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Abstract

The objective of this thesis is to present PERL RISC, a register-less RISC
architecture. This architecture embraces all the properties of RISC machines and
tries to remove the bottleneck found in current day RISC machines. It is designed
to be a memory-to-memory architecture because of its relevance today. The avail-
ability of large on-chip caches and wider bus bandwidth to reduce memory latency
supports our idea. The instruction set and pipeline design of this architecture are
presented. The thesis also explains the design and implementation of SuperSIM,
an instruction set simulator for PERL RISC. This superscalar simulator achieves
the most aggressive issue policy: multiple out-of-order issue and multiple out-of-
order execution. Some powerful hardware mechanisms used to achieve this policy,
like a central instruction window, reorder buffers etc., are explained in detail. To fur-
ther improve performance, the simulator performs branch prediction to dynamically
schedule instructions that follow a conditional branch. Finally, the performance
of some typical user programs on this machine are compared with similar results

obtained for current day RISC machines.
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Chapter 1
Introduction

PERL RISC (Performance Enhanced Register-Less RISC) architecture is a new
generation RISC architecture which we are proposing based on our understanding
of various architectures proposed and implemented in the past. This new architec-
ture embraces fundamental concepts of simplicity and general applicability while
extending itself to the advanced techniques that will carry it into the next decade
and beyond. 4

SuperSIM, the simulator for a superscalar version of PERL RISC architec-
ture, is implemented for analyzing this new architecture. This simulator is capable
of executing assembly language programs of PERL RISC architecture and provide
us with statistics which are compared with implementations of other popular and
state-of-the-art RISC architectures.

1.1 Motivation

There are many factors which influenced us in the design of this processor. Firstly,
current day microprocessors depend extensively on on-chip cache to offset the mem-
ory latencies. Secondly, current growth in technology helps in building caches which
are cheaper and comparable in speed to registers. Thirdly, the Load/Store overhead
associated with all the RISC machines of today. All these are discussed in detail
in the following sections. However we followed the RISC philosophy because of the



obvious advantages it offers, like simplified control unit, easy fetch and decode logic
and efficient handling of pipelines due to uniformity of instruction size and duration

of execution. These factors contribute significantly to the increase in computing

speed.

1.2 The Origins of RISC

During the 70s, memory efficiency was an important factor which influenced archi-
tecture design because main memory (i.e., magnetic core) was slow and expensive.
This resulted in much pervasive thought that larger programs are invariably slower
programs. It also urged many designers to design instruction sets which had in-
structions that reduced program size. There were machine instructions that closely
resembeled programming language statements, thereby reducing the “semantic gap”
between these languages. But this introduced a “performance gap” in these machines
because the decoding logic became complex and pipelining was difficult.

The new RISC philosophy of design evolved. The main idea of RISC is to have
simpler instructions so as to reduce the clock cycle time. As these machines had
simple and minimum number of instructions these are called Reduced Instruction

Set Computers.

1.2.1 Common RISC Traits

Most of the RISC machines of today have the follc.)wing in common:
1. All instructions have fixed size and simple format.
2. These machines have only a handful (upto 4) of addressing modes.
3. They use hardwired logic for control.
4. Only Load/Store instructions access memory.

5. All arithmetic operations are performed on registers with no instruction com-

bining Load/Store with arithmetic.



6. They aim at more performance from current compiler technology.

1.3 RISC Variations

FEach RISC machine provides its own particular variations on the common theme.

This makes for some interesting differences. The following discussion highlights the

variants.

1.3.1 Register Windows

RISC machines used hardwired control. As a result, more die area was available
on-chip. As the memory technology at that time did not allow faster caches (also
use of caches was in its rudimentary stages), these machines had many registers. To
utilize registers to maximum, state of the art compiler technology was pushed to the
maximum possible limit. The first step was to have enough registers to keep all the
local scalar variables and all the parameters of the current procedure in registers, as
procedure calls are slowed down when there are a great many registers [Pat85]. The
solution was to have many sets, or windows, of registers, so that registers would not
have to be saved on every procedure call and restored on every return. The Berkeley
RISC machine, rather than copying the parameters from one window to another on
each call, overlapped windows so that some registers are simultaneously part of two
windows. By putting parameters into the overlapping registers, operands are passed
automatically.

The disadvantage of register windows are that they use more chip area and slow
the basic clock cycle. Although context switches rarely occur, they require that two

to three times as many registers to be saved, on average.

1.3.2 Multi-Ported Memory and Registers

One method of reducing the Load/Store overhead is to have multiple ports to mem-
ory and register. This was in fact used in Berkeley RISC to reduce costs of memory
accesses [Pat85]. The 801 and MIPS solve this problem with a delayed load, which is



analogous to the delayed branch. The idea of using delayed branch is to allow RISCs
to always fetch the next instruction during the execution of the current instruction.
The machine-language code is suitably arranged so that the desired.results are ob-
tained.

Though the delayed load removes the bubbles normally associated with pipelined

execution, the onus is on the programmers of the compiler, the optimizer, and the

debugger.

1.3.3 Multiple Instructions per Word

The idea behind this is to pack two or more instructions into every word of memory,
whenever possible. This improvement could potentially provide a linear increase in
performance. But data dependencies prevented some combinations to be grouped
together. MIPS tried this variation, by packing two instructions into every 32-bit
word whenever possible. But this resulted in an increased speedup of only 10 to
15 percent [Pat85]. Increased complexity in decoding logic and greater burden on

the compiler resulted in architects not using this technique in their designs after the
findings by the MIPS designers.

1.4 The Symmetric Architecture Model

The major disadvantage of RISC also is the reduced instructions. Since a RISC
has a small number of instructions, a number of functions, performed on CISCs
by a single instruction, will need 2, 3 or more instructions on a RISC. One way
to make instructions more powerful than RISC instructions is to go one step back
from the RISC’s Load/Store architecture and use a Symmetric instruction set which
can perform direct operation on memory [AAD90]. In a Load/Store instruction-set
architecture the only instructions that access memory are LOAD and STORE. Com-
pulational instructions can only use registers as operands. A Symmetric instruction-
set architecture, on the other hand, treats register-operands and memory-operands
symmetrically, and has the additional capability to perform direct computation on
memory.



The Symmetric model attempts to speedup execution by three means:

1. Reduce the path-length (the number of instructions executed for a program)
by using a more powerful instruction set.

2. Eliminate the LOAD delay by using a different pipeline structure.

3. Avoid the introduction of other delays.

[AAD90] illustrates the pipeline structure for the symmetric architecture model
and provide some results useful for comparison of Symmetric architecture with

Load/Store architecture citing load delay as a major bottleneck in the Load/Store
architecture.

1.5 Register-less RISC architecture

In Figure 1, the statement A « B+C is translated into Assembly Language for
three execution models: Register-to-Register, Memory-to-Register, and Memory-to-
Memory. The three data words are 32 bits each and the address field is 16 bits.
Metrics were selected by research architects for deciding which architecture is best;
they selected the total size of executed instructions(I), the total size of executed data
(D), and the total memory traffic—that is, the sum of I and D, which is (M). These
metrics suggest that a memory-to-memory architecture is the “best” architecture,
and a register-to-register architecture the “worst”. This study led one research
architect in 1978 to suggest that “One’s eyebrows should rise whenever a future
architecture is developed with a register-oriented instruction set.”[Mey78]

With all the above results in mind, we set about designing PERL RISC.
To summarize, on many register machines 25 percent or more instructions are
l.oad/Stores. The compiler should decide where to insert data movement instruc-
tions to remove load stalls. In these machines, when handling calls to subroutines,
switching tasks or starting an I/O transfer it is necessary to save current machine
state. This means copying all registers and restoring them. Effective use of registers

demand compile time analysis. As register allocation is an NP-complete problem,
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Figure 1: Instruction Set Comparison

the overhead associated with register allocation for compilers increases as the num-
ber of registers available in a machine increases. The question of optimal size of the
CPU register file is a controversial one, requiring additional research. Despite some
obvious advantages, certain studies have cast doubt on the benefit of a large register
set [FMM87] [Wal79] [Tab94].

