Microprocessor modeling for Retargetable Timing Simulation

A Report Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Bachelor of Technology

by
Anand Shukla
Arvind Giridhar Sarraf

under the guidance of
Dr. Rajat Moona

to the
Department of Computer Science & Engineering

INDIAN INSTITUTE OF TECHNOLOGY KANPUR
May, 2001

Certificate

Certified that the work contained in the report entitled “Mi-
croprocessor modeling for Retargetable Timing Simulation”, by
Anand Shukla and Arvind Giridhar Sarraf, has been carried out
under my supervision and that this work has not been submitted

elsewhere for a degree.

Dr. Rajat Moona

May, 2001

i

Acknowledgements

Our heartfelt thanks to Dr Rajat Moona, we couldn’t have had a more patient
and helpful guide. Also to Dr Deepak Gupta and Dr Sanjeev K Aggarwal, who
lived with our (often half-baked) presentations in weekly meetings and made ample
suggestions. To Rajiv A. for ever being so cooperative, to Souvik Basu and Soubhik
Bhattacharya, the other members in the Cadence Research lab at IITK, for always

being available and generously lending us papers and books.

il

Contents

Acknowledgements
1 Introduction
2 Overview of our approach

3 The resources
3.1 Static resources
3.2 Register

3.2.3 A sample data structure for register operations
3.3 Buffers

4 Instruction Description in the Resource Framework
4.1 Usage Grammar: At the conceptual level
4.2 Usage Graph
4.2.1 Notationo
4.2.2 Some simple properties required from usage graphs for valid
instruction descriptiono L
4.2.3 Definitionso

4.3 Timing Simulation o o

5 Examples

5.1 A simple non-pipelined processor

iv

iii

10

12
12
13
13

14
15
16

20

5.2 Simple pipelined processors oo
5.3 Processors with multiple functional units
5.4 Dynamic Scheduling0 0
5.5 Branch prediction L
5.6 Load-Store queues

Suggested future work

6.1 Scheduler optimizations
6.2 Handling speculative execution (as in case of branches) and interrupts
6.3 Canonical function semantics
6.4 Formal analysis

6.5 Description of multiprocessor systems
Conclusion

Complexities in processor descriptions|8]

Resource Declarations and Instruction Resource Usage Grammar

Algorithms and Pseudo-codes
C.1 Syntax directed translation for converting a Usage specification to
Usage Graph

C.2 Generation of Resource graph from Instruction Usage Graph

35

36

38

41

Chapter 1
Introduction

Traditionally, microprocessor design decisions have been taken by considering the
decision alternatives at Hardware description language (HDL) level, and using these
descriptions to analyze designs for performance metrics such as timing performance,
cost, power consumption, etc. Improving chip fabrication technology has allowed
packing more logic on chips-and has been well subsumed by increasingly complex
processors and systems. Success of a new system today depends a lot on demand to
market time, and rapid availability of tools such as assemblers, compilers, debuggers
and disassemblers.

HDLSs, however, lack in this respect. These languages are designed to aid in
(and almost are a necessary step of) fabrication-the descriptions are too low level to
allow easy exploration of design options, and do not provide much support for tool
generation.

Sim-nML project[1] was undertaken to cater to the above need. Based on an
architecture description language nML [3], it allows descriptions of a target at a
level customized to instruction set processors. Tools such as functional simulators,
assemblers, disassemblers can automatically be generated using the specifications in
this language. Our goal in this project was to add features to the existing language
that would allow timing simulation of the programs for the target processor-in our
case, an estimate of cycle count of the execution time. Several architectural details

determine execution time. Our emphasis has been to obtain descriptions that are

easy to write and understand and efficient to simulate, without comprosing on the
cycle count accuracy.

In this work, we propose an extension based on Resource-usage model. This
framework specifies how hardware features that affect the execution time, and how
instructions that use them are to be described. Implicit in the model is how it is to
be used for timing simulation of a program.

Our emphasis has been to base our fundamental abstractions on what actually
happens in real hardware. We have tried these constructs on a range of processors-
from simple non-pipelined uniscalar ones to superscalar processors using advanced
features such as out of order speculative execution, register renaming, branch predic-
tion, and complex memory sub-system interface architectures. We find the intuitive
nature of this formalism significantly easing descriptions. At the same time, we
believe that timing simulation using this approach would be significantly easier to
describe and faster than those using low-level HDLs, and at the same time a signif-
icant saving over the complex coding required to code them manually in a general
purpose language.

The rest of this report is organized as follows: In chapter 2, we give a brief
overview of our perspective of the problem, and our approach to the same. The
remaining chapters try to explain (and hopefully, present a good enough case for)
it. Chapter 3 introduces the fundamental abstractions called resources, and chapter
4 specifies how timing-critical aspects of a processor and instruction set architecture
are to be captured using them. We also present how this description can be used
for timing simulation. We drive home our point remarking the expressive power by
describing fairly exhaustive range of processors in chapter 5. Finally, we suggest

some future directions of work (chapter 6).

Chapter 2
Overview of our approach

The fundamental problem of timing simulation is this: Given a processor description
p, description of components external to it (such as memory architecture), and a
program P for that processor we need to find the time that program takes on p. In
our case, it involved working out both-how the processor is to be described, and how
that description is to be used.

Here, we try to rephrase the problem in our Sim-nML setup. In Sim-nML, pro-
cessor component specifications are captured using register, memory and resource
declarations. Instruction specific features are captured using its attributes-syntax
and image for assembly syntax, action attribute for semantic action of the instruc-
tion and uses for the timing critical aspects of the instruction execution. We here
focus on resource declaration and usage attribute for instructions.

An instruction execution can be thought of as using different processor compo-
nents at different stages of execution-the exact usage depending not just on instruc-
tion type, but also on the current processor state. Each such component can be
thought of as a resource and different forms of usages can be thought of as differ-
ent method invocations on them. Multiple instructions may contend for the same
resource. The actual time for which processor units are used, and stalls waiting for
them-both of which can be captured in the usage, the first by resource holding times,
and the second by contention for them determine the program execution time.

We begin by classifying the resource types on the basis of kind of methods that

are invoked on them. We emphasize here the point that this classification is not
based upon the exact functionality of the resource, but the way these methods affect
the availability of the resources to other methods by other instructions.

