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AbstratMany pratial interative voie response systems require speaker independent speehreognition. Ahieving speaker independene is diÆult as we do not have diretmethods to prepare speaker independent referene patterns of the sub-units of thespeeh and ompare a given sub-unit of speeh with them. Hidden Markov Modelsprovide better means than other methods to ahieve speaker independene with thehelp of training speeh by a suÆiently large number of speakers. Hidden Markovmodels have the inherent apability to model the variations in speed of the speeh.We developed an interative voie response system based on disrete Hidden MarkovModels. In our system we use a word detetor and a linear predition based signalproessing front end whih are also developed in this work. We reorded telephonequality speeh with the help of modem interfae and prepared database of spokendigits of 160 speakers using modem for the training purpose to ahieve speaker inde-pendene. We also present di�erent �ne tuning methods to improve the performaneof speeh reognition. We also present word rejetion riterion to improve on�deneof the reognition. We also present an interative voie response system whih isdeveloped using the tehnology developed in this thesis.
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Chapter 1
Introdution
1.1 IntrodutionInterative voie response systems are getting more and more deployed in appliations,espeially where query traÆ is very high and queries are to be attended twenty fourhours a day. For these reasons speeh reognition has gained lot of interest in theresearhers from various �elds. Despite this, speeh reognition has been one of themost diÆult problems to solve. In this work we develop a speaker independentisolated digit reognition system for telephone quality speeh. We have used linearpredition, vetor quantization and Hidden Markov Model to develop this system.We have olleted the required telephone quality speeh for training purpose. Thisspeeh reognition system uses a modem as input and output devie for speeh. Tointerat with the system, the speaker has to dial the telephone number of the modemand interat with it using the telephone.1.2 Related WorkResearh in automati speeh reognition has been done for about �ve deades. The�rst speeh reognition system was built in the year 1952 at Bell Laboratories. Thereognizer was built using aousti features to reognize the digits spoken by a singlespeaker. While the researh had been arried out with aousti phoneti approah,in mid 1970s, Itakura showed how linear predition ould be applied to speeh reog-nition [5℄. In late 1970s and early 1980s, researhers at AT&T Bell Laboratories1



onduted many experiments [10, 11, 16℄ to inorporate speaker independene in thespeeh reognition systems. The tehniques were re�ned over a deade. In ourseof developing an isolated speeh speeh reognition system, they developed an algo-rithm for word detetion [18℄. Although Hidden Markov Model (HMM) was initiallyintrodued in 1960s, researhers at only a few laboratories ould apply it to speehreognition after a deade [1, 6℄. A deade later it was wide published [15℄ andbeame popular. Today almost every speeh reognizer uses HMM. Wilpon [17℄, atAT&T Bell Laboratories studied on ability to automatially reognize the telephonequality speeh in real world onditions. He reported a word detetion rate of 98% andspeeh reognition rate of 86% in online digit reognition. He used a total of 11,035digits of 3100 speakers.1.3 Goals� To develop a speaker independent isolated digit voie reognizer for telephonequality speeh.� To built an appliation for Computer Interative Voie Response system (CIVRS)that uses the tehnology developed in this thesis.1.4 Organization of this workThe rest of the thesis is organized as follows.In hapter 2, we disuss di�erent approahes to speeh reognition and the basispeeh reognition system in our implementation. We disuss di�erent parts of speehreognition system namely, signal proessing front end, vetor quantization and hid-den Markov model bak-end.In hapter 3, we present the design and implementation of the speeh reognitionsystem. We also present the word-detetion algorithm and experimental results thathelped us to hoose various parameters for the speeh reognition system.In hapter 4, we present various experiments for word rejetion riterion and perfor-mane �ne-tuning.In hapter 5, we present an interative voie response system appliation, developedusing the speeh reognition tehnology presented in this thesis. Finally we onlude2



this work in hapter 6
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Chapter 2
Basi Speeh ReognitionTehniquesSpeeh reognition systems aept audio data as input and produe a sequene ofsymbols orresponding to the sequene of spoken words in the input speeh.Speeh signals are slowly varying time signal. When examined over a suÆiently shortinterval of time (say, 5 to 100 ms), a speeh signal is fairly stationary. When examinedover a long interval of time, around 200 ms or more, the signal harateristis hangeto reet the di�erent sounds spoken. A speeh reognition system, therefore, shouldbe able to model the short time harateristis of the signal and their variations overlong periods of time.Even though extensive researh has been arried out during the past �ve deades, weare far from ahieving the goal of a robust speeh reognizer whih an understandspoken words on any subjet by all speakers in all environments. Following are someof the reasons for the diÆulty.� Lak of a sophistiated and yet tratable model of speeh.� Di�erenes in the voal trat sizes among individual speakers ontribute to thevariability of speeh and most of the parametri representations of speeh arenot ompletely speaker independent.� Inherent mismath between training and test environments.� Lak of onsistent units of speeh that are trainable and relatively insensitiveto ontext. 4



� Inadequate use of human knowledge of aoustis and phonetis.Several speaker dependent reognition systems are available with aeptable perfor-mane. Ahieving speaker independene has been the most diÆult task in realizingthe speeh reognition systems. This is due to the speaker dependent nature ofparametri representations of speeh, and a set of referene patterns suitable for onespeaker may perform poorly for another speaker.There are three approahes to ahieve speaker independene. The �rst approahis to �nd the pereptually motivated speeh parameters that are relatively invariantamong speakers. The seond approah is to use multiple representations for eahspeeh unit to apture the between-speaker variations. In this approah, for eahspeeh unit we have a very large database. Using this database, a model for eahspeeh unit is generated. During reognition speeh-unit models for various speehunits are used for omparison. In the third approah, the reognizer knows variousharateristis of the speaker after a few sentenes and uses this knowledge to adaptthe system to the new speaker. Adaptation starts with an initial set of parameters.The new speaker is asked to speak known sentenes and the response is used to toadjust the set of parameters.In this work, the �rst two approahes are inorporated up to some extent. Thespeeh proessing front-end generates di�erential epstral oeÆients. These oeÆ-ients inorporate the formant slope information whih is relatively invariant amongspeakers. The bak-end of the speeh reognition uses Hidden Markov Model (HMM),whih inorporates several referene referene patterns for a speeh unit.In this hapter di�erent parts of the speeh reognition system are disussed thatare implemented in this work. Among the di�erent parts are Linear Preditive Coding(LPC) model, Vetor Quantization and Hidden Markov Model.2.1 Approahes to Speeh reognitionSpeeh reognition approahes an be broadly lassi�ed into three ategories [14℄.1. Aousti phoneti approah2. Pattern reognition approah3. Arti�ial intelligene approah 5



2.1.1 Aousti Phoneti ApproahThe Aousti phoneti approah is based on the theory of aousti phonetis with theassumption that there exist �nite, distintive phoneti units in the spoken languageand these units an be broadly haraterized by a set of properties. The aoustiproperties of the phoneti units are highly variable, both with speakers and withother phoneti units. It is assumed that the rules governing these variations arestraight forward and an be learned and applied in pratial situations.
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� Syntati knowledge: The ombination of words to form the grammatiallyorret strings.� Semanti knowledge: Understanding of the task domain so as to be able to val-idate sentenes and phrases that are onsistent with the task being performed,and the previously deoded sentenes.� Pragmati knowledge: Inferene ability neessary in resolving ambiguity ofmeaning based on ways in whih words are generally used.In this thesis we have implemented the seond approah, the pattern reognitionapproah.2.2 Liner Preditve CoeÆients (LPC) Model forSpeeh ReognitionThe �rst task of the Pattern reognition approah is to parametrially represent thespeeh signal. Among the di�erent possibilities to represent the speeh parametrially,spetral envelop for short duration of the speeh is probably the best. The funtionof feature measurement blok in �gure 2.2 is to represent the speeh signal in termsof ompat, eÆient set of speeh parameters.2.2.1 IntrodutionThe theory of linear predition [13℄ as applied to speeh, has been well understoodfor many years. Following are some of the reasons underlying the widespread usageof LPC.1. LPC provides a good model of speeh signal and provides a good approximationto the voal trat spetral envelop. During the unvoied and the transientregions of speeh, the LPC model is less e�etive than for the voie speeh, butit still provides an aeptably useful model for speeh-reognition purposes.2. The way in whih LPC is applied to the analysis of speeh signals leads toa reasonable soure-voal trat separation. This is important for a speakerindependent voie reognition system.8



