Design and Implementation of a File
System with on-thefly Data Compression
for Unix

by
Praveen B

R S Department of Computer Science and Engjneeting
g INDIAN INSTITUTE OF TECHNOLOGY KANP

July, 1997

Design and Implementation of a File
System with on-the-fly Data Compression
For UNIX

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by

Praveen B

to the
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

July. 1997

=5 AUG 1997

<ENTRAL LIBRARY
L 1. T., KANPUR

oA 133643

CSE-199F-M~- PRAZPES

CERTIFICATE

This is to certify, that the work contained in the thesis titled
Design and Implementation of a File System with on-the-fly Data Compression for UNIX
by Praveen B has been carried out under our supervision and that this work has not

been submitted elsewhere for a degree.

.
Dr. Deepdk Gupta,

Assistant Professor,
Dept. of CSE,
II'T Kanpur.

\so3—

Dr. Rajat Moona,
Associate Professor,
Dept. of CSE,

IIT Kanpur.

b o \
ja 11T Kanp_‘r.
Submitted mm.igﬁjz

Acknowledgements

I am greatly indebted to my thesis supervisors, Dr.Deepak Gupta and Dr.Rajat
Moona for their constant support and valuable guidance through out my work.
Sirs, I am grateful to you.

Dr.Ajai Jain and Dr.Harish Parthasarthy have kindly agreed to be the examiners
for my defence and have made their valuable comments and suggestions on my
report. Sirs, I am thankful to you.

The world would have been a dull place to live butl for the friends, who share
and care every thought of ours. My friends Rama Krishna Rao and K.Srinivas have
stood by me in all the times. Friendly moments spent with Shyamala and Malini
have always made me recollect the playful days of my childhood and have been a
source of immense joy and fun and remain forever as sweet memories. Associations
with Ramakanth, Raghu Ram, Sameer Shah etal., stand as cherished times. Two
friends, Jayaram and Vani, though thousands of miles away, have provided me the
right guidance and emotional support in times of need. Friends, I adore you all.

It is the constant love and care of my parents, my brother and my cute sister
that made me, what I today am. Dear Amma, Daddy, Kinnu and Deepa, I love you
all.

The cozy surroundings of iitk has made my stay here, certainly one of the core
modules of this package of life. Dear birds, trees and flowers of this beautiful campus,

I cherish your company forever.

it

Dedicated to
A Good Kind Honest and Simple Friend

v

Abstract

Data compression techniques have long been assisting in making effective use of disk,
network and similar resources. Compress for UNIX, pkzip for MS-DOS, gzip devel-
oped by GNU software foundation are a few widely used utilities for this purpose.
These utilities require explicit user interaction for compressing and uncompressing of
file data. Doublespace for MS-DOS, Stacker for MS-DOS and Macintosh are utilities
in which compression and uncompressioﬁ of file data takes place in the background,
without any user interaction. A compressed file requires less number of sectors for
storage on the disk. Ience, incorporating data compression techniques into a file
system gives the advantage of larger effective disk space. At the same time, the time
lost in compression and uncompression of file data gets compensated to some extent
by the time gained because of lesser disk access. In this report we describe the design
and implementation of a file systemn, with the feature of on-the-fly data compression
in a fashion that is transparent to the user, for Linux, a Unix-like operating system.
We also present some experimental results that show that the performance of our

file system is comparable to that of Ext2fs, the native file system for Linux.

Contents

Introduction
1.1 Related Work
1.1.1 Compression Utilitics

1.1.2 Stacker
1.1.3 Doublespace

...............................
.......................

...............................
............................

1.2 Organization of the Report

Background Concepts

2.1 The Unix File System
2.1.1 Structure e e e e
912 BufferCache
2.1.3 The Virtual File System

2.2 Data Compression Techniques

..........................

Design of the Compressed File System
3.1 Motivation
3.2 Concepts of Physical and Logical Block Sizes
3.2.1 Physical Block Size
3.2.2 Logical Block Size
3.2.3 Need for different physical and logical block sizes

.................................
...............
........................
.........................

.......

3.3 Buffering of Uncompressed and Compressed data
3.3.1 Two Level Buffering
3.4 Support for Multiple Compression Techniques

4 An Implementation of the Compressed File System on Linux

4.1 Overview of Linux File Systems

4.1.1 The

4.2 lssues in Implementation of the Compressed File System

.....................

Ext2 File System

......................

4.2.1 Buffer Allocation Strategies for the Compressed file system . .

4.2.2 Disk Block Allocation and Representation
4.3 Implementation of System Calls
4.3.1 Mounting a file system
4.3.2 Opening a new file
4.3.3 Reading from a file
4.3.4 Writing to a file
4.4 Avoiding Compression of Small Files
4.5 Support Utilities
4.6 Compression Techniques Used
4.6.1 Huffman Encoding Scheme
4.6.2 LZRW1 Compression Algorithm

.....................

......................

..........................

.............................

....................

.................

5 Performance Measurements

5.1 Timing statistics for transfer of a logical block

5.1.1 Paramcters Measured

.......................

512 Resultsand Apalysis« v . o v v oo e

6 Conclusions
6.1 Summary

6.2 Limitations

References

.................................

16
16
17
19

20
22
22
23
23
25
27
28
30
30
31

35
36
36
38

41
41
42

43

Chapter 1
Introduction

Data compression techniques have long been assisting in making effective use of disk,
network and similar resources. Compressing the data before storing it on the disk
or transferring it over a network reduces the amount of bandwidth required for the
data transfer. Data compression when used in the context of a file system stored on

a physical disk has the following advantages.

Better Disk Utilization
When a file is compressed before being written onto the disk, in most of the
cascs it occupies less number of disk sectors than the corresponding uncom-
pressed file. This leads to efficient usage of the available disk space in the sense
that the same amount of disk space can now be used to store a larger amount
of data. This advantage is however dependent on the amount of compression

that is achieved.

In certain file systems like the Ext2 file system[2] developed for Linux(8], a
file system partition is divided into multiple block groups. Block allocation
stratcgies always try to allocate the data blocks for a file in the same group as
its inode. This reduces the disk seeks, when a process tries to access an inode
and its data blocks. Since a file in the compressed form requires less number
of disk blocks for storage, the inode and the data blocks for files in the file

system can now be more effectively grouped.

Faster Disk Access

A considerable amount of time of the read and write system calls is spent
in transferring data from and to the disk. With the advent of faster CPUs,

the ratio of CPU time to the disk access time for reading and writing files is
decreasing fast.

Since storing a file in the compressed form on the disk requires lesser number
of disk blocks, disk access will take lesser time if the file is compressed, since
we need to access lesser number of sectors on the disk. Thus by choosing a
compression algorithm that is fairly fast, the time lost in compressing and
uncompressing the data can be compensated for by the time gained in disk
access. This leads to the advantage of gaining in terms of disk space with not

much loss in terms of performance of the file systern.

1.1 Related Work

1.1.1 Compression Utilities

A large number of utilities have been developed in assisting the users store their data
in the compressed form. Compress and pack for Unix; pkzip for MS-DOS; and gzip
developed by the GNU software foundation are a few of the widely used compression
utilities. Most of these compression routines use variations of the dictionary based
compression technique proposed by Lampel-Ziv[11]. Using these utilitics for data
compression imply that the user explicitly needs to compress the data before storage,

and do the uncompression when needed.

1.1.2 Stacker

Stacker is a program developed for M5-DOS which doubles the disk space on the
drive invisibly[10]. It allows more data to be placed on the disk by compressing
all the files on the disk. It uses a method called LZS compression, which replaces
repeating strings of characters with a ‘“token’ character. Fach token represents a

different string of characters. As data is read from the disk, tokens are replaced

with the original characters. This method is a form of lossless compression. This
means that Stacker will never lose or misplace the original information.

