A Generic Approach to Performance Modeling and Its Applica-
tion to Simulator Generator

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

V. Rajesh

to the

Department of Computer Science & Engineering

INDIAN INSTITUTE OF TECHNOLOGY KANPUR
August, 1998

Certificate

Certified that the work contained in the thesis entitled
“ A Generic Approach to Performance Modeling and Its Ap-
plication to Simulator Generator”, by Mr.V. Rajesh, has been
carried out under my supervision and that this work has not

been submitted elsewhere for a degree.

Dr. Rajat Moona
Associate Professor,
Dept. of Computer Science and Engineering,

I[IT Kanpur.

August, 1998

i1

Abstract

An integrated environment for performance modeling is desirable in the present era of
specification driven system design. With the complexity and the number of processors
increasing rapidly, it is important to have a generic environment wherein the perfor-
mance can be measured for a given processor on a given application. In this thesis,
a simple, elegant and powerful language Sim-nML has been designed for performance
modeling. Sim-nML acts as the specification language for a processor performance
model in a generic way. As part of this thesis work, a generator for processor in-
struction set simulator is designed and implemented. The simulator generator takes
Sim-nML specifications of a uniprocessor machine as input and produces code for the
simulator. The performance simulator thus generated is an important tool in system
design environment as it is useful to study the performance impact due to various

design trade-offs.

Acknowledgments

The greatest debt of gratitude, I reserve for Dr. Rajat Moona who guided me at
every stage of this project with his perspicacious suggestions, whose qualities have
attracted me a lot. I thank the almighty for giving such a brotherly figure as my
guide.

This work is done as a part of the ongoing research in Cadence Research Centre at
IIT Kanpur. I express my gratitude to Cadence India Ltd. for their enduring support

to this work, without which it must have been very difficult to complete this work.

I express my heart-felt thanks to all the faculty members for teaching the principles
in most exciting and enjoyable way. [wish to thank my old teachers Dr. B. D.
Chaudry, Dr. Krishna Kant and Miss Shantha Alis for being the source of inspiration
for me. I wish to express my gratitude to Mr. Sakthi Shankar and Mr. Brahmaji

Rao, for helping me out in crucial situations.

[am greatly indebted to my MTech friends Kataru, Dhanabal, Ramaswamy, Raja,
Balaji, Gomes, Murali, Joye, Senthan, Venkat and all my BTech friends especially
Aravindan, Nori, Ravi, Anand Kammanavar, Madan, Visu, Ezhil and Thambies for
being affectionate and encouraging. Without them my college life must have got
deserted. I thank all my MTech96 batch-mates especially Yugandhar, Kshitiz, Atul
for their exciting company. Finally, [wish I could express my thankfulness in words,
to my parents, my family, Pavithra and Sahana for their love and affection 1 have

been receiving.

Contents

Acknowledgments i
1 Introduction 1
1.1 Motivation L 2
1.2 Overview of Related Work 3
1.3 Goals Achieved 3
1.4 Organization of Report 4

2 Performance Analysis 5
2.1 Salient Features of Modern Microprocessors 5)
2.2 Simulation Methodso 7
2.2.1 Depending on Resource Management 7

2.2.2 Depending on Instruction Sequence 8

2.3 A survey of Performance Analysis Tools 9
2.3.1 Alpha Microprocessor Model 9

232 SimOS 9

233 VMW . . 9

234 nML ..o 10

3 Sim-nML Syntax and Semantics 13

i1

3.1 Resource Usage Model 13

3.2 Specification of resource usage model using uses attribute 15
3.2.1 Uses Grammar 15
3.2.2 Implicit Parallelism 19
3.2.3 Specification of Feed Forwarding 21
3.2.4 Specification of Memory Hierarchy 21
3.2.5 Exception Declaration 21
3.2.6 Instruction Identification 24
3.2.7 Initial State and reg Declaration 24

3.3 Specification of Superscalar Processor and Branch Prediction 25

Implementation 30

4.1 Design of Simulator o000 L 30
4.1.1 Capturing Machine State 31
4.1.2 Capturing Hierarchical Structure 34

4.2 Implementation of Simulator Generator 39
4.2.1 Phase 1 - Gathering Hierarchical Information 40
4.2.2 Phase 2 - Type Detection 40
4.2.3 Phase 3 - Code Generation 41

4.3 Implementation of nML Type System 42

4.4 Generic Simulator Library 43

Results and Conclusion 44

5.1 Performance Models with Sim-nML 44
5.1.1 Generating Performance Simulator 44
5.1.2 Results. 45

5.2 Conclusion 46

il

5.3 Future Work

v

Chapter 1
Introduction

In design applications for embedded controllers, specification driven design automa-
tion is gaining momentum. It provides a fast turn-around and lead time to market
a product. For this design automation, system designers need modeling tools with
high level of abstraction. With ever-increasing complexity of the processors and with
growing number of special purpose processors, it has become even more important to
have modular and generic modeling tools. In addition, the system designers need an
integrated environment which allows them to assemble, compile, simulate and analyze
the performance of various alternatives of the new design. Such an environment is

essential to study the impact due to various software - hardware codesign trade-offs.

Toward this end, designers are using languages such as C, VHDL and Verilog. The
difficulty in using these languages is that the level of abstraction provided by these
languages doesn’t allow rapid prototyping. Moreover, it is convienient to have one
processor model for various applications such as simulation, assembler and disassem-

bler generation and compiler back-end generation.

In this thesis, we have designed a language Sim-nML for processor modeling. The
uniprocesor model developed with Sim-nML is helpful to generate processor specific
tools such as assembler, disassembler, simulator etc., which form the core of design
environment. We have also implemented an instruction set simulator generator. The
generator takes Sim-nML specification as input and provides instruction set simulator

in C as output. Sim-nML is primarily an extension of the nML[2] language.

1.1 Motivation

In accordance with Moore’s law which states that processing power doubles ever
18 months, modern microprocessors are achieving phenomenal performance levels
due to the advances in several enabling technologies. The increase of performance
comes with greater complexity. The colossal complexity of modern microprocessors is
attributed to various factors such as multiple functional units, out-of-order execution,
branch prediction etc. The design of such complex superscalar processors requires
the use of sophisticated software tools. Designers use functional and performance
simulators to validate the functionality and to assess the performance of the processor
for a given application. Typically, these tools are implemented using programming
languages such as C, VHDL, etc., which requires enormous effort. Given an integrated
environment in which it is easy to model uniprocessors this effort can be reduced

significantly.

The complexity of microprocessors and the heavy market competition has led
to several changes in system design process. The performance of the system not
only depends on the microprocessor, but the external components such as caches,
memory hierarchy etc. Nowadays, ad hoc system design techniques do not work
because the success of the product depends on the performance of system with specific
applications. A systematic design process starts with selecting the application and
involves writing a model that measures performance of the system, testing the system,
analyzing the results and refining the model to enhance performance. In this process,
the model undergoes several changes till the desired performance is achieved. This
systematic approach necessitates an environment which facilitates, incorporating the

model changes and testing the model rapidly.

The systematic approach not only requires performance models, but also a set of
tools which will facilitate compiling/assembling the applications. For example, if the
instruction set architecture is under design and requires frequent changes then this
necessitates reimplementing the assemblers and compilers. Therefore, it is desirable
to have an environment where changes to the design are made at one place and the
corresponding changes in other tools are automated. nML is an extensible machine

description formalism and helpful to automate the generation of compiler, assembler,

disassembler and instruction set simulator from single specification. But, nML is not
powerful enough to specify performance models due to lack of clear abstraction for
specifying the control flow. This motivated us to extend nML to specify performance
models so that it can be used to generate performance simulator in addition to the

aforementioned tools.