3. LPC is an analytially tratable model. The method of LPC is mathematiallypreise and is simple and straightforward to implement.4. The LPC model has been shown to work well in voie reognition appliations[4, 14℄.2.2.2 The ModelIn linear predition, a sample in the signal is predited as a linear ombination ofits past values. Let the predited time series of the signal be ŝ1; ŝ2; � � � ; ŝn and thereal signal be s1; s2; � � � ; sn, then the predited value ŝi of the ith sample is a linearombination of (si�1; si�2; � � � ; si�p), where p is alled the order of the LPC model.In LPC model, with an order p, only p oeÆients are needed. These oeÆients anbe omputed by solving a set of equations whih are well doumented in the standardtexts [13, 19℄. This LPC oeÆient vetor is spetral approximation of the speehsignal.2.3 Vetor Quantization2.3.1 IntrodutionThe LPC oeÆient vetors are generated for the waveform on a short time basis.These vetors are however very large. A tehnique of vetor quantization helps inreduing this spae. In vetor quantization, a table alled ode book of �nite size ismaintained. Eah entry of the ode book is a vetor. The spetral LPC vetors arethen mapped on to one of these vetors and only the index is used to represent thewaveform instead of the entire LPC vetor.For vetor quantization, it is neessary to have a measurement of dissimilarity betweenthe two vetors. We expet suh dissimilarity measure to on�rm to the knownlinguisti harateristis.2.3.2 Distane Measure CriterionLet x; y be two feature vetors de�ned on a vetor spae �. We de�ne a metri ordistane funtion d on the vetor spae � as a real-valued funtion with the following9



properties.1. Positive de�niteness: 0 � d(x; y) <1 for x; y 2 � and d(x; y) = 0 if and onlyif x = y2. Symmetry: d(x; y) = d(y; x) for x; y 2 �3. Triangle inequality: d(x; y) � d(x; z) + d(y; z) for x; y; z 2 �4. Invariane: d(x+ z; y + z) = d(x; y)2.3.3 VQ training and lassi�ation strutureTo build a VQ odebook and implement a VQ analysis proedure, we need the fol-lowing:
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Figure 2.3: Vetor quantization training and lassi�ation struture1. A large set of spetral vetors, v1; v2; � � � ; vL, whih form a training set. Thetraining set is used to reate the optimal set of ode book vetors for representingthe spetral variability observed in the training set.2. A distane measure between a pair of spetral analysis vetors so as to be ableto luster the training set vetors as well as to lassify arbitrary spetral vetorsinto unique ode book entries. 10



3. A entroid omputation proedure. On the basis of the partitioning that lassi-�es the training vetors into the M lusters, we hoose the M odebook vetorsas the entroid of eah of the M lusters.4. A lassi�ation proedure for arbitrary speeh spetral analysis vetors thathooses odebook vetor losest to the input vetor and uses the odebookindex as the resulting spetral representation.2.3.4 Clustering the Training VetorsThe way in whih set of L training vetors an be lustered into set of M odebookvetors is as follows.� K-means Clustering Algorithm [14℄1. Initialization: Arbitrarily hose M training vetors as the initial set of odewords in the odebook.2. Nearest-Neighbor Searh: For eah training vetor, �nd the odeword inthe urrent odebook that is losest as measured by the distane measure,and assign that vetor to the orresponding luster, assoiated with losestode word.3. Centroid Update: Update the ode word in eah luster using the entroidof the training vetors assigned to that luster.4. Iteration: Repeat the steps 2 and 3 until the relative of average distaneof all training vetors to their orresponding ode word falls bellow somethreshold.� Binary Split Algorithm [14℄Instead of starting diretly with the M initial arbitrary training vetors, binarysplit algorithm starts with one initial vetor and ahieves odebook of size Mafter log2M steps. At eah step it applies K-means lustering algorithm toahieve the optimum odebook entries. Then it splits eah odebook vetorinto two, giving double the size of present odebook entries. These newly splitentries are used as initial vetors for the next step.
11



2.4 The Hidden Markov ModelHidden Markov Model (HMM) [15℄ approah is a widely used statistial methodfor haraterizing the spetral properties of the frames of a pattern. The underlyingassumption of HMM is that the speeh signal an be well haraterized as a parametrirandom proess, and that the parameters of the stohasti proess an be determined(estimated) in a preise and well de�ned manner.2.4.1 De�nitionHidden Markov Model is a doubly embedded stohasti proess with an underlyingstohasti proess that is not diretly observable (it is hidden) but an be observedonly through another set of stohasti proesses that produe the sequene of obser-vations.A hidden Markov model is olletion of states onneted by transitions. Eah statearries two sets of probabilities: a set of transition probabilities, whih provides theprobabilities of transitions from this state to all the states; and output probabilieswhih de�ne the onditional probability of emitting eah output symbol if the systemis in that state. Figure 2.4 shows an example of a HMM with two output symbols, Aand B.
1.00.6

A  0.8

B  0.2

A  0.3

B  0.7
1 2

0.4

Figure 2.4: A simple HMM with two states and and two output symbols, A and BGiven an observation sequene (a string of A's and B's for the example in �gure2.4) generated by a HMM, we however annot determine the exat state transitionsequene. This is beause in eah state the output symbol is not unique (in ontrastwith the Markov hain). The output symbol is again a random variable. So, for agiven observation sequene, we annot see the underlying proess. Hene this model12



has the Hidden Markov Model.A HMM is haraterized by the following:1. N , the number of states in the model. We denote the individual states asS = fS1; S2; � � � ; Sng, and the system state at time t as qt2. M , the number of distint observation symbols per state, i.e., the disrete al-phabet size. We denote the individual symbols as V = fv1; v2; � � � ; vmg.3. The transition probability distribution A = faijg, where eah aij is the tran-sition probability from state Si to state Sj. Clearly, aij � 0; 8i; j andPj aij = 1; 8i4. The observation symbol probability distribution B = bjk, where eah bjk is theobservation symbol probability for symbol vk, when the system is in the stateSj. Clearly, bjk � 0; 8j; k and Pk bjk = 1; 8j5. The initial state distribution � = f�ig, where �i = P [q1 = Si℄; 1 � j � NWe an speify an HMM model as � = (A;B; �;M;N; V ). In this thesis we howeverrepresent � = (A;B; �) and assume M , N and V to be impliit.2.4.2 Use of HMM in Speeh ReognitionHMM an be used to model a unit of speeh, whether it is a phoneme, or a word, ora sentene. LPC analysis followed by the vetor quantization of the unit of speeh,gives a sequene of symbols (VQ indies). HMM is one of the ways to apture thestruture in this sequene of symbols. In order to use HMMs in speeh reognition,we should have some means to ahieve the following.� Evaluation: Given the observation sequene O = o1; o2; � � � ; oT , and a HMM� = (A;B; �), to eÆiently ompute P (Oj�), the probability of the observationgiven the HMM.� Deoding: Given the observation sequene O = o1; o2; � � � ; oT , and a HMM� = (A;B; �), to hoose a orresponding state sequene Q = q1; q2; � � � ; qTwhih is optimal in some meaningful sense, given the HMM.� Training: To adjust the HMM parameters � = (A;B; �) to maximize P (Oj�).13



