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Chapter 1IntrodutionTraditionally, miroproessor design deisions have been taken by onsidering thedeision alternatives at Hardware desription language (HDL) level, and using thesedesriptions to analyze designs for performane metris suh as timing performane,ost, power onsumption, et. Improving hip fabriation tehnology has allowedpaking more logi on hips-and has been well subsumed by inreasingly omplexproessors and systems. Suess of a new system today depends a lot on demand tomarket time, and rapid availability of tools suh as assemblers, ompilers, debuggersand disassemblers.HDLs, however, lak in this respet. These languages are designed to aid in(and almost are a neessary step of) fabriation-the desriptions are too low level toallow easy exploration of design options, and do not provide muh support for toolgeneration.Sim-nML projet[1℄ was undertaken to ater to the above need. Based on anarhiteture desription language nML [3℄, it allows desriptions of a target at alevel ustomized to instrution set proessors. Tools suh as funtional simulators,assemblers, disassemblers an automatially be generated using the spei�ations inthis language. Our goal in this projet was to add features to the existing languagethat would allow timing simulation of the programs for the target proessor -in ourase, an estimate of yle ount of the exeution time. Several arhitetural detailsdetermine exeution time. Our emphasis has been to obtain desriptions that are1



easy to write and understand and e�ient to simulate, without omprosing on theyle ount auray.In this work, we propose an extension based on Resoure-usage model. Thisframework spei�es how hardware features that a�et the exeution time, and howinstrutions that use them are to be desribed. Impliit in the model is how it is tobe used for timing simulation of a program.Our emphasis has been to base our fundamental abstrations on what atuallyhappens in real hardware. We have tried these onstruts on a range of proessors-from simple non-pipelined unisalar ones to supersalar proessors using advanedfeatures suh as out of order speulative exeution, register renaming, branh predi-tion, and omplex memory sub-system interfae arhitetures. We �nd the intuitivenature of this formalism signi�antly easing desriptions. At the same time, webelieve that timing simulation using this approah would be signi�antly easier todesribe and faster than those using low-level HDLs, and at the same time a signif-iant saving over the omplex oding required to ode them manually in a generalpurpose language.The rest of this report is organized as follows: In hapter 2, we give a briefoverview of our perspetive of the problem, and our approah to the same. Theremaining hapters try to explain (and hopefully, present a good enough ase for)it. Chapter 3 introdues the fundamental abstrations alled resoures, and hapter4 spei�es how timing-ritial aspets of a proessor and instrution set arhitetureare to be aptured using them. We also present how this desription an be usedfor timing simulation. We drive home our point remarking the expressive power bydesribing fairly exhaustive range of proessors in hapter 5. Finally, we suggestsome future diretions of work (hapter 6).
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Chapter 2Overview of our approahThe fundamental problem of timing simulation is this: Given a proessor desription�, desription of omponents external to it (suh as memory arhiteture), and aprogram P for that proessor we need to �nd the time that program takes on �. Inour ase, it involved working out both-how the proessor is to be desribed, and howthat desription is to be used.Here, we try to rephrase the problem in our Sim-nML setup. In Sim-nML, pro-essor omponent spei�ations are aptured using register, memory and resouredelarations. Instrution spei� features are aptured using its attributes-syntaxand image for assembly syntax, ation attribute for semanti ation of the instru-tion and uses for the timing ritial aspets of the instrution exeution. We herefous on resoure delaration and usage attribute for instrutions.An instrution exeution an be thought of as using di�erent proessor ompo-nents at di�erent stages of exeution-the exat usage depending not just on instru-tion type, but also on the urrent proessor state. Eah suh omponent an bethought of as a resoure and di�erent forms of usages an be thought of as di�er-ent method invoations on them. Multiple instrutions may ontend for the sameresoure. The atual time for whih proessor units are used, and stalls waiting forthem-both of whih an be aptured in the usage, the �rst by resoure holding times,and the seond by ontention for them determine the program exeution time.We begin by lassifying the resoure types on the basis of kind of methods that3



are invoked on them. We emphasize here the point that this lassi�ation is notbased upon the exat funtionality of the resoure, but the way these methods a�etthe availability of the resoures to other methods by other instrutions.An instrution usage is omposed of individual resoure methods-we later givethe struture in whih they an be omposed. Our main premise here has been toapture a wide-range of proessor designs. In the proess-we also make an interestingdisovery-the restritions on reasonableness of the proessor also led to a simulationmehanism for this desription. This we do by mapping instrution usages to whatare alled as usage graphs.At this point, we must also make an honest onfession. Though we have listed theexamples towards the end of this report, our line of ation has been pretty muh theother way-we based our formalism (resoure types, methods and the orrespondingsemantis) on these examples.
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Chapter 3The resouresThis work hinges on, what we broadly all as a �resoure usage� model. In thismodel, the limited pool of �resoures� beome a ontention point for the users ofthe resoures, in this ase �instrutions�. Intuitively, if a set of resoures, ordered insome form, are to be operated upon by multiple ontenders (who themselves havesome ordering), it would be some time (all it duration t) before all ontenders havereeived what they wanted (after instrutions aquire a resoure, release it so thatothers an aquire it, go on to aquire other resoure, and so on). If the ordering ofresoures and of instrutions is well de�ned, and the �rules� of resoure alloation arelearly and unambiguously laid out, t would be unique and an be �gured out (ourgoal). The hallenge is then to �gure out this t: whih in turn involves identifyingthe resoures, and the ways to speify the aquisition rules.The latter is aptured by attahing some methods to resoures, and learly layingdown sheduling rules assoiated with resoures . These methods an be blokingor non-bloking. A non-bloking method is one for whih an instrution annotwait�the proessor must make sure that the relevant resoure is available when thatoperation is invoked. A bloking resoure method bloks-usually, till the ondition itis waiting for is satis�ed-at whih it unbloks, and the resoure state is appropriatelymodi�ed.We lassify resoures into three ategories: bu�ers, registers and stati resoures.The purpose behind these resoures, their properties and the operations on them5