Sites [Sit79] discusses using Short Term Memory(STM) cells to offset the memory
latency. He proposes using registers and cache for this purpose. He argues for using
more STM cells to obté,in better speedup and cites the speed of registers as their only
advantage over caches. As increasing the number of registers beyond a .certain limit
(32 or 64 to the maximum) does not provide a linear performance increase, we are left
with the option of using cache to offset memory latency. Also, blindly doubling the

size of cache will usually have a much better performance improvement than blindly



doubling the number of registers [Sit79]. As the technology today can provide caches
which are as fast as registers we thought of replacing registers with caches instead
of using them in tandem. The result is the birth of the new architecture.

This work is a part of the ongoing research activity in the design and performance
analysis of registerless processor architecture at the Department of CSE, IIT Kanpur.

This work helped in giving feedback in the design of the instruction set and the

pipeline .

1.6 Organization of the Thesis

The rest of the report is organized as follows. In Chapter 2 a brief description of
Instruction Level Parallelism is presented with emphasis on superscalar micropro-
cessor design. Few case studies are also provided. Chapters 3 and 4 provide an
overview of the instruction set design and pipeline design of PERL RISC. Chapter
5 discusses the implementation details of SuperSIM. Chapter 6 provides some sim-
ulation results. In Chapter 7, we highlight some extensions to our work which can be
explored to understand better this nascent architecture. Appendix A lists the com-
mands supported by SuperSIM. Appendix B gives an example machine description
file. Appendix C gives the instruction set of PERL RISC. Appendix D gives an
example assembly program generated by the C compiler [Kum97] for PERL RISC
and finally Appendix E explains the statistical output generated by SuperSIM.



Chapter 2
Instruction Level Parallelism

Pipelining is a mechanism whereby processors overlap execution of instructions when
they are independent of one another. This potential overlapping among instruction
is called Instruction Level Parallelism(ILP). Architectures to take advantage of this
kind of parallelism have been proposed. A superscalar machine is one that can
issue multiple independent instructions in the same cycle. A superpipelined ma-
chine issues one instruction per cycle, but the cycle time is set much less than the
typical instruction latency. A VLIW machine is like a superscalar machine, except
the parallel instructions must be explicitly packed by the compiler into very long
instruction words.

Superscalar processing is the latest in a long series of architectural innovations
aimed at producing ever faster microprocessors. So we decided to design a super-
scalar version of PERL RISC. The following sections describe the microarchitecture
of superscalar processors in general, and discuss some features of existing superscalar

IMiCroprocessors.

2.1 Swuperscalar Processing

Introduced at the beginning of this decade, superscalar microprocessors are now
being designed and produced by all the microprocessor vendors for high-end prod-

ucts. Although viewed by many as an extension of the RISC movement of the



1980s, superscalar implementations are in fact heading toward incrcasing complex-
ity. And superscalar methods have been applied to a spectrum of instruction sets,
ranging from the DEC Alpha, the “newest” RISC instruction set, to the decidedly
non-RISC Intel x86 instruction set.

A typical superscalar processor fetches and decodes the incoming instruction
stream several instructions at a time. As part of the instruction fetching process, the
outcome of conditional branch instructions are usually predicted in advance to ensure
an uninterrupted stream of instructions. The incoming instruction stream is then
analyzed for data dependencies, and instructions are distributed to functional units,
often according to instruction type. Next, instructions are initiated for execution
in parallel, based primarily on the availability of operand data, rather than their
original program sequence. This important feature, present in many superscalar
implementations, is referred to as dynamic instruction scheduling. Upon completion,
instruction results are resequenced so that they can be used to update the process
state in the correct (original) program order in the event that an interrupt condition
occurs. Because individual instructions are the entities being executed in parallel,
superscalar processors exploit ILP.

2.2 The Microarchitecture of

Superscalar processors

Figure 2 illustrates the microarchitecture of a typical superscalar processor. The
major parts are instruction issue mechanism, instruction cache to supply instructions
to issue mechanism, a data cache for memory operands and an interconnect that
connects together various components.

2.2.1 Instruction Fetching and Branch Prediction

For a superscalar implementation to sustain the execution of multiple instructions
per cycle, the fetch phase must be able to fetch multiple instructions per cycle from

the cache memory. The number of instructions fetched per cycle should at least
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Figure 2: A Superscalar CPU

match the peak instruction decode and execution rate and is usually somewhat
higher. The extra margin of instruction fetch bandwidth allows for instruction cache
misses and for situations where fewer than the maximum number of instructions can
be fetched. In case of branch instructions which redirect the flow of control, however,
the fetch mechanism must be redirected to fetch instructions from the branch target.
Because of delays that can occur during the process of this redirection, the handling
of branch instructions is critical for good performance of superscalar processors.
Processing of conditional branch instructions can be broken down into the following

parts:

1. recognizing that an instruction is a conditional branch. This is a trivial task

of looking at the opcode and identifying the instruction type.



2. determining the branch outcome. This can be done by using some predictors.
A 2 bit branch prediction scheme is currently the most widely used. Some
predictors use static information i.e., information that can be determined from
the static binary. Profiling information can also be used for this purpose.

SuperSIM uses the 2 bit scheme which is discussed in detail in chapter 5.

3. computing the branch target, and

4. transferring control by redirecting instruction fetch (in the case of a taken
branch).

2.2.2 Instruction Decoding and Dispatch

During this phase, instructions are removed from the instruction fetch buffers, exam-
ined, and control and data dependence linkages are set up for the renaming pipeline
stages. This phase includes detection of true data dependences (due to RAW haz-
ards) and resolution of other register hazards, e.g., WAW and WAR hazards caused
by register reuse. A detailed discussion on the different classes of hazards is pro-
vided in chapter 4. Typically, this phase also distributes, or dispatches, instructions
to buffers associated with hardware functional units for later issuing and execution.

This phase works closely with the following issue stage.

2.2.3 Instruction Issue Policies

In a superscalar machine, pipeline stages are concurrent processes that may take
care of a variable number of instructions per cycle. The overall coordination be-
tween processes as well as their degrees of freedom have a significant impact on the
processor ability to exploit the instruction parallelism available in a program. In
particular, instruction issue, which is the process of letting an instruction move from
the decode stage to the execute stage determines the processor capacity to identify
instructions that can be executed concurrently.

There are three policies for instruction issue as detailed below

11



p In-order issue, in-order completion

In this mechanism, instruction issue and commit are in exact program order. So
this is the easiest mechanism to implement. Also as the saved state of the machine
at any point of time is consistent with the sequential architecture model, exceptions
and precise interrupts can be easily handled. But it has its own disadvantages. As
parallelism is not exploited, it is very inefficient. In addition to stalling the pipeline
due to data dependencies or structural hazards, all instructions that follow a long

latency operation are stalled at the issue stage itself, even though there is not data
dependency.

i In-order issue, out-of-order completion

In this mechanism, even though the instructions pass through the issue stage in
sequential program order, they can complete execution out-of-order by bypassing
each other in the execute stage. So only RAW hazards and structural hazards
hinder the issue process. In particular, instruction issuing is not stalled after a
long latency operation which improves performance for floating point operations.
PowerPC 603 [BUOOY4] is a superscalar microprocessor capable of issuing as many
as 3 instructions to its 5 execution units, namely, branch, integer, floating point,
Load/Store and system register. Even though instructions can execute out-of-order,
and hence can complete out-of-order, they are dispatched to the 5 functional units
in order.

1 Out-of-order issue, out-of-order completion

Both the schemes mentioned above do not exploit parallelism to the maximum. This
is because when an instruction is stalled no further instruction can proceed. But
in the case of out-of-order issue, the processor looks at a window of instructions
at a time. Even though stalls result in this case also due to data dependencies
and structural hazards, the processor looks beyond the stalled instructions to find
possible candidates for issue. This increases the processor “look-ahead capability”.