The following are some of the assumptions in the hidden Markov modeling for speeh.� Suessive observations (frames of speeh) are independent, and therefore theprobability of sequene of observations P (o1; o2; � � � ; oT ) an be written as aprodut of probabilities of individual observations, i.e.,P (o1; o2; � � � ; oT ) = �Ti=1P (oi)� Markov assumption:The probability of being in a state at time t, depends onlyon the state at time t-1EvaluationEvaluation is to �nd probability of generation of a given observation sequene by agiven model. The reognition result will be the speeh unit orresponding to themodel that best mathes among the di�erent ompeting models. Now we have to�nd P (Oj�), the probability of observation sequene O = (o1; o2; � � � ; oT ) given themodel � i.e., P (Oj�).One ould, in priniple ompute P (Oj�) by omputing the joint probability, P (O; qjM)for eah possible state sequene, q, of length T and then summing over all state se-quenes. Computationally this method is very ostly. However, there is an eÆientway of omputing this probability using forward and bakward probabilities.Forward-Bakward Algorithm [15℄� The Forward Probabilities: onsider the forward variable �t(i) de�ned as�t(i) = P (o1o2 � � � ot; qt = ij�) (1)that is, the probability of the partial observation sequene,o1 o2 � � � ot (until timet) and state i at time t, given the model �. We an solve for �t indutively, asfollows:1. Initialization: �1(i) = �ibi(o1) 1 � i � N (2)2. Indution :�t+1(j) = " NXi=1 �t(i)aij# bj(ot+1) 1 � t � T � 1; 1 � j � N (3)where N is the number of states in the model.14



� The Bakward Probabilities: Consider the bakward variable �t(i) de�ned as�t(i) = P (ot+1ot+2 � � � oT jqt = i; �) (4)that is, the probability of the partial observation sequene from t + 1 to theend, given state i at time t and the model �. Again, we an solve for �t(i)indutively as follows1. Initialization: �T (i) = 1; 1 � i � N (5)2. Indution: �t(i) = NXj=1 aijbj(ot+1)�t+1(j); (6)t = T � 1; T � 2; � � � ; 1; 1 � i � NThe two forward and bakward probabilities an be used to ompute P (Oj�) aordingto P (Oj�) = nXi=1 NXj=1�t(i)aijbj(ot+1)�t+1(j) (7)for any t suh that 1 � t � T � 1. Equations (3) to (7) are referred to as forward-bakward algorithm.Setting t = T � 1 in (7) gives P (Oj�) = NXi=1 �T (i) (8)so that the probability, P (Oj�) an be alulated form forward probabilities alone.Similarly P (Oj�) an be alulated from bakward probabilities alone, by setting t = 1.P (Oj�) = NXi=1 �ibi(o1)�1(i) (9)DeodingDeoding is to �nd the single best state sequene, Q = (q1; q2 � � � qT ), for the givenobservation sequene O = (o1o2 � � � oT ). Consider Æt(i), de�ned asÆt(i) = maxq1; q2;���qt�1 P [q1q2 � � � qt = i; o1o2 � � � otj�℄ (10)15



that, is Æt(i) is the best sore along single path, at time t, whih aounts for the tobservations and ends in state i. By indution, we haveÆt+1(j) = �maxi Æt(i)aij� bj(ot+1) (11)The omplete proedure is as followsThe Viterbi Algorithm [15℄1. Preproessing: ~�i = log(�i); 1 � i � N~bi(ot) = log [bi(ot)℄ ; 1 � i � N; 1 � t � T~aij = log(aij); 1 � i; j � N2. Initialization: ~Æ1(i) = log(Æ1(i)) = ~�i + ~bi(o1); 1 � i � N 1(i) = 0; 1 � i � N3. Reursion~Æt(j) = log(Æt(j)) = max1�i�N h~Æt�1(i) + ~aiji +~bi(o1) t(j) = argmax1�i�N h~Æt�1(i) + ~aiji 2 � t � T; 1 � j � N4. Termination ~P � = max1�i�N h~ÆT (i)iq�T = arg max1�i�N h~ÆT (i)i5. Baktraking q�t =  t+1(q�t+1); t = T � 1; T � 2; � � � ; 1The array q� ontains the required best state sequene.16



LearningLearning is to adjust the model parameters (A;B; �) to maximize the probabilityof the observation sequene given the model. It is the most diÆult task of theHidden Markov Modeling, as there is no known analytial method to solve for theparameters in a maximum likelihood model. Instead, an iterative proedure shouldbe used. Baum-Welh algorithm [15℄ is the extensively used iterative proedure forhoosing the model parameters. In this method we start with some initial estimatesof the model parameters and modify the model parameters to maximize the trainingobservation sequene in an iterative manner till the model parameters reah a ritialvalue. We de�ne the variables �t(i; j) and t(i) as,�t(i; j) is the probability of being in state i at time t, and state j at time t+1, giventhe model and observation sequene.�t(i; j) = P (qt = i; qt+1 = jjO; �)�t(i; j) = �t(i)aijbj(ot+1)�t+1(j)PNi=1PNj=1 �t(i)aijbj(ot+1)�t+1(j) (12)where �t(i)aijbj(ot+1)�t+1(j) is equal to P (qt = i; qt+1 = j; Oj�).t(i) is the probability of being in the state i at time t, given the observation sequeneO, and the model � t(i) = P (qt = ijO; �)t(i) = �t(i)�t(i)PNi=1 �t(i)�t(i) (13)where �t(i)�t(i) is equal to P (O; qt = ij�)By the de�nition of the variables �t(i; j) and t(i), the following relations are true,t(i) = NXj=1 �t(i; j)T�1Xt=1 t(i) = expeted number of transitions from state i in OT�1Xt=1 �t(i; j) = expeted number of transitions from state i to state j in OUsing the above formulas and the onept of ounting the event ourrene, theparameters of the model � = (A;B; �) an be re-estimated as ~� = ( ~A; ~B; ~�), as17



follows. ~�i = 1(i) (14)~aij = PT�1t=1 �t(i; j)PT�1t=1 t(i) (15)~bj(k) = PT�1t=1 s:t ot=vk t(i)PT�1t=1 t(i) (16)It has been proved that one of the following two statements is true for � and ~�1. The initial model � de�nes a ritial point of the likelihood funtion in whihase �=~�.2. model ~� is more likely than the model �, in the sense that P (Oj~�) > P (Oj�).In ase (1), we stop the iterative proedure delaring � as the �nal trained modelfor the observation sequene O. In ase (2), we replae the the model � by ~� asthe initial model for the next iteration. The iteration is stopped when P (Oj~�)�P (Oj�)P (Oj�)reahes some minimum value and then the model, ~� is delared as the �nal trainedmodel for the observation sequene O.
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Chapter 3
Design and ImplementationIn this hapter we disuss the design and implementation issues of realizing eah stageof our basi reognizer. We also present relevant experimental results where ever theyare required for justi�ation and understanding.3.1 Word End Points DetetionFor isolated word reognition, it is assumed that the the words are spoken with asuÆient pause so that no two suessive words overlap with eah another. Givenan input speeh, the problem of �nding the word boundaries in the time domain isword-detetion problem. Word boundaries are deteted by haraterization of theenergy hanges over time. In our work, the end-point detetion algorithm is similarto the one given by Wilpon et. [18℄. However we have evolved the algorithm bythe experiene of manual editing of the end points and by di�erent trial and errorexperiments with the speeh of 100 speakers. Figure 3.1 is the speeh signal of atypial speaker sampled at the rate of 7:2KHz. The next �gure 3.2 is the plot ofthe energy of the sliding frame of the orresponding signal. The size of the frame is300 samples and the slide is 100 samples. Starting with the initial 300 samples as the�rst frame, at every step energy of the frame is alulated and the frame is moved100 samples forward. This way the energy is plotted for the speeh signal in �gure3.2 and others.The speeh signal in �gure 3.1 ontains �ve isolated words, whih are the spoken19
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Figure 3.1: Telephone quality Speeh signal of a speaker sampled at 7.2 KHz for digits0; 1; 2; 3; 4digits 0; 1; 2; 3 and 4. The small spikes are due to the presene of noise. By orrelat-ing the speeh signal and its orresponding energy plot we an easily guess that theenergy an be used as a feature to determine the word boundaries. To start with, wean formulate the algorithm to detet a word as a group of onseutive frames wherethe log of energy of eah frame is above a threshold. While a high threshold an beused to avoid noise, some end points will not be reognized. Similarly a low thresholdmay result in reognizing noise as a word. To resolve this, a minimum number offrames riteria is introdued in-order to qualify a group of onseutive frames as aword. Though the duration of noise is small in the ase of noise like mouth likand swithing, it is likely to be long enough to qualify as a word. An example islong heavy breathing noise. To deal with suh type of ases, a seond higher level ofthreshold is introdued. The observation is that in most of the ases the maximumenergy of a frame in the noise is muh less than the maximum energy of a frame ofany spoken words unless the bakground noise is as strong as the speeh itself. Withthis new additional riteria, it is possible to detet the word lose to the real endpoints unless the noise itself is as strong as the speeh.20
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Figure 3.4: Energy of the sliding frame of size=300 samples, sliding size=100 samplesover the speeh in �gure 3.3However this riterion fails in some ases, for example, onsider the speeh signaland orresponding frame energy plot in the �gures 3.3 and 3.4. These �gures orre-spond to the digits 5; 6; 7; 8 and 9 respetively. In the �gure 3.4, two energy bandsthat appear between the frame numbers 800 and 900 orrespond to the digit six andthe other two energy bands that appear between the frame numbers 1050 and 1150orrespond to the spoken digit eight. The seond thinner band in these two pairsorrespond to 'IX' of the spoken digit six and 'T' of the spoken digit eight respe-tively. Under our riterion, these small bands will be dropped or at best reognizedas a separate word. However, these portions in the digits six and eight are ritial forgood reognition rate. In our experiments in about 50% of the ases these two digitsappear as two di�erent bands in the energy plot. The number of frames between thetwo suessive bands of the same word is onsiderably less than that between twoonseutive words. Addition of this heuristi in our riterion works very well. In ourexperiment, with this new heuristi, 'IX' portion of the spoken digit six is droppedin one amongst 90 speakers and 'T' portion of the spoken digit eight is dropped for4 amongst 90 speakers. In our algorithm, we restrited the number of energy pulses22