An instruction usage is composed of individual resource methods-we later give
the structure in which they can be composed. Our main premise here has been to
capture a wide-range of processor designs. In the process-we also make an interesting
discovery-the restrictions on reasonableness of the processor also led to a simulation
mechanism for this description. This we do by mapping instruction usages to what
are called as usage graphs.

At this point, we must also make an honest confession. Though we have listed the
examples towards the end of this report, our line of action has been pretty much the
other way-we based our formalism (resource types, methods and the corresponding

semantics) on these examples.

Chapter 3
The resources

This work hinges on, what we broadly call as a “resource usage” model. In this
model, the limited pool of “resources” become a contention point for the users of
the resources, in this case “instructions”. Intuitively, if a set of resources, ordered in
some form, are to be operated upon by multiple contenders (who themselves have
some ordering), it would be some time (call it duration t) before all contenders have
received what they wanted (after instructions acquire a resource, release it so that
others can acquire it, go on to acquire other resource, and so on). If the ordering of
resources and of instructions is well defined, and the “rules” of resource allocation are
clearly and unambiguously laid out, t would be unique and can be figured out (our
goal). The challenge is then to figure out this t: which in turn involves identifying
the resources, and the ways to specify the acquisition rules.

The latter is captured by attaching some methods to resources, and clearly laying
down scheduling rules associated with resources . These methods can be blocking
or non-blocking. A non-blocking method is one for which an instruction cannot
wait—the processor must make sure that the relevant resource is available when that
operation is invoked. A blocking resource method blocks-usually, till the condition it
is waiting for is satisfied-at which it unblocks, and the resource state is appropriately
modified.

We classify resources into three categories: buffers, registers and static resources.

The purpose behind these resources, their properties and the operations on them

are given below.

3.1 Static resources

A resource like an ALU, or some other execution unit-which is used for a known
period of time by an instruction irrespective of availability of other units is classed

under this category. The declaration of a static resource is as follows:
StaticResource R1, R2[n] //n instances of R2, 1 instance of R1

A static resource can have multiple instances. If a static resource R has n instances
then in uses R denotes any of the n instances while R| | stands for all the n instances
of R.

If a static resource R is to be used by an instruction for ¢ cycles, then the
corresponding invocation is denoted by 'R#t¢’. The duration ¢ could be a constant,
or a canonical function call that returns some integer value.

A special type of static resource, called null resource is assumed to have infinite
instances. A consequence of this is that there is never a contention for this resource.
Instead of using this resource as null#k, it is usually denoted as just #k, which
indicates holding this resource for k cycles-this is defined as the time of the resource
method.

3.2 Register

The register abstraction stands for registers in processors. Their declaration is as

follows:
Register Reg[n] //n instances of R2, 1 instance of R1

The i*" register of the above declared register file would be used as Reg]i|.operation,

where operation can be one of the following:

1. itR (intention to read)

2. Read
3. itW (intention to write: blocking or non-blocking)
4. forward

5. write or commit

These operations make it possible to capture various issues associated with the data:
apart from read and write from the register file, data hazards (RAW, WAR, WAW)
can also be handled. This is possible because of the semantics associated with these
operations, which is described below.The sample data structure (see section 3.2.3)
for the implementation of these operations may further help in understanding their
semantics.

We define an ordering between different intentions to the same register. A register
intention to read (itR) or intention to write (itW) is said to be before another

intention if
e the first intention was issued before the second intention, or

e both were issued in the same clock cycle, and the first instruction is earlier in

the program order than the second.

Since the above order is a total order, it implicitly defines a immediately relation

among a given instruction set.

3.2.1 Semantics of itR, read and forward:

A instruction I issuing a read to a register blocks till the instruction Iswhich has

issued an itW immediately preceding I;’s itR does a forward.

3.2.2 Semantics of itW and write

e Blocking itW
A blocking itW blocks till all the writes corresponding to all previously issued
itWs to the same register have completed, or their corresponding instructions

have completed.

e Non-blocking itW

In either case, a write blocks till all the writes and reads corresponding to all pre-
viously issued itWs to the same register have completed, or their corresponding
versions have completed.

R.itW by an instruction indicates that the instruction would subsequently be
writing into the register R: the actual update is made by R.write. Now, there are
two versions of itW operation: blocking and non-blocking. Two different versions
are required because some processors may not allow more than one instruction from
going beyond the decode (or such similar) unit if they write into the same register
(WAW), whereas some other processors may not have this restriction (such as the
ones using register renaming). The blocking version captures the former, while

non-blocking version captures the latter.

3.2.3 A sample data structure for register operations

This sample data structure is intended to clarify the semantics of the register op-
erations. Pictorially, it looks like in figure 1. In the diagram, L; and L;,are linked
lists, while A is an array of registers (register file R). P; points to L;,, P;,points to
an instruction I, P;,points to the list L;,, ny, ne... are nodes in the list L; . List
L; is called as itW-list, L;, is itR-list. The itR-list is a list of instructions. There
are similar itR-list and itW-list with all other elements of A as well. Consider the

following operations on Regli| by an instruction I:

1. Regli].itW (non-blocking): This creates a new node, pointing to instruction I,
and adds this node at the tail of L;, .

2. Regli].itW (blocking): This blocks if L;is not empty. If L;is empty, this
operation succeeds, a new node pointing to the instruction I is created and it
is attached at the head of the (empty) list L;,.

3. Regli].itR: Here, I is added to the tail of itR-list of the last node of itW-list of
Regli].

N
R[O] +—|Poi nters to itWlists

R1] > |
<4+— Lii—>

1 poi nters tﬁ | nstruction

o, 1A

—ﬂ.nl -ﬂ.nz _*nS-b.
v AR: Y

, |_i2*‘
vEU > | ¥
Y

Figure 1: Data structure for implementing register operations

4. Regli].forward: First the node n in the itW-list of Reg|i] is located which has
a pointer to I. Then in the itR list of node n, all instructions all flagged as

read-available.

5. Regli].read: Here, I is located in the itR-lists associated with itW-list nodes of
Regli]. (To speed up this search, the instruction data structure may contain
a pointer to the itR-list). If its flag is set as “read-available”, then operation
succeeds, otherwise it blocks. If I can not be located in the itR-lists, then the

operation succeeds.

