak-ers 120 to 149.OGIdigitSp0to84 : This database 
onsists of spoken digits of 85 speakers 0to 84.OGIdigitSp85to149 : This database 
onsists of spoken digits of 65 speakers120 to 149.
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