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Chapter 1
Introduction

PERL RISC [Bal97] (Performance Enhanced Register-Less RISC) is a new memory-
to-memory RISC architecture. The factors that influenced this processors design are:
availability of faster and cheaper caches which are comparable in speed to registers,
the Load/Store overhead associated with all the current RISC processors.

The Performance of PERL RISC is highly dependent on cache performance. In
this thesis, we study the cache performance of PERL RISC. A C compiler for PERL

RISC which aids the evaluation of this architecture is also developed.

1.1 Overview of Microprocessors

The current day general purpose microprocessors can be classified into two cate-
gories: complex instruction set computers(CISC) and reduced instruction set com-
puters(RISC). CISC-type microprocessors are known for their abundant instruction
set, multiple addressing modes, and multiple instruction formats and sizes. These
processors, raises the level of the instruction set close to the system software. The
control unit of such microprocessors are naturally complex, since they have to dis-
tinguish between a large number of opcodes, addressing modes and formats.

As opposed to the traditional CISC design, the RISC [Pat85] architecture re-

duces the instruction set to the level of vertical microcode. RISC processors feature



very few addressing modes and fixed instruction widths and format. All RISC pro-
cessors support memory access only through load and store instructions. All other
instructions are register-to-register.

The load/store architecture of RISC has certain overheads. The movement of
data into and out of the registers is done explicitly via software instructions. There is
another kind of load/store overhead, when calling a subroutine, or switching tasks, it

is often necessary to explicitly save and restore all the programmer-visible registers.

1.2 A RISC without Load/Store Overhead

The load/store overhead can be reduced by removing registers and allowing all
instructions to directly operate on memory locations. The current growth in tech-
nology helps in building caches which are cheaper and comparable in speed to regis-
ters. On many RISC machines, 25% or more instructions are loads and stores. The
Register-Less RISC can save these load/store instructions.

[Bal97] proposed a Register-Less RISC (PERL RISC) architecture. SuperSIM
a simulator which executes assembly language programs of PERL RISC is also de-
veloped. The performance of PERL RISC depends on two aspects: saving in number
of load/store instructions, and cache performance.

In this thesis we look into cache performance aspects of PERL RISC. The cache
performance of PERL RISC is compared with two current RISC processors: DLX
[PH94] and Alpha [Sit93].

1.3 Cache Evaluation Methodology

The method we use for evaluating cache is trace-driven simulation. Trace-driven
simulation is an effective method for evaluating the behavior of memory hierarchy.
It uses one or more address traces and a cache simulator. A trace is a log of
a dynamic series of memory references, recorded during execution of a program.
A trace is usually gathered by interpretively executing a program and recording

every main memory location referenced by the program during its execution. The



information recorded for each reference must include the address of the reference
and may include the reference’s type (instruction fetch, data read or data write) and
other information. A simulator is a program that accepts a trate and parameters
that describes one or more caches, mimics the behavior of those caches in response
to the trace, and computes performance metrics (e.g. miss ratio) for each cache.

A cache simulator and a C compiler for PERL RISC are developeded as part of
this thesis. The compiler produces PERL RISC assembly code which can be run
on the SuperSIM. Trace file produced by the simulator as a result of execution is

used as input to the cache simulator.

1.4 Organization of the thesis

The rest of the thesis is organized as follows:

Chapter 2 presents the Register-less RISC architecture. It describes the instruc-
tion set and pipeline design of the processor.

Chapter 3 describes the implementation details of the compiler.

In chapter 4, we present the design aspects of cache memories and the techniques
for improving cache performance.

We discuss, in chapter 5, the implementation details of the cache simulator and
present the performance results in chapter 6. The results also are compared with
some current procerssors.

Finally in chapter 7, we conclude with the implications of the results and possible

extensions to this work.



Chapter 2

Register-Less RISC

2.1 Architecture

PERL RISC is a superscalar [SS95] memory-to-memory architecture. It is designed
to be a memory-to-memory architecture because of its relevance today. The avail-
ability of large on-chip caches and wider bus bandwidth to reduce memory latency
supports this idea. PERL RISC instructions do all the operations on memory loca-
tions, as there are no registers. It satisfies all common RISC traits [Tab94] except
that it features memory-to-memory operations unlike the usual RISC processors.
All instructions have a fixed length of 128 bits, and the number of instructions for-
mats are only two. In PERL RISC, the first 32 bits of an instruction is used to
specify the addressing modes and data type of the operands. The next three 32-bit

words are used to indicate the addresses of each of the three operands.

2.1.1 Data Types

PERL RISC architecture recognizes the following data types.
o Integer data types

1. Byte, 8 bits.
2. Half word, 2 bytes.



3. Word, 4 bytes.

4. Long word, 8 bytes.
e Floating-point data types

1. Single precision float, 4 bytes.

2. Double precision float, 8 bytes.

2.1.2 Addressing Modes

PERL RISC architecture supports four addressing modes, as practised on most
RISC processors.

1. Immediate. In this case the value of the operand is part of the instruction.

2. Direct Addressing. In this case, the instruction itself has the 32-bit address of

-the operand. This is taken as effective address of the operand.

3. Memory Indirect. An instruction has the 32-bit address of the memory, where

the effective address an operand is stored.

4. Base Addressing. The effective address is computed by adding 32-bit offset to
the contents of base memory location. In PERL RISC, memory locations 0 to
3 are used to represent up to four base addresses. In the instruction format
two bits are used to specify one of the four bases. This mode is primarily used
for accessing local variables of a function on the stack. The compiler developed
through this thesis currently uses only the first two locations, one for the stack

pointer (SP) and another for the frame pointer (FP).