6. Regli].write or Regli].commit: Here, a node n is located in the itW list of
Regli]. If this node is the first node in itW list of Reg|i], then it is deleted and

the operation succeeds. Otherwise it is blocked.

3.3 Buffers

This abstraction allows instructions to wait at different points in the pipeline. This

may be necessary because of a variety of reasons, some of them are:

1. An instruction waiting for some resource to be available. An example of this is
reservation stations associated with functional units, where instructions wait

for that function unit or data.

2. Presence of units which enforce instruction reordering —usually to maintain
sequential semantics. Reorder buffers (or write-back buffers, as the case may

be) serve this purpose.

3. Mechanisms that allow for "speed mismatch" between different hardware components-
such as memory subsystem and the processor. This compounded with the un-
predictable operation delay (due to memory hierarchy) necessitates interfacing

to them via buffers (typically load-store buffers).

4. The delay or wait an instruction may have to undergo may not be predictable
when a later instruction modifies the usage of the earlier instruction. This
may happen when different pipeline paths (taking different number of clock
cycles) converge (in terms of instruction resource usage) to the same execution

unit.

The above features seem to require support for execution-time determined delays.
We capture these features in a resource abstraction called buffers. A buffer declara-

tion looks like:
Buffer B: {slots = n; input = InputOrder; output = OutputOrder}

Here InputOrder can be of the form Static: R;, Rs, ..., R,. A buffer can have
multiple incoming paths, the static ordering then defines the relative priority among
those incoming paths. In the above description, Ry, Rg, ..., R,, are resources that
feed into buffer B’s input. Also, Rihas a higher priority than Ry, which has a higher

priority than Rj3, and so on. This means if multiple number of these units have

10

instructions waiting to enter into the buffer B, then inputs are received by B from
these resources in order of their priority.

OutputOrder can be Inorder or Anyorder. This denotes the order in which
instructions currently in the buffer are considered for dispatching them out of the
buffer with respect to the order in which they acquire the buffer.

Buffers have two basic operations: acquire (denoted by /B) and release(/). Each
buffer keeps track of number of free slots. Acquiring a buffer reduces the number of
free slots by 1, releasing it increases it. Both these methods are potentially blocking-
an acquire can block in case the buffer has no free slots, and release if it violates the

output scheduling policy of the buffer.

Special case of buffers: Latches Latches are buffers with just 1 slot (and so
no output scheduling policy is needed). An input scheduling policy may be needed,
however, as multiple pipeline paths may be leading into the same latch.

Latches occur in hardwares just before resource units (such as ALU, fetch unit
etc) where instruction may wait until the resource unit is free. If there are no latches
(or buffers) in a part of a pipeline, then instructions can not wait at any point in

that part of the pipeline.

11

Chapter 4

Instruction Description in the

Resource Framework

4.1 Usage Grammar: At the conceptual level

Conceptually, an instruction’s resource description is of the following form (the exact

grammar is given in Appendix B)

Usage: @
| list(and(AndUsage), Usage)
| list(or(condition, Usage, Usage), Usage)

AndUsage: ResourceMethod
| ResourceMethod & AndUsage

An instruction usage is a list of and and or usages.

An and usage is list of operations on resources each having equal time-it is
schedulable at a given time if all the resource operations that are a part of it are
schedulable. The time of an and usage is the time of any of the resource methods
that constitute it.

An or usage will have two alternative usages along with a condition. The condi-

tion may be a an expression involving processor state, and canonical function calls-in

12

which case it is evaluated just before pushing the instruction into the pipeline to
give usage of that instruction instance, and the path corresponding to the boolean
value of the condition value must be schedulable. Or it may be a wildcard (*) which

means that any of the two resource usages may be schedulable.

Sim-nMUL notations

We saw in Section 3.3 that a buffer B’s acquire was represented as [B and B’s release
as [(the releases | were mapped to corresponding acquires by the nesting). In Sim-
nML grammar, an and usage is represented by corresponding methods connected
by &, and an or usage by its usages separated by /.

and(uy,ug,...,uy) = u1& W& ...&u,

or(condition, uy,us) =((u1)/(uz)) if (condition = *)

or(condition, uy,uy) = if (condition) then uyelse usendif

4.2 Usage Graph

A convenient way to think of a usage is using a directed acyclic graph (DAG) rep-
resentation called Usage Graph. Crudely speaking, each node of this graph corre-
sponds to an and usage-containing the information about the corresponding resource
methods. Each node u may have some successors denoted by Succ(u) (defining the

directed edges of the graph):

1. If a node has no successor, it marks the end of the instruction execution.

2. If a node has no predecessor, it marks the start usage of the instruction exe-

cution.

3. If a node has more than 1 successors, it means that the instruction’s usage can

be satisfied in more than 1 way (something like an or usage).

4.2.1 Notation

Pictorially, we represent resource operations as shown (2, 3, 4)

13

Figure 2: Static resource

Figure 3: Buffer acquire

A node of the usage graph is represented by the corresponding operations at the
same point.

We give some example descriptions in chapter 5.

Appendix C.1 gives the syntax directed translation for converting a usage spec-

ification to a Usage graph-for our future purposes, we will use these graphs.

4.2.2 Some simple properties required from usage graphs for

valid instruction description

Not all Usage descriptions accepted by the Grammar would qualify as valid from the

point of view of simulation. Here we list down some simple requirements of them:

e A buffer acquire must be matched by corresponding buffer release along all
instruction usages that an instruction can take from the given start point, and

vice versa.

e A resource acquire operation must be preceded by a wait point.

For example,

[FU, #1], DU#1, [EX, #1]
will not qualify as a valid usage description.

Figure 4: Buffer release

14

The rationale for this is given in section 4.3.

4.2.3 Definitions

A resource method is said to be schedulable if when issued at that time, it does not
block.

A usage graph node (an and node) is said to be schedulable if all the resource
operations in that and node can be initiated in that clock cycle. Its is said to
have been scheduled if those resource operations have been performed to update the
resource state.

A stage in instruction usage is a two-tuple of the form of the form (u, Succ(u))
or of the form (Pred(u), u) for some node u from Usage graph. Barring the fact that
one of the elements of the above two-tuple is a set, and the other is not-the stage
captures the all possible nodes that may have been scheduled last, and all possible
future different next usages for the future.