1.2 Overview of Related Work

Automation tools for performance modeling of complete system is a growing area
and enough research has been pursued in this area. These previous works has re-
sulted in a set of performance modeling tools. Visualization Based Microarchitec-
ture Workbench (VMW)[1] is an infrastructure which facilitates the specification of
instruction set architecture and microarchitecture of a machine in concise manner.
VMW provides a powerful environment for processor design. SimOS[3] project aims
at providing a complete machine simulation environment which allows to run op-
erating systems on simulated machine. This facilitates to analyze the performance
under multiprogramming. Other than these complete machine simulation environ-
ments, many performance models exist for analyzing the individual components such
as processors, caches etc. The processor performance model for Alpha processor is
described in [6] and that for PowerPC is described in [5]. The cache performance
models can be found in [9], [10]. In addition, there are herd of tools developed to
speed-up the performance evaluation. This include execution profiling tools such as
ATOM][7], Aint[4], etc. In Chapter 2, some of these works which are highly related to

the work done in this thesis, are described..

1.3 Goals Achieved

In this thesis work, we aimed at developing an environment for performance modeling.
The development of a complete integrated environment is in progress. The goals

achieved in this thesis work are listed below.

e Resource Usage Model is a technique developed to abstract the control flow of

instructions through pipelines.

e Sim-nML language is developed to specify the performance models with the help

of resource usage model.

e Processor Instruction Set Simulator Generator is designed and implemented. The
simulator generator takes Sim-nML specification as input and produces C++[8]

code for simulator.

e A Hypothetical Superscalar Processor Model is specified in Sim-nML and the per-
formance simulator is generated using simulator generator. This generated sim-

ulator runs at a speed of 4,000 instructions per second.

1.4 Organization of Report

The rest of the thesis is organized as follows. In Chapter 2 we give an overview of
the performance models and examine some of the models designed in various projects
worldwide. In Chapter 3, we describe the syntax and semantics of the Sim-nML. In
Chapter 4 we describe the implementation of simulator generator which takes Sim-
nML as input and produces C++ code for simulator. Finally we conclude in Chapter

5 and provide the results. We also enumerate possible future work in this area.

Chapter 2
Performance Analysis

In the early stage of the system design, executable specifications are converted to
hardware and software components. In order to do so, the specifications are parti-
tioned into two, what can be implemented in software, and, what needs to be im-
plemented in the hardware. This objective of partitioning is essentially dependent
on the processor used and the software, whether it can meet the real-time deadline
or not. Such systematic approach to system design involves repeated performance
testing and analysis. In this chapter, we discuss the salient features of modern mi-
croprocessors, their simulation techniques and survey some of existing performance
analysis tools. We then provide a brief introduction to nML which has been extended
to specify performance model and provide performance simulation capabilities in this

thesis.

2.1 Salient Features of Modern Microprocessors

Modern microprocessors employ many performance enhancement techniques to boost
their performance. However, inclusion of these techniques have increased the com-
plexity of the microprocessor architecture substantially. While the general purpose
microprocessors are reaching 600-MHz clock speeds, the number of transistors are
touching 10 millions. On the other hand, the number of special purpose embedded

system processors are increasing rapidly. With such a phenomenal hardware available

within a chip, many architectural techniques are being implemented in the hardware.
Below, there is a list of some of architectural performance enhancement techniques

used in high performance microprocessors today.

e Pipelining is the most basic technique used for performance enhancement.

This facilitates execution of multiple instructions in overlapping fashion.

e Multiple Functional Units are helpful for executing more than one instruc-

tion simultaneously.

e Branch Prediction - Conditional branches are the main bottleneck for deep
pipelines because target address for the next instruction fetch is not available
till the branch is resolved. This has led to the development of branch prediction
technique by which the target address is predicted early in the pipeline. In case

of misprediction the pipeline is flushed out.

e Register Renaming is helpful to reduce the pipeline stalls due to data depen-

dencies between instructions.

e Feed Forwarding is a technique by which a computed value is forwarded
directly to other unit in the pipeline which requires it even before the value is

written to the destination register.

e Out-of-Order Execution is a technique used to dynamically reschedule the
instructions according to the availability of the resources. For example, if a float-
ing point instruction follows an integer instruction and the integer instruction
could not be issued because integer unit is busy, and the floating point unit is

free then the floating point instruction will be issued before integer instruction.

e Data Prediction is a technique used normally to predict the branch target
addresses in case of indirect branches where the target address is obtained from
register. If the register containing the target address is being modified by some
of the instruction down the pipe then the target address is predicted using either

history or some clue from user.

e Conditional instruction is a technique used to reduce the number of condi-

tional branches. In most of the cases, the body of conditional branches contain

only very few instructions. Under this technique, the instructions in the body
of the conditional branch, are converted to conditional instructions and the con-
ditional branch is removed. A conditional instruction is executed even though
the value of the condition flag is not known, but the result is written if-and-
only-if the condition is true. If condition turns out to be false, then the effort
for executing the instruction goes waste. But, the effort loss is very less com-
pared to the pipeline flush in case conditional branch is used and the target is

mispredicted.

2.2 Simulation Methods

The colossal complexity of modern processors due to the aforementioned performance
enhancement techniques, makes the simulation a time consuming process. However,
it is essential to develop a fast simulator which will be just order of magnitude slower
than the original processor. This is not a simple task to achieve and many techniques
are developed to speed-up the simulators. Below, we classify the simulation methods

according to the technique employed.

2.2.1 Depending on Resource Management

8 Cycle Based Simulation

In cycle based simulation, a simulator clock is maintained which is analogous to the
processor clock. In each simulation cycle, all active instructions, are simulated serially.
For each instruction the availability of the next set of resources such as the next stage
in the pipeline, is explored. If resources are available then the instruction is marked
active for the next cycle. This process stops when a resource becomes unavailable for
the next cycle or when the instruction is simulated completely to the end. The main
disadvantage of this approach is that considerable effort is put in each simulation
cycle for checking the availability of the next set of resources used by an instruction
when they are not available. The major advantage of this method is the simplicity

in implementation.

g Event Based Simulation

This method overcomes the aforementioned disadvantage of cycle based simulation
by maintaining a list of instructions waiting for a particular resource. The waiting
instruction is resumed for simulation as soon as the resource becomes free. Thus, at
each simulation cycle the checking of enabled instructions is eliminated. However, this
method requires an additional complexity of maintaining a list of waiting instructions.
It is apparent that if instructions wait frequently for the resources for more than one

clock cycle, then this method outperforms cycle based simulation.

2.2.2 Depending on Instruction Sequence

8 Execution Driven Simulation

In this method, the actual functionality of the instruction is simulated in addition to
the simulation of flow of instructions through the processor pipelines. The dynamic
sequence of instructions is obtained by resolving branches with the help of user inputs.
The main disadvantage of this approach is that this simulation is slow. The main
advantage of this approach is that the model is tested for its functionality as well as

its performance.

g Trace Driven Simulation

In this method, developers run an instrumented version of the program with the help
of a simple instruction set simulator[4] (without pipelining and timings) to obtain a
time sequence of instructions. If a prototype hardware already exists, then the time
sequence of instructions can be obtained by running the instrumented version on the
prototype[6]. For example, 80486 can be used as a prototype for Pentium, This time
sequence is referred to as trace which is fed to a fast simulator which only models the
pipeline flow. These simulators are relatively fast because they do not emulate the
actual functionality. Stand-alone trace analysis tools are available for generation of
traces and these facilitate fast performance analysis. The simulation done after trace

generation is called Trace driven simulation. The main disadvantage of this approach

is that it is hard to validate the model as results are not produced.

2.3 A survey of Performance Analysis Tools

2.3.1 Alpha Microprocessor Model

Digital Equipment developed a performance model[6] for evaluating the Alpha proces-
sor. In this model, the runtime traces are collected with the help of a tool called
Atom[7]. Then these traces are fed to a performance modeling tool which is imple-
mented in about 50,000 lines of C code. The performance modeling tool simulates
about 10,000 to 20,000 instruction traces per second. The performance modeling tool

provides logging facility and graphical interface to view the outputs.

2.3.2 SimOS

SimOSJ[3] is an ambitious project with the objective of simulating the complete hard-
ware in enough detail to run system software including commercial operating systems.
In SimOS, each hardware component is modeled by a set of simulation models which
differ in their timing accuracy and speed. SimOS allows to interchange simulation
models at runtime. The current version of SimOS has two performance simulation
models, viz., Mipsy and MXS for MIPS CPU. Mipsy is a simple pipeline model and
MXS is complex dynamically scheduled processor model. MXS can only simulate on
the order of 20,000 instructions per second. Because of this slow simulation speed,
Mipsy, which is an order of magnitude faster is used to warm up the caches before

switching into MXS.