are given below.3.1 Stati resouresA resoure like an ALU, or some other exeution unit-whih is used for a knownperiod of time by an instrution irrespetive of availability of other units is lassedunder this ategory. The delaration of a stati resoure is as follows:StatiResoure R1, R2[n℄ //n instanes of R2, 1 instane of R1A stati resoure an have multiple instanes. If a stati resoure R has n instanesthen in uses R denotes any of the n instanes while R[ ℄ stands for all the n instanesof R.If a stati resoure R is to be used by an instrution for t yles, then theorresponding invoation is denoted by 'R#t '. The duration t ould be a onstant,or a anonial funtion all that returns some integer value.A speial type of stati resoure, alled null resoure is assumed to have in�niteinstanes. A onsequene of this is that there is never a ontention for this resoure.Instead of using this resoure as null#k, it is usually denoted as just #k, whihindiates holding this resoure for k yles-this is de�ned as the time of the resouremethod.3.2 RegisterThe register abstration stands for registers in proessors. Their delaration is asfollows:Register Reg[n℄ //n instanes of R2, 1 instane of R1The ith register of the above delared register �le would be used as Reg[i ℄.operation,where operation an be one of the following:1. itR (intention to read) 6



2. Read3. itW (intention to write: bloking or non-bloking)4. forward5. write or ommitThese operations make it possible to apture various issues assoiated with the data:apart from read and write from the register �le, data hazards (RAW, WAR, WAW)an also be handled. This is possible beause of the semantis assoiated with theseoperations, whih is desribed below.The sample data struture (see setion 3.2.3)for the implementation of these operations may further help in understanding theirsemantis.We de�ne an ordering between di�erent intentions to the same register. A registerintention to read (itR) or intention to write (itW) is said to be before anotherintention if� the �rst intention was issued before the seond intention, or� both were issued in the same lok yle, and the �rst instrution is earlier inthe program order than the seond.Sine the above order is a total order, it impliitly de�nes a immediately relationamong a given instrution set.3.2.1 Semantis of itR, read and forward:A instrution I1 issuing a read to a register bloks till the instrution I2whih hasissued an itW immediately preeding I1's itR does a forward.3.2.2 Semantis of itW and write� Bloking itWA bloking itW bloks till all the writes orresponding to all previously issueditWs to the same register have ompleted, or their orresponding instrutionshave ompleted. 7



� Non-bloking itWIn either ase, a write bloks till all the writes and reads orresponding to all pre-viously issued itWs to the same register have ompleted, or their orrespondingversions have ompleted.R.itW by an instrution indiates that the instrution would subsequently bewriting into the register R: the atual update is made by R.write. Now, there aretwo versions of itW operation: bloking and non-bloking. Two di�erent versionsare required beause some proessors may not allow more than one instrution fromgoing beyond the deode (or suh similar) unit if they write into the same register(WAW), whereas some other proessors may not have this restrition (suh as theones using register renaming). The bloking version aptures the former, whilenon-bloking version aptures the latter.3.2.3 A sample data struture for register operationsThis sample data struture is intended to larify the semantis of the register op-erations. Pitorially, it looks like in �gure 1. In the diagram, Li1and Li2are linkedlists, while A is an array of registers (register �le R). Pi1points to Li1, Pi2points toan instrution I1, Pi3points to the list Li2 , n1, n2... are nodes in the list Li1 . ListLi1 is alled as itW-list, Li2 is itR-list. The itR-list is a list of instrutions. Thereare similar itR-list and itW-list with all other elements of A as well. Consider thefollowing operations on Reg[i℄ by an instrution I:1. Reg[i℄.itW (non-bloking): This reates a new node, pointing to instrution I,and adds this node at the tail of Li1 .2. Reg[i℄.itW (bloking): This bloks if Li1is not empty. If Li1is empty, thisoperation sueeds, a new node pointing to the instrution I is reated and itis attahed at the head of the (empty) list Li1 .3. Reg[i℄.itR: Here, I is added to the tail of itR-list of the last node of itW-list ofReg[i℄. 8
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Figure 1: Data struture for implementing register operations4. Reg[i℄.forward: First the node n in the itW-list of Reg[i℄ is loated whih hasa pointer to I. Then in the itR list of node n, all instrutions all �agged asread-available.5. Reg[i℄.read: Here, I is loated in the itR-lists assoiated with itW-list nodes ofReg[i℄. (To speed up this searh, the instrution data struture may ontaina pointer to the itR-list). If its �ag is set as �read-available�, then operationsueeds, otherwise it bloks. If I an not be loated in the itR-lists, then theoperation sueeds.6. Reg[i℄.write or Reg[i℄.ommit: Here, a node n is loated in the itW list ofReg[i℄. If this node is the �rst node in itW list of Reg[i℄, then it is deleted andthe operation sueeds. Otherwise it is bloked.
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3.3 Bu�ersThis abstration allows instrutions to wait at di�erent points in the pipeline. Thismay be neessary beause of a variety of reasons, some of them are:1. An instrution waiting for some resoure to be available. An example of this isreservation stations assoiated with funtional units, where instrutions waitfor that funtion unit or data.2. Presene of units whih enfore instrution reordering �usually to maintainsequential semantis. Reorder bu�ers (or write-bak bu�ers, as the ase maybe) serve this purpose.3. Mehanisms that allow for "speed mismath" between di�erent hardware omponents-suh as memory subsystem and the proessor. This ompounded with the un-preditable operation delay (due to memory hierarhy) neessitates interfaingto them via bu�ers (typially load-store bu�ers).4. The delay or wait an instrution may have to undergo may not be preditablewhen a later instrution modi�es the usage of the earlier instrution. Thismay happen when di�erent pipeline paths (taking di�erent number of lokyles) onverge (in terms of instrution resoure usage) to the same exeutionunit.The above features seem to require support for exeution-time determined delays.We apture these features in a resoure abstration alled bu�ers. A bu�er delara-tion looks like:Bu�er B: {slots = n; input = InputOrder ; output = OutputOrder}Here InputOrder an be of the form Stati: R1, R2, ..., Rn. A bu�er an havemultiple inoming paths, the stati ordering then de�nes the relative priority amongthose inoming paths. In the above desription, R1, R2, ..., Rn are resoures thatfeed into bu�er B's input. Also, R1has a higher priority than R2, whih has a higherpriority than R3, and so on. This means if multiple number of these units have10