2.1.3 Instruction Set

The PERL RISC architecture features the following types of instructions:

1. Integer

2. Logical and shift



3. Floating-point

4. Miscellaneous

Integer arithmetic instructions

The PERL RISC has four arithmetic instructions corresponding to four basic arith-
metic operations. The instructions are listed in Table 1. A suffix to instruction
mnemonic, B followed by number of bytes, specifies the size of operand. The valid

sizes are 1, 2, 4, and 8 bytes.

Mnemonic Operation

ADD Add
SUB Subtract
MUL Multiply
DIV Divide

Table 1: Integer Arithmetic Instructions

Flow control Instructions

Flow control instructions include conditional and unconditional branch instructions.
The control instructions are summarized in Table 2, cond in conditional jump can

be either equality or inequality condition.

Mnemonic Operands Operation
J dest, src jump, and store new PC in src
Jecond des, srcl, src2  Jump to des if srcl cond src2

Table 2: Integer Control Instructions



Logical and shift instructions

The PERL RISC has three logical and three shift instructions. These instructions
are listed in table 3.

Mnemonic Operation

AND Logical AND

OR Logical OR

XOR Exclusive OR

SLL Shift left logical
SRA Shift right arithmetic
SRL Shift right logical

Table 3: Logical and Shift Instructions

Floating-point instructions

All the integer arithmetic and control instructions are valid for floating point data
types also. The instructions are qualified using a suffix to the mnemonic. The valid
suffixes are F4 and F8 representing single precision and double precision floating-

point data types respectively.

Miscellaneous

A TRAP instruction is provided, which is mainly used for handling system calls. A
TRAP instruction has only single operand, the trap number.

2.1.4 Pipeline

Pipelining is an implementation technique whereby multiple instructions are over-

lapped in execution. In a computer pipeline, each step in the pipeline completes a

part of an instruction.
Register-less RISC has a five stage pipeline (Figure 1). The five pipeline stages

are:



IF Decode & 1p

EX WB RC
address Operand Compute WriteBack
generation access

opc

D opl D ;

cache addr B— cache *®
meveveed
Res

D op2 D

cache addr j— cache Dpz
data

D dest dest dest D

cache addr addr addr f— cache

Figure 1: Processor Pipeline

Fetch Stage This stage takes instructions from the instruction cache and places
them in an instruction queue.

Decode Stage This stage takes instructions from the instruction queue, decodes
and dispatches them into their appropriate operation unit: integer or floating
point. The processor can decode more than one instruction per clock cycle.

Execute Stage The issue logic examines the instruction window and selects the
ready ones: those for which operands and a functional unit are available. when
two instructions conflict for the same functional unit, selection is made based

on the age of the instruction: the oldest one has the highest priority.

Write Back Stage The write back logic identifies the completed operations and
frees the corresponding functional units. The completed results are forwarded
to the instructions that needs them.

Result Commit Stage The result commit stage sends the results to the memory

locations.

Figure 1 also shows some additional stages where the cache is accessed. If the
access o the cache are included, we have a seven stage pipeline. In fact, before the

8



fetch stage, there is an access to the instruction cache which is not shown in the

figure.



Chapter 3
Implementation of Compiler

The compiler takes C' language program as input and produces assembly code of
PERL RISC as output and is built upon GNU C [Sta92] compiler. GNU C compiler
(GCC) is a fast and highly portable compiler available in source form. GCC gets
most of the information about the target machine from 2 machine description which
gives an algebraic formula for each of the machine’s instructions. In this chapter,
we describe the working of GCC, and its portability process including its machine

description format and corresponding PERL RISC description.

3.1 Working of GNU C Compiler

The entire process of converting a C language file to assembly is done in several
passes. Each pass belongs to one of the four phases of the Compiler: Syntaz Analysis,
Intermediate Code Generation, Code Optimization and Code Generation [ADS5].

The Syntaz Analysis phase is completed in a single parsing pass. This pass
reads the entire text of a function definition, constructing syntax trees. C data type
analysis is also done in this pass.

Intermediate code generation is also done in a single pass. This is the conversion
of syntax tree into an intermediate code. GCC uses Register Transfer Language
(RTL) [Sta92] as intermediate code which is described in section 3.2. The compiler’s

strategy is to generate RTL code assuming an unlimited number of pseudo registers,

10



and later convert them into hard registers or memory references. This and the later
passes use the target machine description. All later passes work on the RTL code
generated here.

Code optimization phase requires several passes. In a non-optimized compilation
the compiler do jump optimization, common subexpression elimination and loop
optimization. It uses simple register allocation strategy. Further in a optimized
compilation date flow analysis, instruction combination, local and global register
allocation etc. are done.

The reload pass of the code generation phase renumbers pseudo registers with
hard register numbers they were allocated. Pseudo registers that did not get hard
registers are replaced with stack slots. Finally the last pass outputs assembler code
for the function. Entry and exit assembly code sequences for a function are generated

directly in this pass.

3.2 RTL Representation

RTL for the GCC is a LISP [SAN95] like language. In this language, Instructions
to be output are described, one by one in an algebraic form that describes the
instruction behavior. RTL uses four kinds of objects: ezpressions, integers, strings
and vectors. Expressions are the important ones. RTL vector contains an arbitrary,

specified number of pointers to expressions.