2.3.3 VMW

VMW]1] is a visualization based microarchitecture workbench developed in Carnegie
Mellon University. In VMW, a machine is specified by five different specification files.

These files describe the syntax, semantics and timing of the instructions and the

microarchitecture of the processor. Using these specification files and the VMW in-
frastructure a performance simulator can be generated. The VMW infrastructure is
implemented in C++ as a class structure hierarchy and supports trace driven simula-
tion. The simulation is performed by executing the machine behavior code specified
by the user. This machine behavior code describes the control logic used to process the
instructions through the pipeline stages. The machine behavior code interacts with
the VMW infrastructure class hierarchy for extracting the syntax and semantic infor-
mation from other specification files, managing long traces, managing the resources

etc. VMW infrastructure provides extensive visualization tools for user interface.

2.3.4 nML

nML [2] is an extensible formalism targeted for describing arbitrary single processor
computer architecture. nML works at instruction set level and hides the implemen-
tation details. In nML, the instruction set is enumerated by an attribute grammar!.
The semantic action of any instruction is composed of fragments that are distributed
over the whole specification tree, i.e., the common behavior of a class of instructions
is captured at the top level of the tree and the specialized behavior of sub-classes are

captured in the subsequent lower levels.

g oML Grammar

nML grammar has a fixed start symbol namely instruction and two kind of produc-

tions namely, or-rule which looks like,

op n0 = nl | n2 | n3 |

and and-rule which looks like,

!An attribute grammar is a context free grammar in which for each non-terminal a fixed set of
attributes and for each production a set of semantic rule is given. In nML grammar, all non-terminals
have to have derivations. So, we don’t differentiate between productions and non-terminals.

10

op n0 (p1 : t1, p2 : t2, ...)
al = el a2 = e2

where each ni is a non-terminal and each ti is a token. Each ai is an attribute
name and ei their respective definition. The pi are names of the parameters used in

the attribute definitions.

nML grammar pre-defines three attributes namely syntaz, image and action. The
syntax attribute describes the textual syntax of the instruction. The image attribute
describes the binary coding of the instruction and action attribute describes the

semantics of an instruction.

The nML description in Figure 1, is that of a simple machine with two instructions,
the add instruction which is used to add an argument to the accumulator AC and,
the multiply instruction which is used to multiply the accumulator AC to the argu-
ment. The register PC has special semantics and points to the next-to-be-executed

instruction.

In most of the processors, addressing modes and instructions are orthogonal to
each other. Therefore, describing an instruction with each of the possible addressing
modes explode the size of the description. Therefore, nML separates addressing mode
description. For example, register addressing mode can be described as shown in

Figure 2.

In addition, nML supports macros and declarations for types and constants. This

enhances the clarity of the description.

nML formalism helps in describing the processor concisely and precisely. nML
description of a processor can be used as input to various tools such as assembler
and disassembler generators, compiler back-end generators and general purpose in-
struction set simulators. However, nML lacks control flow constructs and cannot be
used for describing the inter-instruction dependencies. Further, it is not possible to
specify the timing for various operations. Therefore, it is not possible to use nML for

performance estimation.

11

card (32)
card (8)

type addr
type byte

mem AC [1, byte]
mem PC [1, addr 1]

op plus ()
syntax = "add"
image = "000000"

action = { AC = AC + tmp; 7}

op multiply ()

syntax = "mult"
image = "000001"
action = { AC = AC * tmp; 7}

op binaction = plus | multiply

op instruction (x : binaction, data : byte)
syntax = format ("Y%s %d", x.syntax, data)
image = format ("11%6b %8b", x.image, data)

action = {
PC = PC + 2;
tmp = data;
x.action;

Figure 1: nML Specification for a Simple Processor

mode REG (n : card (5)) =A [n]
syntax = format ("%d", n)
image format ("%5b", n)

Figure 2: Register addressing Mode Specification

12

Chapter 3
Sim-nML Syntax and Semantics

In this chapter, we describe Sim-nML language which can be used for high level
performance modeling. We first describe the resource usage model which is the basic
philosophy behind the design of Sim-nML. We then describe the syntax and semantics
of uses attribute, which helps to specify resource usage model. Finally we conclude
this chapter with specification of a simple superscalar processor and branch prediction,
in Sim-nML.

3.1 Resource Usage Model

As seen earlier, nML formalism is not useful for performance modeling. This is mainly
because of the lack of a mechanism to specify the control flow. Therefore, we extend

nML, by abstracting out the control flow with the help of resource usage model.

The resource usage model is based on the fact that at any instant, an instruction
in execution, holds a set of resources and performs some action. The resources held

by the instruction and the action taken change progressively, in time.

In resource usage model, a resource is an abstraction of a piece of hardware such
as a register, ALU, a functional block, etc. for which instructions contend. The
control flow is simply a way of resolving conflicts due to contention. In our model,

we can use one of the two methods to specify control flow. The first method is to

13

specify the time units for which each of the acquired resource is used and the second
method is to specify a condition which should be true to proceed further. This model
resembles the actual behavior of microarchitectures and facilitates the specification

of microarchitecture of the processor at a higher level of abstraction.

For example, consider our simple processor described in the Chapter 2. We
model the processor with three pipeline stages, viz., fetch_unit, execution_unit
and retire_unit. The Sim-nML specification of the processor is given in Figure
3. It specifies that all instructions first use the fetch_unit for one unit of time.
The instructions then use the execution_unit for the duration dependent on the
instruction and then the retire_unit for one unit of time. The add instruction
uses the execution_unit for one time unit whereas the multiply instruction uses the
execution_unit for three time units. The token action at the end of uses specifies
that after the specified resources are used for the specified duration, the function
specified in action attribute is performed. The resources declaration is used to
declare the functional blocks such as the fetch_unit, the execution_unit and the
retire_unit. The description of actual functionality of these resources is not in
the scope of Sim-nML formalism and is hidden. The declaration reg is same as mem

declaration and is described in Section 3.2.7

The primary extension made to incorporate resource usage model in nML is, the
addition of a new pre-defined attribute uses. The uses attribute is used to describe
the resource usage model and the control flow of an instruction. The exact syntax is

shown in Section 3.2.1.

The unit of time can be thought-of as similar to the machine clock cycle although
it is not a restriction imposed by Sim-nML. However, sub-unit timings are not allowed.
In a nut-shell, if unit of time is same as machine clock cycles then we can estimate

the number of clock cycles taken by a program to complete.

14

resource fetch_unit, execution_unit, retire_unit

card (32)
card (8)

type addr
type byte

reg AC [1, byte]
reg PC [1, addr]

op plus ()

syntax = "add"

image = "000000"

action = { AC = AC + tmp; 1}

uses execution_unit #1

op multiply ()

syntax = "mult"

image = "000001"

action = { AC = AC * tmp; }
uses = execution_unit #3

op binaction = plus | multiply

op instruction (x : binaction, data : byte)

syntax = format ("Y%s %d", x.syntax, data)

image = format ("11%6b %8b", x.image, data)

action = { tmp = data; x.action; }

preact = { PC = PC + 2; }

uses = fetch_unit : preact & #1, x.uses, retire_unit #1 : action

Figure 3: Sim-nML Description of the Simple Processor

3.2 Specification of resource usage model using uses

attribute

3.2.1 Uses Grammar

The uses attribute is the key construct in describing the resource usage model. The

context free grammar for uses definition is given Figure 4 and 5.

15

uses—-attr:
uses = uses-def

uses-def:
uses-or-sequence
uses—-def , uses-or-sequence

uses-or-sequence:
uses—if-atom
uses-or-sequence | uses-if-atom

uses-if-atom:
uses—-indirect-atom
if boolean-expr then uses-indirect-atom
if boolean-expr then uses-indirect-atom
else uses-indirect-atom

uses—-indirect-atom:
uses—and-atom
token . uses
(uses-def)

uses—and-atom:
uses—cond-def-atom
uses—action—-atom
uses—action-atom & # time

uses-action-atom:
uses-cond-def-atom : token
uses—-cond-def-atom : token . token

uses-cond-def-atom:
uses—-def-atom
uses—cond—-atom

Figure 4: uses Grammar

16

uses—def-atom:
time
token # time
token-and-1list
token-and-list & # time

token-and-1list:
token
token-and-1list & token

uses-cond-atom:
token relop token
token relop constant
" token " (token-list)

token-list:
token-list-part
token-1list , token-list-part

token-list-part:
token
token . uses

relop: one of
== < >

b b b <=’ >= !=

Figure 5: uses Grammar (Cont.)

