
NGTCP: Next Generation Transmission Control Protool
A Report Submittedin Partial Ful�llment of the Requirementsfor the Degree ofBahelor of Tehnology

byAmbarish Narayan GuptaSandeep Gupta
to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology KanpurApril, 2000

To our parents

ii

Certi�ateCerti�ed that the work ontained in the report entitled NGTCP : Next GenerationTransmission Control Protool, by Amabarish Narayan Gupta and Sandeep Gupta,has been arried out under our supervision and that this work has not been submit-ted elsewhere for a degree.
(Dr. Dheeraj Sanghi) (Dr. Rajat Moona)

iii

AbstratThis projet's aim is to implement an experimental extension for TCP, the NGTCPstandard, for the Linux operating system. This doument desribes the designand implementation of NGTCP , and presents some omparative analysis betweenNGTCP and TCP based on the number of pakets per session and the responsetime for short transation-oriented onnetions.

iv

AknowledgementsWe would like to thank our supervisors, Dr. Dheeraj Sanghi and Dr. Rajat Moonafor enouraging us at every step and giving us valuable insight solving ritial prob-lems. We would also like to thank the members of the Linux mailing list for helpingus with the implementation of NGTCP when we had problems. We would also liketo thank the CSE lab sta� for providing us with failities to run our software. Andwe are thankful to our bath mates for all the heers and love they gave to us.

v

Contents
iiCerti�ate iiiAbstrat ivAknowledgements v1 Introdution 12 Bakground 32.1 User Datagram Protool . 32.2 Transmission Control Protool . 42.2.1 Establishing the Connetion 42.2.2 Data Transmission . 52.2.3 Termination of Connetion 62.3 Summary . 73 Next Generation Transmission Control Protool 83.1 Motivation . 83.1.1 Limitation due to insuÆient number spaes. 83.1.2 Limitations due to protool semantis. 83.2 A Vision of General Purpose Transport Protool 93.3 NGTCP Features . 93.3.1 Saled Number Spaes . 93.3.2 Transation-oriented Servie 103.3.3 Trunation of TIME-WAIT 13vi

3.4 Examples . 143.4.1 HTTP and RPC . 143.4.2 DNS . 143.5 NGTCP Header Struture . 153.5.1 Design Goals . 153.5.2 Header Fields . 154 Design And Implementation 194.1 Design . 194.1.1 Approah . 194.1.2 State diagram . 204.2 Implementation . 204.2.1 Appliation Program Interfae 234.2.2 Implementation Details . 234.2.3 Snapshot of Proessing Done at Client and Server 245 Performane Comparison Between NGTCP and TCP 285.1 Environment . 285.2 Statistis Comparison for 1000 Transations 295.2.1 NGTCP running between sews34 and semt80 295.2.2 TCP running between sews34 and semt80 305.3 Statistis Comparison for Individual Transations 316 Future Work 39Bibliography 40

vii

Chapter 1IntrodutionThe TCP/IP referene model is a spei�ation for a networking stak on a omputer.It exists to provide a ommon ground for network developers. This allows easierinteronnetion of the di�erent vend or supplied networks, reduing the ost ofinstalling ompletely new networks in order for one to work with another.The most popular implementation of the transport layer in the referene modelis the Transmission Control Protool (TCP). This is a onnetion-oriented protool.Another popular implementation is the User Datagram Protool (UDP), whih is aonnetionless protool.Both of these protools have advantages and disadvantages. The two main as-pets of the protools make them useful in di�erent areas. UDP is a onnetionlessprotool. UDP always assumes that the data was reeived orretly. The appli-ation layer above it looks after error detetion and reovery. Even though UDPis unreliable, it is quite fast, and is useful for appliations suh as DNS (DomainName System), where speed is preferred over reliability. TCP on the other hand, is areliable, onnetion oriented protool. It does a 3-way handshake before onnetionestablishment to avoid false onnetions. It looks after error detetion and reovery.Retransmission of data is done automatially if a problem is deteted. As a resultof being more reliable, TCP is a slower protool than UDP. It introdues delays ofone round trip time before data-pakets an be exhanged. Also it's small windowsize ats as bottlenek for large data transfers over gigabit networks.The urrent transport protools are thus either too reliable or too unreliable.1

They lie at either end of the sale in taking into aount speed and reliability.TCP has reliability at the ost of speed, whereas UDP has speed at the ost ofreliability. Moreover appliations have beome a lot more sophistiated and havestarted demanding quality of servie. This alls for need of a new protool whih ansupport a variety of reliability options spanning the range from unreliable deliverylike UDP to extremely reliable delivery like TCP. The protool should be fast, andshould not impose lot of overheads for short transations. Also it should performwell over gigabit networks.TPng[1℄ is envisioned as a suessor protool satisfying all above requirements.It also presents many other novel features in addition. TCP for TransationsT/TCP[3℄ is another experimental protool whih gives an insight of how to in-orporate transations in TCP. In following hapters we study the development ofa new protool NGTCP whih is based on TPng and T/TCP.

2

Chapter 2BakgroundWe desribe UDP and TCP in following setions.2.1 User Datagram ProtoolUser Datagram Protool is an unreliable onnetionless protool de�ned in. It isuseful for appliations that do not require or want TCP's sequening or ow on-trol. It is used for one-shot, request-reply appliations where prompt delivery isimportant. Examples of these types of appliations would be DNS (Domain NameSystem) and transmission of speeh or video. UDP minimizes the overhead asso-iated with message transfers beause no network onnetion is established beforetransmission.UDP an be likened to the postal servie. A message is sent to someone else byputting the address on the envelope and dropping it into the letter box. The senderhas to rely on the underlying system, in this ase the postal servie, to deliverthe letter. The letter an traverse ountries and ontinents, where eah di�erentountry has a di�erent system, di�erent stamps and harges, providing there is areliable servie, the letter will be delivered. UDP is similar, it drops the datagramonto the underlying arhiteture, the Internet Protool, and hopes that the messageis delivered. It has no way of verifying that the datagram was delivered. It doesnot do any error heking and it has no way of reovering data that was inorretlydelivered. 3