Stacker runs in the background of the operating system. It is invisible to
applications, disk utilitics, and even the operating system. Stacker docs this by
working hand-in-hand with the hard disk driver. The hard disk driver is the software
that communicates between the hard disk and the operating system. Without a hard
disk driver, the hard disk would not be accessible. Stacker does not change the hard
disk driver in any way.

The Stacker driver operales between the operating system and the hard disk
driver. When the operating system wants to interact with the drive, it calls Stacker.
As far as the operating system is concerned, Stacker is the hard disk driver. Stacker
performs the compression or uncompression as needed and then passes the infor-
mation on to the hard disk driver. The hard disk driver does not care what the
information looks like. It just reads and writes the data to the disk as instructed.

This mode of operation allows Stacker to work invisibly in the background. The
files keep the same attributes. They look as they did before Stacker was installed.
The files appear to be of the same size, and as far as the operating system is
concerned, they are.

Stacker tracks all of the information in the background using compression tables
it adds to the system. If for any reason the compression tables should become
corrupted, Stacker includes a Check feature. Using the check feature, Stacker can
repair the compression table information. Stacker maintains redundant copies of

these tables so as to be able to better recover from problems.

1.1.3 Doublespace

Doublespacel5] is a disk compression utility which is included in MS-DOS 6.0. Its
function and operation are similar to most other disk compression utilities like
Stacker, SuperStor[6][7] elc. Its main purpose is to allow more information to be
stored on the diskeite. This process occurs at the system level and is for the most

part, transparent to the user.

When Doublespace is run on a standard drive like the C: drive, a new drive will
appear on the user system. This new drive will be uncompressed and will be assigned
a drive letter of H: (default). This drive will contain about 2MB of free space, system
files and Doublespace files. U'he free space on this drive will be allocated for files
that do not function properly when they are compressed. One file DBLSPACE. 000,
is a CVF (compressed volume file) and represents the entire compressed C: drive.
This file is in a compressed form and resides in the root directory of the host drive.

Doublespace automatically uncompresses the files in the compressed drive before
they are used.

1.2 Organization of the Report

In this report, we present the design and implementation of a compressed file system
for a Unix-like operating system. We start with the background concepts of the Unix
file system and a brief introduction to the data compression techniques in Chapter
9. In Chapter 3 we present the design of our file system. Chapter 4 contains
details of implementation of our file system on Linux[8], a Unix-like operating
system. In Chapter 5 we present the results of benchmarking the performance

of our implementation. Finally in Chapter 6, we present the concluding remarks.

Chapter 2

Background Concepts

2.1 The Unix File System

2.1.1 Structure

A file in a Unix operating system[l] is a sequence of bytes with no interpretation
enforced on it by the operating system. The file system is organized as a tree of
files in which the leaf nodes are the regular files and the intermediate nodes are
directories. A directory in a Unix file system is a special file which contains a list of

entries, one entry each for the sub-directories and the files in it.

B Inodes

Each file is represented by a structure, called an inode. An inode contains all the
necessary information about the file it represents, such as the file type, size, owner,
access rights, time stamps, and pointers to the data blocks. The addresses of data
blocks allocated to the file are stored in its inode. When a user requests an I/O
operation on the file, the kernel code converts the current offset in the file to the
logical block number within the file, uses this number as the index into the block

entry table and reads or writes the corresponding physical block(s).

g Directories

Directories in Unix are just like other files except that the information they contain
1s in a specific format and has a specific interpretation enforced by the operating
system. Each directory contains one entry for each of the sub-directories and files

in it. FBach entry contains the inode number and the name of the file.

g Links

Unix file system implements the concept of a link, whereby cach file can have multiple
names associated with it. This is implemented by associating various file names with
the same inode. The inode has a count of number of links pointing to it. When a link
is deleted, the kernel simply removes the corresponding entry from the directory and

decrements the link count in the inode. Ap inode and its data blocks are deallocated

only when its link count becomes zero.

2.1.2 Buffer Cache

In a Unix file system, when a process tries to access data from a file, the operating
system brings data from the disk into a buffer and gives a copy of it to the requesting
process. Future accesses to the same data are satisfied by using this cached copy
itself. The kernel could read and write directly from the disk for each request, but
that would severely affect the system response and throughput because of slower disk
access rates. T'he kernel therefore tries to minimize the frequency of disk accesses by
maintaining a pool of internal data buffers called the buffer cache, which contains
data of the recently accessed disk blocks.

On getting a read request for a file, the kernel attempts to find the data in the
buffer cache. If the data is already present there, disk access is not necessary for
satisfying the read request. If the data is not present, the kernel reads the data from
the disk into the buffer cache which may be used for future accesses. Data being
written is also cached so that it is available if any other process later tries to read it.
The kernel also tries to minimize disk writes by not writing back any transient data.

Pre-caching and delayed write of data also aid in minimizing the disk accesses.

The buffer cache is organized as a hash queue, hashed upon the device and block
number on the disk whose data is stored in the corresponding buffer. A buller can
exist on only one hash queue, since otherwise the kernel has no way to decide which
of them is the valid buffer for that <device,block> pair. The size of this hash queue
varies during the lifetime of the system, depending upon the number of buffer cache
entries that are currently mapped to the disk blocks.

2.1.3 The Virtual File System

Most of the UNIX kernels contain a Virtual File System (VI'S) layer similar to the
one that was originally introduced in SunOS for supporting NFS[12]. The VFS is an
indirection layer which handles the file oriented system calls, and calls the necessary
functions in the file system specific code to do the input-output.

When a process issues a file system related system call, the kernel calls a function
in the VIS code. This function handles the structure independent manipulations
and redirects the call to a function contained in the file system specific code, which is
responsible for handling the structure dependent operations. The file system specific

code uses the buffer cache functions to request I/O on devices.

2.2 Data Co'mpression Techniques

Data compression techniques[11] are broadly classified into

e Statistical Models
Statistical modeling reads in and encodes a single symbol at a time using the
probability of that character’s appearance. The simplest forms of statistical
modeling use a static table of probabilities for each symbol in the alphabet.
The symbol that occurs with high probability is encoded with less number of

bits and vice versa.

However, using static tables of probabilities has a disadvantage. If the input

stream does not match well with the table of probabilities, it leads to poor

compression. Hence another technique called the Adaptive Statistical Mod-
eling is used, whereby the probability tables are generated as the input is
scanned and compressed. Thus, the algorithm may start with a small table

or no table at all, and as the input is scanned, the probability tables are built
up.

An implementation of the Adaptive Statistical Modeling technique .is the
Huflman Encoding scheme, where a Hullman tree is generated for the input

symbols seen. This tree is used for encoding the input symbols.

Dictionary Schemes

Statistical models generally encode a single symbol at a time. A dictionary
based compression scheme uses a different concept. It reads in input data and
looks for a group of symbols that appear in the dictionary. If a string match
is found, a pointer or index into the dictionary can be output instead of the

code for the symbol. The longer the match, the better the compression.

Dictionary based compression techniques differ in the way they maintain the
dictionary, and the way they encode the dictionary match. The 12-bit LZW
compression technique is an implementation of the dictionary based compres-
sion technique. It uses 12 bits to encode the dictionary match. The dictionary
is maintained as a tree. Another variation of the dictionary based technique
is the LZRW1 compression technique [14] which uses 16 bits to encode the

dictionary match. The dictionary in this case is maintained as a hash table.

Chapter 3

Design of the Compressed File
System

3.1 Motivation

The compressed file system has been designed with the aim of incorporating the
feature of on-the-fly compression and uncompression of file data into the Unix-like
file system, in a fashion that is transparent to the user. Our goal is to design a file
system which makes effective use of the available disk space, by compressing the file
before being written onto the disk, and then uncompressing it before returning to
the user without much loss in the performance of the file operations.