3.2.1 RTL Expressions

Expressions are building blocks for RTL instructions. Expressions are classified by
expression codes. Expression code determines how many operands the expression
contains. RTL expressions can be classified into five categories: constant, register
and memory, arithmetic, comparison and side effect expression. Most of the ex-
pressions also have a machine mode, which describes size of a data object and the
representation used for it. |

Machine modes are classified into two categories:

11



1. Integer Modes: integer (SI), half integer (HI), quarter integer (QI), and double
integer (DI).

2. Floating-point modes: Single precision(SF) and Double precision(DF )

Constant expressions

The simplest RTL expressions are those which represent constant values.

(const.int i)  This expression represents the integer value i.

(symbol_ref symbol)  Represents the value of an assembler label for data.

symbol is a string that describes the name of the assembler label.

(label_ref label) Represents the value of an assembler label for code.

label is a codelabel that appears in the instruction sequence.

Register and memory expressions

These are the RTL expressions for describing access to machine registers and to

main memory.

(reg:m n) For small values of the integer n, this stands for a reference to machine
register number n: a hard register. For larger values of n, it stands for a

temporary value or pseudo register. m is the machine mode of the reference.

(cc0) This refers to machine’s condition code register. It is valid in only two con-
texts, as destination of an assignment and in comparison operators comparing

against zero.

(pc) This represents the machine’s program counter. pc is valid only in certain

specific contexts in jump instructions.

(mem:m addr) This represents a reference to main memory at an address repre-

sented by the RTL expression addr. m specifies how large a unit of memory is

accessed.



Arithmetic expressions

Syntax of an arithmetic expression is (operation:m z) or (operation:m z y). This
represents the value obtained when operation is carried out on operands z and y
in machine mode m. operation is either binary or unary arithmetic operation, €.g.
plus, minus, and not. The number of operands depend on the operation type. z

and y are RTL expressions of same machine mode.

Comparison expressions

Comparison operators test a relation on two operands and are considered to repre-
sent the value 1 if the relation holds, or zero if it does not. Inequality comparisons
come in two flavors, signed and unsigned. Signed comparisons are also used for
floating point values.

Syntax of comparison expression is (Telop z y), where relop is a relational operator
name, such as eq, gt and gtu. Operands z and y should be in the same machine

mode.

Side effect expressions

Expression codes described so far only represent values and not actions. But machine
instructions never produce values; they are meaningful only for their side effects on
the state of the machine. Special expression codes are used to represent side effects.

Body of an instruction is always one of these side effect codes; the codes described

above, which represent values, appear as the operands of these.

(set lval x) Represents the action of storing value of x into the place represented
by lval. lval must be an expression representing a place that can be stored in:

reg, mem, pc or ccl.

(call function nargs) Represents a function call. function is a mem expression
representing the address of the function to be called. nargs is an expression
which can be used for two purposes: on some machines it represents the num-

ber of bytes of stack argument; on others, it represents the number of registers.

13



(return) Represents a return from the current function.

(if-then_else cond then else) This expression represents a choice, according to
cond, between the value represented by then and the one represented by else.

This expression is valid only to express conditional jumps.

3.3 Machine Description

A machine description has two parts: a file of instruction patterns (‘.md’ file) and
a C header file of macro definitions.

The ‘.md’ file for a target machine contains a pattern for each instruction that the
target machine supports. Information about the target machine architecture such

as registers, addressing modes, stack organization etc. is supplied in a C header file.

3.3.1 Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be
filled in later, operand constraints that restrict how pieces can be filled in, and an
output pattern or C code to generate the assembler output, all wrapped up in a
define_insn expression.

A define_insn is an RTL expression containing four or five operands.

1. An optional name. The presence of a name indicates that this instruction
pattern can perform a certain standard job for the RTL generation pass of the
compiler. Nameless instruction patterns are used to combine several simpler
instructions. The the names that are meaningful are addm3, subm3 etc. m

stands for machine mode.

2. The RTL template is a vector of incomplete RTL expressions which show
that what the instruction should look like. It is incomplete because it may

contain match_operand and match_dup expressions that stand for operands of

instruction.

14



o Syntax of match-operand is (match_operand:m n pred constraints). This
expression is a place holder for operand n of the instruction. When con-
structing an instruction, operand number n will be substituted at this
point. pred is a string that is the name of a C function that accepts
two arguments, an expression and a machine mode. During matching,
the function will be called with operand as the expression and m as the

mode argument. If it returns zero, this instruction pattern fails to match.

o (match.dup n). This expression is a placeholder for operand number
n. It is used when the operand needs to appear more than once in the

instruction.

o (match_operator:m n predicate [operands..]). This pattern is a kind of
placeholder for a variable RTL expression code. when constructing an
instruction, it stands for an RTL expression whose expression code taken
from that of operand n, and whose operands are constructed from the

patterns operands.

3. A condition. This is a string which contains a C expression that is the final

test to decide whether an instruction body matches this pattern.

4. The output template: a string that says how to output matching instructions
assembler code. ‘%’ followed by number of operand in this string specifies
where to substitute the value of operand. When sample substitution is not

general enough, a piece of C code can be specified to comfmte the output.

5. Optionally, some machine description.

Example of define_insn

(define_insn "addsi3"

[(set (match_operand:SI O "register_operand" "r")
(plus:SI
(match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 “register_operand" "re))]

15



"add %0,%1,%2")

This is an integer add instruction in a RISC machine. All operands must be

registers. 1 in the operand constraints specifies that any general register is valid.

3.3.2 Defining RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot
be handled with single instruction, but a sequence of RTL instructions can represent
them. For these target machines, a define_expand expression can be used to specify
how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but,
unlike the latter, a define_expand is used for RTL generation and it can produce
more than one RTL instructions.