within a single utterane to a maximum of two, whih is good enough in ase ofdigit reognition. Out of 873 digits ospoken by 90 speakers, 17 digits were spoken inonneted fashion, and were not isolated in the speeh. Out of 856 isolated digits,844 digits were deteted without any type of error, 6 digits were deteted but the endpoints were not plaed exatly and 6 digits were not deteted. The total number ofdigits that are deteted are 850 out of 856, whih is 99.3% . These undeteted wordsare mainly due to very low volume at whih they were spoken.Figures 3.5, 3.6, and 3.7 depit the �nite state mahine whih implements the worddetetion algorithm. The algorithm is designed in suh a way that both the word-detetion and reognition an go simultaneously running in two di�erent proesses.As soon as the word-detetion proess enters the state 4, it an start sending theframes to the Reognition proess for further proessing antiipating it to be a word.Later when the word-detetion proess �nds a wrong detetion of the word, it anthen notify the reognition proess to either retain it or disard it. This design isdue to our initial mind-set to let word-detetion and rest of the reognition to goon parallel. Authors J. G. Wilpon, L. R. Rabiner in their artile [18℄, propose toexamine the whole speeh of that partiular reording to determine minimum energylevel frame as the mean noise level and then depending on that set the �rst andseond level thresholds of energy. Sine we have deided that our algorithm shoulddetet the words online, the �rst level threshold is determined prior to the start of thereording. For this we examined the speeh ontaining around 2300 spoken digits,and then �xed the �rst and the seond levels of thresholds. In order to qualify agroup of onseutive frames, in our algorithm, at least four onseutive frames shouldross the seond level threshold. J.G.Wilpon et.[17℄ reported word-detetion rate of98%, as opposed to ours ( 99.3% ).State Diagram for the Word-detetion AlgorithmFigures 3.5 to 3.6 depit the �nite state diagram for the word-detetion algorithmdesribed above. Here we explain the terms used in the �nite state diagram and abrief explanation of it.� FC : Global frame ount� E : Energy of the urrent frame� PE : Energy of the previous frame 23



� bar : It is used alternatively for the term pulse� LthCFC : Low threshold onseutive frame ount� HthCFC : High threshold onseutive frame ount� MaxHthCFC : Maximum High threshold onseutive frame ount within a word� LThE : Low threshold energy� HThE : High threshold energy� ThikBarLThE : LThE for Thik energy pulse� ThinBarLThE : LThE for Thin energy pulse� WordPending : if TRUE, this ag indiates that a thik pulse has been reog-nized as word and waiting to reognize the end point. This indiates that thealgorithm is looking for thin pulse, within the allowed sope, to determine theend pointThe following is the brief explanation of the state diagram.� The statements under eah state are exeuted by the system in that state� The loop overing the states 4 and 5 ounts the number of low threshold on-seutive frame ount� The loop overing the states 7, 8 and 9 ounts the number of high thresholdonseutive frame ount� states 2a and 2b ontrols whih thresholds to be used by the ounting loops.This is beause we are using di�erent low and high thresholds for thik and thinenergy bands.� The system will be in states 1 and 2� when the frame energies are below boththe thresholds.� State 2b ollet the word boundaries if the thin energy band is not found withinthe spei�ed sope.� State 20a ollets the word boundaries when a thin band also quali�es its thresh-old energy frame ount riterion. This state restrits number of thin bands toa maximum of one. 24
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3.2 LPCIn this setion we desribe the implementation of LPC preproessor, whih omputesLPC and LPC derived epstral oeÆients. We also present the experimental resultsto selet the order of the LPC.3.2.1 LPC PreproessorThe overall funtion of the LPC preproessor is to generate feature vetor for every tenmilliseonds of speeh signal. This feature vetors are later used by vetor quantizerfor further proessing. In the feature vetor we generate LPC oeÆients (Am(t)),Cepstral oeÆients (Cm(t)), Weighted epstral oeÆients(Ĉm(t)) and di�erentialepstral oeÆients(4Ĉm).In this subsetion di�erent phases of LPC preproessor (�gure 3.8) are brieyexplained. The theoretial bakground for this is available in various referenes ( [14℄,[3℄, [13℄).
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whih refers to a transfer funtion,H(z) = 1� az�1FRAME BLOCKING : The preemphasized speeh signal is onverted into framesof subsequent samples. For this window size is equal to number of samples in30ms of speeh. Neighboring frames overlap with number of samples in 20msof speeh.WINDOWING : Eah individual frame is windowed to minimize the signal dis-ontinuities at the beginning and the end of eah frame. We use the hammingwindow for this whih is transfer funtion,W (n) = 0:54� 0:46 os(2�n=(N � 1)) 0 <= n <= N (1)AUTOCORRELATION ANALYSIS : Eah frame of the windowed signal isnext autoorrelated to get the orrelation oeÆients using the following for-mula. R(m) = PN�l�mn=0 S(n)S(n+m) m = 0; 1; : : : ; pLPC ANALYSIS : In this step, we onvert eah frame of p + 1 autoorrelationsinto LPC parameter set. The LPC parameter set, whih is the set of �lteroeÆients, an be obtained by solving the set of autoorrelation equations asdesribed earlier.LPC Parameter Conversion to Cepstral CoeÆients : LPC epstral oeÆientsset is a very important parameter and an be diretly derived from the LPCoeÆients. Cepstral oeÆients are oeÆients of Fourier transform represen-tation of log magnitude spetrum. Cepstral oeÆients are most robust andreliable [14℄ among all the forms of LPC oeÆients. Our experiments havealso given onsiderably good performane when epstral oeÆients are used.The epstral onversion is spei�ed as follows.C0 = E0 = R0 (2)C1 = �A1 (3)29



