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Chapter 1Introdu
tionTraditionally, mi
ropro
essor design de
isions have been taken by 
onsidering thede
ision alternatives at Hardware des
ription language (HDL) level, and using thesedes
riptions to analyze designs for performan
e metri
s su
h as timing performan
e,
ost, power 
onsumption, et
. Improving 
hip fabri
ation te
hnology has allowedpa
king more logi
 on 
hips-and has been well subsumed by in
reasingly 
omplexpro
essors and systems. Su

ess of a new system today depends a lot on demand tomarket time, and rapid availability of tools su
h as assemblers, 
ompilers, debuggersand disassemblers.HDLs, however, la
k in this respe
t. These languages are designed to aid in(and almost are a ne
essary step of) fabri
ation-the des
riptions are too low level toallow easy exploration of design options, and do not provide mu
h support for toolgeneration.Sim-nML proje
t[1℄ was undertaken to 
ater to the above need. Based on anar
hite
ture des
ription language nML [3℄, it allows des
riptions of a target at alevel 
ustomized to instru
tion set pro
essors. Tools su
h as fun
tional simulators,assemblers, disassemblers 
an automati
ally be generated using the spe
i�
ations inthis language. Our goal in this proje
t was to add features to the existing languagethat would allow timing simulation of the programs for the target pro
essor -in our
ase, an estimate of 
y
le 
ount of the exe
ution time. Several ar
hite
tural detailsdetermine exe
ution time. Our emphasis has been to obtain des
riptions that are1



easy to write and understand and e�
ient to simulate, without 
omprosing on the
y
le 
ount a

ura
y.In this work, we propose an extension based on Resour
e-usage model. Thisframework spe
i�es how hardware features that a�e
t the exe
ution time, and howinstru
tions that use them are to be des
ribed. Impli
it in the model is how it is tobe used for timing simulation of a program.Our emphasis has been to base our fundamental abstra
tions on what a
tuallyhappens in real hardware. We have tried these 
onstru
ts on a range of pro
essors-from simple non-pipelined unis
alar ones to supers
alar pro
essors using advan
edfeatures su
h as out of order spe
ulative exe
ution, register renaming, bran
h predi
-tion, and 
omplex memory sub-system interfa
e ar
hite
tures. We �nd the intuitivenature of this formalism signi�
antly easing des
riptions. At the same time, webelieve that timing simulation using this approa
h would be signi�
antly easier todes
ribe and faster than those using low-level HDLs, and at the same time a signif-i
ant saving over the 
omplex 
oding required to 
ode them manually in a generalpurpose language.The rest of this report is organized as follows: In 
hapter 2, we give a briefoverview of our perspe
tive of the problem, and our approa
h to the same. Theremaining 
hapters try to explain (and hopefully, present a good enough 
ase for)it. Chapter 3 introdu
es the fundamental abstra
tions 
alled resour
es, and 
hapter4 spe
i�es how timing-
riti
al aspe
ts of a pro
essor and instru
tion set ar
hite
tureare to be 
aptured using them. We also present how this des
ription 
an be usedfor timing simulation. We drive home our point remarking the expressive power bydes
ribing fairly exhaustive range of pro
essors in 
hapter 5. Finally, we suggestsome future dire
tions of work (
hapter 6).
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Chapter 2Overview of our approa
hThe fundamental problem of timing simulation is this: Given a pro
essor des
ription�, des
ription of 
omponents external to it (su
h as memory ar
hite
ture), and aprogram P for that pro
essor we need to �nd the time that program takes on �. Inour 
ase, it involved working out both-how the pro
essor is to be des
ribed, and howthat des
ription is to be used.Here, we try to rephrase the problem in our Sim-nML setup. In Sim-nML, pro-
essor 
omponent spe
i�
ations are 
aptured using register, memory and resour
ede
larations. Instru
tion spe
i�
 features are 
aptured using its attributes-syntaxand image for assembly syntax, a
tion attribute for semanti
 a
tion of the instru
-tion and uses for the timing 
riti
al aspe
ts of the instru
tion exe
ution. We herefo
us on resour
e de
laration and usage attribute for instru
tions.An instru
tion exe
ution 
an be thought of as using di�erent pro
essor 
ompo-nents at di�erent stages of exe
ution-the exa
t usage depending not just on instru
-tion type, but also on the 
urrent pro
essor state. Ea
h su
h 
omponent 
an bethought of as a resour
e and di�erent forms of usages 
an be thought of as di�er-ent method invo
ations on them. Multiple instru
tions may 
ontend for the sameresour
e. The a
tual time for whi
h pro
essor units are used, and stalls waiting forthem-both of whi
h 
an be 
aptured in the usage, the �rst by resour
e holding times,and the se
ond by 
ontention for them determine the program exe
ution time.We begin by 
lassifying the resour
e types on the basis of kind of methods that3



are invoked on them. We emphasize here the point that this 
lassi�
ation is notbased upon the exa
t fun
tionality of the resour
e, but the way these methods a�e
tthe availability of the resour
es to other methods by other instru
tions.An instru
tion usage is 
omposed of individual resour
e methods-we later givethe stru
ture in whi
h they 
an be 
omposed. Our main premise here has been to
apture a wide-range of pro
essor designs. In the pro
ess-we also make an interestingdis
overy-the restri
tions on reasonableness of the pro
essor also led to a simulationme
hanism for this des
ription. This we do by mapping instru
tion usages to whatare 
alled as usage graphs.At this point, we must also make an honest 
onfession. Though we have listed theexamples towards the end of this report, our line of a
tion has been pretty mu
h theother way-we based our formalism (resour
e types, methods and the 
orrespondingsemanti
s) on these examples.
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Chapter 3The resour
esThis work hinges on, what we broadly 
all as a �resour
e usage� model. In thismodel, the limited pool of �resour
es� be
ome a 
ontention point for the users ofthe resour
es, in this 
ase �instru
tions�. Intuitively, if a set of resour
es, ordered insome form, are to be operated upon by multiple 
ontenders (who themselves havesome ordering), it would be some time (
all it duration t) before all 
ontenders havere
eived what they wanted (after instru
tions a
quire a resour
e, release it so thatothers 
an a
quire it, go on to a
quire other resour
e, and so on). If the ordering ofresour
es and of instru
tions is well de�ned, and the �rules� of resour
e allo
ation are
learly and unambiguously laid out, t would be unique and 
an be �gured out (ourgoal). The 
hallenge is then to �gure out this t: whi
h in turn involves identifyingthe resour
es, and the ways to spe
ify the a
quisition rules.The latter is 
aptured by atta
hing some methods to resour
es, and 
learly layingdown s
heduling rules asso
iated with resour
es . These methods 
an be blo
kingor non-blo
king. A non-blo
king method is one for whi
h an instru
tion 
annotwait�the pro
essor must make sure that the relevant resour
e is available when thatoperation is invoked. A blo
king resour
e method blo
ks-usually, till the 
ondition itis waiting for is satis�ed-at whi
h it unblo
ks, and the resour
e state is appropriatelymodi�ed.We 
lassify resour
es into three 
ategories: bu�ers, registers and stati
 resour
es.The purpose behind these resour
es, their properties and the operations on them5