Although the grammar seems to be very complex and very restrictive, it is simple
and powerful enough to specify the resource usage model of modern processors. The
grammar is designed carefully to avoid semantic gaps as much as possible. There are
some compromises made in terms of length of the grammar for attaining semantic

precision.

In resource usage model, a set of resources are acquired by an instruction and the
resources are held till the next set of resources are available. When the first instruc-
tion after the pipeline flush enters the pipeline all the resources are immediately avail-

able. Therefore, to control the flow of instructions, it is also necessary to specify the

17

time for which each resource is held. For example, fetch_unit #1, execution_unit
#1, retire_unit #1 means that at first the fetch_unit is acquired. Although,
execution_unit is available immediately, the instruction waits in fetch_unit for
one time unit before acquiring the execution unit. Then, it holds execution_unit
for one time unit. Before completion, it acquires retire_unit and holds it for one
time unit. In some cases, it is not possible to specify the resource hold times statically.
The instruction has to wait till a condition becomes true. For example, to model in-
order-retirement of instructions, an instruction before completion should wait till the

completion of all the instructions that precede it. For more explanation see Figure 7.

In the grammar shown in Figure 4, uses-cond-def-atom describes a set of re-
sources and the time duration for which these resources are used or a condition for
which the instruction waits to become true. Hereafter, we use the term resources to
represent the resources which an instruction needs to proceed further as well as the
condition for which an instruction has to wait. The comma (,) signifies the sequenc-
ing of the usage of resources. For correct implementation of the resource usage model
semantics that an instruction holds a set of resources at any instant, it should be
made sure that the next set of resources is available before freeing the already held

resources.

The and (&) operator is used to represent a set of resources all of which are used
simultaneously. For example, execution unit & AC & #1 means that the instruction
needs to acquire execution unit and AC and having acquired that, it holds on to
them for 3 time units. The syntax "token #time" is same as "token & #time".
Different alternatives are provided to increase the readability of description. The
grammar does not allow specifying more than one hold time for the same set of
resources. For example, it is not possible to specify execution_unit & #3 & AC &
#1. This specification is ambiguous because it is not clear whether the resources are

held for 3 time units or one time unit.

The colon (:) operator is used to specify the instant at which an action should be
carried out. An instant in resource usage model is relative to the time of acquiring
a set of resources. For example, fetch unit : preact means that the function
specified in preact attribute should be performed after acquiring fetch_unit and

retire_unit #1 : action means that the function specified in action attribute

18

should be performed one time unit after acquiring retire_unit.

The or (||) operator signifies that any one of the resources is used. If two or more
resource sequences are ored then the resource at the head of each sequence is used
for resolving the conflict. For example, uses = (pipell, pipel2) || (pipe2l, pipe22),
means that if pipell is free then the first sequence is selected as the uses sequence,
otherwise if pipe2?l is free then second sequence is selected as the uses sequence. If
both are not free, then the instruction is blocked till one of them becomes free. This

is useful for selecting the free unit from a set of identical functional units.

The uses-if-atom facilitates selection of a sequence of resources from two differ-
ent alternatives depending on the truth value of the boolean expression. The syntax
"token" (...) signifies a canonical function call'. The indirection construct
token.uses, is useful for describing resource usage model in a hierarchical manner.
For example, in Figure 3 the integer addition and integer multiplication instructions
which use same sequence of resources except that multiplication consumes more time,
is specified hierarchically. With the above uses syntax, we can specify the resource

usage model concisely and precisely.

3.2.2 TImplicit Parallelism

At instruction level, the processors are inherently parallel in the sense that the in-
struction execution is overlapped either with the execution of other instruction or
with other functionalities such as checking for interrupt etc. The instruction-by-
instruction specification of the behavior in Sim-nML is powerful enough to model a
complex processor design with high degree of parallelism. Simulator generators can
use the Sim-nML specification to generate a simulator that can simulate the parallel
instruction execution. The resource usage maps described in the instruction specifi-
cation streamlines the execution of the instructions in the desired way. In Sim-nML,
if two instructions require a set of resources simultaneously, then the conflict is re-

solved by following strict FIFO order i.e. the earlier instruction is allocated the set of

!Canonical functions[2] are those functions whose semantics are known only to the entity that
reads the description.In our Sim-nML implementation, other than few pre-defined canonical func-
tions, all other canonical functions are mapped directly to C++ functions.

19

resources and the later instruction waits. However, this default FIFO behavior can

be overridden by explicit specification with the help of condition waits.

We show the power of the uses attribute with a description for a simple superscalar
processor with two integer units. The block diagram of the processor is shown in
Figure 6. The instruction set architecture of this superscalar processor is similar to
the one in the earlier example. In a superscalar design, we encounter data dependency
hazards. So, our design should take care of these dependency hazards. This is done

by properly specifying the accumulator AC usage in the uses attribute.

fetch_unit

execution_unitl execution_unit2

retire_unit

Figure 6: Block Diagram of A Superscalar Processor

The Sim-nML description in Figure 7 models this hypothetical superscalar proces-
sor with two identical execution units. In this processor, the instructions are issued to
the execution units alternatively. Therefore, the retire_reg is set to the value 1 and
2 alternatively. This leads to retiring of instructions in order. The action attribute

of initial specifies the initial values of the registers.

20

resource fetch_unit, execution_unitl,
execution_unit2, retire_unit

reg AC [1, card (8)]

reg PC [1, card (32)]

reg ireg [1, card (8)]

reg retire_reg [1, card (8) 1

op plus (data : card (8))

syntax = format ("add %d", data)

image = format ("000000%8b", data)

action = { AC = AC + data; }

uses = (ireg == 1,execution_unitl & AC & #1,retire_reg == 1)
(ireg == 2,execution_unit2 & AC & #1,retire_reg == 2)

op multiply (data : card (8))

syntax = format ("mult %d", data)

image = format ("000001%8b", data)

action = { AC = AC * data; }

uses = (ireg == 1,execution_unitl & AC & #3,retire_reg == 1)
(ireg == 2,execution_unit2 & AC & #3,retire_reg == 2)

op binaction = plus | multiply
op initial ()
action = { issue_reg = 2; retire_reg = 1; }

op instruction (x : binaction)
syntax = format ("Y%s", x.syntax)
image = format ("11%6b", x.image)

action = {
x.action;
if (retire_reg == 1)
then retire_reg = 2; else retire_reg = 1; endif;
}
preact = {
PC = PC + 2;
if (ireg == 1)
then ireg = 2; else ireg = 1; endif;
}
uses = fetch_unit : preact & #1, x.uses,

retire_unit & AC & #1 : action

Figure 7: Sim-nML Description of a Superscalar Processor

21

3.2.3 Specification of Feed Forwarding

In processors supporting feed forwarding mechanism, data is forwarded as soon as it
is available to reduce the pipeline stalls due to data dependencies. In case of software
timing estimation, where the processor is specified as in Figure 7, it is easy to specify

feed forwarding by adjusting the register blocking time appropriately.