As this requires decoupling the decode and execute stages, an instruction window



or instruction pool gathers the instructions that are decoded and ready to issue.

g Data Hazards

Out-of-order completion creates output dependencies because instructions write

their results in different order than they appear. There exists different techniques
to alleviate those dependencies.

e Scoreboarding. This technique allows instructions to execute out-of-order
when there are sufficient resources and no data dependencies. Every in-
struction goes through the scoreboard where a record of data dependencies
is constructed. The scoreboard determines when the instruction can read its
operands and begin execution. All hazard detection and resolution is central-
ized to the scoreboard. The MC88110 [AD92] implements scoreboard mecha-
nisms to handle output dependencies.

e Tomasulo’s Approach. Named after the scientist who invented it, this method
combines key elements of the scoreboarding scheme with the introduction of
register renaming. Register renaming eliminates name dependencies thereby
handling WAR and WAW hazards. The register names are renamed with those
from a larger virtual set of registers. This also helps in handling RAW hazards
by internal forwarding which is not provided by scoreboarding. Tomasulo’s
scheme provides this functionality through reservation stations which buffer
operands of an instruction waiting for issue. These reservation stations also
pass results directly to waiting functional units instead of to registers as in
scoreboarding. Tomasulo’s algorithm implements register renaming by asso-
ciating a tag to each register instance. This tag is then used in place of the
register identifier. Appropriate tag management ensures in-order writing in
each register. The IBM RS/6000 [Gro90] uses a variant of Tomasulo’s algo-
rithm to rename load destination floating point registers.

Other more complex but more powerful implementations use some type of buffer-

ing device which provides extra storage for instructions’ results. An example of such



device is the reorder buffer, a FIFO queue where issued instructions place their re-
sults. While instructions complete out-of-order, the buffer reorders the results so
that they can be written in strict program order to the register file.

Out-of-order issue creates anti-dependencies because register values are not
accessed 1n program order. Anti-dependencies are enforced by identifying the se-
mantic instances of source registers at decode stage and associate them with the
instructions in the instruction pool. Operands are thus copied with the instructions
in the instruction pool in the form of values (if they are ready), register number
(scoreboarding case) or tags(register renaming case). The mechanism must ensures
that the operands of an instruction will not be overwritten and that the instruction

will eventually issue when the proper operand values are ready and forwarded.

2.2.4 Committing State

The final phase of the lifetime of an instruction is the commit or the retire phase,
where the effects of the instruction are allowed to modify the logical process state.
The purpose of this phase is to implement the appearance of a sequential execution
model even though the actual execution is very likely nonsequential, due to specula-
tive execution and out-of-order completion of instructions. The actions necessary in
this phase depend upon the technique used to recover a precise state. There are two
main techniques used to recover a precise state, both of which require maintenance
of two types of state: the state that is being updated as the operations execute and
other state that is required for recovery.

In the first technique, the state of the machine at certain points is saved, or
checkpointed, in either a history buffer or a checkpoint. Instructions update the state
of the machine as they execute and when a precise state is needed, it is recovered
from the history buffer. In this case, all that has to be done in the commit phase is
to get rid of history state that is no longer required.

The second technique is to separate the state of the machine into two: the im-
plemented physical state and a logical (architectural) state. The physical state is
updated immediately as the operations complete. The architectural state of the ma-

chine is updated in sequential program order, as the speculative status of operations

14



is cleared. With this technique, the speculative state is maintained in a reorder
buffer; to commit an instruction, its result has to be moved from the reorder buffer

into the architectural register file (and to memory in the case of a store), and space

is freed up in the reorder buffer.

2.3 Case Studies

In this section we discuss two current superscalar microprocessors in the light of

the microarchitecture described above. They are chosen to cover the spectrum

of superscalar implementations as much as possible. They are DEC Alpha 21164
[EBea95] and UltraSPARC-I [web95].

2.3.1 Alpha 21164

The Alpha 21164 (Fig 3) is an example of a simple superscalar processor that forgoes
the advantages of dynamic instruction scheduling in favor of a high clock rate. It
has a quad-issue, superscalar instruction unit. Instructions are fetched from an 8
Kbytes instruction cache four at a time. These instructions are placed in one of two
instruction buffers, each capable of holding four instructions. Instructions are issued
from the buffers in program order, and a buffer must be completely emptied before
the next buffer can be used. This restricts the instruction issue rate somewhat, but

it greatly simplifies the necessary control logic.

e Pipeline Organization. The Alpha 21164 pipeline length is 7 stages for integer
execution, 9 stages for floating-point execution, and as many as 12 stages
for on-chip memory instruction execution. Additional stages are required for

off-chip memory instruction execution.

e Branch Prediction. The branch prediction logic predicts conditional branch in-
structions using a branch history table with 2K entries addressed by low-order
11 bits of the PC. Each is a two-bit counter that increments when branches
are taken and decrements when branches are not taken. The counter saturates

at the top and bottom counts. A branch is predicted to be taken if the current

15
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Figure 3: DEC Alpha 21164 Superscalar Organization

counter value is one of the two highest counts; otherwise, it is predicted to be
not-taken. This method is more effective than the method used in the first
Alpha microprocessor (i.e., Alpha 21064 [Sit93] [McL93]) which had only one
bit of history per entry, partly because it reduces the misprediction rate for
typical loop branches by half [EBea95].

Instruction Issue. Following instruction fetch and decode, instructions are
inspected and arranged according to type, i.e., the functional unit they will use.
Then, provided operand data is ready (in registers or available for bypassing)
instructions are issued to the units and begin execution. During this entire
process, instructions are not allowed to pass one another.

On-chip Caches. The 21164 has two levels of cache memory on the chip. There
are a pair of small, fast primary caches of 8 Kbytes each—one for instruction
and one for data. The secondary cache, shared by instructions and data, is
96Kbytes and is three-way set associative. The small direct mapped primary



cache is to allow single-cycle cache accesses at a very high clock rate.

Many workloads benefit more from a reduced latency in the data cache than
from a large data cache. The designers considered a single-level design for a
large data cache. For circuit reasons, physically large caches are slower than
small caches. To achieve a reduced latency, they chose a fast primary cache
backed by a large second-level cache. As a result, the effective latency of reads

is better in the Alpha 21164 CPU chip than it would have been in a single-level
design [EBead5].

The two-level data cache has other benefits. The two-level design makes it
reasonable to implement set associativity in the second-level. Set associativ-
ity enables power reduction by making data set access conditional on a hit
in that set. The two-level design also allows the second-level cache to hold

instructions, which makes a larger instruction cache unnecessary [EBea95].

The performance of the new implementation results from aggressive circuit design
using 0.5 micron CMOS technology (Alpha 21064 uses 0.75 micron technology) and
significant architectural improvements over the first Alpha implementation. The
chip is designed to operate at 300 MHz, an operating frequency 10 percent faster
than the previous implementation ( the DECchip 21064) would have if it were scaled
into the new 0.5 micron technology [EBea95]. The key improvements in machine
organization are a doubling of the superscalar dimension to four-way superscalar
instruction issue; reduction of many operational latencies, including the latency in
the primary data cache; a memory subsystem that does not block other operations

after a cache miss; and a large, on-chip, second-level write-back cache.

2.3.2 UltraSPARC-I

UltraSPARC-I is a highly integrated 64-bit, four-way superscalar processor targeted
at running real life applications 2.5-5X faster than the previous SPARC processors
[TGN95).

e Pipeline Organization. UltraSPARC-I uses a double-instruction-issue integer

pipeline with nine stages: fetch, decode, grouping, execution, cache access,
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load miss, integer pipe wait, trap resolution, and writeback. These stages im-
ply that the latency (time from start to end of execution) of most instructions
is nine clock cycles. However, at any given time, as many as nine instructions
can execute simultaneously, producing an overall rate of execution of one clock
per instruction in many cases. In reality, some instructions may require more

than one cycle to execute due to the nature of the instruction, a cache miss,

or other resource contentions.

Branch Prediction. Every cycle, up to four instructions can be prefetched
from the instruction cache and sent to the instruction buffer. Each line in the
I-cache contains eight instructions (32 bytes). Every pair of instructions has
a 2-bit branch prediction field which maintains history of a possible branch in
the pair. The four prediction states are the conventional strongly taken, likely
taken, strongly not taken, and likely not taken. The advantage of the in-cache
prediction scheme is that it avoids the alias problems encountered in branch
history buffer. Implemented in this way, every single branch in the I-cache has
its dedicated prediction bits, which translated into a high successful prediction
rate of 88% for integer code, 94% for floating-point (SPEC92), and 90% for
typical database applications [TGN95].