2.2 Transmission Control ProtoolTransmission Control Protool is a reliable onnetion-oriented protool that allowsa byte stream, originating on one mahine, to be delivered without error to anyother mahine. It fragments the message into disrete pakets and passes them ontothe internet layer.TCP has the ability to handle ow ontrol. This prevents the soure mahinefrom swamping a slower destination mahine with data. If the destination mahine'sbu�er beomes full with inoming pakets, the TCP will send a ontrol signal to thesoure mahine indiating that it annot handle any more informationat the moment and to slow down the transmission.TCP has the ability to handle sequening. When pakets are being sent out, notall of them will take the same route. This may result in pakets being delivered outof sequene. TCP has a way of reordering the segments to avoid the need of thesender resending all the segments again.In the previous setion, it was noted that UDP ould be ompared to the postalservie. In a similar analogy, TCP an be ompared to the telephone system. Whena all is made, a diret onnetion is made between the two people involved in theonversation.The operation of the TCP protool an be divided into three distint setions:1. Establishment of Connetion2. Transmission of Data3. Termination of Connetion2.2.1 Establishing the ConnetionThe onnetion is established between two hosts by a method known as the 3-Way Handshake. Three segments are transmitted before the two hosts are fullysynhronized and ready to transmit the data.With referene to �gure 1 and �gure 2, a host that wishes to make a onnetionsends out a TCP segment with the SYN ag set and the proposed initial sequene4

Figure 1: TCP Header Struturenumber in the sequene �eld, say sequene=X. The TCP on the destination mahinenotes the sequene number X, and returns a segment with the SYN and the ACKags set. It also populates the sequene number �eld with its own value, say Y, andthe aknowledgment �eld with the value X+1.The soure mahine reeives the segment, notes the value Y, and returns a seg-ment with the ACK ag set and the aknowledgment �eld set to Y+1.The two hosts have now established onnetion, and the transfer of data may bestarted.2.2.2 Data TransmissionThe transfer of data is dominated by two mehanisms, aknowledgements of dataand sequene numbers in a segment to allow for re-assembly.When a segment of data is transmitted, the host that transmitted it expets toreeive an aknowledgment within a ertain time period. If the aknowledgment isnot forthoming, the host retransmits the data. This is how TCP ensures that thedata is delivered. 5

Figure 2: The 3 Way Hand ShakeSequene numbers allow the reeiving host to reassemble any out of order paketsreeived from a host. The sender sets the sequene �eld to a predetermined value.The reeiver takes this sequene number, and adds to it the number of bytes in thesegment, this is alulated from the amount of data reeived, plus one byte for eahof the SYN or FIN ags that are set. This is the next sequene number the reeiverexpets to see in a paket from the sender. This is also the aknowledgment numberthe reeiver sends to the other host. If a paket arrives that doesn't have the orretsequene number, the reeiver an determine whether it is an old dupliate or if itis a paket that has been delayed in the network. The reeipt of a dupliate paketallows the host to disard it, thus making sure that the reeiving proess only getsthe data one.2.2.3 Termination of ConnetionKeeping in mind that TCP onnetions are full duplex, we an view them as beingtwo independent pipes of ommuniation between the two host omputers. When anappliation program has no more data to send, it informs the TCP servie. The TCPloses its half of the onnetion by sending the rest of the data that may be bu�ered6

and then sends a segment with the FIN ag set. The reeiving TCP aknowledgesthe reeipt of the FIN segment, and informs its own appliation that there will beno more data reeived. The TCP that is still open may ontinue to send data ontothe original TCP until it terminates the onnetion itself, the appliation may stillhave data to send even though the other TCP has �nished. When both onnetionsare losed, the onnetion is deleted.2.3 SummaryA transation with UDP takes 2 segments, the request and the reply. With TCP atransation takes 10 segments. As will be seen in hapter 3 NGTCP an ompletea transation in a minimum of 3 segments. A redution in the ase of TCP, but aninrease for UDP. The advantage that NGTCP holds over UDP is the reliability.

7

Chapter 3Next Generation TransmissionControl Protool
3.1 MotivationThe urrent TCP has reahed its limit of operation. This is evident by followingfats:3.1.1 Limitation due to insuÆient number spaes.1. The 16 bit window size allows at most 64 KB of data to be in transit at atime, whih is too little for today's gigabit networks.2. The 32 bit sequene spae an easily wrap around over gigabit networks, lead-ing to protool breakdown.3. The 16 bit port numbers an easily be exhausted by an ative server servinga large number of lients.4. The 4 bit header length is too small to support a good number of options.3.1.2 Limitations due to protool semantis.1. The 3 way handshake introdues a time lag of one round trip time beforedata an be sent. This ertainly leads to performane problems in high delaynetworks like satellite hannels. It also ats an overhead in terms of bandwidth8

for short-lived onnetions (Transations) in whih only one or two pakets areexhanged, with an aompanying poor response time.2. TCP is exessively reliable (at an exessive ost) for appliations like RPCwhih atually do not need suh levels of reliability. On the other hand UDPis too unreliable.3.2 A Vision of General Purpose Transport Pro-toolIn last two deades, there have been a large number of transport protools proposedby various researhers like NETBLT, VMTP, DTP et. But most of these protoolswere designed for spei� environments. We aim for a general purpose protool thatan take are of very basi requirements.Although of the problems ited above, have been solved but they make urrentTCP too pathed up. Many of these pathes will take a long time to distributeleaving the network in a highly heterogeneous state. They also make implementationvery ompliated and therefore open to bugs and seurity holes. Moreover, TCP anhave only limited number of options, whih means that we an improve the protoolonly upto a limit (beause there is not suÆient spae in the header). Therefore anew protool beomes very important.In our new version of transport protool whih we hene forth refer to as NGTCP,we would not only improve on the shortomings of TCP, we would also like to addmore features. We would like to provide new types of reliability (no aks, no owontrol, losses aeptable) and support for transation based appliations.3.3 NGTCP Features3.3.1 Saled Number Spaes64 bit Sequene NumbersWith the assumption that the network speeds do not exeed 1Gbps (implying alok granularity of 2^-30 ses) the 64 bit sequene will wrap in approxmately 69