The design has been guided by the idea that it should be possible to integrate
our file system into a Unix-like operating system which provides support for multiple
file systems, with minor modifications to the generic file system code.

We aim at providing this feature of on-the-fly compression and uncompression
in a fashion that is transparent to the user. The user should be unaware of the
fact that the file is stored in a compressed form on the disk. The size and other
attributes of the file as seen by him will be the same as that of the uncompressed
file. _

However, we restrict the compression only to regular files. Since directories are

usually smaller, storing them in compressed form does not give any advantage. On

the other hand, since they are more frequently used, compressing them alfects the
speed of the directory operations, thus affecting the file system performance. Ilence
we keep all the directories in the uncompressed form. Also, since compressing very
small files is not desirable, we adopt a strategy to store all the files whose sizes
are below a threshold value in the uncompressed form. Other special files such as
symbolic links, pipes etc., are also not compressed.

Another aim of our design is to allow multiple compression techniques to be
simultaneously used in the file system. This feature provides the option of selecting

a suitable compression algorithm for a specific file at the time of creating that file.

3.2 Concepts of Physical and Logical Block Sizes

3.2.1 Physical Block Size

"The physical block size of a file system indicates the smallest units into which the
disk partition for this file system is divided. It is cbnﬁgured at the time of creating
the file system on a certain disk partition, and is a constant for the file system in
question. Physical block size of a file system will always be an integral multiple of
the sector size of the disk. Any allocations of disk space for the files of a file system

are always done in multiples of the physical block size of that file system.

3.2.2 Logical Block Size

The logical block size of a file system is a parameter that determines in what units
are file reads and writes performed on that file system. In a typical Unix- like file
system, the disk blocks allocated to a file are stored in the block entry table of
the inode. The index of this table represents the logical block of the file and the
corresponding table entry represents the physical blocks allocated to that logical
block. The representation of the block entry table and its entries is specific to the
implementation of the file system. The number of disk access requests required to
read or write a file varies inversely with the size of the logical block, which thus

affects the performance of the file system. However selecting a larger logical block

size may lead to internal fragmentation of the last logical block of the file. In most
of the cases, the logical block size of a file system is equal to its physical block size.

The logical block size of the file system is chosen at the time of creating the file
system.

3.2.3 Need for different physical and logical block sizes

In order to store a file in the compressed form, we need to divide the file data into
chunks of fixed size and each chunk is compressed and uncompressed separately. The
whole file cannot be compressed as a single chunk as it lcads to a heavy degradation
of performance while reading and writing small parts of the file, since the whole file
needs to be compressed for cach write and needs to be uncompressed for cach read.
llence we choose to perform the compression and uncompression in units of logical
blocks of the file.

To make data compression effective, the logical block size is selected as an integral
multiple of the physical block size. The number of disk blocks required to store
a logical block depends upon how well that block of data gets compressed. For
example, if we choose the logical block size as 4K bytes and a logical block of data
gets compressed to 2K bytes, then we need only 2 1024 byte sized physical disk
blocks to store the 4K sized logical block.

The disk blocks corresponding to a logical block are stored at the corresponding
index in the block entry table of the inode structure.

3.3 Buffering of Uncompressed and Compressed
data |

When on-the-fly compression and uncompression of data is incorporated into the
file system, we need to know the exact size of the compressed data corresponding
to the buffer being written, for the purpose of allocating fequired number of disk
blocks for the corresponding logical block of the file. Since the device driver routines

look at the size of the buffer cache to determine the number of sectors to be written

onto the disk, this information must be known before the corresponding buffer cache
entry is placed on the disk queue.

In the design of our file system, the approach taken by the typical Unix-like file
system, where data from the user buffer first gets copied into the buffer cache from
where it is then written onto the disk, can still be followed in case of synchronous
writes. Data from the user buffer is compressed into a temporary buffer, and the
required number of disk blocks are then allocated for the logical block. Since the
inode is kept locked till the write is finished, the corresponding block table entry
is updated and the temporary buffer is placed on the disk queue for writes. The
uncompressed data is also copied into a bufler cache entry as is done in a normal
Unix-like file system.

In the case of asynchronous writes, the actual writing of data onto the disk takes
place in background at regular intervals by the ddflush daemon. This daemon process
periodically checks the buffer cache for entries which are marked dirty and flushes
them onto the disk. Hence, to support the asynchronous writes in our file system, we
either need to store the compressed data in the buffer cache or allow the compression
to take place at the time the buffers are being flushed. The first alternative implies
that uncompressed data can no longer be buffered, since the buffer cache can have
only one entry for a logical block. This leads to paying a heavy penalty for file
reads, since for every read, data from the bufler cache has to be uncompressed and
given to the user. The disk block allocations cannot be delayed till the buffers are
being flushed because these buffers in the first place cannot be put on proper queues
as their size and associated disk blocks are not yet known. Thus they cannot be
processed by the bdflush daemon.

One solution to this problem is to predict the number of blocks that would be
required to store a logical block after it is compressed and allocate those many
blocks initially. When the actual compressed size is known, either extra blocks need
to be allocated or the surplus blocks need to be freed. This may lead to heavy disk

fragmentation, which is undesirable.

12

3.3.1 Two Level Buffering

To overcome this problem in the design of our file system, we use the two level

buffering mechanism, as implemented in Linux Version 1.3.51 onwards(3], to buffer

the uncompressed and the compressed data. Buffering the uncompressed data

retains the advantage of buffer cache, while buffering the compressed data is required

" to support the asynchronous writes.
The first level buffers are maintained as a set of virtual memory pages associated
with a logical block of the file and store the uncompressed data. The buffer cache
is used as the second level buflers which store the corresponding compressed data.

Figure 3.1 depicts the scenario of the two level buflering.

Offset = 0
Offset = .
PAGESIZE Disk Block 1
Offset = Comprcsi Write .

User Buffer > *PAGESIZE » Buller Cache ™ Disk Block 2

Decompresg B Read

Offiet =(n-1)* Disk Block n
PAGESIZE
First Level Caching Second Level Caching

(VM Pages)

Figure 3.1: Buffering Mechanism

As shown in Figure 3.1, when a file is being written, data from the user buffer
first gets copied into the corresponding memory pages in the first level buffer. With
each set of these memory pages that correspond to a logical block of the file, there
is an associated buffer cache entry, which forms the second level buffer. Data from
the first level buffer is compressed and stored in the buffer cache, which gets written
onto the disk, either synchronously or asynchronously by the bdflush daemon.

The disk block allocation for a buffer cache entry is done after the compressed
data is written into it. This is because the actual number of disk blocks necessary

for that buffer is known only after the data has been compressed.

13

Similarly when the file is being read, data from the disk is first read into the
buffer cache. It is then uncompressed into the set of memory pages associated with
that buffer cache entry. Any further reads on that block of data can thus be directly
satisfied using these memory pages, without the need for uncompressing, or disk

access.

Thus, while the memory pages maintain the advantage of speeding up the reads,

the second level buffers aid in allowing writes to proceed asynchronously.

3.4 Support for Multiple Compression Techniques

As stated in the design objectives, the goal of our design is to make the process of
compression and uncompression tra.nsparcnt to the user. At the same time, it also
allows the user to choose the file system behavior with respect to the files he creates.

One goal of our file system is to support multiple compression techniques si-
multaneously in the file system. The choice of choosing a particular compression
technique is available both to the system administrator and the user.

The system administrator can chose the compression technique to be used at
the time of mounting the file system. Any file that will be newly created in this
file system gets compressed by the compression algorithm chosen by the system
administrator.

