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AbstractAn integrated environment for performance modeling is desirable in the present era ofspeci�cation driven system design. With the complexity and the number of processorsincreasing rapidly, it is important to have a generic environment wherein the perfor-mance can be measured for a given processor on a given application. In this thesis,a simple, elegant and powerful language Sim-nML has been designed for performancemodeling. Sim-nML acts as the speci�cation language for a processor performancemodel in a generic way. As part of this thesis work, a generator for processor in-struction set simulator is designed and implemented. The simulator generator takesSim-nML speci�cations of a uniprocessor machine as input and produces code for thesimulator. The performance simulator thus generated is an important tool in systemdesign environment as it is useful to study the performance impact due to variousdesign trade-o�s.
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Chapter 1
Introduction
In design applications for embedded controllers, speci�cation driven design automa-tion is gaining momentum. It provides a fast turn-around and lead time to marketa product. For this design automation, system designers need modeling tools withhigh level of abstraction. With ever-increasing complexity of the processors and withgrowing number of special purpose processors, it has become even more important tohave modular and generic modeling tools. In addition, the system designers need anintegrated environment which allows them to assemble, compile, simulate and analyzethe performance of various alternatives of the new design. Such an environment isessential to study the impact due to various software - hardware codesign trade-o�s.Toward this end, designers are using languages such as C, VHDL and Verilog. Thedi�culty in using these languages is that the level of abstraction provided by theselanguages doesn't allow rapid prototyping. Moreover, it is convienient to have oneprocessor model for various applications such as simulation, assembler and disassem-bler generation and compiler back-end generation.In this thesis, we have designed a language Sim-nML for processor modeling. Theuniprocesor model developed with Sim-nML is helpful to generate processor speci�ctools such as assembler, disassembler, simulator etc., which form the core of designenvironment. We have also implemented an instruction set simulator generator. Thegenerator takes Sim-nML speci�cation as input and provides instruction set simulatorin C as output. Sim-nML is primarily an extension of the nML[2] language.1



1.1 MotivationIn accordance with Moore's law which states that processing power doubles ever18 months, modern microprocessors are achieving phenomenal performance levelsdue to the advances in several enabling technologies. The increase of performancecomes with greater complexity. The colossal complexity of modern microprocessors isattributed to various factors such as multiple functional units, out-of-order execution,branch prediction etc. The design of such complex superscalar processors requiresthe use of sophisticated software tools. Designers use functional and performancesimulators to validate the functionality and to assess the performance of the processorfor a given application. Typically, these tools are implemented using programminglanguages such as C, VHDL, etc., which requires enormous e�ort. Given an integratedenvironment in which it is easy to model uniprocessors this e�ort can be reducedsigni�cantly.The complexity of microprocessors and the heavy market competition has ledto several changes in system design process. The performance of the system notonly depends on the microprocessor, but the external components such as caches,memory hierarchy etc. Nowadays, ad hoc system design techniques do not workbecause the success of the product depends on the performance of system with speci�capplications. A systematic design process starts with selecting the application andinvolves writing a model that measures performance of the system, testing the system,analyzing the results and re�ning the model to enhance performance. In this process,the model undergoes several changes till the desired performance is achieved. Thissystematic approach necessitates an environment which facilitates, incorporating themodel changes and testing the model rapidly.The systematic approach not only requires performance models, but also a set oftools which will facilitate compiling/assembling the applications. For example, if theinstruction set architecture is under design and requires frequent changes then thisnecessitates reimplementing the assemblers and compilers. Therefore, it is desirableto have an environment where changes to the design are made at one place and thecorresponding changes in other tools are automated. nML is an extensible machinedescription formalism and helpful to automate the generation of compiler, assembler,2



disassembler and instruction set simulator from single speci�cation. But, nML is notpowerful enough to specify performance models due to lack of clear abstraction forspecifying the control ow. This motivated us to extend nML to specify performancemodels so that it can be used to generate performance simulator in addition to theaforementioned tools.1.2 Overview of Related WorkAutomation tools for performance modeling of complete system is a growing areaand enough research has been pursued in this area. These previous works has re-sulted in a set of performance modeling tools. Visualization Based Microarchitec-ture Workbench (VMW)[1] is an infrastructure which facilitates the speci�cation ofinstruction set architecture and microarchitecture of a machine in concise manner.VMW provides a powerful environment for processor design. SimOS[3] project aimsat providing a complete machine simulation environment which allows to run op-erating systems on simulated machine. This facilitates to analyze the performanceunder multiprogramming. Other than these complete machine simulation environ-ments, many performance models exist for analyzing the individual components suchas processors, caches etc. The processor performance model for Alpha processor isdescribed in [6] and that for PowerPC is described in [5]. The cache performancemodels can be found in [9], [10]. In addition, there are herd of tools developed tospeed-up the performance evaluation. This include execution pro�ling tools such asATOM[7], Aint[4], etc. In Chapter 2, some of these works which are highly related tothe work done in this thesis, are described..1.3 Goals AchievedIn this thesis work, we aimed at developing an environment for performance modeling.The development of a complete integrated environment is in progress. The goalsachieved in this thesis work are listed below.3



� Resource Usage Model is a technique developed to abstract the control ow ofinstructions through pipelines.� Sim-nML language is developed to specify the performance models with the helpof resource usage model.� Processor Instruction Set Simulator Generator is designed and implemented. Thesimulator generator takes Sim-nML speci�cation as input and produces C++[8]code for simulator.� A Hypothetical Superscalar Processor Model is speci�ed in Sim-nML and the per-formance simulator is generated using simulator generator. This generated sim-ulator runs at a speed of 4,000 instructions per second.1.4 Organization of ReportThe rest of the thesis is organized as follows. In Chapter 2 we give an overview ofthe performance models and examine some of the models designed in various projectsworldwide. In Chapter 3, we describe the syntax and semantics of the Sim-nML. InChapter 4 we describe the implementation of simulator generator which takes Sim-nML as input and produces C++ code for simulator. Finally we conclude in Chapter5 and provide the results. We also enumerate possible future work in this area.
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Chapter 2
Performance Analysis
In the early stage of the system design, executable speci�cations are converted tohardware and software components. In order to do so, the speci�cations are parti-tioned into two, what can be implemented in software, and, what needs to be im-plemented in the hardware. This objective of partitioning is essentially dependenton the processor used and the software, whether it can meet the real-time deadlineor not. Such systematic approach to system design involves repeated performancetesting and analysis. In this chapter, we discuss the salient features of modern mi-croprocessors, their simulation techniques and survey some of existing performanceanalysis tools. We then provide a brief introduction to nML which has been extendedto specify performance model and provide performance simulation capabilities in thisthesis.2.1 Salient Features of Modern MicroprocessorsModern microprocessors employ many performance enhancement techniques to boosttheir performance. However, inclusion of these techniques have increased the com-plexity of the microprocessor architecture substantially. While the general purposemicroprocessors are reaching 600-MHz clock speeds, the number of transistors aretouching 10 millions. On the other hand, the number of special purpose embeddedsystem processors are increasing rapidly. With such a phenomenal hardware available5