instrutions waiting to enter into the bu�er B, then inputs are reeived by B fromthese resoures in order of their priority.OutputOrder an be Inorder or Anyorder. This denotes the order in whihinstrutions urrently in the bu�er are onsidered for dispathing them out of thebu�er with respet to the order in whih they aquire the bu�er.Bu�ers have two basi operations: aquire (denoted by [B) and release(℄). Eahbu�er keeps trak of number of free slots. Aquiring a bu�er redues the number offree slots by 1, releasing it inreases it. Both these methods are potentially bloking-an aquire an blok in ase the bu�er has no free slots, and release if it violates theoutput sheduling poliy of the bu�er.Speial ase of bu�ers: Lathes Lathes are bu�ers with just 1 slot (and sono output sheduling poliy is needed). An input sheduling poliy may be needed,however, as multiple pipeline paths may be leading into the same lath.Lathes our in hardwares just before resoure units (suh as ALU, feth unitet) where instrution may wait until the resoure unit is free. If there are no lathes(or bu�ers) in a part of a pipeline, then instrutions an not wait at any point inthat part of the pipeline.

11



Chapter 4Instrution Desription in theResoure Framework
4.1 Usage Grammar: At the oneptual levelConeptually, an instrution's resoure desription is of the following form (the exatgrammar is given in Appendix B)Usage: �| list( and(AndUsage), Usage)| list( or(ondition, Usage, Usage), Usage)AndUsage: ResoureMethod| ResoureMethod & AndUsageAn instrution usage is a list of and and or usages.An and usage is list of operations on resoures eah having equal time-it isshedulable at a given time if all the resoure operations that are a part of it areshedulable. The time of an and usage is the time of any of the resoure methodsthat onstitute it.An or usage will have two alternative usages along with a ondition. The ondi-tion may be a an expression involving proessor state, and anonial funtion alls-in12



whih ase it is evaluated just before pushing the instrution into the pipeline togive usage of that instrution instane, and the path orresponding to the booleanvalue of the ondition value must be shedulable. Or it may be a wildard (* ) whihmeans that any of the two resoure usages may be shedulable.Sim-nML notationsWe saw in Setion 3.3 that a bu�er B's aquire was represented as [B and B's releaseas ℄ (the releases ℄ were mapped to orresponding aquires by the nesting). In Sim-nML grammar, an and usage is represented by orresponding methods onnetedby &, and an or usage by its usages separated by |.and(u1,u2,...,un) = u1& u2& ...&unor(ondition, u1,u2) =((u1)|(u2)) if (ondition = *)or(ondition, u1,u2) = if (ondition) then u1else u2endif4.2 Usage GraphA onvenient way to think of a usage is using a direted ayli graph (DAG) rep-resentation alled Usage Graph. Crudely speaking, eah node of this graph orre-sponds to an and usage-ontaining the information about the orresponding resouremethods. Eah node u may have some suessors denoted by Su(u) (de�ning thedireted edges of the graph):1. If a node has no suessor, it marks the end of the instrution exeution.2. If a node has no predeessor, it marks the start usage of the instrution exe-ution.3. If a node has more than 1 suessors, it means that the instrution's usage anbe satis�ed in more than 1 way (something like an or usage).4.2.1 NotationPitorially, we represent resoure operations as shown (2, 3, 4)13



Figure 2: Stati resoure
Figure 3: Bu�er aquireA node of the usage graph is represented by the orresponding operations at thesame point.We give some example desriptions in hapter 5.Appendix C.1 gives the syntax direted translation for onverting a usage spe-i�ation to a Usage graph-for our future purposes, we will use these graphs.4.2.2 Some simple properties required from usage graphs forvalid instrution desriptionNot all Usage desriptions aepted by the Grammar would qualify as valid from thepoint of view of simulation. Here we list down some simple requirements of them:� A bu�er aquire must be mathed by orresponding bu�er release along allinstrution usages that an instrution an take from the given start point, andvie versa.� A resoure aquire operation must be preeded by a wait point.For example,[FU, #1 ℄, DU#1, [EX, #1 ℄will not qualify as a valid usage desription.
Figure 4: Bu�er release14



