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Abstract

Many practical interactive voice response systems require speaker independent speech
recognition. Achieving speaker independence is difficult as we do not have direct
methods to prepare speaker independent reference patterns of the sub-units of the
speech and compare a given sub-unit of speech with them. Hidden Markov Models
provide better means than other methods to achieve speaker independence with the
help of training speech by a sufficiently large number of speakers. Hidden Markov
models have the inherent capability to model the variations in speed of the speech.
We developed an interactive voice response system based on discrete Hidden Markov
Models. In our system we use a word detector and a linear prediction based signal
processing front end which are also developed in this work. We recorded telephone
quality speech with the help of modem interface and prepared database of spoken
digits of 160 speakers using modem for the training purpose to achieve speaker inde-
pendence. We also present different fine tuning methods to improve the performance
of speech recognition. We also present word rejection criterion to improve confidence
of the recognition. We also present an interactive voice response system which is
developed using the technology developed in this thesis.
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Chapter 1

Introduction

1.1 Introduction

Interactive voice response systems are getting more and more deployed in applications,
especially where query traffic is very high and queries are to be attended twenty four
hours a day. For these reasons speech recognition has gained lot of interest in the
researchers from various fields. Despite this, speech recognition has been one of the
most difficult problems to solve. In this work we develop a speaker independent
isolated digit recognition system for telephone quality speech. We have used linear
prediction, vector quantization and Hidden Markov Model to develop this system.
We have collected the required telephone quality speech for training purpose. This
speech recognition system uses a modem as input and output device for speech. To
interact with the system, the speaker has to dial the telephone number of the modem

and interact with it using the telephone.

1.2 Related Work

Research in automatic speech recognition has been done for about five decades. The
first speech recognition system was built in the year 1952 at Bell Laboratories. The
recognizer was built using acoustic features to recognize the digits spoken by a single
speaker. While the research had been carried out with acoustic phonetic approach,
in mid 1970s, Itakura showed how linear prediction could be applied to speech recog-
nition [5]. In late 1970s and early 1980s, researchers at AT&T Bell Laboratories



conducted many experiments [10, 11, 16] to incorporate speaker independence in the
speech recognition systems. The techniques were refined over a decade. In course
of developing an isolated speech speech recognition system, they developed an algo-
rithm for word detection [18]. Although Hidden Markov Model (HMM) was initially
introduced in 1960s, researchers at only a few laboratories could apply it to speech
recognition after a decade [1, 6]. A decade later it was wide published [15] and
became popular. Today almost every speech recognizer uses HMM. Wilpon [17], at
AT&T Bell Laboratories studied on ability to automatically recognize the telephone
quality speech in real world conditions. He reported a word detection rate of 98% and
speech recognition rate of 86% in online digit recognition. He used a total of 11,035
digits of 3100 speakers.

1.3 Goals

e To develop a speaker independent isolated digit voice recognizer for telephone

quality speech.

e To built an application for Computer Interactive Voice Response system (CIVRS)
that uses the technology developed in this thesis.

1.4 Organization of this work

The rest of the thesis is organized as follows.

In chapter 2, we discuss different approaches to speech recognition and the basic
speech recognition system in our implementation. We discuss different parts of speech
recognition system namely, signal processing front end, vector quantization and hid-
den Markov model back-end.

In chapter 3, we present the design and implementation of the speech recognition
system. We also present the word-detection algorithm and experimental results that
helped us to choose various parameters for the speech recognition system.

In chapter 4, we present various experiments for word rejection criterion and perfor-
mance fine-tuning.

In chapter 5, we present an interactive voice response system application, developed

using the speech recognition technology presented in this thesis. Finally we conclude



this work in chapter 6



Chapter 2

Basic Speech Recognition

Techniques

Speech recognition systems accept audio data as input and produce a sequence of
symbols corresponding to the sequence of spoken words in the input speech.

Speech signals are slowly varying time signal. When examined over a sufficiently short
interval of time (say, 5 to 100 ms), a speech signal is fairly stationary. When examined
over a long interval of time, around 200 ms or more, the signal characteristics change
to reflect the different sounds spoken. A speech recognition system, therefore, should
be able to model the short time characteristics of the signal and their variations over
long periods of time.

Even though extensive research has been carried out during the past five decades, we
are far from achieving the goal of a robust speech recognizer which can understand
spoken words on any subject by all speakers in all environments. Following are some

of the reasons for the difficulty.
e Lack of a sophisticated and yet tractable model of speech.

e Differences in the vocal tract sizes among individual speakers contribute to the
variability of speech and most of the parametric representations of speech are

not completely speaker independent.
e Inherent mismatch between training and test environments.

e Lack of consistent units of speech that are trainable and relatively insensitive

to context.



e Inadequate use of human knowledge of acoustics and phonetics.

Several speaker dependent recognition systems are available with acceptable perfor-
mance. Achieving speaker independence has been the most difficult task in realizing
the speech recognition systems. This is due to the speaker dependent nature of
parametric representations of speech, and a set of reference patterns suitable for one

speaker may perform poorly for another speaker.

There are three approaches to achieve speaker independence. The first approach
is to find the perceptually motivated speech parameters that are relatively invariant
among speakers. The second approach is to use multiple representations for each
speech unit to capture the between-speaker variations. In this approach, for each
speech unit we have a very large database. Using this database, a model for each
speech unit is generated. During recognition speech-unit models for various speech
units are used for comparison. In the third approach, the recognizer knows various
characteristics of the speaker after a few sentences and uses this knowledge to adapt
the system to the new speaker. Adaptation starts with an initial set of parameters.
The new speaker is asked to speak known sentences and the response is used to to

adjust the set of parameters.

In this work, the first two approaches are incorporated up to some extent. The
speech processing front-end generates differential cepstral coefficients. These coeffi-
cients incorporate the formant slope information which is relatively invariant among
speakers. The back-end of the speech recognition uses Hidden Markov Model (HMM),

which incorporates several reference reference patterns for a speech unit.

In this chapter different parts of the speech recognition system are discussed that
are implemented in this work. Among the different parts are Linear Predictive Coding
(LPC) model, Vector Quantization and Hidden Markov Model.

2.1 Approaches to Speech recognition

Speech recognition approaches can be broadly classified into three categories [14].
1. Acoustic phonetic approach
2. Pattern recognition approach

3. Artificial intelligence approach



2.1.1 Acoustic Phonetic Approach

The Acoustic phonetic approach is based on the theory of acoustic phonetics with the
assumption that there exist finite, distinctive phonetic units in the spoken language
and these units can be broadly characterized by a set of properties. The acoustic
properties of the phonetic units are highly variable, both with speakers and with
other phonetic units. It is assumed that the rules governing these variations are

straight forward and can be learned and applied in practical situations.

_ | FEATURE
DETECTOR 1
p—— CEATURE SEGMENTATION RECOGNIZED
n AND SPEECH
L ANALYSYS ] DETECTOR2 CONTROL
LABELLING STRATEGY
speech SYSTEM
O
O
FILTER BANK ©
LPC FEATURE
| DETECTORQ
FORMANTS PHONEME LATTICE
PITCH SEGMENT LATTICE
VOICED/UNVOICED PROBABILSTIC LABELLING
ENERGY DECISION TREES
NASALITY PARSING STRATEGIES
FRICATION

Figure 2.1: An Acoustic Phonetic Speech Recognition System

The first task in this method is to segment the input speech into discrete regions.
Each of these regions corresponds to one or more phonemes. For this we analyze the
speech in short intervals of time to study the spectral properties and then characterize
these spectral properties as acoustic events, such as formants, pitch, nasality, frication,
etc. (Figure 2.1). Using this acoustic event information, we label the discrete regions
as one or more possible phonemes. The exact sequence of phonemes in the speech
is however not known at this stage. This is because some regions might have been
labeled as more than one possible phonemes. The exact combination of phonemes in
the speech is determined by the dictionary of words with their phoneme sequence.

The grammar of the language also plays an important role in this process.
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Figure 2.2: Pattern Recognition Speech Recognition System

2.1.2 Pattern Recognition Approach

In the pattern recognition approach, speech patterns are used directly without explicit
acoustic characterization of the speech spectral analysis information. This approach
generally has two stages, namely speech pattern training and speech pattern recog-
nition. The concept is that if enough versions of a pattern to be recognized are
included in a training set, then the system should be able to adequately characterize
the acoustic properties of the pattern. During pattern training, the system learns
acoustic properties of the speech class, reliable and repeatable for the given training
set. In pattern recognition stage, the system compares an unknown speech with all
trained patterns, and classifies the unknown speech according to the goodness of the

match.