within a chip, many architectural techniques are being implemented in the hardware.Below, there is a list of some of architectural performance enhancement techniquesused in high performance microprocessors today.� Pipelining is the most basic technique used for performance enhancement.This facilitates execution of multiple instructions in overlapping fashion.� Multiple Functional Units are helpful for executing more than one instruc-tion simultaneously.� Branch Prediction - Conditional branches are the main bottleneck for deeppipelines because target address for the next instruction fetch is not availabletill the branch is resolved. This has led to the development of branch predictiontechnique by which the target address is predicted early in the pipeline. In caseof misprediction the pipeline is ushed out.� Register Renaming is helpful to reduce the pipeline stalls due to data depen-dencies between instructions.� Feed Forwarding is a technique by which a computed value is forwardeddirectly to other unit in the pipeline which requires it even before the value iswritten to the destination register.� Out-of-Order Execution is a technique used to dynamically reschedule theinstructions according to the availability of the resources. For example, if a oat-ing point instruction follows an integer instruction and the integer instructioncould not be issued because integer unit is busy, and the oating point unit isfree then the oating point instruction will be issued before integer instruction.� Data Prediction is a technique used normally to predict the branch targetaddresses in case of indirect branches where the target address is obtained fromregister. If the register containing the target address is being modi�ed by someof the instruction down the pipe then the target address is predicted using eitherhistory or some clue from user.� Conditional instruction is a technique used to reduce the number of condi-tional branches. In most of the cases, the body of conditional branches contain6



only very few instructions. Under this technique, the instructions in the bodyof the conditional branch, are converted to conditional instructions and the con-ditional branch is removed. A conditional instruction is executed even thoughthe value of the condition ag is not known, but the result is written if-and-only-if the condition is true. If condition turns out to be false, then the e�ortfor executing the instruction goes waste. But, the e�ort loss is very less com-pared to the pipeline ush in case conditional branch is used and the target ismispredicted.2.2 Simulation MethodsThe colossal complexity of modern processors due to the aforementioned performanceenhancement techniques, makes the simulation a time consuming process. However,it is essential to develop a fast simulator which will be just order of magnitude slowerthan the original processor. This is not a simple task to achieve and many techniquesare developed to speed-up the simulators. Below, we classify the simulation methodsaccording to the technique employed.2.2.1 Depending on Resource ManagementCycle Based SimulationIn cycle based simulation, a simulator clock is maintained which is analogous to theprocessor clock. In each simulation cycle, all active instructions, are simulated serially.For each instruction the availability of the next set of resources such as the next stagein the pipeline, is explored. If resources are available then the instruction is markedactive for the next cycle. This process stops when a resource becomes unavailable forthe next cycle or when the instruction is simulated completely to the end. The maindisadvantage of this approach is that considerable e�ort is put in each simulationcycle for checking the availability of the next set of resources used by an instructionwhen they are not available. The major advantage of this method is the simplicityin implementation. 7



Event Based SimulationThis method overcomes the aforementioned disadvantage of cycle based simulationby maintaining a list of instructions waiting for a particular resource. The waitinginstruction is resumed for simulation as soon as the resource becomes free. Thus, ateach simulation cycle the checking of enabled instructions is eliminated. However, thismethod requires an additional complexity of maintaining a list of waiting instructions.It is apparent that if instructions wait frequently for the resources for more than oneclock cycle, then this method outperforms cycle based simulation.2.2.2 Depending on Instruction SequenceExecution Driven SimulationIn this method, the actual functionality of the instruction is simulated in addition tothe simulation of ow of instructions through the processor pipelines. The dynamicsequence of instructions is obtained by resolving branches with the help of user inputs.The main disadvantage of this approach is that this simulation is slow. The mainadvantage of this approach is that the model is tested for its functionality as well asits performance.Trace Driven SimulationIn this method, developers run an instrumented version of the program with the helpof a simple instruction set simulator[4] (without pipelining and timings) to obtain atime sequence of instructions. If a prototype hardware already exists, then the timesequence of instructions can be obtained by running the instrumented version on theprototype[6]. For example, 80486 can be used as a prototype for Pentium, This timesequence is referred to as trace which is fed to a fast simulator which only models thepipeline ow. These simulators are relatively fast because they do not emulate theactual functionality. Stand-alone trace analysis tools are available for generation oftraces and these facilitate fast performance analysis. The simulation done after tracegeneration is called Trace driven simulation. The main disadvantage of this approach8



is that it is hard to validate the model as results are not produced.2.3 A survey of Performance Analysis Tools2.3.1 Alpha Microprocessor ModelDigital Equipment developed a performance model[6] for evaluating the Alpha proces-sor. In this model, the runtime traces are collected with the help of a tool calledAtom[7]. Then these traces are fed to a performance modeling tool which is imple-mented in about 50,000 lines of C code. The performance modeling tool simulatesabout 10,000 to 20,000 instruction traces per second. The performance modeling toolprovides logging facility and graphical interface to view the outputs.2.3.2 SimOSSimOS[3] is an ambitious project with the objective of simulating the complete hard-ware in enough detail to run system software including commercial operating systems.In SimOS, each hardware component is modeled by a set of simulation models whichdi�er in their timing accuracy and speed. SimOS allows to interchange simulationmodels at runtime. The current version of SimOS has two performance simulationmodels, viz., Mipsy and MXS for MIPS CPU. Mipsy is a simple pipeline model andMXS is complex dynamically scheduled processor model. MXS can only simulate onthe order of 20,000 instructions per second. Because of this slow simulation speed,Mipsy, which is an order of magnitude faster is used to warm up the caches beforeswitching into MXS.2.3.3 VMWVMW[1] is a visualization based microarchitecture workbench developed in CarnegieMellon University. In VMW, a machine is speci�ed by �ve di�erent speci�cation �les.These �les describe the syntax, semantics and timing of the instructions and the9



microarchitecture of the processor. Using these speci�cation �les and the VMW in-frastructure a performance simulator can be generated. The VMW infrastructure isimplemented in C++ as a class structure hierarchy and supports trace driven simula-tion. The simulation is performed by executing the machine behavior code speci�edby the user. This machine behavior code describes the control logic used to process theinstructions through the pipeline stages. The machine behavior code interacts withthe VMW infrastructure class hierarchy for extracting the syntax and semantic infor-mation from other speci�cation �les, managing long traces, managing the resourcesetc. VMW infrastructure provides extensive visualization tools for user interface.2.3.4 nMLnML [2] is an extensible formalism targeted for describing arbitrary single processorcomputer architecture. nML works at instruction set level and hides the implemen-tation details. In nML, the instruction set is enumerated by an attribute grammar 1.The semantic action of any instruction is composed of fragments that are distributedover the whole speci�cation tree, i.e., the common behavior of a class of instructionsis captured at the top level of the tree and the specialized behavior of sub-classes arecaptured in the subsequent lower levels.nML GrammarnML grammar has a �xed start symbol namely instruction and two kind of produc-tions namely, or-rule which looks like,op n0 = n1 | n2 | n3 | ...and and-rule which looks like,1An attribute grammar is a context free grammar in which for each non-terminal a �xed set ofattributes and for each production a set of semantic rule is given. In nML grammar, all non-terminalshave to have derivations. So, we don't di�erentiate between productions and non-terminals.10