enturies. This is too huge a duration for any onnetion to persist.In TCP, a danger with fast onnetions is that they may end up using the32 bit sequene spae faster (and thus wrap), so that older pakets of the sameonnetion may interfere with later pakets if the sequene spae wraps in less thanMSL (Maxmum Segment Lifetime) duration. TCP dealt with this problem by using32 bit timestamps options, e�etively extending the sequene spae to 64 bits.The 64 bit sequene spae of NGTCP provides a muh leaner solution. Itmakes every onnetion slow and short (as sequene spae never wraps). Suessiveonnetions between same host and port pair use disjoint sets of sequene numbers asISN inreases at a faster rate than the sequene numbers get used up in data transfer.The possibility of old dupliates reappearing is thus negligible. An old paket froma host will always bear a sequene number less than the latest paket from thathost. In the event a a host rashes and reboots and starts using sequene numbersfrom a random start point, then their won't be any problems. This is beause itmust wait for atleast MSL duration before rebooting so that all old pakets fromthis host have disappeared.32 bit WindowsWith 32 bit windows a maximum of 4 gigabytes of data an be in transit whih isby far suÆient for all purposes. It an easily omply with the jumbograms (hugepakets) of IPv6.32-bit portsThe 32-bit ports with an provide an enormous transation rate. It would amountto 2^32 / (Duration in TIME-WAIT) as opposed to 268 Tps in TCP. The durationin TIME-WAIT is also redued from 240 seonds in TCP to some multiple of RTTin NGTCP (explained later).3.3.2 Transation-oriented ServieCurrently, a transation-oriented Internet appliation must hoose to su�er the over-head of opening and losing TCP onnetions or else build an appliation-spei�10

transport mehanism on top of the onnetionless transport protool UDP. Henegreater onveniene, uniformity, and eÆieny would result from widely-availablekernel implementations of a transport protool supporting a transation serviemodel [RFC- 955℄.Transation harateristis� The fundamental interation is a request followed by a response.� An expliit open or lose phase would impose exessive overhead.� At-most-one semantis is required; that is, a transation must not be "re-played" by a dupliate request paket.� The minimum transation lateny for a lient is RTT + SPT, where RTT isthe round-trip time and SPT is the server proessing time.Transations Using Standard TCPConsider a simple transation in whih lient host A sends a single segment requestto server host B, and B returns a single-segment response. Current TCP implemen-tations use at least ten segments (i.e., pakets) for this sequene:� 3 for the three-way handshake opening the onnetion,� 4 to send and aknowledge the request and response data, and� 3 for TCP's full-duplex data-onserving lose sequene.These ten segments represent a high relative overhead for two data-bearing seg-ments. However, a more important onsideration is the transation lateny seen bythe lient: 2*RTT + SPT, larger than the minimum by one RTT. As CPU andnetwork speeds inrease, the relative signi�ane of this extra transation latenyalso inreases.The TCP lose sequene also poses a performane problem for transations: oneor both end(s) of a losed onnetion must remain in "TIME-WAIT" state until a11

4 minute timeout has expired . The same onnetion (de�ned by the host and portnumbers at both ends) annot be reopened until this delay has expired. Beause ofTIME-WAIT state, a lient program should hoose a new loal port number (i.e.,a di�erent onnetion) for eah suessive transation. However, the TCP port�eld of 16 bits provides only 64512 available user ports. This limits the total rateof transations between any pair of hosts to a maximum of 64512/240 = 268 perseond. This is muh too low a rate for low-delay paths, e.g., high-speed LANs.A high rate of short onnetions (i.e., transations) ould also lead to exessiveonsumption of kernel memory by onnetion ontrol bloks in TIME-WAIT state.Hene to perform eÆient transation proessing in TCP, we need to suppressthe 3-way handshake and to shorten TIME-WAIT state in our new protool.Transations Using NGTCPBypassing 3-way handshakeTo avoid 3-way handshakes for transations, we introdue a new mehanism forvalidating initial SYN segments, i.e., for enforing at-most-one semantis withouta 3-way handshake. We refer to this as the NGTCP Aelerated Open, or TAO,mehanism.NGTCP Aelerated OpenNGTCP uses ahed per-host information to immediately validate new SYNs. If thisvalidation fails, the proedure falls bak to a normal 3-way handshake to validatethe SYN. This is Aelerated Open whih simulates a 3-way handshake. Thus,bypassing a 3-way handshake is onsidered to be an optional optimization.What do we ahe and how it helps?We ahe the last sequene number (lsn) of a host from a latest onnetion from thathost. So when host B reeives from host A an initial SYN segment host B omparesit against ahe[A℄.lsn , the latest value that B has ahed for A. The validation failsif there either the the new sequene number is less than or equal to the stored oneor there is no urrent ahed state. Else the validation sueeds.12

