
NGTCP: Next Generation Transmission Control Proto
ol
A Report Submittedin Partial Ful�llment of the Requirementsfor the Degree ofBa
helor of Te
hnology

byAmbarish Narayan GuptaSandeep Gupta
to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology KanpurApril, 2000

To our parents

ii

Certi�
ateCerti�ed that the work
ontained in the report entitled NGTCP : Next GenerationTransmission Control Proto
ol, by Amabarish Narayan Gupta and Sandeep Gupta,has been
arried out under our supervision and that this work has not been submit-ted elsewhere for a degree.
(Dr. Dheeraj Sanghi) (Dr. Rajat Moona)

iii

Abstra
tThis proje
t's aim is to implement an experimental extension for TCP, the NGTCPstandard, for the Linux operating system. This do
ument des
ribes the designand implementation of NGTCP , and presents some
omparative analysis betweenNGTCP and TCP based on the number of pa
kets per session and the responsetime for short transa
tion-oriented
onne
tions.

iv

A
knowledgementsWe would like to thank our supervisors, Dr. Dheeraj Sanghi and Dr. Rajat Moonafor en
ouraging us at every step and giving us valuable insight solving
riti
al prob-lems. We would also like to thank the members of the Linux mailing list for helpingus with the implementation of NGTCP when we had problems. We would also liketo thank the CSE lab sta� for providing us with fa
ilities to run our software. Andwe are thankful to our bat
h mates for all the
heers and love they gave to us.

v

Contents
iiCerti�
ate iiiAbstra
t ivA
knowledgements v1 Introdu
tion 12 Ba
kground 32.1 User Datagram Proto
ol . 32.2 Transmission Control Proto
ol . 42.2.1 Establishing the Conne
tion 42.2.2 Data Transmission . 52.2.3 Termination of Conne
tion 62.3 Summary . 73 Next Generation Transmission Control Proto
ol 83.1 Motivation . 83.1.1 Limitation due to insuÆ
ient number spa
es. 83.1.2 Limitations due to proto
ol semanti
s. 83.2 A Vision of General Purpose Transport Proto
ol 93.3 NGTCP Features . 93.3.1 S
aled Number Spa
es . 93.3.2 Transa
tion-oriented Servi
e 103.3.3 Trun
ation of TIME-WAIT 13vi

3.4 Examples . 143.4.1 HTTP and RPC . 143.4.2 DNS . 143.5 NGTCP Header Stru
ture . 153.5.1 Design Goals . 153.5.2 Header Fields . 154 Design And Implementation 194.1 Design . 194.1.1 Approa
h . 194.1.2 State diagram . 204.2 Implementation . 204.2.1 Appli
ation Program Interfa
e 234.2.2 Implementation Details . 234.2.3 Snapshot of Pro
essing Done at Client and Server 245 Performan
e Comparison Between NGTCP and TCP 285.1 Environment . 285.2 Statisti
s Comparison for 1000 Transa
tions 295.2.1 NGTCP running between
sews34 and
semt80 295.2.2 TCP running between
sews34 and
semt80 305.3 Statisti
s Comparison for Individual Transa
tions 316 Future Work 39Bibliography 40

vii

Chapter 1Introdu
tionThe TCP/IP referen
e model is a spe
i�
ation for a networking sta
k on a
omputer.It exists to provide a
ommon ground for network developers. This allows easierinter
onne
tion of the di�erent vend or supplied networks, redu
ing the
ost ofinstalling
ompletely new networks in order for one to work with another.The most popular implementation of the transport layer in the referen
e modelis the Transmission Control Proto
ol (TCP). This is a
onne
tion-oriented proto
ol.Another popular implementation is the User Datagram Proto
ol (UDP), whi
h is a
onne
tionless proto
ol.Both of these proto
ols have advantages and disadvantages. The two main as-pe
ts of the proto
ols make them useful in di�erent areas. UDP is a
onne
tionlessproto
ol. UDP always assumes that the data was re
eived
orre
tly. The appli-
ation layer above it looks after error dete
tion and re
overy. Even though UDPis unreliable, it is quite fast, and is useful for appli
ations su
h as DNS (DomainName System), where speed is preferred over reliability. TCP on the other hand, is areliable,
onne
tion oriented proto
ol. It does a 3-way handshake before
onne
tionestablishment to avoid false
onne
tions. It looks after error dete
tion and re
overy.Retransmission of data is done automati
ally if a problem is dete
ted. As a resultof being more reliable, TCP is a slower proto
ol than UDP. It introdu
es delays ofone round trip time before data-pa
kets
an be ex
hanged. Also it's small windowsize a
ts as bottlene
k for large data transfers over gigabit networks.The
urrent transport proto
ols are thus either too reliable or too unreliable.1

They lie at either end of the s
ale in taking into a

ount speed and reliability.TCP has reliability at the
ost of speed, whereas UDP has speed at the
ost ofreliability. Moreover appli
ations have be
ome a lot more sophisti
ated and havestarted demanding quality of servi
e. This
alls for need of a new proto
ol whi
h
ansupport a variety of reliability options spanning the range from unreliable deliverylike UDP to extremely reliable delivery like TCP. The proto
ol should be fast, andshould not impose lot of overheads for short transa
tions. Also it should performwell over gigabit networks.TPng[1℄ is envisioned as a su

essor proto
ol satisfying all above requirements.It also presents many other novel features in addition. TCP for Transa
tionsT/TCP[3℄ is another experimental proto
ol whi
h gives an insight of how to in-
orporate transa
tions in TCP. In following
hapters we study the development ofa new proto
ol NGTCP whi
h is based on TPng and T/TCP.