op n0 ( p1 : t1, p2 : t2, ... )a1 = e1 a2 = e2 ...where each ni is a non-terminal and each ti is a token. Each ai is an attributename and ei their respective de�nition. The pi are names of the parameters used inthe attribute de�nitions.nML grammar pre-de�nes three attributes namely syntax , image and action. Thesyntax attribute describes the textual syntax of the instruction. The image attributedescribes the binary coding of the instruction and action attribute describes thesemantics of an instruction.The nML description in Figure 1, is that of a simple machine with two instructions,the add instruction which is used to add an argument to the accumulator AC and,the multiply instruction which is used to multiply the accumulator AC to the argu-ment. The register PC has special semantics and points to the next-to-be-executedinstruction.In most of the processors, addressing modes and instructions are orthogonal toeach other. Therefore, describing an instruction with each of the possible addressingmodes explode the size of the description. Therefore, nML separates addressing modedescription. For example, register addressing mode can be described as shown inFigure 2.In addition, nML supports macros and declarations for types and constants. Thisenhances the clarity of the description.nML formalism helps in describing the processor concisely and precisely. nMLdescription of a processor can be used as input to various tools such as assemblerand disassembler generators, compiler back-end generators and general purpose in-struction set simulators. However, nML lacks control ow constructs and cannot beused for describing the inter-instruction dependencies. Further, it is not possible tospecify the timing for various operations. Therefore, it is not possible to use nML forperformance estimation. 11



type addr = card ( 32 )type byte = card ( 8 )mem AC [ 1, byte ]mem PC [ 1, addr ]op plus ( )syntax = "add"image = "000000"action = { AC = AC + tmp; }op multiply ( )syntax = "mult"image = "000001"action = { AC = AC * tmp; }op binaction = plus | multiplyop instruction ( x : binaction, data : byte )syntax = format ( "%s %d", x.syntax, data )image = format ( "11%6b %8b", x.image, data )action = { PC = PC + 2;tmp = data;x.action;} Figure 1: nML Speci�cation for a Simple Processor
mode REG ( n : card ( 5 ) ) = A [ n ]syntax = format ( "%d", n )image = format ( "%5b", n )Figure 2: Register addressing Mode Speci�cation12



Chapter 3
Sim-nML Syntax and Semantics
In this chapter, we describe Sim-nML language which can be used for high levelperformance modeling. We �rst describe the resource usage model which is the basicphilosophy behind the design of Sim-nML. We then describe the syntax and semanticsof uses attribute, which helps to specify resource usage model. Finally we concludethis chapter with speci�cation of a simple superscalar processor and branch prediction,in Sim-nML.3.1 Resource Usage ModelAs seen earlier, nML formalism is not useful for performance modeling. This is mainlybecause of the lack of a mechanism to specify the control ow. Therefore, we extendnML, by abstracting out the control ow with the help of resource usage model.The resource usage model is based on the fact that at any instant, an instructionin execution, holds a set of resources and performs some action. The resources heldby the instruction and the action taken change progressively, in time.In resource usage model, a resource is an abstraction of a piece of hardware suchas a register, ALU, a functional block, etc. for which instructions contend. Thecontrol ow is simply a way of resolving conicts due to contention. In our model,we can use one of the two methods to specify control ow. The �rst method is to13



specify the time units for which each of the acquired resource is used and the secondmethod is to specify a condition which should be true to proceed further. This modelresembles the actual behavior of microarchitectures and facilitates the speci�cationof microarchitecture of the processor at a higher level of abstraction.For example, consider our simple processor described in the Chapter 2. Wemodel the processor with three pipeline stages, viz., fetch unit, execution unitand retire unit. The Sim-nML speci�cation of the processor is given in Figure3. It speci�es that all instructions �rst use the fetch unit for one unit of time.The instructions then use the execution unit for the duration dependent on theinstruction and then the retire unit for one unit of time. The add instructionuses the execution unit for one time unit whereas the multiply instruction uses theexecution unit for three time units. The token action at the end of uses speci�esthat after the speci�ed resources are used for the speci�ed duration, the functionspeci�ed in action attribute is performed. The resources declaration is used todeclare the functional blocks such as the fetch unit, the execution unit and theretire unit. The description of actual functionality of these resources is not inthe scope of Sim-nML formalism and is hidden. The declaration reg is same as memdeclaration and is described in Section 3.2.7The primary extension made to incorporate resource usage model in nML is, theaddition of a new pre-de�ned attribute uses. The uses attribute is used to describethe resource usage model and the control ow of an instruction. The exact syntax isshown in Section 3.2.1.The unit of time can be thought-of as similar to the machine clock cycle althoughit is not a restriction imposed by Sim-nML. However, sub-unit timings are not allowed.In a nut-shell, if unit of time is same as machine clock cycles then we can estimatethe number of clock cycles taken by a program to complete.
14



resource fetch_unit, execution_unit, retire_unittype addr = card ( 32 )type byte = card ( 8 )reg AC [ 1, byte ]reg PC [ 1, addr ]op plus ( )syntax = "add"image = "000000"action = { AC = AC + tmp; }uses = execution_unit #1op multiply ( )syntax = "mult"image = "000001"action = { AC = AC * tmp; }uses = execution_unit #3op binaction = plus | multiplyop instruction ( x : binaction, data : byte )syntax = format ( "%s %d", x.syntax, data )image = format ( "11%6b %8b", x.image, data )action = { tmp = data; x.action; }preact = { PC = PC + 2; }uses = fetch_unit : preact & #1, x.uses, retire_unit #1 : actionFigure 3: Sim-nML Description of the Simple Processor3.2 Speci�cation of resource usage model using usesattribute3.2.1 Uses GrammarThe uses attribute is the key construct in describing the resource usage model. Thecontext free grammar for uses de�nition is given Figure 4 and 5.15



uses-attr:uses = uses-defuses-def:uses-or-sequenceuses-def , uses-or-sequenceuses-or-sequence:uses-if-atomuses-or-sequence | uses-if-atomuses-if-atom:uses-indirect-atomif boolean-expr then uses-indirect-atomif boolean-expr then uses-indirect-atomelse uses-indirect-atomuses-indirect-atom:uses-and-atomtoken . uses( uses-def )uses-and-atom:uses-cond-def-atomuses-action-atomuses-action-atom & # timeuses-action-atom:uses-cond-def-atom : tokenuses-cond-def-atom : token . tokenuses-cond-def-atom:uses-def-atomuses-cond-atom Figure 4: uses Grammar
16



uses-def-atom:# timetoken # timetoken-and-listtoken-and-list & # timetoken-and-list:tokentoken-and-list & tokenuses-cond-atom:token relop tokentoken relop constant" token " ( token-list )token-list:token-list-parttoken-list , token-list-parttoken-list-part:tokentoken . usesrelop: one of==, <, >, <=, >=, !=Figure 5: uses Grammar (Cont.)Although the grammar seems to be very complex and very restrictive, it is simpleand powerful enough to specify the resource usage model of modern processors. Thegrammar is designed carefully to avoid semantic gaps as much as possible. There aresome compromises made in terms of length of the grammar for attaining semanticprecision.In resource usage model, a set of resources are acquired by an instruction and theresources are held till the next set of resources are available. When the �rst instruc-tion after the pipeline ush enters the pipeline all the resources are immediately avail-able. Therefore, to control the ow of instructions, it is also necessary to specify the17