A point to note is that we need not worry about dupliate or old SYN segments,as it is taken are of by our 64 bit sequene spae whih pratially never wraps.All segments from a host suessively oupy the ever monotoni sequene spae, soby design there won't be any old dupliates . In ase a host rashes and reboots, itwould ask for ahe re-synhronization.Considering a transation in whih lient host A sends a single segment requestto server host B, and B returns a single-segment response.The number of segments required in a favorable situation are:� 1 for the aelerated open and sending data and initiating lose,� 1 to aknowledge the request and to send response data and initiate lose,� 1 for ompleting the full-duplex lose sequene.More than 3 segments may be transferred in ase aks are not piggybaked.Thus we see that we have improved on:1. Response time whih is RTT+SPT in this ase.2. A saving of 66% of pakets being transferred as ompared to TCP (obviouslyin ases where large amount of data is being transferred, there will be morepakets transmitted and hene less in the perentage saving).3.3.3 Trunation of TIME-WAITThe TIME-WAIT state is a state that all TCP onnetions enter into when theonnetion has been losed. The length of time for this state is 240 seonds (twiethe maximum segment lifetime), whih is to allow for any dupliate segments stillin the network from the previous onnetion to expire. Sine we an always detetold dupliate segments, (beause the sequene spae spanned by every onnetionis disjoint owing to the huge 64 bit sequene spae), we need not wait this long. Wepropose to remain in TIME-WAIT for some suitable multiple of round trip time sothat a graeful lose is ensured. 13

3.4 ExamplesNGTCP an be bene�ial to some of the appliations that urrently use TCP orUDP. At the moment there are many appliations that are transation based ratherthan onnetion based, but still have to rely on TCP along with the overhead. UDPis the other alternative, but not having time-outs and retransmissions built intothe protool means the appliation programmers have to supply the time outs andreliability heking themselves.3.4.1 HTTP and RPCHTTP is the protool used by the World Wide Web to aess web pages. HTTPis the lassi transation style appliation. The lient sends a short request to theserver requesting a doument or an image and then loses onnetion. The serverthen sends on the information to the lient.With TCP, the transation is aomplished by onneting to the server (3-WayHandshake), requesting the �le and then losing the onnetion (sending a FIN seg-ment). NGTCP would operate by onneting to the server, requesting the doumentand losing the onnetion all in one segment (TAO). It is obvious that bandwidthhas been saved and response time enhaned.Remote Proedure Calls also adhere to the transation style paradigm. A lientsends a request to a server for the server to run a funtion. The results of thefuntion are then returned in the reply to the lient. There is only a tiny amountof data transferred with RPC's.3.4.2 DNSDomain Name System is used to resolve host names into the IP addresses that areused to loate the host.To resolve a domain name, the lient sends a request with the IP address or ahost name to the server. The server then responds with the host name or the IPaddress where appropriate. This protool uses UDP as its underlying proess.As a result of using UDP, the proess is fast, but not reliable. Furthermore,14

if the response by the server exeeds 512 bytes of data, it sends the data bak tothe lient with the �rst 512 bytes and a trunated ag. The lient has to resubmitthe request using TCP. The reason for this is that there is no guarantee that thereeiving host will be able to reassemble the IP datagram exeeding 576 bytes. Forsafety, many protools limit the user data to 512 bytes.NGTCP is the perfet andidate for the DNS protool. It an ommuniate atspeeds approahing that of UDP, and it has the reliability of TCP.3.5 NGTCP Header Struture3.5.1 Design GoalsThe header struture for new protool is ompletely overhauled along following lines.� Any information not needed in majority of pakets is not kept in the mandatorypart of header.� Sizes of various �elds have been deided keeping in mind the future extensi-bility.� All �elds are to be aligned on natural boundaries.3.5.2 Header Fields� Version - The protool should have a version number in the header. This willpermit future extension of the protool easily. A 4 bit �eld is proposed.� Empty - A �eld of 28 bits. This is for future extensions.� Header Size - A 16 bit �eld that will failitate inorporating huge number ofoptions as , the limit being 0.25 MB.� Port Numbers - 32 bit �elds, as proposed earlier.� Sequene Number - A 64 bit �eld, as proposed earlier.� Aknowledgment Sequene Number - A 64 bit �eld.15

Figure 3: NGTCP Header Struture
16

� Window size - A 32 bit �eld, as proposed earlier.� Cheksum - Following �elds are proposed:� Cheksum - A 16 bit �eld for sending the omputed value of heksum usingCRC-16 algorithm.� Cheksum length - A 14 bit �eld indiating length heksum overage. So ifan appliation wants more than 16 KB of paket to overed, then the entirepaket will be overed.� Cheksum Flags - A 2 bit �eld to indiate following options:1. No heksum present.2. Cheksum overs header only.3. Partial heksum.4. Cheksum overs entire paket.Servie BitsA 16 bit �eld for servie ags.� SYN, RST, FIN, ACK have similar meaning as in TCP.� SAK - If set then aknowledgment is seletive.� REC - If set then then the protool is reord based (the peer should give theentire paket to the appliation as one). Otherwise the protool is byte streamoriented.� FLW - If set then ow ontrol is to be used. The window size assumes signi�-ane. Otherwise no ow ontrol is used.� ORD - If set then peer should give pakets to the appliation in sequene only.Otherwise pakets may be delivered out of order.17

� LOS - If set then the protool should reover from losses. Otherwise appliationis asking for best-e�ort servie.� TRX - If set then transation-based servie is desired.OptionsThere an be 0 or more options eah in TLV (type-length-value) format. Eah optionis assigned a 8-bit number. The seond byte will indiate the length of option inmultiple of 4 bytes, limiting an option to a maximum of 1 KB. The remaining partis data assoiated with option.