A wait point of a usage graph is a stage of the (u, Succ(u)) where u has a buffer
acquire, or of the form (Pred(v), v), where v contains a buffer release.

Intuitively, the first case corresponds to the fact that the instruction has just
acquired a resource (in the and usage for node u), but hasn’t yet "decided" which
of the possibly several paths of execution (corresponding to different members of
Succ(u)) it will take. The second case corresponds to the fact that an instruction
has decided to release a buffer (in the usage for node v)-the usage pattern so far
could have been along any path to v (hence, Pred(v)).

A path from (vy,...v,,) from stage (S1, S2) to stage (T1, T2) is said to be waitpoint
free iff

1. for no 1<i<n, (Pred(v;), v;) is a waitpoint

2. for no 1<i<n, (v;, Succ(v;)) is a waitpoint

Intuitively, a wait point free path from one stage to another represents one particular
usage in middle of which an instruction can’t block (no wait points), and hence-

when that path has been decided to be taken, it must be ensured that all of the

15

Want to gush
<—7vail abl e

FU| |DU EX| |Menm (VB
#L[H#L [| #1] | #1[[#1

I3 2 1

Figure 5:

operations can be performed at corresponding time. This idea is captured in the
following definition.

A path from an edge stage (S1, Sq) to (Tq, Ty) is said to be schedulable at time
t along a wait-point free path vy, vs,... v,, if either vi = Sy, or v; € Sy, and either
vi= Tyor vi €Ty, and v; is schedulable at time t + >, ;. ;time(v;)

An instruction instance’s current usage is said to be at position at (u,Succ(u)), if
its some path from any start usage point to (including) that corresponding to u has
been scheduled, and none of the following successors of u have yet been scheduled.
Similarly, an instruction instance’s usage is said to be at (Pred(v), v) if some path
from any start usage to (including) a node u in Pred(v) has been scheduled, but the

usage of v has not yet been scheduled.

4.3 Timing Simulation

The idea behind our timing simulation algorithm is based on our following under-
standing of pipelined instruction execution: Lets say at some point between clock
cycle boundaries t and t+1, the occupancy of pipeline stage is shown in figure 5.

Further, let us assume all instructions I;,.. I; to be associated with relevant
stages for one clock cycle. The instructions then actually use the corresponding
stage’s units for something less than 1 (say 1-0) cycles. For the remaining part of
the clock cycle, they check for the availability of the next stage. If available, the
values are released on the lines to be latched at the next clock edge.

The decision regarding the availability of next stage propagate backwards. In

the above example, the WB unit "knows" that I; will be leaving it at the end of

16

cycle. It signals the previous stage (Mem) regarding its availability-and decides to
latch I, to WB at the next clock edge. This decision propagates backwards right
through the pipeline in the backward direction.

Our timing simulator algorithm attempts to capture this ordering among the
buffers, and then use it "schedule" instructions at each of them. The central theme
when it comes to scheduling is to enforce the availability of operations needed to
perform resource operations-an instruction waits only at wait points-just after ac-
quiring a buffer, and just before releasing for a time just enough to ensure that what

it actually issues any resource method in between, it does not block.

Part 1: To get an ordered list of resources in which they are to be

considered

Construct a resource graph Gg = (Vg, Eg), where Vi = Set of buffers =
{b1....b,} and Ex = { (b;, b;): if there exists an instruction I, whose
usage graph has a path from a node containing b;.acquire to b;.acquire
with no other buffer acquire in between}

(The way this graph can be generated from usage graphs of all instructions

is given in Appendix C.2.)

The presence of an edge e = (b;, b;) in the edge set Er denotes that
scheduling of an instruction occupying b, may depend upon the availability

of bj-hence, it must occur after b;.

For each buffer b having static input schedule c;....c,,, add an edge (c;;1,
¢;) for 0 <i < m in Eg.

(The justification here is that since c; carries precedence over c;;; when
both contend for b, it looks reasonable to suggest that c; must be

scheduled before ¢;,1.)

If the graph Gg constructed above has cycles, return invalid usage

description.

17

Let B = [by"...b,"] be the any reverse topological sort of G-we will

consider the resources in this order.

Part 2: To simulate the instructions flow through the processor

components

clock count = 0;

while (there are instructions ready to be executed or in the execution
pipeline)
for (each buffer b €B considered in the same order as in B)
for (each instruction | that is in the second wait point at b
and that has the next schedule time equal to the current time
schedule (1);
for (each instruction | that is in the first wait point at b
and that have the next schedule time equal to the current
time)

schedule(1);

for (all instructions | that are yet to be pushed into the
execution pipeline)
U = instructions instance I's usage using the current
machine stage;
if (path till the some first wait point of U is schedulable)

{

perform |'s actions;
schedule(l);

18

}

clock count ++;

schedule (1)

w = current stage of the instruction

for (all possible wait points w’ or instruction end point along all
possible sub-paths from w)

{

if (I can be scheduled at the sub-path p)
{
perform the corresponding the resource operations;
if (w' is not an end point)
set I's current stage to w';
if (time(p) == 0)
schedule(l);
else
next schedule time of | += time(p)

return;

}

// cannot be scheduled

next schedule time of | += 1;

19

Chapter 5
Examples

Here, we will try to present some sample processor and instruction architectures and
how they will be represented in our framework.

We start with a simple non-pipelined processor with fixed memory access time,
and gradually add features such as pipelining, control and data hazard handling,
data bypassing, branch delay slots, multiple functional units, out of order execution
and register renaming, branch prediction and complex memory interfaces.

For uniformity, the initial models assume that instruction execution can be di-
vided into five distinct stages (similar to DLX [8]): fetch stage (fetch unit-FU),
decode stage (decode unit-DU), execute stage (execute unit-EX), memory stage
MU), and write-back (WB).

5.1 A simple non-pipelined processor

The simplest way to describe simple non-pipelined processor with each instruction
taking a fixed number of clock cycles (say 5-as in our five stage model above) would
be to have a static resource called processor, and all instructions use it for the

duration equal to the execution clock cycle count (figure 6).