2

Chapter 2Ba
kgroundWe des
ribe UDP and TCP in following se
tions.2.1 User Datagram Proto
olUser Datagram Proto
ol is an unreliable
onne
tionless proto
ol de�ned in. It isuseful for appli
ations that do not require or want TCP's sequen
ing or
ow
on-trol. It is used for one-shot, request-reply appli
ations where prompt delivery isimportant. Examples of these types of appli
ations would be DNS (Domain NameSystem) and transmission of spee
h or video. UDP minimizes the overhead asso-
iated with message transfers be
ause no network
onne
tion is established beforetransmission.UDP
an be likened to the postal servi
e. A message is sent to someone else byputting the address on the envelope and dropping it into the letter box. The senderhas to rely on the underlying system, in this
ase the postal servi
e, to deliverthe letter. The letter
an traverse
ountries and
ontinents, where ea
h di�erent
ountry has a di�erent system, di�erent stamps and
harges, providing there is areliable servi
e, the letter will be delivered. UDP is similar, it drops the datagramonto the underlying ar
hite
ture, the Internet Proto
ol, and hopes that the messageis delivered. It has no way of verifying that the datagram was delivered. It doesnot do any error
he
king and it has no way of re
overing data that was in
orre
tlydelivered. 3

2.2 Transmission Control Proto
olTransmission Control Proto
ol is a reliable
onne
tion-oriented proto
ol that allowsa byte stream, originating on one ma
hine, to be delivered without error to anyother ma
hine. It fragments the message into dis
rete pa
kets and passes them ontothe internet layer.TCP has the ability to handle
ow
ontrol. This prevents the sour
e ma
hinefrom swamping a slower destination ma
hine with data. If the destination ma
hine'sbu�er be
omes full with in
oming pa
kets, the TCP will send a
ontrol signal to thesour
e ma
hine indi
ating that it
annot handle any more informationat the moment and to slow down the transmission.TCP has the ability to handle sequen
ing. When pa
kets are being sent out, notall of them will take the same route. This may result in pa
kets being delivered outof sequen
e. TCP has a way of reordering the segments to avoid the need of thesender resending all the segments again.In the previous se
tion, it was noted that UDP
ould be
ompared to the postalservi
e. In a similar analogy, TCP
an be
ompared to the telephone system. Whena
all is made, a dire
t
onne
tion is made between the two people involved in the
onversation.The operation of the TCP proto
ol
an be divided into three distin
t se
tions:1. Establishment of Conne
tion2. Transmission of Data3. Termination of Conne
tion2.2.1 Establishing the Conne
tionThe
onne
tion is established between two hosts by a method known as the 3-Way Handshake. Three segments are transmitted before the two hosts are fullysyn
hronized and ready to transmit the data.With referen
e to �gure 1 and �gure 2, a host that wishes to make a
onne
tionsends out a TCP segment with the SYN
ag set and the proposed initial sequen
e4

Figure 1: TCP Header Stru
turenumber in the sequen
e �eld, say sequen
e=X. The TCP on the destination ma
hinenotes the sequen
e number X, and returns a segment with the SYN and the ACK
ags set. It also populates the sequen
e number �eld with its own value, say Y, andthe a
knowledgment �eld with the value X+1.The sour
e ma
hine re
eives the segment, notes the value Y, and returns a seg-ment with the ACK
ag set and the a
knowledgment �eld set to Y+1.The two hosts have now established
onne
tion, and the transfer of data may bestarted.2.2.2 Data TransmissionThe transfer of data is dominated by two me
hanisms, a
knowledgements of dataand sequen
e numbers in a segment to allow for re-assembly.When a segment of data is transmitted, the host that transmitted it expe
ts tore
eive an a
knowledgment within a
ertain time period. If the a
knowledgment isnot forth
oming, the host retransmits the data. This is how TCP ensures that thedata is delivered. 5

Figure 2: The 3 Way Hand ShakeSequen
e numbers allow the re
eiving host to reassemble any out of order pa
ketsre
eived from a host. The sender sets the sequen
e �eld to a predetermined value.The re
eiver takes this sequen
e number, and adds to it the number of bytes in thesegment, this is
al
ulated from the amount of data re
eived, plus one byte for ea
hof the SYN or FIN
ags that are set. This is the next sequen
e number the re
eiverexpe
ts to see in a pa
ket from the sender. This is also the a
knowledgment numberthe re
eiver sends to the other host. If a pa
ket arrives that doesn't have the
orre
tsequen
e number, the re
eiver
an determine whether it is an old dupli
ate or if itis a pa
ket that has been delayed in the network. The re
eipt of a dupli
ate pa
ketallows the host to dis
ard it, thus making sure that the re
eiving pro
ess only getsthe data on
e.2.2.3 Termination of Conne
tionKeeping in mind that TCP
onne
tions are full duplex, we
an view them as beingtwo independent pipes of
ommuni
ation between the two host
omputers. When anappli
ation program has no more data to send, it informs the TCP servi
e. The TCP
loses its half of the
onne
tion by sending the rest of the data that may be bu�ered6

and then sends a segment with the FIN
ag set. The re
eiving TCP a
knowledgesthe re
eipt of the FIN segment, and informs its own appli
ation that there will beno more data re
eived. The TCP that is still open may
ontinue to send data ontothe original TCP until it terminates the
onne
tion itself, the appli
ation may stillhave data to send even though the other TCP has �nished. When both
onne
tionsare
losed, the
onne
tion is deleted.2.3 SummaryA transa
tion with UDP takes 2 segments, the request and the reply. With TCP atransa
tion takes 10 segments. As will be seen in
hapter 3 NGTCP
an
ompletea transa
tion in a minimum of 3 segments. A redu
tion in the
ase of TCP, but anin
rease for UDP. The advantage that NGTCP holds over UDP is the reliability.

7

Chapter 3Next Generation TransmissionControl Proto
ol
3.1 MotivationThe
urrent TCP has rea
hed its limit of operation. This is evident by followingfa
ts:3.1.1 Limitation due to insuÆ
ient number spa
es.1. The 16 bit window size allows at most 64 KB of data to be in transit at atime, whi
h is too little for today's gigabit networks.2. The 32 bit sequen
e spa
e
an easily wrap around over gigabit networks, lead-ing to proto
ol breakdown.3. The 16 bit port numbers
an easily be exhausted by an a
tive server servinga large number of
lients.4. The 4 bit header length is too small to support a good number of options.3.1.2 Limitations due to proto
ol semanti
s.1. The 3 way handshake introdu
es a time lag of one round trip time beforedata
an be sent. This
ertainly leads to performan
e problems in high delaynetworks like satellite
hannels. It also a
ts an overhead in terms of bandwidth8

for short-lived
onne
tions (Transa
tions) in whi
h only one or two pa
kets areex
hanged, with an a

ompanying poor response time.2. TCP is ex
essively reliable (at an ex
essive
ost) for appli
ations like RPCwhi
h a
tually do not need su
h levels of reliability. On the other hand UDPis too unreliable.3.2 A Vision of General Purpose Transport Pro-to
olIn last two de
ades, there have been a large number of transport proto
ols proposedby various resear
hers like NETBLT, VMTP, DTP et
. But most of these proto
olswere designed for spe
i�
 environments. We aim for a general purpose proto
ol that
an take
are of very basi
 requirements.Although of the problems
ited above, have been solved but they make
urrentTCP too pat
hed up. Many of these pat
hes will take a long time to distributeleaving the network in a highly heterogeneous state. They also make implementationvery
ompli
ated and therefore open to bugs and se
urity holes. Moreover, TCP
anhave only limited number of options, whi
h means that we
an improve the proto
olonly upto a limit (be
ause there is not suÆ
ient spa
e in the header). Therefore anew proto
ol be
omes very important.In our new version of transport proto
ol whi
h we hen
e forth refer to as NGTCP,we would not only improve on the short
omings of TCP, we would also like to addmore features. We would like to provide new types of reliability (no a
ks, no
ow
ontrol, losses a

