
�ITRON Interface for a Generic Modular Embed-ded Operating System Platform
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Technology

bySridhar Akula

to theDepartment of Computer Science & EngineeringIndian Institute of Technology, KanpurJuly, 1999

Certi�cateThis is to certify that the work contained in the thesis entitled \�ITRON In-terface for a Generic Modular Embedded Operating System Platform", by Srid-har Akula, has been carried out under my supervision and that this work has notbeen submitted elsewhere for a degree.
July, 1999 (Dr. Rajat Moona)Department of Computer Science & Engineering,Indian Institute of Technology,Kanpur.

AbstractAdvances in microprocessor technology continue to open up new application �eldsfor embedded systems. Originally they were used mainly for factory production linecontrol and other industrial applications. Their use spread to communications ando�ce equipment, then on to automotive systems, audio and video products, TVs, cel-lular phones, synthesizers, game machines, and household appliances such as washingmachines, airconditioners and lighting systems. Today nearly all the electrical andelectronic products around us are controlled by embedded systems. The growingscale and complexity of software and the need for fast development turnaround timehave made improving software productivity a pressing need. The use of an operatingsystem has become increasingly important for this reason.In this thesis, we design and implement the �ITRON interface for a modular em-bedded operating system platform. ITRON (I�ndustrial - T�he R�eal-time O�peratingsystem N�ucleus) is a real-time, multitasking OS speci�cation intended for use inindustrial embedded systems. The implementation supports level E(Extended) of�ITRON 3.0, the latest ITRON real-time kernel speci�cation. Operating systemscompatible with interfaces like �ITRON, POSIX, etc., contribute to improved soft-ware productivity, as existing software components and development support toolsthat are compatible with the standard can be used and it would be easier to trainsystem designers and programmers.

Contents
1 Introduction 11.1 �ITRON 3.0 Speci�cation . 21.1.1 Levels of �ITRON 3.0 speci�cation 21.1.2 Compatibility under �ITRON 3.0 speci�cation 31.2 Motivation . 31.2.1 Need for a generic and con�gurable OS 31.2.2 Need for OS Compatibility with an industrial standard 41.3 Existing Operating Systems . 41.3.1 CRTX Real-time Micro Kernel 41.3.2 OS/9 (Microware Systems Corporation) 51.3.3 Harmony (National Research Council of Canada) 51.3.4 RTEMS (Redstone Military Arsenal) 51.3.5 VxWorks (Wind River Systems) 51.4 Organization of the Report . 62 The System Design 72.1 The Problem . 72.2 The Solution . 72.2.1 Nucleus Design . 82.2.2 Modules' Design . 82.2.3 Intermodule Interface . 92.2.4 Application Program Interface(API) Design 92.3 The Kernel Architecture . 10i

3 �ITRON Task Manager Module 123.1 The Design . 123.1.1 Basic Task Management . 133.1.2 Task Scheduling . 133.1.3 Task Dependent Synchronization 133.2 Module Prerequisites . 143.3 Module con�guration parameters . 143.4 Services provided by the Task Manager 143.4.1 Task Management Functions 143.4.2 Task-Dependent Synchronization Functions 163.4.3 Services provided for other modules 163.5 Implementation . 173.5.1 Module Initialization . 173.5.2 Data Structures . 173.5.3 Task Management and Scheduling 183.5.4 �ITRON Implementation-dependent Speci�cations for Task Man-agement . 184 Communication Manager 204.1 The Design . 204.1.1 Semaphores . 204.1.2 Eventags . 214.1.3 Mailboxes . 214.1.4 Level X functions supported by the module 214.2 Module Prerequisites . 224.3 Module Con�guration Parameters . 224.4 Module Services . 224.5 Implementation . 244.5.1 Module Initialization . 244.5.2 Data Structures . 244.5.3 �ITRON Implementation-dependent Speci�cations 25ii

5 �ITRON Interrupt Manager Module 275.1 The Design . 275.2 Module Prerequisites . 285.3 Con�guration Parameters . 285.4 Services provided by the Interrupt Manager 285.5 Implementation . 296 �ITRON Memory Manager Module 306.1 The Design . 306.1.1 Level X functions supported by the module 316.2 Module Prerequisites . 316.3 Con�guration Parameters . 316.4 Services provided by the Memory Manager 326.5 Implementation . 336.5.1 Module Initialization . 336.5.2 Data Structures . 336.5.3 Memory Allocation . 346.5.4 Memory De-allocation . 356.5.5 �ITRON Implementation-dependent Speci�cations 367 �ITRON Time Manager Module 377.1 The Design . 377.2 Prerequisites for the Time Manager Module 387.3 Con�guration parameters . 387.4 Services provided by the Time Manager 397.5 Implementation . 397.5.1 Module Initialization . 397.5.2 System Time . 407.5.3 Cyclic Handlers . 407.5.4 Alarm Handlers . 407.5.5 �ITRON Implementation-dependent Speci�cations 40
iii

8 �ITRON System Manager Module 428.1 The Design . 428.2 Prerequisites for the System Manager Module 428.3 Con�guration parameters . 438.4 Services provided by the System Manager 438.5 Implementation . 439 Car Dashboard Controller - An Application Program 459.1 The Model . 459.2 The Design . 469.3 Results . 4810 Conclusion 4910.1 Existing Work . 4910.2 Future Work . 50A API 51A.1 �ITRON Task Manager Module . 51A.2 �ITRON Communication Manager Module 53A.3 �ITRON Interrupt Manager Module 56A.4 �ITRON Memory Manager Module 57A.5 �ITRON Time Manager Module . 59A.6 �ITRON System Manager Module 61B Existing Modules 62B.1 Interrupt Manager Module[Kri97] . 62B.1.1 The Design . 62B.1.2 Pre-requisites . 63B.1.3 Services . 63B.2 Thread Manager Module[Kri97] . 64B.2.1 The Design . 64B.2.2 Pre-requisites . 65B.2.3 Services . 66iv

C Test Application Code 68

v

List of Figures2.1 Block Diagram of the System . 10

vi

Chapter 1
IntroductionMicrocomputers being small and inexpensive are being used in various devices rang-ing from automated telephone switching devices, cars, medical equipment, industrialrobots, missiles and spaceships to home appliances such as air conditioners, wash-ers, cameras, cell phones and televisions. Often these microcomputers are embeddedin larger systems and are hence termed as embedded computer systems or embeddedsystems in short.The application programs written for embedded systems are not developed fromscratch but rather around an embedded operating system(EOS). This makes the appli-cations simple, reliable, portable, and quick to develop. Further, an application canuse an existing code written for a di�erent operating system(OS), if both OSes arecompatible with one or more industry standards like �ITRON[Sak93], POSIX[POS92]etc.Embedded operating systems di�er from general purpose operating systems inthe sense that an EOS has to be multi-threaded and preemptible; the notion ofthread priority has to exist; predictable thread synchronization mechanisms shouldbe supported; the OS behavior should be known; Interrupt latency (i.e. time frominterrupt to task run), the maximum time for each system call, and the maximumtime the OS and drivers mask the interrupts should be predictable; and the OS shouldhave extremely small memory and computation requirements.In this thesis we design and implement a generic modular embedded OS plat-form compatible with level E (Extended) �ITRON 3.0[Sak93] standard. The cur-rent implementation, however, doesn't support the connection function required in a1

loosely-coupled network of ITRON based machines.1.1 �ITRON 3.0 Speci�cationITRON (I�ndustrial - T�he R�eal-time O�perating system N�ucleus) is a real-time, multi-tasking OS speci�cation intended for use in industrial embedded systems. �ITRON3.01 is the latest ITRON real-time kernel speci�cation[Sak93].1.1.1 Levels of �ITRON 3.0 speci�cation�ITRON 3.0 speci�cation is divided into three system call levels: Level R (Required),Level S (Standard) and Level E (Extended). In addition to these three levels, thereis also Level C for CPU-dependent system calls.level R (Required): The functions in this level are mandatory for all implemen-tations of �ITRON speci�cation. These functions can be implemented evenwithout a hardware timer.level S (Standard): This level includes basic functions for achieving a real-time,multitasking OS.level E (Extended): This level includes several additional and extended functions.Speci�cally, this level includes object creation and deletion functions, rendezvousfunctions, memory-pools and the timer handler.level C (CPU dependent): This level provides implementation-dependent func-tions required due to the CPU or hardware con�guration.The support level of the connection function is indicated by appending an `N' to theend of the level. For example, connectivity supported at level S would be referred toas level SN.The speci�cation levels outlined above indicate the system calls supported ateach level. It is sometimes possible, however, to introduce extended features intosome system calls for which no compatibility is guaranteed. These functions arecalled level X functions. These extended features include nested suspend task() calls,queued wakeup task() calls, added information for refer task() etc.1The `�' of �ITRON is read as micro 2

1.1.2 Compatibility under �ITRON 3.0 speci�cationThe following conditions must be met for implementation of �ITRON 3.0 speci�cationto be compliant.1. The implementation must provide at least the three task states: RUN, READYand WAIT.2. Interrupt handlers may be de�ned. A method must be available for waking uptasks from an interrupt handler, may be through a system call.3. All level R and level RN system calls are available. The connection function doesnot need to be supported. Level RN system calls (such as signal semaphore())can only be used provided that all the functions are available except for con-nectivity functions.1.2 MotivationThe equipments controlled by embedded systems are becoming more and more sophis-ticated, often incorporating many functions in a single product. Embedded systemshave grown in scale and complexity as a result. The growing scale and complexityof software and the need for fast development turnaround time have made improvingsoftware productivity a pressing need. The use of C and other high-level languages,along with the use of an Operating System(OS), have become increasingly commonfor this reason.1.2.1 Need for a generic and con�gurable OSMost often, the OS itself may not be well suited for all types of applications, as thedemand of such an OS can vary greatly depending on the scale and nature of theembedded system in which it is used. An OS equipped with advanced functions thatare of little use in a small-scale embedded system, where memory in particular isseverely limited, will only increase the size of the system and lower its performance.Speci�cally, the OS carries extra baggage not needed by the application. Thus thereis a need for an OS which is generic enough, to suite both large-scale and small-scaleembedded systems, and con�gurable such that it would not carry any extra baggagenot needed by the application. 3

1.2.2 Need for OS Compatibility with an industrial standardOSes compatible with standard interfaces like �ITRON[Sak93], POSIX[POS92], etc.,contribute to improved software productivity, as existing software components anddevelopment support tools can be used, that are compatible with the standard. More-over, the expanding application of embedded systems means that an increasing num-ber of software engineers are coming into contact with an embedded OS, making ithighly important to train system designers and programmers in the requisite skills.The training becomes costlier, due to the large di�erences in speci�cations from oneOS to another. Thus there is a need for the OS intended for embedded OS develop-ment to be compatible with an industrial standard.In this thesis, our motivation has been to come up with an OS design that isreliable, generic, highly con�gurable, and modular. The OS provides a compatibleinterface with an industrial standard. Moreover, it is a collection of modules, whichcan be plugged in or out as per the needs of the application. It is hence possible tosupport any standard API with no extra cost.1.3 Existing Operating SystemsThere are many embedded kernels available[ES] today, most of them being highlycon�gurable and powerful, are only targeted to applications of a �xed range of com-plexities. We present here, a brief description2 of some of these operating systems.1.3.1 CRTX Real-time Micro KernelCRTX[CRT] is a compact, simple to use, high performance o�-the-shelf Micro Kernelintended for use in small 8 and 16 bit embedded applications. CRTX was designedprimarily for portability. However, it doesn't o�er a standard API.2Any comparisons made here are purely my personal beliefs based on the information I couldgather. They are presented here to bring out the speci�c areas in which these proprietary systemslag and are not intended to jeopardize anybody's reputation.
4