2.1.3 Artificial Intelligence Approach

The basic idea of artificial intelligence approach is to compile and incorporate knowl-
edge from variety of sources to realize the different stages of speech recognition system.
This approach is a hybrid of the acoustic-phonetic approach and the pattern recog-
nition approach. It exploits the ideas and concepts of both methods and attempts to
mechanize the recognition procedure according to the way a person applies his intel-

ligence. The following are some of the knowledge sources and their brief description.

e Acoustic knowledge: Evidence of which phonetic units are spoken on the basis

of spectral measurements and presence or absence of features.

e Lexical knowledge: The combination of acoustic evidences so as to postulate

word as specified by a lexicon that maps sounds into words.



e Syntactic knowledge: The combination of words to form the grammatically

correct strings.

e Semantic knowledge: Understanding of the task domain so as to be able to val-
idate sentences and phrases that are consistent with the task being performed,

and the previously decoded sentences.

e Pragmatic knowledge: Inference ability necessary in resolving ambiguity of

meaning based on ways in which words are generally used.

In this thesis we have implemented the second approach, the pattern recognition

approach.

2.2 Liner Predictve Coefficients (LPC) Model for

Speech Recognition

The first task of the Pattern recognition approach is to parametrically represent the
speech signal. Among the different possibilities to represent the speech parametrically,
spectral envelop for short duration of the speech is probably the best. The function
of feature measurement block in figure 2.2 is to represent the speech signal in terms

of compact, efficient set of speech parameters.

2.2.1 Introduction

The theory of linear prediction [13] as applied to speech, has been well understood

for many years. Following are some of the reasons underlying the widespread usage
of LPC.

1. LPC provides a good model of speech signal and provides a good approximation
to the vocal tract spectral envelop. During the unvoiced and the transient
regions of speech, the LPC model is less effective than for the voice speech, but

it still provides an acceptably useful model for speech-recognition purposes.

2. The way in which LPC is applied to the analysis of speech signals leads to
a reasonable source-vocal tract separation. This is important for a speaker

independent voice recognition system.



3. LPC is an analytically tractable model. The method of LPC is mathematically

precise and is simple and straightforward to implement.

4. The LPC model has been shown to work well in voice recognition applications
[4, 14].

2.2.2 The Model

In linear prediction, a sample in the signal is predicted as a linear combination of

its past values. Let the predicted time series of the signal be 1, §9,---, 5, and the
real signal be s;, S9,- -, sy, then the predicted value 3; of the i** sample is a linear
combination of (s;_1, S;—2, -+, Si—p), where p is called the order of the LPC model.

In LPC model, with an order p, only p coefficients are needed. These coefficients can
be computed by solving a set of equations which are well documented in the standard
texts [13, 19]. This LPC coefficient vector is spectral approximation of the speech

signal.

2.3 Vector Quantization

2.3.1 Introduction

The LPC coefficient vectors are generated for the waveform on a short time basis.
These vectors are however very large. A technique of vector quantization helps in
reducing this space. In vector quantization, a table called code book of finite size is
maintained. Each entry of the code book is a vector. The spectral LPC vectors are
then mapped on to one of these vectors and only the index is used to represent the
waveform instead of the entire LPC vector.

For vector quantization, it is necessary to have a measurement of dissimilarity between
the two vectors. We expect such dissimilarity measure to confirm to the known

linguistic characteristics.

2.3.2 Distance Measure Criterion

Let x,y be two feature vectors defined on a vector space y. We define a metric or

distance function d on the vector space x as a real-valued function with the following



properties.

1. Positive definiteness: 0 < d(x, y) < oo for z, y € x and d(z, y) = 0 if and only
ifxr=y

2. Symmetry: d(z, y) = d(y, x) for z, y € x
3. Triangle inequality: d(z, y) < d(z, z) + d(y, z) for z, y, 2 € x

4. Invariance: d(x + 2z, y + 2) = d(z, y)

2.3.3 VQ training and classification structure

To build a VQ codebook and implement a VQ analysis procedure, we need the fol-

lowing:
TRAINING SET (.
OF VECTORS
{Vl,V2 ..... VL} CLUSTER' NG CODE BOOK
ALGORITHM
MZZBVECTORS
d..,.)
CODE BOOK
INPUT SPEECH VECTORS INDICES
QUANTIZER
Figure 2.3: Vector quantization training and classification structure
1. A large set of spectral vectors, vy, vg, -+, vy, which form a training set. The

training set is used to create the optimal set of code book vectors for representing

the spectral variability observed in the training set.

2. A distance measure between a pair of spectral analysis vectors so as to be able
to cluster the training set vectors as well as to classify arbitrary spectral vectors

into unique code book entries.

10



3. A centroid computation procedure. On the basis of the partitioning that classi-
fies the training vectors into the M clusters, we choose the M codebook vectors

as the centroid of each of the M clusters.

4. A classification procedure for arbitrary speech spectral analysis vectors that
chooses codebook vector closest to the input vector and uses the codebook

index as the resulting spectral representation.

2.3.4 Clustering the Training Vectors

The way in which set of L. training vectors can be clustered into set of M codebook

vectors is as follows.

e K-means Clustering Algorithm [14]

1. Initialization: Arbitrarily chose M training vectors as the initial set of code

words in the codebook.

2. Nearest-Neighbor Search: For each training vector, find the codeword in
the current codebook that is closest as measured by the distance measure,
and assign that vector to the corresponding cluster, associated with closest

code word.

3. Centroid Update: Update the code word in each cluster using the centroid

of the training vectors assigned to that cluster.

4. Iteration: Repeat the steps 2 and 3 until the relative of average distance

of all training vectors to their corresponding code word falls bellow some
threshold.

e Binary Split Algorithm [14]
Instead of starting directly with the M initial arbitrary training vectors, binary
split algorithm starts with one initial vector and achieves codebook of size M
after logoM steps. At each step it applies K-means clustering algorithm to
achieve the optimum codebook entries. Then it splits each codebook vector
into two, giving double the size of present codebook entries. These newly split

entries are used as initial vectors for the next step.
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2.4 The Hidden Markov Model

Hidden Markov Model (HMM) [15] approach is a widely used statistical method
for characterizing the spectral properties of the frames of a pattern. The underlying
assumption of HMM is that the speech signal can be well characterized as a parametric
random process, and that the parameters of the stochastic process can be determined

(estimated) in a precise and well defined manner.

2.4.1 Definition

Hidden Markov Model is a doubly embedded stochastic process with an underlying
stochastic process that is not directly observable (it is hidden) but can be observed
only through another set of stochastic processes that produce the sequence of obser-
vations.

A hidden Markov model is collection of states connected by transitions. Each state
carries two sets of probabilities: a set of transition probabilities, which provides the
probabilities of transitions from this state to all the states; and output probabilies
which define the conditional probability of emitting each output symbol if the system
is in that state. Figure 2.4 shows an example of a HMM with two output symbols, A
and B.

0.6 1.0

A 0.8 1 0.4 5 A 03
B 0.2 B 0.7

Figure 2.4: A simple HMM with two states and and two output symbols, A and B

Given an observation sequence (a string of A’s and B’s for the example in figure
2.4) generated by a HMM, we however cannot determine the exact state transition
sequence. This is because in each state the output symbol is not unique (in contrast
with the Markov chain). The output symbol is again a random variable. So, for a

given observation sequence, we cannot see the underlying process. Hence this model

12



has the Hidden Markov Model.
A HMM is characterized by the following:

1.

N, the number of states in the model. We denote the individual states as
S = {51, 5s,---,S,}, and the system state at time ¢ as ¢,

. M, the number of distinct observation symbols per state, i.e., the discrete al-

phabet size. We denote the individual symbols as V' = {vy, vg, - -+, v}

The transition probability distribution A = {a;;}, where each a;; is the tran-
sition probability from state S; to state S;. Clearly, a;; > 0, Vi, j and
Zj Q;; = 1, W)

The observation symbol probability distribution B = bj;, where each bj; is the
observation symbol probability for symbol v, when the system is in the state
Sj. Clearly, bjk > 0, V], k and Zk bjk = 1, V]

The initial state distribution 7 = {7}, where m; = Pl = S;], 1<j <N

We can specify an HMM model as A\ = (A, B, 7, M, N, V). In this thesis we however
represent A\ = (A, B,7) and assume M, N and V to be implicit.