The rationale for this is given in setion 4.3.4.2.3 De�nitionsA resoure method is said to be shedulable if when issued at that time, it does notblok.A usage graph node (an and node) is said to be shedulable if all the resoureoperations in that and node an be initiated in that lok yle. Its is said tohave been sheduled if those resoure operations have been performed to update theresoure state.A stage in instrution usage is a two-tuple of the form of the form (u, Su(u))or of the form (Pred(u), u) for some node u from Usage graph. Barring the fat thatone of the elements of the above two-tuple is a set, and the other is not-the stageaptures the all possible nodes that may have been sheduled last, and all possiblefuture di�erent next usages for the future.A wait point of a usage graph is a stage of the (u, Su(u)) where u has a bu�eraquire, or of the form (Pred(v), v), where v ontains a bu�er release.Intuitively, the �rst ase orresponds to the fat that the instrution has justaquired a resoure (in the and usage for node u), but hasn't yet "deided" whihof the possibly several paths of exeution (orresponding to di�erent members ofSu(u)) it will take. The seond ase orresponds to the fat that an instrutionhas deided to release a bu�er (in the usage for node v)-the usage pattern so farould have been along any path to v (hene, Pred(v)).A path from (v1,...vn) from stage (S1, S2) to stage (T1, T2) is said to be waitpointfree i�1. for no 1<i�n, (Pred(vi), vi) is a waitpoint2. for no 1�i<n, (vi, Su(vi)) is a waitpointIntuitively, a wait point free path from one stage to another represents one partiularusage in middle of whih an instrution an't blok (no wait points), and hene-when that path has been deided to be taken, it must be ensured that all of the15
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Figure 5:operations an be performed at orresponding time. This idea is aptured in thefollowing de�nition.A path from an edge stage (S1, S2) to (T1, T2) is said to be shedulable at timet along a wait-point free path v1, v2,... vn, if either v1 = S2, or v1 2 S2, and eitherv1= T1or v12T1, and vi is shedulable at time t + P1�j<itime(vj)An instrution instane's urrent usage is said to be at position at (u,Su(u)), ifits some path from any start usage point to (inluding) that orresponding to u hasbeen sheduled, and none of the following suessors of u have yet been sheduled.Similarly, an instrution instane's usage is said to be at (Pred(v), v) if some pathfrom any start usage to (inluding) a node u in Pred(v) has been sheduled, but theusage of v has not yet been sheduled.4.3 Timing SimulationThe idea behind our timing simulation algorithm is based on our following under-standing of pipelined instrution exeution: Lets say at some point between lokyle boundaries t and t+1, the oupany of pipeline stage is shown in �gure 5.Further, let us assume all instrutions I1,.. I4 to be assoiated with relevantstages for one lok yle. The instrutions then atually use the orrespondingstage's units for something less than 1 (say 1-Æ) yles. For the remaining part ofthe lok yle, they hek for the availability of the next stage. If available, thevalues are released on the lines to be lathed at the next lok edge.The deision regarding the availability of next stage propagate bakwards. Inthe above example, the WB unit "knows" that I1 will be leaving it at the end of16



yle. It signals the previous stage (Mem) regarding its availability-and deides tolath I2 to WB at the next lok edge. This deision propagates bakwards rightthrough the pipeline in the bakward diretion.Our timing simulator algorithm attempts to apture this ordering among thebu�ers, and then use it "shedule" instrutions at eah of them. The entral themewhen it omes to sheduling is to enfore the availability of operations needed toperform resoure operations-an instrution waits only at wait points-just after a-quiring a bu�er, and just before releasing for a time just enough to ensure that whatit atually issues any resoure method in between, it does not blok.Part 1: To get an ordered list of resoures in whih they are to beonsideredConstrut a resoure graph GR = (VR, ER), where VR = Set of bu�ers ={b1,...bn} and ER = { (bi, bj): if there exists an instrution Ik whoseusage graph has a path from a node ontaining bi.aquire to bj.aquirewith no other bu�er aquire in between}(The way this graph an be generated from usage graphs of all instrutionsis given in Appendix C.2.)The presene of an edge e = (bi, bj) in the edge set ER denotes thatsheduling of an instrution oupying bi may depend upon the availabilityof bj-hene, it must our after bj.For eah bu�er b having stati input shedule 1....m, add an edge (i+1,i) for 0 � i < m in ER.(The justi�ation here is that sine i arries preedene over i+1 whenboth ontend for b, it looks reasonable to suggest that i must besheduled before i+1.)If the graph GR onstruted above has yles, return invalid usagedesription. 17



Let B = [b1'...bn'℄ be the any reverse topologial sort of G�we willonsider the resoures in this order.Part 2: To simulate the instrutions �ow through the proessoromponentslok ount = 0;while (there are instrutions ready to be exeuted or in the exeutionpipeline){ for (eah bu�er b 2B onsidered in the same order as in B){ for (eah instrution I that is in the seond wait point at band that has the next shedule time equal to the urrent timeshedule (I);for (eah instrution I that is in the �rst wait point at band that have the next shedule time equal to the urrenttime) shedule(I);for (all instrutions I that are yet to be pushed into theexeution pipeline){ U = instrutions instane I's usage using the urrentmahine stage; if (path till the some �rst wait point of U is shedulable){ perform I's ations;shedule(I);} 18



}}lok ount ++;}shedule (I){ w = urrent stage of the instrutionfor (all possible wait points w' or instrution end point along allpossible sub-paths from w){ if (I an be sheduled at the sub-path p){ perform the orresponding the resoure operations;if (w' is not an end point)set I's urrent stage to w';if (time(p) == 0)shedule(I);else next shedule time of I += time(p)return;}}// annot be shedulednext shedule time of I += 1;}
19