eptable) and support for transa
tion based appli
ations.3.3 NGTCP Features3.3.1 S
aled Number Spa
es64 bit Sequen
e NumbersWith the assumption that the network speeds do not ex
eed 1Gbps (implying a
lo
k granularity of 2^-30 se
s) the 64 bit sequen
e will wrap in approxmately 69

enturies. This is too huge a duration for any
onne
tion to persist.In TCP, a danger with fast
onne
tions is that they may end up using the32 bit sequen
e spa
e faster (and thus wrap), so that older pa
kets of the same
onne
tion may interfere with later pa
kets if the sequen
e spa
e wraps in less thanMSL (Maxmum Segment Lifetime) duration. TCP dealt with this problem by using32 bit timestamps options, e�e
tively extending the sequen
e spa
e to 64 bits.The 64 bit sequen
e spa
e of NGTCP provides a mu
h
leaner solution. Itmakes every
onne
tion slow and short (as sequen
e spa
e never wraps). Su

essive
onne
tions between same host and port pair use disjoint sets of sequen
e numbers asISN in
reases at a faster rate than the sequen
e numbers get used up in data transfer.The possibility of old dupli
ates reappearing is thus negligible. An old pa
ket froma host will always bear a sequen
e number less than the latest pa
ket from thathost. In the event a a host
rashes and reboots and starts using sequen
e numbersfrom a random start point, then their won't be any problems. This is be
ause itmust wait for atleast MSL duration before rebooting so that all old pa
kets fromthis host have disappeared.32 bit WindowsWith 32 bit windows a maximum of 4 gigabytes of data
an be in transit whi
h isby far suÆ
ient for all purposes. It
an easily
omply with the jumbograms (hugepa
kets) of IPv6.32-bit portsThe 32-bit ports with
an provide an enormous transa
tion rate. It would amountto 2^32 / (Duration in TIME-WAIT) as opposed to 268 Tps in TCP. The durationin TIME-WAIT is also redu
ed from 240 se
onds in TCP to some multiple of RTTin NGTCP (explained later).3.3.2 Transa
tion-oriented Servi
eCurrently, a transa
tion-oriented Internet appli
ation must
hoose to su�er the over-head of opening and
losing TCP
onne
tions or else build an appli
ation-spe
i�
10

transport me
hanism on top of the
onne
tionless transport proto
ol UDP. Hen
egreater
onvenien
e, uniformity, and eÆ
ien
y would result from widely-availablekernel implementations of a transport proto
ol supporting a transa
tion servi
emodel [RFC- 955℄.Transa
tion
hara
teristi
s� The fundamental intera
tion is a request followed by a response.� An expli
it open or
lose phase would impose ex
essive overhead.� At-most-on
e semanti
s is required; that is, a transa
tion must not be "re-played" by a dupli
ate request pa
ket.� The minimum transa
tion laten
y for a
lient is RTT + SPT, where RTT isthe round-trip time and SPT is the server pro
essing time.Transa
tions Using Standard TCPConsider a simple transa
tion in whi
h
lient host A sends a single segment requestto server host B, and B returns a single-segment response. Current TCP implemen-tations use at least ten segments (i.e., pa
kets) for this sequen
e:� 3 for the three-way handshake opening the
onne
tion,� 4 to send and a
knowledge the request and response data, and� 3 for TCP's full-duplex data-
onserving
lose sequen
e.These ten segments represent a high relative overhead for two data-bearing seg-ments. However, a more important
onsideration is the transa
tion laten
y seen bythe
lient: 2*RTT + SPT, larger than the minimum by one RTT. As CPU andnetwork speeds in
rease, the relative signi�
an
e of this extra transa
tion laten
yalso in
reases.The TCP
lose sequen
e also poses a performan
e problem for transa
tions: oneor both end(s) of a
losed
onne
tion must remain in "TIME-WAIT" state until a11

4 minute timeout has expired . The same
onne
tion (de�ned by the host and portnumbers at both ends)
annot be reopened until this delay has expired. Be
ause ofTIME-WAIT state, a
lient program should
hoose a new lo
al port number (i.e.,a di�erent
onne
tion) for ea
h su

essive transa
tion. However, the TCP port�eld of 16 bits provides only 64512 available user ports. This limits the total rateof transa
tions between any pair of hosts to a maximum of 64512/240 = 268 perse
ond. This is mu
h too low a rate for low-delay paths, e.g., high-speed LANs.A high rate of short
onne
tions (i.e., transa
tions)
ould also lead to ex
essive
onsumption of kernel memory by
onne
tion
ontrol blo
ks in TIME-WAIT state.Hen
e to perform eÆ
ient transa
tion pro
essing in TCP, we need to suppressthe 3-way handshake and to shorten TIME-WAIT state in our new proto
ol.Transa
tions Using NGTCPBypassing 3-way handshakeTo avoid 3-way handshakes for transa
tions, we introdu
e a new me
hanism forvalidating initial SYN segments, i.e., for enfor
ing at-most-on
e semanti
s withouta 3-way handshake. We refer to this as the NGTCP A

elerated Open, or TAO,me
hanism.NGTCP A

elerated OpenNGTCP uses
a
hed per-host information to immediately validate new SYNs. If thisvalidation fails, the pro
edure falls ba
k to a normal 3-way handshake to validatethe SYN. This is A

elerated Open whi
h simulates a 3-way handshake. Thus,bypassing a 3-way handshake is
onsidered to be an optional optimization.What do we
a
he and how it helps?We
a
he the last sequen
e number (lsn) of a host from a latest
onne
tion from thathost. So when host B re
eives from host A an initial SYN segment host B
omparesit against
a
he[A℄.lsn , the latest value that B has
a
hed for A. The validation failsif there either the the new sequen
e number is less than or equal to the stored oneor there is no
urrent
a
hed state. Else the validation su

eeds.12

A point to note is that we need not worry about dupli
ate or old SYN segments,as it is taken
are of by our 64 bit sequen
e spa
e whi
h pra
ti
ally never wraps.All segments from a host su