1.3.2 OS/9 (Microware Systems Corporation)OS-9[OS/] is a real-time, multiuser, multitasking operating system. It's modulararchitecture allows individual modules to be included or deleted in the operatingsystem during con�guration for a speci�c application. This modularity makes OS/9extremely scalable and powerful to �t most application needs. However, it doesn'tsupport any standard API.1.3.3 Harmony (National Research Council of Canada)Harmony[oCH] is a multitasking, multiprocessing operating system for realtime con-trol, developed at the National Research Council Laboratories. Harmony is a portable,extensible and con�gurable system. Primarily developed for realtime control ofrobotics experiments, for the development of experimental robot controllers and forother applications of embedded systems where predictable temporal performance isa requirement, Harmony ful�lls the needs of only a �xed range of embedded appli-cations. However, Harmony doesn't provide a standard API and comes with hugeoverhead for small-scale embedded applications.1.3.4 RTEMS (Redstone Military Arsenal)Real-Time Executive for Multiprocessor Systems (RTEMS)[RTE] is a non-commercialreal-time operating system for embedded computer systems. RTEMS implementa-tions are available in either the Ada or C programming language providing function-ality equivalent to that of commercial products. RTEMS is designed for the bestuse in military control devices. The POSIX standard API is being added to RTEMS3.6.0.1.3.5 VxWorks (Wind River Systems)VxWorks[VxW] o�ers a development and execution environment for complex real-time and embedded applications on a wide variety of target processors. It supportsPOSIX 1003.1b[POS92] real-time extensions, ANSI C (including oating point sup-port) and complete TCP/IP networking across various media. VxWorks has beenused in many successful projects including the Mars path-�nder, Virtual Reality, andTra�c control. 5

Due to the reason that it is targeted mostly towards solving large and complexproblems, it is rather unsuitable for small-scale embedded systems, where most of itsextended features may not be used.1.4 Organization of the ReportThe rest of the thesis is organized as follows. In chapter 2, we discuss the overallsystem design at block level and the relationships between di�erent blocks. We alsogive a brief overview of the blocks, that have been already implemented. We discussthe design and implementation of the �ITRON Task Manager Module in chapter 3,the design and implementation of the �ITRON Communication Manager Module inchapter 4, the design and implementation of the �ITRON Interrupt Manager Modulein chapter 5, the design and implementation of the �ITRONMemory Manager Modulein chapter 6, the design and implementation of the �ITRON Time Manager Modulein chapter 7, the design and implementation of the �ITRON System Manager Modulein chapter 8. In chapter 9, we discuss an example application using this OS. Thisapplication is a car dashboard controller for which design and implementation detailsare given in this chapter. Finally, we conclude this thesis in chapter 10 and suggestsome future extensions.

6

Chapter 2
The System DesignTypical embedded system applications range from very simple ones, which need min-imal services from the kernel, to complex ones that need highly extended and sophis-ticated services. Also, an application might need the kernel to be compatible withany of the industrial standards like �ITRON[Sak93], POSIX[POS92] etc. The designof our system is aimed to ful�ll the requirements of all such applications.2.1 The ProblemTo meet the speci�c requirements of an embedded application, ideally, the kernelshould o�er exactly only those services that are needed by the application, and shouldcarry no extra code. In practice, this can be achieved by constructing modules, eachmodule o�ering a particular class of service needed by the application, and the kernelbeing able to hold only those modules that are needed by the application. This focuseson the need to de�ne a well de�ned intermodular interface, such that new modulescan be developed and added to the existing system with ease.2.2 The SolutionThe solution suggested in this thesis is to build a modular kernel. The modulararchitecture allows the kernel to be modi�ed and con�gured to meet the speci�cneeds of an application. Speci�cally, modules can be added or subtracted from thesystem as per the application need. The result is a highly modular and recon�gurable7

platform.The kernel consists of two parts: the set of modules, or the con�gurable portion,which o�er various services to the application, and the compulsory portion, called thenucleus, or the nano-kernel, which acts as a glue between the modules. Typical mod-ules range from physical memory manager, interrupt handler, thread manager, etc.to �ITRON memory manager1, �ITRON timer manager, �ITRON communicationmanager, etc. Thus, there could be an application using a bare interrupt handler, a�ITRON timer manager, and a POSIX thread manager2.2.2.1 Nucleus DesignThe speci�ed design results in the nucleus code being pretty small, as it carriesonly the start-up code and the code needed to interface one module with another.Speci�cally, its functionality includes initialization of the kernel modules at systemstart-up and communication among di�erent modules, and between the applicationand the kernel modules. The nucleus was developed by Kshitiz Krishna[Kri97] alongwith various other modules.2.2.2 Modules' DesignEach module is designed such that, it makes very little or no assumptions about theexistence of other modules. However, a module can use the services of one of moreexisting modules, with the help of the nanokernel. The modules being used are calledthe pre-requisites of the module that uses them. For instance, a module like �ITRONtask manager, could be using the services of the physical memory manager moduleand the thread manager module.Pre-requisites can be either hard or soft. A hard pre-requisite module must bepresent and initialized before the module that uses it. In case of soft pre-requisites,the pre-requisite module may or may not be present. If it is not present, nano-kernelprovides it's own service (a null function) but in case the module is present, then itmust be initialized before this module.1�ITRON memory manager refers to the module compatible with the �ITRON industrialstandard[Sak93], that o�ers memory management functions2POSIX interrupt handler refers to the module compatible with the POSIX industrialstandard[POS92], that o�ers interrupt handling functions8

A brief description of the modules developed prior to this thesis, namely, theinterrupt manager module and the thread manager module, are given in AppendixB.2.2.3 Intermodule InterfaceThe design standardizes the intermodule interface[Kri97] to be used for all servicerequests and results between various modules, and the application. Communicationbetween the modules/application is achieved by using the module-ids, or ports3. Amodule or an application willing to communicate with another module would re-quest the nucleus to give the address of the service providing routine of that module,mentioning the destination module's id, or port.2.2.4 Application Program Interface(API) DesignThe modular design of the kernel facilitates new modules to be plugged-in withoutany changes to the existing modules or the nucleus. The job of providing an API tothe existing kernel is to just add a new API module, or a set of API modules, whichmake use of the services of the existing modules. For instance, to provide �ITRONstandard API to the existing kernel, one can either develop a single �ITRON APImodule, or a set of modules like �ITRON memory manager, �ITRON task manager,�ITRON interrupt manager, etc. which make use of existing modules like physicalmemory manager, bare interrupt handler, thread manager, etc. The latter approachis better, since, all the modules are pluggable and the application can choose onlythose modules that are needed.In this thesis, we add �ITRON API for the existing kernel. Speci�cally, variousfunctionally distinguished �ITRON modules are designed and implemented to providean application with �ITRON compatible interface. These modules use the services ofthe existing modules, which provide the basic services, and are hence very small andconserve space as the application in most cases has to be put in a ROM.3Though these are not exactly ports, the term is being used on the basis of closest similarity.
9

2.3 The Kernel ArchitectureThe block diagram of the system is given in �gure 2.1. The nucleus is the compulsoryportion of the kernel, and all the modules, including the API modules form thecon�gurable portion. Any of these modules may be added or removed from thesystem, as per the application requirements, at the system build time.
Module 1

Module 2

Module 3

Application Standard API 1

Module 1

Module 2

Module 3

Other Modules

Module 1

Module 2

Module 3

Standard API 2

Other API

Nucleus

A Compulsory Block

A Configurable BlockFigure 2.1: Block Diagram of the SystemAt system startup, the nucleus initializes the modules, one by one, informingeach of them, it's own service handler's address. It will then pass the control ofexecution to the application, informing it again, the address of the nucleus serviceprovider. From then onwards, the application can query the nucleus for the addressof any module's service handler and use the corresponding module services. Modulesrequiring services from other modules go through the same procedure.In this chapter, the overall design of the system has been presented. The kernel10

architecture has been shown at the block level and the design of individual blockshas been presented. Speci�cally, the relationship between the nucleus, the modules,and the application has been described. A brief overview of the existing work andthe work done in this thesis has been presented.

11

Chapter 3
�ITRON Task Manager ModuleThe �ITRON Task Manager Module provides task management functions,(to accessand control the state of tasks), task-dependent synchronization functions,(which in-clude functions that suspend tasks for a while, and associated functions that releasea task from the SUSPEND state), and the inter-task synchronization functions. ThisModule uses the services of the Thread Manager Module[Section B.2] for task man-agement and the services of the Memory Manager Module for memory allocation anddeallocation for each task.3.1 The DesignA thread is an independent ow of execution. While the nano-kernel supports a singlethread of execution, the thread manager provides multiple threads executing concur-rently in the system, which are transparent to nano-kernel and other modules. The�ITRON task manager module uses the services provided by the thread managermodule while supporting multiple tasks, each task corresponding to a unique threadof the thread manager module. Task scheduling is governed by the task managerby requesting the thread manager to use the task manager's scheduling function toschedule threads. This is done by having the address of the task manager's schedulingfunction sent to the thread manager during the initialization phase of the task man-ager module. Hence, the task manager manages the task states; maintains it's ownready queue to guide the thread manager through the �ITRON speci�ed schedulingpolicies and provides it's own task-dependent synchronization functions.12

3.1.1 Basic Task ManagementTasks can be created and destroyed dynamically. Creation of a task involves a requestsent to the Memory Manager Module for allocation of memory speci�ed by the stacksize. A newly created task is not started unless an explicit call is made to do so. Thiscall, sta tsk(), requests the Thread Manager Module to create a new thread and markit READY. When a task exits, it enters the DORMANT state and the correspondingthread is killed, but the allocated stack area is still held. This task can be re-startedby issuing the sta tsk() system call. The stack space is released only when the taskis deleted.3.1.2 Task SchedulingTask scheduling is conducted based on task priority. If there are multiple tasks of thesame priority, scheduling is conducted on �rst come, �rst served (FCFS) basis. It is,however, possible to dynamically change the priority of a task. On occurrence of anexternal interrupt, tasks are re-scheduled after the interrupt handler is �nished. Thetask which was executing gets back its execution privileges, unless a task of higherpriority was brought to READY state by the interrupt handler.3.1.3 Task Dependent SynchronizationA task can sleep or it can suspend, resume or wake-up other tasks. If the task speci�edto be suspended is already in WAIT state, it will be put in the combined WAIT-SUSPEND state. If wait conditions for the task are later ful�lled, it will enter SUS-PEND state. If the task is resumed, it will return to the WAIT state before thesuspension. It is possible to nest the pairs of suspension and resumption requestsi.e., a task must be resumed the same number of times for which it was suspended inorder to return the task to its original state before the suspension. A task can sleepwith timeout, or forever, until another task issues a wakeup call. Wakeup calls canbe queued, i.e., a wakeup call could be issued to a task that is not sleeping, and therequest will be queued, unless the queue is full.
13

3.2 Module Prerequisites� Hard Prerequisites: Memory Manager Module, Thread Manager Module.The Memory Manager Module services are used each time a task is created ordeleted, to allocate or deallocate the stack space. The Thread Manager servicesare used for the basic task management.� Soft Prerequisites: None3.3 Module con�guration parametersThe module should be provided with the following static con�guration parameters.1. The maximum number of user tasks.2. The maximum number of times suspend requests may be nested.3. The maximum allowable number for the wakeup request queuing count.3.4 Services provided by the Task ManagerThe module provides Task Management functions and Task-Dependent Synchroniza-tion functions, as speci�ed by the �ITRON speci�cations. It also provides services tobe used by other �ITRON modules that deal with task management.3.4.1 Task Management Functions� Create Task This system call creates the task speci�ed by task-id. Speci�-cally, a TCB (Task Control Block) is allocated for the task to be created, andinitialized according to accompanying parameter values of task priority, taskhandler, stack size etc. A stack area is also allocated for the task based on theparameter stack size.� Delete Task This system call deletes the task speci�ed by task-id. Speci�cally,it changes the state of the task speci�ed by task-id from DORMANT into NON-EXISTENT, and then clears the TCB and releases stack.14

� Start Task This system call starts the task speci�ed by task-id. Speci�cally,it changes the state of the task speci�ed by task-id from DORMANT intoRUN/READY.� Exit Task This system call causes the issuing task to exit, changing the stateof the task into the DORMANT state.� Exit and Delete Task This system call causes the issuing task to exit andthen delete itself.� Terminate Other Task This system call forcibly terminates the task speci�edby task-id. That is, it changes the state of the task speci�ed by task-id intoDORMANT.� Disable Dispatch This system call disables task dispatching. Dispatching willremain disabled after this call is issued until a subsequent call to ena dsp() isissued.� Enable Dispatch This system call enables task dispatching, that is, it �nishesdispatch disabled state caused by the execution of dis dsp().� Change Task Priority This system call changes the current priority of thetask speci�ed by task-id to the value speci�ed by task priority.� Rotate Tasks on the Ready Queue This system call rotates tasks on theready queue associated with the priority level speci�ed by task priority. Specif-ically, the task at the head of the ready queue of the priority level in questionis moved to the end of the ready queue, thus switching the execution of taskshaving the same priority.� Release Wait of Other Task This system call forcibly releases WAIT state(not including SUSPEND state) of the task speci�ed by task-id.� Get Task Identi�er This system call gets the ID of the issuing task.� Reference Task Status This system call refers to the state of the task speci�edby task-id, and returns its current priority, its task state, and its extendedinformation. 15