However, a user can override this default compression technique for the files he
creates. He can decide whether the files that he creates be stored in the compressed
form or not, and also can choose the compression technique that is to be used for
the newly created files. New flags, that can be specified with the open system call
have been added for this purpose. This option facilitates choosing an appropriate
compression technique based on the file type and also the requirements of the
user. Thus the compression technique used is an attribute of the file rather than
the attribute of the file system, and this information hence is stored in the inode

structure for that file.

14

Currently we have supported the Huffman Encoding[11], the 12-bit LZW com-
pression technique[l1] and the LZRW1 compression technique [14] in the implemen-

tation of our file system. Any new compression technique can also be easily added.

15

Chapter 4

An Implementation of the

Compressed File System on Linux

We have implemented the compressed file system on Linux(8]. In this chapter, we
start with a brief introduction to Linux and its file systems. We then explain the
features of the Ext2 file system[2] of Linux, which is the base file system for our
implementation. This is followed by a detailed discussion of the issues specific to

our implementation.

4.1 Overview of Linux File Systems

Linux is a Unix-like operating system that was first developed for Intel 80x86
platforms and was later ported to other platforms. It was first implemented as
. an extension to the Minix Operating System([13]. Many modules of the kernel were
later recoded and newer versions were released with advanced features.

In the early stages of development, the Linux file system was developed on the
lines of the Minix file system. Later, to overcome the deficiencies of the Minix file
system, two other file systems, the Extended file system(Extfs)[8] and the Xia file
system (Xiafs)[8] were developed. To further overcome the problems in the Extfs,
the Second Extended file system (Ext2fs)[2] was developed in 1993.

16

4.1.1 The Ext2 File System
g Features

‘The Ext2 file system provides many features common to a Unix file system, such
as support for regular files, directories, device specific files and symbolic links. It
provides support for long file names (up to 255 characters) by allowing varying
length directory entries. Ext2fs also allows the system administrator to select the
logical block size at the time of creating the file system, which will, in general be,
an integral multiple of the physical block size. Using a larger logical block size
can considerably speedup up disk access since fewer 1/O operations are performed.

However larger block sizes may lead to wastage of space in the last block of each
file.

n Physical Structure

Boot Block Block Block
Sector Group 1 Group 2 Group N

Figure 4.1: Structure of a Ext2 file system

The Ext2fs is structured as shown in Figure 4.1. The disk is divided into several block
groups similar to the layout of the BSD file system[9]. Each block group contains
a redundant copy of the super block and other file system control information,
the block and inode bitmaps, the inode table and the data blocks for that group.
Figure 4.2 depicts the structure of a block group. V

Super FS Block Inode Inode Data
Block Descriptors| Bjtmap Bitmap Table Blocks

Figure 4.2: Structure of a Block group

17

The block bitmap is used to maintain the allocation status of the disk blocks in
that group. Each bit in the bitmap corresponds to one disk block in the group. A
value of 1 for a bit indicates that the corresponding block has been allocated and a
value of 0 indicates that block has not yet been allocated. Similar is the case with
the inode bitmaps.

The physical disk blocks allocated to a file are stored in a block table in the inode
for that file. The first 12 entries of this table point to the direct blocks. The next
three entries correspond to an indirect, double indirect and triple indirect blocks for

that file. Figure 4.3 depicts the block table layout for a file in the Ext2 file system.

12 1 Indirect Block

INDIRECT\ : Double Indirect
BLOCK : Block

DOUBLE 2
INDIRECT .
BLOCK)

TRIPLE }
INDIRECT] >
BLOCK 2

A 4

‘Iriple Indirect
Block

\ 4

Figure 4.3: Block Table Layout for a file

Performance Optimizations

Ext2fs takes advantage of the buffer cache routines to perform read aheads in order
to make reads faster. Further, Ext2fs has many allocation optimizations also. The

block groups are used to cluster inodes and the corresponding data blocks. It also

18

Lerics to allocate the inode and data blocks for a directory and the files within it

‘wvithin a single block group, thus reducing the disk head seek times.

'<4.2 Issues in Implementation of the Compressed

i
H

File System

<4.2.1 Buffer Allocation Strategies for the Compressed file
system

4 m First Level Buffers

As discussed in Chapter 3, the first level buffers are maintained as a set of virtual
memory(VM) pages[l]. These VM pages are maintained as a hash table and are
hashed upon the pair <inode,offset>, where inode is the inode number of the file
~and offset is the offset of the file data which is stored in this VM page. Further, all
the VM pages that correspond to a file are linked in a doubly linked list. The VM
pages that correspond to a buffer cache entry are identified by comparing the sizes
of the VM page and that of the logical block size of the file system and finding the
first VM page corresponding to a buffer cache entry.
When a file is being written at an offset, data from the user buffer is first copied

nto the corresponding VM pages. 1f the VM pages are not present, they are allocated
nd the copying of data is done.

Second Level Buffers

1e second level buffers in the Linux kernel are the buffer cache entries. Each buffer

:he entry corresponds to one logical block of file data. When a file is being written,

" soon as the data corresponding to a logical block is written into the VM pages,
. compressed and stored in the corresponding buffer cache entry.

f the corresponding entry is not found in the bufler cache, a new bulffer is created.

entry is however not placed in the buffer cache queues, since no disk blocks

associated with this entry. Data from the corresponding VM pages is then

19

compressed and stored in this buffer. Knowing the compressed size, we now allocate
the required number of disk blocks and associate thermn with this buffer. The buffer
is now inserted into appropriate buffer cache queues.

If the required entry is found in the buffer cache, but the new compressed size
exceeds the size of the allocated blocks for that entry, a proper reallocation of blocks

is done so that required number of contiguous blocks are allocated.

4.2.2 Disk Block Allocation and Representation
g Allocation

After the file data has been compressed into a buffer, we allocate the required number
of disk blocks for that logical block of data. We then associate these disk blocks
with the buffer and store them in the block entry table of the inode. For efficiency
we allocate all the blocks for a logical block in a contiguous fashion on the disk. It
then suffices that we store the first block number as the physical block number of the
buffer. This along with the size of the buffer (the compressed size) determines the
number of blocks that correspond to this logical block of data. Contiguous allocation
of disk blocks for a logical block helps to get good performance by allowing the kernel
to read a logical block with a single disk transfer.

The disk is partitioned into multiple block groups in a way that is done in Ext2fs.
A block bitmap is used to represent the availability of disk blocks within a block
group. A bit value of 0 indicates that the corresponding block is free and a value of
1 indicates that the block is allocated.

We have used the goal block allocation policy similar to that used by the Ext2fs.
The goal block allocation policy tries to allocate contiguous blocks on the disk to
store a file. For allocating disk blocks for a logical block of the file, the block following
the last allocated block for the previous logical block of the file is designated as the
goal block.

The algorithm for allocating disk blocks first searches for the required number
of free blocks starting from the goal block. If the required number of free blocks are
found starting at the goal block, the search ends.

20

In case the required number of free blocks are not found at the goal block, we
search in the near vicinity of the goal block to satisfy the request. This search is
limited to the next 64 bits of this block group.

If the request is not yet satisfied, we then search for a free byte in this block
bitmap. Starting from the first bit of this free byte, a search is made backwards to
locate the first 0 bit in this sequence of 0 bits. Starting from this first free bit, we
allocate the required number of blocks. Searching for a free byte has the advantage
that block allocation request for the next logical block of the file can be satisfied at
the goal block.

If a free byte is not found, the entire block bitmap is scanned for the required
number of free blocks. If this too fails, then each of the remaining block groups is

tried until we get the required number of contiguous free blocks.

1 Representation

The other issue we need to deal with is the way the disk blocks are represented in
the block entry table of the inode. In Ext2fs, a 32 bit number is used to represent
a physical disk block. For the compressed file system however, each logical block
corresponds to multiple (consecutive) physical blocks.We represent this information
in the block table in the following way.