A define_expand expression has four operands:

e The name. Each define_expand must have a name, since the only use for it is

to refer to it by name.

e The RTL template. This is a vector of RTL expressions each being one in-

structions.

o The condition, a string containing a C expression. This is just like the condi-

tion of a define_insn.

e The preparation statements, a string containing zero or more C statements

which are to be executed from the RTL template.

There are two special macros defined for use in the preparation statements:

DONE and FAIL.

DONE The RTL template will not be generated.

FAIL Make the pattern fail. When a pattern fails, it means that the pattern was

not truly available. Calling routines in the compiler will try other strategies

for code generation using other patterns.

16



3.4 Machine Description for PERL RISC

3.4.1 Architecture Specification

Storage layout

The processor is defined as big endian, most significant byte in a word has the lowest
number. In a multi-word the most significant word has the lowest number. The least
addressable storage unit is byte, which has eight bits. Word size and the addresses
are 32 bits. Function entry points and instruction addresses such as branch target
are aligned on sixteen byte blocks (instruction boundaries), to fetch an instruction

in a single read request. All other objects are aligned on word boundaries.

Temporary locations usage

The number of registers of the processor, and their usage is supplied to GCC through
C Macro definitions. Compiler needs at least two registers to be specified, stack
pointer (SP) and frame pointer (FP). In order to access indirect operands, we use
temporary locations in PERL RISC. As GCC has no concept of temporary loca-
tions, these are specified as registers. Assembly code declares temporaries for global
references. Size of each temporary location is four bytes. Currently we are using

sixteen such temporary variables.

Stack layout

The PERL RISC has no hardware stack. The stack has to be implemented in
software itself. The space for local variables of a function is allocated on the stack.
Each function has a frame allocated for it on the stack.

The first 12 bytes on the frame has fixed usage.

e The first 4 byte location is used to store the old frame pointer at the function

entry point.

e The next 4 byte location is used to store the return address from the function.

17



o The last 4 bytes are used pass the function results to the caller function. The

address where the return value is present is passed in these 4 bytes.

In PERL RISC there is no function call instruction. Stack adjustment is done by

the explicitly generated assembly code, both at the function entry and exit points.

3.4.2 Instruction Patterns

All the available assembly instructions in PERL RISC are specified to the compiler

using instruction pattern.
For the purpose of specifying instruction patterns, the assembly instructions can

be broadly classified into two types: arithmetic and flow control instructions.

Arithmetic instructions

For each available assembly instruction, a named define_insn pattern is specified.
For example the addb4 instruction is specified by using the following instruction

pattern:

(define_insn "addsi3"
[(set (match_operand:SI 0 “general_or_addr_operand" "')
(plus:SI (match_operand:SI 1 "general_or_addr_operand" iy

(match_operand:SI 2 "general_or_addr_operand" "")))]

LLF

return \"addb4 %0,%1,%2\";
)

The function general_or_addr_operand checks the operand addressing mode. The

functions matches the instruction pattern if the addressing mode is a valid addressing

mode.

18



Control instructions

GCC assumes that the machine has a condition code. A comparison instruction sets
the condition code, recording the results of both signed and u;'lsigned comparison
of the given operands. A separate branch instruction tests the condition code and
branches or not according its value.

PERL RISC has compare-and-branch instructions and has no condition code.
As there is no assembly instruction in PERL RISC corresponding to a comparison
instruction generated by the compiler, a define_expand expression is specified to
record the operands in two static variables.

For example a define_expand expression for integer comparison instruction is spec-

ified as follows:

(define_expand "cmpsi'
[(set (cc0) (compare
(match_operand:SI 0 "general_or_addr_operand" "")

(match_operand:SI 1 "general_or_addr_operand" "")))]

nii

compare_op0 = operands[0];

compare_opl = operands[1];
DONE;
I

The DONE macro in C preparation statements specifies that no RTL code
will be generated for this instruction. When outputting the branch-on-condition-
code instruction that follows, the compiler actually outputs a compare-and-branch
instruction that uses the remembered operands.

For example a branch-on-equal instruction is specified as follows:

(define_insn '"bge"

[(set (pc)

19



(if_then_else (eq (cc0)
(const_int 0))

(label_ref (match_operand O "' "))
(pc) )]
H*
{
operands[1] = compare_op0;
operands[2] = compare_opi;
return \"jeqb4 %10,%1,%2\";
}

For call instructions an unconditional jump instruction, j function, -8(sp), is gener-

ated. The jump instruction stores the return address on the stack, which is later

used to return from the function.



Chapter 4

Cache Memories

4.1 Introduction

Cache is a high speed memory, which bridges speed gap between Microprocessor
and slow memories. In most of the new processors small caches are placed right
on the chip itself, enabling a faster access. Some newer chips actually dedicate as
many transistors (and therfore the real chip area) for the cache as they do for the
processor itself.

The data stored in cache do not have a separate address. They are referred to by
their addresses in the main memory and data in the cache is found using an address
mapping mechanism.

In most existing systems cache is subdivided into sets. Each set contains a
number of lines. Main memory address is viewed as three parts as shown in figure 2.
Using different fields, cache byte may be accessed by address mapping, as practiced
on most systems, called set-associative mapping.~If a set contains L lines it is called
L-way set-associative. If each set contains only one line, that is called direct mapped

cache.

Main memory address
Tag Set Byte

Figure 2: Main Memory Address Splitting
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When a CPU attempts to access any item of information, there are two possible
outcomes. The item is in the cache, a hit, or not in the cache, a miss. When a miss
occurs, the line containing the missing item is loaded into cache, replacing another

line.