Instruction Issue. UltraSPARC-I dispatches and executes instruction in the
same order as they appear in the code. Every cycle, the grouping logic dynam-
ically computes how many of the top four instructions sitting in the instruc-
tion buffer can be dispatched to the functional units. Instructions are allowed
to complete out-of-order so that long latency operations can be bypassed by
shorter ones. For instance, loads to the data cache, to the external second
level cache, or to main memory are allowed to finish out-of-order with respect
to other classes of instructions such as integer operations, floating point oper-
ations, etc. Thus, the UltraSPARC-I execution model, while maintaining the
simplicity of an in-order execution model, takes advantage of a nonblocking
memory system and scoreboarded loads in order to hide load latency opera-

tions.
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e On-chip Caches. The UltraSPARC-I Data Cache is a 16 KB direct mapped,
software selectable write-through non-allocating cache that is used on Load
or Store accesses from the CPU to cacheable pages of main memory. It is a
virtually-indexed and virtually-tagged cache. The D-cache is organized as 512
lines with two 16-byte sub-blocks of data per line. Each line has a cache tag
associated with it. On a D-cache miss to a cacheable location, 16 bytes of data
are written into the cache from main memory. For UltraSPARC, a significant
advantage is gained through the use of a virtual cache [web95]. Physically
tagged caches require the cache to be compared with the physical address from
the MMU. In such environments cache miss detection may be a bottleneck
in the MMU. While physical caches are appropriate for certain environments,
virtual caches, such as those employed in UltraSPARC-I, increase performance

through accelerated cycle cache miss detection.

The Instruction Cache is a 16 KB, two-way set-associative cache used on in-
struction fetch accesses from the CPU to cacheable pages of main memory.
Like the D-cache, it is virtually indexed and virtually tagged. It is organized
as 512 lines of 32 bytes each, with each line having an associated cache tag.
On an I-cache miss to a cacheable location, 32 bytes of data are written into

the cache from main memory.

The UltraSPARC-I External Cache Unit (ECU) efficiently handles instruction
and data cache misses, handling one access per cycle to the external cache.
These accesses are pipelined, consume only 3 cycles, and return 16 bytes of
instructions or data per cycle. This effectively makes the E-cache an extension
of the pipeline, allowing programs with large data sets to obtain data they
need from the E-cache with load latencies that are based on E-cache latency.
Floating-point application can make specific use of this feature to hide D-
cache misses. UltraSPARC-I supports a variety of external cache sizes ranging
from 512 KB to 4 MB. A MOESI (modified, own, exclusive, shared, invalid)

protocol is used to maintain coherency across the system.

o Multimedia Support. Graphics speed has a big effect on a workstation user’s

perception of performance. Until recently, specialized graphics hardware was
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required for these operations. Typically, additional functionality could be pro-
vided to the base machine by adding one or more graphics cards. UltraSPARC-
I designers saw an opportunity to provide a standard multimedia capability for
future SPARC systems with only a 3% increase in die area [TGN95]. Multime-
dia instructions are executed by two specialized execution units in the floating

point datapath. These RISC style instructions provide the core operations
needed by multimedia algorithms.

The realization of UltraSPARC-I required 5.4 million transistors and the circuit

was designed using 0.5 micron CMOS process technology. The chip is designed to
operate at 167 MHz.

2.4 Java Chips

Java is a general-purpose, object-oriented computer programming language that
offers special features that allow programs to take advantage of the power and flex-
ibility of the Internet. Its cross-platform compatibility is motivating some software
companies, such as Corel, to develop large-scale business applications entirely in
Java [Way96].

Sun Microsystems, the company that launched Java, is betting on dedicated
Java chips to deliver the performance needed for Java-based business and embed-
ded applications. To this end, Sun is developing a core specification— known as
picoJava—for Java chips. Chips based on Sun’s picoJava core architecture should
appear early in ’97 and make their way into commercial products by the end of the
year.

Sun’s picoJava architecture will be the foundation for the first-generation Java
chips, known as microJava, a low-cost family for resource-stingy embedded applica-
tions like PDAs, cellular phones etc. Sun is also developing a more expensive chip
called ultraJava which will be for desktop systems. The architectural specification
(i.e., picoJava) outlines a number of design innovations for optimally running Java

code.
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2.4.1 Stack Usage

What makes picoJava chips different from other processors? Foremost is how pico-
Java refines the stack. In the picoJava architecture, Java chips allocate variables lo-
cally on the stack, and method calls and bytecode operations also pass data through
the stack.

Most C compilers convert C source code into a stack-based language, but the
compilers then go through an additional step of converting this intermediate lan-
guage into native RISC code. This allows the compiler to analyze the flow of data
and keep the most essential elements in the CPU registers. A standard RISC pro-
cessor simulates a stack machine by loading or storing data from the stack into
registers, then using one of the registers to represent the stack pointer. This opera-
tion is simple, but the number of registers limits the opportunities for optimization
[Way96).

The picoJava architecture uses a stack of sixty-four 32-bit registers with a pointer
to the top register on the stack. If, for example, 20 registers are allocated for a
particular stack frame (call it method A), then a call to another method, say B,
would begin using register 21. The pointer or the top of the stack would move down

from 20 to the last register used by method B.

2.4.2 Smart Cache

Sun architects devised a clever method of caching data if all the registers are full.
For example, when method B is invoked, the picoJava register file allocates all
remaining empty registers and carries over to register 1 if additional space beyond
64 is required. Something called the “dribbler” steps in from the background to
restore the method-A data when method B finishes. The dribbler constantly reads
and writes data from the 64 registers to a copy that’s kept in memory. So when
method B grabs the additional registers, the dribbler has already copied the data.
If for some reason the dribbler hadn’t yet made a copy, the Java chip would pause
any processing tasks until the dribbler finished this operation. When method B
stops running and gives up the registers, the dribbler restores the data to the stack,

making method A current.
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The dribbler takes advantage of the fact that the data traffic between the registers
and its image in memory is highly predictable. System designers are able to easily
tune a cache to anticipate the requests of the dribbler and make sure that necessary
data is available in the local data cache when it needs to be.

The flexible register approach of picoJava contrasts with the simple register files
of RISC processors. Java’s dribbler dynamically tries to keep all the local variables
available in fast registers. RISC chips, on the other hand, rely upon the compiler
to orchestrate the movement of information in and out of the chip. Static register
allocation works well with scientific code, which may have complicated loops that
use each piece of data in multiple calculations.

The picoJava architecture also overcomes the inherent disadvantage of stack
machines. Stack architecture typically use two instructions to move a variable to
the top of the stack and then perform an add computation. PicoJava issues the move
and the arithmetic operations together so they execute at the same time without
disturbing the stack, writing over a register, or forcing the dribbler to do something.

This reduces memory accesses and potentially cuts execution time.

2.4.3 PicoJava Pipeline

RISC pipelines driven by optimizing compilers have done quite well, and so Sun
uses a very RISC-like pipeline for picoJava. The pipeline has only four stages: fetch,
decode, execute and writeback. Sun is hoping that an innovative stack architecture
and a stripped-down pipeline design will add up to fast performance for picoJava
chips.

However, not everyone believes dedicated Java chips are necessary. After all,
university researchers have built specialized chips for languages such as Lisp or
Smalltalk only to discover that software implementations running on RISC chips
offered superior performance. Also some chip vendors say their existing RISC and
CISC architectures can handle Java quite well.

A description of picoJava finds its place here in the report because of it embracing
the stack architecture, it being a pipelined RISC processor and most importantly,

the architectural innovativeness of using a smart cache to offset memory latency.
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Chapter 3

Instruction Set Architecture of
PERL RISC

This chapter gives the instruction set of PERL RISC. We designed PERL RISC
to be a memory-to-memory architecture because of its relevance today. The increase
in bus bandwidth (both internal and external to the processor) available with current

day microprocessors also supports our design.

3.1 Imnstruction Types

PERL RISC is a memory-to-memory architecture as we have no general purpose
registers. The memory addresses of operands are themselves available as part of
the instructions. Figure 4 specifies the format of instructions. Appendix C gives
the instruction set of PERL RISC. All instructions in the instruction set have 3
operands except for unconditional jumps and traps whose format is also given in
the appendix. The number of operands for all classess of instructions is specified in
appendix C.