Of the 32 bits that are used to store the physical block number, we allocate n bits
to store number of blocks and the rest of 32 — n bits to store the first block number.
The value of n depends on the logical block size chosen. If we choose a logical block
size of L bytes and the physical block size is P bytes, then the maximum number of
physical blocks needed to store L bytes of data is N = L/P. Thus we need at most
log, (V) bits to store the number of physical blocks required. As an example, if the
logical block size is 8K bytes and the physical block size is 1K byte, then we need at
most log,(8) = 3 bits to store the number of blocks required. Thus the remaining
929 bits can be used to store the first block number, which allows to represent 22°
disk blocks. This implies that the maximum total file system size is less than that
of Ext2fs. But in practice however, since these numbers are enough to represent a
very large file system, using 29 bits instead of 32 bits to represent the block number

CENTRAL LIBRARY
21 L L T.. KANPUR

COMPR_ALGO = none No compression is done by default for

any newly created files

The default compression technique,
currently the LZRW1 compression
COMPR_ALGO = lzrwl The LZRW1 compression technique
COMPR_ALGO = lzwl2 The 12-bit LZW12 compression technique
COMPR_ALGO = huffman | The Huffman encoding technique

COMPR_ALGO = default

Table 4.1: IDs for Compression Techniques Supported

does not make much of a difference.

4.3 Implementation of System Calls

As explained earlier, file system related system calls in Linux have a file system
independent portion and a file system specific portion of the code. In this section
we present the details of implementation of the file system specific portion of the

code for the mount, open, read and write system calls.

4.3.1 Mounting a file system

The file system specific portion of the code for mounting a file system involves
processing any file system specific options to the mount call and then reading the
super block of the file system being mounted. As explained in Chapter 3, the
compression technique that will be used as a default for any newly created files in
the compressed file system has to be specified at the time of mounting the file system.
We use the file system specific mount options to specify. this default compression
technique.

A new <string=value> pair is added to the mount options for this purpose.
In order to specify the compression technique to be used, we need to pass the
string compress=COMPR_ALGO as a mount time option. The value of COMPR_ALGO is
interpreted as shown in Table 4.1. -

Based upon the value of COMPR_ALGO, a global variable filesystem_compressid is

set to the corresponding constant that identifies the specified compression technique.

22

The value of this global variable is assigned to the i_compressid field of the inode
structure for any newly created files in the file system. This value of this field is

thus used to determine the compression and uncompression technique to be used
with this file.

4.3.2 Opening a new file

The file system specific portion of the open system call is used to choose a com-
pression technique of choice for the file being created. In this way, the default
compression technique specified with the mount call can be overridden, thus allowing
multiple compression techniques to be used simultaneously in the file system. Similar
to the mount option, the compression technique to be used for the file being created
can be specified as a flag with the open system call. The i_compressid field of the
inode structure for this file will now be assigned the ID of the compression technique
thus specified. The following is an example of the open system call for overriding

the default compression technique chosen for the file system.

fd = open("/tmp/example", 0.CREAT | 0_HUFFMAN_COMPR, 0644);

In the above example, 0_HUFFMAN_COMPR could have been replaced with 0_LZRW1_COMPR

for LZRW1 compression or with 0_NOCOMPR for no compression.

4.3.3 Reading from a file

As explained in Chapter 3, the read system call in Linux gets directed to the
generic_file_read routine, which is a file system independent interface for reading
the data from the VM pages associated with the file into the user buffer. The
process of updating the VM pages with data from the bufler cache is implemented
as a file system specific routine. In this subseclion, we trace the generic_file_read
routine and explain the file system specific readpage routine, which is used to update
the VM pages.

Using the inode of the file to be read and the offset from which file read is to be
initiated, the hash table of the VM pages is looked into, for the corresponding VM

23

page. If the VM page is present and is up-to-date, data starting from the specified
offset 18 copied into the user buffer.

If the corresponding VM page is not present, a new page is created and its fields
are properly initialized. If either the page is newly created or the page exists and is
not up-to-date, the file system specific routine to update the page is called.

"The readpage routine of the compressed file system performs the following ac-
tions.

1. Given the offset from which the file read is to be initiated, the logical block
corresponding to that offset is calculated. Using the block table entries in the

inode structure, the first physical block corresponding to this logical block is
obtained.

2. If the appropriate buffer cache entry is found and is up-to-date, data from
the buffer cache entry is transferred into the VM pages associated with this
buffer. For uncompressed files this implies a simple copy, while for compressed
files this implics uncompressing the data from the bufler cache into VM pages.
The exact size of the data that is to be uncompressed is available in the first
two bytes of the compressed data. The number of VM pages associated with
a buffer cache entry is a function of the page size of the system and the logical
block size of the file system. Data from these updated VM pages is then copied
into the user buffer.

3. If the corresponding entry is not found in the buffer cache, data is to be read
from the disk. For this purpose, an entry is created in the buffer cache and
data from the disk is transferred into this buffer. For compressed files, this
data is then uncompressed into the corresponding VM pages, which is then
copied into the user buffer. For uncompressed files, a direct copy from buffer

cache to VM pages suffices.

In the implementation of the compressed file system, we have also provided an
option for reading the raw compressed data from the file. If the 0_RAWREAD flag is

specified when the file is opened, any rcads on that file descriptor return the data

24

in the compressed form. For such reads, we bypass the generic_file_read routine.
Instead of uncompressing the data from the corresponding buffer cache entry into
the VM pages from where it is then copied into the user buffer, the compressed data
from the buffer cache is directly copied into the user buffer.

As can be observed, file data needs to be uncompressed only when it is not
present in the VM pages. Once the VM pages contain the data in the uncompressed

form, any further reads of the same data does not, involve cither disk access or the
overhead of uncompression.

4.3.4 Writing to a file

In this subsection, we explain the file system specific portion of the write system
call. We present the implementation details of write, both for a file which is stored

in the compressed form and for one which is stored in uncompressed form.

p Writing to an uncompressed file

From the offset at which the write is to be initiated the logical block corresponding
to that offset is calculated. The block entry table of the corresponding inode is used
to obtain the physical blocks that correspond to this logical block.

If the entry in the block entry table indicates that no physical blocks are yet
allocated for this logical block, the required number of physical blocks are then
allocated using the proper block allocation strategy.

The buffer cache entry corresponding to this logical block is then obtained. If
the entry is not up-to-date and only a part of the logical block is being written, a
disk read is initiated for this buffer. ‘

Data is then copied from the user buffer to the buffer cache entry at the proper
offset. Data is also copied into the corresponding VM pages, if they exist.

If the file is to be written synchronously, the corresponding buffers are placed
on the disk queue. In case of asynchronous writes, the bdflush daemon takes care of

writing the data onto the disk. This is exactly the same as for Ext2fs.

25

g Writing to a compressed file

Writing to a file which is stored in the compressed form differs from writing to an
uncompressed file in the way disk blocks and the corresponding buffer cache entries
are allocated for the file. In case of writing to an uncompressed file, we know before
hand exactly how many disk blocks are needed for a logical block. This is known
from the physical and logical block sizes of the file system. On the contrary, for a
file that is to be stored in compressed form, this information becomes available only
after the compressed size of the data corresponding to that logical block is known.
This implies that allocation of disk blocks to a logical block of the file can be done
only after the logical block data is compressed. This needs the following processing
to be done for writing a logical block of the file.

After finding the logical block to be written starting at the current file offset,
the block entry table of the corresponding inode is used to locate the physical disk
blocks for this logical block. If no blocks are yet allocated, a stand alone buffer is
created for this logical block. This buffer does not appear in any of the buffer cache
queues. Data from the user buffer is first copied into the corresponding VM pages.
The data from these VM pages is then compressed and written into this buffer.
Since the size of the compressed data need not always be an integral multiple of the
physical block size, we nced to know the exact size of the compressed data while
uncompressing it for reads. Hence this size is stored in the first two bytes of the
compressed data. The size of the buffer is changed to reflect the compressed size.
Since buffer sizes should only be in multiples of physical block sizes for the purpose
of disk accesses, the buffer size is changed to the integral multiple of the physical
block size just greater than the compressed size.