4.2 Aspects Of Cache Design

Cache fetch algorithm

The cache fetch algorithm is used to decide when to bring information into the
cache. Several possibilities exist: information can be fetched on demand (when it is

needed) or prefetched (before it is needed).

Line size

Selecting the line size is an important part of the memory system design. While the
transmission time for moving a small line to cache is shorter than that for a long
line, and it reduces the wait for processor; using bigger lines are more efficient if

more information in a line is being used.

Replacement algorithm

When information is requested by the CPU from main memory and the cache is
full, some information in the cache must be selected for replacement. The most
frequently used sfra,tegy for selecting which block to replace is Least recently used
(LRU). The block replaced is the one that has been unused for the longest time.

Main memory update algorithm

When the CPU performs a write to memory, that operation can actually be reflected
in the cache and main memory in a number of ways. For example, the cache memory

can receive the write and the main memory can be updated when that line is replaced

3]
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in the cache. This strategy is called as write-back. Another strategy , known as

write-through, immediately updates main memory when a write occurs.

Data/Instruction cache

Another cache design strategy is to split the cache into two parts: one for data and
one for instructions. This has the advantage that the bandwidth of the cache is

increased and the access time can be decreased.

Cache size

Large caches increases the probability of finding the needed information in it. But
cache sizes cannot be expanded, for several reasons: cost, physical size and access

time. Small caches can be put on-chip, and access times can be reduced.

Multilevel cache

Large caches can be split into two levels: a small, high-level cache, which is faster,

smaller, and more expensive per byte, and a larger, second-level cache.

Cache bandwidth

The cache bandwidth must be sufficient to support the proposed rate of instruction
execution. Bandwidth can be improved by increasing the width of the data path,

interleaving the cache, operating in nonblocking mode and decreasing access time.

4.3 Increasing cache bandwidth

The memory bandwidth requirement for PERL RISC is very high. Each instruction
may require up to a maximum of six memory requests: three for resolving operand
addresses, two for operand reads, and one for write. This high bandwidth require-

ment can be satisfied either by increasing the efficiency of cache port or by using a

multi-ported cache.



4.3.1 Increasing Cache Port Efficiency

The cache port bandwidth can be increased by using non-blocking cache. Non-
blocking cache allows the service of multiple misses to be overlal;ped, in a pipelined
fashion, with a packet-switched bus in which the primary level cache to secondary-
level cache (L1-L2) bus is not held for the duration of the memory request.

Kenneth [Ken91] proposed techniques for improving cache port efficiency. In
those techniques load all(LA) and load all wide (LAW) will be most suitable ones
for PERL RISC.

Load all increases the cache bandwidth by satisfying as many outstanding loads
in parallel as possible when data is returned from the cache. Load all wide builds
upon load all by widening the single cache port up to the cache block size to increase
cache bandwidth. All the outstanding loads reside in cache access buffer. To make
use of an entire cache line, each cache access buffer entry must contain a multiplexer
as well as a comparator. If the comparator detects that tags are equal, then the

multiplexer is used to select the correct data block from the returning cache line.

4.3.2 Multi-ported cache

The two techniques for implementing multiple cache ports are: (i) to duplicate the
cache and (ii) to interleave the cache [SF91].

Duplicate cache banks

A straightforward way to implement multiple read ports is to provide multiple copies
of the cache. For example, 4 read ports can be provided to a 16 K-byte cache by
having four 16 K-byte caches that have identical contents. This approach has a
significant overhead in the amount of memory used, especially when considering an

on-chip cache. Identical multiple copies use only a single write port.

Interleaved banks

A better way to provide multiple cache ports is to interleave the cache blocks

amongst multiple banks, much in the same way as in an interleaved memory. A
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cache block is present entirely in one single cache bank. Figure 3 shows how an
interleaved L1 (primary) cache could be placed in the CPU.

INSTRUCTION ISSUE

|

INTERCONNECT
CACHE
BANKS
L1-1.2 PORT

INTERLEAVED L1 CACHEﬂLl-m BUS

Figure 3: A Multi-Port Cache with Interleaved Banks

4.4 Case Studies

In this section we look at the cache organization in the two latest RISC processors,
DEC Alpha 21164 [ERB*95] and UltraSPARC [TGN95].

4.4.1 Alpha 21164

Alpha 21164 processor has two levels of on-chip cache. In first-level there are sepa-
rate Instruction and data caches, each having a size of 8-Kbyte and direct-mapped.
The second-level cache is 96 K-byte and organized as three-way set associative.
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Direct-mapped, off-chip, third-level cache can range from 1 M-byte to 64 M-bytes
in size. Both instruction and data caches contain 32-byte blocks. Second level
cache contains one tag per 64-byte block. Primary (L1) data cache is write-through,
write-allocate, while data cache at L2 is write-back.

Two read ports are provided in data cache, supporting dual-issue and parallel
execution of load instructions. The latency of a load instruction that hit in the data
cache is two cycles, while that for second level cache is seven cycles. At all levels

memory system operates in nonblocking mode.

4.4.2 UltraSPARC

UltraSPARC memory hierarchy consists of an instruction cache (I-cache), a data
cache (D-cache) and an external cache (E-cache).