are given below.3.1 Stati
 resour
esA resour
e like an ALU, or some other exe
ution unit-whi
h is used for a knownperiod of time by an instru
tion irrespe
tive of availability of other units is 
lassedunder this 
ategory. The de
laration of a stati
 resour
e is as follows:Stati
Resour
e R1, R2[n℄ //n instan
es of R2, 1 instan
e of R1A stati
 resour
e 
an have multiple instan
es. If a stati
 resour
e R has n instan
esthen in uses R denotes any of the n instan
es while R[ ℄ stands for all the n instan
esof R.If a stati
 resour
e R is to be used by an instru
tion for t 
y
les, then the
orresponding invo
ation is denoted by 'R#t '. The duration t 
ould be a 
onstant,or a 
anoni
al fun
tion 
all that returns some integer value.A spe
ial type of stati
 resour
e, 
alled null resour
e is assumed to have in�niteinstan
es. A 
onsequen
e of this is that there is never a 
ontention for this resour
e.Instead of using this resour
e as null#k, it is usually denoted as just #k, whi
hindi
ates holding this resour
e for k 
y
les-this is de�ned as the time of the resour
emethod.3.2 RegisterThe register abstra
tion stands for registers in pro
essors. Their de
laration is asfollows:Register Reg[n℄ //n instan
es of R2, 1 instan
e of R1The ith register of the above de
lared register �le would be used as Reg[i ℄.operation,where operation 
an be one of the following:1. itR (intention to read) 6



2. Read3. itW (intention to write: blo
king or non-blo
king)4. forward5. write or 
ommitThese operations make it possible to 
apture various issues asso
iated with the data:apart from read and write from the register �le, data hazards (RAW, WAR, WAW)
an also be handled. This is possible be
ause of the semanti
s asso
iated with theseoperations, whi
h is des
ribed below.The sample data stru
ture (see se
tion 3.2.3)for the implementation of these operations may further help in understanding theirsemanti
s.We de�ne an ordering between di�erent intentions to the same register. A registerintention to read (itR) or intention to write (itW) is said to be before anotherintention if� the �rst intention was issued before the se
ond intention, or� both were issued in the same 
lo
k 
y
le, and the �rst instru
tion is earlier inthe program order than the se
ond.Sin
e the above order is a total order, it impli
itly de�nes a immediately relationamong a given instru
tion set.3.2.1 Semanti
s of itR, read and forward:A instru
tion I1 issuing a read to a register blo
ks till the instru
tion I2whi
h hasissued an itW immediately pre
eding I1's itR does a forward.3.2.2 Semanti
s of itW and write� Blo
king itWA blo
king itW blo
ks till all the writes 
orresponding to all previously issueditWs to the same register have 
ompleted, or their 
orresponding instru
tionshave 
ompleted. 7



� Non-blo
king itWIn either 
ase, a write blo
ks till all the writes and reads 
orresponding to all pre-viously issued itWs to the same register have 
ompleted, or their 
orrespondingversions have 
ompleted.R.itW by an instru
tion indi
ates that the instru
tion would subsequently bewriting into the register R: the a
tual update is made by R.write. Now, there aretwo versions of itW operation: blo
king and non-blo
king. Two di�erent versionsare required be
ause some pro
essors may not allow more than one instru
tion fromgoing beyond the de
ode (or su
h similar) unit if they write into the same register(WAW), whereas some other pro
essors may not have this restri
tion (su
h as theones using register renaming). The blo
king version 
aptures the former, whilenon-blo
king version 
aptures the latter.3.2.3 A sample data stru
ture for register operationsThis sample data stru
ture is intended to 
larify the semanti
s of the register op-erations. Pi
torially, it looks like in �gure 1. In the diagram, Li1and Li2are linkedlists, while A is an array of registers (register �le R). Pi1points to Li1, Pi2points toan instru
tion I1, Pi3points to the list Li2 , n1, n2... are nodes in the list Li1 . ListLi1 is 
alled as itW-list, Li2 is itR-list. The itR-list is a list of instru
tions. Thereare similar itR-list and itW-list with all other elements of A as well. Consider thefollowing operations on Reg[i℄ by an instru
tion I:1. Reg[i℄.itW (non-blo
king): This 
reates a new node, pointing to instru
tion I,and adds this node at the tail of Li1 .2. Reg[i℄.itW (blo
king): This blo
ks if Li1is not empty. If Li1is empty, thisoperation su

eeds, a new node pointing to the instru
tion I is 
reated and itis atta
hed at the head of the (empty) list Li1 .3. Reg[i℄.itR: Here, I is added to the tail of itR-list of the last node of itW-list ofReg[i℄. 8
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Figure 1: Data stru
ture for implementing register operations4. Reg[i℄.forward: First the node n in the itW-list of Reg[i℄ is lo
ated whi
h hasa pointer to I. Then in the itR list of node n, all instru
tions all �agged asread-available.5. Reg[i℄.read: Here, I is lo
ated in the itR-lists asso
iated with itW-list nodes ofReg[i℄. (To speed up this sear
h, the instru
tion data stru
ture may 
ontaina pointer to the itR-list). If its �ag is set as �read-available�, then operationsu

eeds, otherwise it blo
ks. If I 
an not be lo
ated in the itR-lists, then theoperation su

eeds.6. Reg[i℄.write or Reg[i℄.
ommit: Here, a node n is lo
ated in the itW list ofReg[i℄. If this node is the �rst node in itW list of Reg[i℄, then it is deleted andthe operation su

eeds. Otherwise it is blo
ked.
9



3.3 Bu�ersThis abstra
tion allows instru
tions to wait at di�erent points in the pipeline. Thismay be ne
essary be
ause of a variety of reasons, some of them are:1. An instru
tion waiting for some resour
e to be available. An example of this isreservation stations asso
iated with fun
tional units, where instru
tions waitfor that fun
tion unit or data.2. Presen
e of units whi
h enfor
e instru
tion reordering �usually to maintainsequential semanti
s. Reorder bu�ers (or write-ba
k bu�ers, as the 
ase maybe) serve this purpose.3. Me
hanisms that allow for "speed mismat
h" between di�erent hardware 
omponents-su
h as memory subsystem and the pro
essor. This 
ompounded with the un-predi
table operation delay (due to memory hierar
hy) ne
essitates interfa
ingto them via bu�ers (typi
ally load-store bu�ers).4. The delay or wait an instru
tion may have to undergo may not be predi
tablewhen a later instru
tion modi�es the usage of the earlier instru
tion. Thismay happen when di�erent pipeline paths (taking di�erent number of 
lo
k
y
les) 
onverge (in terms of instru
tion resour
e usage) to the same exe
utionunit.The above features seem to require support for exe
ution-time determined delays.We 
apture these features in a resour
e abstra
tion 
alled bu�ers. A bu�er de
lara-tion looks like:Bu�er B: {slots = n; input = InputOrder ; output = OutputOrder}Here InputOrder 
an be of the form Stati
: R1, R2, ..., Rn. A bu�er 
an havemultiple in
oming paths, the stati
 ordering then de�nes the relative priority amongthose in
oming paths. In the above des
ription, R1, R2, ..., Rn are resour
es thatfeed into bu�er B's input. Also, R1has a higher priority than R2, whi
h has a higherpriority than R3, and so on. This means if multiple number of these units have10