3.2.4 Specification of Memory Hierarchy

To avoid the bottleneck on system performance imposed by high memory access
latency, modern machines use hierarchical memory. The precision of handling memory
hierarchies depends on the specification. In Figure 8, we model a memory system with
a data_cache whose hit ratio is presumed to be 95%. The time to access data from
data_cache is assumed to be two units of time and for that from main memory is

assumed to be ten units of time.

mem data_cache [1024, word]
uses = #2

mem main_memory [2**16, word]
uses = #10

//Register Indexed Address Mode.

mode IND (R : Address_Register, x : mem_access) =M [R]

syntax = format ("(A%3b)", R)
image = format ("#3b", R)
uses = if "drand48"() < 0.95 then data_cache.uses

else main_memory.uses

Figure 8: Specification of Memory Hierarchy

In Figure 8, "drand48" denotes a canonical function call. A more precise cache
model can be built, for example, by writing a C++ function which keeps track of the
contents of the cache, as shown in Figure 9. In this model, the is_hit function can

implement the cache replacement policy such as least recently used or less frequently

22

mode IND (R : Address_Register, x : mem_access) =M [R]
syntax = format ("(A%3b)", R)
image = format ("#3b", R)
if "is_hit"(data_cache, R)
then data_cache.uses else main_memory.uses

uses

Figure 9: Precise Specification of Memory Hierarchy

used etc., using the address argument. The above example shows the ease with
which the semantics of description can be increased. The implementation details are

discussed in the next chapter.

3.2.5 Exception Declaration

For an accurate performance modeling and for specifying inter-instruction dependen-
cies, it is important to handle the exceptional conditions such as divide-by-zero, inter-
rupts and branch-prediction-error. In Sim-nML language certain pre-defined canonical
functions are added to handle exceptions. The exception declares the different kinds

of exceptions. Handling exceptional conditions is complicated because it is likely that

exception divide-by-zero-error, branch-error, interrupt

the exceptions are handled differently at different machine states. For example, when
a branch-prediction-error occurs the instructions along the mispredicted path should
be flushed out of the pipeline. To simplify the design, in modern processors, these in-
structions are either executed to completion without writing the result to the registers
if the instruction is already issued to execution unit or flushed out and the resources
held by the instruction are freed immediately if the instruction is not issued. There-
fore, it is necessary to provide mechanism to change the handler at any instant. In

our model, we propose the following canonical functions related to the exceptions.

e sethandler - used to set a new handler for an exception

23

e ignore - used to specify that an exception can be ignored

e raise - used to broadcast the occurance of an exception to all instructions in

execution.

e abort - used to abort an instruction on execution and free the resources held

by the instruction immediately.

3.2.6 Instruction Identification

While specifying a superscalar processor, it is necessary to identify every instruction
issued to streamline the retirement of instructions. In case of the simple hypothetical
superscalar processor described in the Figure 7, retirement is streamlined by alter-
nately assigning retire_reg to 1 and 2. This serves the purpose of identifying the
instructions. However, for complex processors, instruction identification becomes dif-
ficult to specify. To facilitate this task, we have introduced a type instid_type, which
is opaque to the designer. It can only be told that the result of any operation on this
type is modulo maximum number of instructions that can be active inside the pro-
cessor at any time. The code for implementing the type is generated automatically.
The designer can help the instid_type code generation, by giving a clue about the
maximum number of instructions that can be active inside the processor at any in-
stant. This can be done by defining a reserved constant MAX_INSTR_COUNT. The value

of instruction identifier can be obtained through a canonical function "instid" ().

3.2.7 Initial State and reg Declaration

Since Sim-nML is used for generating instruction set simulator, the initial state of the
processor has to be specified. This is done with a reserved op, named as initial.
The action attribute of initial, describes the initial state of the processor. In sim-
ulation, it is better to distinguish main memory from internal processor registers. To
facilitate this we have introduced reg declaration which declares a memory location
as a register. The normal mem declaration specifies memory locations which are not

registers. The main difference is that each component of a reg declaration is con-

24

mem M [2%%32, word]
reg R [32, word]

Figure 10: reg declaration

sidered as a resource whereas all the locations declared with mem, are grouped as a
single resource. In Figure 10, M[2000] and M[3000] are considered as a part of single
resource M, whereas R[1] and R[2] are considered as different resources. There may
be other difference such as space allocation, which are dependent on implementation

of tools which use Sim-nML specification.

3.3 Specification of Superscalar Processor and Branch

Prediction

Most of the modern processors use branch prediction for increasing the performance.
There are various branch prediction policies such as branch always taken, static
branch prediction, dynamic branch prediction, etc. Abstracting out all such diversifi-
cation complicates the grammar and the semantics. But, with the help of constructs
available and minimal implementation detail it is easy to specify the branch prediction

mechanism as shown in this section.

In Figure 11, the block diagram is given for the superscalar processor being con-
sidered. The processor supports branch prediction. The processor contains an
accumulator and a count register and a zero flag register Z, which is set only if the re-
sult of computation is zero. The Sim-nML code in Figure 12, describes the decrement
instruction which decrements the count register and plus instruction which adds an
immediate value to the accumulator. The code in Figure 13, describes the multipli-
cation instruction. The condition wait in non_branch_instr’s uses, fashions in order
retirement of non branch instructions. In case of branch misprediction, the value of
reorder_buffer associated with a particular non-branch-instruction is set to 255.
Therefore, the action should be carried out if-and-only-if the value is not 255. Figure

13 and 14 describe the branch instruction. The processor follows always taken policy

25

fetch_unit branch_unit

execution_unitl execution_unit2

retire_unit

Figure 11: Block Diagram of A Superscalar Processor With Branch Unit

for branch prediction. In case of speculation, the value of Z is checked once it is
evaluated. If prediction is found to be wrong then a branch_error is signaled which
is caught by all instructions. On catching the branch_error, the instructions that
follow branch instruction set their associated value in reorder_buffer to 255. Since
this model allows only one branch instruction at any instant, nested branch errors

are not taken care of.

26

const MAX_INSTR_COUNT = 8

resource fetch_unit, execution_unitl, execution_unit2,
retire_unit, branch_unit, halt_unit

exception branch_error

type addr = card (32)
type byte = card (8)
type bit = card (1)

mem AC [1, byte
mem PC [1, addr
mem Z [1, bit 1]

mem Count [1, byte]

mem speculated [1, bit]

mem oldpc [1, addr]

mem retire_reg [1, instid_type]

mem reorder_buffer [MAX_INSTR_COUNT, byte]

e~ ~ ~

op initial ()
action = { PC = 0; Count = 10; }
op dec_count ()

syntax = "dec_count"
image = "000010000000000000000000000000"
action = {

Count = Count - 1;

if Count ==

then Z = 1; else Z = 0; endif;

}
uses = execution_unitl #1 | execution_unit2 #1

op plus_inst (data : byte)
syntax = format ("add %d", data)

image = format ("000000%24b", data)
action = {
AC = AC + data;
if AC ==
then Z = 1; else Z = 0; endif;
}
uses = execution_unitl #1 | execution_unit2 #1

Figure 12: A Superscalar Processor with Branch Prediction

27

op mult_instr (data : byte)

syntax = format ("mult %d", data)
image = format ("000001%24b", data)
action = {

AC = AC x data;

if AC ==

then Z = 1; else Z = 0; endif;

}
uses = execution_unitl #3 | execution_unit2 #3

op binaction = plus_inst | mult_instr | dec_count

op non_branch_instr (x : binaction)
syntax = format ("Y%s", x.syntax)
image = format ("11%s", x.image)
action = { x.action; }

uses = fetch_unit #1, x.uses,
retire_reg == "instid" (), retire_unit & AC & Z & #1,
if reorder_buffer [retire_reg] != 255

then retire_unit : action
op branch_instr (target : addr)

syntax = format ("brnz %24b" , target)
image = format ("01000000%24b" , target)
preact = {
bran_inst_id = "instid"();
reorder_buffer [bran_inst_id] = 255;
}
action = {
if Z ==
then PC = target; endif;
speculated = 0;
}
always_taken = {
oldpc = PC;
PC = target;
speculated = 1;
}

Figure 13: A Superscalar Processor with Branch Prediction (Cont.)

28

restore = { bran_inst_id = 88888; }
check_prediction = {
if Z == 1 then
PC = oldpc;
"raise" (branch_error);
endif;

uses = if "is_blocked" (Z)
then fetch_unit : always_taken & #1
else fetch_unit : action & #1,
branch_unit : preact,
if speculated == 1 then Z : check_prediction,
retire_reg == bran_inst_id, retire_unit #1 : restore

op instr_action = branch_instr | non_branch_instr

op instruction (x : instr_action)

syntax = x.syntax
image = format ("/s", x.image)
action = { x.action; }
handler= {
if reorder_buffer ["instid"()] == bran_inst_id
then reorder_buffer ["instid"()] = 255; endif;
}
preact = {
PC = PC + 4;

reorder_buffer ["instid"()] = bran_inst_id;
"sethandler" (branch_error, handler);

reorder = { retire_reg = retire_reg + 1; }
uses = fetch_unit : preact , x.uses, retire_unit : reorder

Figure 14: A Superscalar Processor with Branch Prediction (Cont.)