I-cache size is 16kB, organized in 32 byte blocks. Stored with each instruction in
the I-cache are predecoded bits that are used for instruction fetching. The I-cache
has qualities of both a direct-mapped and a two-way set-associative cache. It can be
considered as two-way in that a particular address can be present in two different
locations in the cache. It is considered direct-mapped in terms of access time in that
the ‘set’ to access is predicted ahead of time, so there is no comparison function in
the access path. -

D-cache is a 16 kB direct-mapped cache. It has a 32 byte line size, with 16 byte
sub-blocks. It is indexed using virtual address, while tags store the physical address.
D-cache operates on a write-through, no write-allocate policy and is nonblocking so
that D-cache misses and other conditions which delay memory operations do not
necessarily penalize subsequent instructions. D-cache load latency is one cycle.

The E-cache lies between the primary caches and main memory. It is direct-
mapped and both physically indexed and physically tagged. UltraSPARC supports
E-cache sizes between 512 Kb and 4 Mb. E-cache operates a on write-allocate

policy and is pipelined so that one operation can be computed every clock cycle.



Chapter 5

Implementation of Cache

Simulator

The simulator is a modified version of an existing cache simulator [New]. The
existing simulator is modified to simulate ‘Load All Wide’ technique and multi-
port caches. It can be used either as a stand alone trace-driven simulator or in
conjunction with a processor simulator as a memory-hierarchy simulator to simulate

entire memory-hierarchy. In this chapter, we describe details of the simulator.

5.1 Simulator Input

The input to the simulator is a memory trace file and a cache configuration file. The

format of these files is given in appendix A. ,
The trace file is generated by the processor instruction set simulator while exe-

cuting a program. For each reference a trace contains the following information in

addition to the address of memory reference.

o Type of reference. Specifies whether the reference is fetch, read or write.

e Clock cycle. Specifies the processor clock cycle with reference to the start of

execution in which the reference is made.
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The configuration file supplies different parameters of cache hierarchy. It specifies

number of levels of cache hierarchy and the following for each level:

Type of cache: Unified or split cache. In case of split cache the following cache
parameters are specified separately for both Instruction and data cache. In

case of Unified cache, these parameters are specified only once.
Number of cache lines.

Line size.

Associativity.

Number of interleaved cache ports.

Number of duplicate cache ports.

Write policy, only in case of Unified or data cache. This can be either write

back or write through.

Number of clock cycles required to satisfy the request, in case of a cache miss
but a hit at the next level.

All the parameters of cache can be configured except cache block replacement

policy, which is fixed as least recently used.

5.2 Simulator OQutput

The simulator gives the following performance metrics for each level of cache.

Miss-ratio for each category of misses.

Total number of write backs required in case of a write back cache.

In addition the simulator also gives the number of references that are serviced

by load all wide optimization and the worst case clock cycles required for execution

of the program. Worst case clock cycles are calculated by adding penalties due to

cache bank clashes and misses. Simulator services references in a clock cycle only

after servicing all references of the previous clock cycle.
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Chapter 6
Cache Simulation Results

This chapter compares the cache pel‘f01'ma.nce of PERL RISC for some C bench-
mark programs with other RISC processors. The results are compared with that of
DLX [PH94] and DEC ALPHA 21064 [Sit93]. DLX is a hypothetical RISC archi-
tecture which can be taken as a representative of all current day RISC processors.
We obtain results for DLX using trace-driven simulation. SuperDLX [Mou93], a
simulator for DLX, is used to obtain the memory traces. A C compiler for DLX is
also provided with SuperSIM simulator. The cache performance metrics for DEC
Alpha 21064 are obtained using the ATOM [Dig93, Dig94] performance analysis
tool which is part of the DEC OSF software kit. Results provided by ATOM are
only simulated values, and not the measured values. ATOM is built using OM, a
link-time code modification system. OM takes as input a collection of object files
and libraries that make up a complete program, builds a symbolic intermediate
representation, patches code for the instrumentation and optimizations to the inter-
mediate representation, and finally outputs an executable. Instrumentation routines
can be customized for one’s needs. We used the routines which are pfovided with
ATOM distribution. ATOM distribution contains tools to get cache performance,
instruction profiling etc. As we used ATOM on DEC Alpha 21064, which is 2-issue

superscalar, we configured SuperSIM and SuperDLX to simulate in 2-issue mode

to have comparable platforms.
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6.1 Benchmark Programs

The programs used for simulation are:

1. Permute. This is a heavily recursive program which, given an array of n

integers, prints all n! permutations. The results are obtained for n equal to 5.

2. Matmul. An integer matrix multiplication program. The results are obtained

for matrices of size 32 rows and 32 columns.

3. Tts. This is time table scheduler program. Given a list of courses and prefer-

ences for timing for allotting slots to the course and a given set of class rooms,

this program uses a heuristic approach to get the best optimized output. The

size of this program C source code is 900 lines.

6.2 Memory Bandwidth Requirement

The memory bandwidth requirement for the three processors is compared in this sec-

tion. Table 4 presents the instruction and data reference counts for the benchmark

programs separately.

Benchmarks Insn. Ref. Data Ref.

ALPHA | DLX | PERL RISC | ALPHA | DLX | PERL RISC
Permute 10014 14316 8947 4817 8579 10557
Matmul 523982 | 696021 357421 | 133331 | 101414 689821
Tts 3034509 | 2666910 1123283 | 666824 | 946293 1138070

Table 4: Comparison of Memory Reference Counts

The PERL RISC data reference counts presented in the table does not contain
sp and fp references. About 30% of total references are sp and fp references. These

references are removed to reduce cache bandwidth requirement. These two locations

can be allocated to special registers in the processor itself.
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Memory reference counts show that PERL RISC on the average executes 40%
less instructions than the other two RISC processors. But the size of each instruc-
tion of PERL RISC is 16 bytes, where as the other processors instruction size is
only 4 bytes. So the PERL RISC program size will be about double the RISC pro-
cessor’s program size. Data references of PERL RISC are also more than the RISC
processor’s references.