time for which each resource is held. For example, fetch unit #1, execution unit#1, retire unit #1 means that at �rst the fetch unit is acquired. Although,execution unit is available immediately, the instruction waits in fetch unit forone time unit before acquiring the execution unit. Then, it holds execution unitfor one time unit. Before completion, it acquires retire unit and holds it for onetime unit. In some cases, it is not possible to specify the resource hold times statically.The instruction has to wait till a condition becomes true. For example, to model in-order-retirement of instructions, an instruction before completion should wait till thecompletion of all the instructions that precede it. For more explanation see Figure 7.In the grammar shown in Figure 4, uses-cond-def-atom describes a set of re-sources and the time duration for which these resources are used or a condition forwhich the instruction waits to become true. Hereafter, we use the term resources torepresent the resources which an instruction needs to proceed further as well as thecondition for which an instruction has to wait. The comma (,) signi�es the sequenc-ing of the usage of resources. For correct implementation of the resource usage modelsemantics that an instruction holds a set of resources at any instant, it should bemade sure that the next set of resources is available before freeing the already heldresources.The and (&) operator is used to represent a set of resources all of which are usedsimultaneously. For example, execution unit & AC & #1means that the instructionneeds to acquire execution unit and AC and having acquired that, it holds on tothem for 3 time units. The syntax "token #time" is same as "token & #time".Di�erent alternatives are provided to increase the readability of description. Thegrammar does not allow specifying more than one hold time for the same set ofresources. For example, it is not possible to specify execution unit & #3 & AC &#1. This speci�cation is ambiguous because it is not clear whether the resources areheld for 3 time units or one time unit.The colon (:) operator is used to specify the instant at which an action should becarried out. An instant in resource usage model is relative to the time of acquiringa set of resources. For example, fetch unit : preact means that the functionspeci�ed in preact attribute should be performed after acquiring fetch unit andretire unit #1 : action means that the function speci�ed in action attribute18



should be performed one time unit after acquiring retire unit.The or (k) operator signi�es that any one of the resources is used. If two or moreresource sequences are ored then the resource at the head of each sequence is usedfor resolving the conict. For example, uses = ( pipe11, pipe12 ) k ( pipe21, pipe22 ),means that if pipe11 is free then the �rst sequence is selected as the uses sequence,otherwise if pipe21 is free then second sequence is selected as the uses sequence. Ifboth are not free, then the instruction is blocked till one of them becomes free. Thisis useful for selecting the free unit from a set of identical functional units.The uses-if-atom facilitates selection of a sequence of resources from two di�er-ent alternatives depending on the truth value of the boolean expression. The syntax"token" ( ... ) signi�es a canonical function call1. The indirection constructtoken.uses, is useful for describing resource usage model in a hierarchical manner.For example, in Figure 3 the integer addition and integer multiplication instructionswhich use same sequence of resources except that multiplication consumes more time,is speci�ed hierarchically. With the above uses syntax, we can specify the resourceusage model concisely and precisely.3.2.2 Implicit ParallelismAt instruction level, the processors are inherently parallel in the sense that the in-struction execution is overlapped either with the execution of other instruction orwith other functionalities such as checking for interrupt etc. The instruction-by-instruction speci�cation of the behavior in Sim-nML is powerful enough to model acomplex processor design with high degree of parallelism. Simulator generators canuse the Sim-nML speci�cation to generate a simulator that can simulate the parallelinstruction execution. The resource usage maps described in the instruction speci�-cation streamlines the execution of the instructions in the desired way. In Sim-nML,if two instructions require a set of resources simultaneously, then the conict is re-solved by following strict FIFO order i.e. the earlier instruction is allocated the set of1Canonical functions[2] are those functions whose semantics are known only to the entity thatreads the description.In our Sim-nML implementation, other than few pre-de�ned canonical func-tions, all other canonical functions are mapped directly to C++ functions.19



resources and the later instruction waits. However, this default FIFO behavior canbe overridden by explicit speci�cation with the help of condition waits.We show the power of the uses attribute with a description for a simple superscalarprocessor with two integer units. The block diagram of the processor is shown inFigure 6. The instruction set architecture of this superscalar processor is similar tothe one in the earlier example. In a superscalar design, we encounter data dependencyhazards. So, our design should take care of these dependency hazards. This is doneby properly specifying the accumulator AC usage in the uses attribute.

retire_unit

fetch_unit

execution_unit1 execution_unit2

Figure 6: Block Diagram of A Superscalar ProcessorThe Sim-nML description in Figure 7 models this hypothetical superscalar proces-sor with two identical execution units. In this processor, the instructions are issued tothe execution units alternatively. Therefore, the retire reg is set to the value 1 and2 alternatively. This leads to retiring of instructions in order. The action attributeof initial speci�es the initial values of the registers.20



resource fetch_unit, execution_unit1,execution_unit2, retire_unitreg AC [ 1, card ( 8 ) ]reg PC [ 1, card ( 32 ) ]reg ireg [ 1, card ( 8 ) ]reg retire_reg [ 1, card ( 8 ) ]op plus ( data : card ( 8 ) )syntax = format ( "add %d", data )image = format ( "000000%8b", data )action = { AC = AC + data; }uses = ( ireg == 1,execution_unit1 & AC & #1,retire_reg == 1 ) |( ireg == 2,execution_unit2 & AC & #1,retire_reg == 2 )op multiply ( data : card ( 8 ) )syntax = format ( "mult %d", data )image = format ( "000001%8b", data )action = { AC = AC * data; }uses = ( ireg == 1,execution_unit1 & AC & #3,retire_reg == 1 ) |( ireg == 2,execution_unit2 & AC & #3,retire_reg == 2 )op binaction = plus | multiplyop initial ( )action = { issue_reg = 2; retire_reg = 1; }op instruction ( x : binaction )syntax = format ( "%s", x.syntax )image = format ( "11%6b", x.image )action = {x.action;if ( retire_reg == 1 )then retire_reg = 2; else retire_reg = 1; endif;}preact = {PC = PC + 2;if ( ireg == 1 )then ireg = 2; else ireg = 1; endif;}uses = fetch_unit : preact & #1, x.uses,retire_unit & AC & #1 : actionFigure 7: Sim-nML Description of a Superscalar Processor21



3.2.3 Speci�cation of Feed ForwardingIn processors supporting feed forwarding mechanism, data is forwarded as soon as itis available to reduce the pipeline stalls due to data dependencies. In case of softwaretiming estimation, where the processor is speci�ed as in Figure 7, it is easy to specifyfeed forwarding by adjusting the register blocking time appropriately.3.2.4 Speci�cation of Memory HierarchyTo avoid the bottleneck on system performance imposed by high memory accesslatency, modern machines use hierarchical memory. The precision of handling memoryhierarchies depends on the speci�cation. In Figure 8, we model a memory system witha data cache whose hit ratio is presumed to be 95%. The time to access data fromdata cache is assumed to be two units of time and for that from main memory isassumed to be ten units of time.mem data_cache [ 1024, word ]uses = #2mem main_memory [ 2**16, word ]uses = #10//Register Indexed Address Mode.mode IND ( R : Address_Register, x : mem_access ) = M [ R ]syntax = format ( "(A%3b)", R )image = format ( "#3b", R )uses = if "drand48"() < 0.95 then data_cache.useselse main_memory.usesFigure 8: Speci�cation of Memory HierarchyIn Figure 8, "drand48" denotes a canonical function call. A more precise cachemodel can be built, for example, by writing a C++ function which keeps track of thecontents of the cache, as shown in Figure 9. In this model, the is hit function canimplement the cache replacement policy such as least recently used or less frequently22



mode IND ( R : Address_Register, x : mem_access ) = M [ R ]syntax = format ( "(A%3b)", R )image = format ( "#3b", R )uses = if "is_hit"( data_cache, R )then data_cache.uses else main_memory.usesFigure 9: Precise Speci�cation of Memory Hierarchyused etc., using the address argument. The above example shows the ease withwhich the semantics of description can be increased. The implementation details arediscussed in the next chapter.3.2.5 Exception DeclarationFor an accurate performance modeling and for specifying inter-instruction dependen-cies, it is important to handle the exceptional conditions such as divide-by-zero, inter-rupts and branch-prediction-error. In Sim-nML language certain pre-de�ned canonicalfunctions are added to handle exceptions. The exception declares the di�erent kindsof exceptions. Handling exceptional conditions is complicated because it is likely thatexception divide-by-zero-error, branch-error, interruptthe exceptions are handled di�erently at di�erent machine states. For example, whena branch-prediction-error occurs the instructions along the mispredicted path shouldbe ushed out of the pipeline. To simplify the design, in modern processors, these in-structions are either executed to completion without writing the result to the registersif the instruction is already issued to execution unit or ushed out and the resourcesheld by the instruction are freed immediately if the instruction is not issued. There-fore, it is necessary to provide mechanism to change the handler at any instant. Inour model, we propose the following canonical functions related to the exceptions.� sethandler - used to set a new handler for an exception23