Ci = �Ai � i�1Xk=1 i� ki Ci�kAk ; 2 � i � p (4)Ci = � i�1Xk=1 i� ki Ci�kAk ; i > p (5)Generally, the size of epstrum oeÆient vetor, q is hose aording to q ' 3pParameter Weighting or Littering : The lower order epstral oeÆients aresensitive to overall spetral slope and the higher order epstral oeÆients aresensitive to the noise. The weighting funtion Wt(m), essentially deemphasizesthe lower and higher order epstral oeÆients i.e around m = 1 and m = q,by bandpass liftering, i.e, �ltering in the epstral domain. It is desribed asfollows. Ĉm = Wt(m)Cm ; 1 � m � q (6)Wt(m) = "1 + q2 sin �mq !# ; 1 � m � q (7)Temporal Cepstral derivatives : It has been observed that di�erential parame-ters are useful when they are used along with ordinary epstral oeÆients. Thisis beause while the absolute formant loations are sensitive to the speaker vari-ation, the formant slopes are relatively less sensitive to the speaker variation.We therefore ompute and use the di�erential oeÆients ÆĈm(t) along withCm(t) in our system.3.2.2 LPC order seletionIn this setion we desribe how we seleted the values for LPC parameters. For thiswe examined the linear predition that approximated the real spetrum of the speehand how it hanged with the inrease of the order of the LPC. In �gures 3.9 to 3.15we show the FFT of a frame in spoken digit six of a partiular speaker in IITKdigit1database. The broken line in eah �gure shows the LPC preditor spetrum. Aswe an see in the see �gures, the approximation improves with the order of theLPC. The last �gure 3.15 is the best approximated one, when LPC order is equalto the number of samples. The LPC smoothens the spetrum with the number ofontrol points determined by the order of the LPC. Visually, it is lear that the LPC1The details of this and other speeh databases are given in appendix A.30



order six or less is not a good approximation. From LPC order eight and above, thespetrum approximation seems reasonably good and improving. In our experiments,reognition results are better near LPC order 12 ( see tables 3.1 and 3.2). Furtherit is notied that the reognition rate does not vary muh around the LPC order12 (see table 3.2). Low order LPC �tted spetrum envelops the long peaks of theatual spetrum without piking the details of short peaks of the spetrum. Theselong peaks ontain the speeh information and the short peaks ontain the speaker(pith) information. As the LPC order is inreased, the short peaks of the spetrumwhih are not required for the speeh reognition are also piked by the LPC model.This is the reason for derease in reognition rate at LPC order 18 (see table 3.1).The plots and the �nal results show that the LPC system an e�etively ompressthe data for spetral information for speeh reognition. It ould represent spetrumof 216 samples using 12 numbers, whih is an order of magnitude smaller.
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Figure 3.10: Power spetrum of LPC of order 8 plotted against FFT representedpower spetrum
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Figure 3.12: Power spetrum of LPC of order 12 plotted against FFT representedpower spetrum
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Figure 3.14: Power spetrum of LPC of order 16 plotted against FFT representedpower spetrum
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Figure 3.15: Power spetrum of LPC of order 216 plotted against FFT representedpower spetrum 34



LPC order Perent Reognition8 88.712 91.418 89.0Table 3.1: Initial reognition results with IITKdigitSp73to162 as training databaseand IITKdigitSp31to72 as testing database with epstrum ode book of size 512LPC order Perent Reognition10 82.9612 82.516 82.9Table 3.2: Initial reognition results with IITKdigitSp0to72F as training databaseand IITKdigitSp0to72S as testing database with pure LPC ode book of size 643.3 Vetor QuantizationAs disussed earlier, vetor quantizer is an important step of the speeh reognition.The HMM is built upon the the sequene of symbols whih are the ode book indiesoming from the vetor quantizer. Thus even if the feature vetor is hanged, theHMM implementation remains unhanged.In this setion, we desribe in brief the two di�erent vetor quantizers, one basedon the pure LPC oeÆients and another one based on LPC derived epstral oeÆ-ients. The basi mehanism of the vetor quantizer has already been desribed in thehapter 2. Here we desribe the distane metri and entroid omputation. We usedthe IITKdigitSp31to72 and IITKdigitSp73to163 databases whih generate a total of83330 training vetors.3.3.1 VQ Based on Pure LPC oeÆientsIn this method, the ode book is generated using the pure LPC oeÆients. Thequantizer uses only the spetral shape information in generating the ode book.Distane ComputationWe have used likelihood-ratio-distane metri in our implementation of this quan-tizer. The likelihood-ratio-distane, d(aR; aT ), between two LPC vetors, aR and aT35



is de�ned as, d(aR; aT ) = aRVT �aRaTVT �aT � 1; (8)where VT is the autoorrelation matrix of the frame that gave rise to the LPC vetoraT .The autoorrelation matrix VT is de�ned as follows [13℄.26666666664
R0 R1 R2 � � � Rp�1R1 R0 R1 � � � Rp�2R2 R1 R0 � � � Rp�3... ... ... ...Rp�1 Rp�2 Rp�3 � � � R0

37777777775 (9)
Vetors, �aR and �aT are transpose of the LPC vetors aR and aT respetively. Theexpression aTVT �aT is the residual error or the energy of the error signal. Sine aT isalulated using the least squares method, minimizing the error residual, the followingexpressions holds, aRVT �aR � aTVT �aT (10)and hene, d(aR; aT ) � 0 (11)Updating CentroidIn-order to ompute the LPC vetor of the entroid of a ell, orrelation oeÆients forthe entroid are alulated as the mean of the respetive autoorrelation oeÆientsof all the members of the ell. Then, the Durbin's method desribed in referene [13℄is used to ompute the LPC oeÆients.Quantizer Spetrum Approximation ResultsIn �gures 3.16 to 3.19, we present the spetrum represented by the quantizers ofvarying sizes. We have used the LPC order of 12 and the same frame that was usedin the �gures 3.9 to 3.15. The �gures show the regenerated spetrum from the odebook after vetor quantization in broken line.
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Figure 3.18: The 12th order LPC vetor and its quantized versions for ode book ofsize 256
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3.3.2 VQ Based on LPC Cepstrum oeÆientsImplementation of vetor quantizer based on epstrum oeÆients is relatively easyas the distane and entroid omputations are simple. The omputations remain thesame for distane and entroid, whether the epstral derivatives used or not. Howeverthe vetor length n is di�erent.Distane ComputationThe distane d(; �), between two epstrum vetors (0; 1; � � � ; n) and (�0; �1; � � � ; �n)is alulated as, d(; �) = nXi=0(�i � i)2 (12)entroid UpdateThe entroid omputation for a ell ontaining m epstral vetors is same as theentroid omputation of m points of n-dimensional Euledion spae.3.3.3 Code book and its size seletionIn our work, we hose a vetor quantization ode book size of 512. The speeh reog-nition based on epstral oeÆients always outperformed the speeh reognition basedon pure LPC oeÆients (see tables 3.3 and 3.4). The ode book seletion betweenthe pure LPC based one and epstrum based one is was learly indiated by the ex-perimental results, as epstral oeÆients based one has been always outperformingthe pure LPC based one. Table 3.3 shows the results of suh an experiment. while theoverall performane of epstrum based reognizer is satisfatory over the pure LPCbased one, the performane for the digit six has been very good whih was an im-provement from 72.1% to 86.0%. So we have deided to go ahead with the epstrumbased vetor quantizer. The size of the ode book for the epstrum based vetorquantizer has been hosen as 512 based on the experimental results in the table 3.4.
39



Spoken Number of Corretly Corretlydigit utteranes reognized reognized(pure LPC vetor (epstrum vetorof 18 oeÆients) of 18 oeÆients)0 86 86 851 86 78 772 84 72 783 84 74 734 73 56 585 86 76 756 86 62 747 85 74 808 86 71 729 86 77 79TOTAL 840 726 745PERCENT 86.4 89.0Table 3.3: Reognition results with IITKSp73to162 as training database andIITKSp30to72 as test test database to selet the quantizer type
Codebook Size Perent Reognition128 89.4256 90.1512 92.51024 92.4Table 3.4: Reognition results with using epstral oeÆients with varying ode booksize using IITKdigitSp73to162 as training database and IITKdigitSp30to72 as testingdatabase
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3.4 Hidden Markov ModelIn this setion we disuss the implementation of the Hidden Markov Model.3.4.1 Implementation IssuesHMM TypeIn the experiments onduted by the S. E. Levinson and others [11℄, the left-rightmodel performed slightly better than the unonstrained model. The left-right modelalso provides ease of implementation and easy of haraterization of the states to thereal utterane. We therefore hose the strit left-right model. It has the followingadditional onstraints in the implementation.1. The �rst observation is produed while the Markov hain is in a distinguishedstate, designated as q1. This implies that for the initial state distribution �, theprobability of starting in any other state is zero.� = (1; 0; 0; � � � ; 0)and � is not re-estimated.2. The last observation is produed while the Markov hain is in the distinguishedlast state designated as qN . This implies,�T (i) = 8<: 1 if i=10 otherwisefor initialization part of the bakward probabilities omputation as desribed inhapter 2.3. One the Markov hain leaves a state, that state an not be revisited later. Thisindiates that eah state in the HMM models a small ontinuous portion of thespeeh.3.4.2 Number of Iterations and Stability of ParametersThe transition probability vetor and symbol probability vetor for eah state aredetermined over a number of iterations. The stability of transition probability vetorwith number of iterations is given in �gure 3.20. Similarly symbol probability vetor41