The instruction set is indeed one of the key features of computer architecture,
defining and describing the capabilities of any computing system, including micro-
processors [Tab94]. It constitutes a specific set of operations that a given system

can perform. Following types of instructions are supported:
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e Integer arithmetic and logical instructions.
e Shift and rotate instructions.

e Control transfer instructions.

e Floating point instructions.

We don’t have data movement instructions (as they can be emulated using integer
arithmetic) and Load/Store instructions as it is a memory-to-memory architecture.
Further each instruction can be data typed making it possible to convert from one

data type to another at the time of implicit memory load/store.

3.2 Addressing Modes

In this section, we look at the addressing modes—how architectures specify the
address of an object they will access—supported by PERL RISC architecture. Any
RISC machine supports only a minimum number of addressing modes—about 4. We
have strictly struck to this RISC philosophy of fewer addressing modes keeping in
mind decoding complexity which will have a telling effect on pipeline design. PERL
RISC supports the following addressing modes:

1. Base Addressing. This mode is primarily useful for accessing the local variables
on the stack. First four memory locations (addresses 1 ...4) are used to
represent base addresses. In the instruction encoding, 2 bit are allocated for
each of the three operands to indicate which location is used as the base
address. The compiler for C [Kum97] on this machine, however uses only the

first 2 locations, one for stack pointer (SP) and another for frame pointer (FP).

2. Direct Addressing. In this case, the instruction itself has the address of the
operand. This is taken as the Effective Address of the operand.

3. Memory Indirect. This is basically used for accessing array elements.

4. Immediate. In this case the value of the operand is part of the instruction.

24



5. PC Relative. Jump addresses can be either absolute addresses or PC relative.
The compiler may generate a PC relative jump by specifying the offset in the
instruction. PC is added to this value to get the destination address.

Table 1 lists the addressing modes supported. If addressing mode indicator bits

[ Addressing Mode | Value (2 bits) * |

Base/PC relative' 0
Direct 1
Memory Indirect 2
Immediate 3

Table 1: Addressing Modes for Operands

are 00, it indicates base addressing mode for arithmetic and logical instructions, but

for jumps, it indicates PC relative target address.

3.3 Data Types

PERL RISC is a 64-bit architecture as we support 64-bit data types. Table 2
gives the list of data types supported. Out of the 3 bits, the least significant two

| Data Type value(3 bits) * |
unsigned bytel(8 bits)

unsigned byte2(16 bits)

unsigned byte4(32 bits)

unsigned byte8(64 bits)

signed bytel(8 bits) /float4(Single Precision FP)
signed byte2(16 bits)/float8(Double Precision FP)
signed byte4(32 bits)

signed byte8(64 bits)

glo| oy | w = O

Table 2: Data Types of Operands

1This is the value used while encoding instructions



bits represent the data type. The most significant bit of the 3 bits indicates whether
the arithmetic is signed or unsigned. If it is 1, it is signed arithmetic. If data type
value is 4 or 5, the opcode indicates whether the arithmetic is integer or floating

point.

3.4 Instruction Format

All the instructions are encoded in the fixed width of 128 bits. Figure 4 gives the
format of each instruction. The first 32 bits of the instruction are used to specify the
addressing modes and data type of the operands apart from the opcode. It should
be clear from the encoding

OPC - Dest Srcl Src2

32 bits 32 bits 32 bits 32 bits

128 bits

Figure 4: Instruction Format

mechanism that there is no restriction on the type of addressing mode for
operands i.e, each of the operands can be specified using any of the 4 addressing
modes. If the destination addressing mode is immediate, the result is not stored,

even though the computation is carried out.

Unused |BS2BS1| BD| DS2| DS1 | DTD |AS2AS] AD| Opcode

OPC (32 bits)
Figure 5: Instruction Encoding

The next three 32-bit words are used to indicate the address of each of the three
operands. Figure 5 gives the instruction encoding mechanism. The format specifies

the addressing mode and data type indicator bits.



The meaning of each field in Figure 5 is explained below:

e Opcode. These 6 bits refer to the opcode of the instruction. Refer Appendix B
for a list of instruction mnemonics and their opcodes. We have allocated only
6 bits for opcode because we have only those instructions which are absolutely
essential. For example, most machines provide a NEG (negate) instruction
which gives the 1’s compliment. This instruction is not necessary because the

same effect can be obtained using an XOR instruction.

e AD, AS1 and AS2. Each of these fields is 2 bits. These indicate the address-
ing mode of the three operands, namely, destination, source 1 and source 2

respectively. The assembler encodes the addressing mode bits for operands

based on the values given in Table 1.

e DTD, DS1, DS2. Each of these fields is 3 bits. These indicate the data type
of the three operands, namely, destination, source 1 and source 2 respectively.
The assembler encodes the date type for operands based on the values given in
Table 2. As the C compiler [Kum97] generates code where all the operands of
an instruction are of same type, the simulator uses DTD bits as the data type
of all the operands, but this flexibility is provided for compilers which can use
it effectively. One advantage of providing this flexibility, of course, is that it
obviates the need for data type conversion instructions which are provided by

most machines to perform implicit type conversion.

e BD, BS1 and BS2. If the addressing mode of an operand is based, the cor-
responding base address is given by these fields. These fields are looked at
during decoding only if the addressing mode indicator bits specify using base

addressing mode.

e Unused. These bits are not used in the current implementation.
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Chapter 4

Pipeline Design for PERL RISC

As explained in chapter 2, pipelining is an implementation technique that exploits
parallelism among the instructions in a sequential instruction stream. It has the
substantial advantage that, unlike some speedup techniques, it is transparent to the

programmer. This chapter gives the design of PERL RISC pipeline.

4.1 Pipelining—Issues

The throughput of an instruction pipeline is determined by how often an instruction
exits the pipeline. Because the pipe stages are hooked together, all the stages must
be ready to proceed at the same time. Time required for moving an instruction one
step down the pipeline is a machine cycle. Because all stages proceed at the same
time, length of the machine cycle is determined by the time required for the slowest
pipe stage. A designer’s goal is to balance the length of the pipeline stage. If stages
are perfectly balanced, then the time per instruction on the pipelined machine—

assuming ideal conditions (i.e., no stalls)— is equal to

Time per instruction on non-pipelined machine

Number of pipe stages

Under these conditions, the speedup from pipelining equals the number of pipe
stages (i.e., if there are n stages then the speedup is n). Usually, however, the

stages will not be perfectly balanced; furthermore, pipelining does involve some
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overhead. Thus, the time per instruction on the pipelined machine will not have its
minimuin possible, though it can be close (within 10%) [PH94].

Pipelining yields a reduction in the average execution time per instruction. This
reduction can be obtained by decreasing the clock cycle time of the pipelined machine
or by decreasing the number of clock cycles per instruction, or by both.

4.2 The Different Pipeline Stages

PERL RISC pipeline has the following stages:

Fetch: This stage puts the instruction at the tail of the instruction queue.

Decode: This stage reads instruction from the head of the instruction queue, de-

codes them and places them in the instruction window of the integer or the
floating point operational unit.

Issue: checks for availability of operands. When they are available, the instruction
is ready for issue.

Write Back: the instruction’s completed result is written in the reorder buffer.

Commit: the instruction’s result is written to the memory location. The commit

point is the time when the instruction modifies the processor state.

Figure 6 shows the different pipeline stages. Even though we have highlighted
only 5 stages above, the figure shows additional stages where the cache is accessed.
We have a seven stage pipeline if the accesses to the cache are included. In fact,
before the IF stage, there is an access to the Instruction cache which is not shown
in the figure.

4.2.1 Fetch Stage

This stage fetches instructions from the I-cache and places them in the instruction

queue. The presence of branches creates two major problems that disrupt the fetch
mechanism:
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Figure 6: Processor Pipeline

1. Conditional branches hinder fetch as the PC value for the next instruction to

be fetched depends upon the branch outcome which is not known during fetch.
execution;

2. Instructions are no longer aligned along cache boundaries due to branch. This
is because if the branch instruction is present in the middle of a cache block
those instructions to the right side may not be valid. Similarly targets of
branches may not be aligned to the left hand side of a block.