essively o

upy the ever monotoni
 sequen
e spa
e, soby design there won't be any old dupli
ates . In
ase a host
rashes and reboots, itwould ask for
a
he re-syn
hronization.Considering a transa
tion in whi
h
lient host A sends a single segment requestto server host B, and B returns a single-segment response.The number of segments required in a favorable situation are:� 1 for the a

elerated open and sending data and initiating
lose,� 1 to a
knowledge the request and to send response data and initiate
lose,� 1 for
ompleting the full-duplex
lose sequen
e.More than 3 segments may be transferred in
ase a
ks are not piggyba
ked.Thus we see that we have improved on:1. Response time whi
h is RTT+SPT in this
ase.2. A saving of 66% of pa
kets being transferred as
ompared to TCP (obviouslyin
ases where large amount of data is being transferred, there will be morepa
kets transmitted and hen
e less in the per
entage saving).3.3.3 Trun
ation of TIME-WAITThe TIME-WAIT state is a state that all TCP
onne
tions enter into when the
onne
tion has been
losed. The length of time for this state is 240 se
onds (twi
ethe maximum segment lifetime), whi
h is to allow for any dupli
ate segments stillin the network from the previous
onne
tion to expire. Sin
e we
an always dete
told dupli
ate segments, (be
ause the sequen
e spa
e spanned by every
onne
tionis disjoint owing to the huge 64 bit sequen
e spa
e), we need not wait this long. Wepropose to remain in TIME-WAIT for some suitable multiple of round trip time sothat a gra
eful
lose is ensured. 13

3.4 ExamplesNGTCP
an be bene�
ial to some of the appli
ations that
urrently use TCP orUDP. At the moment there are many appli
ations that are transa
tion based ratherthan
onne
tion based, but still have to rely on TCP along with the overhead. UDPis the other alternative, but not having time-outs and retransmissions built intothe proto
ol means the appli
ation programmers have to supply the time outs andreliability
he
king themselves.3.4.1 HTTP and RPCHTTP is the proto
ol used by the World Wide Web to a

ess web pages. HTTPis the
lassi
 transa
tion style appli
ation. The
lient sends a short request to theserver requesting a do
ument or an image and then
loses
onne
tion. The serverthen sends on the information to the
lient.With TCP, the transa
tion is a

omplished by
onne
ting to the server (3-WayHandshake), requesting the �le and then
losing the
onne
tion (sending a FIN seg-ment). NGTCP would operate by
onne
ting to the server, requesting the do
umentand
losing the
onne
tion all in one segment (TAO). It is obvious that bandwidthhas been saved and response time enhan
ed.Remote Pro
edure Calls also adhere to the transa
tion style paradigm. A
lientsends a request to a server for the server to run a fun
tion. The results of thefun
tion are then returned in the reply to the
lient. There is only a tiny amountof data transferred with RPC's.3.4.2 DNSDomain Name System is used to resolve host names into the IP addresses that areused to lo
ate the host.To resolve a domain name, the
lient sends a request with the IP address or ahost name to the server. The server then responds with the host name or the IPaddress where appropriate. This proto
ol uses UDP as its underlying pro
ess.As a result of using UDP, the pro
ess is fast, but not reliable. Furthermore,14

if the response by the server ex
eeds 512 bytes of data, it sends the data ba
k tothe
lient with the �rst 512 bytes and a trun
ated
ag. The
lient has to resubmitthe request using TCP. The reason for this is that there is no guarantee that there
eiving host will be able to reassemble the IP datagram ex
eeding 576 bytes. Forsafety, many proto
ols limit the user data to 512 bytes.NGTCP is the perfe
t
andidate for the DNS proto
ol. It
an
ommuni
ate atspeeds approa
hing that of UDP, and it has the reliability of TCP.3.5 NGTCP Header Stru
ture3.5.1 Design GoalsThe header stru
ture for new proto
ol is
ompletely overhauled along following lines.� Any information not needed in majority of pa
kets is not kept in the mandatorypart of header.� Sizes of various �elds have been de
ided keeping in mind the future extensi-bility.� All �elds are to be aligned on natural boundaries.3.5.2 Header Fields� Version - The proto
ol should have a version number in the header. This willpermit future extension of the proto
ol easily. A 4 bit �eld is proposed.� Empty - A �eld of 28 bits. This is for future extensions.� Header Size - A 16 bit �eld that will fa
ilitate in
orporating huge number ofoptions as , the limit being 0.25 MB.� Port Numbers - 32 bit �elds, as proposed earlier.� Sequen
e Number - A 64 bit �eld, as proposed earlier.� A
knowledgment Sequen
e Number - A 64 bit �eld.15

Figure 3: NGTCP Header Stru
ture
16

� Window size - A 32 bit �eld, as proposed earlier.� Che
ksum - Following �elds are proposed:� Che
ksum - A 16 bit �eld for sending the
omputed value of
he
ksum usingCRC-16 algorithm.� Che
ksum length - A 14 bit �eld indi
ating length
he
ksum
overage. So ifan appli
ation wants more than 16 KB of pa
ket to
overed, then the entirepa
ket will be
overed.� Che
ksum Flags - A 2 bit �eld to indi
ate following options:1. No
he
ksum present.2. Che
ksum
overs header only.3. Partial
he
ksum.4. Che
ksum
overs entire pa
ket.Servi
e BitsA 16 bit �eld for servi
e
ags.� SYN, RST, FIN, ACK have similar meaning as in TCP.� SAK - If set then a
knowledgment is sele
tive.� REC - If set then then the proto
ol is re
ord based (the peer should give theentire pa
ket to the appli
ation as one). Otherwise the proto
ol is byte streamoriented.� FLW - If set then
ow
ontrol is to be used. The window size assumes signi�-
an
e. Otherwise no
ow
ontrol is used.� ORD - If set then peer should give pa
kets to the appli
ation in sequen
e only.Otherwise pa
kets may be delivered out of order.17

� LOS - If set then the proto
ol should re
over from losses. Otherwise appli
ationis asking for best-e�ort servi
e.� TRX - If set then transa
tion-based servi
e is desired.OptionsThere
an be 0 or more options ea
h in TLV (type-length-value) format. Ea
h optionis assigned a 8-bit number. The se
ond byte will indi
ate the length of option inmultiple of 4 bytes, limiting an option to a maximum of 1 KB. The remaining partis data asso
iated with option.