18

Chapter 4Design And Implementation
4.1 Design4.1.1 ApproahThe TCP state diagram has been modi�ed to aommodate Aelerated Open re-quired for transations in the experimental protool T/TCP. We started with thisstate diagram and simpli�ed it by eliminating the highly unlikely paths to be tra-versed by the protool endpoints. This inluded simultaneous Aelerated Open atlient by server when lient is in SYN SENT* state.The basis for design of NGTCP implementation is the state mahine (�gure x).The starred states are the new states introdued.Half Synhronized ConnetionsTCP has always allowed a onnetion to be half-losed. TAO makes a signi�antaddition to TCP semantis by allowing a onnetion to be half-synhronized i.e.to be open for data transfer in one diretion before the other diretion has beenopened. Thus, the passive end of onnetion (whih reeives the initial SYN) anaept data and even a FIN bit before its own SYN has been aknowledged.For half-synhronized onnetions we have following enhanements in NGTCP.1. The passive end must provide an implied initial data window in order to aeptdata. The minimum size of this window is a parameter in the spei�ation.Suggested is 4K bytes. 19

2. New onnetion states and transitions are introdued into the FSM at bothends of the onnetion. At ative end, new states are required to piggy-bakthe FIN on the initial SYN segment. At passive end, new states are requiredfor a half-synhronized onnetion.4.1.2 State diagramThe FSM desribed by the state diagram is intended to be applied umulatively;that is, parsing a single paket header may lead to more than one transition. Eahnew state (in addition to states of TCP) in NGTCP is indiated by standard statefollowed by a star.There is a simple orrespondene between these and their equivalent originalstates. States SYN SENT* and SYN RECEIVED* di�er from orresponding un-starred states in reording the fat that a FIN has been sent. The other new stateswith starred names di�er from the orresponding unstarred states in being half-synhronized (hene, a SYN bit needs to be transmitted).Figure 5 shows an example of minimum transation, highlighting the states tra-versed by lient and server.4.2 ImplementationThe projet is implemented on linux 2.2.5 kernel.We have been able to implement the ore funtionality of the protool whihinludes transation-oriented servie and 64-bit sequene numbers. We have alsodone Window slaing.Implementation of other servies will be an inremental work on the platform wehave developed.The urrent implementation of TCP in the kernel is modi�ed to handle new statetransitions. A brief piture of implementation is as follows:
20

Figure 4: An Example of Minimum Transation
21

4.2.1 Appliation Program InterfaeNGTCP sits as another transport protool in the kernel like TCP and UDP. Theinterfae is de�ned as :� Appliation programs just need to speify the protool identi�er IPPROTO NGTCP,to use the protool.� Clients wishing to use the transation-servie feature may use setsokopt allto set the NGTCP TRX option, with option value as 1. For this they need toinlude the �le '/usr/inlude/netinet/ngtp.h'.� To enable NGTCP to optimize on the number of segments transferred lientsan optionally set the MSG LAST ag in the their last send system all, whihhas a value of 0x8000.4.2.2 Implementation DetailsWe started with the ode of TCP, as the NGTCP has lot in ommon with TCP.NGTCP spei� implementation required introdution many new data-struturesand supporting routines and modi�ations in existing routines. Here is a briefdesription of important onstituents relevant to by-passing 3-way handsahke.Variables� We remember that a handshake has yet not ourred by maintaining a variable'handshake' in the ontrol strut 'ngtp opt' . This variable is initialized to 0(handshake pending) and is set to 1 whenever handshake is over (either 3-wayor 1-way in ase of TAO).� We remember that transation oriented servie is desired by maintaining avariable 'trx servie' in the ontrol strut 'ngtp opt'. This variable is initial-ized to 0 and is set to 1 if user sets the option for transation-oriented servieusing setsokopt.
22

CahesWe introdued ahes for storing the last sequene numbers as proposed in theprotool spei�ation. These are set-assoiative ahes. The ahes are updatedalong following lines.� Cahe entries are always synhronized at the end of every onnetion (whena FIN is reeived from the other end) both at server and lient, independentof whether transation oriented servie is requested or not.� Cahes entries are always invalidated soon after a handshake is done both atserver and lient, so that if a onnetion is reset in the middle due to unknownreasons, the ahes do not have stale values, for the next onnetion.4.2.3 Snapshot of Proessing Done at Client and ServerProessing at ClientsetsokoptIf the option is NGTCP TRX then we set 'trx servie' to 1.Connet system allIf 'trx servie' is set fAll proessing related to sending an initial SYN paket is done, but the paketis held bak from going to the IP layer.We also do a ahe lookup to �nd if the entry for the remote host is valid. Theidea is that if we have invalid entry, then probably our host has rebooted and isnow out of synhronization, implying that transation-oriented servie should notbe requested. This is beause the remote host's ahe will now (if at all) have a staleahe entry, whih now should not be used for TAO test. So 'trx servie' is reset to0 for an invalid entry.g 23

if 'trx servie' is not set fRoutine TCP proessing is done.gSend system allThis involves very ruial proessing. The data paket is build here, and appropriateags are set. Depending on whether the 'handshake' is pending or not, we set theappropriate bits (SYN, TRX, FIN, ACK) in the paket during the proessing ofsend system all.If handshake is pending fSYN bit is set and ACK bit not set.if trx servie' is set, TRX bit is set.if 'trx servie' is set and the user appliation has supplied appropriate ags(MSG LAST) in the send system all, FIN bit is set.gIf handshake is done fACK bit is set.If the the user appliation has supplied appropriate ags (MSG LAST) in thesend system all, FIN bit is set.gFinally the paket is given out to IP layer for transmission.
Proessing at ServerListen system allThe server heks for the ags in the inoming paket.If TRX bit is set fTAO test is triggered:A ahe lookup is done. If entry is valid, and the ISN in the paket is greaterthan the ahed sequene number then TAO test is passed.24

So, if the test is passed 'handshake' is set to 1 (handshake over).gelse fRoutine TCP proessing is done gA SYN-request (a strut) is reated and queued to the listening soket.If handshake is pending, then a SYN-ACK segment is sent to lient, aking theSYNIf handshake is overfA soket is reated from the SYN-request.Cahe entry for the remote host is invalidated.Data, if any is queued.If the FIN bit is also set then the ahe entry for this lient host is updated.gAept system allAll requests for whih handshake is over are dequeued.
Following proessing is meaningful only if TAO has been rossed or handshake isover.Reeive system allHere data is transferred from the reeive queues to the server appliation.Send system allData is paketed and sent to the lient. The paket arries an ak for SYN+numberof data bytes+[FIN℄. The FIN bit is set if the server appliation has supplied ap-propriate ags (MSG LAST) in the send system all.