The first problem is resolved by branch prediction: instead of stalling when it
recognizes branches, the fetch process performs branch prediction based on the past
behavior of the branch recorded in the branch target buffer. The branch prediction
mechanism used is described in chapter 5. The second problem is not modeled in
the simulator; instructions are fetched based on their own PCs and thus we do not,
consider them as parts of fixed sized cache blocks which could contain non valid
instructions. As a consequence instruction alignment is ensured.

The branch prediction mechanism used helps in reducing the negative effect of
conditional branch on the fetch process. Direct jumps are handled easily as their.
targets can be calculated at fetch stage.
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However the presence of indirect jumps create more problems. The fetch process
has to stall when it encounters an indirect jump because the value of the jump loca-
tion may not have been computed. As the fetch stage is stalled, the stall propagates
through the pipeline thereby increasing the branch penalty.

4.2.2 Decode Stage

This stage takes instructions from the instruction queue, decodes and dispatches
them to their appropriate operational unit, integer or floating point. The maximum
number of instructions decoded per clock cycle is a simulation parameter. Each
decoded instruction is assigned an entry in the reorder buffer of its operational unit
where it is placed along with its destination location identifier.

The entry is assigned in program order (which is the decode order) at the tail
of the reorder buffer which acts as a FIFO queue. The point is that all instructions
go to the reorder buffer, even those who don’t need to take part in the renaming
process.

As a consequence dummy entries which do not produce any results for the mem-
ory location can be created in the reorder buffer; this simplifies the processing of
branches as we will see in chapter 5.

Once a reorder buffer entry is created for an instruction, it enters the enters the
central instruction window of its operational unit from which it gets issued. To check
for data dependencies, values of the instruction’s operands should also be placed in
the window entry. To do so, the operand address is searched for in the reorder
buffer. If it is available there, but is not valid (i.e., it has not been computed), the
corresponding reorder buffer entry number is taken in place of the operand value. If
the operand is available in the reorder buffer and is valid then the computed value
can be taken. Provision is made to get the most recent value entry in the reorder
buffer. Finally, if this operand is not found in any entry of the reorder buffer, then
its value is read from memory.

Actually, the decode stage is implemented as two different stages in the pipeline
because of the indirect and based addressing modes which PERL RISC supports.
The two stages are:
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1. Address Computation. This stage actually computes the effective address of
operands. Operands which are accessed using immediate mode and direct
mode are ignored because their effective address is already available. For
indirect and based addressing, we calculate the effective address. As address
forwarding is also done, we search the reorder buffers in this stage also.

2. Operand Access. At this stage, the address of operands are available. This

is used to read the operand value. We search the reorder buffers and do the
appropriate action specified in the above paragraph.

4.2.3 Execute Stage

The issue logic selects the instructions which have operands and functional units
available by examining the instruction window. When two instructions conflict for
the same functional unit, the selection is made based on the age of the instruction
in the window: the oldest one has the highest priority. The implementation of
the central window as a compressible stack helps in prioritizing instructions. As
instructions can enter only at the top, the older instruction lies at the bottom of the
stack.

Latency of various functional units is simulated: when a long latency operation
is issued, its result is calculated at once and placed in the reorder buffer entry of the
instruction with a ready field indicating at which clock cycle the result is available.
If a branch prediction happens to be incorrect, the instructions following the branch
in both reorders buffers are flushed. In this case, the branch target buffer is updated

with new prediction information.

4.2.4 'Write Back Stage

This stage identifies the reorder buffer entries whose results have been computed
and validates them. These results are also forwarded to other instructions which

need them. The Write Back logic also frees the corresponding functional unit.

i
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4.2.5 Result Commit Stage

The results that have been validated during the Write Back stage are sent to the
corresponding memory locations during this stage. The writes are processed in order
from the head to the tail of the reorder buffer until an instruction is found with an
incomplete result. The committed instructions are removed from the reorder buffer.

Invalidated instructions that follow a wrong branch prediction are simply discarded.

4.3 Pipeline Hazards

Even though, pipelining offers obvious advantages, it comes with its own problems.
In chapter 2 we mentioned some of the hazards that create problems for out-of-order
execution. This section explores them in more detail. There are situations, called
hazards, that prevent the next instruction in the instruction stream from executing
during its designated clock cycle. Hazards lower the performance from the ideal one

gained by pipelining. There are three classes of hazards:

1. Structural hazards arise from resource conflicts when the hardware cannot

support all possible combinations of instructions in simultaneous overlapped
execution.

2. Data hazards arise when an instruction depends on the result of a previous
instruction in a way that is exposed by overlapping of instructions in the
pipeline.

3. Control hazards arise from the pipelining of branches and other instructions
that change the PC.

4.3.1 Structural Hazard

The most common instances of structural hazards arise when some functional unit
is not fully pipelined. Then a sequence of all instructions which use this functional
unit cannot be initiated sequentially in the pipeline. Another common way that

structural hazards appear is when some resource has not been duplicated enough
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to allow all combinations of instructions in the pipeline to execute. For example, a
machine may have only one register-file write port, but under certain circumstances,

the pipeline might want to perform two writes in a clock cycle.

4.3.2 Data Hazards

Data hazards occur when the pipeline changes the order of accesses to operands
so that the order differs from the order seen by sequentially executing instructions
on an unpipelined machine. A simple hardware technique called forwarding (also
called bypassing and sometimes short-circuiting) can be used to minimize stalls due
to data hazards. In this technique, ALU result from the Execute stage is always fed
back to the ALU input latches. If the forwarding hardware detects that the previous
ALU operation has written the register corresponding to a source for the current
ALU operation, control logic selects the forwarded result as the ALU input rather
than the value read from the register file.

Data hazards may be classified as one of three types, depending on the order of
read and write accesses in the instructions. By convention, the hazards are named
by the ordering in the program that must be preserved by the pipeline. Consider

two instructions ¢ and j, with 7 occurring before j. The possible data hazards are:

e RAW (read after write)—;j tries to read a source before i writes it, so j in-
correctly gets the old value. This is the most common type of hazard and the

kind we used forwarding to overcome in SuperSIM.

e WAR (write after read)— j tries to write a destination before it is read by
i, so 1 incorrectly gets the new value. This hazard occurs when there are
some instructions that write results early in the instruction pipeline, and other
instructions that read a source late in the pipeline. For example, autoincrement
addressing can create a WAR hazard. This cannot happen in PERL RISC
pipeline as all reads are early (in ID stage) and all writes are late (in WB

stage) and also because instructions commit in order.

o WAW (write after write)—j tries to write an operand before it is written

by i. The writes end up being performed in the wrong order, leaving the

34



value written by i rather than the value written by j in the destination. This
hazard is present in our pipeline as we allow instructions to proceed even when

a previous instruction is stalled. The proper ordering is ensured by the use of

reorder buffers, which is explained in detail in chapter 5.

e RAR (read after read)— this case is not really a hazard.

4.3.3 Control Hazards

Control hazards can cause a greater performance loss for our pipeline than do data
hazards. When a branch is executed, it may or may not change the PC to something
other than its current value plus 4. The method we adopted to reduce the branch
penalty is to use a 2-bit branch prediction scheme which is also explained in detail

in chapter 5.
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Chapter 5
Simulator Implementation

Simulation techniques are widely used for the design of a new processor. A trace
driven simulation is fast but does not execute the target program which cannot
cnsure the correctness of the simulation. An instruction set simulation is a technique
for simulating the exact behavior of the processor by simulating each instruction and
getting the performance metrics.

5.1 SuperSIM-The Superscalar simulator
for PERL RISC

SuperSIM, the superscalar simulator for PERL RISC is an instruction set simu-

lator. We took this “execution” oriented approach for different reasons:

e Correctness of Results

We wanted the results of simulated assembly instructions to be effectively
computed and the contents of the different hardware elements to be recorded
on a cycle basis. Correctness of simulated program output was very important
for us to assess the proper coordination of all the different simulated hardware

components.

e Multi-Platform Usage
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We wanted a simulator executing assembly programs generated by a cross
compiler, so that it be portable to different machines.

e Availability

The availability of simulators for existing architectures. DLX [PH94] is an
hypothetical architecture and lot of work has been done on it. DLXsim [LB92]
and SuperDLX [Mou93] are two such simulators. We made extensive use
of these program segments wherever necessary and also made the necessary

modifications so that the new simulator which we had written simulates PERL
RISC architecture.