� ignore - used to specify that an exception can be ignored� raise - used to broadcast the occurance of an exception to all instructions inexecution.� abort - used to abort an instruction on execution and free the resources heldby the instruction immediately.3.2.6 Instruction Identi�cationWhile specifying a superscalar processor, it is necessary to identify every instructionissued to streamline the retirement of instructions. In case of the simple hypotheticalsuperscalar processor described in the Figure 7, retirement is streamlined by alter-nately assigning retire reg to 1 and 2. This serves the purpose of identifying theinstructions. However, for complex processors, instruction identi�cation becomes dif-�cult to specify. To facilitate this task, we have introduced a type instid type, whichis opaque to the designer. It can only be told that the result of any operation on thistype is modulo maximum number of instructions that can be active inside the pro-cessor at any time. The code for implementing the type is generated automatically.The designer can help the instid type code generation, by giving a clue about themaximum number of instructions that can be active inside the processor at any in-stant. This can be done by de�ning a reserved constant MAX INSTR COUNT. The valueof instruction identi�er can be obtained through a canonical function "instid"().3.2.7 Initial State and reg DeclarationSince Sim-nML is used for generating instruction set simulator, the initial state of theprocessor has to be speci�ed. This is done with a reserved op, named as initial.The action attribute of initial, describes the initial state of the processor. In sim-ulation, it is better to distinguish main memory from internal processor registers. Tofacilitate this we have introduced reg declaration which declares a memory locationas a register. The normal mem declaration speci�es memory locations which are notregisters. The main di�erence is that each component of a reg declaration is con-24



mem M [ 2**32, word ]reg R [ 32, word ] Figure 10: reg declarationsidered as a resource whereas all the locations declared with mem, are grouped as asingle resource. In Figure 10, M[2000] and M[3000] are considered as a part of singleresource M, whereas R[1] and R[2] are considered as di�erent resources. There maybe other di�erence such as space allocation, which are dependent on implementationof tools which use Sim-nML speci�cation.3.3 Speci�cation of Superscalar Processor and BranchPredictionMost of the modern processors use branch prediction for increasing the performance.There are various branch prediction policies such as branch always taken, staticbranch prediction, dynamic branch prediction, etc. Abstracting out all such diversi�-cation complicates the grammar and the semantics. But, with the help of constructsavailable and minimal implementation detail it is easy to specify the branch predictionmechanism as shown in this section.In Figure 11, the block diagram is given for the superscalar processor being con-sidered. The processor supports branch prediction. The processor contains anaccumulator and a count register and a zero ag register Z, which is set only if the re-sult of computation is zero. The Sim-nML code in Figure 12, describes the decrementinstruction which decrements the count register and plus instruction which adds animmediate value to the accumulator. The code in Figure 13, describes the multipli-cation instruction. The condition wait in non branch instr's uses, fashions in orderretirement of non branch instructions. In case of branch misprediction, the value ofreorder buffer associated with a particular non-branch-instruction is set to 255.Therefore, the action should be carried out if-and-only-if the value is not 255. Figure13 and 14 describe the branch instruction. The processor follows always taken policy25



branch_unitfetch_unit

execution_unit1 execution_unit2

retire_unitFigure 11: Block Diagram of A Superscalar Processor With Branch Unitfor branch prediction. In case of speculation, the value of Z is checked once it isevaluated. If prediction is found to be wrong then a branch error is signaled whichis caught by all instructions. On catching the branch error, the instructions thatfollow branch instruction set their associated value in reorder buffer to 255. Sincethis model allows only one branch instruction at any instant, nested branch errorsare not taken care of.
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const MAX_INSTR_COUNT = 8resource fetch_unit, execution_unit1, execution_unit2,retire_unit, branch_unit, halt_unitexception branch_errortype addr = card ( 32 )type byte = card ( 8 )type bit = card ( 1 )mem AC [ 1, byte ]mem PC [ 1, addr ]mem Z [ 1, bit ]mem Count [ 1, byte ]mem speculated [ 1, bit ]mem oldpc [ 1, addr ]mem retire_reg [ 1, instid_type ]mem reorder_buffer [ MAX_INSTR_COUNT, byte ]op initial ( )action = { PC = 0; Count = 10; }op dec_count ( )syntax = "dec_count"image = "000010000000000000000000000000"action = {Count = Count - 1;if Count == 0then Z = 1; else Z = 0; endif;}uses = execution_unit1 #1 | execution_unit2 #1op plus_inst ( data : byte )syntax = format ( "add %d", data )image = format ( "000000%24b", data )action = {AC = AC + data;if AC == 0then Z = 1; else Z = 0; endif;}uses = execution_unit1 #1 | execution_unit2 #1Figure 12: A Superscalar Processor with Branch Prediction27



op mult_instr ( data : byte )syntax = format ( "mult %d", data )image = format ( "000001%24b", data )action = {AC = AC * data;if AC == 0then Z = 1; else Z = 0; endif;}uses = execution_unit1 #3 | execution_unit2 #3op binaction = plus_inst | mult_instr | dec_countop non_branch_instr ( x : binaction )syntax = format ( "%s", x.syntax )image = format ( "11%s", x.image )action = { x.action; }uses = fetch_unit #1, x.uses,retire_reg == "instid"(), retire_unit & AC & Z & #1,if reorder_buffer [ retire_reg ] != 255then retire_unit : actionop branch_instr ( target : addr )syntax = format ( "brnz %24b" , target )image = format ( "01000000%24b" , target )preact = {bran_inst_id = "instid"();reorder_buffer [ bran_inst_id ] = 255;}action = {if Z == 0then PC = target; endif;speculated = 0;}always_taken = {oldpc = PC;PC = target;speculated = 1;} Figure 13: A Superscalar Processor with Branch Prediction (Cont.)28



restore = { bran_inst_id = 88888; }check_prediction = {if Z == 1 thenPC = oldpc;"raise" ( branch_error );endif;}uses = if "is_blocked" ( Z )then fetch_unit : always_taken & #1else fetch_unit : action & #1,branch_unit : preact,if speculated == 1 then Z : check_prediction,retire_reg == bran_inst_id, retire_unit #1 : restoreop instr_action = branch_instr | non_branch_instrop instruction ( x : instr_action )syntax = x.syntaximage = format ( "%s", x.image )action = { x.action; }handler= {if reorder_buffer [ "instid"() ] == bran_inst_idthen reorder_buffer [ "instid"() ] = 255; endif;}preact = {PC = PC + 4;reorder_buffer [ "instid"() ] = bran_inst_id;"sethandler" ( branch_error, handler );}reorder = { retire_reg = retire_reg + 1; }uses = fetch_unit : preact , x.uses, retire_unit : reorderFigure 14: A Superscalar Processor with Branch Prediction (Cont.)
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Chapter 4
Implementation
In this chapter, we discuss the di�erent design alternatives for implementing perfor-mance simulators and the associated trade-o�s. We then describe, the various phasesin the implementation of instruction set simulator (ISS) generator. The earlier phasesare helpful in collecting the hierarchical information entrenched in the speci�cation.The last phase generates C++ code for simulator. Finally, the implementation ofnML type system is described.4.1 Design of SimulatorOur objective is to develop a ISS generator which generates a simulator for a processorfrom its Sim-nML description. The simulator generator produces C++ code of thesimulator. Before, studying the design of simulator generator, it is important to knowthe output produced by it. Therefore, in this section we concentrate on the design ofthe simulator that is generated.The ISS generator outputs a C++ code for the simulator. We choose C++ becauseof its extensible type system which facilitates implementation of nML types such ascard(1), card(2) etc. Moreover, this choice lends us greater exibility in linkingalready developed performance models such as e�cient cache models, to generatedprocessor model. 30