29

Chapter 4
Implementation

In this chapter, we discuss the different design alternatives for implementing perfor-
mance simulators and the associated trade-offs. We then describe, the various phases
in the implementation of instruction set simulator (ISS) generator. The earlier phases
are helpful in collecting the hierarchical information entrenched in the specification.
The last phase generates C++ code for simulator. Finally, the implementation of

nML type system is described.

4.1 Design of Simulator

Our objective is to develop a ISS generator which generates a simulator for a processor
from its Sim-nML description. The simulator generator produces C4++ code of the
simulator. Before, studying the design of simulator generator, it is important to know
the output produced by it. Therefore, in this section we concentrate on the design of

the simulator that is generated.

The ISS generator outputs a C++ code for the simulator. We choose C++ because
of its extensible type system which facilitates implementation of nML types such as
card(1), card(2) etc. Moreover, this choice lends us greater flexibility in linking
already developed performance models such as efficient cache models, to generated

processor model.

30

There are a herd of other issues which should be considered in simulator design.
These issues arise from the resource usage model, complex multidimensional paral-
lelism of processor, maintaining the state of the processor, and the strict typing in

C++. Below we describe the issues in detail.

e Resource usage model is based on the fact that instructions hold a set of re-
sources at any instant of time. Therefore, it should be made sure that the next
set of resources are available before releasing the already held resources. More-
over, when an instruction is waiting for a sequence of conditions (or clocks), the

present set of resources are held.

e Sim-nML is inherently parallel language and the instructions are modeled to
execute in parallel in case the required resources are available. Therefore, the
simulator has to store the context of the present instruction and resume simu-
lating other instructions if a particular instruction simulation is stalled by the

non-availability of required resources.

e Inherent parallelism results in higher complexity in abstracting out the state of
the processor. The state of processor in the context of the simulator is defined
by the register and memory values and the state of the partially simulated
instructions. The implementation of the maintanence of state of the partially
simulated instructions is hard. Therefore, we concentrate on this issue in Section

4.1.1.

e Although, extensible type system of C4++ helps in implementing new types,
its rigidness results in difficulties in storing the state of the partially simulated
instructions and dynamically invoking the functions specified in Sim-nML’s func-

tion attributes such as action.

4.1.1 Capturing Machine State

From the arguments described above, it is clear that the capturing the state of the
machine constitutes the major part of simulator design. With the issues in designing
a simulator for Sim-nML specification well understood, we propose two designs for

capturing the machine state.

31

B Design - 1

In this design, the full context of an instruction is abstracted as a sequence of resource
requests and corresponding actions to be taken on acquiring these resources. We have
designed a basic data structure for storing a component of the sequence. We call this
data structure as uses_node and a simplified version of the structure is shown in

Figure 15. The node_type signifies the different kinds of the node. Some of the

int node_type;

int wait_resource [MAX_NO_OF_RESOURCES];
int free_resource [MAX_NO_OF_RESOURCES];
bool (*condition_wait) ();

bool (*if_condition) ();

void (*action) ();

int pre_time;

int post_time;

int jump;

Figure 15: uses_node Structure

possible values of node_types are SIMPLE, IF, etc. Each resource is identified by
a unique number. The identifiers of resources for which an instruction waits at any
time instant are stored in an array called wait_resource. When an instruction moves
from one state to other it frees the previously held resources and holds new set of
resources. However, in some cases, only some of the the previously held resources
are freed. In order to implement such behavior, we store the resources to be freed
separately in an array called free_resource. The conditional waits are implemented
by encapsulating the condition through a boolean function and storing the function
pointer in condition_wait variable. The action specifies the action to be carried
out at this instant. In case of SIMPLE node, the simulator waits for condition_wait
function to evaluate to true and then acquires resources specified in wait_resource.
Then, it waits for pre_time time units to execute action. After action is executed,
simulator waits for post_time time units before freeing the resources specified in
free_resource. To correctly implement resource usage model, the simulator finds

the next appropriate uses_node and makes sure that condition_wait of that node

32

evaluates to true and the resources specified in that node are available, before freeing

the present resources.

Finding next appropriate uses_node in the sequence, depends on the type of the
successor node. There are five node types viz. SIMPLE, IF, JUMP, OR, END_OR. The

next appropriate node is found with help of the algorithm shown in Figure 16. In

int find_next (int successor)
{
switch (node_type (successor)) {
case SIMPLE:
return successor;
case JUMP:
return find_next (successor + jump);
case IF:
if (if_condition())
return successor;
else return find_next (successor + jump);

Figure 16: Finding next appropriate uses_node

case successor node type is OR, then the node is checked for readiness i.e. whether
condition_wait evaluates to true and whether resources specified in wait_resource
are available. If successor node is ready then it is considered as next appropriate
node. Otherwise, the node numbered successor + jump is checked for readiness.
The node type END_OR, denotes the end of ored subsequences. If all the nodes till

END_OR are not ready, then simulator continues to wait in the present state.

Simulator keeps a list of instructions and when one instruction gets blocked due to
one or more of the aforementioned reasons, the simulator stores the partially simulated
context by storing the present node number in the sequence. Then it resumes the
simulation of the next instruction. The present implementation is clock based and

resumes with next instruction even though it is blocked.

33

B Design - 2

In this design, each and every state of a partially simulated instruction is stored in
a sequence of integer variables. On resuming the instruction for simulation, these
numbers are used to make the choice in the nested switch statements. The total
context of the instruction is described by nested switch statements generated by the
simulator generator and the sequence of numbers used to restore the context. The
classes generated for the simple Sim-nML description in Figure 3, chapter 3, looks like
the code in Figure 17. In the code shown in the Figure 17, the resource_id function
returns an integer which serves as the identifier for the resource whose pointer is used
as the argument on calling the function. The variable state in each class stores the

state information required to restore the context.

The uses function returns three kind of values viz. START, WAIT and FINISH.
The value WAIT signifies that the instruction is waiting for some resource or clock
and FINISH signifies that the uses function has finished. The significance of START
is discussed below. Implementing if in Sim-nML uses, is straight forward. This can

be done as shown in Figure 18.

Implementation of or in Sim-nML wuses, is similar to the implementation of if.
In case of or, the first set of resources are checked for availability. If resources are
available, then the selection between different alternatives is resolved. In the case of
redirection i.e. x.uses(), if the return value of new uses function is START then this
signifies that the first resource is not available. If resources are not available, then
the state variable is set to the start of next alternative and loop is repeated with help
of break statement. This is repeated till all the alternatives are exhausted. If all

alternatives fail then the state is reset to the starting of the or and WAIT is returned.

4.1.2 Capturing Hierarchical Structure

nML has demonstrated the power of specifying the instruction set architecture hierar-
chically. The hierarchical structuring helps to specify the Resource Usage Model in a
concise and precise manner. Therefore, hierarchy is maintained in Sim-nML. However,

at some point of time, the hierarchy should be collapsed to produce flat structured

34

class plus {

};

int state;

int uses () {
int wait_resource [MAX_NO_OF_RESOURCES];
switch (state) {
case 0O:

wait_resource [0] = resource_id(&execution_unit

if (! block (wait_resource, 1)) return START;
state++;
case 1:
if (! clock (1)) return WAIT;
state++;
case 2:
return FINISHED;

class instruction {

int state;

int uses () {

int wait_resource [MAX_NO_OF_RESQURCES 1;

switch (state) {

case 0:
wait_resource [0] = resource_id (&fetch_unit);
if (! block (wait_resource, 1)) return START;
preact () ;
state++;

case 1:
if (! clock (1)) return WAIT;
state++;

case 2:
if (x.uses () != FINISHED) return WAIT;
state++;

Figure 17: Using Switch Statements to Restore Context

35

int uses ()
{
while (true) {
switch (state) {
case 0:
if (retire_reg == 1)
state++;
else {
state = 3;
break;
}
case 1: //if part
case 2:
case 3: //else part
}
}
}

Figure 18: Implementing Sim-nML if construct

description of a particular instruction. C++ facilitates efficient flattening of hierarchy
either at compile time or at run time. The compile time flattening depends on C++
templates and run time flattening depends on inheritance polymorphism and C++

virtual functions.

g Templatization

To describe how the class hierarchy is generated, we define some terms used, in the

description below.

e [nstruction-tree - A tree with and-rules as nodes in the tree. The relationships
given by or-rules and the parameters of and-rules are represented as edges of

the tree.