Average memory bandwidth requirement of the three processors is presented in

table 5, which is expressed as number of references per clock cycle.

Benchmarks Insn. Refs./cycle Data Refs./cycle
ALPHA | DLX | PERL RISC | ALPHA | DLX [ PERL RISC
Permute 0.88 | 1.75 0.78 0.42 | 1.05 0.92
Matmul 0.42 | 1.99 1.08 0.11 | 0.29 2.08
Tts 1.06 | 1.47 1.08 0.33 | 0.83 1.10

Table 5: Comparison of Memory Bandwidth Requirement

Number of instruction references per clock cycle in PERL RISC is around 1.
An instruction cache can definitely provide this bandwidth. It is significant that
the data reference bandwidth is also around 1 for two benchmark programs. It is
observed that though the average references are as given for benchmark programs,
actual number of references may vary from 0 to 5. Table 6 gives the memory

reference distribution for Tts.

Processor | Percentage of cycles with Refs.
0]11]2 3 >4
DLX 52 |44 | 4| <1
PERL RISC | 24 | 45 | 28 2 <1

Table 6: Comparison of Memory Reference Distribution

The statistics shows that 30% of the clock cycles in PERL RISC requires two

references, where as for DLX most of the clock cycles requires either zero or one
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reference only. In both processors, the percentage of clock cycles with more than

two references is very small.

6.3 Effectiveness of Bandwidth Improvement Tech-
niques

This section presents the cache performance improvement due to load all wide tech-
nique and multi-port caches, which are discussed in section 4.3. The performance
of multi-port caches depend only on memory reference pattern. The number of ref-
erences satisfied by ‘load all wide’ depends on both cache block size and mermory

reference pattern.

6.3.1 Load All Wide

The percentage of references satisfied by this technique for the three benchmark

programs are given in table 7. These results are obtained for cache block size of 32

bytes for both DLX and PERL RISC.

Benchmark | PERL RISC | DLX
Permute 12 14
Matmul 15 | < 0.01
Tts 1] <04

Table 7: Percentage of References Satisfied by Load All Wide

In case of Permute and Matmul programs, this technique satisfied more than
10% references. Though it satisfies only 1% references for Tts program, it is signif-

icant that each reference satisfied reduces a cache port clash.

6.3.2 Multi-port Cache

This section presents the cache performance improvements due to multiple cache

ports. The metric we use to evaluate the performance is additional clock cycles
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needed to service the memory requests assuming that all requests in a clock cycle
must be satisfied before servicing any request from the next cycle. It is observed
that for the three benchmark programs DLX requires less than 1% clock cycles even
for a single port cache.

In case of PERL RISC, this value varies from 20% to 5% for Matmul as the
number of ports increased to 2 duplicate ports. It requires no additional clock cycles
if the cache has 2 interleaved and 2 duplicate ports. For Tts program PERL RISC
require 3% more clock cycles for a single port cache, and a dual port cache reduces

the requirement to less than 1%.

6.4 Primary-level Cache Performance

The primary-level cache can be either a unified cache or split cache. We used split
cache organization for performance study. Performance results for instruction cache

and data cache are presented separately in this section.

6.4.1 Instruction Cache

The cache sizes for simulation are selected based on the size of the program. For
Matmul and Permute programs both processors reported very high (more than
95%) hit rate even for a 1 KByte cache. This can be attributed to the fact that, being
small programs the entire program can fit into 1 Kbyte cache and all the misses are
compulsory misses. But it is observed that PERL RISC has more number of misses
compared to DLX. The misses in PERL RISC are decreased when we increased the
cache block size keeping the cache size same. This is due to decrease in compulsory
misses, as more instruction fit into same cache block.

Table 8 shows the miss ratios for Tts program for DLX and PERL RISC. The
miss ratio for ALPHA for the same program is 0.36%. ALPHA has an 8 K-byte
instruction cache. The miss ratios shows that PERL RISC requires a large and wider
block size cache to have lower miss ratio. Data transfer rate between second-level

cache and instruction cache is also more in case of PERL RISC.
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Processor - Cache Size

2K 4K 8K
DLX(32 byte block) 1.33% | 0.35% | 0.11%
PERL RISC (32 byte block) | 5.45% | 2.69% | 1.25%
PERL RISC (64 byte block) | 3.69% | 1.60% | 0.65%
Alpha (32 byte block) - - | 0.36%

Table 8: Instruction Cache Miss Ratios

6.4.2 Data Cache Performance

We use number of misses rather than miss ratios as metric for evaluating data cache
performance, Because a program access the same set of data even when executing
on different processors.

The number of misses for Permute program are given in table 9. Because the
program accesses only a small array, even a cache of 1 K-byte has very few misses.
The results shows that most of the misses in PERL RISC are conflict misses. The

large cache also has the same number of misses.

Cache Size DLX | PERL RISC
Blocks | Block Size | Associativity
32 32 1 9 177
32 32 2 9 10
64 32 1 9 177

Table 9: Comparison of Data Cache Misses for Permute

Table 10 gives the misses for Matmul. Increased associativity has considerable
impact on cache performance in PERL RISC for this program also.

For a 16 K cache all misses are compulsory misses because all the three matrices
can fit into it, and both processors have the same number of misses. The number of
misses in ALPHA for this program are 17262. ALPHA has a 8 K-byte data cache.