There are a herd of other issues which should be considered in simulator design.These issues arise from the resource usage model, complex multidimensional paral-lelism of processor, maintaining the state of the processor, and the strict typing inC++. Below we describe the issues in detail.� Resource usage model is based on the fact that instructions hold a set of re-sources at any instant of time. Therefore, it should be made sure that the nextset of resources are available before releasing the already held resources. More-over, when an instruction is waiting for a sequence of conditions (or clocks), thepresent set of resources are held.� Sim-nML is inherently parallel language and the instructions are modeled toexecute in parallel in case the required resources are available. Therefore, thesimulator has to store the context of the present instruction and resume simu-lating other instructions if a particular instruction simulation is stalled by thenon-availability of required resources.� Inherent parallelism results in higher complexity in abstracting out the state ofthe processor. The state of processor in the context of the simulator is de�nedby the register and memory values and the state of the partially simulatedinstructions. The implementation of the maintanence of state of the partiallysimulated instructions is hard. Therefore, we concentrate on this issue in Section4.1.1.� Although, extensible type system of C++ helps in implementing new types,its rigidness results in di�culties in storing the state of the partially simulatedinstructions and dynamically invoking the functions speci�ed in Sim-nML's func-tion attributes such as action.4.1.1 Capturing Machine StateFrom the arguments described above, it is clear that the capturing the state of themachine constitutes the major part of simulator design. With the issues in designinga simulator for Sim-nML speci�cation well understood, we propose two designs forcapturing the machine state. 31



Design - 1In this design, the full context of an instruction is abstracted as a sequence of resourcerequests and corresponding actions to be taken on acquiring these resources. We havedesigned a basic data structure for storing a component of the sequence. We call thisdata structure as uses node and a simpli�ed version of the structure is shown inFigure 15. The node type signi�es the di�erent kinds of the node. Some of theint node_type;int wait_resource [ MAX_NO_OF_RESOURCES ];int free_resource [ MAX_NO_OF_RESOURCES ];bool (*condition_wait)();bool (*if_condition)();void (*action)();int pre_time;int post_time;int jump; Figure 15: uses node Structurepossible values of node types are SIMPLE, IF, etc. Each resource is identi�ed bya unique number. The identi�ers of resources for which an instruction waits at anytime instant are stored in an array called wait resource. When an instruction movesfrom one state to other it frees the previously held resources and holds new set ofresources. However, in some cases, only some of the the previously held resourcesare freed. In order to implement such behavior, we store the resources to be freedseparately in an array called free resource. The conditional waits are implementedby encapsulating the condition through a boolean function and storing the functionpointer in condition wait variable. The action speci�es the action to be carriedout at this instant. In case of SIMPLE node, the simulator waits for condition waitfunction to evaluate to true and then acquires resources speci�ed in wait resource.Then, it waits for pre time time units to execute action. After action is executed,simulator waits for post time time units before freeing the resources speci�ed infree resource. To correctly implement resource usage model, the simulator �ndsthe next appropriate uses node and makes sure that condition wait of that node32



evaluates to true and the resources speci�ed in that node are available, before freeingthe present resources.Finding next appropriate uses node in the sequence, depends on the type of thesuccessor node. There are �ve node types viz. SIMPLE, IF, JUMP, OR, END OR. Thenext appropriate node is found with help of the algorithm shown in Figure 16. Inint find_next ( int successor ){ switch ( node_type ( successor ) ) {case SIMPLE:return successor;case JUMP:return find_next ( successor + jump );case IF:if ( if_condition() )return successor;else return find_next ( successor + jump );}} Figure 16: Finding next appropriate uses nodecase successor node type is OR, then the node is checked for readiness i.e. whethercondition wait evaluates to true and whether resources speci�ed in wait resourceare available. If successor node is ready then it is considered as next appropriatenode. Otherwise, the node numbered successor + jump is checked for readiness.The node type END OR, denotes the end of ored subsequences. If all the nodes tillEND OR are not ready, then simulator continues to wait in the present state.Simulator keeps a list of instructions and when one instruction gets blocked due toone or more of the aforementioned reasons, the simulator stores the partially simulatedcontext by storing the present node number in the sequence. Then it resumes thesimulation of the next instruction. The present implementation is clock based andresumes with next instruction even though it is blocked.
33



Design - 2In this design, each and every state of a partially simulated instruction is stored ina sequence of integer variables. On resuming the instruction for simulation, thesenumbers are used to make the choice in the nested switch statements. The totalcontext of the instruction is described by nested switch statements generated by thesimulator generator and the sequence of numbers used to restore the context. Theclasses generated for the simple Sim-nML description in Figure 3, chapter 3, looks likethe code in Figure 17. In the code shown in the Figure 17, the resource id functionreturns an integer which serves as the identi�er for the resource whose pointer is usedas the argument on calling the function. The variable state in each class stores thestate information required to restore the context.The uses function returns three kind of values viz. START, WAIT and FINISH.The value WAIT signi�es that the instruction is waiting for some resource or clockand FINISH signi�es that the uses function has �nished. The signi�cance of STARTis discussed below. Implementing if in Sim-nML uses, is straight forward. This canbe done as shown in Figure 18.Implementation of or in Sim-nML uses, is similar to the implementation of if.In case of or, the �rst set of resources are checked for availability. If resources areavailable, then the selection between di�erent alternatives is resolved. In the case ofredirection i.e. x.uses(), if the return value of new uses function is START then thissigni�es that the �rst resource is not available. If resources are not available, thenthe state variable is set to the start of next alternative and loop is repeated with helpof break statement. This is repeated till all the alternatives are exhausted. If allalternatives fail then the state is reset to the starting of the or and WAIT is returned.4.1.2 Capturing Hierarchical StructurenML has demonstrated the power of specifying the instruction set architecture hierar-chically. The hierarchical structuring helps to specify the Resource Usage Model in aconcise and precise manner. Therefore, hierarchy is maintained in Sim-nML. However,at some point of time, the hierarchy should be collapsed to produce at structured34



class plus {int state;...int uses ( ) {int wait_resource [ MAX_NO_OF_RESOURCES ];switch ( state ) {case 0:wait_resource [ 0 ] = resource_id( &execution_unit );if ( ! block ( wait_resource, 1 ) ) return START;state++;case 1:if ( ! clock ( 1 ) ) return WAIT;state++;case 2:return FINISHED;}}};class instruction {int state;...int uses ( ) {int wait_resource [ MAX_NO_OF_RESOURCES ];switch ( state ) {case 0:wait_resource [ 0 ] = resource_id ( &fetch_unit );if ( ! block ( wait_resource, 1 ) ) return START;preact();state++;case 1:if ( ! clock ( 1 ) ) return WAIT;state++;case 2:if ( x.uses ( ) != FINISHED ) return WAIT;state++;...}}}; Figure 17: Using Switch Statements to Restore Context35



int uses ( ){ while ( true ) {switch ( state ) {case 0:if ( retire_reg == 1 )state++;else {state = 3;break;}case 1: //if part...case 2:...case 3: //else part...}}} Figure 18: Implementing Sim-nML if constructdescription of a particular instruction. C++ facilitates e�cient attening of hierarchyeither at compile time or at run time. The compile time attening depends on C++templates and run time attening depends on inheritance polymorphism and C++virtual functions.TemplatizationTo describe how the class hierarchy is generated, we de�ne some terms used, in thedescription below.� Instruction-tree - A tree with and-rules as nodes in the tree. The relationshipsgiven by or-rules and the parameters of and-rules are represented as edges ofthe tree. 36