25

Proessing at Client'handshake' is set to 1.If trx servie is setfIf the ak from the server aks only the SYN, then TAO has failed at the serverelse if it aks all the data bytes sent, then TAO has sueeded at server.If TAO has failed then the old data segment is retransmitted with the ags SYNand TRX stripped o� and ag ACK added.else a simple ACK segment is sent.gelse fRoutine TCP proessing is done.gReeive system allHere data reeived from server queued into into reeive queues is transferred to theuser appliation.
Now server and lient an hoose to follow a hain of sends and reeives until a fullduplex lose is done.

26

Chapter 5Performane Comparison BetweenNGTCP and TCP
5.1 Environment� Mahines : sews34 , semt80� OS : Linux 2.2.5 on both� Proessors : sews34 : Pentium 2 MMX at 233 Mhz with 32 MB main memory.� semt80 : Pentium 2 MMX at 233 Mhz with 64 MB main memory.� Server is running on semt80� Client is running on sews34� Intermediate network is LAN.Transation De�nitionThe transation here omprises of lient sending a data paket to the server andthe server ehoing it bak. The lient �nally loses down after reeipt of responsepaket.

27

5.2 Statistis Comparison for 1000 TransationsEah of following statistis is taken with the help of 'time' ommand. The elapsedtime represents the total time for a lient to make 1000 onseutive (iterative) on-netions to server. This emulates the ase where an ative server is serving largenumber of transations from di�erent lients.5.2.1 NGTCP running between sews34 and semt801. 0.01user 0.21system 0:01.30elapsed 16%CPU2. 0.01user 0.13system 0:01.30elapsed 10%CPU3. 0.00user 0.14system 0:01.36elapsed 10%CPU4. 0.00user 0.10system 0:01.36elapsed 7%CPU5. 0.01user 0.13system 0:01.35elapsed 10%CPU6. 0.00user 0.17system 0:01.34elapsed 12%CPU7. 0.02user 0.17system 0:01.39elapsed 13%CPU8. 0.01user 0.18system 0:01.30elapsed 14%CPU9. 0.03user 0.13system 0:01.35elapsed 11%CPU10. 0.01user 0.12system 0:01.31elapsed 9%CPU11. 0.01user 0.13system 0:01.40elapsed 9%CPU12. 0.00user 0.10system 0:01.36elapsed 7%CPU13. 0.01user 0.12system 0:01.31elapsed 9%CPU14. 0.01user 0.13system 0:01.30elapsed 10%CPU15. 0.00user 0.15system 0:01.38elapsed 10%CPU16. 0.01user 0.16system 0:01.34elapsed 12%CPU28

17. 0.01user 0.15system 0:01.33elapsed 12%CPU18. 0.01user 0.16system 0:01.31elapsed 12%CPUAverage elapsed time for NGTCP = 0:01.3383 seondsVariane in elapsed time for NGTCP = 0:00.0316 seonds5.2.2 TCP running between sews34 and semt801. 0.00user 0.11system 0:01.69elapsed 6%CPU2. 0.00user 0.09system 0:02.25elapsed 3%CPU3. 0.00user 0.10system 0:02.47elapsed 4%CPU4. 0.00user 0.11system 0:01.69elapsed 6%CPU5. 0.00user 0.09system 0:02.25elapsed 3%CPU6. 0.00user 0.10system 0:02.47elapsed 4%CPU7. 0.00user 0.11system 0:01.69elapsed 6%CPU8. 0.00user 0.09system 0:02.25elapsed 3%CPU9. 0.00user 0.10system 0:02.47elapsed 4%CPU10. 0.00user 0.16system 0:01.61elapsed 9%CPU11. 0.02user 0.13system 0:02.31elapsed 6%CPU12. 0.00user 0.16system 0:01.61elapsed 9%CPU13. 0.02user 0.13system 0:02.31elapsed 6%CPU14. 0.02user 0.16system 0:01.61elapsed 11%CPU15. 0.00user 0.19system 0:02.05elapsed 9%CPU16. 0.02user 0.16system 0:01.61elapsed 11%CPU29

17. 0.00user 0.19system 0:02.05elapsed 9%CPU18. 0.01user 0.15system 0:01.86elapsed 8%CPU19. 0.01user 0.15system 0:01.90elapsed 8%CPU20. 0.01user 0.15system 0:01.86elapsed 8%CPU21. 0.01user 0.15system 0:01.90elapsed 8%CPUAverage elapsed time for TCP = 0:01.9052 seondsVariane elapsed time for TCP = 0:00.3233 seonds5.3 Statistis Comparison for Individual Transa-tionsThe statistis is generated by tpdump. Protools are running between mahinessews34 and semt80.The software tpdump tells the protool-id of the protool when generatingstatistis of pakets going in and out of mahine. The protool id of NGTCP is7 while for TCP it is 6. This the way we distinguish the pakets belonging toNGTCP and TCP.In ase of NGTCP, the response time is alulated as di�erene of timestamps of�rst paket whih the request and the �fth paket whih is the ak of the responseof the server from the lient.NGTCP1. 05:00:40.691444 sews34 > semt80: ip-proto-7 77 (DF)2. 05:00:40.691552 semt80 > sews34: ip-proto-7 52 (DF)3. 05:00:40.691686 semt80 > sews34: ip-proto-7 44 (DF)4. 05:00:40.691847 semt80 > sews34: ip-proto-7 69 (DF)5. 05:00:40.692061 sews34 > semt80: ip-proto-7 44 (DF)30