instru
tions waiting to enter into the bu�er B, then inputs are re
eived by B fromthese resour
es in order of their priority.OutputOrder 
an be Inorder or Anyorder. This denotes the order in whi
hinstru
tions 
urrently in the bu�er are 
onsidered for dispat
hing them out of thebu�er with respe
t to the order in whi
h they a
quire the bu�er.Bu�ers have two basi
 operations: a
quire (denoted by [B) and release(℄). Ea
hbu�er keeps tra
k of number of free slots. A
quiring a bu�er redu
es the number offree slots by 1, releasing it in
reases it. Both these methods are potentially blo
king-an a
quire 
an blo
k in 
ase the bu�er has no free slots, and release if it violates theoutput s
heduling poli
y of the bu�er.Spe
ial 
ase of bu�ers: Lat
hes Lat
hes are bu�ers with just 1 slot (and sono output s
heduling poli
y is needed). An input s
heduling poli
y may be needed,however, as multiple pipeline paths may be leading into the same lat
h.Lat
hes o

ur in hardwares just before resour
e units (su
h as ALU, fet
h unitet
) where instru
tion may wait until the resour
e unit is free. If there are no lat
hes(or bu�ers) in a part of a pipeline, then instru
tions 
an not wait at any point inthat part of the pipeline.

11



Chapter 4Instru
tion Des
ription in theResour
e Framework
4.1 Usage Grammar: At the 
on
eptual levelCon
eptually, an instru
tion's resour
e des
ription is of the following form (the exa
tgrammar is given in Appendix B)Usage: �| list( and(AndUsage), Usage)| list( or(
ondition, Usage, Usage), Usage)AndUsage: Resour
eMethod| Resour
eMethod & AndUsageAn instru
tion usage is a list of and and or usages.An and usage is list of operations on resour
es ea
h having equal time-it iss
hedulable at a given time if all the resour
e operations that are a part of it ares
hedulable. The time of an and usage is the time of any of the resour
e methodsthat 
onstitute it.An or usage will have two alternative usages along with a 
ondition. The 
ondi-tion may be a an expression involving pro
essor state, and 
anoni
al fun
tion 
alls-in12



whi
h 
ase it is evaluated just before pushing the instru
tion into the pipeline togive usage of that instru
tion instan
e, and the path 
orresponding to the booleanvalue of the 
ondition value must be s
hedulable. Or it may be a wild
ard (* ) whi
hmeans that any of the two resour
e usages may be s
hedulable.Sim-nML notationsWe saw in Se
tion 3.3 that a bu�er B's a
quire was represented as [B and B's releaseas ℄ (the releases ℄ were mapped to 
orresponding a
quires by the nesting). In Sim-nML grammar, an and usage is represented by 
orresponding methods 
onne
tedby &, and an or usage by its usages separated by |.and(u1,u2,...,un) = u1& u2& ...&unor(
ondition, u1,u2) =((u1)|(u2)) if (
ondition = *)or(
ondition, u1,u2) = if (
ondition) then u1else u2endif4.2 Usage GraphA 
onvenient way to think of a usage is using a dire
ted a
y
li
 graph (DAG) rep-resentation 
alled Usage Graph. Crudely speaking, ea
h node of this graph 
orre-sponds to an and usage-
ontaining the information about the 
orresponding resour
emethods. Ea
h node u may have some su

essors denoted by Su

(u) (de�ning thedire
ted edges of the graph):1. If a node has no su

essor, it marks the end of the instru
tion exe
ution.2. If a node has no prede
essor, it marks the start usage of the instru
tion exe-
ution.3. If a node has more than 1 su

essors, it means that the instru
tion's usage 
anbe satis�ed in more than 1 way (something like an or usage).4.2.1 NotationPi
torially, we represent resour
e operations as shown (2, 3, 4)13



Figure 2: Stati
 resour
e
Figure 3: Bu�er a
quireA node of the usage graph is represented by the 
orresponding operations at thesame point.We give some example des
riptions in 
hapter 5.Appendix C.1 gives the syntax dire
ted translation for 
onverting a usage spe
-i�
ation to a Usage graph-for our future purposes, we will use these graphs.4.2.2 Some simple properties required from usage graphs forvalid instru
tion des
riptionNot all Usage des
riptions a

epted by the Grammar would qualify as valid from thepoint of view of simulation. Here we list down some simple requirements of them:� A bu�er a
quire must be mat
hed by 
orresponding bu�er release along allinstru
tion usages that an instru
tion 
an take from the given start point, andvi
e versa.� A resour
e a
quire operation must be pre
eded by a wait point.For example,[FU, #1 ℄, DU#1, [EX, #1 ℄will not qualify as a valid usage des
ription.
Figure 4: Bu�er release14



The rationale for this is given in se
tion 4.3.4.2.3 De�nitionsA resour
e method is said to be s
hedulable if when issued at that time, it does notblo
k.A usage graph node (an and node) is said to be s
hedulable if all the resour
eoperations in that and node 
an be initiated in that 
lo
k 
y
le. Its is said tohave been s
heduled if those resour
e operations have been performed to update theresour
e state.A stage in instru
tion usage is a two-tuple of the form of the form (u, Su

(u))or of the form (Pred(u), u) for some node u from Usage graph. Barring the fa
t thatone of the elements of the above two-tuple is a set, and the other is not-the stage
aptures the all possible nodes that may have been s
heduled last, and all possiblefuture di�erent next usages for the future.A wait point of a usage graph is a stage of the (u, Su

(u)) where u has a bu�era
quire, or of the form (Pred(v), v), where v 
ontains a bu�er release.Intuitively, the �rst 
ase 
orresponds to the fa
t that the instru
tion has justa
quired a resour
e (in the and usage for node u), but hasn't yet "de
ided" whi
hof the possibly several paths of exe
ution (
orresponding to di�erent members ofSu