2.4.2 Use of HMM in Speech Recognition

HMM can be used to model a unit of speech, whether it is a phoneme, or a word, or

a sentence. LPC analysis followed by the vector quantization of the unit of speech,

gives a sequence of symbols (VQ indices). HMM is one of the ways to capture the

structure in this sequence of symbols. In order to use HMMs in speech recognition,

we should have some means to achieve the following.

e Fuvaluation: Given the observation sequence O = 01,09, -+, 07, and a HMM

A = (A, B, 7), to efficiently compute P(O|)), the probability of the observation
given the HMM.

e Decoding: Given the observation sequence O = 01,09, -+,07, and a HMM

A = (A, B,7), to choose a corresponding state sequence @ = q1, g2, "+, qr

which is optimal in some meaningful sense, given the HMM.

e Training: To adjust the HMM parameters A = (A, B, 7) to maximize P(O|\).

13



The following are some of the assumptions in the hidden Markov modeling for speech.

e Successive observations (frames of speech) are independent, and therefore the
probability of sequence of observations P(01,09,---,0r) can be written as a

product of probabilities of individual observations, i.e.,
P(Ola 02, ", OT) = HZTZIP(Oi)

e Markov assumption:The probability of being in a state at time t, depends only

on the state at time t-1

g FEvaluation

FEvaluation is to find probability of generation of a given observation sequence by a
given model. The recognition result will be the speech unit corresponding to the
model that best matches among the different competing models. Now we have to
find P(OJ|)), the probability of observation sequence O = (01, 09, -+, or) given the
model A\ i.e., P(O|M).

One could, in principle compute P(O|)\) by computing the joint probability, P(O, ¢|M)
for each possible state sequence, q, of length T and then summing over all state se-
quences. Computationally this method is very costly. However, there is an efficient

way of computing this probability using forward and backward probabilities.

Forward-Backward Algorithm [15]
e The Forward Probabilities: consider the forward variable (i) defined as
ai(i) = P(0oj09 -+ - 01, ¢t = i|A) (1)

that is, the probability of the partial observation sequence,0; 0y - - - 0; (until time
t) and state i at time ¢, given the model A. We can solve for «; inductively, as

follows:

1. Initialization:

2. Induction :

a1 (J) = [Z at(i)az‘j] bj(opr1) 1<t<T—-1,1<j<N (3)

=1

where N is the number of states in the model.
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e The Backward Probabilities: Consider the backward variable (;(7) defined as

Bi(i) = P(01410112 - or|qs = i, A) (4)

that is, the probability of the partial observation sequence from ¢ + 1 to the
end, given state i at time ¢ and the model A\. Again, we can solve for (3;(i)

inductively as follows

1. Initialization:

2. Induction:

Zam 0t+1 5t+1( ) (6)
t:T—l,T—Z,---,l, 1< <N

The two forward and backward probabilities can be used to compute P(O|\) according
to

P(O|N) = iz i)aijbj(01+1) Brs1(7) (7)

for any ¢ such that 1 <t < T — 1. Equations (3) to (7) are referred to as forward-
backward algorithm.
Setting t =T — 1 in (7) gives

POX) =Y ar(i) (®)

so that the probability, P(O|\) can be calculated form forward probabilities alone.
Similarly P(O|)) can be calculated from backward probabilities alone, by setting ¢ = 1.

P(O[N) = Zﬂ-z 01)1(4) (9)

8 Decoding

Decoding is to find the single best state sequence, @ = (q1, g2 - - gr), for the given

observation sequence O = (0105 -+ - or). Consider 0,(7), defined as

8:(1) = max Plgiqa---q =1, 0109+ 04|\ (10)

41,42, qt—1
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that, is §;(¢) is the best score along single path, at time ¢, which accounts for the t

observations and ends in state i. By induction, we have

Or+1(7) = |max 0;(i)ai; | bj(0r11) (11)
The complete procedure is as follows
The Viterbi Algorithm [15]
1. Preprocessing:
7; = log(m;), 1<i<N

2. Initialization:

3. Recursion

0u(j) = log(8:(4)) = maxi<ien [0-1(6) + digg] + bi(on)
Yi(j) = arg max, <j<y [gt—l(i) + dij] 2<t<T,1<j<N

4. Termination

P* = max [ST(Z)]

I<i<N

¢ = arg max [or(i)]

5. Backtracking

¢ =V (gq),t=T-1,T—-2,---,1

The array ¢* contains the required best state sequence.
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8 Learning

Learning is to adjust the model parameters (A, B, m) to maximize the probability
of the observation sequence given the model. It is the most difficult task of the
Hidden Markov Modeling, as there is no known analytical method to solve for the
parameters in a maximum likelihood model. Instead, an iterative procedure should
be used. Baum-Welch algorithm [15] is the extensively used iterative procedure for
choosing the model parameters. In this method we start with some initial estimates
of the model parameters and modify the model parameters to maximize the training
observation sequence in an iterative manner till the model parameters reach a critical
value. We define the variables & (i, j) and (i) as,

& (7, 7) is the probability of being in state i at time ¢, and state j at time ¢ + 1, given

the model and observation sequence.

&ili, §) = Plgr =i, qi1 = J|O, N)
o oy (1)a;;b; (o '
&0, ) = - t]E[) J y( t41) Bir1(5) . (12)
21 2j—1 (i) aijbj(041) Bri1 (4)
where ay(2)a;jbj(014+1)Bi+1(4) is equal to P(q = i, 41 = J, O|N).
v:(7) is the probability of being in the state i at time ¢, given the observation sequence
O, and the model A

(i) = Pg: = 1|0, A)
. () Be (1
'Yt(z) _ Nt( )ﬂt( ) :
Yty o (i) B (i)

where oy ()3, (7) is equal to P(O, q; = i|\)
By the definition of the variables & (i, j) and (i), the following relations are true,

(13)

%(i) = ;gt(ia j)

T-1
Z (i) = expected number of transitions from state i in O
t=1

T-1
Z & (i, j) = expected number of transitions from state i to state j in O
=1

Using the above formulas and the concept of counting the event occurrence, the
parameters of the model A = (A4, B,7) can be re-estimated as A\ = (A, B, 7), as
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follows.

7T, = 71 (1) (14)
CNl“ _ Zthill gt(ia .])

Y ()
= Z?:_lls.t 0= ’)/t(Z)
bi(k) = =

i ==

(15)

(16)

It has been proved that one of the following two statements is true for A and A

1. The initial model A\ defines a critical point of the likelihood function in which

case A=)\
2. model ) is more likely than the model ), in the sense that P(O[\) > P(O|\).

In case (1), we stop the iterative procedure declaring A as the final trained model
for the observation sequence O. In case (2), we replace the the model A\ by \ as
the initial model for the next iteration. The iteration is stopped when %
reaches some minimum value and then the model, ) is declared as the final trained

model for the observation sequence O.
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Chapter 3
Design and Implementation

In this chapter we discuss the design and implementation issues of realizing each stage
of our basic recognizer. We also present relevant experimental results where ever they

are required for justification and understanding.

3.1 Word End Points Detection

For isolated word recognition, it is assumed that the the words are spoken with a
sufficient pause so that no two successive words overlap with each another. Given
an input speech, the problem of finding the word boundaries in the time domain is
word-detection problem. Word boundaries are detected by characterization of the
energy changes over time. In our work, the end-point detection algorithm is similar
to the one given by Wilpon etc. [18]. However we have evolved the algorithm by
the experience of manual editing of the end points and by different trial and error
experiments with the speech of 100 speakers. Figure 3.1 is the speech signal of a
typical speaker sampled at the rate of 7.2 KHz. The next figure 3.2 is the plot of
the energy of the sliding frame of the corresponding signal. The size of the frame is
300 samples and the slide is 100 samples. Starting with the initial 300 samples as the
first frame, at every step energy of the frame is calculated and the frame is moved
100 samples forward. This way the energy is plotted for the speech signal in figure
3.2 and others.