3.4.2 Task-Dependent Synchronization Functions� Suspend Other Task This system call suspends the execution of the taskspeci�ed by task-id by putting it into SUSPEND state.� Resume Suspended Task /Forcibly Resume Suspended Task Both thesesystem calls release SUSPEND state of the task speci�ed by task-id. Rsm tsk()only releases one suspend request from the suspend request nest. Accordingly,if more than one sus tsk() has been issued on the task in question, that taskwill remain suspended even after the execution of rsm tsk() is completed. Incontrast, frsm tsk() will clear all suspend requests even if more than one sus tskhas been issued on the same task.� Sleep Task / Sleep Task with Timeout Both these system calls cause theissuing task (which is in RUN state) to sleep until wup tsk() is invoked.� Wakeup Other Task This system call releases the WAIT state of the taskspeci�ed by task-id caused by the execution of slp tsk() or tslp tsk().� Cancel Wakeup Request This system call returns the wakeup request queu-ing count for the task speci�ed by task-id while canceling all associated wakeuprequests. Speci�cally, it resets the wakeup request queuing count to 0.3.4.3 Services provided for other modules� Query/Update system status This system call can be used to check orupdate the current system status ags, which indicate the current system exe-cution to be in dispatch disabled state, or in task independent portion or in CPUlocked state.� Release wait state This system call releases the wait state of the task speci�edby task-id and returns it an error value speci�ed.� Wait and release control This system call makes the current running taskwait and release control.
16

3.5 Implementation3.5.1 Module InitializationAt initialization the task manager module sets-up the TCB (task control block) tablesand initializes the ready queue. It marks the current thread of execution to be the�rst user task running, and schedules it. It queries the nano-kernel for the servicehandlers of the physical memory manager module and the thread manager module. Itthen intimates the thread manager, the address of the next to schedule() functionto be used in future. Further, it requests the thread manager to unhook the threadmanager's check sleepers() function from the timer interrupt and hook the taskmanager's check sleepers() function.3.5.2 Data StructuresThe �elds of the TCB are given below.typedef struct task_control_block {VP exinf; /* Extended Information */ATR tskatr; /* Task Attribute */PRI itskpri; /* Initial Task Priority */PRI priority; /* Current Task Priority */FP task; /* Task Start Address */INT state; /* Current Task State */INT suspend_count; /* Number of pending suspend requests */INT wakeup_count; /* Number of pending wake-up requests */UINT cause_of_wait; /* Cause of wait, if the task is waiting */TMO timeout_count; /* Wait-time left if the task is waiting */int_2b thread_id; /* The task's corresponding thread-id */MEM_BLK_ID_TYPE stack_id; /* Id of memory allocated for stack */} TCB;The pointer exinf is provided for the user to include extended information about thetask to be created. tskatr speci�es whether the task is written in assembly or highlevel language. 17

The user tasks and system tasks are maintained using two static arrays, bothof type TCB and of sizes max usr tasks (known at system con�guration time) andmax sys tsks (system known) respectively. These tables are indexed by the task-idfor e�cient retrieval of information.The ready queue is a singly-linked list simulated on an array of size (max usr tasks+ max sys tsks). The linked list representation is needed for e�cient dispatching(the task at the head of the list is the one to be scheduled next), and during inser-tion/deletion operations, as tasks frequently enter/leave the ready queue, which is tobe maintained sorted on task priority.The boolean variables dispatch enabled, task independent portion enteredand CPU locked represent the current system state.3.5.3 Task Management and SchedulingThe thread manager's scheduler, which is hooked to the timer interrupt, calls thenext to schedule() function of the task manager. This function �nds the task to bescheduled next and returns the corresponding thread id. The check sleepers() func-tion of the task manager decrements the timeout count of all tasks that are waitingwith timeout, by one and once the counter reaches zero, it releases the wait state forthe corresponding task and returns it an error value E TMOUT, through timeout count.3.5.4 �ITRON Implementation-dependent Speci�cations forTask Management� Speci�cation: It is implementation dependent whether or not SUSPEND state,WAIT-SUSPEND state, DORMANT state, and NON-EXISTENT state aresupported.Implementation: All these states are supported, along with the mandatoryones, RUN, READY, and WAIT.� Speci�cation: Priority levels outside the range 1 to 8 (including negative val-ues) may also be speci�ed depending on the implementation.Implementation: Priority levels outside the range 1 to 8 are not allowed.
18

� Speci�cation: Depending on the implementation, specifying tskpri = TPRI INImay cause a task's priority to be reset to the initial task priority which was de-�ned when it was �rst created.Implementation: This feature is supported.� Speci�cation: It is implementation dependent where a task which has beenforced to enter SUSPEND state and is later resumed by the rsm tsk system callwill enter the ready queue among tasks of corresponding priority.Implementation: Such a task is placed to the end of the ready queue amongthe tasks of the same priority. Since the suspended tasks are removed from theready queue, for better dispatching performance in cases where many suspendedtasks can be expected, maintaining the scheduling order for suspended taskswould be ine�cient.� Speci�cation: It is implementation dependent whether rotation of the readyqueue including the running task is supported.Implementation: This feature is supported and can be used by the user, forinstance, to implement round robin scheduling of same priority tasks when thismethod is preferred over FCFS scheduling. Speci�cally, round robin schedulingmay be implemented by using an interrupt handler invoked by timer interruptperiodically, or using a cyclic handler, to issue the rot rdq system call.� Speci�cation: The maximum number of times suspend requests may be nested,and even whether or not suspend request nesting (the ability to issue sus tsk onthe same task more than once) is even allowed, is implementation dependent.Implementation: Suspend request nesting is allowed and the maximum num-ber of suspend requests is known at the time of system con�guration.� Speci�cation: It is always possible to queue at least one wakeup request. Themaximum allowable number for the wakeup request queuing count is implemen-tation dependent, and may be any number higher than or equal to one.Implementation: Queuing more than one wakeup requests is supported andthe maximum number of wakeup requests that can be queued is known at thetime of system con�guration.
19

Chapter 4
Communication ManagerThe �ITRON Communication Manager supports task synchronization, mutual exclu-sion, and communication functions. These functions are completely independent oftasks and include semaphores, eventags and mailboxes.4.1 The DesignThe module uses the services of the Task Manager Module to deal with the taskWAIT states. Speci�cally, the �ITRON task manager's service, release wait state, isused to release the wait state of tasks waiting for an event, and the service, wait andrelease control, is used to make the current task wait on an event. These services arebriey described in section 3.4.3.The module uses the services of the Memory Manager Module during inter-taskcommunication, to allocate/deallocate memory for the bu�ers. Speci�cally, memoryis allocated or de-allocated when a mailbox is created or deleted, respectively.4.1.1 SemaphoresThe module provides a generic semaphore scheme to provide mutual exclusion andsynchronized access to resources. The task notifying other tasks of an event increasesthe number of resources held by the semaphore by one, and the task waiting for theevent decreases the number of resources held by the semaphore by one. If the numberof resources held by a semaphore is 0, the task requiring resources will wait until the20

next time resources are returned to the semaphore. If there is more than one taskwaiting for a semaphore, the tasks will be placed in the queue.4.1.2 EventagsThe module provides eventags for task synchronization which use bit correspondenceags to represent the availability of events. A task notifying other tasks of an eventcan set and clear certain bits of the associated eventag. Tasks waiting for the eventwill continue to wait until certain conditions, represented by the bit pattern of theeventag, have been met.4.1.3 MailboxesMailboxes provide both task synchronization and communication by passing mes-sages. The task notifying other tasks of an event (the task which are sending amessage) can place messages on a message queue. Tasks waiting for the event (taskswhich will receive the message) can retrieve messages from the message queue. Ifthere is no message on the message queue yet, the task will wait until the next mes-sage arrives. If there is more than one task waiting for a message the tasks will beplaced in a queue. The contents of the messages are in shared memory and only thecorresponding �rst address is actually sent or received. The message contents are notcopied.4.1.4 Level X functions supported by the module� The initial semaphore count and the maximum semaphore count can be speci�edat the time of semaphore creation.� The ordering of tasks based on task priority level, on a semaphore's/a mailbox'squeue is supported.� Multiple tasks can wait at the same time for the same eventag. Hence, a singleset g() system call could result in the release of multiple waiting tasks.� When a semaphore or an eventag or a mailbox is referred, the system callreturns the task-id at the head of the waiting queue (along with the other21

information), rather than just returning a boolean value stating whether sometask is waiting.� Priority-ordered queuing of messages in a mailbox bu�er is supported.4.2 Module Prerequisites� Hard Prerequisites: Memory Manager Module, �ITRON Task ManagerModule. The Memory Manager Module services are used to allocate/deallocatememory for the bu�ers used by mailboxes. The �ITRON Task Manager Moduleservices are used to deal with the task WAIT states.� Soft Prerequisites: None4.3 Module Con�guration ParametersThe module needs to be provided with the following static con�guration parameters:1. The maximum number of user semaphores.2. The maximum number of user event ags.3. The maximum number of user mailboxes.4.4 Module Services� Create Semaphore This system call creates the semaphore speci�ed by semid.� Delete Semaphore This system call deletes the semaphore speci�ed by semid.� Signal Semaphore This system call returns one resource to the semaphorespeci�ed by semid. Speci�cally, if there are any tasks waiting for the speci�edsemaphore, the task at the head of the queue becomes READY. if there are notasks waiting, the associated semaphore count is incremented by one.� Wait on Semaphore This system call obtains one resource from the semaphorespeci�ed by semid. Speci�cally, if the semaphore count is one or greater, it is22

decremented by one and the issuing task continues to execute. If the count is 0,the issuing task will enter the WAIT state and will be put in the queue associatedwith the speci�ed semaphore. This function can be used with timeout.� Reference Semaphore Status This system call refers to the state of thesemaphore speci�ed by semid, and returns its current semaphore count, waitingtask information, and its extended information.� Create Eventag This system call creates the eventag speci�ed by gid andinitializes the associated ag pattern.� Delete Eventag This system call deletes the eventag speci�ed by gid.� Set Eventag This system call sets the bits speci�ed by setptn of the one wordeventag speci�ed by gid.� Clear Eventag This system call clears the bits of the one word eventagbased on the corresponding zero bits of clrptn.� Wait for Eventag This system call waits for the eventag speci�ed by gidto be set to satisfy the wait release condition speci�ed by wfmode. This functioncan be used with timeout.� Reference Eventag Status This system call refers to the state of the event-ag speci�ed by gid, and returns its current ag pattern, waiting task infor-mation, and its extended information.� Create Mailbox This system call creates the mailbox speci�ed by mbxid. Abu�er area of size bufcnt is also allocated for the mailbox.� Delete Mailbox This system call deletes the mailbox speci�ed by mbxid.� Send Message to Mailbox This system call sends the message packet whosestart address is given by pk msg to the mailbox speci�ed by mbxid.� Receive Message from Mailbox This system call receives a message fromthe mailbox speci�ed by mbxid. If there is no message in the speci�ed mailboxthe issuing task will enter the WAIT state, and be put on the queue for waitingfor arriving messages. This function can be used with timeout.23