onvergene is given in �gure 3.21 and onvergene of log probability of whole trainingobservation sequene is given in �gure 3.22. We experimented the speeh reognitionrates with number of iterations (�g. 3.23) and from that the best reognition ratesare obtained around the iteration ount being 15 or 50.
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probabilities. In summary the following are the initial estimates we have used.� Initial state distribution� = (1; 0; 0; � � � ; 0)� is not re-estimated as we have used left-right model.� Transition Probabilities ai(j) = 8>>>>><>>>>>: 1 if i, j = N0:8 if i=j0:2 if j=i+10 otherwise� symbol Probabilitybij = 1M , where M is the number of symbols in eah state or (i.e. the odebook size).3.4.3 the Basi Speeh ReognizerThe basi speeh reognition system uses the steps desribed earlier. In this setionwe present the results for the basi speeh reognition system.Spoken Number of Corretdigit utteranes perent 0 1 2 3 4 5 6 7 8 90 86 100.0 86 0 0 0 0 0 0 0 0 01 86 93.02 0 80 0 1 0 2 0 0 0 32 84 92.85 3 0 78 0 2 0 0 1 0 03 84 96.42 1 0 0 81 0 0 2 0 0 04 73 82.19 0 9 1 0 60 0 0 3 0 05 86 86.04 0 2 0 0 0 74 0 1 0 96 86 84.88 0 0 0 3 1 0 73 0 8 17 85 95.29 0 0 0 0 0 0 0 81 0 48 86 91.86 0 0 1 0 0 0 3 0 79 39 86 97.67 0 0 0 0 0 2 0 0 0 84TOTAL 842 92.16Table 3.6: Results for the basi speeh reognizer: TrainDB=IITKSp73to162,TestDB=IITKSp30to72, LPC order =12, epstrum size =16, ode book size=512The results in the table 3.6 are presented for telephone quality speeh. The train-ing was arried out using the speehes of 90 speakers and testing was arried out with45



the speehes of 40 di�erent speakers. It was observed that the most of the faultyreognitions are for the digit six whih is reognized as eight, the digit �ve whih isonfused as digit nine and digit four whih is onfused with one. Interestingly theonverse was not true, that the reognition rate for the digits one, eight and nine arenot onfused with the digits four, six and �ve respetively. The reognition rate is100% for digit zero in the tested database.Similar experiment was done with OGI database whih is mirophone (onneteddiretly to omputer) quality database with laboratory lean reording onditions.As expeted, the OGI database has shown higher reognition rate of 96.45% (table3.7), whih is almost 4.0% more than the telephone quality IITK speeh database.The experiment was also tried with interhanging the training and testing database(table 3.8) with almost no di�erene in the reognition rate. The speeh reognitionrate is 99.84% when same database is used for both training and testing (table 3.9).Spoken Number of Corretly Corretdigit utteranes reognized perent0 65 64 98.461 65 65 100.02 65 58 89.233 65 63 96.924 65 64 98.465 64 62 96.876 65 63 96.927 65 62 96.878 65 63 96.929 65 62 96.87TOTAL 649 626 96.45Table 3.7: Results for the basi speeh reognizer: TrainDB=OGISp0to84,TestDB=OGISp85to149, LPC order=12, epstrum size=16, ode book size=512
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Spoken Number of Corretly Corretdigit utteranes reognized perent0 85 84 98.821 85 84 98.822 85 80 94.113 85 85 100.04 85 83 97.645 85 82 96.476 85 84 98.827 85 84 98.828 85 78 91.769 85 83 97.64TOTAL 850 815 95.88Table 3.8: Results for the basi speeh reognizer: TrainDB=OGISp85to149,TestDB=OGISp0to84, LPC order =12, epstrum size =16, ode book size=512
Spoken Number of Corretly Corretdigit utteranes reognized perent0 65 65 100.01 65 65 100.02 65 65 100.03 65 65 100.04 65 65 100.05 64 64 100.06 65 64 98.467 65 65 100.08 65 65 100.09 65 65 100.0TOTAL 649 648 99.84Table 3.9: Results for basi speeh reognizer: TrainDB=TestDB=OGISp85to149,LPC order =12, epstrum size =16, ode book size=512
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Chapter 4
Experiments for Word Rejetionand Performane Fine TuningWith an enouraging result of 92.16% reognition, we have tried to develop heurististo remove the onfusion among various pairs of digits (eight and six, four and one, �veand nine). We �rst disuss our word rejetion riterion before desribing the other�ne-tuning experiments. In this hapter we fous our experiments on the telephonequality speeh databases olleted at IIT Kanpur.4.1 Word RejetionIn an online system, speakers may also speak words other than the spoken digits.Suh words should be rejeted without whih they will map on to one of the digits.This problem of word rejetion is not trivial. The problem in formulating the wordrejetion riterion is that we have to use the digit probability in the reognition whihitself is a funtion of number of observation symbols and the duration of the utterane.We should some how normalize probability sore to number of observation symbols inthe utterane. We approximated normalized probability (NP ) in the following way.NP = P 1N (1)Here P is the forward probability sore and N is the number of observation symbolsin the utterane. We observed that the normalized probability of orretly reognizedwords is signi�antly higher than the inorretly reognized words. The normalized48



probability of inorretly reognized words is signi�antly less than that of orretlyreognized words. We found another interesting phenomenon desribed as follows.Let NP0; NP1; � � � ; NP8 and NP9 be the normalized probabilities for a given ut-terane alulated with the HMMs orresponding to the digits 0; 1; � � � ; 8 and 9respetively. We usually reognize the given utterane as the digit whose orrespond-ing normalized probability is the highest. Let this highest probability be NPMax1.Similarly ;et the seond highest normal probability be denoted by NPMax2. Thenwe de�ne DNP as the di�erene between the two as follows,DNP = NPMax1�NPMax2 (2)It was seen that the DNP for an inorretly reognized utterane is onsiderablysmall ompared to a orretly reognized utterane. The �gure 4.1 is plot of NPand DNP of the utteranes reognized as zero. The 'diamond' is plotted when theutterane is atually ZERO and reognized as ZERO. The 'ross' is plotted when theutterane is not atually ZERO but reognized as ZERO. In the ategory of 'ross' weinluded non-digit utteranes and other sounds also, whih are found in the reord-ing. Figures 4.2 to 4.10 are the similar plots for the digits ONE to NINE. From these�gures we an see that most of the inorretly reognized utteranes are loated nearthe origin and x-axis. We therefore imposed additional riterion that the terms NPand DNP should be above some minimum individual thresholds. We have hosenthese thresholds di�erently for di�erent digits (table 4.1. This sheme improves theoverall reognition on�dene level to 93.5%. The reognition and rejetion resultsare shown in the table 4.2, ignoring the non-digit input. All the data and results pre-sented in this setion are based on training database IITKdigitSp73to162 and testingdone with the diret speeh reording sessions whih are used to reate the databaseIITKdigitSp31to72. Considering only the digit utteranes, overall reognition rateis 90.7%, in whih 83.2% utteranes are aepted and remaining 7.5% are rejeted.Among the 9.3% wrongly reognized utteranes, 4.1% are are aepted and 5.2% arerejeted. It means when a digit is aepted, the on�dene level is 95.3%, whih is asigni�ant improvement against 90.7% when rejetion riterion is not used.4.2 Performane Fine-tuningOur experiments to improve the performane of the reognition an be lassi�ed intotwo ategories. In one ategory of experiments we tried to improve the performane49
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Figure 4.1: NP vs DNP plot when the reognition output is ZERO
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Figure 4.2: NP vs DNP plot when the reognition output is ONE50
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Figure 4.3: NP vs DNP plot when the reognition output is TWO
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Figure 4.4: NP vs DNP plot when the reognition output is THREE51
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Figure 4.5: NP vs DNP plot when the reognition output is FOUR