(u)) it will take. The se
ond 
ase 
orresponds to the fa
t that an instru
tionhas de
ided to release a bu�er (in the usage for node v)-the usage pattern so far
ould have been along any path to v (hen
e, Pred(v)).A path from (v1,...vn) from stage (S1, S2) to stage (T1, T2) is said to be waitpointfree i�1. for no 1<i�n, (Pred(vi), vi) is a waitpoint2. for no 1�i<n, (vi, Su

(vi)) is a waitpointIntuitively, a wait point free path from one stage to another represents one parti
ularusage in middle of whi
h an instru
tion 
an't blo
k (no wait points), and hen
e-when that path has been de
ided to be taken, it must be ensured that all of the15



FU DU EX Mem WB
#1 #1 #1 #1 #1

I1I2I3

Available

Want to push

Figure 5:operations 
an be performed at 
orresponding time. This idea is 
aptured in thefollowing de�nition.A path from an edge stage (S1, S2) to (T1, T2) is said to be s
hedulable at timet along a wait-point free path v1, v2,... vn, if either v1 = S2, or v1 2 S2, and eitherv1= T1or v12T1, and vi is s
hedulable at time t + P1�j<itime(vj)An instru
tion instan
e's 
urrent usage is said to be at position at (u,Su

(u)), ifits some path from any start usage point to (in
luding) that 
orresponding to u hasbeen s
heduled, and none of the following su

essors of u have yet been s
heduled.Similarly, an instru
tion instan
e's usage is said to be at (Pred(v), v) if some pathfrom any start usage to (in
luding) a node u in Pred(v) has been s
heduled, but theusage of v has not yet been s
heduled.4.3 Timing SimulationThe idea behind our timing simulation algorithm is based on our following under-standing of pipelined instru
tion exe
ution: Lets say at some point between 
lo
k
y
le boundaries t and t+1, the o

upan
y of pipeline stage is shown in �gure 5.Further, let us assume all instru
tions I1,.. I4 to be asso
iated with relevantstages for one 
lo
k 
y
le. The instru
tions then a
tually use the 
orrespondingstage's units for something less than 1 (say 1-Æ) 
y
les. For the remaining part ofthe 
lo
k 
y
le, they 
he
k for the availability of the next stage. If available, thevalues are released on the lines to be lat
hed at the next 
lo
k edge.The de
ision regarding the availability of next stage propagate ba
kwards. Inthe above example, the WB unit "knows" that I1 will be leaving it at the end of16




y
le. It signals the previous stage (Mem) regarding its availability-and de
ides tolat
h I2 to WB at the next 
lo
k edge. This de
ision propagates ba
kwards rightthrough the pipeline in the ba
kward dire
tion.Our timing simulator algorithm attempts to 
apture this ordering among thebu�ers, and then use it "s
hedule" instru
tions at ea
h of them. The 
entral themewhen it 
omes to s
heduling is to enfor
e the availability of operations needed toperform resour
e operations-an instru
tion waits only at wait points-just after a
-quiring a bu�er, and just before releasing for a time just enough to ensure that whatit a
tually issues any resour
e method in between, it does not blo
k.Part 1: To get an ordered list of resour
es in whi
h they are to be
onsideredConstru
t a resour
e graph GR = (VR, ER), where VR = Set of bu�ers ={b1,...bn} and ER = { (bi, bj): if there exists an instru
tion Ik whoseusage graph has a path from a node 
ontaining bi.a
quire to bj.a
quirewith no other bu�er a
quire in between}(The way this graph 
an be generated from usage graphs of all instru
tionsis given in Appendix C.2.)The presen
e of an edge e = (bi, bj) in the edge set ER denotes thats
heduling of an instru
tion o

upying bi may depend upon the availabilityof bj-hen
e, it must o

ur after bj.For ea
h bu�er b having stati
 input s
hedule 
1....
m, add an edge (
i+1,
i) for 0 � i < m in ER.(The justi�
ation here is that sin
e 
i 
arries pre
eden
e over 
i+1 whenboth 
ontend for b, it looks reasonable to suggest that 
i must bes
heduled before 
i+1.)If the graph GR 
onstru
ted above has 
y
les, return invalid usagedes
ription. 17



Let B = [b1'...bn'℄ be the any reverse topologi
al sort of G�we will
onsider the resour
es in this order.Part 2: To simulate the instru
tions �ow through the pro
essor
omponents
lo
k 
ount = 0;while (there are instru
tions ready to be exe
uted or in the exe
utionpipeline){ for (ea
h bu�er b 2B 
onsidered in the same order as in B){ for (ea
h instru
tion I that is in the se
ond wait point at band that has the next s
hedule time equal to the 
urrent times
hedule (I);for (ea
h instru
tion I that is in the �rst wait point at band that have the next s
hedule time equal to the 
urrenttime) s
hedule(I);for (all instru
tions I that are yet to be pushed into theexe
ution pipeline){ U = instru
tions instan
e I's usage using the 
urrentma
hine stage; if (path till the some �rst wait point of U is s
hedulable){ perform I's a
tions;s
hedule(I);} 18



}}
lo
k 
ount ++;}s
hedule (I){ w = 
urrent stage of the instru
tionfor (all possible wait points w' or instru
tion end point along allpossible sub-paths from w){ if (I 
an be s
heduled at the sub-path p){ perform the 
orresponding the resour
e operations;if (w' is not an end point)set I's 
urrent stage to w';if (time(p) == 0)s
hedule(I);else next s
hedule time of I += time(p)return;}}// 
annot be s
hedulednext s
hedule time of I += 1;}
19



Chapter 5ExamplesHere, we will try to present some sample pro
essor and instru
tion ar
hite
tures andhow they will be represented in our framework.We start with a simple non-pipelined pro
essor with �xed memory a

ess time,and gradually add features su
h as pipelining, 
ontrol and data hazard handling,data bypassing, bran
h delay slots, multiple fun
tional units, out of order exe
utionand register renaming, bran
h predi
tion and 
omplex memory interfa
es.For uniformity, the initial models assume that instru
tion exe
ution 
an be di-vided into �ve distin
t stages (similar to DLX [8℄): fet
h stage (fet
h unit-FU),de
ode stage (de
ode unit-DU), exe
ute stage (exe
ute unit-EX), memory stageMU), and write-ba
k (WB).5.1 A simple non-pipelined pro
essorThe simplest way to des
ribe simple non-pipelined pro
essor with ea
h instru
tiontaking a �xed number of 
lo
k 
y
les (say 5-as in our �ve stage model above) wouldbe to have a stati
 resour
e 
alled pro
essor, and all instru
tions use it for theduration equal to the exe
ution 
lo
k 
y
le 
ount (�gure 6).
#5Figure 6: Non-pipelined20