� Reference Mailbox Status This system call refers to the state of the mailboxspeci�ed by mbxid, and returns the next message to be received, waiting taskinformation, and its extended information.4.5 ImplementationWhile the control information for managing semaphores, eventags and mailboxesare statically allocated tables, the message queues used by the mailboxes, however,use dynamic allocation of memory. Message queues are implemented as ring bu�ers.Depending the bu�er size speci�ed during mailbox creation, memory is allocated forthe ring bu�er and the bu�er data structures are set-up. With the message queueimplemented as a ring bu�er, the task issuing the snd msg() call will not enter aWAIT state even if the message cannot be queued because the ring bu�er is full.An E QOVR error will be returned immediately to the issuing task if this situationarises.To maintain wait queues, for instance, the one used by semaphores, a single waitqueue is statically allocated of size (max no of semaphores * max no of tasks),and each semaphore dynamically picks up individual nodes from this pool, as needed.4.5.1 Module InitializationAt initialization the �ITRON communication manager queries the nano-kernel forthe service handlers of the physical memory manager module and the thread managermodule. It then sets-up the control tables and initializes the wait queues for managingthe semaphores, eventags, and the mailboxes.4.5.2 Data Structurestypedef struct semaphore_node {VP exinf; /* Extended Infromation */ATR sematr; /* Semaphore Attributes */INT semcnt; /* Semaphore Count */INT maxsem; /* Max Semaphore Count */BOOL status; /* States whether the node is valid or not */24

} semaphore_node;The semaphore attributes specify the manner in which waiting tasks are put on thesemaphore's queue.typedef struct eventflag_node {VP exinf; /* Extended Infromation */ATR flgatr; /* Event Flag Attributes */UINT flgptn; /* Event Flag Pattern */BOOL status; /* States whether the node is valid or not */} eventflag_node;The eventag attributes specify whether multiple tasks waiting on the eventag isallowed.typedef struct mailbox_node {VP exinf; /* Extended Information */ATR mbxatr; /* Mailbox Attributes */T_MSG* buffer; /* Buffer to hold messages */INT bufcnt; /* Buffer Message Count */INT head, tail; /* Positions in the buffer where messages aredeleted and inserted, respectively */INT msg_count; /* # of msgs currently stored in the buffer */BOOL status; /* States whether the node is valid or not */} mailbox_node;The mailbox attributes specify the manner in which tasks receiving messages are puton the mailbox's queue and the manner in which messages are put on the messagequeue (the bu�er).4.5.3 �ITRON Implementation-dependent Speci�cations� Speci�cation: When a semaphore/an eventag/a mailbox being waited for bymore than one tasks is deleted, the order of tasks on the ready queue after theWAIT state is cleared is implementation dependent in the case of tasks having25

the same priority.Implementation: Tasks with same priority enter the ready queue in the sameorder as they were earlier in the semaphore/eventag/mailbox wait queue.

26

Chapter 5
�ITRON Interrupt ManagerModuleThe �ITRON Interrupt Manager Module services include de�ning interrupt handlersand disabling/enabling of external interrupts and task dispatching.5.1 The DesignInterrupt handlers are considered task-independent portions. Task switching (dis-patching) is not performed while a task-independent portion is executing and evenif the result of a system call issued inside a task-independent portion is a dispatch-ing request, that dispatching is delayed until the control leaves the task-independentportion. This is called delayed dispatching.The module leaves the interrupt handling strategies to the bare interrupt managermodule, which is its hard prerequisite. Thus the module provides the �ITRON in-terrupt management functions independent of the interrupt handling strategies thatcould be provided by various interrupt management modules, of which, any of themcould be plugged into the system as per the application need.The module o�ers a special service to lock the CPU. Basically this system calldisables external interrupts and task dispatching. All possibility that a task might bepreempted (have its CPU privileges taken away) by an interrupt handler or anothertask is suppressed. This system call internally informs the �ITRON task managermodule that the CPU has been locked, and the status of the system is updated27

(CPU locked). The system status at any instant can be obtained by the Refer-ence System Status() system call, provided by the �ITRON System Manager Module.5.2 Module Prerequisites� Hard Prerequisites: Interrupt Manager Module.The Interrupt Manger Module services are used to de�ne interrupt handlers.� Soft Prerequisites: �ITRON Task Manger Module.The �ITRON Task Manager Module services are used to inform the task man-ager if CPU has been locked/unlocked and to wakeup tasks.5.3 Con�guration ParametersThe module does not have any static con�guration parameters.5.4 Services provided by the Interrupt ManagerThe �ITRON interrupt manager module provides the following services.� De�ne Interrupt Handler This system call de�nes an interrupt handler forthe given interrupt number and makes that interrupt handler ready to use.� Return from Interrupt Handler This system call causes the invoked inter-rupt handler to �nish.� Return and Wakeup Task This system call releases the SLEEP state of thetask speci�ed and causes the issuing interrupt handler to �nish.� Lock CPU This system call disables external interrupt and task dispatching.� Unlock CPU This system call enables external interrupt and task dispatching.� Disable Interrupt This system call disables the interrupt, speci�ed by theinterrupt number. 28

� Enable Interrupt This system call enables the interrupt, speci�ed by theinterrupt number.� Change Interrupt Mask This system call changes the interrupt mask to thatspeci�ed.� Reference Interrupt Mask This system call returns the interrupt mask.5.5 ImplementationAt initialization, the �ITRON interrupt manager module queries the nano-kernel forthe service handlers of the bare interrupt handler module and the �ITRON taskmanager module.The module uses the service, add handler() of the interrupt handler module tode�ne a new interrupt handler for the given interrupt number.add_handler (intr_no, handler_priority, handler_addr);The add handler() system call adds the given service routine to the list of handlers,sorted by handler priority, corresponding to the interrupt number. The �ITRONinterrupt manager module does not use the service handlers' priority feature providedby the interrupt Manager Module, but instead speci�es a default priority.The module uses the service update system status() of the �ITRON Task Man-ager Module to update the system status, when the CPU is locked or unlocked.The �ITRON System Manager Module gets the system status information from the�ITRON Task Manager Module, using the Reference System Status() system call.

29

Chapter 6
�ITRON Memory ManagerModuleThe �ITRON Memory Manager Module o�ers services to manage memorypools andto allocate/deallocate memory blocks from the memory pools. There are two typesof memorypools: �xed-size memorypools and variable-size memorypools. Both areconsidered separate objects and require di�erent system calls for manipulation. Whilethe size of memory blocks allocated from �xed-size memorypools are all �xed, blocksof any size may be speci�ed when allocating memory blocks from variable-size mem-orypools.6.1 The DesignThe �ITRON Memory Manager Module uses the services of the Physical Mem-ory Manager Module, to allocate or deallocate memory for the memorypools. The�ITRON Memory Manger then manages the pool memory to allocate and deallocateblocks of memory to various tasks.If the memory block cannot be issued to the requesting task, due to lack of memoryin the memorypool, the task is placed on the memory allocation queue of the speci�edmemorypool, and will wait until it can get the memory it requires. The manner inwhich tasks are put into this queue can be speci�ed to be either FIFO-ordered orTask Priority ordered, at the time of creation of the memorypool. However, a taskrequesting for a memory block can always poll for memory in the memory pool or30

wait for memory, with timeout.The �ITRON Memory Manager uses the services of the �ITRON Task ManagerModule either to make the current task wait, or to release the wait state of a taskwaiting for memory. The module makes the current task wait, if the request can notbe satis�ed as there is not enough memory in the memorypool. The module releasesthe wait state of a task either when its memory request is satis�ed successfully, or ifthe memorypool it is waiting on, is deleted. If a task waits with timeout, for a memoryblock, its wait state is released directly by the �ITRON Task Manager Module.6.1.1 Level X functions supported by the module� The placement of tasks on the memorypool wait queue based on the task prioritylevel is supported.6.2 Module Prerequisites� Hard Prerequisites: Physical Memory Manager Module.The Physical Memory Manager Module services are used to allocate and de-allocate memory for the memorypools at the time of their creation and deletionrespectively.� Soft Prerequisites: �ITRON Task Manager Module.The �ITRON Task Manager Module services are used to make the current taskwait (and release control) when it is going to wait for memory, and to releasethe wait state of a waiting task which was waiting for memory.6.3 Con�guration ParametersThe module needs to be provided with the following static con�guration parameters:1. The maximum number of �xed size memorypools used by the application.2. The maximum number of variable size memorypools used by the application.
31

6.4 Services provided by the Memory ManagerThe module provides the following services to the application and the other modules.� Create Variable-Size Memorypool This system call creates a variable-sizememorypool of the given size.� Delete Variable-Size Memorypool This system call deletes the speci�edvariable-size memorypool.� Get Variable-Size Memory Block A memory block of the given size isallocated from the speci�ed variable-size memorypool. The system call supportsboth polling and timeout features.� Release Variable-Size Memory Block This system call releases the speci�edmemory block to the variable-size memorypool.� Reference Variable-Size Memorypool Status This system call refers tothe state of the speci�ed variable-size memorypool, and returns the total andthe maximum continuous free memory available, waiting task information, andits extended information.� Create Fixed-Size Memorypool This system call creates a �xed-size mem-orypool of size given by memory block size and memory pool block count (themaximum number of blocks that can be allocated from the pool at a time).� Delete Fixed-Size Memorypool This system call deletes the speci�ed �xed-size memorypool.� Get Fixed-Size Memory Block A �xed size memory block is allocated fromthe speci�ed �xed-size memorypool. The system call supports both polling andtimeout features.� Release Fixed-Size Memory Block This system call releases the speci�edmemory block to the �xed-size memorypool.� Reference Fixed-Size Memorypool Status This system call refers to thestate of the speci�ed �xed-size memorypool and returns the current number offree blocks, waiting task information, and its extended information.32

6.5 Implementation6.5.1 Module InitializationAt initialization the �ITRON Memory Manager Module sets-up the memory pooltables and initializes their wait queues. It queries the nano-kernel for the servicehandlers of the Physical Memory Manager Module and the �ITRON Task ManagerModule.6.5.2 Data StructuresEach entry of the variable-size memory pool and the �xed-size memory pool tableshave the following �elds, respectively.struct var_sz_mem_pool_cntrl_block {VP exinf; /* Extended Information */ATR mplatr; /* Memory Pool Attributes */MEM_BLK_ID_TYPE blkid; /* Physical Mem mgr's blkid */INT maxblks; /* Max blks that can be allocated */var_sz_block_node var_sz_blocks_head_node;/* Head node of linked list which maintains block assignments */};struct fixed_sz_mem_pool_cntrl_block {VP exinf; /* Extended Information */ATR mpfatr; /* Memory Pool Attributes */INT blfsz; /* Memory Block Size */INT mpfcnt; /* # of blocks in the pool */MEM_BLK_ID_TYPE blkid; /* Physical Mem mgr's blkid */};The memory pool attributes specify the manner in which tasks waiting for memoryallocation are put on the memorypool's queue. The blkid is a tag to the memoryallocated for the pool by the Physical Memory Manager Module.
33

6.5.3 Memory AllocationMemory is allocated for creation of memorypools, using the service, get mem blk(),of the Physical Memory Manager Module. Allocation of memory blocks in each ofthe pools is done as follows.Variable-size MemorypoolsA doubly linked list is maintained to manage the block allocation. Speci�cally, atthe time of pool creation, additional amount of memory is requested, which is usedfor the linked list. Given the size of the pool, it is assumed that the maximumnumber of blocks that can be requested from the pool are (pool size/FACTOR). TheFACTOR used was 10, as it is fair enough for most of the cases. This results infaster allocation and deallocation of memory blocks, as there is no need to contactthe Physical Memory Manager Module again, for more memory. The doubly linkedlist representation simpli�es merging of adjacent free memory blocks, and is faster.However, it conserves more memory.The following algorithm is used when a request for a memory block of a speci�csize arrives.1. Refer the status of memorypool;2. if (the memorypool wait queue is not empty) ORif (the continuous free space available is lesser than required)then if (the task is just polling) return NO_MEM;elseAdd the task-id and the memory requested to the queue;Make the current task wait and Release Control;3. Allocate memory block;4. Check out the free space left now.Try allocating memory to the tasks at the head of the queue.
34

Fixed-size MemorypoolsAs the maximum number of blocks that can be requested from a �xed-size memo-rypool is �xed and known, additional memory (a control block) of size number-of-blocks/8 is requested at the time of pool creation, to manage the allocation/deallocationof blocks. Each bit in the control block corresponding to a unique block in the pooland determines whether the block is allocated.The following algorithm is used when a request for a memory block arrives.1. Refer the status of memorypool;2. if (the memorypool wait queue is not empty)then if (the task is just polling) return NO_MEM;elseAdd the task-id to the queue;Make the current task wait and Release Control;3. Allocate memory block;6.5.4 Memory De-allocationMemory is de-allocated when a memorypool is deleted, using the service, free mem blk(),of the Physical Memory Manager Module. When a pool is deleted, however, if thereare any tasks waiting to get memory blocks from the memorypool, a speci�c errorwill to returned to each waiting task.Deallocation of memory blocks in the pools is done as follows.Variable-size MemorypoolsThe address of the memory block to be freed, indirectly gives the address of thecontrol node, in the pool linked list. The status of the node is set to be free, andusing the doubly linked feature of the list, the neibhoring nodes, if already FREE,are merged to form a single node with larger continuous space.
35

Fixed-size MemorypoolsDe-allocation in �xed-size memorypools is simply retrieving and resetting the corre-sponding control bit of the memory block.6.5.5 �ITRON Implementation-dependent Speci�cations� Speci�cation: When tasks form a queue to compete for a memory, it is im-plementation dependent whether priority is given to tasks requesting the smallersize of memory or those at the head of the queue.Implementation: No priority is given to the tasks requesting smaller size ofmemory but allocation is strictly done in the order speci�ed (FIFO or task-priority based) while creating the pool.� Speci�cation: When a memorypool being waited for by more than one tasksis deleted, the order of tasks on the ready queue after the WAIT state is clearedis implementation dependent in the case of tasks having the same priority.Implementation: The tasks are placed in the same order in the ready queueas they were in the memorypool wait queue.