The speech signal in figure 3.1 contains five isolated words, which are the spoken
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Figure 3.1: Telephone quality Speech signal of a speaker sampled at 7.2 KHz for digits
0,1,2, 3,4

digits 0, 1, 2, 3 and 4. The small spikes are due to the presence of noise. By correlat-
ing the speech signal and its corresponding energy plot we can easily guess that the
energy can be used as a feature to determine the word boundaries. To start with, we
can formulate the algorithm to detect a word as a group of consecutive frames where
the log of energy of each frame is above a threshold. While a high threshold can be
used to avoid noise, some end points will not be recognized. Similarly a low threshold
may result in recognizing noise as a word. To resolve this, a minimum number of
frames criteria is introduced in-order to qualify a group of consecutive frames as a
word. Though the duration of noise is small in the case of noise like mouth click
and switching, it is likely to be long enough to qualify as a word. An example is
long heavy breathing noise. To deal with such type of cases, a second higher level of
threshold is introduced. The observation is that in most of the cases the maximum
energy of a frame in the noise is much less than the maximum energy of a frame of
any spoken words unless the background noise is as strong as the speech itself. With
this new additional criteria, it is possible to detect the word close to the real end

points unless the noise itself is as strong as the speech.
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Figure 3.2: Energy of the sliding frame of size=300 samples, sliding size=100 samples
over the speech signal in figure 3.1
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Figure 3.3: Telephone quality Speech signal of the same speaker sampled at 7.2 KHz
for digits 5, 6, 7, 8, 9
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Figure 3.4: Energy of the sliding frame of size=300 samples, sliding size=100 samples
over the speech in figure 3.3

However this criterion fails in some cases, for example, consider the speech signal
and corresponding frame energy plot in the figures 3.3 and 3.4. These figures corre-
spond to the digits 5, 6, 7, 8 and 9 respectively. In the figure 3.4, two energy bands
that appear between the frame numbers 800 and 900 correspond to the digit siz and
the other two energy bands that appear between the frame numbers 1050 and 1150
correspond to the spoken digit eight. The second thinner band in these two pairs
correspond to 'IX’ of the spoken digit siz and "T” of the spoken digit eight respec-
tively. Under our criterion, these small bands will be dropped or at best recognized
as a separate word. However, these portions in the digits siz and eight are critical for
good recognition rate. In our experiments in about 50% of the cases these two digits
appear as two different bands in the energy plot. The number of frames between the
two successive bands of the same word is considerably less than that between two
consecutive words. Addition of this heuristic in our criterion works very well. In our
experiment, with this new heuristic, 'IX’ portion of the spoken digit siz is dropped
in one amongst 90 speakers and T’ portion of the spoken digit eight is dropped for

4 amongst 90 speakers. In our algorithm, we restricted the number of energy pulses
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within a single utterance to a maximum of two, which is good enough in case of
digit recognition. Out of 873 digits ospoken by 90 speakers, 17 digits were spoken in
connected fashion, and were not isolated in the speech. Out of 856 isolated digits,
844 digits were detected without any type of error, 6 digits were detected but the end
points were not placed exactly and 6 digits were not detected. The total number of
digits that are detected are 850 out of 856, which is 99.3% . These undetected words
are mainly due to very low volume at which they were spoken.

Figures 3.5, 3.6, and 3.7 depict the finite state machine which implements the word
detection algorithm. The algorithm is designed in such a way that both the word-
detection and recognition can go simultaneously running in two different processes.
As soon as the word-detection process enters the state 4, it can start sending the
frames to the Recognition process for further processing anticipating it to be a word.
Later when the word-detection process finds a wrong detection of the word, it can
then notify the recognition process to either retain it or discard it. This design is
due to our initial mind-set to let word-detection and rest of the recognition to go
on parallel. Authors J. G. Wilpon, L. R. Rabiner in their article [18], propose to
examine the whole speech of that particular recording to determine minimum energy
level frame as the mean noise level and then depending on that set the first and
second level thresholds of energy. Since we have decided that our algorithm should
detect the words online, the first level threshold is determined prior to the start of the
recording. For this we examined the speech containing around 2300 spoken digits,
and then fixed the first and the second levels of thresholds. In order to qualify a
group of consecutive frames, in our algorithm, at least four consecutive frames should
cross the second level threshold. J.G.Wilpon etc.[17] reported word-detection rate of
98%, as opposed to ours ( 99.3% ).

p State Diagram for the Word-detection Algorithm

Figures 3.5 to 3.6 depict the finite state diagram for the word-detection algorithm
described above. Here we explain the terms used in the finite state diagram and a

brief explanation of it.
e I'C: Global frame count
e I : Energy of the current frame

e PFE : Energy of the previous frame
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bar : It is used alternatively for the term pulse

LthCFC : Low threshold consecutive frame count

HthCFC : High threshold consecutive frame count

MazHthCFC': Maximum High threshold consecutive frame count within a word
LThE : Low threshold energy

HTRhE : High threshold energy

ThickBarLThE : LThE for Thick energy pulse

ThinBarLThE : LThE for Thin energy pulse

WordPending : if TRUE, this flag indicates that a thick pulse has been recog-
nized as word and waiting to recognize the end point. This indicates that the
algorithm is looking for thin pulse, within the allowed scope, to determine the

end point

The following is the brief explanation of the state diagram.

The statements under each state are executed by the system in that state

The loop covering the states 4 and 5 counts the number of low threshold con-

secutive frame count

The loop covering the states 7, 8 and 9 counts the number of high threshold

consecutive frame count

states 2a and 2b controls which thresholds to be used by the counting loops.
This is because we are using different low and high thresholds for thick and thin
energy bands.

The system will be in states 1 and 2% when the frame energies are below both
the thresholds.

State 2b collect the word boundaries if the thin energy band is not found within
the specified scope.

State 20a collects the word boundaries when a thin band also qualifies its thresh-
old energy frame count criterion. This state restricts number of thin bands to

a maximum of one.
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3.2 LPC

In this section we describe the implementation of LPC preprocessor, which computes
LPC and LPC derived cepstral coefficients. We also present the experimental results
to select the order of the LPC.

3.2.1 LPC Preprocessor

The overall function of the LPC preprocessor is to generate feature vector for every ten
milliseconds of speech signal. This feature vectors are later used by vector quantizer
for further processing. In the feature vector we generate LPC coefficients (A,,(1)),

Cepstral coefficients (C,(t)), Weighted cepstral coefficients(Cy,(t)) and differential
cepstral coefficients(AC,,).

In this subsection different phases of LPC preprocessor (figure 3.8) are briefly

explained. The theoretical background for this is available in various references ( [14],
31, [13]).

() Sn) X, (n)

PREEMPHASIS FRAME BLOCKING WINDOWING

X, (n)

An(D) Rt

LPC ANALYSIS

AUTOCORRELATION ANALYSIS

JA N
PARAMETER C,® PARAMETER Cn() Tewromac ACH (1)
CONVERSION WEIGHTING DERIVATIVE | —

W(t)

Figure 3.8: LPC preprocessor

PREEMPHASIS : The digitized speech signal S(n), is put through a a first-order
FIR filter, to spectrally flatten the signal and to make it less susceptible to finite
precision effects later in the signal processing. the computation performed at

this stage are,

S(n) = S(n) — aS(n) ( ais taken to be between 0.9 and 1.0 )
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which refers to a transfer function,
H(z)=1-az""

FRAME BLOCKING : The preemphasized speech signal is converted into frames
of subsequent samples. For this window size is equal to number of samples in
30ms of speech. Neighboring frames overlap with number of samples in 20ms

of speech.

WINDOWING : Each individual frame is windowed to minimize the signal dis-
continuities at the beginning and the end of each frame. We use the hamming

window for this which is transfer function,

W(n) =054 —046cos(2rn/(N —1)) 0<=n<=N (1)

AUTOCORRELATION ANALYSIS : Each frame of the windowed signal is
next autocorrelated to get the correlation coefficients using the following for-

mula.
R(m) = SN /™Sm)S(n+m) m=0,1,...,p

LPC ANALYSIS : In this step, we convert each frame of p + 1 autocorrelations
into LPC parameter set. The LPC parameter set, which is the set of filter
coefficients, can be obtained by solving the set of autocorrelation equations as

described earlier.

LPC Parameter Conversion to Cepstral Coefficients : LPC cepstral coefficients
set is a very important parameter and can be directly derived from the LPC
coefficients. Cepstral coefficients are coefficients of Fourier transform represen-
tation of log magnitude spectrum. Cepstral coefficients are most robust and
reliable [14] among all the forms of LPC coefficients. Our experiments have
also given considerably good performance when cepstral coefficients are used.

The cepstral conversion is specified as follows.

C[] == E[] == RO (2)
Cl - —Al (3)
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i1 .
Ci:—Ai_ZZikCi—kAk, 2<1<p (4)
k=1
ik .
Ci=-> CikAg, 1>p (5)
k=1

Generally, the size of cepstrum coefficient vector, ¢ is chose according to ¢ ~ 3p

Parameter Weighting or Littering : The lower order cepstral coefficients are
sensitive to overall spectral slope and the higher order cepstral coefficients are
sensitive to the noise. The weighting function W;(m), essentially deemphasizes
the lower and higher order cepstral coefficients i.e around m = 1 and m = gq,

by bandpass liftering, i.e, filtering in the cepstral domain. It is described as

follows.
Crn = Wi(m)Cpm, 1<m<g (6)
Wi(m) = [1+%sin<m>],1§m§q (7)
q

Temporal Cepstral derivatives : It has been observed that differential parame-
ters are useful when they are used along with ordinary cepstral coefficients. This
is because while the absolute formant locations are sensitive to the speaker vari-
ation, the formant slopes are relatively less sensitive to the speaker variation.
We therefore compute and use the differential coefficients 6Cy,(¢) along with

Cin(t) in our system.