After thus knowing the size of the buffer, we now know the number of physical
blocks required to store this logical block on the disk. The block allocation routine
is used to allocate the required number of physical blocks for this logical block. This
information is stored in the buffer and at the corresponding index of the block entry
table of the inode. The buffer is then placed on the appropriate buffer cache queues.

On the other hand, if the disk blocks for this logical block have already been
allocated, the buffer cache is checked to find the corresponding entry. If an entry is

26

found, it is updated by the data from the corresponding VM pages. The updated
buffer size is then checked against the available size for this logical block on the
disk. If the number of disk blocks allocated for this logical block are such that the
updated buffer does not fit into them, a reallocation of disk blocks for this logical
block needs to be done. For this purpose, we first check if the extra blocks can be
allocated contiguous to the disk blocks currently allocated. If it cannot be done,
then the buffer is first removed from the queues. Previously allocated disk blocks
are then freed and required number of disk blocks are allocated again. The buffer
and the corresponding block entry table of the inode are updated accordingly, and
the buffer is again inserted into the buffer cache queues.

4.4 Avoiding Compression of Small Files

One problem that is encountered in a compressed file system is regarding the storage
of smaller files. Storing smaller files in compressed form does not give any effective
advantage, since both the compressed and uncompressed data require almost the
same number of blocks in many cases. Moreover, we need to pay the penalty for
compressing and uncompressing the file for writes and reads. In this section, we
present an approach that we have followed in the implementation of our compressed
file system to solve this problem. This approach allows us to store the smaller files
in uncompressed form and compress only those files that are larger than a threshold.

We define a threshold size for the file system. All the files whose size is less
than the threshold are stored in uncompressed form. Once the file size crosses the
threshold, we start storing the file in the compressed form. Our technique requires
this threshold size to be less than the logical block size of the file system.

When the file is first created, the i.comprmode field of the inode is set to
FLEX_FILE_UNCOMPRESSED. This implies that the file will be stored in the uncom-
pressed form. The i_comprmode flag is checked during the time of reading the first
Jogical block of the file. If it is set to FLEX_FILE_UNCOMPRESSED, data from the cor-
responding buffer cache entry is copied into the VM pages without uncompression.

Now, when the size of the file exceeds the threshold value and the O_NOCOMPR

27

flag was not specified while opening the file, the i_comprmode field is changed to
FLEX_FILE_COMPRESSED. This implies that the file will now have to be stored in the
compressed form. Since we require the threshold value to be less than the logical
block size, the change from uncompressed mode to the compressed mode always
takes place only while writing the first logical block of the file. This implies that
no extra rcads or writes are required when the storage mode gets changed from
FLEX_FILE_UNCOMPRESSED to FLEX_FILE_COMPRESSED. Aflcr the data is copiced from
the user bufler into the corresponding buffer cache entry, the following processing has

to be done when the mode of storage has changed from FLEX_FILE_UNCOMPRESSED
to FLEX FILE_COMPRESSED.

1. Data from the buffer is compressed into a temporary buffer and this com-

pressed data is then copied back into the bulfer.
2. The size of the buffer is changed so as to reflect the size after compression.

3. "To make the buller copy and the corresponding disk copy of the data consistent,
the buffer is written synchronously onto the disk. This also takes care of the
situation when the readpage routine, which reads data from the buffer into the
VM pages, cannot locate this bufler in the buffer cache because of the change

in the size of the buffer.

The readpage routine is also modified to handle the situation when the storage
of the file changes from FLEX_F ILE_UNCOMPRESSED to FLEX_FILE_COMPRESSED.

When copying the data from the buffer that corresponds to the first logical block
of the file, the readpage routine now checks for the storage mode of the file. If it is
FLEX_FILE_UNCOMPRESSED, a dircct copy is made, else the data is uncompressed and
the uncompressed data is copied into the VM pages.

4.5 Support Utilities

Support utilities have been developed for Ext2fs to create a file system, modify and

correct any inconsistencies in the file system etc. Since we taok Ext2fs as the base

28

file system for our implementation, we took the IExt2fs code for these utilities and
made minor modifications 1o it in such a way that they work for our file system. In
this section, we mention the utilities that have been provided, and the modifications

that we made to suit them for our file system. Detailed explanation about each of
these utilities is available in [2].

o mkfs

The mkfs utility is used to create an empty file system on a disk partition.
Options for sclecting the block size, bytes/inode ratio, percentage of reserved
blocks for the super user etc., can be specified with mkfs for crcating a file

system with the desired parameters.

For creating a compressed file system, we have added the following, to the

options that can be specified with mkfs.

- An option for specifying the size of the logical block, in bytes. If this
option is not specified, a default value of 4K is taken as the logical block
size.

- An option for specifying the threshold size for files, below which all the
files are stored in uncompressed form. This option has to be specified as

a fraction of the logical block-size. A default value of 0.5 is taken, if this

option is left unspecified.

e tunefs
The tunefs utility is used to modify the file system parameters such as the
maximal mount counts between two file system checks, the percentage of the
reserved blocks for super user etc. We have adopted this code from Ext2fs,

without any modifications.

o fsck
"The fsck utility is used to detect and repair any inconsistencies in the file sys-
tem. Fsck for Ext2 runs in several passcs, cach pass checking one consistency

feature of the file system.

29

The routine that reads the physical block numbers from the block entry table
of an inode has been modified to reflect the change in representation of the disk
blocks as explained in subsection 4.2.2. We have also added the consistency
check to verify whether the number of physical blocks that correspond to a

logical block of the file is in accordance with the logical block size of the file
system.

4.6 Cowmpression Techniques Used

In the implementation of the compressed file system, we have included the Huff-
man encoding[11], which uses a statistical model, the 12-bit LZW compression
technique[l1], and the LZRW1 compression technique[l4], both of which use the
dictionary based schemes. In this scction, we present the details of the Huffman
encoding technique and the LZRWI compression technique. Details of the 12-bit
LZW compression technique, which varies from the LZRW1 technique only in the

way the dictionary is maintained, are available in [11].

4.6.1 Huffman Encoding Scheme

The Huffinan encoding scheme(11] generates variable length codes for symbols. A
code contains integral number of bits. Symbols with higher probabilities are encoded
using shorter codes and symbols with lower probabilities get larger codes. The
unique prefix attribute of the Huffman codes allow them to be correctly decoded
despite being of variable length. Decoding a stream of Huffman codes is generally

done by following a binary decoder tree.

g Procedure to Build the Code Tree

The procedure for building the Huffman code tree is simple. The tree is built in the

following way.

1. The symbols are laid out as leaf nodes, each with a weight equal to the

frequency or probability of its occurrence. All the nodes are marked free.

30

The two free Odes with the lowest, weights are located. A parent node for

e LWO OIS 19 ereatod. :
these two nodes g created, and is assigned a weight equal to the sum of the
two child nodes

The parent is added to the list of free nodes and the two child nodes are
removed from the list.

. One of the child nodes is designated as the path taken from the parent node

when decoding a 0 bit, and the other when decoding a 1 bit.

5. Steps from 2 through 4 are repeated until only one free node is left. This free
node is designated as the root.

Decoding the Huflman encoded stream requires a simple tree traversal starting
from the root, and moving down either to the left child or to the right child depending
upon the next bit in the code. The symbol corresponding to the leal node rcached

is the required decoded symbol. The implementation details for Huffman encoding
are available in [11}.