FU DU EX Mem WB
#1 #1 #1 #1 #1Figure 7: simple pipelinede
laration:Stati
Resour
e pro
uses attribute for all instru
tions:pro
#55.2 Simple pipelined pro
essorsWithout any hazard handling Now we pipeline the �ve stages-without addingany handling me
hanism for data or 
ontrol hazard. (Note that the program exe-
ution model breaks away from the stri
tly sequential order of instru
tions-both inthe data values that are read by instru
tions, and when bran
hes show up-but then,but we are not proposing that design here!)Sin
e there are no interlo
ks, all stages are non-blo
king. Having stati
 resour
efor ea
h resour
e does make sense here (�gure 7).de
laration:Stati
Resour
e FU, DU, EX, MU, WBuses attribute for all instru
tions:FU#1, DU#1, EX#1, MU#1, WB#1With data hazard handling and forwarding, but no 
ontrol hazard han-dling yet. This gives us an opportunity to introdu
e register resour
es-a registerresour
e array for ea
h register �le. As we 
arry on, unless otherwise spe
i�ed-wewill assume that all instru
tions have one sour
e register rs, and a destination reg-ister rd. Des
ribing instru
tions with more sour
es/destinations will not result inany gain at the 
on
eptual level. On the 
ontrary, a
tual features we are interestedin may, on the other hand, get suppressed (�gure 8).21



Reg[rs].IntR,

#1
Reg[rd].IntW,

Reg[rs].Read,
Reg[rd].forward

#1#1

FU DU EX

WB
#1

Mem
#1Figure 8: With data hazard handling (forwarding)de
laration:Bu�er FU, DU, EX, MUStati
Resour
e WBuses attribute for non-load instru
tions:[FU, #1℄, [DU, Reg[rs℄.itR & Reg[rd℄.itW, #1℄, [EX, Reg[rs℄.read, #1,Reg[rd℄.forward ℄, MU#1, WB#1, Reg[rd℄.
ommituses attribute for load instru
tion:[FU, #1 ℄, [DU, Reg[rs℄.itR & Reg[rd℄.itW, #1 ℄, [EX, #1 ℄, [MU,Reg[rs℄.read, #1, Reg[rd℄.forward ℄, WB#1, Reg[rd℄.
ommitAn important point must be mentioned here: We have FU, DU, MU, EX as bu�ersinstead of stati
 resour
e of the previous example. This is be
ause the exe
ute stage(memory stage in 
ase of a load instru
tion) issues a blo
king operation read. In 
asethe required register value is not available, the instru
tion stalls here. A pipelinestall at EX or MU propagates ba
kwards-thus, all of them need to have the abilityto hold the instru
tion for potentially unpredi
table period (and this is what bu�ersare meant to 
apture).Handling 
ontrol hazard in addition to data hazards Control hazards arisewhen a bran
h instru
tion enters a pipeline-the PC value whi
h is required by thefollowing instru
tions is not available till (say) the EX stage of the bran
h.We take this as a 
lue in our method of spe
ifying su
h ar
hite
tures�by havinga separate PC bu�er resour
e. Bran
h instru
tion a
quires it at the fet
h stage anddoes not release it till its exe
ute stage. All other instru
tions try to a
quire itduring the fet
h stage. Thus, instru
tions following a bran
h are stalled (�gures 9and 10) .uses attribute for bran
h instru
tion:22



Reg[rs].ItR,

#1
Reg[rd].ItW,

Reg[rs].Read,
Reg[rd].forward

#1#1#1

FU DU EX Mem

WB
#1

PCFigure 9: Handling 
ontrol hazard in addition to data hazards (bran
h instru
tion)
Reg[rs].ItR,

#1
Reg[rd].ItW,

Reg[rs].Read,
Reg[rd].forward

#1#1#1

FU DU EX Mem

WB
#1

PCFigure 10: Handling 
ontrol hazard in addition to data hazards (non- bran
h in-stru
tion)[PC & [FU, #1 ℄, [DU,... #1 ℄, [EX,... #1 ℄&℄...uses attribute for non-bran
h instru
tions:[PC & [FU, #1 ℄&℄, [DU,...#1 ℄, [EX,... #1 ℄...Delayed bran
hes as an optimization to bran
h handling In the 
ase ofdelayed bran
hes, the instru
tion following the bran
h instru
tion in the pipelineis exe
uted-irrespe
tive of whether the bran
h is taken or not taken (in the 
ase ofimmediately su

essive bran
hes, the delay slot may not be the instru
tion followingin the program order). We handle this by allowing the bran
h instru
tion to releasethe PC for a 
y
le to prevent delay slot instru
tion from stalling (�gure 11) .uses attribute for bran
h instru
tion:[PC & [FU, #1 ℄℄, [DU,... #1 ℄, [PC, [EX,... #1 ℄&℄...
Reg[rs].ItR,

#1
Reg[rd].ItW,

Reg[rs].Read,
Reg[rd].forward

#1#1#1

FU DU EX Mem

WB
#1

PC PCFigure 11: Delayed bran
hes as an optimization to bran
h handling23



Reg[rs].ItR,

#1

Reg[rd].ItW,
Reg[rs].Read,#1

FU

DU

WB
#1

PC

Ex1 Ex2 Ex3

Reg[rd].forward Reg[rd].Write

Figure 12: Multiple fun
tional units: stalling at issue logi
At this point, one may have the following doubt. Consider the 
ase when a bran
hinstru
tion is just past the de
ode stage. The bran
h instru
tion 
ontends for PC,and so does the instru
tion whi
h is just about to enter the pipeline. Inorder topreserve the 
orre
t delay slot timing, the simulator must allo
ate the PC to thebran
h instru
tion. How is this assured?This is where our resour
e s
heduling order 
omes to res
ue. The exe
ution unit,being deeper into the pipeline than the fet
h unit has its instru
tions 
onsidered forresour
e operations �rst. In this 
ase, the bran
h instru
tion is 
onsidered andallo
ated PC �rst.5.3 Pro
essors with multiple fun
tional unitsIn this 
ase, an instru
tion diverges after de
ode stage to the relevant fun
tionalunit. However, these paths may have to merge later as writeba
k. As di�erentfun
tional units may have di�erent delays, the writeba
k unit may be 
ontendedfor-also, the writeba
ks must be serialized in program order.There are two ways to handle this 
ontention:� Stall the issue logi
 to ensure that by the time the instru
tions rea
h thewriteba
k, the previous writeba
ks are through and none of the following in-stru
tions will try to a
quire it at the same time (�gure 12) .de
laration:Bu�er FU, DUStati
Resour
e EX1, EX2,..,WB 24