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

D
N

P

NP

’Prob.AD.55.all’
x

’Prob.AD.5x.all’

Figure 4.6: NP vs DNP plot when the reognition output is FIVE52
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Figure 4.7: NP vs DNP plot when the reognition output is SIX
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Figure 4.8: NP vs DNP plot when the reognition output is SEVEN53
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Figure 4.9: NP vs DNP plot when the reognition output is EIGHT
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Figure 4.10: NP vs DNP plot when the reognition output is NINE54



Digit NP Threshold DNP Threshold0 0.015 0.0061 0.017 0.0042 0.025 0.0023 0.017 0.0044 0.0145 0.0035 0.012 0.0016 0.0155 0.0047 0.017 0.0048 0.02 0.0059 0.02 0.005Table 4.1: NP and DNP thresholds used with IITKdigitSp73to162 as trainingdatabase and Testing with diret reordingDigit Corretly Wrongly Wrongly CorretlyDigit Aepted Aepted Rejeted Rejeted0 81 0 5 01 74 7 3 22 75 4 4 13 70 3 6 54 58 3 7 65 65 6 6 66 73 2 6 37 70 0 5 88 56 5 13 89 66 4 7 4TOTAL 688 34 62 43PERCENT 83.2 4.1 7.5 5.2PERCENT 95.3 4.7(Within Aepted)Table 4.2: Reognition and rejetion results for digit inputs with IITKdigitSp73to162as training database and Testing with diret reordingby fousing on the signal proessing front end The other ategory of experiments werefoussed on HMM bak end.4.2.1 Experiments with Signal Proessing Front endIn these experiments we introdued a few new features in the feature vetor as follows.55



Frame EnergyThe energy of the frame is appropriately saled and added to the feature vetor. Intable 4.3, olumn III, the reognition results are given with this additional parameter.Spoken Number of reognition reognition reognition with with durationdigit utteranes with energy with duration relative position and rel.pos.0 86 86 85 85 861 86 76 78 79 812 84 76 77 80 763 84 78 77 79 804 73 67 63 62 625 86 75 76 79 776 86 78 69 75 747 85 81 81 82 798 86 76 78 74 799 86 83 83 83 85TOTAL 842 776 767 778 779PERCENT 92.16 90.09 92.39 92.51Table 4.3: Reognition results of basi reognizer with additional features usingTrainDB=IITKSp73to162, TestDB=IITKSp30to72Utterane DurationThe duration of the utterane was added in the the feature vetors of all the framesof that utterane. In table 4.3, olumn IV, the reognition results are given with thisadditional parameter.Frame Relative PositionThe relative position of the frame with in the utterane is added to the featurevetor. In table 4.3, olumn V, the reognition results are given with this additionalparameter.
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CombinationsVarious ombinations of these three features were used in getting the reognitionrates. We got the best reognition rate of 92.51% when utterane duration andrelative frame position were ombined as shown in table 4.3, olumn VI.4.2.2 Experiments with trained HMMsIn this setion we present the experiments and results for improving the performaneof trained HMMs. In all these experiments, we had inorporated the extension offeatures set by inorporating the duration of utterane and relative position of theframe. We present here only those experiments whih gave us the best reognitionresults. We �rst de�ne three basi operations that we used in these experiments.1. HMM state Tie: In this operation, given state s1 in some trained HMM andstate s2 in other trained HMM, we manually fore the symbol probability dis-tribution in these states to be idential. To understand its usefulness, onsiderthe HMM models trained for digits FIVE and NINE. These two spoken digitshave ommon phoneme /ai/. Let us assume that the states orresponding tothe phone /ai/ are not trained well enough for the HMM model of digit FIVE,whereas the orresponding states in the HMM model for digit NINE are trainedvery well. Now it is possible that many of the spoken digits 'FIVE' are reog-nized as 'NINE' beause of the better performane of states orresponding to/ai/ in its HMM model. This situation an be handled better by foring therespetive pair of states in the two HMMs to have the same symbol probabilitydistribution. Let us say states si and si+1 orrespond to phoneme /ai/ in HMMtrained for digit 'FIVE' and states sj and sj+1 orrespond to phoneme /ai/ inHMM trained for digit 'NINE'. We an tie the states si and sj together. Simi-larly the states si+1 and sj+1 are tied together. Let us represent the above tieoperation HMMTye((d1; s1); (d2; s2)).2. HMM embedded saling: It is some times desirable to either emphasize or deem-phasize ertain portions of the utterane while alulating the observation se-quene probability. Following are some of the ases where it an be useful.� If the HMM tying results in poor reognition rate for the two digits involvedin the tying, as many of these two digits are reognized as some other third57



digit. In suh a ase we may wish to emphasize the symbol probabilitiesof the states involved in the HMM tying.� If the HMM tying results in poor reognition rate for some digit other thanthe two digits involved in the tying, as many of the utteranes of the thirddigit are reognized as one of the two digits involved in the tying. In suha ase we may wish to de-emphasize the symbol probabilities of the statesinvolved in the HMM tying.� In ase of onfusion between digits 'FIVE' and 'NINE', instead of ty-ing states orresponding to /ai/, we may deemphasize these states sym-bol probabilities and/or emphasize the state symbol probabilities of otherstates.Let us denote the above saling operation as HMMEmbedSale(d; s; f).3. Minimum Probability Criterion Given a HMM trained for the digit d and states, this operation ensures eah and every symbol probability in that state to begreater than or equal to �. Let us denote this operation as MinB(d; s).In the following disussion, we represent these operations as follows.� HMMTye((d1; s1); (d2; s2)): To tie state s1 of HMM of digit d1 to state s2 ofHMM of digit d2� HMMEmbedSale(d; s; f): To sale the observation probability of eah symbolin state s by a fator of f .� MinB(d; s): To put the minimum limit on the symbol probabilities in state sof digit d.1. Experiment 1: State 6 of digit 9 is deemphasized and limit is put on the symbolprobabilities as follows.(a) HMMEmbedSale(9; 6; 0:01)(b) MinB(9; 6)This step improved overall reognition rate from 92.51% to 92.63% (table 4.4).2. Experiment 2: State 6 of digits 0 and 6 are tied together and then deemphasized.These are then put through the minimum limit as follows.58