36

Chapter 7
�ITRON Time Manager ModuleThe �ITRON Time Manager Module provides services for time-dependent processing.These services include functions for setting and referring the system clock, delayingtasks, manipulating handlers invoked cyclically (cyclic handlers), and manipulatinghandlers started at speci�ed time (alarm handlers).7.1 The DesignTime can be either absolute or relative, and is managed and expressed in terms of milli-seconds, seconds, minutes, hours, days(or date), months and years. Using the servicesof the Interrupt Manager Module, the module maintains the system time and managesthe cyclic handlers and alarm handlers. This is done by de�ning highest priorityhandlers(a service provided by the Interrupt Handler Module) for the hardware timerinterrupt, which maintain the system time and manage the cyclic handlers and thealarm handlers.Cyclic handlers and alarm handlers are generally called timer handlers. Timerhandlers are executed as task-independent portions and the user must save any regis-ters used by the timer handler. Even if dispatching is required while a timer handleris executing, it is not processed immediately, but rather that dispatching is delayeduntil the timer handler �nishes. This is called delayed dispatching.A cyclic handler is invoked �rst exactly after the time interval has elapsed. Thehandler will run cyclically until either its de�nition is cancelled or it is deactivated.Di�erent cyclic handlers are identi�ed by cyclic handler-id and when rede�ning a37

cyclic handler, it is not necessary to �rst cancel the handler de�nition which has thatid. Alarm handlers are similarly identi�ed by alarm handler-ids but the time for alarmhandler invocation could be either absolute or relative. If an absolute time is speci�ed,the handler will be invoked at the clock time speci�ed. If relative time is speci�ed, thealarm handler will be invoked after the amount of time speci�ed has elapsed. In anycase, the de�nition of the alarm handler is cancelled automatically when the speci�edtime comes and that the handler is invoked. When rede�ning an alarm handler, it is,however, not necessary to �rst cancel the handler de�nition which has that id.The module o�ers services to delay (keep in WAIT state) the running task, inreal-time. This is done by using the services of the �ITRON Task Manager Moduleto make the current task wait, with timeout(the delay value). The task WAIT state isreleased as soon as the speci�ed time expires, but if a higher priority task is executingby this time, the task is kept in the ready queue, and it waits further for it's turn tocome.7.2 Prerequisites for the Time Manager Module� Hard Prerequisites: Interrupt Handler Module.The Interrupt Handler Module services are used to maintain system time, andto manage cyclic handlers and alarm handlers.� Soft Prerequisites: �ITRON Task Manager Module.The �ITRON Task Manager Module timeout service is used to delay the runningtask in real-time.7.3 Con�guration parametersThe module needs to be provided with the following static con�guration parameters:1. The maximum number of cyclic handlers de�ned by the application.2. The maximum number of alarm handlers de�ned by the application.
38

7.4 Services provided by the Time ManagerThe �ITRON Time Manager Module provides the following services.� Set System Clock This system call sets the system clock to the time speci�ed.� Get System Clock This system call returns the current value of the systemclock.� Delay Task This system call temporarily halts the execution of the task issuingthe call, and makes it enter the time elapse wait state. The task halts executionfor the amount of time speci�ed.� De�ne Cyclic Handler This system call de�nes a cyclic handler.� Activate Cyclic Handler This system call changes the activation of the spec-i�ed cyclic handler (OFF/ON/Re-initialize the interval counter).� Reference Cyclic Handler Status This system call refers to the state ofthe speci�ed cyclic handler and returns the cyclic handler's activation state,the remaining time until the cyclic handler is invoked next, and its extendedinformation.� De�ne Alarm Handler This system call de�nes an alarm handler.� Reference Alarm Handler Status This system call refers to the state of thespeci�ed alarm handler, and returns the remaining time until the alarm handleris invoked, and its extended information.� Return from Timer Handler This system call causes the invoked timerhandler (cyclic or alarm) to �nish.7.5 Implementation7.5.1 Module InitializationAt initialization the �ITRON Time Manager Module sets the system time to a defaultvalue and initializes the cyclic handler and alarm handler tables. It also initializesthe 8253 timer(Counter 0) to generate an interrupt, 100 times per second. It queries39

the nano-kernel for the service handlers of the Interrupt Manager Module and the�ITRON Task Manager Module. It then adds handlers to the timer interrupt tomaintain system clock and manage cyclic handlers and alarm handlers.7.5.2 System TimeSystem time is absolute and contains the �elds milli-seconds, seconds, minutes, hours,date, month and year. The system time is incremented by 10 milli-seconds on eachtimer interrupt and other �elds like seconds, minutes, etc., are modi�ed accordingly.Leap years are taken care of. The system call, set system call(), re-initializes thesystem time.7.5.3 Cyclic HandlersRelative time is speci�ed for invocation of a cyclic handler, in terms of milli-seconds,seconds, minutes, hours, days, months(1 month = 30 days), and years (1 year =365 days). The handler that manages the cyclic handlers goes through all the activecyclic handlers, each time it is invoked, and decrements the waiting count by 10 milli-seconds, and if the count reaches zero, the module informs the �ITRON Task MangerModule, that a task independent portion is being entered into. It then invokes thecyclic handler. Once the cyclic handler exits, the �ITRON Task Manager Module isre-informed about the current system status and the wait counter is re-initialized.7.5.4 Alarm HandlersAbsolute or relative time can be speci�ed for invocation of an alarm handler. Alarmhandler speci�ed by relative time are processed in the same way as a cyclic handler,except that their de�nition is cancelled once the handler is invoked. However, if thetime speci�ed is absolute, a comparison is made with the current system time, insteadof maintaining a waiting counter.7.5.5 �ITRON Implementation-dependent Speci�cations� Speci�cation: If more than one timer handler and/or interrupt handler are tobe invoked at the same time, it is implementation dependent whether they may40

either be run serially or they may be run nested.Implementation: Timer handlers are invoked by an interrupt handler, whichinvokes them serially. Interrupt handlers, however, can be nested.� Speci�cation: In an implementation allowing de�ne cyclic handler() or de-�ne alarm handler() to be issued by a timer handler, it is possible to rede�ne atimer handler with the same timer handler number/id in the handler.Implementation: de�ne cyclic handler() and de�ne alarm handler() are al-lowed inside any timer handler and hence the rede�nition of the same timerhandler number/id.

41

Chapter 8
�ITRON System Manager ModuleSystem management functions are used to set and refer the overall system environ-ment. These system calls include functions for getting the OS version, referencingthe system's dynamic status, and referencing con�guration information (the system'sstatic status).8.1 The DesignThe information about the OS version, maker code, �ITRON speci�cation versionnumber implemented (3.02), internal implementation version number (ver 1.0), CPUinformation (Intel 8086, 8088), available functions (Level E) etc., is hard-coded, andcan be obtained from the get version() system call.To refer the system's dynamic status, the �ITRON System Manager Module usesthe services of the �ITRON Task Manager Module. The �ITRON Task ManagerModule manages the three ags, DISPATCH-DISABLED, TASK-INDEPENDENT-PORTION-ENTERED, and CPU-LOCKED. Any module that performs an operationthat would modify the system status, informs the �ITRON Task Manger Moduleabout the change, and the latter updates the ag. The �ITRON System MangerModule simply refers to these ags for the current system status.8.2 Prerequisites for the System Manager Module� Hard Prerequisites: None. 42

� Soft Prerequisites: �ITRON Task Manager Module.The �ITRON Task Manager Module services are used to refer to the currentsystem status - if the CPU has been locked, or if a task-independent portion isrunning, or if the dispatching is disabled.8.3 Con�guration parametersThe module does not have any static con�guration parameters.8.4 Services provided by the System ManagerThe �ITRON System Manager Module provides the following services.� Get Version Information This system call gets informations of the maker ofthe �ITRON speci�cation OS currently executing, the identi�cation number ofthe OS, the �ITRON speci�cation version number which the OS is based on,and the version number of the OS product.� Reference System Status This system call refers the execution state of theCPU and OS, and returns information such as whether dispatching is disabledand whether a task-independent portion is executing.� Reference Con�guration Information This system call refers static infor-mation regarding the system and information speci�ed at its con�guration.8.5 ImplementationAt initialization, the �ITRON System Manager Module queries the nano-kernel forthe service handler of the �ITRON Task Manager Module. The system call ReferenceSystem Status uses the service system status info() of the �ITRON Task ManagerModule and the current system state is informed to the user, in terms of whether dis-patching is disabled, whether the cpu has been locked and whether a task-independentportion is executing. The con�guration information returned by the module is imple-mentation dependent, and has the following structure.43

typedef struct t_rcfg {nucleus_node nucleus;u_mem_m_node u_mem_m;u_task_m_node u_task_m;u_time_m_node u_time_m;u_comm_m_node u_comm_m;} T_RCFG;typedef struct nucleus_node {INT max_no_of_ports;} nucleus_node;typedef struct u_mem_m_node {INT max_app_var_sz_pools;INT max_app_fixed_sz_pools;} u_mem_m_node;typedef struct u_task_m_node {INT max_user_tasks;INT max_suspend_requests;INT max_wakeup_requests;} u_task_m_node;typedef struct u_time_m_node {INT max_cyclic_handlers;INT max_alarm_handlers;} u_time_m_node;typedef struct u_comm_m_node {INT max_user_eventflags;INT max_user_mailboxes;INT max_user_semaphores;} u_comm_m_node;Hence we see that the �ITRON System Manager Module provides valuable infor-mation such that exible code can be written.44

Chapter 9
Car Dashboard Controller - AnApplication ProgramThe kernel design and various modules presented in this thesis, o�er services that canbe used for a wide range of applications. The OS platform is compatible with levelE(extended) �ITRON 3.0 industrial standard. In this chapter, we discuss the design ofa car dashboard controller, an application developed using the current implementationof the kernel.9.1 The ModelConsider a car dashboard which shows the speed, total distance traveled, traveleddistance in a trip, fuel status, battery status, car temperature, pressures of all thefour tyres and alarms for an unlocked door. The car parameters are monitored con-tinuously by an embedded controller. Warnings are shown on the dashboard so thatthe driver can take appropriate action. For implementing such a car dashboard, wemodel the application program as follows.� The CPU is interrupted on completion of each rotation of the car tyre. Aphoto sensor, that is stationary with respect to the rotating tyre, can be usedfor this purpose. It would detect the light from an emitter, again stationarywith respect to the wheel. The movement of the wheel interrupts the light pathbetween emitter and detector. This signal is used to identify the wheel rotation.Once the CPU is interrupted, the corresponding task would update the distance45

traveled and the speed.� A switch on the car body can be used to detect whether a door is locked. Thisswitch is pressed closed by the door. Door lock status is displayed periodically,and is checked when the car is moving, to warn the driver if any door is unlocked.� An object oating in the fuel tank, connected to a rheostat can produce a voltagecorresponding to the fuel level. This value, through an A/D converter, is readperiodically by the controller to update the fuel display.� The output of the temparature sensor, sensing the temparature inside the car,is read using A/D converter to periodically update the temparature display.� Battery voltage is directly read and converted to digital form, to be read by theCPU, periodically.� Tyre pressure can be measured in the following way. A metal cylinder connectedto the nozzle of the tyre having a disc obstructing the air, which can be movedaway from the nozzle by the air pressure in the tyre and by a spring trying topush it towards the nozzle. Hence, the higher the tyre pressure, the farther thedisc moves away from the nozzle, and a rheostat connected to the other end canproduce a corresponding voltage. This voltage can be continuously read by thepads connected on the stationary part on either side of the tyre.9.2 The DesignThe application needs various data to be displayed and updated on the dashboardconstantly. Speci�cally, data is received by the two tasks - Update Display andShow Warning from their respective mailboxes used for data communication - onefor display requests, and one for warnings. Both the tasks are of high priority andtheir main function is to wait on a mailbox (other tasks are scheduled during thistime) as long as there are no messages, and once a message arrives, they retrieve itand display. The task, Show Warning, is the highest priority task.The interrupt handler, UpdateDistancePerOneRotationOfTheWheel, in-voked on each rotation of the car tyre, updates the distance traveled (both the totaldistance and the recently traveled distance) by the circumference of the tyre.46