Reg[rs].ItR,

#1

Reg[rd].ItW,
Reg[rs].Read,#1

FU

DUPC

#k1

Reg[rd].forward Reg[rd].Write

#k2 #k3, ,#1

Ex1 Ex2 Ex3 WBFigure 13: Multiple fun
tional units: using lat
hes for stalling at multiple pointsuses attribute:[FU, #1℄, [DU, .... , #1 ℄, EXi#k,..., Reg[rd℄.forward, WB#1,Reg[rd℄.
ommit� Allow the instru
tion to go into the units as deep into the pipeline as possible-allowing them to stall anywhere in the middle of the pipeline. This happenswhen stall due to 
ontention for the writeba
k unit propagates ba
kwards(�gure 13) .de
laration:Bu�er FU, DU, EX1, EX2Stati
Resour
e WBuses attribute:[FU, #1℄, [DU, ... , #1 ℄, [EX1,... ℄, ..., [EXk, #1, Reg[rd℄.forward ℄,WB#1, Reg[rd℄.
ommit5.4 Dynami
 S
hedulingDynami
 s
heduling te
hniques allow the instru
tions exe
ute out of order but atthe same time maintaining the data-dependen
ies using some advan
ed te
hniques.Reorder bu�er[6℄ Reorder bu�er me
hanism is a 
ommon me
hanism to enfor
einorder 
ompletion of instru
tions. Here, the slots are allo
ated to the instru
tionsin the program order. After exe
ution, the results are stored either in these slots, orrenamed registers (along with ex
eption �ags, if any). The 
ompleted and ex
eption25



Reg[rs].ItR,

#1
Reg[rd].ItW,

Reg[rs].Read, Reg[rd].write,
#1#1#1

FU DU EX_stage1 WB

Reg[rs].forward
#1,

EX_stage_kFigure 14: S
oreboardingfree instru
tions are 
ompleted and eje
ted out of the reorder bu�er in programorder. In 
ase of ex
eptions, however, all the following instru
tions in the reorderbu�er are killed and handler started.de
laration:Bu�er FU, DU, EX, MUStati
Resour
e WBuses attribute for all instru
tions:[FU, #1 ℄, [DU, ... , #1 ℄, [ROB, [EX.... ℄, ℄, WB#1, Reg[rd℄.
ommitS
oreboarding[5℄ In this te
hnique, the issue logi
 blo
ks an instru
tion issue tillall the previous register intending to write to the same register as the destination ofthe 
urrent instru
tion have written. The instru
tion then waits in the �rst stage ofthe fun
tional unit till the data values it needs are available, and at the last stage(just before at the writeba
k) till all the previous instru
tions reading from the sameregister as the destination of the 
urrent instru
tion have a
tually read the values(see �gure 14).de
laration:Bu�er FU, DU, EX_stage1, ..., EX_stagekStati
Resour
e WB// Register �le must have blo
king intention to writesuses attribute for all instru
tions:[FU, #1℄, [DU, Reg[rs℄.itR & Reg[rd℄.itW, #1 ℄, [EX_stage1, Reg[rs℄.read,#1, Reg[rd℄.forward ℄, ... , [EX_stage1, Reg[rd℄.
ommit ℄, WB#1Tomasulo ar
hite
ture[7℄ Ea
h fun
tional unit has a set of tagged reservationstations where instru
tions waiting for exe
uting in that unit wait-for data and/or26



Reg[rs].ItR,

#1
Reg[rd].ItW,

Reg[rs].Read,
#1#1

FU DU RsvSt_i

ROB

Ex #k WB #1

Reg[rd].forward

Figure 15: Reorder bu�erthe unit itself. When an instru
tion I1 intends to write a register R, it marks theregister as busy, and register tag to its reservation station. If before I1 
ompletes,another instru
tion I2 wants to read R-it also 
opies the tag of I2. On 
ompletion,I1 broad
asts the data along with the tag-from where it is 
opied into the I2'sreservation station and the register �le (see �gure 15).de
laration:Bu�er ROB, RStation, FU, DUStati
Resour
e EXuses attribute for all instru
tions:[FU, #1℄, [DU, Reg[rs℄.itR & Reg[rd℄.itW, #1 ℄, [ROB & [RStation,Reg[rs℄.read, #1 ℄, EX#k, Reg[rd℄.forward ℄, WB#1, Reg[rd℄.
ommit5.5 Bran
h predi
tionSin
e varied bran
h predi
tion s
hemes are found in pra
ti
e, we re
ommend pushingthe a
tual bran
h predi
tion logi
 to Sim-nML 
anoni
al fun
tions. Here we fo
uson handling the e�e
t of 
orre
t or in
orre
t spe
ulation-both, for unis
alars andsupers
alars. In a
tually pro
essors, in
orre
t predi
tions involves killing spe
ula-tively exe
uted (or in exe
ution) instru
tions. Instead, we asso
iate a �xed penalty
alled bran
h penalty with an in
orre
t spe
ulation.Unis
alars (�gure 16)de
laration: 27
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FU

PC

Figure 16: Bran
h predi
tion in unis
alars (bran
h instru
tion)
FU

PC

#Fetchdelay(PC)

FU

#Fetchdelay(PC)

DU

PC

#k

DU
#K

if (mispredicted)

mispredicted

correctly predicted

imperfect catch alignment

Figure 17: Bran
h predi
tion in supers
alars: bran
h instru
tionBu�er FU, PC, DU, EXuses attribute for bran
h instru
tion:[PC & [FU, #fet
hdelay(PC) ℄, if (mispredi
t) { [DU, ..., #1 ℄, [EX, ... ℄,℄} else { ℄, [DU,...#1 ℄, [EX, ... ℄} endif, ...uses attribute for non-bran
h instru
tions:[FU & [PC, #1 ℄&℄, [DU, ..., , #1 ℄, [EX, ..., #1 ℄, ...Supers
alars In supers
alars, multiple instru
tions are fet
hed in one 
lo
k 
y
le.Only the �rst instru
tion in the 
a
he line needs the PC to be fet
hed-the rest ridealong. The 
ondition as to whether an instru
tion is in previous line fet
h is 
apturedin 
anoni
al fun
tion (see �gures 17 and 18).28
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#Fetchdelay(PC)
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#Fetchdelay(PC)

DU

#K

imperfect catch alignment

Figure 18: Bran
h predi
tion in supers
alars: non-bran
h instru
tionde
laration:Bu�er PC, FU[4℄, DU[4℄..uses attribute for bran
h instru
tions:if ( inprevCa
heLineFet
h( [PC & [FU, #fdelay(PC) ℄ &℄ , if (mispredi
t()) {[PC, [DU, ... ℄, .... ℄} else {[DU, ... ℄... } endif, ...uses attribute for non-bran
h instru
tions:if ( inprevCa
heLineFet
h( [PC & [FU, #fdelay(PC) ℄ &℄ , [DU, ... ℄, ...5.6 Load-Store queuesMost 
urrent pro
essors have an advan
ed memory interfa
e-usually, the pro
essoroperations are intermediated by some queues. Here we give sample des
riptions ofload-store instru
tions of PowerPC 620[4℄.Load The load instru
tion is issued to the reservation station where it waits forthe address register value. In 
ase of a 
a
he-hit, the reservation station is releasedafter one 
y
le. In 
ase of a 
a
he miss-the reservation station is released, a loadbu�er is a
quired and held for a delay determined by memory laten
y (see �gure19). de
laration: 29