— #5 —

Figure 6: Non-pipelined

20

FU| |DU| [EX[|Men| |VB
#L[T#L [| #1] | #1[[#1

Figure 7: simple pipeline

DECLARATION:
StaticResource proc

USES ATTRIBUTE FOR ALL INSTRUCTIONS:
proc#5

5.2 Simple pipelined processors

Without any hazard handling Now we pipeline the five stages-without adding
any handling mechanism for data or control hazard. (Note that the program exe-
cution model breaks away from the strictly sequential order of instructions-both in
the data values that are read by instructions, and when branches show up-but then,
but we are not proposing that design here!)

Since there are no interlocks, all stages are non-blocking. Having static resource

for each resource does make sense here (figure 7).

DECLARATION:

StaticResource FU, DU, EX, MU, WB

USES ATTRIBUTE FOR ALL INSTRUCTIONS:
FU#1, DU#1, EX#1, MU#1, WB#1

With data hazard handling and forwarding, but no control hazard han-
dling yet. This gives us an opportunity to introduce register resources-a register
resource array for each register file. As we carry on, unless otherwise specified-we
will assume that all instructions have one source register rs, and a destination reg-
ister rd. Describing instructions with more sources/destinations will not result in
any gain at the conceptual level. On the contrary, actual features we are interested

in may, on the other hand, get suppressed (figure 8).

21

Reg[rs].IntR Reg[rs]. Read,#1 Mem) | wB
<#1>’< Reg[rd] . IntW) (Reg&rdﬂ.forward #1 #1
DU #1 EX

FU

Figure 8: With data hazard handling (forwarding)

DECLARATION:

Buffer FU, DU, EX, MU

StaticResource WB

USES ATTRIBUTE FOR NON-LOAD INSTRUCTIONS:

[FU, #1], [DU, Regfrs|.itR & Reg[rd].itW, #1], [EX, Reg[rs].read, #1,
Reg[rd].forward |, MU#1, WB#1, Reg[rd].commit

USES ATTRIBUTE FOR LOAD INSTRUCTION:

[FU, #1 |, [DU, Reg[rs].itR & Reg[rd].itW, #1 |, [EX, #1 |, [MU,
Reg[rs].read, #1, Reg[rd].forward |, WB#1, Reg[rd].commit

An important point must be mentioned here: We have FU, DU, MU, EX as buffers
instead of static resource of the previous example. This is because the execute stage
(memory stage in case of a load instruction) issues a blocking operation read. In case
the required register value is not available, the instruction stalls here. A pipeline
stall at EX or MU propagates backwards-thus, all of them need to have the ability
to hold the instruction for potentially unpredictable period (and this is what buffers

are meant to capture).

Handling control hazard in addition to data hazards Control hazards arise
when a branch instruction enters a pipeline-the PC value which is required by the
following instructions is not available till (say) the EX stage of the branch.

We take this as a clue in our method of specifying such architectures—by having
a separate PC buffer resource. Branch instruction acquires it at the fetch stage and
does not release it till its execute stage. All other instructions try to acquire it
during the fetch stage. Thus, instructions following a branch are stalled (figures 9
and 10) .

USES ATTRIBUTE FOR BRANCH INSTRUCTION:

22

FU
PC

#1 Reg[rs].ItR . Read,#1 #1 VB
Reg[rd].ItW Reg .forward — #1
N, #l Nem

Figure 9: Handling control hazard in addition to data hazards (branch instruction)
#1 Reg[rs].ItR . Read,#1 #1 VB
Reg[rd].ItW Reg .forward — #1

DU #1

Figure 10: Handling control hazard in addition to data hazards (non- branch in-
struction)

[PC & [FU, #1], [DU,... #1], [EX,... #1]&]..

USES ATTRIBUTE FOR NON-BRANCH INSTRUCTIONS:

[PC & [FU, #1]&], [DU,... #1], [EX,... #1]...

Delayed branches as an optimization to branch handling In the case of
delayed branches, the instruction following the branch instruction in the pipeline
is executed-irrespective of whether the branch is taken or not taken (in the case of
immediately successive branches, the delay slot may not be the instruction following
in the program order). We handle this by allowing the branch instruction to release

the PC for a cycle to prevent delay slot instruction from stalling (figure 11) .

USES ATTRIBUTE FOR BRANCH INSTRUCTION:

[PC & [FU, #1], [DU.... #1], [PC, [EX,... #1]&]..

Reg[rd] Itw Reg rd .forward

FU DU
PC

#1 Reg[rs]. ItR) Reg rs . Read,#1 #1>_ \#\?

Figure 11: Delayed branches as an optimization to branch handling

23

Reg[rd].forward Reg[rd].Write

seg[rg . It\F/ZV i
eg[rd] . It V\B

#1 Reg[rs].Read [| X1 BEX2 I EX3[] 41

FU #1

PC

Figure 12: Multiple functional units: stalling at issue logic

At this point, one may have the following doubt. Consider the case when a branch
instruction is just past the decode stage. The branch instruction contends for PC,
and so does the instruction which is just about to enter the pipeline. Inorder to
preserve the correct delay slot timing, the simulator must allocate the PC to the
branch instruction. How is this assured?

This is where our resource scheduling order comes to rescue. The execution unit,
being deeper into the pipeline than the fetch unit has its instructions considered for
resource operations first. In this case, the branch instruction is considered and
allocated PC first.

5.3 Processors with multiple functional units

In this case, an instruction diverges after decode stage to the relevant functional
unit. However, these paths may have to merge later as writeback. As different
functional units may have different delays, the writeback unit may be contended
for-also, the writebacks must be serialized in program order.

There are two ways to handle this contention:

e Stall the issue logic to ensure that by the time the instructions reach the
writeback, the previous writebacks are through and none of the following in-

structions will try to acquire it at the same time (figure 12) .

DECLARATION:
Buffer FU, DU
StaticResource EX1, EX2,..,WB

24

Reg[rd].forward Reg[rd].Write

Eeg[rg . I t \I?\/ t T
eg[rd]. It

#1 Reg[rs] . Read, #k1 #k2 #k3, , #1
FU #1

PC DU 1 EX 3

Figure 13: Multiple functional units: using latches for stalling at multiple points

USES ATTRIBUTE:
[FU, #1], [DU, , #1], EXi#k,..., Regl[rd].forward, WB#1,
Reg[rd].commit

e Allow the instruction to go into the units as deep into the pipeline as possible-
allowing them to stall anywhere in the middle of the pipeline. This happens
when stall due to contention for the writeback unit propagates backwards
(figure 13) .