18

Chapter 4Design And Implementation
4.1 Design4.1.1 Approa
hThe TCP state diagram has been modi�ed to a

ommodate A

elerated Open re-quired for transa
tions in the experimental proto
ol T/TCP. We started with thisstate diagram and simpli�ed it by eliminating the highly unlikely paths to be tra-versed by the proto
ol endpoints. This in
luded simultaneous A

elerated Open at
lient by server when
lient is in SYN SENT* state.The basis for design of NGTCP implementation is the state ma
hine (�gure x).The starred states are the new states introdu
ed.Half Syn
hronized Conne
tionsTCP has always allowed a
onne
tion to be half-
losed. TAO makes a signi�
antaddition to TCP semanti
s by allowing a
onne
tion to be half-syn
hronized i.e.to be open for data transfer in one dire
tion before the other dire
tion has beenopened. Thus, the passive end of
onne
tion (whi
h re
eives the initial SYN)
ana

ept data and even a FIN bit before its own SYN has been a
knowledged.For half-syn
hronized
onne
tions we have following enhan
ements in NGTCP.1. The passive end must provide an implied initial data window in order to a

eptdata. The minimum size of this window is a parameter in the spe
i�
ation.Suggested is 4K bytes. 19

2. New
onne
tion states and transitions are introdu
ed into the FSM at bothends of the
onne
tion. At a
tive end, new states are required to piggy-ba
kthe FIN on the initial SYN segment. At passive end, new states are requiredfor a half-syn
hronized
onne
tion.4.1.2 State diagramThe FSM des
ribed by the state diagram is intended to be applied
umulatively;that is, parsing a single pa
ket header may lead to more than one transition. Ea
hnew state (in addition to states of TCP) in NGTCP is indi
ated by standard statefollowed by a star.There is a simple
orresponden
e between these and their equivalent originalstates. States SYN SENT* and SYN RECEIVED* di�er from
orresponding un-starred states in re
ording the fa
t that a FIN has been sent. The other new stateswith starred names di�er from the
orresponding unstarred states in being half-syn
hronized (hen
e, a SYN bit needs to be transmitted).Figure 5 shows an example of minimum transa
tion, highlighting the states tra-versed by
lient and server.4.2 ImplementationThe proje
t is implemented on linux 2.2.5 kernel.We have been able to implement the
ore fun
tionality of the proto
ol whi
hin
ludes transa
tion-oriented servi
e and 64-bit sequen
e numbers. We have alsodone Window s
laing.Implementation of other servi
es will be an in
remental work on the platform wehave developed.The
urrent implementation of TCP in the kernel is modi�ed to handle new statetransitions. A brief pi
ture of implementation is as follows:
20

Figure 4: An Example of Minimum Transa
tion
21

4.2.1 Appli
ation Program Interfa
eNGTCP sits as another transport proto
ol in the kernel like TCP and UDP. Theinterfa
e is de�ned as :� Appli
ation programs just need to spe
ify the proto
ol identi�er IPPROTO NGTCP,to use the proto
ol.� Clients wishing to use the transa
tion-servi
e feature may use setso
kopt
allto set the NGTCP TRX option, with option value as 1. For this they need toin
lude the �le '/usr/in
lude/netinet/ngt
p.h'.� To enable NGTCP to optimize on the number of segments transferred
lients
an optionally set the MSG LAST
ag in the their last send system
all, whi
hhas a value of 0x8000.4.2.2 Implementation DetailsWe started with the
ode of TCP, as the NGTCP has lot in
ommon with TCP.NGTCP spe
i�
 implementation required introdu
tion many new data-stru
turesand supporting routines and modi�
ations in existing routines. Here is a briefdes
ription of important
onstituents relevant to by-passing 3-way handsahke.Variables� We remember that a handshake has yet not o

urred by maintaining a variable'handshake' in the
ontrol stru
t 'ngt
p opt' . This variable is initialized to 0(handshake pending) and is set to 1 whenever handshake is over (either 3-wayor 1-way in
ase of TAO).� We remember that transa
tion oriented servi
e is desired by maintaining avariable 'trx servi
e' in the
ontrol stru
t 'ngt
p opt'. This variable is initial-ized to 0 and is set to 1 if user sets the option for transa
tion-oriented servi
eusing setso
kopt.
22

Ca
hesWe introdu
ed
a
hes for storing the last sequen
e numbers as proposed in theproto
ol spe
i�
ation. These are set-asso
iative
a
hes. The
a
hes are updatedalong following lines.� Ca
he entries are always syn
hronized at the end of every
onne
tion (whena FIN is re
eived from the other end) both at server and
lient, independentof whether transa
tion oriented servi
e is requested or not.� Ca
hes entries are always invalidated soon after a handshake is done both atserver and
lient, so that if a
onne
tion is reset in the middle due to unknownreasons, the
a
hes do not have stale values, for the next
onne
tion.4.2.3 Snapshot of Pro
essing Done at Client and ServerPro
essing at Clientsetso
koptIf the option is NGTCP TRX then we set 'trx servi
e' to 1.Conne
t system
allIf 'trx servi
e' is set fAll pro
essing related to sending an initial SYN pa
ket is done, but the pa
ketis held ba
k from going to the IP layer.We also do a
a
he lookup to �nd if the entry for the remote host is valid. Theidea is that if we have invalid entry, then probably our host has rebooted and isnow out of syn
hronization, implying that transa
tion-oriented servi
e should notbe requested. This is be
ause the remote host's
a
he will now (if at all) have a stale
a
he entry, whi
h now should not be used for TAO test. So 'trx servi
e' is reset to0 for an invalid entry.g 23

if 'trx servi
e' is not set fRoutine TCP pro
essing is done.gSend system
allThis involves very
ru
ial pro
essing. The data pa
ket is build here, and appropriate
ags are set. Depending on whether the 'handshake' is pending or not, we set theappropriate bits (SYN, TRX, FIN, ACK) in the pa
ket during the pro
essing ofsend system
all.If handshake is pending fSYN bit is set and ACK bit not set.if trx servi
e' is set, TRX bit is set.if 'trx servi
e' is set and the user appli
ation has supplied appropriate
ags(MSG LAST) in the send system
all, FIN bit is set.gIf handshake is done fACK bit is set.If the the user appli
ation has supplied appropriate
ags (MSG LAST) in thesend system
all, FIN bit is set.gFinally the pa
ket is given out to IP layer for transmission.
Pro
essing at ServerListen system
allThe server
he
ks for the
ags in the in
oming pa
ket.If TRX bit is set fTAO test is triggered:A
a
he lookup is done. If entry is valid, and the ISN in the pa
ket is greaterthan the
a
hed sequen
e number then TAO test is passed.24

So, if the test is passed 'handshake' is set to 1 (handshake over).gelse fRoutine TCP pro
essing is done gA SYN-request (a stru
t) is
reated and queued to the listening so
ket.If handshake is pending, then a SYN-ACK segment is sent to
lient, a
king theSYNIf handshake is overfA so
ket is
reated from the SYN-request.Ca
he entry for the remote host is invalidated.Data, if any is queued.If the FIN bit is also set then the
a
he entry for this
lient host is updated.gA

ept system
allAll requests for whi
h handshake is over are dequeued.
Following pro
essing is meaningful only if TAO has been
rossed or handshake isover.Re
eive system
allHere data is transferred from the re
eive queues to the server appli
ation.Send system
allData is pa
keted and sent to the
lient. The pa
ket
arries an a
k for SYN+numberof data bytes+[FIN℄. The FIN bit is set if the server appli
ation has supplied ap-propriate
ags (MSG LAST) in the send system
all.