The following cyclic handlers constantly monitor the input data at regular intervalsand append the information to the display mailbox. If an event is detected that needsthe driver to be warned, an appropriate warning message is also sent (to the warningmailbox).1. Speed Handler: The speed handler computes the new speed depending on thelast known distance, current distance and the time lapse between two successiveinvocations of the handler. It then sends the new speed data as a message tothe display mailbox. Depending on the speed, it also generates the followingwarnings:(a) Doors unlocked. (if speed > 0)(b) You are going too fast. (If speed > SPEED LIMIT)2. Distance Handler: The display handler simply sends a display message to thedisplay mailbox for both the distance values maintained.3. Fuel Handler: The fuel handler sends the current fuel value to the displaymailbox and depending on the fuel value, the following warnings are sent to thewarning mailbox.(a) Fuel is below the safe amount.(b) Fuel too low.4. Battery Handler: The battery handler sends the current battery voltage tothe display mailbox. Depending on this value the following warning is sent tothe warning mailbox.(a) Battery Voltage too low.5. Temperature Handler: The temperature handler sends the current temper-ature inside the car to the display mailbox.6. Tyre Pressure Handler: The tyre pressure handler sends four messages tothe display mailbox giving the tyre pressures of the four tyres. It also sends thefollowing warning message, depending on the tyre pressures.(a) Tyre pressure low in tyre # 47

7. Door-lock Handler: The Door-lock handler sends the current Door-lock sta-tus of the four doors of the car to the display mailbox.All the above mentioned cyclic handlers, tasks, and the interrupt handler togethermake the car dashboard controller simple and complete.9.3 ResultsThe design and implementation(a simulation) of this application, took about twentyman hours. The application is completely written in `C' language[Appendix C], andthe size of the source code is about 500 lines. It can be clearly seen that using the�ITRON API we are able to design the application at a very high level of abstraction,making the design and implementation of the application very simple.

48

Chapter 10
ConclusionIn this thesis we presented a generic modular embedded OS platform compatible withlevel E(Extended) �ITRON 3.0 standard. The OS is well suited for both the small-scale and large-scale embedded systems, as the modules are pluggable in nature andhence, no extra baggage needs to be carried by the application. Further the mod-ular architecture allows the OS to provide a compatible interface with an industrialstandard like �ITRON, contributing to improved software productivity.The example application of a car dashboard controller, presented in Chapter 9 andAppendix C, clearly shows that the embedded OS platform presented in this thesisreduces the development time; reduces the design complexity; reduces the chances oferror and makes the application compatible with an industrial standard.The current implementation supports the basic modules: Physical Memory Man-ager, Interrupt Handler, Thread Manager and the �ITRON API modules: Task Man-ager, CommunicationManager, Interrupt Manager, Memory Manager, Time Managerand System Manager. These modules would su�ce for both the simple applicationsand most of the complicated ones. For other applications, modules like NetworkManager, may be necessary.10.1 Existing WorkThe work presented here is an extension of the existing work, which includes thedesign and implementation of the nucleus and the following modules [Appendix: B]1. Interrupt Handler Module and 49

2. Thread Manager ModuleThese two modules are su�cient for small applications, but do not provide any stan-dard API.10.2 Future WorkThe following tasks could be taken up, as part of future work, to take the worktowards its logical completion.Modules Several other modules like Network Manager, etc., and modules support-ing other standard API can be developed. Further, modules serving the samepurpose but using di�erent strategies can be developed too, and any of thosemodules can be picked up by the application, depending on the need.Applications More applications can be developed using this kernel to verify thecorrectness and suitability of the kernel.Tools Several tools can be developed for simulating and debugging sample applica-tions and modules, leading to rapid development of the OS and the embeddedapplications.Porting Porting of the machine-dependant parts of the modules for di�erent hard-ware architectures and processors can also be taken up.

50

Appendix A
APIThis chapter discusses the application program interface provided by various �ITRONmodules. Though the modules and the application communicate using the stardard-ized intermodule interface[Kri97], given below are the library function prototypes thatcan be used by the applications using the help of the standard library.A.1 �ITRON Task Manager Module1. Create TaskER cre_tsk (ID tskid, T_CTSK *pk_ctsk) ;-(pk_ctsk members)-VP exinf ExtendedInformationATR tskatr TaskAttributeFP task TaskStartAddressPRI itskpri InitialTaskPriorityINT stksz StackSize (in bytes)2. Delete TaskER del_tsk (ID tskid) ;3. Start Task 51

ER sta_tsk (ID tskid, INT stacd) ;4. Exit Issuing Taskvoid ext_tsk () ;5. Exit and Delete Taskvoid exd_tsk () ;6. Terminate Other TaskER ter_tsk (ID tskid) ;7. Disable DispatchER dis_dsp () ;8. Enable DispatchER ena_dsp () ;9. Change Task PriorityER chg_pri (ID tskid, PRI tskpri) ;10. Rotate Tasks on the Ready QueueER rot_rdq (PRI tskpri) ;11. Release Wait of Other TaskER rel_wai (ID tskid) ;12. Get Task Identi�erER get_tid (ID *p_tskid) ; 52

13. Reference Task StatusER ref_tsk (T_RTSK *pk_rtsk, ID tskid) ;-(pk_rtsk members)-VP exinf ExtendedInformationPRI tskpri TaskPriorityUINT tskstat TaskState14. Suspend Other TaskER sus_tsk (ID tskid) ;15. Resume Suspended Task/Forcibly Resume Suspended TaskER rsm_tsk (ID tskid) ;ER frsm_tsk (ID tskid) ;16. Sleep Task/Sleep Task with TimeoutER slp_tsk () ;ER tslp_tsk (TMO tmout) ;17. Wakeup Other TaskER wup_tsk (ID tskid) ;18. Cancel Wakeup RequestER can_wup (INT *p_wupcnt, ID tskid) ;A.2 �ITRON Communication Manager Module1. Create Semaphore
53

ER cre_sem (ID semid, T_CSEM *pk_csem) ;-(pk_csem members)-VP exinf ExtendedInformationATR sematr SemaphoreAttributesINT isemcnt InitialSemaphoreCount [level X]INT maxsem MaximumSemaphoreCount [level X]2. Delete SemaphoreER del_sem (ID semid) ;3. Signal SemaphoreER sig_sem (ID semid) ;4. Wait on Semaphore/Poll and Request Semaphore/Wait on Semaphorewith TimeoutER wai_sem (ID semid) ;ER preq_sem (ID semid) ;ER twai_sem (ID semid, TMO tmout) ;5. Reference Semaphore StatusER ref_sem (T_RSEM *pk_rsem, ID semid) ;-(pk_rsem members)-VP exinf ExtendedInformationBOOL_ID wtsk WaitingTaskInformationINT semcnt SemaphoreCount6. Create EventagER cre_flg (ID flgid, T_CFLG *pk_cflg) ;-(pk_cflg members)-VP exinf ExtendedInformationATR flgatr EventFlagAttributesUINT iflgptn InitialEventFlagPattern54

7. Delete EventagER del_flg (ID flgid) ;8. Set Eventag/Clear EventFlagER set_flg (ID flgid, UINT setptn) ;ER clr_flg (ID flgid, UINT clrptn) ;9. Wait for Eventag/Wait for Eventag (Polling)/Wait for Eventagwith TimeoutER wai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);ER pol_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);ER twai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode,TMO tmout) ;10. Reference Eventag StatusER ref_flg (T_RFLG *pk_rflg, ID flgid) ;-(pk_rflg members)-VP exinf ExtendedInformationBOOL_ID wtsk WaitingTaskInformationUINT flgptn EventFlagBitPattern11. Create MailboxER cre_mbx (ID mbxid, T_CMBX *pk_cmbx) ;-(pk_cmbx members)-VP exinf ExtendedInformationATR mbxatr MailboxAttributes(the use of the following information is implementation dependent)INT bufcnt BufferMessageCount12. Delete Mailbox 55

ER del_mbx (ID mbxid) ;13. Send Message to MailboxER snd_msg (ID mbxid, T_MSG *pk_msg) ;14. Receive Message from Mailbox/Poll and Receive Message from Mail-box/Receive Message from Mailbox with TimeoutER rcv_msg (T_MSG *ppk_msg, ID mbxid) ;ER prcv_msg (T_MSG *ppk_msg, ID mbxid) ;ER trcv_msg (T_MSG *ppk_msg, ID mbxid, TMO tmout) ;15. Reference Mailbox StatusER ref_mbx (T_RMBX *pk_rmbx, ID mbxid) ;-(pk_rmbx members)-VP exinf ExtendedInformationBOOL_ID wtsk WaitingTaskInformationT_MSG *pk_msg Start Address of Message Packet to be ReceivedA.3 �ITRON Interrupt Manager Module1. De�ne Interrupt HandlerER def_int (UINT dintno, T_DINT *pk_dint) ;-(pk_dint members)-ATR intatr InterruptHandlerAttributesFP inthdr InterruptHandlerAddress2. Return from Interrupt Handlervoid ret_int () ;3. Return and Wakeup Task 56

void ret_wup (ID tskid) ;4. Lock CPUER loc_cpu () ;5. Unlock CPUER unl_cpu () ;6. Disable InterruptER dis_int (UINT eintno) ;7. Enable InterruptER ena_int (UINT eintno) ;8. Change Interrupt Mask (Level or Priority)ER chg_iXX (UINT iXXXX) ;9. Reference Interrupt Mask (Level or Priority)ER ref_iXX (UINT *p_iXXXX) ;A.4 �ITRON Memory Manager Module1. Create Variable-Size MemorypoolER cre_mpl (ID mplid, T_CMPL *pk_cmpl) ;-(pk_cmpl members)-VP exinf ExtendedInformationATR mplatr MemoryPoolAttributesINT mplsz MemoryPoolSize (in bytes)57

2. Delete Variable-Size MemorypoolER del_mpl (ID mplid) ;3. Get Variable-Size Memory Block/Poll and Get Variable-Size MemoryBlock/Get Variable-Size Memory Block with TimeoutER get_blk (VP *p_blk, ID mplid, INT blksz);ER pget_blk (VP *p_blk, ID mplid, INT blksz);ER tget_blk (VP *p_blk, ID mplid, INT blksz, TMO tmout) ;4. Release Variable-Size Memory BlockER rel_blk (ID mplid, VP blk) ;5. Reference Variable-Size Memorypool StatusER ref_mpl (T_RMPL *pk_rmpl, ID mplid) ;-(pk_rmpl members)-VP exinf ExtendedInformationBOOL_ID wtsk Waiting TaskInformationINT frsz FreeMemorySize (in bytes)INT maxsz MaximumFreeMemorySize (in bytes)6. Create Fixed-Size MemorypoolER cre_mpf (ID mpfid, T_CMPF *pk_cmpf) ;-(pk_cmpf members)-VP exinf ExtendedInformationATR mpfatr MemoryPoolAttributesINT mpfcnt MemoryPoolBlockCountINT blfsz MemoryBlockSize (in bytes)7. Delete Fixed-Size MemorypoolER del_mpf (ID mpfid) ; 58