3.2.2 LPC order selection

In this section we describe how we selected the values for LPC parameters. For this
we examined the linear prediction that approximated the real spectrum of the speech
and how it changed with the increase of the order of the LPC. In figures 3.9 to 3.15
we show the FFT of a frame in spoken digit siz of a particular speaker in IITKdigit!
database. The broken line in each figure shows the LPC predictor spectrum. As
we can see in the see figures, the approximation improves with the order of the
LPC. The last figure 3.15 is the best approximated one, when LPC order is equal
to the number of samples. The LPC smoothens the spectrum with the number of
control points determined by the order of the LPC. Visually, it is clear that the LPC

! The details of this and other speech databases are given in appendix A.
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order six or less is not a good approximation. From LPC order eight and above, the
spectrum approximation seems reasonably good and improving. In our experiments,
recognition results are better near LPC order 12 ( see tables 3.1 and 3.2). Further
it is noticed that the recognition rate does not vary much around the LPC order
12 (see table 3.2). Low order LPC fitted spectrum envelops the long peaks of the
actual spectrum without picking the details of short peaks of the spectrum. These
long peaks contain the speech information and the short peaks contain the speaker
(pitch) information. As the LPC order is increased, the short peaks of the spectrum
which are not required for the speech recognition are also picked by the LPC model.
This is the reason for decrease in recognition rate at LPC order 18 (see table 3.1).
The plots and the final results show that the LPC system can effectively compress
the data for spectral information for speech recognition. It could represent spectrum

of 216 samples using 12 numbers, which is an order of magnitude smaller.
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Figure 3.9: Power spectrum of LPC of order 6 plotted against FF'T represented power
spectrum
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Figure 3.10: Power spectrum of LPC of order 8 plotted against FFT represented
power spectrum
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Figure 3.11: Power spectrum of LPC of order 10 plotted against FFT represented
power spectrum
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Figure 3.12: Power spectrum of LPC of order 12 plotted against FF'T represented
power spectrum
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Figure 3.13: Power spectrum of LPC of order 14 plotted against FFT represented
power spectrum
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Figure 3.14: Power spectrum of LPC of order 16 plotted against FF'T represented
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Figure 3.15: Power spectrum of LPC of order 216 plotted against FFT represented
power spectrum
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LPC order | Percent Recognition
8 88.7
12 91.4
18 89.0

Table 3.1: Initial recognition results with IITKdigitSp73tol62 as training database
and [ITKdigitSp31to72 as testing database with cepstrum code book of size 512

LPC order | Percent Recognition
10 82.96
12 82.5
16 82.9

Table 3.2: Initial recognition results with IITKdigitSpOto72F as training database
and [ITKdigitSp0to72S as testing database with pure LPC code book of size 64

3.3 Vector Quantization

As discussed earlier, vector quantizer is an important step of the speech recognition.
The HMM is built upon the the sequence of symbols which are the code book indices
coming from the vector quantizer. Thus even if the feature vector is changed, the
HMM implementation remains unchanged.

In this section, we describe in brief the two different vector quantizers, one based
on the pure LPC coefficients and another one based on LPC derived cepstral coeffi-
cients. The basic mechanism of the vector quantizer has already been described in the
chapter 2. Here we describe the distance metric and centroid computation. We used
the IITKdigitSp31to72 and ITTKdigitSp73to163 databases which generate a total of
83330 training vectors.

3.3.1 VQ Based on Pure LPC coefficients

In this method, the code book is generated using the pure LPC coefficients. The

quantizer uses only the spectral shape information in generating the code book.

8 Distance Computation

We have used likelihood-ratio-distance metric in our implementation of this quan-

tizer. The likelihood-ratio-distance, d(ag, ar), between two LPC vectors, ar and ar
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is defined as,
arVrap

d(aR,aT) = — 1, (8)

arVrar
where V7 is the autocorrelation matrix of the frame that gave rise to the LPC vector

ar.The autocorrelation matrix V7 is defined as follows [13].

Ry R Ry o+ Ry
Ry, Ry R - R,
R2 R1 R[] Rpf?) (9)
| Ryt Rys R,y -+ Ry |

Vectors, agr and dr are transpose of the LPC vectors agr and ap respectively. The
expression arVrar is the residual error or the energy of the error signal. Since ar is
calculated using the least squares method, minimizing the error residual, the following
expressions holds,

aRVTdR Z aTVTdT (10)

and hence,
d(ag,ar) > 0 (11)

8 Updating Centroid

In-order to compute the LPC vector of the centroid of a cell, correlation coefficients for
the centroid are calculated as the mean of the respective autocorrelation coefficients
of all the members of the cell. Then, the Durbin’s method described in reference [13]

is used to compute the LPC coefficients.

8 Quantizer Spectrum Approximation Results

In figures 3.16 to 3.19, we present the spectrum represented by the quantizers of
varying sizes. We have used the LPC order of 12 and the same frame that was used
in the figures 3.9 to 3.15. The figures show the regenerated spectrum from the code

book after vector quantization in broken line.
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3.3.2 VQ Based on LPC Cepstrum coefficients

Implementation of vector quantizer based on cepstrum coefficients is relatively easy
as the distance and centroid computations are simple. The computations remain the
same for distance and centroid, whether the cepstral derivatives used or not. However

the vector length n is different.

B Distance Computation

The distance d(c, ¢), between two cepstrum vectors (co, ¢1, - -+, ¢,) and (éo, éq, -+ -, é)

is calculated as,
d(C, é) = Z(él — Ci)2 (12)

B centroid Update

The centroid computation for a cell containing m cepstral vectors is same as the

centroid computation of m points of n-dimensional Eucledion space.

3.3.3 Code book and its size selection

In our work, we chose a vector quantization code book size of 512. The speech recog-
nition based on cepstral coefficients always outperformed the speech recognition based
on pure LPC coefficients (see tables 3.3 and 3.4). The code book selection between
the pure LPC based one and cepstrum based one is was clearly indicated by the ex-
perimental results, as cepstral coefficients based one has been always outperforming
the pure LPC based one. Table 3.3 shows the results of such an experiment. while the
overall performance of cepstrum based recognizer is satisfactory over the pure LPC
based one, the performance for the digit siz has been very good which was an im-
provement from 72.1% to 86.0%. So we have decided to go ahead with the cepstrum
based vector quantizer. The size of the code book for the cepstrum based vector

quantizer has been chosen as 512 based on the experimental results in the table 3.4.
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Spoken Number of Correctly Correctly
digit utterances recognized recognized
(pure LPC vector | (cepstrum vector
of 18 coefficients) | of 18 coefficients)
0 86 86 85
1 86 78 7
2 84 72 78
3 84 74 73
4 73 o6 58
D 86 76 75
6 86 62 74
7 85 74 80
8 86 71 72
9 86 7 79
TOTAL 840 726 745
PERCENT 86.4 89.0

Table 3.3: Recognition results with IITKSp73to162 as training database and
I[ITKSp30to72 as test test database to select the quantizer type

Codebook Size | Percent Recognition
128 89.4
256 90.1
012 92.5
1024 92.4

Table 3.4: Recognition results with using cepstral coefficients with varying code book
size using ITTKdigitSp73to162 as training database and [ITKdigitSp30to72 as testing
database
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3.4 Hidden Markov Model

In this section we discuss the implementation of the Hidden Markov Model.

3.4.1 Implementation Issues

B HMM Type

In the experiments conducted by the S. E. Levinson and others [11], the left-right
model performed slightly better than the unconstrained model. The left-right model
also provides ease of implementation and easy of characterization of the states to the
real utterance. We therefore chose the strict left-right model. It has the following

additional constraints in the implementation.

1. The first observation is produced while the Markov chain is in a distinguished
state, designated as ¢;. This implies that for the initial state distribution 7, the
probability of starting in any other state is zero.

7 = (1,0,0,---,0)

and 7 is not re-estimated.

2. The last observation is produced while the Markov chain is in the distinguished

last state designated as qy. This implies,
. 1 if i=1
Br(i) = .
0 otherwise
for initialization part of the backward probabilities computation as described in

chapter 2.

3. Once the Markov chain leaves a state, that state can not be revisited later. This
indicates that each state in the HMM models a small continuous portion of the

speech.