Chapter 5ExamplesHere, we will try to present some sample proessor and instrution arhitetures andhow they will be represented in our framework.We start with a simple non-pipelined proessor with �xed memory aess time,and gradually add features suh as pipelining, ontrol and data hazard handling,data bypassing, branh delay slots, multiple funtional units, out of order exeutionand register renaming, branh predition and omplex memory interfaes.For uniformity, the initial models assume that instrution exeution an be di-vided into �ve distint stages (similar to DLX [8℄): feth stage (feth unit-FU),deode stage (deode unit-DU), exeute stage (exeute unit-EX), memory stageMU), and write-bak (WB).5.1 A simple non-pipelined proessorThe simplest way to desribe simple non-pipelined proessor with eah instrutiontaking a �xed number of lok yles (say 5-as in our �ve stage model above) wouldbe to have a stati resoure alled proessor, and all instrutions use it for theduration equal to the exeution lok yle ount (�gure 6).
#5Figure 6: Non-pipelined20



FU DU EX Mem WB
#1 #1 #1 #1 #1Figure 7: simple pipelinedelaration:StatiResoure prouses attribute for all instrutions:pro#55.2 Simple pipelined proessorsWithout any hazard handling Now we pipeline the �ve stages-without addingany handling mehanism for data or ontrol hazard. (Note that the program exe-ution model breaks away from the stritly sequential order of instrutions-both inthe data values that are read by instrutions, and when branhes show up-but then,but we are not proposing that design here!)Sine there are no interloks, all stages are non-bloking. Having stati resourefor eah resoure does make sense here (�gure 7).delaration:StatiResoure FU, DU, EX, MU, WBuses attribute for all instrutions:FU#1, DU#1, EX#1, MU#1, WB#1With data hazard handling and forwarding, but no ontrol hazard han-dling yet. This gives us an opportunity to introdue register resoures-a registerresoure array for eah register �le. As we arry on, unless otherwise spei�ed-wewill assume that all instrutions have one soure register rs, and a destination reg-ister rd. Desribing instrutions with more soures/destinations will not result inany gain at the oneptual level. On the ontrary, atual features we are interestedin may, on the other hand, get suppressed (�gure 8).21
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#1Figure 8: With data hazard handling (forwarding)delaration:Bu�er FU, DU, EX, MUStatiResoure WBuses attribute for non-load instrutions:[FU, #1℄, [DU, Reg[rs℄.itR & Reg[rd℄.itW, #1℄, [EX, Reg[rs℄.read, #1,Reg[rd℄.forward ℄, MU#1, WB#1, Reg[rd℄.ommituses attribute for load instrution:[FU, #1 ℄, [DU, Reg[rs℄.itR & Reg[rd℄.itW, #1 ℄, [EX, #1 ℄, [MU,Reg[rs℄.read, #1, Reg[rd℄.forward ℄, WB#1, Reg[rd℄.ommitAn important point must be mentioned here: We have FU, DU, MU, EX as bu�ersinstead of stati resoure of the previous example. This is beause the exeute stage(memory stage in ase of a load instrution) issues a bloking operation read. In asethe required register value is not available, the instrution stalls here. A pipelinestall at EX or MU propagates bakwards-thus, all of them need to have the abilityto hold the instrution for potentially unpreditable period (and this is what bu�ersare meant to apture).Handling ontrol hazard in addition to data hazards Control hazards arisewhen a branh instrution enters a pipeline-the PC value whih is required by thefollowing instrutions is not available till (say) the EX stage of the branh.We take this as a lue in our method of speifying suh arhitetures�by havinga separate PC bu�er resoure. Branh instrution aquires it at the feth stage anddoes not release it till its exeute stage. All other instrutions try to aquire itduring the feth stage. Thus, instrutions following a branh are stalled (�gures 9and 10) .uses attribute for branh instrution:22
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PCFigure 10: Handling ontrol hazard in addition to data hazards (non- branh in-strution)[PC & [FU, #1 ℄, [DU,... #1 ℄, [EX,... #1 ℄&℄...uses attribute for non-branh instrutions:[PC & [FU, #1 ℄&℄, [DU,...#1 ℄, [EX,... #1 ℄...Delayed branhes as an optimization to branh handling In the ase ofdelayed branhes, the instrution following the branh instrution in the pipelineis exeuted-irrespetive of whether the branh is taken or not taken (in the ase ofimmediately suessive branhes, the delay slot may not be the instrution followingin the program order). We handle this by allowing the branh instrution to releasethe PC for a yle to prevent delay slot instrution from stalling (�gure 11) .uses attribute for branh instrution:[PC & [FU, #1 ℄℄, [DU,... #1 ℄, [PC, [EX,... #1 ℄&℄...
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Figure 12: Multiple funtional units: stalling at issue logiAt this point, one may have the following doubt. Consider the ase when a branhinstrution is just past the deode stage. The branh instrution ontends for PC,and so does the instrution whih is just about to enter the pipeline. Inorder topreserve the orret delay slot timing, the simulator must alloate the PC to thebranh instrution. How is this assured?This is where our resoure sheduling order omes to resue. The exeution unit,being deeper into the pipeline than the feth unit has its instrutions onsidered forresoure operations �rst. In this ase, the branh instrution is onsidered andalloated PC �rst.5.3 Proessors with multiple funtional unitsIn this ase, an instrution diverges after deode stage to the relevant funtionalunit. However, these paths may have to merge later as writebak. As di�erentfuntional units may have di�erent delays, the writebak unit may be ontendedfor-also, the writebaks must be serialized in program order.There are two ways to handle this ontention:� Stall the issue logi to ensure that by the time the instrutions reah thewritebak, the previous writebaks are through and none of the following in-strutions will try to aquire it at the same time (�gure 12) .delaration:Bu�er FU, DUStatiResoure EX1, EX2,..,WB 24
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Ex1 Ex2 Ex3 WBFigure 13: Multiple funtional units: using lathes for stalling at multiple pointsuses attribute:[FU, #1℄, [DU, .... , #1 ℄, EXi#k,..., Reg[rd℄.forward, WB#1,Reg[rd℄.ommit� Allow the instrution to go into the units as deep into the pipeline as possible-allowing them to stall anywhere in the middle of the pipeline. This happenswhen stall due to ontention for the writebak unit propagates bakwards(�gure 13) .delaration:Bu�er FU, DU, EX1, EX2StatiResoure WBuses attribute:[FU, #1℄, [DU, ... , #1 ℄, [EX1,... ℄, ..., [EXk, #1, Reg[rd℄.forward ℄,WB#1, Reg[rd℄.ommit5.4 Dynami ShedulingDynami sheduling tehniques allow the instrutions exeute out of order but atthe same time maintaining the data-dependenies using some advaned tehniques.Reorder bu�er[6℄ Reorder bu�er mehanism is a ommon mehanism to enforeinorder ompletion of instrutions. Here, the slots are alloated to the instrutionsin the program order. After exeution, the results are stored either in these slots, orrenamed registers (along with exeption �ags, if any). The ompleted and exeption25