8. Get Fixed-Size Memory Block/Poll and Get Fixed-Size Memory Block/GetFixed-Size Memory Block with TimeoutER get_blf (VP *p_blf, ID mpfid);ER pget_blf (VP *p_blf, ID mpfid);ER tget_blf (VP *p_blf, ID mpfid, TMO tmout) ;9. Release Fixed-Size Memory BlockR rel_blf (ID mpfid, VP blf) ;10. Reference Fixed-Size Memorypool StatusER ref_mpf (T_RMPF *pk_rmpf, ID mpfid) ;-(pk_rmpf members)-VP exinf ExtendedInformationBOOL_ID wtsk WaitingTaskInformationINT frbcnt FreeMemoryBlockCountA.5 �ITRON Time Manager Module1. Set System ClockER set_tim (SYSTIME *pk_tim);typedef struct {H msecs; /* Milli-seconds */B secs; /* Seconds */B mins; /* Minutes */B hrs; /* Hours */B date; /* Date */B month; /* Month */H year; /* Year */} SYSTIME, CYCTIME, ALMTIME;2. Get System Clock 59

ER get_tim (SYSTIME *pk_tim);3. Delay TaskER dly_tsk (DLYTIME dlytim);4. De�ne Cyclic HandlerER def_cyc (HNO cycno, T_DCYC *pk_dcyc) ;-(pk_dcyc members)-VP exinf ExtendedInformationATR cycatr CyclicHandlerAttributesFP cychdr CyclicHandlerAddressUINT cycact CyclicHandlerActivationCYCTIME cyctim CycleTime5. Activate Cyclic HandlerER act_cyc (HNO cycno, UINT cycact) ;6. Reference Cyclic Handler StatusER ref_cyc (T_RCYC *pk_rcyc, HNO cycno) ;-(pk_rcyc members)-VP exinf ExtendedInformationCYCTIME lfttim LeftTimeUINT cycact CyclicHandlerActivation7. De�ne Alarm HandlerER def_alm (HNO almno, T_DALM *pk_dalm) ;-(pk_dalm members)-VP exinf ExtendedInformationATR almatr AlarmHandlerAttributesFP almhdr AlarmHandlerAddressUINT tmmode TimeModeALMTIME almtim AlarmTime 60

8. Reference Alarm Handler StatusER ref_alm (T_RALM *pk_ralm, HNO almno) ;-(pk_ralm members)-VP exinf ExtendedInformationALMTIME lfttim Time Left before Handler Runs9. Return from Timer Handlervoid ret_tmr () ;A.6 �ITRON System Manager Module1. Get Version InformationER get_ver (T_VER *pk_ver);-(pk_ver members)-UH maker OS MakerUH id Identification Number of the OSUH spver ITRON or uITRON Specification Version NumberUH prver OS Product Version NumberUH prno[4] Product Number(Product Management Information)UH cpu CPU InformationUH var Variation Descriptor2. Reference System StatusER ref_sys (T_RSYS *pk_rsys) ;-(pk_rsys members)-INT sysstat SystemState3. Reference Con�guration InformationER ref_cfg (T_RCFG *pk_rcfg) ;-(pk_rcfg members)-(CPU and/or implementation-dependent information is returned)61

Appendix B
Existing ModulesThe following modules have been developed prior to this thesis. A brief descriptionof their design, pre-requisites, and services o�ered are given below.B.1 Interrupt Manager Module[Kri97]The interrupt manager provides services to let the application and other modules tospecify their functions to be added or removed from the service routine of a particularinterrupt.B.1.1 The DesignInterrupts are handled in general, by having an interrupt service routine for eachinterrupt and having it invoked automatically whenever the interrupt arrives. Con-ventionally, when this interrupt routine is being executed, some or all the interruptsare disabled or queued, depending on the interrupt's priority.Problems with interrupt level prioritiesIn cases where the same interrupt occurs multiple times in succession, fast enough,such that the next interrupt arrives while the previous invocation is being served,then, all subsequent calls are either masked, queued or allowed to be serviced.If the subsequent calls are masked, we lose some input signals which may be62

urgent. If the calls are queued, the system cannot work since the queue keeps ongrowing while the system is not able to serve the requests and if the interrupts areallowed to be serviced, then the stack grows unbounded since the interrupts keepcoming but are not able to return.The SolutionThe approach adapted in the design of this module is to have priorities at the servicelevel rather than at interrupt level. All the interrupts are de�ned to have equalpriority and no interrupt is masked during normal execution. If at any time interruptmasking is required then all interrupts are masked at the same time.Hence, an application de�nes services along with their priorities. When an inter-rupt is raised, the default service routine is invoked which executes service routinesin order of their priorities. In case another interrupt arises while the previous oneis still being served, the interrupt is allowed to be serviced and the previous one isterminated leaving low priority services unserved.B.1.2 Pre-requisites� Hard Prerequisites : None.� Soft Prerequisites : None.The only dependency of this module is a run-time dependency on modules like \virtualmemory manager". If it is present, the interrupt manager additionally sets-up theinterrupt tables for the protected mode.B.1.3 ServicesThe module o�ers the following services to the application and the other modules.� Add Handler - Add a given service subroutine to the list of an interrupt atthe given priority.� Remove Handler - Remove a speci�ed service routine or handler from the listof handlers of the speci�ed interrupt.63

B.2 Thread Manager Module[Kri97]A thread is an independent ow of execution. While nano-kernel supports a singlethread of execution, a thread manager provides multiple threads which may be ex-ecuting in a system concurrently. The module provides the application and othermodules, the services related to threads such as thread scheduling, thread creation,thread termination etc. It also provides synchronization services like semaphores andinter thread signaling. Apart from providing these services, the module also keepsthe existence of multiple threads transparent to the nano-kernel and other modules.B.2.1 The DesignBasic thread management involves providing the application with the ability to usemultiple threads of execution. This includes services to start a new thread, to schedulethreads, to terminate a thread and to modify properties of a thread.Thread CreationTo start a new thread, the module internally uses the fork1 construct. Externally, themodule o�ers a create2 construct to simplify the application programming.Thread SchedulingIn embedded systems di�erent applications require di�erent types of scheduling al-gorithms. Therefore, the design and its data structures make it easy to implementmost of the algorithms by just adding a function that determines the next thread tobe scheduled.Thread TerminationA thread is terminated when it exits or is killed by another thread. When a threadterminates the module unlocks all the semaphores locked by the terminating thread1The fork construct creates a new thread and returns to the statement following the fork call inboth threads. Here the two threads are considered to have a parent child relationship.2The create construct creates a thread in which control is returned to the speci�ed address. Inthis case the threads are said to have a peer relationship.64

and clears its thread status structure entry. If its parent thread is still alive thenthe module sends a signal to the parent thread to indicate that a child thread hasterminated.Semaphore ManagementThe module also provides a simple semaphore scheme to provide mutual exclusionand synchronize access of shared resources. Although the semaphore service providedby this module is very simple and is similar to binary mutex, it is su�cient for mostapplications. More sophisticated synchronization services can easily be integrated atthe application level itself.Signal ManagementThe design here presents a bi-priority signal management scheme, in which, signalscan have two level of priorities, the default priority and the high priority. A signalat default priority can be received by the target thread only when it gets scheduledat its turn. In case of high priority signal, the target thread is scheduled out of itsturn to let it receive the signal. This scheme guarantees that a high priority signalis received by the target thread as soon as the scheduler gets a chance to scheduleit. Even better constraints can be achieved by making the sender thread voluntarilyrelinquish control after sending the signal. This makes the target thread receive thesignal almost immediately.B.2.2 Pre-requisites� Hard Prerequisites : None.� Soft Prerequisites : Interrupt Manager Module.If the interrupt manager module is present, it attaches the thread scheduler to the`timer interrupt' to support pre-emptive scheduling. Otherwise the module supportsonly non-pre-emptive scheduling.
65

B.2.3 ServicesThe module o�ers the following services to the application and the other modules.� Create Thread - Set up the stack for the new thread, �nd an empty entry inthe thread array, and make proper entries thereby creating a new thread.� Thread Exit - Mark the current thread status as dead, free all allocatedresources and send a signal to parent thread thereby killing the calling thread.� Kill Thread - This service is same as thread exit except that this can kill aspeci�ed thread rather than the calling thread.� Set Thread Priority - Set the priority of the speci�ed thread to a speci�edvalue.� Get Thread Priority - Returns the priority of the speci�ed thread.� Get Thread Id - Get the thread id of current thread.� Suspend Thread - Suspend the execution of given thread.� Resume Thread - Resume execution of a thread.� Thread Switch - Voluntarily release of control.� Thread Wait - Wait for one or more child threads to die.� Thread sleep - Sleep for a given time.� Initialize Semaphore - Initialize a given semaphore.� Set Semaphore - Locks the given semaphore if not already locked or block ifit is already locked.� Clear Semaphore - Unlock the given semaphore and unblock a thread blockedon this semaphore.� Close Semaphore - Close a given semaphore.� Set Signal Handler - Sets a given function as the handler of a given signal inthe calling thread. 66

� Revoke Signal Handler - Removes the signal handler which was last set andrestore the signal handler to the previous one.� Send Signal - Sends a given signal to a speci�ed thread.

67

Appendix C
Test Application Code
#include <libh\u_libtsk.h> /* Task Management functions */#include <libh\u_libcom.h> /* Task Communication functions */#include <libh\u_libtim.h> /* Time Management functions */#include <libh\u_libint.h> /* Interrupt Management functions */#include <libh\libprint.h> /* Screen-Printing functions */#include "car_dashboard.h"INT current_speed = 0;INT total_distance = 0, current_distance = 0;INT current_fuel = INITIAL_FUEL;INT current_battery_status = INITIAL_BATT;INT current_temparature = INITIAL_TEMP;INT current_tyre_pressure[4] = { INITIAL_PRES, INITIAL_PRES,INITIAL_PRES, INITIAL_PRES };BOOL current_door_lock[4] = { TRUE, TRUE, TRUE, TRUE };char char_read = 0;struct parameter_block_header* application_main (struct parameter_block_header* message){ T_CTSK cre_tsk_data; 68

T_CMBX cre_mbox_data;T_DINT def_intr_data;/* Pass the NUCLEUS HANDLER address to the library */init_library (message);/* Create a mailbox to hold the DISPLAY requests *//* Messages are queued by "message-priority" */cre_mbox_data.mbxatr = TA_MPRI;cre_mbox_data.bufcnt = DISPLAY_MBOX_BUF_LEN;cre_mbx (DISPLAY_MBOX_ID, &cre_mbox_data);/* Create a mailbox to hold the WARNING requests *//* Messages are queued by "message-priority" */cre_mbox_data.mbxatr = TA_MPRI;cre_mbox_data.bufcnt = WARNING_MBOX_BUF_LEN;cre_mbx (WARNING_MBOX_ID, &cre_mbox_data);/* Create a task to update display whenever a request arrivesThis task eventually waits for messages in "DISPLAY_MLBOX" */cre_tsk_data.tskatr = TA_HLNG;cre_tsk_data.task = display_current_status;cre_tsk_data.itskpri = 2;cre_tsk_data.stksz = DEFAULT_STACK_SIZE;cre_tsk (DISPLAY_TASK_ID, &cre_tsk_data);sta_tsk (DISPLAY_TASK_ID, 0);/* Create a task which WARNs the driver. This task eventuallywaits for messages in the mailbox "WARNING_MBOX" */cre_tsk_data.tskatr = TA_HLNG;cre_tsk_data.task = warn_the_driver;cre_tsk_data.itskpri = 1; 69