(a) HMMTye((0; 6); (6; 6))(b) HMMEmbedSale(0; 6; 0:01)() HMMEmbedSale(6; 6; 0:01)(d) MinB(0; 6)(e) MinB(6; 6)This step improved overall reognition rate from 92.63% to 93.35% (table 4.5).3. Experiment 3: In order to redue onfusion between digits 5 and 9, state 5 ofthese two digits are tied and passed through minimum limit as follows.(a) HMMTye((5; 5); (9; 5))(b) MinB(5; 5)() MinB(9; 5)This step improved reognition rate from 93.35% to 93.47% (table 4.6). As aside e�et, the reognition rate of digit7 was also improved.4. Experiment 4: The digit 4 was onfused with other utteranes. States 4, 7 and9 of digit 4 were emphasized as follows.(a) HMMEmbedSale(4; 6; 2)(b) HMMEmbedSale(4; 7; 2)() HMMEmbedSale(4; 9; 2)This step improved reognition rate from 93.47% to 93.94% (table 4.7)5. Experiment 5: States 6,7 and 9 of digit 2 are emphasized.(a) HMMEmbedSale(2; 6; 2)(b) HMMEmbedSale(2; 7; 2)() HMMEmbedSale(2; 9; 2)This experiment improved reognition rate from 93.94% to 94.3% (table 4.8).
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Spoken Number of Corretlydigit utteranes reognized0 86 861 86 812 84 763 84 804 73 625 86 786 86 747 85 798 86 799 86 85TOTAL 842 780PERCENT 92.63Table 4.4: Reognition results after experiment 1, using TrainDB=IITKSp73to162,TestDB=IITKSp30to72
Spoken Number of Corretlydigit utteranes reognized0 86 861 86 812 84 763 84 844 73 625 86 776 86 747 85 798 86 829 86 85TOTAL 842 786PERCENT 93.35Table 4.5: Reognition results after experiment 2, using TrainDB=IITKSp73to162,TestDB=IITKSp30to72
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Spoken Number of Corretlydigit utteranes reognized0 86 861 86 812 84 763 84 844 73 625 86 766 86 747 85 818 86 829 86 85TOTAL 842 786PERCENT 93.47Table 4.6: Reognition results after experiment 3, using TrainDB=IITKSp73to162,TestDB=IITKSp30to72
Spoken Number of Corretlydigit utteranes reognized0 86 861 86 812 84 723 84 844 73 705 86 766 86 747 85 818 86 829 86 85TOTAL 842 791PERCENT 93.94Table 4.7: Reognition results after experiment 4, using TrainDB=IITKSp73to162,TestDB=IITKSp30to72
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Spoken Number of Corretlydigit utteranes reognized0 86 851 86 812 84 783 84 834 73 695 86 766 86 747 85 818 86 829 86 85TOTAL 842 794PERCENT 94.3Table 4.8: Reognition results after experiment 5, using TrainDB=IITKSp73to162,TestDB=IITKSp30to72
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Chapter 5
An Appliation: Interative VoieResponse System for EnquiringJEE Appliation StatusIn this hapter we disuss the design and implementation of an interative voieresponse system (IVR) appliation, whih we developed for answering the queriesregarding the JEE appliation status. We �rst disuss the dialogue design and thenits implementation using the tehnology developed.5.1 Dialog DesignHere we present the dialog designed for a single interative session between the IVRand the user. The user dials the spei�ed number to the IVR through the modem.The following the dialog design for the IVR.� IVR : Welome to the IIT Kanpur IVR for answering the queries for your JEEappliation status. Please speak the digits in the appliation number slowly oneat a time after the beep.� IVR : Plays the beep� Caller : Speaks the individual digits of appliation number.� IVR : Your appliation number ***** has reahed the JEE oÆe.63



5.2 Implementation
Modem Digit RecognitionIVR 
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Spoken
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Figure 5.1: Interative Voie Response System for JEE Appliation Status EnquiryThe blok diagram of the interative voie response system that we implementedis shown in the �gure 5.1. The user interfae part of the IVR monitors modem andwhen there is an inoming all from the user, it piks up the phone and plays thepre-reorded welome message and then generates a beep. The IVR then reordsthe voie of the speaker for ten seonds in a bu�er. The reorded voie is thenpassed to the word-detetion module. Word-detetion module extrats the isolatedspoken digits and passes them to the digit reognition engine. Digit reognitionengine aepts one spoken digit at a time and reognizes the digit in the spokenspeeh. The reognized digit is then passed to the IVR user interfae module. IVRuser interfae module assembles the digits into number and searhes it in the databaseof reeived appliations numbers. An appropriate message is played bak. For digits,pre-reorded messages are played. Finally the all is disonneted and the entireproess is repeated for another all.
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Chapter 6
Conlusions and future workIn this thesis we implemented an isolated speaker independent spoken digit reogni-tion system for telephone quality speeh. In partiular we have been able to ahievethe following.1. Speeh Database: We built spoken digit database of 163 speakers.2. Speeh Reognizer: We implemented every part of the speeh reognizer. wewere able to formulate word rejetion riterion. We ould improve the speehreognition rate by �ne-tuning di�erent parts of the basi speeh reognizer.Based on our experiments, we an onlude the following.6.1 Conlusions� The heuristis used in word detetion improved the word detetion rate andspeeh reognition rate.� Cepstral oeÆients are better than the LPC oeÆients.� Addition of di�erential features improved the performane.� HMM tye and embedded weight heuristis improved the reognition rate.� Our word rejetion riterion is valid and improved the on�dene of the reog-nized digit. 65



� Relatively lean telephone quality speeh has better reognition rate than therelatively noisy telephone quality speeh.6.2 Limitations� The IITKdigit speeh database has very few female speakers and the reognizerbuilt using this database as training database may perform poorly for femalespeakers.� The energy thresholds used in the word detetion algorithm are spei� to ourmodem and may need to be hanged if the modem is replaed.6.3 Future Work� Speeh of the female speakers an be added to the IITKdigit database� Word detetion algorithm an be modi�ed to dynamially adopt the energythresholds.� The reognition rate an be studied, how it is e�eted with HMM states morethan nine.� The reognizer an be enhaned to reognize the ontinuous speeh.� Initiative an be taken to start building IITK speeh tool kit and IITK speehdatabase for future researh.
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Appendix A
Desription of Speeh DatabasesIn this appendix we desribe the speeh databases that we have used in this thesis.We also desribe how we olleted our own digit database at I.I.T Kanpur, whih anbe informative for the future researh.A.1 IITK Telephone-Quality Spoken Digit DatabasesReording Setup : We have olleted the speeh samples from the IIT Kanpurinternal telephone network within IIT Kanpur. For reording purpose, we haveused a Zyxel voie modem on a PC running Linux. The modem supplied Rok-well ADPCM ompressed data (at 7:2K samples per seond) and are stored inthe raw format. In order to reord a speeh session, the speaker has to dialthe phone number of the modem. As soon as it is onneted, the speaker isprompted with a welome message and is asked to speak after the beep. Thespeeh is then reorded and saved in a �le.Mobilizing The Speakers : We have mobilized around a total of 200 speakers.Eah speaker was asked to speak the digits zero to nine in English. Out ofthese, the reordings for only 163 speakers were good enough and the remainingwere disarded.Reording onditions : Sine the speakers are mostly the students alling fromhostels and laboratories, the external and bakground noises are expeted.These inlude noise due to somebody else speaking in the bakground, noises69



due to the running air onditioners and other ommon noises in the laboratoriesand hostel orridors.Speeh editing to extrat the digits : Initially, we manually edited all the reord-ings. Later we developed the word detetion algorithm and used it. In fat themanual editing experiene had been extremely useful in designing the worddetetion algorithm.Overall Database Desription : This database onsists of telephone quality speehof 163 speakers. The �rst 73 speakers have spoken eah digit twie in Englishand the later 90 speakers have spoken eah digit one in English.Subset Databases : In this setion we desribe the di�erent databases, whih aresubset of the above desribed olletion. The names desribed here are used indisussion throughout the thesis.IITKdigitSp0to30 : This database is the spoken digit database of the speak-ers numbered 04 to 30 from a single phone. Eah speaker has spoken eahdigit twie. Eah reording ontains high amount of noise generated bythe equipment. Later, this database was not used and dropped due to highontent of noise.IITKdigitSp31to72 : This database is the spoken digit database of speakersnumbered 31 to 72. Eah speaker spoke eah digit twie.IITKdigitSp0to72F : This database is a olletion of �rst instane of thedigits spoken by the speakers numbered 0 to 72.IITKdigitSp0to72S : This database is a olletion of seond instane of eahdigits spoken by speakers numbered 0 to 72.IITKdigitSp73to162 : This database is a olletion of spoken digits by speak-ers from speaker 73 to speaker162. Eah digit is spoken only one by aspeaker.A.2 OGI Spoken Digit DatabaseThis database is prepared by enter for Spoken Language Understanding, OregonGraduate Institute of Siene and Tehnology.70



Reording Setup : This is also telephone quality speeh. The speeh signal issampled at 8.0 kHz.Reording onditions : The reording was onduted under ideal laboratory on-ditions with no bakground noise.Overall Desription : This database ontains spoken digits of 150 speakers. Eahspeaker has spoken a digit only one.Subset Databases :OGIdigitSp0to119 : This database onsists of spoken digits of 120 speakers0 to 119.OGIdigitSp120to149 : This database onsists of spoken digits of 130 speak-ers 120 to 149.OGIdigitSp0to84 : This database onsists of spoken digits of 85 speakers 0to 84.OGIdigitSp85to149 : This database onsists of spoken digits of 65 speakers120 to 149.
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