6. 05:00:40.692304 sews34 > semt80: ip-proto-7 44 (DF)7. 05:00:40.692359 semt80 > sews34: ip-proto-7 44 (DF)8. 05:00:40.692794 sews34 > semt80: ip-proto-7 44 (DF)Response time = 692061 - 691444 = 617 miro seondsTCP1. 05:00:42.461326 sews34.1424 > semt80.15000: tp 0 (DF)2. 05:00:42.461405 semt80.15000 > sews34.1424: tp 0 (DF)3. 05:00:42.461815 sews34.1424 > semt80.15000: tp 0 (DF)4. 05:00:42.461929 sews34.1424 > semt80.15000: tp 25 (DF)5. 05:00:42.461983 semt80.15000 > sews34.1424: tp 0 (DF)6. 05:00:42.462081 semt80.15000 > sews34.1424: tp 25 (DF)7. 05:00:42.462492 sews34.1424 > semt80.15000: tp 0 (DF)8. 05:00:42.462542 semt80.15000 > sews34.1424: tp 0 (DF)9. 05:00:42.462563 sews34.1424 > semt80.15000: tp 0 (DF)10. 05:00:42.462596 semt80.15000 > sews34.1424: tp 0 (DF)11. 05:00:42.462949 sews34.1424 > semt80.15000: tp 0 (DF)Response time= 462492 - 461326 = 1166 miro seondsNGTCP1. 05:05:44.060335 sews34 > semt80: ip-proto-7 77 (DF)2. 05:05:44.060449 semt80 > sews34: ip-proto-7 52 (DF)3. 05:05:44.060575 semt80 > sews34: ip-proto-7 44 (DF)31

4. 05:05:44.060740 semt80 > sews34: ip-proto-7 69 (DF)5. 05:05:44.060955 sews34 > semt80: ip-proto-7 44 (DF)6. 05:05:44.061198 sews34 > semt80: ip-proto-7 44 (DF)7. 05:05:44.061254 semt80 > sews34: ip-proto-7 44 (DF)8. 05:05:44.061690 sews34 > semt80: ip-proto-7 44 (DF)Response time = 060955-060335=620 miro seondsTCP1. 05:05:46.547293 sews34.1426 > semt80.15000: tp 0 (DF)2. 05:05:46.547375 semt80.15000 > sews34.1426: tp 0 (DF)3. 05:05:46.547788 sews34.1426 > semt80.15000: tp 0 (DF)4. 05:05:46.547900 sews34.1426 > semt80.15000: tp 25 (DF)5. 05:05:46.547957 semt80.15000 > sews34.1426: tp 0 (DF)6. 05:05:46.548058 semt80.15000 > sews34.1426: tp 25 (DF)7. 05:05:46.548473 sews34.1426 > semt80.15000: tp 0 (DF)8. 05:05:46.548525 semt80.15000 > sews34.1426: tp 0 (DF)9. 05:05:46.548545 sews34.1426 > semt80.15000: tp 0 (DF)10. 05:05:46.548580 semt80.15000 > sews34.1426: tp 0 (DF)11. 05:05:46.548929 sews34.1426 > semt80.15000: tp 0 (DF)
32

Response time = 548473-547293=1180 miro seondsNGTCP1. 05:07:22.527383 sews34 > semt80: ip-proto-7 77 (DF)2. 05:07:22.527493 semt80 > sews34: ip-proto-7 52 (DF)3. 05:07:22.527622 semt80 > sews34: ip-proto-7 44 (DF)4. 05:07:22.527791 semt80 > sews34: ip-proto-7 69 (DF)5. 05:07:22.528005 sews34 > semt80: ip-proto-7 44 (DF)6. 05:07:22.528252 sews34 > semt80: ip-proto-7 44 (DF)7. 05:07:22.528309 semt80 > sews34: ip-proto-7 44 (DF)8. 05:07:22.528745 sews34 > semt80: ip-proto-7 44 (DF)Response time = 528005-527383=622 miro seondsTCP1. 05:07:28.278774 sews34.1427 > semt80.15000: tp 0 (DF)2. 05:07:28.278864 semt80.15000 > sews34.1427: tp 0 (DF)3. 05:07:28.279276 sews34.1427 > semt80.15000: tp 0 (DF)4. 05:07:28.279390 sews34.1427 > semt80.15000: tp 25 (DF5. 05:07:28.279447 semt80.15000 > sews34.1427: tp 0 (DF)6. 05:07:28.279554 semt80.15000 > sews34.1427: tp 25 (DF)7. 05:07:28.279965 sews34.1427 > semt80.15000: tp 0 (DF)8. 05:07:28.280016 semt80.15000 > sews34.1427: tp 0 (DF)9. 05:07:28.280036 sews34.1427 > semt80.15000: tp 0 (DF)33

10. 05:07:28.280068 semt80.15000 > sews34.1427: tp 0 (DF)11. 05:07:28.280421 sews34.1427 > semt80.15000: tp 0 (DF)Response time = 279965-278774=1191 miro seondsNGTCP1. 05:09:22.004346 sews34 > semt80: ip-proto-7 77 (DF)2. 05:09:22.004762 semt80 > sews34: ip-proto-7 52 (DF)3. 05:09:22.004889 semt80 > sews34: ip-proto-7 44 (DF)4. 05:09:22.005057 semt80 > sews34: ip-proto-7 69 (DF)5. 05:09:22.005272 sews34 > semt80: ip-proto-7 44 (DF)6. 05:09:22.005511 sews34 > semt80: ip-proto-7 44 (DF)7. 05:09:22.005567 semt80 > sews34: ip-proto-7 44 (DF)8. 05:09:22.006001 sews34 > semt80: ip-proto-7 44 (DF)Response time = 005272-004346=926 miro seondsTCP1. 05:09:23.804243 sews34.1429 > semt80.15000: tp 0 (DF)2. 05:09:23.804622 semt80.15000 > sews34.1429: tp 0 (DF)3. 05:09:23.805036 sews34.1429 > semt80.15000: tp 0 (DF)4. 05:09:23.805150 sews34.1429 > semt80.15000: tp 25 (DF)5. 05:09:23.805207 semt80.15000 > sews34.1429: tp 0 (DF)6. 05:09:23.805310 semt80.15000 > sews34.1429: tp 25 (DF)7. 05:09:23.805720 sews34.1429 > semt80.15000: tp 0 (DF)34