FU

#k1

DU
#k2

reg[rs].itR,
reg[rd].itW, #1 reg[rs].read

ld_buff

#memdelay(reg[rs])

ROB
Rsv_st

reg[rd].forward

reg[rsd].forward

reg[rd].write

cache-hit
#1 WB #1

Figure 19: Load instru
tion in PowePC 620Bu�er ROB[... ℄, RStation_load[... ℄, LoadBu�, FU, DUuses attribute for load instru
tion:[FU, [DU, ...., [ROB & [RStation_load, if ( 
a
hehit(...)) { #1℄, } else {[LoadBu�, #memdelay(... ) ℄ } endif, ...Store The store bu�ers stays in the reservation station till it gets the addressvalue. Thereafter, it is issued to another bu�er where it waits for the data value.On getting the data value-it moves to a next bu�er where the instru
tions wait forthe 
ommit signal from the reorder bu�er. On getting a 
ommit signal, the 
a
heline is written in a 
onstant delay.de
laration:Bu�er ROB[... ℄, RStation_store[... ℄, StoreBu�_1, StoreBu�_2, FU, DUStati
Resour
e WBuses attribute for store instru
tion:[FU, #1℄, [DU, ... ℄, [ROB & [RStation_store, Reg[rs_addr℄.read, #1 ℄,[StoreBu�_1, Regs[rs_data℄. read, #1 ℄, [StoreBu�_2 ℄&℄, WB#1,Reg[rd℄.
ommit
30



Chapter 6Suggested future work
6.1 S
heduler optimizationsA general uses des
ription may 
ontain large number of lat
hes in any pipeline path.In su
h 
ases, instead of s
heduling instru
tions at every lat
h, it may often bepossible to "delegate" this "responsibility" to a single (or a few number) of lat
hes.For e.g., in the �gure 20, the wait point p1 may be able to s
hedule instru
tionstill the wait point p2. This 
an be further generalized: in the �gure 21 root R is await point. Also, nodes n1, n2 ... are terminating nodes in the pipeline (this DAGis a simpli�ed pi
ture of inter
onne
ted 
omponents in a pipeline). In this 
ase, itwould be possible to delegate s
heduling responsibility of all des
endents of R toR. In general, a root node in a tree like topology may take up the responsibility ofs
heduling for all its des
endents. There may be other interesting topologies wheresu
h optimizations 
an be applied as well, and they appear to be an interesting area

#1 #1 #1 #1

P1 P2

Figure 20: Point p1 
an s
hedule all the way upto p231



R

n1

n4
n5

n2 n3Figure 21: Root R 
an s
hedule for all its des
endentsto investigate further.6.2 Handling spe
ulative exe
ution (as in 
ase ofbran
hes) and interruptsBefore elaborating on this�we �rst argue that spe
ulative exe
ution me
hanisms andpre
ise ex
eption enfor
ing me
hanisms on pro
essors are intertwined�both requirethe ability to 
ommit upto a parti
ular instru
tion, undo the following instru
tions,and start program exe
ution from a di�erent point (interrupt handler, or bran
htarget/follow-through instru
tions as the 
ase may be). Intuitively, an instru
tion isnot likely to killed at any stage in its exe
ution�mu
h less so while in the fun
tionalunits. Typi
al killing me
hanisms involve freeing up the bu�ers allo
ated to aninstru
tion�in e�e
t, it is as if all the killed instru
tions' resour
e usage is snapped(or broken) at the next s
heduling point. The bonus we get here is in e
onomy ofdes
ription-we don't have to give additional spe
i�
ation for an instru
tion as to theway it is killed (whi
h may be at various pla
es)�the responsibility of su
h des
riptionlies solely with the �
ulprit� (killing) instru
tion, and the killing me
hanism.Sin
e bu�ers in our model 
apture those wait points, they o�er an attra
tivepoints where a 
onstru
t like kill of an instru
tion 
an be de�ned. Annotating kill32



with some qualifying predi
ate allows handling spe
ulative exe
ution: for instan
eone 
ould mark the instru
tions that are spe
ulatively fet
hed, and kill them atbu�ers on
e the spe
ulation is known to be in
orre
t. At this pla
e, it may bemore appropriate to look at the above proposals from the perspe
tive of reorderbu�er me
hanism or enfor
ing the above: All the instru
tions (spe
ulatively fet
hedor otherwise) are residing in the reorder bu�er in the program order (the pro
essordesign allo
ates them in program order), the one 
ould simply spe
ify something like�kill (free up the reorder bu�er slots asso
iated with) all instru
tions in the reorderbu�er with PC less than equal to the PC of 
onditional jump instru
tion� in 
aseof mispredi
ted bran
h.6.3 Canoni
al fun
tion semanti
sWith ea
h stati
 resour
e, there is an asso
iated delay. This delay 
an be some
onstant integer, or in a more general 
ase, 
an be a 
anoni
al fun
tion. A 
anoni
alfun
tion 
an take arguments and returns an integer. They provide �exibility in thedes
ription as delays arising out of fa
tors like memory or 
a
he a

ess, in
orre
tbran
h predi
tion et
 
an be 
aptured using them.Evaluation semanti
s There are 3 options that 
an be 
onsidered for their eval-uation:1. Evaluate all 
anoni
al fun
tions in an instru
tion uses when the instru
tion isfet
hed.2. Evaluate only the value of the arguments to the 
anoni
al fun
tion in thebeginning, but evaluate the 
anoni
al fun
tion in the 
y
le it o

urs.3. Evaluate the 
anoni
al fun
tion, as also the argument values, in the 
y
le inwhi
h it is en
ountered.The third option 
an be erroneous. This is be
ause a
tion part of subsequent in-stru
tions may update the system state, and so the arguments to the 
anoni
al33



fun
tion (whi
h may be register values) would be in
orre
t (as the e�e
t of subse-quent instru
tions should not be seen by an instru
tion).The �rst option seems 
orre
t, and it is also the option 
urrently being adoptedin our model. It however may be limiting: the se
ond option would allow mu
h more�exibility. This �exibility 
ould be needed, for example, when a