25

Pro
essing at Client'handshake' is set to 1.If trx servi
e is setfIf the a
k from the server a
ks only the SYN, then TAO has failed at the serverelse if it a
ks all the data bytes sent, then TAO has su

eeded at server.If TAO has failed then the old data segment is retransmitted with the
ags SYNand TRX stripped o� and
ag ACK added.else a simple ACK segment is sent.gelse fRoutine TCP pro
essing is done.gRe
eive system
allHere data re
eived from server queued into into re
eive queues is transferred to theuser appli
ation.
Now server and
lient
an
hoose to follow a
hain of sends and re
eives until a fullduplex
lose is done.

26

Chapter 5Performan
e Comparison BetweenNGTCP and TCP
5.1 Environment� Ma
hines :
sews34 ,
semt80� OS : Linux 2.2.5 on both� Pro
essors :
sews34 : Pentium 2 MMX at 233 Mhz with 32 MB main memory.�
semt80 : Pentium 2 MMX at 233 Mhz with 64 MB main memory.� Server is running on
semt80� Client is running on
sews34� Intermediate network is LAN.Transa
tion De�nitionThe transa
tion here
omprises of
lient sending a data pa
ket to the server andthe server e
hoing it ba
k. The
lient �nally
loses down after re
eipt of responsepa
ket.

27

5.2 Statisti
s Comparison for 1000 Transa
tionsEa
h of following statisti
s is taken with the help of 'time'
ommand. The elapsedtime represents the total time for a
lient to make 1000
onse
utive (iterative)
on-ne
tions to server. This emulates the
ase where an a
tive server is serving largenumber of transa
tions from di�erent
lients.5.2.1 NGTCP running between
sews34 and
semt801. 0.01user 0.21system 0:01.30elapsed 16%CPU2. 0.01user 0.13system 0:01.30elapsed 10%CPU3. 0.00user 0.14system 0:01.36elapsed 10%CPU4. 0.00user 0.10system 0:01.36elapsed 7%CPU5. 0.01user 0.13system 0:01.35elapsed 10%CPU6. 0.00user 0.17system 0:01.34elapsed 12%CPU7. 0.02user 0.17system 0:01.39elapsed 13%CPU8. 0.01user 0.18system 0:01.30elapsed 14%CPU9. 0.03user 0.13system 0:01.35elapsed 11%CPU10. 0.01user 0.12system 0:01.31elapsed 9%CPU11. 0.01user 0.13system 0:01.40elapsed 9%CPU12. 0.00user 0.10system 0:01.36elapsed 7%CPU13. 0.01user 0.12system 0:01.31elapsed 9%CPU14. 0.01user 0.13system 0:01.30elapsed 10%CPU15. 0.00user 0.15system 0:01.38elapsed 10%CPU16. 0.01user 0.16system 0:01.34elapsed 12%CPU28

17. 0.01user 0.15system 0:01.33elapsed 12%CPU18. 0.01user 0.16system 0:01.31elapsed 12%CPUAverage elapsed time for NGTCP = 0:01.3383 se
ondsVarian
e in elapsed time for NGTCP = 0:00.0316 se
onds5.2.2 TCP running between
sews34 and
semt801. 0.00user 0.11system 0:01.69elapsed 6%CPU2. 0.00user 0.09system 0:02.25elapsed 3%CPU3. 0.00user 0.10system 0:02.47elapsed 4%CPU4. 0.00user 0.11system 0:01.69elapsed 6%CPU5. 0.00user 0.09system 0:02.25elapsed 3%CPU6. 0.00user 0.10system 0:02.47elapsed 4%CPU7. 0.00user 0.11system 0:01.69elapsed 6%CPU8. 0.00user 0.09system 0:02.25elapsed 3%CPU9. 0.00user 0.10system 0:02.47elapsed 4%CPU10. 0.00user 0.16system 0:01.61elapsed 9%CPU11. 0.02user 0.13system 0:02.31elapsed 6%CPU12. 0.00user 0.16system 0:01.61elapsed 9%CPU13. 0.02user 0.13system 0:02.31elapsed 6%CPU14. 0.02user 0.16system 0:01.61elapsed 11%CPU15. 0.00user 0.19system 0:02.05elapsed 9%CPU16. 0.02user 0.16system 0:01.61elapsed 11%CPU29

17. 0.00user 0.19system 0:02.05elapsed 9%CPU18. 0.01user 0.15system 0:01.86elapsed 8%CPU19. 0.01user 0.15system 0:01.90elapsed 8%CPU20. 0.01user 0.15system 0:01.86elapsed 8%CPU21. 0.01user 0.15system 0:01.90elapsed 8%CPUAverage elapsed time for TCP = 0:01.9052 se
ondsVarian
e elapsed time for TCP = 0:00.3233 se
onds5.3 Statisti
s Comparison for Individual Transa
-tionsThe statisti
s is generated by t
pdump. Proto
ols are running between ma
hines
sews34 and
semt80.The software t
pdump tells the proto
ol-id of the proto
ol when generatingstatisti
s of pa
kets going in and out of ma
hine. The proto
ol id of NGTCP is7 while for TCP it is 6. This the way we distinguish the pa
kets belonging toNGTCP and TCP.In
ase of NGTCP, the response time is
al
ulated as di�eren
e of timestamps of�rst pa
ket whi
h the request and the �fth pa
ket whi
h is the a
k of the responseof the server from the
lient.NGTCP1. 05:00:40.691444
sews34 >
semt80: ip-proto-7 77 (DF)2. 05:00:40.691552
semt80 >
sews34: ip-proto-7 52 (DF)3. 05:00:40.691686
semt80 >
sews34: ip-proto-7 44 (DF)4. 05:00:40.691847
semt80 >
sews34: ip-proto-7 69 (DF)5. 05:00:40.692061
sews34 >
semt80: ip-proto-7 44 (DF)30