3.4.2 Number of Iterations and Stability of Parameters

The transition probability vector and symbol probability vector for each state are
determined over a number of iterations. The stability of transition probability vector

with number of iterations is given in figure 3.20. Similarly symbol probability vector
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convergence is given in figure 3.21 and convergence of log probability of whole training
observation sequence is given in figure 3.22. We experimented the speech recognition
rates with number of iterations (fig. 3.23) and from that the best recognition rates

are obtained around the iteration count being 15 or 50.

0.8 T T T T

0.79

0.78

0.77

0.76

Transition Probability (A22)

0.75

0.74 : : : :
0 20 40 60 80 100

Iteration Number

Figure 3.20: Transition probability convergence with number of iterations using
TrainDB=0OGISp0to79, Test DB=0OGISp80to149, LPC order=12, Cepstrum size=16,
VQ code book size=512

g8 Number of States in HMM

In our experiments, the recognition rate has been improving with the increase in the
number of states of HMM. We have tested up to nine states and the recognition rate
was maximum with number of states nine among the experiments conducted. Since,
there are other parameters to be tuned for each change in the number of states, we

did not experiment with larger numbers of states.

g Initial Estimates

We start with initial estimates for the model parameters, iterate reestimating these pa-

rameters to optimally train the HMM. There is no theoretical way either to determine
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Figure 3.21: Symbol probability convergence with number of iterations
using TrainDB=0OGISp0to79, TestDB=0OGISp80to149,LPC order=12, Cepstrum
size=16, VQ code book size=512
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Figure 3.22: P(O|)) convergence with number of iterations; TrainDB=0GISp0to79,
TestDB=0OGISp80t0149,LPC order=12, Cepstrum size=16,VQ code book size=512
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Figure 3.23: Percent recognition with Number of Iterations; TrainDB=0OGISp0to129,
TestDB=0OGI130t0149, LPC order=12, Cepstrum size=16, VQ code book size=128

No. of states in HMM | Percent Recognition
6 84.8
7 84.5
8 87.24
9 88.2

Table 3.5: Percent recognition with number of states with TrainDB=0OGISp0to79,
TestDB=0OGISp80to149, LPC order=12, Cepstrum size=16, VQ Code book size=64

or ensure the initial estimates to give the optimum final trained parameters. From
the information of the experimental results from the literature [10], [11] and [8], it is
evident that any random initial estimates (subjected to our statistical constraints) of
state distribution 7, and transition probabilities a;; would result in correct parame-
ters after a few iterations. However the same is not true for the symbol probabilities.
A good initial estimates for symbol probabilities would give a better performance
of the speech recognition. A good estimate is achieved by manually segmenting the
observation sequence into states. However a uniform probability distribution for all
the observation symbols is good alternative for the initial estimates. Since it is easy

to start with uniform probabilities, we have used it as initial estimates of symbol
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probabilities. In summary the following are the initial estimates we have used.

e Initial state distribution
7= (1,0,0,---,0)

7 is not re-estimated as we have used left-right model.

e Transition Probabilities

1 ifij=N
0.8 if i=j
0.2 if j=i+1

0 otherwise

e symbol Probability
bij = ﬁ, where M is the number of symbols in each state or (i.e. the code

book size).

3.4.3 the Basic Speech Recognizer

The basic speech recognition system uses the steps described earlier. In this section

we present the results for the basic speech recognition system.

Spoken | Number of | Correct

digit utterances | percent | 0 1 2 3 4 5 6 7 8 9

0 86 1000 |86 O O O O O O O 0 O

1 86 93.02 |0 &8 O 1 0 2 0 0 0 3

2 84 928 |3 0O 78 0 2 0 O 1 0 O

3 84 96.42 1 0 0 8 O O 2 0 0 O

4 73 8219 |0 9 1 0 60 0 0 3 0 0

5 86 8.04 |O 2 0 0 0 ™4 0 1 0 9

6 86 8488 |0 O O 3 1 0 73 0 8 1

7 85 9529 |0 0O O O O 0 O 8 0 4

8 86 9186 |0 O 1 O O O 3 0 79 3

9 86 9767 |0 O O O O 2 0 0 0 &4
TOTAL 842 92.16

Table 3.6: Results for the basic speech recognizer: TrainDB=IITKSp73to162,
TestDB=ITTKSp30to72, LPC order =12, cepstrum size =16, code book size=512

The results in the table 3.6 are presented for telephone quality speech. The train-

ing was carried out using the speeches of 90 speakers and testing was carried out with
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the speeches of 40 different speakers. It was observed that the most of the faulty
recognitions are for the digit siz which is recognized as eight, the digit five which is
confused as digit nine and digit four which is confused with one. Interestingly the
converse was not true, that the recognition rate for the digits one, eight and nine are
not confused with the digits four, siz and five respectively. The recognition rate is
100% for digit zero in the tested database.

Similar experiment was done with OGI database which is microphone (connected
directly to computer) quality database with laboratory clean recording conditions.
As expected, the OGI database has shown higher recognition rate of 96.45% (table
3.7), which is almost 4.0% more than the telephone quality IITK speech database.
The experiment was also tried with interchanging the training and testing database
(table 3.8) with almost no difference in the recognition rate. The speech recognition
rate is 99.84% when same database is used for both training and testing (table 3.9).

Spoken | Number of | Correctly | Correct
digit utterances | recognized | percent
0 65 64 98.46

1 65 65 100.0

2 65 58 89.23

3 65 63 96.92

4 65 64 98.46

5 64 62 96.87

6 65 63 96.92

7 65 62 96.87

8 65 63 96.92

9 65 62 96.87
TOTAL 649 626 96.45

Table 3.7: Results for the basic speech recognizer: TrainDB=0OGISp0to8&4,
TestDB=0OGISp85t0149, LPC order=12, cepstrum size=16, code book size=512
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Spoken | Number of | Correctly | Correct
digit utterances | recognized | percent
0 85 84 98.82

1 85 84 98.82

2 85 80 94.11

3 85 85 100.0

4 85 83 97.64

5 85 82 96.47

6 85 84 98.82

7 85 84 98.82

8 85 78 91.76

9 85 83 97.64
TOTAL 850 815 95.88

Table 3.8: Results for the basic speech recognizer: TrainDB=0OGISp85t0149,
TestDB=0OGISpOto84, LPC order =12, cepstrum size =16, code book size=512

Spoken | Number of | Correctly | Correct
digit utterances | recognized | percent
0 65 65 100.0

1 65 65 100.0

2 65 65 100.0

3 65 65 100.0

4 65 65 100.0

5 64 64 100.0

6 65 64 98.46

7 65 65 100.0

8 65 65 100.0

9 65 65 100.0
TOTAL 649 648 99.84

Table 3.9: Results for basic speech recognizer: TrainDB=TestDB=0OGISp85t0149,
LPC order =12, cepstrum size =16, code book size=512
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Chapter 4

Experiments for Word Rejection

and Performance Fine Tuning

With an encouraging result of 92.16% recognition, we have tried to develop heuristics
to remove the confusion among various pairs of digits (eight and siz, four and one, five
and nine). We first discuss our word rejection criterion before describing the other
fine-tuning experiments. In this chapter we focus our experiments on the telephone

quality speech databases collected at II'T Kanpur.

4.1 Word Rejection

In an online system, speakers may also speak words other than the spoken digits.
Such words should be rejected without which they will map on to one of the digits.
This problem of word rejection is not trivial. The problem in formulating the word
rejection criterion is that we have to use the digit probability in the recognition which
itself is a function of number of observation symbols and the duration of the utterance.
We should some how normalize probability score to number of observation symbols in

the utterance. We approximated normalized probability (N P) in the following way.
NP = P~ (1)

Here P is the forward probability score and N is the number of observation symbols
in the utterance. We observed that the normalized probability of correctly recognized

words is significantly higher than the incorrectly recognized words. The normalized
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probability of incorrectly recognized words is significantly less than that of correctly
recognized words. We found another interesting phenomenon described as follows.
Let NP0, NP1, ---, NP8 and NP9 be the normalized probabilities for a given ut-
terance calculated with the HMMs corresponding to the digits 0, 1, .-+, 8 and 9
respectively. We usually recognize the given utterance as the digit whose correspond-
ing normalized probability is the highest. Let this highest probability be NPMaz1.
Similarly ;et the second highest normal probability be denoted by NPMaz2. Then

we define DN P as the difference between the two as follows,
DNP = NPMax1 — NPMax2 (2)