urate simulationof external memory bu�ers is to be done using 
anoni
al fun
tions, as now not onlythe sequen
e of requests/responses to the memory would be important, the delaybetween any two requests/responses may be important too. This �exibility, however,would be at a 
ost: an erroneous use of 
anoni
al fun
tion may be di�
ult to dete
tin these 
ases. It would be desirable to model external memory using 
anoni
alfun
tions and study their timing behavior in order to have a more pre
ise 
anoni
alfun
tion semanti
s.6.4 Formal analysisIn as mu
h as seen in the previous 
hapters we have been trying to analyze theexpressive power of the model by writing sample des
riptions in it. A 
ompleteformal des
ription of a general pro
essor's timing behavior remains a 
hallenge.6.5 Des
ription of multipro
essor systemsA single 
hip, multipro
essor system 
onsists of array of pro
essor elements. It maybe desirable to 
ode in Sim-nML the individual tile elements and then interfa
e themultiple simulators (of these elements) suitable. This would need a more detailedstudy of interfa
ing requirements among simulators in Sim-nML framework. Alter-natively, it may be possible to generate a simulator for an entire RAW like pro
essorfrom a single Sim-nML des
ription.
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Chapter 7Con
lusionOur resour
e model, along with the atta
hed s
heduling semanti
s is a promisingway of doing timing simulation for a pro
essor. It 
an be implemented dire
tlyin the Sim-nML framework to automati
ally generate timing simulators, and ourbelief is the model would yield simulation results that would be very 
lose to thetrue values. There is tremendous �exibility in the model: based on how mu
ha

ura
y is desired, a designer 
ould use it in variety of ways. For instan
e one
ould use it to 
apture simple, bare-bone pipeline stru
ture of a pro
essor, go onto handle hazards, further pro
eed to even spe
ify s
heduling optimizations, handledelays due to 
a
he mis-alignment, in
lude dynami
 s
heduling methodologies, andso on. A side-e�e
t of our �exible model may be a bit of burdensome 
onstru
tsfor very simple des
riptions: but then pro
essor design is getting more detailed andsophisti
ated by the day, and a �exible model would have mu
h more longevity.

35



Appendix AComplexities in pro
essordes
riptions[8℄
PipeliningPipelining is an implementation te
hnique whereby multiple instru
tions are over-lapped in exe
ution. It resembles an assembly line: di�erent steps are 
ompletingdi�erent parts of di�erent instru
tions in parallel.The major hurdle of Pipelining: Pipeline Hazards Hazards are situationsthat prevent next instru
tion in the instru
tion stream from exe
uting during itsdesignated 
y
le. There are three 
lasses of hazards:1. Stru
tural hazards arise from 
on�i
ts when the hardware 
annot support allpossible 
ombinations of instru
tions in simultaneous overlapped exe
ution2. Data hazards arise when an instru
tion depends on the result of a previousinstru
tion in a way that is exposed by the overlapping of instru
tions in thepipeline. Consider two instru
tions i and j, with i o

urring before j. Thepossible data hazards are:(a) RAW (read after write): j tries to read a sour
e before i writes it, so jin
orre
tly gets the old value 36



(b) WAW (write after write): j tries to write an operand before it is writtenby i. The writes end up being performed in the wrong order, leaving thevalue written by i rather than the value written by j in the destination.(
) WAR (write after read): j tries to write a destination before it is read byi, so i in
orre
tly gets the new value.3. Control hazards arise from the pipelining of bran
hes and other instru
tionsthat hazard the PC.Other 
ompli
ationsOther pro
essor features whi
h add to their diversity in
lude bypassing, instru
tionreordering, bran
h predi
tion, spe
ulative exe
ution, register renaming, register ro-tation and windowed register �le.
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Appendix BResour
e De
larations andInstru
tion Resour
e UsageGrammarResour
eSpe
: STATIC_RESOURCE1 Stati
Resour
eList| BUFFER Bu�erlist| REGISTER Registerlist;Stati
Resour
eList: ArrayId| Stati
Resour
eList ',' ArrayId;Bu�erList: Bu�erDef| Bu�erList ',' Bu�erDef;Bu�erDef: ArrayId ':' '{' SLOTS '=' INTEGER ';' INPUTORDER '='InputOrder ';' OUTPUTORDER '=' OutputOrder '}'1All 
apitals used in this grammar spe
i�
ations stand for keywords and/or lexi
al tokens su
h asintegers. 38



;InputOrder: STATIC '=' Stati
InputOrderSeq|;Stati
InputOrderSeq: ID| Stati
InputOrderSeq ',' IDOutputOrder: INORDER| ANYORDER;RegisterList: ArrayId| RegisterList ',' ArrayId;UsesDef: UsesDef '℄'| UseDef| UsesDef ',' UseDefUseDef: IF '(' Expr ')' THEN UsesDef ENDIF| IF '(' Expr ')' THEN UsesDef ELSE UsesDef ENDIF| '(' UsesDef ')' '|' '(' UsesDef ')'| AndUseDef| '(' UsesDef ')'| Resour
eId '.' USES;AndUseDef: SingleUseDef| AndUseDef '&' SingleUseDef39



;SingleUseDef: ID '#' INTEGER| '[' ID| '℄'| ID '.' INTENDTOREAD| ID '.' INTENDTOWRITE| ID '.' READ| ID '.' AVAILABLE| ID '.' WRITE| '#' INTEGER;
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Appendix CAlgorithms and Pseudo-
odes
C.1 Syntax dire
ted translation for 
onverting a Us-age spe
i�
ation to Usage GraphUsage: � { Usage.head = �;Usage.isNulli�able = true;Usage.last = �;Usage.E = �;Usage.V = �;}Usage1 : list( and(AndUsage), Usage2){ Usage1.head = AndUsage;Usage.1isNulli�able = false;Usage1.last = Usage2.last;if (Usage2.isNulli�able)Usage2.last = Usage2.last [{AndUsage};Usage1.E = Usage2.E [{(u, AndUsage): u 2Usage2.head};Usage1.V = Usage2.V [{AndUsage};41



}Usage1 : list( or(
ondition, Usage2, Usage3), Usage4){ Usage1.head = Usage2.head [Usage3.head;if (Usage2.isNulli�able or Usage3.isNulli�able)Usage1.head = Usage1.head [Usage4.head;Usage.1isNulli�able = (Usage2.isNulli�able orUsage3.isNulli�able) and Usage4.isNulli�ableUsage1.last = Usage4.last;if (Usage4.isNulli�able)Usage1.last = Usage1.last [Usage2.last [Usage3.last;Usage1.V = Usage2.V [Usage3.V [Usage4.V;Usage1.E = Usage2.E [Usage3.E [Usage4.E[{(u, v): u2Usage2.last [Usage3.last, v2Usage4.head} ;}
C.2 Generation of Resour
e graph from Instru
tionUsage GraphVR= { set of bu�ers} ;ER = �;for (ea
h instru
tion I){ for (ea
h start node s of the start nodes)GenerateResour
eOrder(UsageGraph(U), s, �);}GenerateResour
eOrder(U, v, S){ T =set of bu�ers a
quired at node v;if (T6= �) 42



{ ER = ER [{(bi, bj): bi 2S, bj 2T};S = �;}S = S [set of bu�ers a
quired at v;for (ea
h w 2su

(v))GenerateResour
eOrder(U, w, S);}
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