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EX_stage_kFigure 14: Soreboardingfree instrutions are ompleted and ejeted out of the reorder bu�er in programorder. In ase of exeptions, however, all the following instrutions in the reorderbu�er are killed and handler started.delaration:Bu�er FU, DU, EX, MUStatiResoure WBuses attribute for all instrutions:[FU, #1 ℄, [DU, ... , #1 ℄, [ROB, [EX.... ℄, ℄, WB#1, Reg[rd℄.ommitSoreboarding[5℄ In this tehnique, the issue logi bloks an instrution issue tillall the previous register intending to write to the same register as the destination ofthe urrent instrution have written. The instrution then waits in the �rst stage ofthe funtional unit till the data values it needs are available, and at the last stage(just before at the writebak) till all the previous instrutions reading from the sameregister as the destination of the urrent instrution have atually read the values(see �gure 14).delaration:Bu�er FU, DU, EX_stage1, ..., EX_stagekStatiResoure WB// Register �le must have bloking intention to writesuses attribute for all instrutions:[FU, #1℄, [DU, Reg[rs℄.itR & Reg[rd℄.itW, #1 ℄, [EX_stage1, Reg[rs℄.read,#1, Reg[rd℄.forward ℄, ... , [EX_stage1, Reg[rd℄.ommit ℄, WB#1Tomasulo arhiteture[7℄ Eah funtional unit has a set of tagged reservationstations where instrutions waiting for exeuting in that unit wait-for data and/or26
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Figure 15: Reorder bu�erthe unit itself. When an instrution I1 intends to write a register R, it marks theregister as busy, and register tag to its reservation station. If before I1 ompletes,another instrution I2 wants to read R-it also opies the tag of I2. On ompletion,I1 broadasts the data along with the tag-from where it is opied into the I2'sreservation station and the register �le (see �gure 15).delaration:Bu�er ROB, RStation, FU, DUStatiResoure EXuses attribute for all instrutions:[FU, #1℄, [DU, Reg[rs℄.itR & Reg[rd℄.itW, #1 ℄, [ROB & [RStation,Reg[rs℄.read, #1 ℄, EX#k, Reg[rd℄.forward ℄, WB#1, Reg[rd℄.ommit5.5 Branh preditionSine varied branh predition shemes are found in pratie, we reommend pushingthe atual branh predition logi to Sim-nML anonial funtions. Here we fouson handling the e�et of orret or inorret speulation-both, for unisalars andsupersalars. In atually proessors, inorret preditions involves killing speula-tively exeuted (or in exeution) instrutions. Instead, we assoiate a �xed penaltyalled branh penalty with an inorret speulation.Unisalars (�gure 16)delaration: 27
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Figure 17: Branh predition in supersalars: branh instrutionBu�er FU, PC, DU, EXuses attribute for branh instrution:[PC & [FU, #fethdelay(PC) ℄, if (mispredit) { [DU, ..., #1 ℄, [EX, ... ℄,℄} else { ℄, [DU,...#1 ℄, [EX, ... ℄} endif, ...uses attribute for non-branh instrutions:[FU & [PC, #1 ℄&℄, [DU, ..., , #1 ℄, [EX, ..., #1 ℄, ...Supersalars In supersalars, multiple instrutions are fethed in one lok yle.Only the �rst instrution in the ahe line needs the PC to be fethed-the rest ridealong. The ondition as to whether an instrution is in previous line feth is apturedin anonial funtion (see �gures 17 and 18).28
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Figure 18: Branh predition in supersalars: non-branh instrutiondelaration:Bu�er PC, FU[4℄, DU[4℄..uses attribute for branh instrutions:if ( inprevCaheLineFeth( [PC & [FU, #fdelay(PC) ℄ &℄ , if (mispredit()) {[PC, [DU, ... ℄, .... ℄} else {[DU, ... ℄... } endif, ...uses attribute for non-branh instrutions:if ( inprevCaheLineFeth( [PC & [FU, #fdelay(PC) ℄ &℄ , [DU, ... ℄, ...5.6 Load-Store queuesMost urrent proessors have an advaned memory interfae-usually, the proessoroperations are intermediated by some queues. Here we give sample desriptions ofload-store instrutions of PowerPC 620[4℄.Load The load instrution is issued to the reservation station where it waits forthe address register value. In ase of a ahe-hit, the reservation station is releasedafter one yle. In ase of a ahe miss-the reservation station is released, a loadbu�er is aquired and held for a delay determined by memory lateny (see �gure19). delaration: 29
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Figure 19: Load instrution in PowePC 620Bu�er ROB[... ℄, RStation_load[... ℄, LoadBu�, FU, DUuses attribute for load instrution:[FU, [DU, ...., [ROB & [RStation_load, if ( ahehit(...)) { #1℄, } else {[LoadBu�, #memdelay(... ) ℄ } endif, ...Store The store bu�ers stays in the reservation station till it gets the addressvalue. Thereafter, it is issued to another bu�er where it waits for the data value.On getting the data value-it moves to a next bu�er where the instrutions wait forthe ommit signal from the reorder bu�er. On getting a ommit signal, the aheline is written in a onstant delay.delaration:Bu�er ROB[... ℄, RStation_store[... ℄, StoreBu�_1, StoreBu�_2, FU, DUStatiResoure WBuses attribute for store instrution:[FU, #1℄, [DU, ... ℄, [ROB & [RStation_store, Reg[rs_addr℄.read, #1 ℄,[StoreBu�_1, Regs[rs_data℄. read, #1 ℄, [StoreBu�_2 ℄&℄, WB#1,Reg[rd℄.ommit
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Chapter 6Suggested future work
6.1 Sheduler optimizationsA general uses desription may ontain large number of lathes in any pipeline path.In suh ases, instead of sheduling instrutions at every lath, it may often bepossible to "delegate" this "responsibility" to a single (or a few number) of lathes.For e.g., in the �gure 20, the wait point p1 may be able to shedule instrutionstill the wait point p2. This an be further generalized: in the �gure 21 root R is await point. Also, nodes n1, n2 ... are terminating nodes in the pipeline (this DAGis a simpli�ed piture of interonneted omponents in a pipeline). In this ase, itwould be possible to delegate sheduling responsibility of all desendents of R toR. In general, a root node in a tree like topology may take up the responsibility ofsheduling for all its desendents. There may be other interesting topologies wheresuh optimizations an be applied as well, and they appear to be an interesting area
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Figure 20: Point p1 an shedule all the way upto p231
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n2 n3Figure 21: Root R an shedule for all its desendentsto investigate further.6.2 Handling speulative exeution (as in ase ofbranhes) and interruptsBefore elaborating on this�we �rst argue that speulative exeution mehanisms andpreise exeption enforing mehanisms on proessors are intertwined�both requirethe ability to ommit upto a partiular instrution, undo the following instrutions,and start program exeution from a di�erent point (interrupt handler, or branhtarget/follow-through instrutions as the ase may be). Intuitively, an instrution isnot likely to killed at any stage in its exeution�muh less so while in the funtionalunits. Typial killing mehanisms involve freeing up the bu�ers alloated to aninstrution�in e�et, it is as if all the killed instrutions' resoure usage is snapped(or broken) at the next sheduling point. The bonus we get here is in eonomy ofdesription-we don't have to give additional spei�ation for an instrution as to theway it is killed (whih may be at various plaes)�the responsibility of suh desriptionlies solely with the �ulprit� (killing) instrution, and the killing mehanism.Sine bu�ers in our model apture those wait points, they o�er an attrativepoints where a onstrut like kill of an instrution an be de�ned. Annotating kill32