It was seen that the DNP for an incorrectly recognized utterance is considerably
small compared to a correctly recognized utterance. The figure 4.1 is plot of NP
and DN P of the utterances recognized as zero. The ’diamond’ is plotted when the
utterance is actually ZERO and recognized as ZERO. The ’cross’ is plotted when the
utterance is not actually ZERO but recognized as ZERO. In the category of 'cross’ we
included non-digit utterances and other sounds also, which are found in the record-
ing. Figures 4.2 to 4.10 are the similar plots for the digits ONE to NINE. From these
figures we can see that most of the incorrectly recognized utterances are located near
the origin and x-axis. We therefore imposed additional criterion that the terms NP
and DN P should be above some minimum individual thresholds. We have chosen
these thresholds differently for different digits (table 4.1. This scheme improves the
overall recognition confidence level to 93.5%. The recognition and rejection results
are shown in the table 4.2, ignoring the non-digit input. All the data and results pre-
sented in this section are based on training database IITKdigitSp73t0162 and testing
done with the direct speech recording sessions which are used to create the database
[ITKdigitSp31to72. Considering only the digit utterances, overall recognition rate
is 90.7%, in which 83.2% utterances are accepted and remaining 7.5% are rejected.
Among the 9.3% wrongly recognized utterances, 4.1% are are accepted and 5.2% are
rejected. It means when a digit is accepted, the confidence level is 95.3%, which is a

significant improvement against 90.7% when rejection criterion is not used.

4.2 Performance Fine-tuning

Our experiments to improve the performance of the recognition can be classified into

two categories. In one category of experiments we tried to improve the performance
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Figure 4.7: NP vs DNP plot when the recognition output is SIX
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Digit | NP Threshold | DNP Threshold
0 0.015 0.006
1 0.017 0.004
2 0.025 0.002
3 0.017 0.004
4 0.0145 0.003
5 0.012 0.001
6 0.0155 0.004
7 0.017 0.004
8 0.02 0.005
9 0.02 0.005

Table 4.1: NP and DNP thresholds used with IITKdigitSp73tol162 as training
database and Testing with direct recording

Digit Correctly | Wrongly | Wrongly | Correctly
Digit Accepted | Accepted | Rejected | Rejected
0 81 0 5 0
1 74 7 3 2
2 75 4 4 1
3 70 3 6 5
4 58 3 7 6
5 65 6 6 6
6 73 2 6 3
7 70 0 5 8
8 56 5 13 8
9 66 4 7 4
TOTAL 688 34 62 43
PERCENT 83.2 4.1 7.5 5.2
PERCENT 95.3 4.7
(Within Accepted)

Table 4.2: Recognition and rejection results for digit inputs with I[ITKdigitSp73to162
as training database and Testing with direct recording

by focusing on the signal processing front end The other category of experiments were
focussed on HMM back end.

4.2.1 Experiments with Signal Processing Front end

In these experiments we introduced a few new features in the feature vector as follows.
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§ Frame Energy

The energy of the frame is appropriately scaled and added to the feature vector. In

table 4.3, column III, the recognition results are given with this additional parameter.

Spoken Number of | recognition | recognition | recognition with | with duration
digit utterances | with energy | with duration | relative position | and rel.pos.
0 86 86 85 85 86
1 86 76 78 79 81
2 84 76 7 80 76
3 84 78 77 79 80
4 73 67 63 62 62
5 86 75 76 79 77
6 86 78 69 75 74
7 85 81 81 82 79
8 86 76 78 74 79
9 86 83 83 83 85
TOTAL 842 776 767 778 779
PERCENT 92.16 90.09 92.39 92.51

Table 4.3: Recognition results of basic recognizer with additional features using
TrainDB=IITKSp73t0162, Test DB=ITTKSp30to72

g Utterance Duration

The duration of the utterance was added in the the feature vectors of all the frames

of that utterance. In table 4.3, column IV, the recognition results are given with this

additional parameter.

g Frame Relative Position

The relative position of the frame with in the utterance is added to the feature

vector. In table 4.3, column V., the recognition results are given with this additional

parameter.
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g Combinations

Various combinations of these three features were used in getting the recognition
rates. We got the best recognition rate of 92.51% when utterance duration and

relative frame position were combined as shown in table 4.3, column VI.

4.2.2 Experiments with trained HMMs

In this section we present the experiments and results for improving the performance
of trained HMMs. In all these experiments, we had incorporated the extension of
features set by incorporating the duration of utterance and relative position of the
frame. We present here only those experiments which gave us the best recognition

results. We first define three basic operations that we used in these experiments.

1. HMM state Tie: In this operation, given state sl in some trained HMM and
state s2 in other trained HMM, we manually force the symbol probability dis-
tribution in these states to be identical. To understand its usefulness, consider
the HMM models trained for digits FIVE and NINE. These two spoken digits
have common phoneme /ai/. Let us assume that the states corresponding to
the phone /ai/ are not trained well enough for the HMM model of digit FIVE,
whereas the corresponding states in the HMM model for digit NINE are trained
very well. Now it is possible that many of the spoken digits 'FIVE’ are recog-
nized as 'NINE’ because of the better performance of states corresponding to
/ai/ in its HMM model. This situation can be handled better by forcing the
respective pair of states in the two HMMs to have the same symbol probability
distribution. Let us say states s; and s;;; correspond to phoneme /ai/ in HMM
trained for digit 'FIVE’ and states s; and s;;; correspond to phoneme /ai/ in
HMM trained for digit 'NINE’. We can tie the states s; and s; together. Simi-
larly the states s;;; and s;; are tied together. Let us represent the above tie
operation HM MTye((d1,s1), (d2, s2)).

2. HMM embedded scaling: 1t is some times desirable to either emphasize or deem-
phasize certain portions of the utterance while calculating the observation se-

quence probability. Following are some of the cases where it can be useful.

e If the HMM tying results in poor recognition rate for the two digits involved

in the tying, as many of these two digits are recognized as some other third
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3.

digit. In such a case we may wish to emphasize the symbol probabilities
of the states involved in the HMM tying.

e If the HMM tying results in poor recognition rate for some digit other than
the two digits involved in the tying, as many of the utterances of the third
digit are recognized as one of the two digits involved in the tying. In such
a case we may wish to de-emphasize the symbol probabilities of the states
involved in the HMM tying.

e In case of confusion between digits 'FIVE’ and 'NINE’, instead of ty-
ing states corresponding to /ai/, we may deemphasize these states sym-
bol probabilities and/or emphasize the state symbol probabilities of other

states.
Let us denote the above scaling operation as HM M EmbedScale(d, s, f).

Minimum Probability Criterion Given a HMM trained for the digit d and state
s, this operation ensures each and every symbol probability in that state to be

greater than or equal to e. Let us denote this operation as MinB(d, s).

In the following discussion, we represent these operations as follows.

HMMTuye((d1, s1), (d2,s2)): To tie state s; of HMM of digit d; to state sy of
HMM of digit ds

HM M EmbedScale(d, s, f): To scale the observation probability of each symbol

in state s by a factor of f.

MinB(d, s): To put the minimum limit on the symbol probabilities in state s
of digit d.

. Experiment 1: State 6 of digit 9 is deemphasized and limit is put on the symbol

probabilities as follows.

(a) HM M EmbedScale(9,6,0.01)
(b) MinB(9,6)

This step improved overall recognition rate from 92.51% to 92.63% (table 4.4).

Experiment 2: State 6 of digits 0 and 6 are tied together and then deemphasized.

These are then put through the minimum limit as follows.
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This step improved overall recognition rate from 92.63% to 93.35% (table 4.5).

. Ezxperiment 3: 1In order to reduce confusion between digits 5 and 9, state 5 of

these two digits are tied and passed through minimum limit as follows.
(a) HMMTye((5,5),(9,5))

(b) MinB(5,5)
(c) MinB(9,5)

This step improved recognition rate from 93.35% to 93.47% (table 4.6). As a

side effect, the recognition rate of digit7 was also improved.

. Ezperiment 4: The digit 4 was confused with other utterances. States 4, 7 and

9 of digit 4 were emphasized as follows.

(a) HM M EmbedScale(4,6,2)
(b) HM M EmbedScale(4,7,2)
(¢) HM M EmbedScale(4,9,2)

This step improved recognition rate from 93.47% to 93.94% (table 4.7)
. Experiment 5: States 6,7 and 9 of digit 2 are emphasized.