6. 05:00:40.692304
sews34 >
semt80: ip-proto-7 44 (DF)7. 05:00:40.692359
semt80 >
sews34: ip-proto-7 44 (DF)8. 05:00:40.692794
sews34 >
semt80: ip-proto-7 44 (DF)Response time = 692061 - 691444 = 617 mi
ro se
ondsTCP1. 05:00:42.461326
sews34.1424 >
semt80.15000: t
p 0 (DF)2. 05:00:42.461405
semt80.15000 >
sews34.1424: t
p 0 (DF)3. 05:00:42.461815
sews34.1424 >
semt80.15000: t
p 0 (DF)4. 05:00:42.461929
sews34.1424 >
semt80.15000: t
p 25 (DF)5. 05:00:42.461983
semt80.15000 >
sews34.1424: t
p 0 (DF)6. 05:00:42.462081
semt80.15000 >
sews34.1424: t
p 25 (DF)7. 05:00:42.462492
sews34.1424 >
semt80.15000: t
p 0 (DF)8. 05:00:42.462542
semt80.15000 >
sews34.1424: t
p 0 (DF)9. 05:00:42.462563
sews34.1424 >
semt80.15000: t
p 0 (DF)10. 05:00:42.462596
semt80.15000 >
sews34.1424: t
p 0 (DF)11. 05:00:42.462949
sews34.1424 >
semt80.15000: t
p 0 (DF)Response time= 462492 - 461326 = 1166 mi
ro se
ondsNGTCP1. 05:05:44.060335
sews34 >
semt80: ip-proto-7 77 (DF)2. 05:05:44.060449
semt80 >
sews34: ip-proto-7 52 (DF)3. 05:05:44.060575
semt80 >
sews34: ip-proto-7 44 (DF)31

4. 05:05:44.060740
semt80 >
sews34: ip-proto-7 69 (DF)5. 05:05:44.060955
sews34 >
semt80: ip-proto-7 44 (DF)6. 05:05:44.061198
sews34 >
semt80: ip-proto-7 44 (DF)7. 05:05:44.061254
semt80 >
sews34: ip-proto-7 44 (DF)8. 05:05:44.061690
sews34 >
semt80: ip-proto-7 44 (DF)Response time = 060955-060335=620 mi
ro se
ondsTCP1. 05:05:46.547293
sews34.1426 >
semt80.15000: t
p 0 (DF)2. 05:05:46.547375
semt80.15000 >
sews34.1426: t
p 0 (DF)3. 05:05:46.547788
sews34.1426 >
semt80.15000: t
p 0 (DF)4. 05:05:46.547900
sews34.1426 >
semt80.15000: t
p 25 (DF)5. 05:05:46.547957
semt80.15000 >
sews34.1426: t
p 0 (DF)6. 05:05:46.548058
semt80.15000 >
sews34.1426: t
p 25 (DF)7. 05:05:46.548473
sews34.1426 >
semt80.15000: t
p 0 (DF)8. 05:05:46.548525
semt80.15000 >
sews34.1426: t
p 0 (DF)9. 05:05:46.548545
sews34.1426 >
semt80.15000: t
p 0 (DF)10. 05:05:46.548580
semt80.15000 >
sews34.1426: t
p 0 (DF)11. 05:05:46.548929
sews34.1426 >
semt80.15000: t
p 0 (DF)
32

Response time = 548473-547293=1180 mi
ro se
ondsNGTCP1. 05:07:22.527383
sews34 >
semt80: ip-proto-7 77 (DF)2. 05:07:22.527493
semt80 >
sews34: ip-proto-7 52 (DF)3. 05:07:22.527622
semt80 >
sews34: ip-proto-7 44 (DF)4. 05:07:22.527791
semt80 >
sews34: ip-proto-7 69 (DF)5. 05:07:22.528005
sews34 >
semt80: ip-proto-7 44 (DF)6. 05:07:22.528252
sews34 >
semt80: ip-proto-7 44 (DF)7. 05:07:22.528309
semt80 >
sews34: ip-proto-7 44 (DF)8. 05:07:22.528745
sews34 >
semt80: ip-proto-7 44 (DF)Response time = 528005-527383=622 mi
ro se
ondsTCP1. 05:07:28.278774
sews34.1427 >
semt80.15000: t
p 0 (DF)2. 05:07:28.278864
semt80.15000 >
sews34.1427: t
p 0 (DF)3. 05:07:28.279276
sews34.1427 >
semt80.15000: t
p 0 (DF)4. 05:07:28.279390
sews34.1427 >
semt80.15000: t
p 25 (DF5. 05:07:28.279447
semt80.15000 >
sews34.1427: t
p 0 (DF)6. 05:07:28.279554
semt80.15000 >
sews34.1427: t
p 25 (DF)7. 05:07:28.279965
sews34.1427 >
semt80.15000: t
p 0 (DF)8. 05:07:28.280016
semt80.15000 >
sews34.1427: t
p 0 (DF)9. 05:07:28.280036
sews34.1427 >
semt80.15000: t
p 0 (DF)33

10. 05:07:28.280068
semt80.15000 >
sews34.1427: t
p 0 (DF)11. 05:07:28.280421
sews34.1427 >
semt80.15000: t
p 0 (DF)Response time = 279965-278774=1191 mi
ro se
ondsNGTCP1. 05:09:22.004346
sews34 >
semt80: ip-proto-7 77 (DF)2. 05:09:22.004762
semt80 >
sews34: ip-proto-7 52 (DF)3. 05:09:22.004889
semt80 >
sews34: ip-proto-7 44 (DF)4. 05:09:22.005057
semt80 >
sews34: ip-proto-7 69 (DF)5. 05:09:22.005272
sews34 >
semt80: ip-proto-7 44 (DF)6. 05:09:22.005511
sews34 >
semt80: ip-proto-7 44 (DF)7. 05:09:22.005567
semt80 >
sews34: ip-proto-7 44 (DF)8. 05:09:22.006001
sews34 >
semt80: ip-proto-7 44 (DF)Response time = 005272-004346=926 mi
ro se
ondsTCP1. 05:09:23.804243
sews34.1429 >
semt80.15000: t
p 0 (DF)2. 05:09:23.804622
semt80.15000 >
sews34.1429: t
p 0 (DF)3. 05:09:23.805036
sews34.1429 >
semt80.15000: t
p 0 (DF)4. 05:09:23.805150
sews34.1429 >
semt80.15000: t
p 25 (DF)5. 05:09:23.805207
semt80.15000 >
sews34.1429: t
p 0 (DF)6. 05:09:23.805310
semt80.15000 >
sews34.1429: t
p 25 (DF)7. 05:09:23.805720
sews34.1429 >
semt80.15000: t
p 0 (DF)34