SuperSIM implements the most sophisticated superscalar instruction process-
ing policy: multiple out-of-order issue, multiple out-of-order completion. To achieve
this policy efficient hardware mechanisms were selected for simulation, such as, a
central window buffering instructions for issue, and a reorder buffer, supporting reg-

ister renaming. Other features, like branch prediction were built around them to go

even further in performance.

5.2 Underlying Data Structures

The simulator needs to model two types of components in the processor:

e Memory and the functional units; these are the fundamental components of
the processor.

e Other machine components like the branch target buffer (BTB), the instruc-
tion queue, the instruction windows and reorder buffers. We collectively call
them the superscalar hardware elements. This grouping is not quite appro-
priate because using a branch target buffer along with an instruction queue
is a strategy which is also used in non-superscalar processors to improve the
efficiency of fetch mechanism

The parameters for configuring the machine are specified in the machine config-
uration file which is read by the simulator before the simulation starts. An example

machine configuration file and its contents are given in appendix B.
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5.2.1 Instruction Tables

The opcode valuces in the instructionvset are used as indices to the opcode description
table of the simulator. Using this table we can obtain characteristics of an instruction
at each pipe stage and identify its behavior. This table reflects all the choices that

were made concerning the processing of each instruction in the superscalar processor:

e choices on the functional unit corresponding to an instruction. By default, the
instructions are sent to the operational unit that correspond to their result
type.

e choices on the handling of special instructions such as traps.

The reason behind using this table is to gather instructions into groups that have
the same characteristics.

5.2.2 Basic Processor Elements

8 Memory

Memory is implemented as an array. Accessing the memory locations is through the
use of indices (which are the memory location addresses, addresses of data and PCs
of instructions). The memory size is a parameter.

The memory locations, (wordPtr), can contain either a value or an instruction,
and consist of the following fields:

e value: content of the memory location (for data accesses).

e opcode: opcode (for instructions), number which permits to access the opcode
description table; it is initialized to NOP.

e srcl, src2, dest: The 32 bit addresses of operands.

Even though a memory location should have only “value”, it is modeled as an
array of structures consisting of the above fields for simulation purposes. As an
example, the opcode, which is actually encoded in “value” field of the first word of

an instruction, is copied to the opcode field of the structure when the instruction is
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first encountered as it is used repeatedly during every stage. It is used in the fetch
stage for branch prediction and in the decode stage to find the functional unit to

which it belongs. Without a separate field, bit manipulation should be done every
time it is needed.
g Functional Units
Two tables represent the functional units in the Simulator:
e intUnitsMAXUNITS]: integer functional units
o fpUnits{MAXUNITS]: floating-point functional units

The entries in this table correspond to a functional unit type which has the
following configurable parameters:

e latency: This corresponds to the number of cycles that elapse between issue
and write back of an instruction. This is used to fill the ready field of an in-
struction in the reorder buffer, when this instruction is issued; it is a parameter
which can be specified in the machine configuration file.

e num units: number of available instances of that type of functional unit; it is
also parameterized.

e num used: number of functional units of that type which are currently used;

this permits the resolution of structural hazards.

Each functional unit type information is indexed by its identifier. Functional unit
identifiers are associated to instruction types in the opcode description table, so that
the instruction issue logic knows where to send instructions at issue time.

3.2.3 Superscalar Elements

This section details the mechanisms used to support the superscalar aspects of su-
perSIM.



p Branch Target Buffer

SuperSIM uses the 2-bit branch prediction scheme which is widely used by current
day superscalar microprocessors. This mechanism helps the fetch stage to predict
the outcome of a conditional branch based on its past behaviour and thus fetch from
the predicted path.

SuperSIM uses a table to model the Branch Target Buffer. The index to the
table is the lower order bits of branch addresses (i.e., address modulo size of the
table). The fetch stage uses the contents of this table to predict a branch. The size

of BTB can be specified in the machine configuration file. Each entry in the BTB
contains the following fields:

e address: the address of the branch instruction for which the entry has corre-

sponds to. This field is necessary to resolve conflicts between branches that
have the same lower order bits.

e predictState: a two bit number giving the next predicted outcome for the
branch. This number can take four values:

— STRONGLY TAKEN(11), TAKEN (10)— which make the branch be
predicted taken.

— NOT TAKEN(01), STRONGLY NOT TAKEN (00)— which make the
branch be predicted not taken.

When a branch instruction is encountered for the first time, the prediction is set
to be STRONGLY_TAKEN. It is then updated every time the effective outcome of
the branch is determined after executing the branch; taking the branch increments
the prediction number, not taking it causes it to be decremented. We do not wrap
around when the field reaches its maximum or minimum. Figure 7 shows the finite
sate machine for the two bit prediction scheme. As we can see, a two bit scheme

minimizes oscillation that could occur in a one bit scheme.



Not taken

Not taken

Not taken

Not taken

Figure 7: State Diagram for a 2-bit Branch Prediction Scheme

8 Instruction Fetch Queue

The Instruction Queue is a FIFO queue where the fetch stage adds a fixed number
of elements at the top, and the decode stage takes a fixed number of elements from
the bottom. SuperSIM uses a doubly linked list to model the instruction queue
because one stage adds entries to it and another stage deletes it. A doubly linked
list is used because, for deletion, we need to know the address of the previous entry.
Each item contains the following information:

e wordPtr: memory word fetched.

e address: instruction address (pc).



e prediction: prediction information for branches: TAKEN, NOT TAKEN. This

is the prediction made by the fetch process when it encounters a branch. It is
used only for branch instructions.

The maximum number of elements in the instruction queue (numEntries) is a user
set parameter from the machine configuration file.

p Instruction Windows

There are two instances of these; i Window for integer instructions and fp Window for
floating point instructions. Their sizes can be configured by specifying them in the
machine configuration file. In the processor, instruction windows are compressible
stacks that keep the instructions in order. Decoded instructions are placed at the
top of the stack, but they can be issued from any position in the stack. Keeping
instructions in order makes it simpler to prioritize among ready instructions, as
older instructions appear at the bottom of the stack. But this requires hardware
mechanisms to allocate and compress the window. The simulator simply models
this mechanisms with linked lists.

The entries in the instruction window each correspond to an instruction that has
been decoded, and contains the following fields:

opCode: the decoded opcode of the instruction.
e class: the instruction class corresponding to the type of the functional unit.

e unit: the functional unit where the operation must take place; it is determined
by the decode function (using the opcode description table).

e reorderEntry: the reorder buffer entry the instruction is assigned to. This link
between the operation in the window and its corresponding entry in the reorder

buffer must be kept for the issue logic to process the instruction properly.

e prediction: the prediction information (TAKEN, NOT_TAKEN) for branches.

firstOperand: the information on the first operand:



— value—which contains the operand value or the reorder buffer entry from
where the value will be forwarded when computed.

— type—which contains the type of the operand (integer, floating point
double, floating point single).

— valid—which indicates if the operand is ready to be used.

e secondOperand:the information on the second operand if it exists (same struc-

ture as for the firstoperand).

g Reorder Buffers

Two instances of reorder buffers, iReorderBuffer and fpReorderBuffer, are modelled

by the simulator. Their respective sizes are parameters which can be configured.

Each of them is a circular queue, with a head position (bottom of the queue) and tail

(top of the queue). New decoded instructions are assigned an entry at the tail of the

queues, and they commit in order at the head. With this mechanism, instruction

entries do not have to move towards the bottom or top of the queue: only the head

and tail move, and thus the buffers’ entry numbers can be used to rename the result

memory locations.

Each entry in the reorder buffer consists of the following:

dest: the result memory location. It is used when an operand is searched in the
reorder buffer and it indicates which location to write to when the instruction
commits at the head of the buffer.

opCode: the opcode of the instruction.

class: the instruction class which the instruction belongs to; the result commit

and write back logics use this field to know what to do with the instruction.

result[2]: the computed result of the instruction (two numbers for double

floating points). Some instructions, like conditional jumps, produce no result.

valid: the validity bit of the result, which indicates if the operation has been

completed, and thus if the result is available.



e ready: it indicates at what clock cycle the computation of the result is going
to complete.

e insCount: the dynamic instruction count calculated when the instruction was
fetched.

e flush: the flushbit. It is set to 1 when the instruction follows a wrong branch
prediction.