36

e and-tree - A skewed instruction-tree produced by and-rules only.

e or-tree - A non-skewed instruction-tree that has at least one or-rule. The

branches due to or-rule will have different images.

The class hierarchy is generated with the help of following guidelines. The quality of

code generated depends on users input.

e A class is generated for each and-rule.

e [f instruction tree of a parameter of an and-rule is an and-tree or if the type of
the parameter is pre-defined type then an object member of that type is created.

See Figure 19.

e If instruction tree of a parameter of an and-rule is an or-tree then the class
is templatized for that parameter. See Figure 19. In Figure 19, to create an

multiply instruction class we will instantiate by,

instruction < multiply >

Figure 19 shows part of the code generated for the simple Sim-nML description in
Figure 3, Chapter 3. Multiple inheritance and parameterization helps to generate the
code precisely and concisely. C++ function inlining feature makes this implementation

as efficient as a non-hierarchical implementation.

p Flattening using Polymorphism

This method is highly dependent on the inheritance polymorphism supported by
C++. In this method, each or-rule is converted into an abstract class which declares
the polymorphic functions. The class generated for and-rule are derived from the
class generated for the parent or-rule. Figure 20 shows part of code generated for the
simple Sim-nML description in Figure 3, Chapter 3. At the run time, depending on
the opcode, we can decide whether the present instruction is a multiply instruction
or plus instruction. If it is a multiply instruction then we can create the object by
invoking instruction class constructor with a pointer to newly created multiply

object.

37

class plus {

s
class multiply {

I
template < class TO >
class instruction : public instr_base {
private:
image_type _image_;
TO x;
byte data;

public:
nml_string syntax () { ... }
nml_string image () { ... }
void action ()
{
tmp = data;
x.action ();
}
void preact ()
{
PC = PC + 2;
}
void uses (uses_sequence & _u_) { ... }
instruction (image_type _img_ = 0, int _start_ = 0)
: x (_image

_, _start_
{
int _pos_ = O0;
pos += _start_ + 2 + x.image().size() + 1;
data = extract_bit_fields (_image_, _pos_, 8);
pos += 8;
+

+ 2)

Figure 19: Templatized Class Hierarchy Generated

38

class binaction {

public:
virtual nml_string syntax
virtual nml_string image (
virtual void action () = 0;
virtual int uses () = 0;

1]
(@]

)
)

1]
o

};

class plus : public binaction {

s
class multiply : public binaction {

};
class instruction {
binaction & x;

public:

instruction (binaction * b, image_type _img_ = 0,
int _start_ =0) : x (*b)
{
}
I

Figure 20: Class Hierarchy Using Polymorphism

The disadvantage of templatization method is that the generated object code size
explodes as the classes are instantiated and the hierarchy is flattened. The disadvan-
tage of polymorphism method is that invoking nested calls of virtual functions leads
to high performance overhead. We hope the hybrid model will work the best. But,

selecting an alternative approach in hybrid model should employ some hierustic.

4.2 Implementation of Simulator Generator

The objective of simulator generator is to generate C++ class hierarchies with uses

function definitions from Sim-nML specification of a processor model. This constitutes

39

the first phase in simulator building effort. Once the class hierarchies are generated,
these classes can be linked with other generic simulator libraries to produce a com-
plete simulator. The simulator generator is implemented in three phases. Below, we

describe the objective and implementation of each phase.

4.2.1 Phase 1 - Gathering Hierarchical Information

The objective of this phase is to construct the op-rule tree, find the type of the
subtrees, structure the tree data so that it will be useful in code generation stage and
to find the type of the simple expressions. The structured tree data is written to an
intermediate file. This file is taken as the input along-with the Sim-nML description

during the code generation stage.

Sim-nML attribute can be a function, for example, an action attribute, or can be
an expression. The expression attributes can be implemented as functions returning
the value of the expression. Since, C++ is a strongly typed language, the type of the
return value should be declared, Therefore, type detection of attribute expressions are

important. The first phase is useful for detecting the type of the simple expressions

op add_immediate_carry (x : add_immediate)
valuel = carry_flag + x.value2

op add_immediate (data : card (8))
value2 = data

Figure 21: Type of Attributes
such as value2 in Figure 21. But, the type of valuel in Figure 21 can not be detected

as this depends on the type of value2.

4.2.2 Phase 2 - Type Detection

The main objective of this phase is to detect the type of expressions for which it is

unknown. The intermediate file produced by the Phase 1 is taken as an input to

40

this phase along-with the Sim-nML description and an intermediate file of the same
format as in Phase 1, is generated as output. For example, in Figure 21, since the
type of value2 is known already, the type of valuel can be detected in this phase.
This phase is repeated till the type of all attributes are found.

4.2.3 Phase 3 - Code Generation

This phase takes the intermediate file generated by the Phase 2 and the Sim-nML
description as input and generates the C4++ class hierarchies as described in Section
4.1. The present implementation follows the design described in Design - 1 of Section
4.1.1 to generate a sequence of uses_nodes and uses templatization to flatten the
instruction hierarchy. In addition, this phase generates a decode file which will be
helpful for creating appropriate instruction objects. The decode file for the example

in Figure 3, Chapter 3, is shown Figure 22. In the decode file, * indicates don’t care,

11000000%**xx4%%%x 1
1100000 1%k kkk 2

Figure 22: Decode File

i.e., either of 0 or 1 can match for *. From the decode file, it is easy to generate the
opcode and the opcode mask. The numbers opposite to each opcode field is useful
to jump to proper location using a switch statement. The opcode file in conjunction
with a decoding function which is generated along-with the class hierarchy, is useful
to create appropriate instruction object and the sequence of uses_nodes. Figure 23,
shows the code generated for decode function for the Sim-nML description in Figure
3, Chapter 3. In Figure 23, pair< instr_base*, uses_sequence* > indicates a
structure containing two pointers and image_choice is nothing but the number got
from decode file. The code generation phase generates the C++ template classes and
writes it to an include file. This file is included wherever the class definitions are
required. C+-+ compiler instantiates the required classes and functions during the

compile time.

41

pair< instr_base*, uses_sequencex >
init_instr (int image_choice, image_type image){
switch (image_choice) {
case 1: {
instruction< plus > *ptr;
ptr = new instruction< branch_instr > (image);
uses_sequence * uses_ptr,;
uses_ptr = new uses_sequence;
ptr -> uses (*uses_ptr);
pair< instr_base*, uses_sequence* > p (ptr, uses_ptr);

return p;
}
case 2: {
instruction< multiply > x*ptr;
ptr = new instruction< multiply > (image);
uses_sequence * uses_ptr;
uses_ptr = new uses_sequence;
ptr -> uses (*uses_ptr);
pair< instr_basex, uses_sequencex > p (ptr, uses_ptr);
return p;
}
}

Figure 23: Decode Function
4.3 Implementation of nML Type System

With C++’s extensible type system, it is easy to implement nML types. The nML card
type is implemented with the unsigned long data type of C++. The nML int type is
implemented with the long data type. At present, the size of nML types are restricted
by the size of long which is machine dependent. The type of result of an operation
is decided by the rules described in nML[2] specification. The carry generated by
an immediate operation is stored in a global variable named _GLOBAL_CARRY_. The
present implementation emulates float with the help of C4++’s double and float.
Therefore, float of sizes other than C++’s float and double are not supported.

nML's fized point types are emulated with the same sized card types.