with some qualifying prediate allows handling speulative exeution: for instaneone ould mark the instrutions that are speulatively fethed, and kill them atbu�ers one the speulation is known to be inorret. At this plae, it may bemore appropriate to look at the above proposals from the perspetive of reorderbu�er mehanism or enforing the above: All the instrutions (speulatively fethedor otherwise) are residing in the reorder bu�er in the program order (the proessordesign alloates them in program order), the one ould simply speify something like�kill (free up the reorder bu�er slots assoiated with) all instrutions in the reorderbu�er with PC less than equal to the PC of onditional jump instrution� in aseof mispredited branh.6.3 Canonial funtion semantisWith eah stati resoure, there is an assoiated delay. This delay an be someonstant integer, or in a more general ase, an be a anonial funtion. A anonialfuntion an take arguments and returns an integer. They provide �exibility in thedesription as delays arising out of fators like memory or ahe aess, inorretbranh predition et an be aptured using them.Evaluation semantis There are 3 options that an be onsidered for their eval-uation:1. Evaluate all anonial funtions in an instrution uses when the instrution isfethed.2. Evaluate only the value of the arguments to the anonial funtion in thebeginning, but evaluate the anonial funtion in the yle it ours.3. Evaluate the anonial funtion, as also the argument values, in the yle inwhih it is enountered.The third option an be erroneous. This is beause ation part of subsequent in-strutions may update the system state, and so the arguments to the anonial33



funtion (whih may be register values) would be inorret (as the e�et of subse-quent instrutions should not be seen by an instrution).The �rst option seems orret, and it is also the option urrently being adoptedin our model. It however may be limiting: the seond option would allow muh more�exibility. This �exibility ould be needed, for example, when aurate simulationof external memory bu�ers is to be done using anonial funtions, as now not onlythe sequene of requests/responses to the memory would be important, the delaybetween any two requests/responses may be important too. This �exibility, however,would be at a ost: an erroneous use of anonial funtion may be di�ult to detetin these ases. It would be desirable to model external memory using anonialfuntions and study their timing behavior in order to have a more preise anonialfuntion semantis.6.4 Formal analysisIn as muh as seen in the previous hapters we have been trying to analyze theexpressive power of the model by writing sample desriptions in it. A ompleteformal desription of a general proessor's timing behavior remains a hallenge.6.5 Desription of multiproessor systemsA single hip, multiproessor system onsists of array of proessor elements. It maybe desirable to ode in Sim-nML the individual tile elements and then interfae themultiple simulators (of these elements) suitable. This would need a more detailedstudy of interfaing requirements among simulators in Sim-nML framework. Alter-natively, it may be possible to generate a simulator for an entire RAW like proessorfrom a single Sim-nML desription.
34