4.6.2 LZRW1 Compression Algorithm

The LZRW1 compression algorithm is based upon the adaptive dictionary based
compression technique proposed by Lampel-Ziv([11], which was explained in Chapter
9. The LZRW 1 compression technique uses a simple hash table as a dictionary, which
makes the construction and maintenance of the dictionary quite simple, thus making
this compression algorithm strike a balance between the amount of compression
achieved and the time taken for compression and uncompression. Figure 4.4 depicts
the LZRW1 compression algorithm.

n LZRWI Compression Algorithm

1. The LZRW1 algorithm uses a single pass literal/copy mechanism on the input
text. Each time, the next few bytes of the input are either transmitted directly

to the output, or as a pointer to the already processed stream of the input.

31 °

Hash Table

4095

X “
Hash
Function
A
0 PR
™ Offset e
INPUT STREAM INPUT STREAM
+¢————————— Lampel >t 1- 18- N
{bytes already processed) Ziv
-———— bytes still to go———>

Figure 4.4: LZRW1 Compression Technique

2. At each step, the next three bytes of the input are used to hash into the hash
table to find a match into the previously processed input stream. If a match
is found, the <offset,length> pair is transmitted to the output and the hash
table entry is updated to point to the first byte of currently examined three
bytes. The input pointer is advanced by the length of the match.

The offset in the <offset, length> pair indicates the relative position back-
wards, of the starting of the matched string [rom the current input pointer.

The length indicates the length of the match found.

3. If the hashed entry does not point to a valid offset of the input text, the first of
the three bytes is transmitted as a literal item, the input pointer is advanced

by 1 and the process is continued.

32

4. A control bit is maintained for each item transmitted to the output. The

corresponding control bit is set as 0 for a literal item and 1 for a matched
itemn.

8 LZRWI Uncompression Algorithm

The uncompression algorithm is extremely simple and fast. It starts by looking
at the control bits and thus deciding upon the next item of the input stream (the
compressed data). If the next control bit seen by the uncompresser is 0, it knows
that the item following is a literal, and hence directly copies the next byte from the
input to the output. On the other hand, if the next control bit is 1, the uncompresser
treats the next two bytes as an <offset,length> pair, calculates the offset and the
length from them, and copies the corresponding number of bytes starting at that
offset, from the previously uncompressed text to the current position of the output
streamn. The input and output streams are then advanced correspondingly.

This approach makes uncompression a fairly simple job, since it need not main-
tain any hash table information and a single pass over the input stream is enough
to carry out the uncompression. This property makes the algorithm particularly
suited for our needs since reads typically constitute a large majority of the file

system operations and have to be consequently faster.

1 Implementation Details

The LZRW1 compression algorithm uses the hash function in accordance with the
advice in[4] which seems to be an optimal one. We take a hash table of 4K size and
use the next three bytes of the input to hash into this table using the hash function

HASH(ptr) = (((40543 * (((x(PTR)) << 8) A (x((PTR) +1)) << 4) A
(*((PTR) +2)))) >> 4)&0zFFF)

A literal item is transmitted as it is to the output stream, whereas, a copy item
is transmitted as a two byte <offset,length> pair to the output. Of the two bytes
used for this purpose, we use 12 bits to store the offset into the previously seen input

33

text, and 4 bits to store the length of the match. This restricts the dictionary to a
size of 4K bytes and the length of a match to at most 16 bytes.

Since we thus require two bytes to transmit a copy item, we look for a match of
at least three bytes, in order to make the compression effective. Thus we transmit
a copy item only if the length of the match is greater than or equal to 3 bytes.
Taking this into consideration, and the fact that we use 4 bits for storing the
length information, we can actually extend the length of the match to 18 bytes
by considering the length bit patterns 0000 through 1111 as matches of lengths 3
through 18. |

Because the algorithm checks all the pointers that it fetches from the hash table,
the hash table need not be initialized. The LZRW1 algorithm updates its hash
table once after every item rather than every byte, making the hash table update

rate inversely proportional to compression.

34

Chapter 5
Performance Measurements

The performance of the compressed file system is aflected by two factors, the time
lost in compression and uncompression ol file data, and the time gained because
of lesser data transferred to/from the disk. Thus, by using a good compression
technique which is fairly fast, the time lost in compression and uncompression can
be made up to some extent by the time gained because of lesser disk transfer required.
Hence we hypothesized that the performance of our compressed file system would
not be much worse than that of Ext2fs.

In order to validate this hypothesis, we ran benchmark programs and compared
the performance of our file system with thal of the Ext2fs. In this chapter, we
describe the experiments we have conducted, explain the parameters that have been
measured, present the results, and analyze them to evaluate the performance of our
file system.

We used a Pentium 133 MHz processor with 32 MB of main memory to run the
benchmarks. The hard disk had the following characteristics.

Number of cylinders = 4385

Number of sectors per cylinder = 63

Number of heads = 16

Disk head RPM = 5400

39

5.1 Tuning statistics for transfer of a logical block

We conducted experiments to measure the time required for reading and writing one
logical block of data. We compared the statistics obtained for our file system with
that of an Ext2 file system with the same logical block size.

Yor this purpose we created a compressed file system with the logical block size
cqual to 4K bytes. We also created an Ext2 file system with the same logical block
size. We chose a mix of file types (C source files, binary executables, text files etc.,)
with an aim of achieving reasonable averages for the compression ratio. We used

the LZRWI compression technique for compression and uncompression of file data.

5.1.1 Parameters Measured

We have measured the following parameters while reading and writing the files in
our file system. These parameters are also measured for the Ext2 file system. All
the values are the time taken for reading/writing a single logical block (4K). For

cach of these parameters, we have measured both the CPU times and the real times.

g Time for Synchronous Writes

The CPU time for synchronous writes includes time taken for allocation of disk
blocks and buffer cache entries, time taken for copying data from the user buffer
into buffer ca,ché entry and the associated VM pages, and the time required for
inserting the buffer cache entry into the disk queues for writing onto the disk. For
the compressed file system, time taken for compression is also included in the CPU
time.

The real time is the total time spent in the system call. Apart from the CPU
time, it includes the time taken for transferring the data from the buffer cache entry
onto the disk.

In order to measure these timings, we created files of dillerent types (C sources,
binary executables, text files etc.,) in the compressed file system and in the Ext2fs.
We restricted the size of these files to 48K inorder to avoid the overhead of writing

the indirect blocks. Then, we measured the times by over writing these files in

36

synchronous mode and taking the average of the obtained timings. Mcasuring the
times while overwriting the files is to avoid the overhead of writing the block bitmap

and the inode bitmap onto the disk.

g Time for Asynchronous Writes

The CPU time for asynchronous writes will be the same as that of the synchronous
writes, excluding the time required for inserting the buffers into disk queues. This
will be done by the bdflush daemon in the background.

Real time for asynchronous writes does not include the disk transfer time since
it will be done in the background by the bdflush daemon. Hence this time will be
much lesser than the real time for synchronous writes.

In order to measure these timings, the same setup as used for the synchronous

writes was used, except that thr files are written in asynchrnous mode.

g Time for Unbuffered Reads

The CPU time for unbuffered reads include the time required to allocate virtual
memory pages for the logical block being read, creating buffer heads for these VM
pages, time taken for inserting these buffer heads into the disk queues and the time
taken for translerring data from the VM pages into the user buffer after data from
ihe disk has been read into these VM pages. In case of the compressed file system,
the time required for uncompressing the data while translerring it from the disk also
gets included.

Real time for unbuffered reads is the total time spent in the read system call. Tt
includes the CPU time, the time taken for transferring the data from the disk into
the corresponding VM pages, and the time taken because of context switches etc.

In order to measure these timings, we created several files of size 4K in the
compressed file system and in the Ext2fs. We then rebooted the system in order to
ensure that the data of these files is not in the buller cache. Now, each file was read

once and averages of the measured times was taken.