8. 05:09:23.805771
semt80.15000 >
sews34.1429: t
p 0 (DF)9. 05:09:23.805791
sews34.1429 >
semt80.15000: t
p 0 (DF)10. 05:09:23.805822
semt80.15000 >
sews34.1429: t
p 0 (DF)11. 05:09:23.806179
sews34.1429 >
semt80.15000: t
p 0 (DF)Response time = 805720-804243=1477 mi
ro se
ondsNGTCP1. 05:11:40.484971
sews34 >
semt80: ip-proto-7 77 (DF)2. 05:11:40.485079
semt80 >
sews34: ip-proto-7 52 (DF)3. 05:11:40.485210
semt80 >
sews34: ip-proto-7 44 (DF)4. 05:11:40.485382
semt80 >
sews34: ip-proto-7 69 (DF)5. 05:11:40.485597
sews34 >
semt80: ip-proto-7 44 (DF)6. 05:11:40.485840
sews34 >
semt80: ip-proto-7 44 (DF)7. 05:11:40.485898
semt80 >
sews34: ip-proto-7 44 (DF)8. 05:11:40.486333
sews34 >
semt80: ip-proto-7 44 (DF)Response time = 485597-484971=626 mi
ro se
ondsTCP1. 05:11:42.672570
sews34.1430 >
semt80.15000: t
p 0 (DF)2. 05:11:42.672658
semt80.15000 >
sews34.1430: t
p 0 (DF)3. 05:11:42.673071
sews34.1430 >
semt80.15000: t
p 0 (DF)4. 05:11:42.673191
sews34.1430 >
semt80.15000: t
p 25 (DF)5. 05:11:42.673255
semt80.15000 >
sews34.1430: t
p 0 (DF)35

6. 05:11:42.673367
semt80.15000 >
sews34.1430: t
p 25 (DF)7. 05:11:42.673782
sews34.1430 >
semt80.15000: t
p 0 (DF)8. 05:11:42.673835
semt80.15000 >
sews34.1430: t
p 0 (DF)9. 05:11:42.673854
sews34.1430 >
semt80.15000: t
p 0 (DF)10. 05:11:42.673891
semt80.15000 >
sews34.1430: t
p 0 (DF)11. 05:11:42.674239
sews34.1430 >
semt80.15000: t
p 0 (DF)Response time = 673782-672570=1212 mi
ro se
ondsNGTCP1. 05:15:01.302558
sews34 >
semt80: ip-proto-7 77 (DF)2. 05:15:01.302975
semt80 >
sews34: ip-proto-7 52 (DF)3. 05:15:01.303106
semt80 >
sews34: ip-proto-7 44 (DF)4. 05:15:01.303296
semt80 >
sews34: ip-proto-7 69 (DF)5. 05:15:01.303510
sews34 >
semt80: ip-proto-7 44 (DF)6. 05:15:01.303755
sews34 >
semt80: ip-proto-7 44 (DF)7. 05:15:01.303813
semt80 >
sews34: ip-proto-7 44 (DF)8. 05:15:01.304250
sews34 >
semt80: ip-proto-7 44 (DF)Response time = 303510-302558=952 mi
ro se
ondsTCP1. 05:15:03.400909
sews34.1431 >
semt80.15000: t
p 0 (DF)2. 05:15:03.401288
semt80.15000 >
sews34.1431: t
p 0 (DF)3. 05:15:03.401701
sews34.1431 >
semt80.15000: t
p 0 (DF)36

4. 05:15:03.401814
sews34.1431 >
semt80.15000: t
p 25 (DF)5. 05:15:03.401872
semt80.15000 >
sews34.1431: t
p 0 (DF)6. 05:15:03.401980
semt80.15000 >
sews34.1431: t
p 25 (DF)7. 05:15:03.402395
sews34.1431 >
semt80.15000: t
p 0 (DF)8. 05:15:03.402447
semt80.15000 >
sews34.1431: t
p 0 (DF)9. 05:15:03.402466
sews34.1431 >
semt80.15000: t
p 0 (DF)10. 05:15:03.402504
semt80.15000 >
sews34.1431: t
p 0 (DF)11. 05:15:03.402852
sews34.1431 >
semt80.15000: t
p 0 (DF)Response time = 402395-400909=1486 mi
ro se
ondsAverage Response Time for NGTCP = 727.167 mi
ro se
ondsVarian
e in Response Time for NGTCP = 150.001 mi
ro se
ondsAverage Response Time for TCP = 1285.333 mi
ro se
ondsVarian
e in Response Time for TCP = 139.413 mi
ro se
onds

37

Chapter 6Future WorkImplementing Fun
tionality of Servi
e bitsDue to limited time we have not been able to implement the proposed servi
es. Afuture work would be to implement all the servi
es envisioned with this proto
ol.CompatibilityMaking NGTCP
ompatible with TCP is a big issue whi
h we have not addressed.Finding ways to make it
ompatible would be a huge work in itself.More TestingThe proto
ol is tested only on LAN, whi
h doesn't bring out many fa
ets of theproto
ol. A more suitable testing bed is required, so that more realisti
 performan
emeasures
an obtained.

38

Bibliography[1℄ Sanghi D. Issues in Designing Next Generation Transport Proto
ol.[2℄ Be
k M, Bohme H, Dziadzka M, Kunitz U, Magnus R, Verworner D; LinuxKernel Internals; Addison-Wesley, 1996[3℄ Braden R T, RFC1644 T/TCP - TCP Extensions for Transa
tions Fun
tionalSpe
i�
ation, Network Working Group, 1994[4℄ Braden R T, RFC1379 Extending TCP for Transa
tions - Con
epts, NetworkWorking Group, 1992[5℄ Braden R T, Ja
obson V, Borman D, RFC1323 TCP Extensions for High Per-forman
e, Network Working Group, 1992[6℄ Braden R T, RFC1337 TIME-WAIT Assassination Hazards in TCP, NetworkWorking Group, 1992[7℄ Postel J, RFC793 Transmission Control Proto
ol, Defense Advan
ed Resear
hProje
ts Agen
y, 1981[8℄ TCP/IP Illustrated Volume 2, The Implementation, Wright and Stevens.[9℄ Internetworking with TCP/IP, Volume II, Design, Implementation and Internals.
39