DECLARATION:

Buffer FU, DU, EX1, EX2

StaticResource WB

USES ATTRIBUTE:

[FU, #1], [DU, ... , #1], [EX1,... |, ..., [EXk, #1, Reg[rd].forward],
WB#1, Reg[rd].commit

5.4 Dynamic Scheduling

Dynamic scheduling techniques allow the instructions execute out of order but at

the same time maintaining the data-dependencies using some advanced techniques.

Reorder buffer[6] Reorder buffer mechanism is a common mechanism to enforce
inorder completion of instructions. Here, the slots are allocated to the instructions
in the program order. After execution, the results are stored either in these slots, or

renamed registers (along with exception flags, if any). The completed and exception

25

Re d t
OIGCEED TSRO SR (U

FU DU #1 EX_stagel EX_stage_k

Figure 14: Scoreboarding

free instructions are completed and ejected out of the reorder buffer in program
order. In case of exceptions, however, all the following instructions in the reorder
buffer are killed and handler started.

DECLARATION:

Buffer FU, DU, EX, MU

StaticResource WB

USES ATTRIBUTE FOR ALL INSTRUCTIONS:

[FU, #1], [DU, ... , #1], [ROB, [EX....], |, WB#1, Reg[rd].commit

Scoreboarding[5] In this technique, the issue logic blocks an instruction issue till
all the previous register intending to write to the same register as the destination of
the current instruction have written. The instruction then waits in the first stage of
the functional unit till the data values it needs are available, and at the last stage
(just before at the writeback) till all the previous instructions reading from the same
register as the destination of the current instruction have actually read the values

(see figure 14).

DECLARATION:

Buffer FU, DU, EX_stagel, ..., EX stagek

StaticResource WB

// Register file must have blocking intention to writes

USES ATTRIBUTE FOR ALL INSTRUCTIONS:

[FU, #1], [DU, Reg[rs|.itR & Reg[rd].itW, #1 |, [EX stagel, Reg]rs|.read,
#1, Regrd].forward |, ... , [EX_stagel, Regfrd].commit |, WB#1

Tomasulo architecture[7] FEach functional unit has a set of tagged reservation

stations where instructions waiting for executing in that unit wait-for data and/or

26

Reg|[rd] .forwarT \
41 Reg[rs].ItR Reg|[rs;;ti Rea(D— Ex #k VB #1

Reg[rd].ItW
FU DU #1 vSt _i

ROB

Figure 15: Reorder buffer

the unit itself. When an instruction I; intends to write a register R, it marks the
register as busy, and register tag to its reservation station. If before I; completes,
another instruction Iy wants to read R-it also copies the tag of I,. On completion,
I; broadcasts the data along with the tag-from where it is copied into the Iy’s

reservation station and the register file (see figure 15).

DECLARATION:

Buffer ROB, RStation, FU, DU

StaticResource EX

USES ATTRIBUTE FOR ALL INSTRUCTIONS:

[FU, #1], [DU, Reg[rs].itR & Regfrd].itW, #1 |, [ROB & [RStation,
Regfrs].read, #1 |, EX#k, Reg[rd].forward |, WB#1, Reg[rd].commit

5.5 Branch prediction

Since varied branch prediction schemes are found in practice, we recommend pushing
the actual branch prediction logic to Sim-nML canonical functions. Here we focus
on handling the effect of correct or incorrect speculation-both, for uniscalars and
superscalars. In actually processors, incorrect predictions involves killing specula-
tively executed (or in execution) instructions. Instead, we associate a fixed penalty

called branch penalty with an incorrect speculation.

Uniscalars (figure 16)

DECLARATION:

27

mispredicted path

f

#1>—< #1 f----- >

EX
PC
#Fet chdel ay(PC
FU >_
—{ w1 o #L fe---- >
PC / DU EX

correctly predicted path

Figure 16: Branch prediction in uniscalars (branch instruction)

imperfect catch alignment

mispredicfed /
#Fet chdel ay(}v) 4 %k)’"' --------- >

U
PC if (nifsprdicted) P

Q;:etchdel ay(}f‘) * <D;;J(>--.->

correctly predicted
Figure 17: Branch prediction in superscalars: branch instruction

Buffer FU, PC, DU, EX

USES ATTRIBUTE FOR BRANCH INSTRUCTION:

[PC & [FU, #tetchdelay(PC)], if (mispredict) { [DU, ..., #1], [EX, ...],
[} else {] [DU,..#1], [EX, ...]} endif,

USES ATTRIBUTE FOR NON-BRANCH INSTRUCTIONS:

[FU & [PC, #1]&], [DU, ..., , #1], [EX, ..., #1], ..

Superscalars In superscalars, multiple instructions are fetched in one clock cycle.
Only the first instruction in the cache line needs the PC to be fetched-the rest ride
along. The condition as to whether an instruction is in previous line fetch is captured

in canonical function (see figures 17 and 18).

28

imperfect catch alignment

%Fet chdel ay(%)
P

U
C (e
DU
Q#:Fet chdel ay(}L)—
U

Figure 18: Branch prediction in superscalars: non-branch instruction

DECLARATION:

Buffer PC, FU[4], DU[4]..

USES ATTRIBUTE FOR BRANCH INSTRUCTIONS:

if (inprevCachelineFetch([PC & [FU, #tdelay(PC) | &] , if (
mispredict()) {[PC, [DU, ...],]} else {[DU, ...]... } endif, ...

USES ATTRIBUTE FOR NON-BRANCH INSTRUCTIONS:

if (inprevCachelineFetch([PC & [FU, #tdelay(PC) | &] , [DU, ... |, ...

5.6 Load-Store queues

Most current processors have an advanced memory interface-usually, the processor
operations are intermediated by some queues. Here we give sample descriptions of
load-store instructions of PowerPC 620[4].

Load The load instruction is issued to the reservation station where it waits for
the address register value. In case of a cache-hit, the reservation station is released
after one cycle. In case of a cache miss-the reservation station is released, a load
buffer is acquired and held for a delay determined by memory latency (see figure
19).