cre_tsk_data.stksz = DEFAULT_STACK_SIZE;cre_tsk (WARNING_TASK_ID, &cre_tsk_data);sta_tsk (WARNING_TASK_ID, 0);/* Create a task which generates wheel rotation interrupt at randomintervals - simulates using s/w interrupts and appr. delay */cre_tsk_data.tskatr = TA_HLNG;cre_tsk_data.task = generate_wheel_rotation_interrupts;cre_tsk_data.itskpri = 3;cre_tsk_data.stksz = DEFAULT_STACK_SIZE;cre_tsk (GEN_WHEEL_INTR_TASK_ID, &cre_tsk_data);sta_tsk (GEN_WHEEL_INTR_TASK_ID, 0);/* Activate the Cyclic Handlers which scan data from time to time */DEF_CYC (SPEED_HANDLER, TA_HLNG, TCY_ON, speed_handler,SPEED_UPDATE_TIME);DEF_CYC (DISTANCE_HANDLER, TA_HLNG, TCY_ON, distance_handler,DISTANCE_UPDATE_TIME);DEF_CYC (FUEL_HANDLER, TA_HLNG, TCY_ON, fuel_handler,FUEL_UPDATE_TIME);DEF_CYC (BATTERY_HANDLER, TA_HLNG, TCY_ON, battery_handler,BATTERY_UPDATE_TIME);DEF_CYC (TEMPARATURE_HANDLER, TA_HLNG, TCY_ON, temparature_handler,TEMPARATURE_UPDATE_TIME);DEF_CYC (TYRE_PRESSURE_HANDLER, TA_HLNG, TCY_ON,tyre_pressure_handler, TYRE_PRESSURE_UPDATE_TIME);DEF_CYC (DOOR_LOCK_HANDLER, TA_HLNG, TCY_ON, door_lock_handler,DOOR_LOCK_UPDATE_TIME);/* Define the Distance handler */def_intr_data.intatr = TA_HLNG;def_intr_data.inthdr = update_distance_per_one_rotation_of_wheel;70

def_int (WHEEL_INTERRUPT_NO, &def_intr_data);/* Define the keyboard handler */def_intr_data.intatr = TA_HLNG;def_intr_data.inthdr = keyboard_handler;def_int (0x09, &def_intr_data);/* Process User inputs */for (;;) {switch (get_key()) {case 'f': current_fuel ++; break;case 'v': current_fuel --; break;case 'b': current_battery_status++; break;case 'n': current_battery_status--; break;case 't': current_temparature ++; break;case 'g': current_temparature --; break;case 'p': current_tyre_pressure[get_key()-'1'] ++; break;case 'l': current_tyre_pressure[get_key()-'1'] --; break;case 'd': current_door_lock[get_key()-'1'] = TRUE;door_lock_handler(); break;case 'c': current_door_lock[get_key()-'1'] = FALSE;door_lock_handler(); break;case 'r': current_distance = 0; break;}}}void display_current_status (void){ T_MSG buffer_msg;struct display_message *actual_msg;INT row,col; 71

init_display ();for (;;) {/* Receive a msg OR Wait for a message indefinitely */rcv_msg (&buffer_msg, DISPLAY_MBOX_ID);actual_msg = (struct display_message *) buffer_msg.msgaddr;switch (actual_msg->sender_id) {case SPEED_HANDLER: PRINT (3,12,actual_msg->value); break;case TOTAL_DISTANCE: PRINT (4,12,actual_msg->value/10);print_hex (actual_msg->value%10); break;case CURRENT_DISTANCE: PRINT (5,12,actual_msg->value/10);print_hex (actual_msg->value%10); break;case FUEL_HANDLER: PRINT (3,41,actual_msg->value); break;case BATTERY_HANDLER: PRINT (4,41,actual_msg->value); break;case TEMPARATURE_HANDLER: PRINT (5,41,actual_msg->value); break;case TYRE_FRNT_L: PRINT (4,69,actual_msg->value); break;case TYRE_FRNT_R: PRINT (4,74,actual_msg->value); break;case TYRE_REAR_L: PRINT (5,69,actual_msg->value); break;case TYRE_REAR_R: PRINT (5,74,actual_msg->value); break;case DOOR_FRNT_L: gotoxy (8,70);print_char ((actual_msg->value)? 'X':'-'); break;case DOOR_FRNT_R: gotoxy (8,75);print_char ((actual_msg->value)? 'X':'-'); break;case DOOR_REAR_L: gotoxy (9,70);print_char ((actual_msg->value)? 'X':'-'); break;case DOOR_REAR_R: gotoxy (9,75);print_char ((actual_msg->value)? 'X':'-'); break;}}}void warn_the_driver (void) 72

{ T_MSG buffer_msg;char *warning;int row;for (;;) {/* Receive a msg OR Wait for a message indefinitely */rcv_msg (&buffer_msg, WARNING_MBOX_ID);/* Pring Warning */gotoxy (15, 25);for (warning = (char *) buffer_msg.msgaddr, row = 15;*warning; warning ++) {if (*warning == '\n') {row ++;gotoxy (row, 25);}else print_char (*warning);}dly_tsk (200);/* Clear the warning */for (row=15; row<=20; row++) {gotoxy (row, 25);print_string (" ");}}}static INT td = 0, cd = 0; /* `td' and `cd' in Meters */void update_distance_per_one_rotation_of_wheel (){ td += CAR_WHEEL_2_PI_R;if (td >= 100) {td -= 100; 73

total_distance ++;}cd += CAR_WHEEL_2_PI_R;if (cd >= 100) {cd -= 100;current_distance ++;}}void speed_handler (void){ static char *msg_to_warn = "Watch Out!!\nYou are going just too fast";static char *door_lock_msg = "Check Out!!\nDoors unlocked";T_MSG buffer_msg;static struct display_message msg_to_display;INT count;static INT last_known_td = 0, last_known_total_distance = 0;/* Update Speed */current_speed = (((total_distance - last_known_total_distance)*100 +(td - last_known_td)) *(1000/SPEED_UPDATE_TIME)*18)/5;last_known_td = td;last_known_total_distance = total_distance;/* Display Speed */SEND_DISPLAY_MSG (SPEED_HANDLER, current_speed, 1, msg_to_display);/* Warnings */if (current_speed > 0)for (count = 0; count < 4; count ++)if (!current_door_lock[count])SEND_WARNING_MSG (&door_lock_msg[0], 1);if (current_speed > SPEED_LIMIT)SEND_WARNING_MSG (&msg_to_warn[0], 1);} 74

void distance_handler (void){ T_MSG buffer_msg;static struct display_message msg_disp[2];SEND_DISPLAY_MSG (TOTAL_DISTANCE, total_distance, 1, msg_disp[0]);SEND_DISPLAY_MSG (CURRENT_DISTANCE, current_distance, 1, msg_disp[1]);}void fuel_handler (void){ static char *msg_to_warn1 = "Check Out! \nFuel is going down";static char *msg_to_warn2 = "Attention!! \nFuel too low";T_MSG buffer_msg;static struct display_message msg_to_display;static INT last_known_distance = 0;if ((total_distance - last_known_distance) >= CAR_MILAGE) {if (current_fuel) current_fuel --;last_known_distance = total_distance/CAR_MILAGE*CAR_MILAGE;}if (current_fuel < FUEL_LIMIT2)SEND_WARNING_MSG (&msg_to_warn2[0], 1)else if (current_fuel < FUEL_LIMIT1)SEND_WARNING_MSG (&msg_to_warn1[0], 1);SEND_DISPLAY_MSG (FUEL_HANDLER, current_fuel, 2, msg_to_display);}void battery_handler (void){ T_MSG buffer_msg;static struct display_message msg_to_display;static char *msg_to_warn = "Battery is going down \nTake care";
75

if (current_battery_status < MIN_BATTERY)SEND_WARNING_MSG (&msg_to_warn[0], 1);SEND_DISPLAY_MSG (BATTERY_HANDLER, current_battery_status, 2,msg_to_display);}void temparature_handler (void){ T_MSG buffer_msg;static struct display_message msg_to_display;SEND_DISPLAY_MSG (TEMPARATURE_HANDLER, current_temparature, 3,msg_to_display);}void tyre_pressure_handler (void){ INT count;T_MSG buffer_msg;static struct display_message msg_to_display[4];static char *msg_to_warn = "Check Out! \nTyre pressure low";for (count=0; count < 4; count++) {if (current_tyre_pressure[count] < TYRE_PRESSURE_LIMIT)SEND_WARNING_MSG (&msg_to_warn[0], 1);SEND_DISPLAY_MSG (TYRE_FRNT_L+count, current_tyre_pressure[count],2, msg_to_display[count]);}}void door_lock_handler (void){ INT count;T_MSG buffer_msg;static struct display_message msg_to_display[4];
76

for (count=0; count < 4; count++)SEND_DISPLAY_MSG (DOOR_FRNT_L+count, current_door_lock[count], 2,msg_to_display[count]);}void generate_wheel_rotation_interrupts (){ static INT random_speed = 0, i = 1;INT time_to_wait_in_msec;#define MIN_SPEED 30#define AVG_SPEED 70#define MAX_SPEED 120init_rand (5);for (;;){ i --;if (!i) {if (random_speed <= MIN_SPEED) {random_speed += get_random(2);i = 1;}else if (random_speed <= AVG_SPEED) {random_speed += get_random(2);i = 10;}else if (random_speed <= MAX_SPEED) {random_speed += (get_random (3) - 1);i = 20;}else {random_speed -= get_random(3) ? 0:1;i = 30; 77

}}if (random_speed != 0) {time_to_wait_in_msec = 1000/5*18*CAR_WHEEL_2_PI_R/random_speed;tslp_tsk (time_to_wait_in_msec/10);asm INT WHEEL_INTERRUPT_NO}}}static unsigned int rsl[55];void init_rand(int seed){ int i;for (i=0; i<55; i++) rsl[i] = i^seed;}int get_random (int max){ int i;for (i=0; i<55; ++i) rsl[i] = (rsl[i] + rsl[(i+24) % 55])%max;return rsl[0];}void init_display(){ initscr ();print_fast_from_now_on();gotoxy (3, 5); print_string ("Speed: ");gotoxy (4, 5); print_string ("TDist: ");gotoxy (5, 5); print_string ("CDist: ");gotoxy (3, 35); print_string ("Fuel: ");gotoxy (4, 35); print_string ("Batt: ");gotoxy (5, 35); print_string ("Temp: ");gotoxy (3, 67); print_string ("Tyre Pressure");78

gotoxy (7, 68); print_string ("Door Locks");gotoxy (23, 0);print_string ("`a z' `f v' `b n' `t g' `p1-4 l1-4' `d1-4 c1-4'");door_lock_handler();}void init_library (struct parameter_block_header* message){ init_u_int_h (message);init_u_task_m (message);init_u_comm_m (message);init_u_time_m (message);}void keyboard_handler (void){ char scancode,temp;scancode = in_port_1b (0x60);temp = in_port_1b (0x61);outport_1b (0x61, temp | 0x80);outport_1b (0x61, temp);if (scancode > 0) char_read = scancode;}char get_key (){ char c;char *scan_to_ascii ="?1234567890-=\b\t" /* Scan codes 00 to 0f */"qwertyuiop[]\n?as" /* Scan codes 10 to 1f */"dfghjkl;'`?\\zxcv" /* Scan codes 20 to 2f */"bnm,./" /* Scan codes 30 to 35 */;
79

while (char_read <= 0);c = char_read;char_read = 0;if (c == 0x39) return ' ';if (c == 1 || c == 0x1d || c == 0x2a || c > 0x35)return c;return scan_to_ascii[c-1];}

80

Bibliography[CRT] CRTX. URL. http://www.n2.net/starcom/crtx.html.[ES] AI Lab Zurich : Links : Embedded and Real-Time Systems. URL.http://www.i�.unizh.ch/groups/ailab/links/embedded.html.[Kri97] Kshitiz Krishna. A modular kernel architecture for embedded systems. Mas-ter's thesis, Indian Institute of Technology, Kanpur, India, 1997.[oCH] National Research Council of Canada Harmony. URL.http://wwwsel.iit.nrc.ca/projects/harmony.[OS/] Microware Systems Corporation OS/9. URL.http://www.microware.com/ProductsServices/Technologies/os-91.html.[POS92] POSIX. System application program interface - amendmment 1: Real timeextension. ieee project p1003.4, draft 13. In Portable Operating SystemInterface Part 1, September 1992.[RTE] Redstone Military Arsenal RTEMS. URL.http://lancelot.gcs.redstone.army.mil/rtems.html.[Sak93] Ken Sakamura. Industrial speci�cations 3.0 - for micro kernels. In ITRON3.0 An Open and Portable Real-Time Operating System for EmbeddedSystems. http://tron.um.u-tokyo.ac.jp/ TRON/ITRON/spec-e.html, June1993.[VxW] Wind River Systems VxWorks. URL. http://www.wrs.com/html/vxwks52.html.
81