� and-tree - A skewed instruction-tree produced by and-rules only.� or-tree - A non-skewed instruction-tree that has at least one or-rule. Thebranches due to or-rule will have di�erent images.The class hierarchy is generated with the help of following guidelines. The quality ofcode generated depends on users input.� A class is generated for each and-rule.� If instruction tree of a parameter of an and-rule is an and-tree or if the type ofthe parameter is pre-de�ned type then an object member of that type is created.See Figure 19.� If instruction tree of a parameter of an and-rule is an or-tree then the classis templatized for that parameter. See Figure 19. In Figure 19, to create anmultiply instruction class we will instantiate by,instruction < multiply >Figure 19 shows part of the code generated for the simple Sim-nML description inFigure 3, Chapter 3. Multiple inheritance and parameterization helps to generate thecode precisely and concisely. C++ function inlining feature makes this implementationas e�cient as a non-hierarchical implementation.Flattening using PolymorphismThis method is highly dependent on the inheritance polymorphism supported byC++. In this method, each or-rule is converted into an abstract class which declaresthe polymorphic functions. The class generated for and-rule are derived from theclass generated for the parent or-rule. Figure 20 shows part of code generated for thesimple Sim-nML description in Figure 3, Chapter 3. At the run time, depending onthe opcode, we can decide whether the present instruction is a multiply instructionor plus instruction. If it is a multiply instruction then we can create the object byinvoking instruction class constructor with a pointer to newly created multiplyobject. 37



class plus {...};class multiply {...};template < class T0 >class instruction : public instr_base {private:image_type _image_;T0 x;byte data;public:nml_string syntax ( ) { ... }nml_string image ( ) { ... }void action ( ){ tmp = data;x.action ( );}void preact ( ){ PC = PC + 2;}void uses ( uses_sequence & _u_ ) { ... }instruction ( image_type _img_ = 0, int _start_ = 0 ): x ( _image_, _start_ + 2 ){ int _pos_ = 0;_pos_ += _start_ + 2 + x.image().size() + 1;data = extract_bit_fields ( _image_, _pos_, 8 );_pos_ += 8;}}; Figure 19: Templatized Class Hierarchy Generated
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class binaction {public:virtual nml_string syntax ( ) = 0;virtual nml_string image ( ) = 0;virtual void action ( ) = 0;virtual int uses ( ) = 0;};class plus : public binaction {...};class multiply : public binaction {...};class instruction {binaction & x;....public:...instruction ( binaction * b, image_type _img_ = 0,int _start_ = 0 ) : x ( *b ){ ...}}; Figure 20: Class Hierarchy Using PolymorphismThe disadvantage of templatization method is that the generated object code sizeexplodes as the classes are instantiated and the hierarchy is attened. The disadvan-tage of polymorphism method is that invoking nested calls of virtual functions leadsto high performance overhead. We hope the hybrid model will work the best. But,selecting an alternative approach in hybrid model should employ some hierustic.4.2 Implementation of Simulator GeneratorThe objective of simulator generator is to generate C++ class hierarchies with usesfunction de�nitions from Sim-nML speci�cation of a processor model. This constitutes39



the �rst phase in simulator building e�ort. Once the class hierarchies are generated,these classes can be linked with other generic simulator libraries to produce a com-plete simulator. The simulator generator is implemented in three phases. Below, wedescribe the objective and implementation of each phase.4.2.1 Phase 1 - Gathering Hierarchical InformationThe objective of this phase is to construct the op-rule tree, �nd the type of thesubtrees, structure the tree data so that it will be useful in code generation stage andto �nd the type of the simple expressions. The structured tree data is written to anintermediate �le. This �le is taken as the input along-with the Sim-nML descriptionduring the code generation stage.Sim-nML attribute can be a function, for example, an action attribute, or can bean expression. The expression attributes can be implemented as functions returningthe value of the expression. Since, C++ is a strongly typed language, the type of thereturn value should be declared, Therefore, type detection of attribute expressions areimportant. The �rst phase is useful for detecting the type of the simple expressionsop add_immediate_carry ( x : add_immediate )value1 = carry_flag + x.value2...op add_immediate ( data : card ( 8 ) )value2 = data... Figure 21: Type of Attributessuch as value2 in Figure 21. But, the type of value1 in Figure 21 can not be detectedas this depends on the type of value2.4.2.2 Phase 2 - Type DetectionThe main objective of this phase is to detect the type of expressions for which it isunknown. The intermediate �le produced by the Phase 1 is taken as an input to40



this phase along-with the Sim-nML description and an intermediate �le of the sameformat as in Phase 1, is generated as output. For example, in Figure 21, since thetype of value2 is known already, the type of value1 can be detected in this phase.This phase is repeated till the type of all attributes are found.4.2.3 Phase 3 - Code GenerationThis phase takes the intermediate �le generated by the Phase 2 and the Sim-nMLdescription as input and generates the C++ class hierarchies as described in Section4.1. The present implementation follows the design described in Design - 1 of Section4.1.1 to generate a sequence of uses nodes and uses templatization to atten theinstruction hierarchy. In addition, this phase generates a decode �le which will behelpful for creating appropriate instruction objects. The decode �le for the examplein Figure 3, Chapter 3, is shown Figure 22. In the decode �le, * indicates don't care,11000000******** 111000001******** 2 Figure 22: Decode Filei.e., either of 0 or 1 can match for *. From the decode �le, it is easy to generate theopcode and the opcode mask. The numbers opposite to each opcode �eld is usefulto jump to proper location using a switch statement. The opcode �le in conjunctionwith a decoding function which is generated along-with the class hierarchy, is usefulto create appropriate instruction object and the sequence of uses nodes. Figure 23,shows the code generated for decode function for the Sim-nML description in Figure3, Chapter 3. In Figure 23, pair< instr base*, uses sequence* > indicates astructure containing two pointers and image choice is nothing but the number gotfrom decode �le. The code generation phase generates the C++ template classes andwrites it to an include �le. This �le is included wherever the class de�nitions arerequired. C++ compiler instantiates the required classes and functions during thecompile time. 41



pair< instr_base*, uses_sequence* >init_instr ( int image_choice, image_type image ){switch ( image_choice ) {case 1: {instruction< plus > *ptr;ptr = new instruction< branch_instr > ( image );uses_sequence * uses_ptr;uses_ptr = new uses_sequence;ptr -> uses ( *uses_ptr );pair< instr_base*, uses_sequence* > p ( ptr, uses_ptr );return p;}case 2: {instruction< multiply > *ptr;ptr = new instruction< multiply > ( image );uses_sequence * uses_ptr;uses_ptr = new uses_sequence;ptr -> uses ( *uses_ptr );pair< instr_base*, uses_sequence* > p ( ptr, uses_ptr );return p;}}} Figure 23: Decode Function4.3 Implementation of nML Type SystemWith C++'s extensible type system, it is easy to implement nML types. The nML cardtype is implemented with the unsigned long data type of C++. The nML int type isimplemented with the long data type. At present, the size of nML types are restrictedby the size of long which is machine dependent. The type of result of an operationis decided by the rules described in nML[2] speci�cation. The carry generated byan immediate operation is stored in a global variable named GLOBAL CARRY . Thepresent implementation emulates oat with the help of C++'s double and float.Therefore, oat of sizes other than C++'s float and double are not supported.nML's �xed point types are emulated with the same sized card types.42