42

4.4 Generic Simulator Library

The present implementation of generic simulator library contains routines to imple-
ment a cycle based simulator. The library implements a resource manager which
keeps track of the blocked resources. The library provides functions to block and
free a sequence of resources. The library maintains a list of active instructions. In
each clock, fetch_instr function fetches the instruction pointed by PC. Then the
fetch_instr function decodes the image with the help of the decode file to find the
value of image _choice variable in init_instr function as shown in Figure 23. After
decoding, the appropriate instruction class and the corresponding uses_sequence is
built with the help of init_instr function. If the first set of resources used by an
instruction are available, then the newly fetched instruction is added to the active
instruction list. Otherwise, the instruction is dropped. The instruction fetch oper-
ation is repeated till the fetch_instr fails to add a new instruction to the active
instruction list due to non-availability of first set of resources. After fetch is stopped,
each instruction in the active list is clocked. The clocking is done in FIFO order. This
implements the Sim-nML semantics that the resources are allocated in FIFO order

correctly.

43

Chapter 5
Results and Conclusion

In this chapter, we describe some experimental performance models specified in Sim-
nML. We describe the way to generate performance simulator from Sim-nML speci-
fication and discuss the performance issues of generated simulator. We then give a

brief conclusion to our work and give some guidelines for future work.

5.1 Performance Models with Sim-nML

As part of the thesis work, we developed performance models for two processors using
Sim-nML. The first one is a performance model of a hypothetical superscalar processor
employing branch prediction to reduce branch penalties. The Sim-nML specification
for this model is described in Chapter 3. The second one is a performance model of
a DEC Alpha 211064 processor. We have modeled only a partial set of instructions.

This set is sufficient to encode applications such as bubble sort.

5.1.1 Generating Performance Simulator

The complete procedure to generate a performance simulator from Sim-nML speci-
fication is encapsulated into a shell script. When this script is run with Sim-nML
specification file as argument, the various phases of simulator generator are executed

sequentially. These phases create some intermediate files to pass the information to

44

the next phase. The final phase of the simulator generator generates the template
classes, decode file, decode function as described in Chapter 4. The generated code is

linked with the generic simulator library to obtain the performance simulator.

5.1.2 Results

8 Hypothetical Superscalar Processor

The hypothetical superscalar processor model was tested with a small loop which
multiplies the nonzero initial value of Count register with 4 and adds 3 to it. The
result is accumulated in AC. The assembly code for this small program is shown

in Figure 24 When simulation is done, in each loop the conditional branch at line

1 add 3

2 loop: add 4

3 dec_count

4 brnz loop

5 add 0 #NOP

Figure 24: Multiplication By Addition

number 4 is predicted. The model uses always taken branch prediction policy. When
branch is mispredicted the branch error exception is invoked and the instruction that
is fetched from the wrong path, i.e., add instruction at line 2, is disabled from writing

the accumulator. Thus, the value is correctly computed.

The generated simulator can simulate about 500 instructions per second. At
present, the generated performance simulator captures partial simulated instruction
context using uses_node as described in Method - 1 in Chapter 4. Moreover, the
uses_node list for an instruction is constructed whenever the instruction enters the
processor pipeline. For example, if loop mentioned above is simulated 1000 times
then uses_node list for dec_count is constructed for 1000 times. This leads to heavy

performance penalty.

45

We experimented by changing the generated code by hand and removed the afore-
mentioned penalty. The instrumented simulator simulates upto 3000 instructions per
second. In search of improving the performance, we changed the generated code by
hand in such a way that it captures the partially simulated instruction context in
state variables as described in Method - 2 in Chapter 4. The simulator thus generated

simulates upto 4000 instructions per second.

p Alpha Processor

The Alpha processor model is tested with the help of a bubble sort program which
sorts an array of 100 unsigned numbers. The program is written in the assembly.
The instructions used in this program are modeled. The model includes the hierar-
chical memory system and TLB lookahead. The unresolved conditional branches are
predicted with always taken policy. The generated simulator simulates around 400

instructions per second.

5.2 Conclusion

The ever-increasing complexity of modern processors and the growing trend towards
specification driven system design automation has necessitated design automation
tools with high level of abstraction. Performance modeling plays a major role in the
specification driven system design. The level of abstraction provided by conventional
languages such as C, VHDL etc. is not sufficient for fast prototyping of performance

models and its simulation.

In this thesis work, we developed a language Sim-nML which is helpful for per-
formance modeling. Sim-nML is essentially an extension of nML machine description
formalism. It is simple, elegant and powerful enough to model machine behavior at
instruction level. Sim-nML is capable of specifying the control flow in a clear way
using resource usage model. Sim-nML language can be used for automatic generation

of compilers, assemblers, disassemblers, instruction set simulators.

As part of the thesis work, we have designed and implemented an instruction set

46

simulator generator which is helpful as performance analysis automation tool. This
simulator generator takes Sim-nML specification as input and generates C+-+ code
for performance simulator. The generated code is powerful enough to emulate the

inherent parallelism of complex modern processors.

We have demonstrated the power of the Sim-nML specification and the simulator
generator with the help of experimental performance models. Although these models
are quite small comparing to practical systems, these models capture most of the

complex concepts such as branch prediction present in modern practical systems.

5.3 Future Work

The following future work can be undertaken as an extension to this project. All
these extensions center around further improving the performance of the generated

simulator.

i. Hybrid Simulator - The state of art performance simulators can simulate around
10,000 to 20,000 instructions per second. At present, generated simulator is
entirely cycle-based. Further, a simulator that implements only event-based
simulation will incur high overhead due to event-management because instruc-
tions frequently lock the resources for one unit of time. We can improve the
performance if we resolve to hybrid approach in which a waiting list of instruc-
tions is maintained for some resources which are locked frequently for more
than one clock cycles. These resources can be found statically from Sim-nML

specification.

ii. Efficient Flattening of Hierarchy - Both approaches described for flattening the
hierarchy in Chapter 4, viz. Templatization, Polymorphism, have advantages
as well as disadvantages. Therefore, if a hybrid approach is used which mainly
captures the advantages of both of these approaches then this will be helpful in

boosting the performance of the simulator.

iii. Multiple Performance Models - At present, the generated simulator simulates a

single performance model. In practice, it is desirable to have more than one

47

model. For example, two performance models, first model which is fast and
does not include features such as pipelining, is useful at the beginning of the
simulation to warm up the caches. While the second model is slow and simulates
all architectural details to perfection, is useful to analyze the design from an

interesting point.

48

Bibliography

1]

2]

Diepr, T. A., AND SHEN, J. P. VMW: A Visualization-Based Microarchitecture
Workbench. IEEE Computer (Dec 1995), 57 64.

FrREERICK, M. The nML Machine Description Formalism, 7 1993.
hitp://www. cs.tu-berlin.de/~ mfr/dvi_docs /nml_2.dvi.gz.

MENDEL ROSENBLUM, E. BuaNION, S. D., AND HERROD, S. A. Using the
Simos Machine Simulator to Study Complex Computer Systems. ACM Trans on
Modeling and Computer Simulation 7, 1 (Jan 1997), 78 103.

PAITHANKAR, A. AINT: A Tool for Simulation of Shared Memory Multipro-
cessors, 1996. Master’s Thesis, Univ. of Colorado, Boulder, Colo.

PoursePANJ, A. The PowerPC Performance Modeling Methodology. Comm.
ACM (Jan 1994), 47-55.

REILLY, M., AND EDMONDSON, J. Performance Simulation of an Alpha Mi-
croprocessor. IEEE Computer 31, 5 (May 1998), 50 58.

SRIVASTAVA, A., AND EUSTACE, A. ATOM: A System for Building Customized
Program Analysis Tools. In ACM SIGPLAN Conf. Programming Language De-
sign and Implementation (New York, 1994), ACM Press.

STROUSTRUP, B. The C++ Programming Language. Addison-Wesley, Mas-
sachusetts, 1995.

SuBHASIS LAHA, J. P., AND IYER, R. Accurate Low-Cost Methods for Per-

formance Evaluation of Cache Memory Systems. IEEE Trans on Computers 37,
11 (Nov 1988), 1325 1336.

49

[10] WANG, W.-H., AND BAER, J.-L. Efficient Trace-Driven Simulation Methods
for Cache Performance Analysis. ACM Trans on Computer Systems 9, 3 (Aug
1991), 222-241.

20