8. 05:09:23.805771 semt80.15000 > sews34.1429: tp 0 (DF)9. 05:09:23.805791 sews34.1429 > semt80.15000: tp 0 (DF)10. 05:09:23.805822 semt80.15000 > sews34.1429: tp 0 (DF)11. 05:09:23.806179 sews34.1429 > semt80.15000: tp 0 (DF)Response time = 805720-804243=1477 miro seondsNGTCP1. 05:11:40.484971 sews34 > semt80: ip-proto-7 77 (DF)2. 05:11:40.485079 semt80 > sews34: ip-proto-7 52 (DF)3. 05:11:40.485210 semt80 > sews34: ip-proto-7 44 (DF)4. 05:11:40.485382 semt80 > sews34: ip-proto-7 69 (DF)5. 05:11:40.485597 sews34 > semt80: ip-proto-7 44 (DF)6. 05:11:40.485840 sews34 > semt80: ip-proto-7 44 (DF)7. 05:11:40.485898 semt80 > sews34: ip-proto-7 44 (DF)8. 05:11:40.486333 sews34 > semt80: ip-proto-7 44 (DF)Response time = 485597-484971=626 miro seondsTCP1. 05:11:42.672570 sews34.1430 > semt80.15000: tp 0 (DF)2. 05:11:42.672658 semt80.15000 > sews34.1430: tp 0 (DF)3. 05:11:42.673071 sews34.1430 > semt80.15000: tp 0 (DF)4. 05:11:42.673191 sews34.1430 > semt80.15000: tp 25 (DF)5. 05:11:42.673255 semt80.15000 > sews34.1430: tp 0 (DF)35

6. 05:11:42.673367 semt80.15000 > sews34.1430: tp 25 (DF)7. 05:11:42.673782 sews34.1430 > semt80.15000: tp 0 (DF)8. 05:11:42.673835 semt80.15000 > sews34.1430: tp 0 (DF)9. 05:11:42.673854 sews34.1430 > semt80.15000: tp 0 (DF)10. 05:11:42.673891 semt80.15000 > sews34.1430: tp 0 (DF)11. 05:11:42.674239 sews34.1430 > semt80.15000: tp 0 (DF)Response time = 673782-672570=1212 miro seondsNGTCP1. 05:15:01.302558 sews34 > semt80: ip-proto-7 77 (DF)2. 05:15:01.302975 semt80 > sews34: ip-proto-7 52 (DF)3. 05:15:01.303106 semt80 > sews34: ip-proto-7 44 (DF)4. 05:15:01.303296 semt80 > sews34: ip-proto-7 69 (DF)5. 05:15:01.303510 sews34 > semt80: ip-proto-7 44 (DF)6. 05:15:01.303755 sews34 > semt80: ip-proto-7 44 (DF)7. 05:15:01.303813 semt80 > sews34: ip-proto-7 44 (DF)8. 05:15:01.304250 sews34 > semt80: ip-proto-7 44 (DF)Response time = 303510-302558=952 miro seondsTCP1. 05:15:03.400909 sews34.1431 > semt80.15000: tp 0 (DF)2. 05:15:03.401288 semt80.15000 > sews34.1431: tp 0 (DF)3. 05:15:03.401701 sews34.1431 > semt80.15000: tp 0 (DF)36

4. 05:15:03.401814 sews34.1431 > semt80.15000: tp 25 (DF)5. 05:15:03.401872 semt80.15000 > sews34.1431: tp 0 (DF)6. 05:15:03.401980 semt80.15000 > sews34.1431: tp 25 (DF)7. 05:15:03.402395 sews34.1431 > semt80.15000: tp 0 (DF)8. 05:15:03.402447 semt80.15000 > sews34.1431: tp 0 (DF)9. 05:15:03.402466 sews34.1431 > semt80.15000: tp 0 (DF)10. 05:15:03.402504 semt80.15000 > sews34.1431: tp 0 (DF)11. 05:15:03.402852 sews34.1431 > semt80.15000: tp 0 (DF)Response time = 402395-400909=1486 miro seondsAverage Response Time for NGTCP = 727.167 miro seondsVariane in Response Time for NGTCP = 150.001 miro seondsAverage Response Time for TCP = 1285.333 miro seondsVariane in Response Time for TCP = 139.413 miro seonds

37

Chapter 6Future WorkImplementing Funtionality of Servie bitsDue to limited time we have not been able to implement the proposed servies. Afuture work would be to implement all the servies envisioned with this protool.CompatibilityMaking NGTCP ompatible with TCP is a big issue whih we have not addressed.Finding ways to make it ompatible would be a huge work in itself.More TestingThe protool is tested only on LAN, whih doesn't bring out many faets of theprotool. A more suitable testing bed is required, so that more realisti performanemeasures an obtained.

38

Bibliography[1℄ Sanghi D. Issues in Designing Next Generation Transport Protool.[2℄ Bek M, Bohme H, Dziadzka M, Kunitz U, Magnus R, Verworner D; LinuxKernel Internals; Addison-Wesley, 1996[3℄ Braden R T, RFC1644 T/TCP - TCP Extensions for Transations FuntionalSpei�ation, Network Working Group, 1994[4℄ Braden R T, RFC1379 Extending TCP for Transations - Conepts, NetworkWorking Group, 1992[5℄ Braden R T, Jaobson V, Borman D, RFC1323 TCP Extensions for High Per-formane, Network Working Group, 1992[6℄ Braden R T, RFC1337 TIME-WAIT Assassination Hazards in TCP, NetworkWorking Group, 1992[7℄ Postel J, RFC793 Transmission Control Protool, Defense Advaned ResearhProjets Ageny, 1981[8℄ TCP/IP Illustrated Volume 2, The Implementation, Wright and Stevens.[9℄ Internetworking with TCP/IP, Volume II, Design, Implementation and Internals.
39