The high number of misses can be attributed to fact that the misses are recorded

while executing the program in an operating system environment.
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Cache Size DLX | PERL RISC
Blocks | Block Size Associativity

128 32 1] 6332 10320
128 32 21 2860 2019
256 32 1] 1351 4324
256 32 21 452 893
512 32 1 421 435
512 32 2| 421 420

Table 10: Comparison of Data Cache Misses for Matmul

The number of misses for Tts program are given in table 11 for different cache

configurations.
Cache Size DLX | PERL RISC
Blocks | Block Size | Associativity

64 32 111097 10061

64 32 2| 5819 3345

128 32 1| 4615 2625

128 32 2| 2764 1316

256 32 1| 2840 1455

256 32 2] 869 519

Table 11: Comparison of Data Cache Misses for Timetable program

For this program PERL RISC has less number of misses compared to the DLX

for all cache configurations considered. Cache associativity is an important factor
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Chapter 7
Conclusions and Future Work

In this thesis, A C compiler for PERL RISC is developed and cache performance
of PERL RISC is studied. The compiler is built on top of GCC and the generated
code is not a fully optimized code for PERL RISC. The reason being that GCC is
a compiler written for machines with many registers. The notion that registers are
faster than memory is built into compiler. The compiler optimization phase can be
modified to produce fully optimized code for PERL RISC.

The cache performance studies shows that:

e Instruction cache misses for PERL RISC are more compared to other RISC

processors. PERL RISC requires large and wider block size instruction cache

to have fewer misses.

o A dual port data cache can satisfy the increased bandwidth requirement of

PERL RISC.

e Data cache performance of PERL RISC is comparable to other RISC proces-

SOrs.

The cache performance results are obtained for only three benchmark programs.

The results should be substantiated by simulating more programs.
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Appendix A

Cache Simulator Input Files

format

A.1 Trace File (trace)

#reference type memory address(in hexadecimal) clock-cycl
2 (Fetch) 100 1
1 (Write) 4 5
0 (Read ) 4 7

A.2 Cache Configuration File (cache.config)

#Number of Cache levels
2
#Level 2 cache specification

#Type of cache Number of blocks Block size(bytes) Associativity

0 (Unified cache) 1024 64 4
#Number of Interleaved ports Duplicate Ports Write Policy
' 1 0 (write back)

1
#miss penalty for this level
10
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#Level 1 cache specification
#Type of cache

1 (Split cache)

#Instruction cache specification

#Number of Blocks Block size Associativity

256 64 1
#Number of Interleaved ports Duplicate Ports
1 1

#Data Cache specification

#Number of Blocks Block size Associativity

512 32 1
#Number of Interleaved ports Duplicate Ports
2 2
#miss penalty for this level
4
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Appendix B

A Sample Output of Compiler

B.1 A C Benchmark Program

/* This is a simple benchmark program,DAXPY.
It does the following operation:
Y=A+Y
where X and Y are vectors (of double precision numbers) of
size ’n’. Each element of vector X, X[i], is multiplied by

double precision number A and the result is added to Y[i].

*/

double x[10],y[10],a;

main()
{
int 1i;
a = 3.5 ;

for(i=0;i<10;i++)
y[i] = a*x[i]+y[i];
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B.2 Assembly Code Generated by Compiler

The assembly code generated by the compiler for the C program is given in this
section. The compiler generates traps for systems calls and l‘ibra,ry functions. The
simulator handles them by using the corresponding UNIX system calls or library
functions in the trap handler. Simulator automatically recognizes sp and fp as stack
pointer and frame pointer which are used as base addresses. Traps that are not
relevant to this example are removed. First the sp is initialized to memSize, a

simulator variable which indicates the highest address of processor’s memory.

.global _exit
.global _printf
.global t1
.global t2
.global t3
.global t4
.global tb
.global t6
.global t7
.global t8
.global t9
.global t10
.global ti1
.global t12
.global ti13
.global ti4

.align 2

LCO:
.double 3.50000000000000000000
.align 4

.global _main

_main:
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addb4 sp,#¥memSize, #0
;3 Save the old frame pointer
addb4 -4(sp),fp,#0
;; Establish new frame pointer
addb4 fp,#0,sp
;3 Adjust Stack Pointer
addb4 sp,sp,#-44
;; Save Temporary locacations
addf8 _a,#0,LCO
addb4 t3,#0,#0
addb4 t5,#0,Q_y
addb4 t4,#0,Q_x
L5:
sllb4 t2,t3,#3
addb4 t1,t5,t2
addb4 t2,t4,t2
addb4 t6,#0,t2
mulf8 -20(fp),_a, (t6)
addb4 t6,#0,t1
addf8 (t6),-20(fp), (t6)
addb4 t3,t3,#1
jleb4 L5,t3,#9
:: Restore the saved Temporary locations
;; Restore stack pointer
addb4 sp,#0,fp
;; Restore frame pointer
addb4 fp,-4(£fp),#0
;3 HALT
j _exit,#0
-exit:

trap #0
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j -8(sp),#0

_printf:
trap ¥5
j -8(sp),#0

t1: .space 4
t2: .space 4
t3: .space 4
t4: .space 4
t5: .space 4
t6: .space 4
t7: .space 4
t8: .space 4
t9: .space 4
t10: .space 4
t11: .space 4
t12: .space 4
t13: .space 4
t14: .space 4
.global _a

- .space 8
.global _y

-y .space 80
.global _x

X .space 80
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