(a) HM M EmbedScale(2,6,2)
(b) HM M EmbedScale(2,7,2)
(¢) HM M EmbedScale(2,9,2)

This experiment improved recognition rate from 93.94% to 94.3% (table 4.8).
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Spoken Number of | Correctly
digit utterances | recognized

0 86 86

1 86 81

2 84 76

3 84 80

4 73 62

5 86 78

6 86 74

7 85 79

8 86 79

9 86 85

TOTAL 842 780

PERCENT 92.63

Table 4.4: Recognition results after experiment 1, using TrainDB=IITKSp73to162,

Test DB=IITKSp30t072

Spoken Number of | Correctly
digit utterances | recognized
0 86 86
1 86 81
2 84 76
3 84 84
4 73 62
5 86 77
6 86 74
7 85 79
8 86 82
9 86 85
TOTAL 842 786
PERCENT 93.35

Table 4.5: Recognition results after experiment 2, using TrainDB=IITKSp73t0162,

Test DB=IITKSp30t072
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Spoken Number of | Correctly
digit utterances | recognized
0 86 86
1 86 81
2 84 76
3 84 84
4 73 62
5 86 76
6 86 74
7 85 81
8 86 82
9 86 85
TOTAL 842 786
PERCENT 93.47

Table 4.6: Recognition results after experiment 3, using TrainDB=IITKSp73to162,

Test DB=IITKSp30t072

Spoken Number of | Correctly
digit utterances | recognized

0 86 86

1 86 81

2 84 72

3 84 84

4 73 70

5 86 76

6 86 74

7 85 81

8 86 82

9 86 85

TOTAL 842 791

PERCENT 93.94

Table 4.7: Recognition results after experiment 4, using TrainDB=IITKSp73t0162,

Test DB=IITKSp30t072
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Spoken Number of | Correctly
digit utterances | recognized
0 86 85
1 86 81
2 84 78
3 84 83
4 73 69
5 86 76
6 86 74
7 85 81
8 86 82
9 86 85
TOTAL 842 794
PERCENT 94.3

Table 4.8: Recognition results after experiment 5, using TrainDB=IITKSp73t0162,

Test DB=IITKSp30to72
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Chapter 5

An Application: Interactive Voice
Response System for Enquiring

JEE Application Status

In this chapter we discuss the design and implementation of an interactive voice
response system (IVR) application, which we developed for answering the queries
regarding the JEE application status. We first discuss the dialogue design and then

its implementation using the technology developed.

5.1 Dialog Design

Here we present the dialog designed for a single interactive session between the IVR
and the user. The user dials the specified number to the IVR through the modem.
The following the dialog design for the IVR.

e IVR : Welcome to the IIT Kanpur IVR for answering the queries for your JEE
application status. Please speak the digits in the application number slowly one

at a time after the beep.
e /VR : Plays the beep
e (Caller : Speaks the individual digits of application number.

e /VR : Your application number ***** has reached the JEE office.
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5.2 Implementation

Applications Caode Book
Database forvQ

IVR eech of ; oken fy i
Telephone << =~ Modem user interface Sp Word detection | SP Digit Recognition —
User Digits Engine Digits

IVR Speech Trained
Database HMMs

Figure 5.1: Interactive Voice Response System for JEE Application Status Enquiry

Recognized

The block diagram of the interactive voice response system that we implemented
is shown in the figure 5.1. The user interface part of the IVR monitors modem and
when there is an incoming call from the user, it picks up the phone and plays the
pre-recorded welcome message and then generates a beep. The IVR then records
the voice of the speaker for ten seconds in a buffer. The recorded voice is then
passed to the word-detection module. Word-detection module extracts the isolated
spoken digits and passes them to the digit recognition engine. Digit recognition
engine accepts one spoken digit at a time and recognizes the digit in the spoken
speech. The recognized digit is then passed to the IVR user interface module. IVR
user interface module assembles the digits into number and searches it in the database
of received applications numbers. An appropriate message is played back. For digits,
pre-recorded messages are played. Finally the call is disconnected and the entire

process is repeated for another call.
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Chapter 6

Conclusions and future work

In this thesis we implemented an isolated speaker independent spoken digit recogni-
tion system for telephone quality speech. In particular we have been able to achieve

the following.

1. Speech Database: We built spoken digit database of 163 speakers.

2. Speech Recognizer: We implemented every part of the speech recognizer. we
were able to formulate word rejection criterion. We could improve the speech

recognition rate by fine-tuning different parts of the basic speech recognizer.

Based on our experiments, we can conclude the following.

6.1 Conclusions

e The heuristics used in word detection improved the word detection rate and

speech recognition rate.
e Cepstral coefficients are better than the LPC coefficients.
e Addition of differential features improved the performance.
e HMM tye and embedded weight heuristics improved the recognition rate.
e Our word rejection criterion is valid and improved the confidence of the recog-

nized digit.
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e Relatively clean telephone quality speech has better recognition rate than the

relatively noisy telephone quality speech.

6.2 Limitations

e The ITTKdigit speech database has very few female speakers and the recognizer
built using this database as training database may perform poorly for female

speakers.

e The energy thresholds used in the word detection algorithm are specific to our

modem and may need to be changed if the modem is replaced.

6.3 Future Work

e Speech of the female speakers can be added to the ITTKdigit database

e Word detection algorithm can be modified to dynamically adopt the energy
thresholds.

e The recognition rate can be studied, how it is effected with HMM states more

than nine.
e The recognizer can be enhanced to recognize the continuous speech.

e Initiative can be taken to start building II'TK speech tool kit and IITK speech

database for future research.
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Appendix A

Description of Speech Databases

In this appendix we describe the speech databases that we have used in this thesis.
We also describe how we collected our own digit database at I.I.'T Kanpur, which can

be informative for the future research.

A.1 1IITK Telephone-Quality Spoken Digit Databases

Recording Setup : We have collected the speech samples from the IIT Kanpur
internal telephone network within IIT Kanpur. For recording purpose, we have
used a Zyzel voice modem on a PC running Linux. The modem supplied Rock-
well ADPCM compressed data (at 7.2K samples per second) and are stored in
the raw format. In order to record a speech session, the speaker has to dial
the phone number of the modem. As soon as it is connected, the speaker is
prompted with a welcome message and is asked to speak after the beep. The

speech is then recorded and saved in a file.

Mobilizing The Speakers : We have mobilized around a total of 200 speakers.
Each speaker was asked to speak the digits zero to nine in English. Out of
these, the recordings for only 163 speakers were good enough and the remaining

were discarded.

Recording conditions : Since the speakers are mostly the students calling from
hostels and laboratories, the external and background noises are expected.

These include noise due to somebody else speaking in the background, noises
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due to the running air conditioners and other common noises in the laboratories

and hostel corridors.

Speech editing to extract the digits : Initially, we manually edited all the record-
ings. Later we developed the word detection algorithm and used it. In fact the
manual editing experience had been extremely useful in designing the word

detection algorithm.

Overall Database Description : This database consists of telephone quality speech
of 163 speakers. The first 73 speakers have spoken each digit twice in English
and the later 90 speakers have spoken each digit once in English.

Subset Databases : In this section we describe the different databases, which are
subset of the above described collection. The names described here are used in

discussion throughout the thesis.

ITTKdigitSp0to30 : This database is the spoken digit database of the speak-
ers numbered 04 to 30 from a single phone. Each speaker has spoken each
digit twice. Each recording contains high amount of noise generated by
the equipment. Later, this database was not used and dropped due to high

content, of noise.

ITTKdigitSp31to72 : This database is the spoken digit database of speakers
numbered 31 to 72. Each speaker spoke each digit twice.

ITTKdigitSp0to72F : This database is a collection of first instance of the
digits spoken by the speakers numbered 0 to 72.

ITTKdigitSp0to72S : This database is a collection of second instance of each
digits spoken by speakers numbered 0 to 72.

IITKdigitSp73to162 : This database is a collection of spoken digits by speak-
ers from speaker 73 to speaker162. Each digit is spoken only once by a

speaker.

A.2 OGI Spoken Digit Database

This database is prepared by center for Spoken Language Understanding, Oregon

Graduate Institute of Science and Technology.
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Recording Setup : This is also telephone quality speech. The speech signal is
sampled at 8.0 kHz.

Recording conditions : The recording was conducted under ideal laboratory con-

ditions with no background noise.

Overall Description : This database contains spoken digits of 150 speakers. Each

speaker has spoken a digit only once.
Subset Databases :
OGIdigitSp0to119 : This database consists of spoken digits of 120 speakers

0 to 119.

OGIdigitSp120to149 : This database consists of spoken digits of 130 speak-
ers 120 to 149.

OGIdigitSp0to84 : This database consists of spoken digits of 85 speakers 0
to 84.

OGIdigitSp85to149 : This database consists of spoken digits of 65 speakers
120 to 149.
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