37

Synchronous Writes Asynchronous Writes

CPU Time | Real Time | CPU Time | Real Time

(fompressed {s 296 psecs | 6852 psecs | 280 usecs | 1273 psecs

Ixt2fs 131 psecs | 6692 psecs | 122 psecs | 169 psecs
Ratio of Comprfs to Ext2fs 2.25 1.02 2.29 7.53

Table 5.1: Times for Writes

Unbuffered Reads Buffered Reads

CPU Time | Real Time | CPU Time | Real Time

Compressed fs 102 psecs | 2106 psecs | 10 usecs | 142 psecs

Ioxt2fs 45 psecs | 2086 psces | 10 psecs | 141 psces
Ratio of Comprfs to Ext2fs 2.26 1.01 1.00 1.00

Table 5.2: Times for Reads

g Time for Buffered Reads

Since buffered reads return data direcily from the VM pages, CPU time for buffered
reads include only the time required for transferring the data from VM pages into the
user buffer. This time should be the same for both the Ext2[s and the compressed
file system.

Real time for buffered reads is the total time spent in the execution of the read
system call. Since it does not include the disk transfer time, real time for buffered
reads will be much lesser than that of the buffered reads.

In order to measure these times, we first read all the files to ensure that they are
now in the buffer cache. The same files were read multiple number of times and the

averages of the measured times was taken.

5.1.2 Results and Analysis

Table 5.1 presents the average CPU times and real times required for writing one

logical block of data to the compressed file system and to the Ext2fs. In case of

Time for Compression | Time for uncompression
132 psccs 51 psccs

Table 5.3: ‘Limes for Compression and Uncompression

38

synchronous writes, the CPU time required for writing one logical block of data
into the compressed file system is more than twice the time that is required for a
similar write into the Fxt2 file system. This is because of the extra time spent in
compressing the data before writing it onto the disk. The ratio of the real times
however indicate that the time lost in compression of file data is compensated to
some extent by the time gained because of lesser disk transfer involved.

In case of asynchronous writes, the CPU times and the real times indicate that
the compressed file system performs badly in comparison with the Ext2fs. Since
disk transfer in this case takes place in the background by the bdflush dacmon, and
the compression takes place in the foreground, the time lost in compression cannot
be compensated for by the time gained by lesser disk transfer.

‘Table 5.2 presents the average CPU times and real times required for reading
one logical block (4K) of data from the compressed file system and the Ext2fs. As
seen, the CPU time required for an unbuffered read of 4K data from the compressed
file syster is over two times that required for a similar read [rom the IExt2[s. This
is clearly because of the extra time spent in uncompressing the data. However, the
ratio of real times for both the file systems show that the time lost in uncompression
is almost compensated for by the time gained because of lesser disk transfer involved.

In case of bulfered reads, since the uncompressed data is already available in the
virtual memory pages, the CPU times and the real times for the compressed file
system are equal to that of the Ext2fs.

"Table 5.3 presents average CPU times taken for compressing and uncompressing
one logical block (4K) of data using the LZRW1 compression technique. We chose a
mix of file types (C source files, binary executables, text files etc.,), compressed the
file data in chunks of 4K and uncompressed it back, to obtain the average values for
compression and uncompression.

From the results presented above, we see that in case of reads the performance
of the compressed file system is almost as good as that of the Ext2fs. While syn-
chronous writes are also as fast as that of Ext2fs, the performance loss is significant
in case of asynchronous writes. We are at a loss to explain this degradation of

performance in case of asynchronous writes.

39

Since reads typically constitute a large majority of the file system operations,
and since most of the read requests are satisficd by the data readily available in the
virtual memory pages, the overall performance of the compressed file system is not

much worse as compared to that of the Ext2 file systemn.

40

Chapter 6

Conclusions

6.1 Summary

In this report, we have discussed the design and implementation of a file systern for
UNIX, with the feature of on-the-fly compression and uncompression of file data in
a way that is transparent to the user.

We have implemented our file systemn on the Linux operating system. Issues like
allocating the disk blocks to a logical block of the file, representing the allocated
blocks in the block entry table of the inode corresponding to that file, options for
specifying the compression techniques to be used etc., which are specific to the
implementation, have been discussed in detail.

We started with the hypothesis that by using an efficient compression technique
which is fairly fast, the extra time spent in compressing and uncompressing the
file data is compensated to some extent by the time gained because of lesser disk
access. In order to validate our hypothesis, we conducted experiments to evaluate
the performance of our file system and compared the results with that of the Ext2fs.
From the results of these experiments we observe that the performance ol the
compressed file system is almost as good as that of the Ext2fs in case of reads and
synchronous writes. Though there is a loss of performance in case of asynchronous
writes, since reads typically constitute a large majority of the file system operations,

the overall performance of our file system is not much worse when comparcd with

41

Ext2fs.

Hence, though disk space is not at premium these days, going for a compressed
file system to get the advantage of increased effective disk space at a little cost in
terms of extra time may not be a bad idea.

6.2 Limitations

Our implementation currently has the limitation that the system cannot boot from
the compressed file system. This is because lilo, the program which installs the boot
loader is unaware of the fact that files in our file system are stored in the compressed
form. Hence it cannot read the disk blocks corresponding the kernel image when
the system is rebooted. In order to over come this limitation, the code for lilo has to
be changed in such a way that apart from storing the disk blocks corresponding to
the kernel image, it also stores the information about the uncompression technique
that is to be used while reading these disk blocks. Apart from this, the on-the-fly

compression feature of our file system is tolally transparent in all other ways.

42

References

(1] M Bach. The Design of the UNIX Operating System. Prentice Hall, 1986.

[2] Remy Card, Theodore Ts’o, and Stephen Tweedie. Design and implementation
of the second extended file system. Proceedings of the First Dutch International

Sympostum on Linuz, 1990.

[3] Michael Elizabeth Chastain. Kernel change summaries for linux releases.
ftp://ftp.shout.net/pub/users/mec/kcs/v2.0/.

(4] D.E.Knuth. The Art of Computer Programming, volume 23. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1973.

[5] HewlettPacard. Doublespace. http://hpcc920.external.hp.com/isgsupport /cms/ docs/lpg
[6] IBM. Superstor. http://ourworld.compuserve.com/homepages/rpr/SuperSTO.HTM.
[7] IBM. Superstor. http://www.bergen.org/ edwdig/geos/geoinfo/superstor.html.

[8] Michael K Johnson. Linux kernel hackers’ guide, version 0.7.
ftp://sunsite.unc.edu/pub/Linux.

[9] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. »
Quarterman. The Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley Publishing Company, 1989.

[10] Macintosh. Doumentation on stacker. http://www.stac.com/pss/techmac.html.

[11] Mark Nelson. The Data Compression Book. M&T Books, New York, 1992.

43

[12] Sandberg.R, D.Goldberg, S.Kleiman, D.Walsh, and B.Lyon. Design and
implementation of the sun network filesystem. Proceedings of the USENIX

Conference, pages 119-131, Summer 1985.

[13] A Tanenbaum. Operating Systems: Design and Implementation. Prentice Hall
India, 1987.

[14] Ross N Williams. An extremely fast ziv-lampel data compression algorithm.

IEEE Computer Society Data Compression Conference, pages 8-11, April 1991.

44

,. r\ i 3

.. Y

43

Date Slip

This book Is t

date last stamped.

e returned on the

12.u43

................................... R RN
...
R I] LR T Ve
4escetcam secansrenanifrrnas "> .
....................... D) R R R R I 2 T S ST Y
R g Yy
........................ . R LR .
........................ L
:;‘l; ------------------------------------ R LRI
I
\"I R - *reeran
........................ . senny L R R,
............... TR » LT

CSE-1997-Mm- PRA

—fst. o