Chapter 7ConlusionOur resoure model, along with the attahed sheduling semantis is a promisingway of doing timing simulation for a proessor. It an be implemented diretlyin the Sim-nML framework to automatially generate timing simulators, and ourbelief is the model would yield simulation results that would be very lose to thetrue values. There is tremendous �exibility in the model: based on how muhauray is desired, a designer ould use it in variety of ways. For instane oneould use it to apture simple, bare-bone pipeline struture of a proessor, go onto handle hazards, further proeed to even speify sheduling optimizations, handledelays due to ahe mis-alignment, inlude dynami sheduling methodologies, andso on. A side-e�et of our �exible model may be a bit of burdensome onstrutsfor very simple desriptions: but then proessor design is getting more detailed andsophistiated by the day, and a �exible model would have muh more longevity.
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Appendix AComplexities in proessordesriptions[8℄
PipeliningPipelining is an implementation tehnique whereby multiple instrutions are over-lapped in exeution. It resembles an assembly line: di�erent steps are ompletingdi�erent parts of di�erent instrutions in parallel.The major hurdle of Pipelining: Pipeline Hazards Hazards are situationsthat prevent next instrution in the instrution stream from exeuting during itsdesignated yle. There are three lasses of hazards:1. Strutural hazards arise from on�its when the hardware annot support allpossible ombinations of instrutions in simultaneous overlapped exeution2. Data hazards arise when an instrution depends on the result of a previousinstrution in a way that is exposed by the overlapping of instrutions in thepipeline. Consider two instrutions i and j, with i ourring before j. Thepossible data hazards are:(a) RAW (read after write): j tries to read a soure before i writes it, so jinorretly gets the old value 36



(b) WAW (write after write): j tries to write an operand before it is writtenby i. The writes end up being performed in the wrong order, leaving thevalue written by i rather than the value written by j in the destination.() WAR (write after read): j tries to write a destination before it is read byi, so i inorretly gets the new value.3. Control hazards arise from the pipelining of branhes and other instrutionsthat hazard the PC.Other ompliationsOther proessor features whih add to their diversity inlude bypassing, instrutionreordering, branh predition, speulative exeution, register renaming, register ro-tation and windowed register �le.
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Appendix BResoure Delarations andInstrution Resoure UsageGrammarResoureSpe: STATIC_RESOURCE1 StatiResoureList| BUFFER Bu�erlist| REGISTER Registerlist;StatiResoureList: ArrayId| StatiResoureList ',' ArrayId;Bu�erList: Bu�erDef| Bu�erList ',' Bu�erDef;Bu�erDef: ArrayId ':' '{' SLOTS '=' INTEGER ';' INPUTORDER '='InputOrder ';' OUTPUTORDER '=' OutputOrder '}'1All apitals used in this grammar spei�ations stand for keywords and/or lexial tokens suh asintegers. 38



;InputOrder: STATIC '=' StatiInputOrderSeq|;StatiInputOrderSeq: ID| StatiInputOrderSeq ',' IDOutputOrder: INORDER| ANYORDER;RegisterList: ArrayId| RegisterList ',' ArrayId;UsesDef: UsesDef '℄'| UseDef| UsesDef ',' UseDefUseDef: IF '(' Expr ')' THEN UsesDef ENDIF| IF '(' Expr ')' THEN UsesDef ELSE UsesDef ENDIF| '(' UsesDef ')' '|' '(' UsesDef ')'| AndUseDef| '(' UsesDef ')'| ResoureId '.' USES;AndUseDef: SingleUseDef| AndUseDef '&' SingleUseDef39



;SingleUseDef: ID '#' INTEGER| '[' ID| '℄'| ID '.' INTENDTOREAD| ID '.' INTENDTOWRITE| ID '.' READ| ID '.' AVAILABLE| ID '.' WRITE| '#' INTEGER;
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Appendix CAlgorithms and Pseudo-odes
C.1 Syntax direted translation for onverting a Us-age spei�ation to Usage GraphUsage: � { Usage.head = �;Usage.isNulli�able = true;Usage.last = �;Usage.E = �;Usage.V = �;}Usage1 : list( and(AndUsage), Usage2){ Usage1.head = AndUsage;Usage.1isNulli�able = false;Usage1.last = Usage2.last;if (Usage2.isNulli�able)Usage2.last = Usage2.last [{AndUsage};Usage1.E = Usage2.E [{(u, AndUsage): u 2Usage2.head};Usage1.V = Usage2.V [{AndUsage};41



}Usage1 : list( or(ondition, Usage2, Usage3), Usage4){ Usage1.head = Usage2.head [Usage3.head;if (Usage2.isNulli�able or Usage3.isNulli�able)Usage1.head = Usage1.head [Usage4.head;Usage.1isNulli�able = (Usage2.isNulli�able orUsage3.isNulli�able) and Usage4.isNulli�ableUsage1.last = Usage4.last;if (Usage4.isNulli�able)Usage1.last = Usage1.last [Usage2.last [Usage3.last;Usage1.V = Usage2.V [Usage3.V [Usage4.V;Usage1.E = Usage2.E [Usage3.E [Usage4.E[{(u, v): u2Usage2.last [Usage3.last, v2Usage4.head} ;}
C.2 Generation of Resoure graph from InstrutionUsage GraphVR= { set of bu�ers} ;ER = �;for (eah instrution I){ for (eah start node s of the start nodes)GenerateResoureOrder(UsageGraph(U), s, �);}GenerateResoureOrder(U, v, S){ T =set of bu�ers aquired at node v;if (T6= �) 42



{ ER = ER [{(bi, bj): bi 2S, bj 2T};S = �;}S = S [set of bu�ers aquired at v;for (eah w 2su(v))GenerateResoureOrder(U, w, S);}
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