4.4 Generic Simulator LibraryThe present implementation of generic simulator library contains routines to imple-ment a cycle based simulator. The library implements a resource manager whichkeeps track of the blocked resources. The library provides functions to block andfree a sequence of resources. The library maintains a list of active instructions. Ineach clock, fetch instr function fetches the instruction pointed by PC. Then thefetch instr function decodes the image with the help of the decode �le to �nd thevalue of image choice variable in init instr function as shown in Figure 23. Afterdecoding, the appropriate instruction class and the corresponding uses sequence isbuilt with the help of init instr function. If the �rst set of resources used by aninstruction are available, then the newly fetched instruction is added to the activeinstruction list. Otherwise, the instruction is dropped. The instruction fetch oper-ation is repeated till the fetch instr fails to add a new instruction to the activeinstruction list due to non-availability of �rst set of resources. After fetch is stopped,each instruction in the active list is clocked. The clocking is done in FIFO order. Thisimplements the Sim-nML semantics that the resources are allocated in FIFO ordercorrectly.
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Chapter 5
Results and Conclusion
In this chapter, we describe some experimental performance models speci�ed in Sim-nML. We describe the way to generate performance simulator from Sim-nML speci-�cation and discuss the performance issues of generated simulator. We then give abrief conclusion to our work and give some guidelines for future work.5.1 Performance Models with Sim-nMLAs part of the thesis work, we developed performance models for two processors usingSim-nML. The �rst one is a performance model of a hypothetical superscalar processoremploying branch prediction to reduce branch penalties. The Sim-nML speci�cationfor this model is described in Chapter 3. The second one is a performance model ofa DEC Alpha 211064 processor. We have modeled only a partial set of instructions.This set is su�cient to encode applications such as bubble sort.5.1.1 Generating Performance SimulatorThe complete procedure to generate a performance simulator from Sim-nML speci-�cation is encapsulated into a shell script. When this script is run with Sim-nMLspeci�cation �le as argument, the various phases of simulator generator are executedsequentially. These phases create some intermediate �les to pass the information to44



the next phase. The �nal phase of the simulator generator generates the templateclasses, decode �le, decode function as described in Chapter 4. The generated code islinked with the generic simulator library to obtain the performance simulator.5.1.2 ResultsHypothetical Superscalar ProcessorThe hypothetical superscalar processor model was tested with a small loop whichmultiplies the nonzero initial value of Count register with 4 and adds 3 to it. Theresult is accumulated in AC. The assembly code for this small program is shownin Figure 24 When simulation is done, in each loop the conditional branch at line1 add 32 loop: add 43 dec_count4 brnz loop5 add 0 #NOPFigure 24: Multiplication By Additionnumber 4 is predicted. The model uses always taken branch prediction policy. Whenbranch is mispredicted the branch error exception is invoked and the instruction thatis fetched from the wrong path, i.e., add instruction at line 2, is disabled from writingthe accumulator. Thus, the value is correctly computed.The generated simulator can simulate about 500 instructions per second. Atpresent, the generated performance simulator captures partial simulated instructioncontext using uses node as described in Method - 1 in Chapter 4. Moreover, theuses node list for an instruction is constructed whenever the instruction enters theprocessor pipeline. For example, if loop mentioned above is simulated 1000 timesthen uses node list for dec count is constructed for 1000 times. This leads to heavyperformance penalty.
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We experimented by changing the generated code by hand and removed the afore-mentioned penalty. The instrumented simulator simulates upto 3000 instructions persecond. In search of improving the performance, we changed the generated code byhand in such a way that it captures the partially simulated instruction context instate variables as described in Method - 2 in Chapter 4. The simulator thus generatedsimulates upto 4000 instructions per second.Alpha ProcessorThe Alpha processor model is tested with the help of a bubble sort program whichsorts an array of 100 unsigned numbers. The program is written in the assembly.The instructions used in this program are modeled. The model includes the hierar-chical memory system and TLB lookahead. The unresolved conditional branches arepredicted with always taken policy. The generated simulator simulates around 400instructions per second.5.2 ConclusionThe ever-increasing complexity of modern processors and the growing trend towardsspeci�cation driven system design automation has necessitated design automationtools with high level of abstraction. Performance modeling plays a major role in thespeci�cation driven system design. The level of abstraction provided by conventionallanguages such as C, VHDL etc. is not su�cient for fast prototyping of performancemodels and its simulation.In this thesis work, we developed a language Sim-nML which is helpful for per-formance modeling. Sim-nML is essentially an extension of nML machine descriptionformalism. It is simple, elegant and powerful enough to model machine behavior atinstruction level. Sim-nML is capable of specifying the control ow in a clear wayusing resource usage model. Sim-nML language can be used for automatic generationof compilers, assemblers, disassemblers, instruction set simulators.As part of the thesis work, we have designed and implemented an instruction set46



simulator generator which is helpful as performance analysis automation tool. Thissimulator generator takes Sim-nML speci�cation as input and generates C++ codefor performance simulator. The generated code is powerful enough to emulate theinherent parallelism of complex modern processors.We have demonstrated the power of the Sim-nML speci�cation and the simulatorgenerator with the help of experimental performance models. Although these modelsare quite small comparing to practical systems, these models capture most of thecomplex concepts such as branch prediction present in modern practical systems.5.3 Future WorkThe following future work can be undertaken as an extension to this project. Allthese extensions center around further improving the performance of the generatedsimulator.i. Hybrid Simulator - The state of art performance simulators can simulate around10,000 to 20,000 instructions per second. At present, generated simulator isentirely cycle-based. Further, a simulator that implements only event-basedsimulation will incur high overhead due to event-management because instruc-tions frequently lock the resources for one unit of time. We can improve theperformance if we resolve to hybrid approach in which a waiting list of instruc-tions is maintained for some resources which are locked frequently for morethan one clock cycles. These resources can be found statically from Sim-nMLspeci�cation.ii. E�cient Flattening of Hierarchy - Both approaches described for attening thehierarchy in Chapter 4, viz. Templatization, Polymorphism, have advantagesas well as disadvantages. Therefore, if a hybrid approach is used which mainlycaptures the advantages of both of these approaches then this will be helpful inboosting the performance of the simulator.iii. Multiple Performance Models - At present, the generated simulator simulates asingle performance model. In practice, it is desirable to have more than one47



model. For example, two performance models, �rst model which is fast anddoes not include features such as pipelining, is useful at the beginning of thesimulation to warm up the caches. While the second model is slow and simulatesall architectural details to perfection, is useful to analyze the design from aninteresting point.
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