DECLARATION:

29

reg[rd].forward

reg[rd].wyite
reg[rs].it . s cache- hi ? \
<F#k1>—< regfrd} it —#1=reg[rs]. rea‘ﬂ——lE% VB #
U DU v_st* ‘ /
ROB reg[rsd].fo+ward

%(#mamjel ay(reg[r}l_)_

I'd_buf f

Figure 19: Load instruction in PowePC 620

Buffer ROBJ... |, RStation load|... |, LoadBuff, FU, DU

USES ATTRIBUTE FOR LOAD INSTRUCTION:

[FU, [DU, ..., [ROB & [RStation load, if (cachehit(...)) { #1], } else {
[LoadBuff, #memdelay(...) | } endif, ...

Store The store buffers stays in the reservation station till it gets the address
value. Thereafter, it is issued to another buffer where it waits for the data value.
On getting the data value-it moves to a next buffer where the instructions wait for
the commit signal from the reorder buffer. On getting a commit signal, the cache

line is written in a constant delay.

DECLARATION:

Buffer ROBJ... |, RStation _store]... |, StoreBuff 1, StoreBuff 2, FU, DU
StaticResource WB

USES ATTRIBUTE FOR STORE INSTRUCTION:

[FU, #1], [DU, ... |, [ROB & [RStation_store, Reg[rs addr].read, #1],
[StoreBuff 1, Regs[rs data]. read, #1 |, [StoreBuff 2 |&] WB#1,
Reg[rd].commit

30

Chapter 6

Suggested future work

6.1 Scheduler optimizations

A general uses description may contain large number of latches in any pipeline path.
In such cases, instead of scheduling instructions at every latch, it may often be
possible to "delegate" this "responsibility" to a single (or a few number) of latches.
For e.g., in the figure 20, the wait point pl may be able to schedule instructions
till the wait point p2. This can be further generalized: in the figure 21 root R is a
wait point. Also, nodes nl, n2 ... are terminating nodes in the pipeline (this DAG
is a simplified picture of interconnected components in a pipeline). In this case, it
would be possible to delegate scheduling responsibility of all descendents of R to
R. In general, a root node in a tree like topology may take up the responsibility of
scheduling for all its descendents. There may be other interesting topologies where

such optimizations can be applied as well, and they appear to be an interesting area

P1 P2
#1>—<# 1>—<# 1>-<#1

Figure 20: Point pl can schedule all the way upto p2

31

Figure 21: Root R can schedule for all its descendents

to investigate further.

6.2 Handling speculative execution (as in case of

branches) and interrupts

Before elaborating on this—we first argue that speculative execution mechanisms and
precise exception enforcing mechanisms on processors are intertwined-both require
the ability to commit upto a particular instruction, undo the following instructions,
and start program execution from a different point (interrupt handler, or branch
target /follow-through instructions as the case may be). Intuitively, an instruction is
not likely to killed at any stage in its execution—much less so while in the functional
units. Typical killing mechanisms involve freeing up the buffers allocated to an
instruction—in effect, it is as if all the killed instructions’ resource usage is snapped
(or broken) at the next scheduling point. The bonus we get here is in economy of
description-we don’t have to give additional specification for an instruction as to the
way it is killed (which may be at various places)—the responsibility of such description
lies solely with the “culprit” (killing) instruction, and the killing mechanism.

Since buffers in our model capture those wait points, they offer an attractive

points where a construct like kill of an instruction can be defined. Annotating kill

32

with some qualifying predicate allows handling speculative execution: for instance
one could mark the instructions that are speculatively fetched, and kill them at
buffers once the speculation is known to be incorrect. At this place, it may be
more appropriate to look at the above proposals from the perspective of reorder
buffer mechanism or enforcing the above: All the instructions (speculatively fetched
or otherwise) are residing in the reorder buffer in the program order (the processor
design allocates them in program order), the one could simply specify something like
“kill (free up the reorder buffer slots associated with) all instructions in the reorder
buffer with PC less than equal to the PC of conditional jump instruction” in case

of mispredicted branch.

6.3 Canonical function semantics

With each static resource, there is an associated delay. This delay can be some
constant integer, or in a more general case, can be a canonical function. A canonical
function can take arguments and returns an integer. They provide flexibility in the
description as delays arising out of factors like memory or cache access, incorrect

branch prediction etc can be captured using them.

Evaluation semantics There are 3 options that can be considered for their eval-

uation:

1. Evaluate all canonical functions in an instruction uses when the instruction is
fetched.

2. Evaluate only the value of the arguments to the canonical function in the

beginning, but evaluate the canonical function in the cycle it occurs.

3. Evaluate the canonical function, as also the argument values, in the cycle in

which it is encountered.

The third option can be erroneous. This is because action part of subsequent in-

structions may update the system state, and so the arguments to the canonical

33

function (which may be register values) would be incorrect (as the effect of subse-
quent instructions should not be seen by an instruction).

The first option seems correct, and it is also the option currently being adopted
in our model. It however may be limiting: the second option would allow much more
flexibility. This flexibility could be needed, for example, when accurate simulation
of external memory buffers is to be done using canonical functions, as now not only
the sequence of requests/responses to the memory would be important, the delay
between any two requests/responses may be important too. This flexibility, however,
would be at a cost: an erroneous use of canonical function may be difficult to detect
in these cases. It would be desirable to model external memory using canonical
functions and study their timing behavior in order to have a more precise canonical

function semantics.

6.4 Formal analysis

In as much as seen in the previous chapters we have been trying to analyze the
expressive power of the model by writing sample descriptions in it. A complete

formal description of a general processor’s timing behavior remains a challenge.

6.5 Description of multiprocessor systems

A single chip, multiprocessor system consists of array of processor elements. It may
be desirable to code in Sim-nML the individual tile elements and then interface the
multiple simulators (of these elements) suitable. This would need a more detailed
study of interfacing requirements among simulators in Sim-nML framework. Alter-
natively, it may be possible to generate a simulator for an entire RAW like processor

from a single Sim-nML description.

34

Chapter 7
Conclusion

Our resource model, along with the attached scheduling semantics is a promising
way of doing timing simulation for a processor. It can be implemented directly
in the Sim-nML framework to automatically generate timing simulators, and our
belief is the model would yield simulation results that would be very close to the
true values. There is tremendous flexibility in the model: based on how much
accuracy is desired, a designer could use it in variety of ways. For instance one
could use it to capture simple, bare-bone pipeline structure of a processor, go on
to handle hazards, further proceed to even specify scheduling optimizations, handle
delays due to cache mis-alignment, include dynamic scheduling methodologies, and
so on. A side-effect of our flexible model may be a bit of burdensome constructs
for very simple descriptions: but then processor design is getting more detailed and

sophisticated by the day, and a flexible model would have much more longevity.

35

Appendix A

Complexities in processor

descriptions|8|

Pipelining

Pipelining is an implementation technique whereby multiple instructions are over-
lapped in execution. It resembles an assembly line: different steps are completing

different parts of different instructions in parallel.

The major hurdle of Pipelining: Pipeline Hazards Hazards are situations
that prevent next instruction in the instruction stream from executing during its

designated cycle. There are three classes of hazards:

1. Structural hazards arise from conflicts when the hardware cannot support all

possible combinations of instructions in simultaneous overlapped execution

2. Data hazards arise when an instruction depends on the result of a previous
instruction in a way that is exposed by the overlapping of instructions in the
pipeline. Consider two instructions i and j, with i occurring before j. The

possible data hazards are:

(a) RAW (read after write): j tries to read a source before i writes it, so j

incorrectly gets the old value

36

(b) WAW (write after write): j tries to write an operand before it is written
by i. The writes end up being performed in the wrong order, leaving the

value written by i rather than the value written by j in the destination.

(c) WAR (write after read): j tries to write a destination before it is read by

i, so i incorrectly gets the new value.
3. Control hazards arise from the pipelining of branches and other instructions
that hazard the PC.

Other complications

Other processor features which add to their diversity include bypassing, instruction
reordering, branch prediction, speculative execution, register renaming, register ro-

tation and windowed register file.

37

Appendix B

Resource Declarations and
Instruction Resource Usage

Grammar

ResourceSpec: STATIC _RESOURCE! StaticResourcelList
| BUFFER Bufferlist
| REGISTER Registerlist

StaticResourcelList: Arrayld
| StaticResourceList '," Arrayld

BufferList: BufferDef
| BufferList '," BufferDef

BufferDef: Arrayld " '{’ SLOTS '=" INTEGER ;" INPUTORDER '=’
InputOrder ;" OUTPUTORDER '=" OutputOrder '}’

LAIl capitals used in this grammar specifications stand for keywords and/or lexical tokens such as
integers.

38

InputOrder: STATIC '=" StaticlnputOrderSeq
|

StaticlnputOrderSeq: 1D
| StaticlnputOrderSeq '," ID

OutputOrder: INORDER
| ANYORDER

RegisterList: Arrayld
| RegisterList ', Arrayld

UsesDef: UsesDef |’
| UseDef
| UsesDef '," UseDef

UseDef: IF '(" Expr)" THEN UsesDef ENDIF
| IF '(" Expr)" THEN UsesDef ELSE UsesDef ENDIF
| '(" UsesDef ') '|" '(" UsesDef ')’
| AndUseDef
| '(" UsesDef ')’
| Resourceld "." USES

AndUseDef: SingleUseDef
| AndUseDef '&" SingleUseDef

39

SingleUseDef: ID '#' INTEGER
| '[" ID
T
| ID"." INTENDTOREAD
| ID"." INTENDTOWRITE

| ID "' READ

| ID " AVAILABLE
| ID " WRITE

| '# INTEGER

40

Appendix C

Algorithms and Pseudo-codes

C.1 Syntax directed translation for converting a Us-

age specification to Usage Graph

Usage: @

Usage.head = &;
Usage.isNullifiable = true;
Usage.last = @;
Usage.E = &;
Usage.V = ;

}

Usage; : list(and(AndUsage), Usage,)

{
Usage;.head = AndUsage;
Usage. isNullifiable = false;
Usage;.last = Usage,.last;
if (Usage,.isNullifiable)

Usage,.last = Usage, last U{AndUsage};

Usage;.E = Usages.E U{(u, AndUsage): u €Usage,.head};
Usage;.V = Usage,.V U{AndUsage};

41

}
Usage; : list(or(condition, Usage,, Usages), Usage,)
{
Usage;.head = Usages.head UUsage;.head;
if (Usage,.isNullifiable or Usage;.isNullifiable)
Usage;.head = Usage;.head UUsage,.head;
Usage. isNullifiable = (Usage,.isNullifiable or
Usages.isNullifiable) and Usage,.isNullifiable
Usage;.last = Usage,.last;
if (Usage,.isNullifiable)
Usage;.last = Usage;.last UUsage,.last UUsages.last;
Usage;.V = Usage,.V UUsage;.V UUsage,.V;
Usage;.E = Usages.E UUsages.E UUsages.EU{(u, v): u
€Usage, last UUsages.last, veUsage,.head} ;

}

C.2 Generation of Resource graph from Instruction

Usage Graph

Vi= { set of buffers} ;
Er = 9;
for (each instruction I)
{
for (each start node s of the start nodes)

GenerateResourceOrder(UsageGraph(U), s, ®);
}

GenerateResourceOrder(U, v, S)

{

T =set of buffers acquired at node v;

if (T# @)

42

Er = Er U{(b;, bj): b; €S, b; €T};
S =9,
}
S = S Uset of buffers acquired at v;
for (each w €succ(v))
GenerateResourceOrder(U, w, S);

43

Bibliography

[1] Sim-nML, http://www.cse.iitk.ac.in/sim-nml/

[2] Sim-nML grammar, http://www.cse.iitk.ac.in/sim-nml/

moona/sim-nml/simnml-grammar.ps.gz

[3] Markus Freericks, The nML Machine Description Formalism, TU Berlin Com-
puter Science Technical Report- Update and Revised Version 1.5

[4] T. A. Tiep, C. Nelson, and J. P. Shen, Performance evaluation of PowerPC 620
microarchitecture, Proceedings of 22nd Symposium of Computer Architecture,
Santa Margherita, Italy, 1995

[5] G. S. Sohi, Instruction issue logic for high-performance, interruptable, multiple
functional unit, pipelined computers, IEEE Transactions on Computers, March,
1990

[6] James E. Smith and Andrew R. Pleszun, Implemention of precise interrupts in

pipelined processors

[7] R. M. Tomasulo, An efficient algorithm for exploiting multiple arithmetic units,

IBM Journal of Research and Development, January, 1967

[8] David A. Patterson and John L. Hennessy, Computer architecture: A quantita-
tive approach, Morgan Kaufmann, 1996

44