A list is maintained, which links reorder entries of currently executing operation.
This list of pending operations (listOfExec) makes the work of the write back stage

easier and faster.



Chapter 6

Simulation Results

This chapter compares the performance of PERL RISC with other popular RISC
architectures of today. We have compared the results generated by SuperSIM
with that of DLX [PH94| and that of DEC Alpha 21064. DLX [PH94] is a hypo-
thetical RISC architecture which can be taken as a representative of all current day
RISC machines. The results for DLX are obtained using SuperDLX [Mou93]. The
performance metrics for DEC Alpha 21064 are obtained using the ATOM [Dig93]
performance analysis tool which is part of the DEC OSF software kit. Atom is built
using OM, a link-time code modification system. OM takes as input a collection
of object files and 1iBraries that make up a complete program, builds a symbolic
intermediate representation, applies instrumentation and optimizations to the in-
termediate representation, and finally outputs an executable. The instrumentation
routines can be customized for one’s needs. But we used the routines which are
provided with the ATOM distribution. There are tools to get cache performance,
pipe stalls, instruction profiling etc. As we used Atom on our DEC 21064, which is
2-issue superscalar, we configured SuperSIM and SuperDLX to simulate instruc-
tions in 2-issue mode. The results for 4-issue are available only for PERL RISC
and DLX.

One important thing that should be noted is that the performance metrics are
provided for same programs when compiler optimizations were used and when they
are not. The reason being that the C compilers for SuperDLX and DEC Alpha
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21064 did optimizations whereas the C compiler [Kum97] for PERL RISC did not
do any optimizations. The performance of RISC machines is greatly improved by
compiler optimizations as indicated in the tables. Some of the optimizations done by
these compilers are making address computation loop independent, loop unrolling

etc. For medium sized benchmark programs, hand optimization was done for PERL

RISC. The metrics that are presented in the tables are:
e IC: The dynamic instruction count.
o CC: Total number of clock cycles required to execute the program.

e PS: Number of cycles the pipe is stalled.

6.1 Benchmark Programs

The programs which were simulated are:

1. Permutation. This is a heavily recursive program which, given an array of n
integers, prints all n! permutations. This program is chosen mainly to identify
how PERL RISC performs vis-a-vis other RISC machines because we have
all dependencies mentioned in appendix E which cause fetch stalls. Because
the program is heavily recursive, fetch stalls due to case 1 and 2 occur more
often. Table 3 provides the performance metrics for the 3 architectures. The

results are for n equal to 5.

Architecture with compiler opt. | without compiler opt.

IC CC | PS I1C CC PS
PERL RISC (2 issue) | 8947 | 11506 | 6593 | 12761 | 15773 | 9006
PERL RISC (4 issue) | 8947 | 10078 | 7202 | 12761 | 14012 | 10030

DLX (2 issue) 15423 | 8709 | 894 | 18115 | 10226 950
DLX (4 issue) 16310 | 10514 | 5757 | 20083 | 11816 | 5742
Alpha 21064 9698 | 9572 | 2069 | 9683 | 12274 | 4681

Table 3: Comparison for Permutation Benchmark
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Even though DLX and 21064 represent the same class of RISC architectures,
there is a disparity in the number of instructions executed. We found out the
reason to be the code generated by the compilers. The C compiler for DLX
generates a “nop” instruction after every load, store and branch instruction.
So, the delay slot is not used in most of the cases. ‘This accounts for the extra
instructions executed by DLX. Another interesting point to note is that the
stall cycles increases for both PERL RISC and DLX if we configure the
simulators to emulate a 4-issue machine. This is understandable because as
more instructions are issued in one cycle, the dependencies between instruc-
tions within the window increases (as a larger window is looked at), hence
there are more stalls. But the percentage increase is more for DLX, which is
not able to issue more instructions in this example. The reason is that the
“jal” (jump and link) instruction, which is used for procedure calls, results in
a stall of 4 cycles whenever it is executed. As the program is heavily recursive,
this instruction is repeatedly executed for the recursive procedure call. In fact,
a 4-issue DLX performs worse than a 2-issue machine. The reason for this was
found to be the size of the load and store buffers (i.e., the number of entries
that can be present here). The performance of 4-issue DLX improved when
the size of these buffers were doubled. For obtaining the above statistics, we
configured them to hold 5 entries. When this was increased to 10, the number
of clock cycles taken by the simulator to simulate the optimized code came
down from 10514 to 8536 indicating that Load/Store overhead is the main
bottleneck there. The loads and stores were at the entry and exit of procedure
calls when the registers are saved and restored. But in case of PERL RISC,
even though the stall cycles increases, The 4-issue version performs better than
the 2-issue version for the same machine configuration, as it takes fewer clock

cycles. This shows that PERL RISC gives more scope for multi-issue.

. Matrix Multiplication. This is another program which we simulated using
SuperSIM. Table 4 gives a summary of the metrics obtained. The size of all
the matrices were 32x32. Again, in this example, we see a great disparity in

the number of instructions executed for DLX and 21064. The reason here is
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Architecture with compiler opt. without compiler opt.

1C CC PS IC CcC PS

PERL RISC (2-issue) | 357421 | 347804 | 168084 | 1083234 | 588299 | 46138

PERL RISC (4-issue) | 357660 | 278007 | 171190 | 1087656 | 515402 | 241694

DLX (2-issue) 688341 | 345275 1104 | 1487115 | 744664 1106
DLX (4-issue) 704448 | 344197 1120 | 1503391 | 743068 1118
Alpha 21064 459340 | 977566 | 656717 | 1082772 | 1535495 | 721258

“able 4: Comparison for Matrix Multiplication Benchmark

because of the “s8addq” instruction in Alpha which performs scaled addition.
s8addq s_regl,s_reg2/imm,d_reg

The above instruction computes the sum of two signed 64-bit values. This
instruction scales (multiplies) the contents of s_regl by 8 and then adds the
contents of s_reg2 or imm. The result is stored in dreg. Such a powerful
instruction is provided to access the elements of an array. The address of
element a;, for example can be calculated within a loop by this single instruc-
tion, whereas in DLX and PERL RISC, we need one add and one multiply
instruction. As the matrix multiplication program accesses the elements of
two-dimensional arrays, this instruction in Alpha is very useful. This example
shows that PERL RISC performs better than the other two machines and

that it scales well with increase in superscalar issue.

_ Time table scheduler. Given a list of courses and preference for timing for
allotting slots to the course and given a set of class rooms, this program uses
a heuristic approach to get the best optimized output. This program was
also used as one of the benchmarks. As the assembly code generated for
this program is big (more than 3000 lines of code) manual optimization could
not be done for PERL RISC. So table 5 presents the results only for the

unoptimized code for all three machines.

From table 5 it should be clear than except for instruction count, we ob-

tain expected results. The reason for instruction count disparity is again the
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Architecture without compiler opt.

IC CC PS
PERL RISC (2-issue) | 4065151 | 3687273 | 1566469
PERL RISC (4-issue) | 4271332 | 3168330 | 1908607

DLX (2-issue) 7172897 | 3172762 | 176408
DLX (4-issue) 7545677 | 3672534 | 1293016
Alpha 21064 3060510 | 2885116 | 469223

Table 5: Comparison for Time-table Scheduler Benchmark

“s4addq” and “s8addq” instructions.

From the above statistics, it should be clear that PERL RISC performs better
or at least as good as existing RISC machines. As the C compiler [Kum97] for
PERL RISC, is a port of gcc it does not generate code for this memory-to-memory
architecture based machine. The reason being that the gcc compiler is optimized
for machines with many registers. It was initially difficult to port it to PERL
RISC which had no registers. For more information on how it was done refer
[Kum97]. For the results obtained for DLX and Alpha 21064, it should be clear
that compiler optimizations give a great improvement in performance. It will be
interesting to write a custom compiler for PERL RISC and then compare the

results of simulating that code with those of existing machines.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

From the results obtained, it is clear that PERL RISC performs better or at least
as good as existing processors. To get the best performance of this we should of
course compare results generated by a compiler which is custom built for PERL
RISC. This should provide better performance as many features provided by PERL
RISC, like different data types for operands of same instruction, additional locations

for use in based addressing mode etc., are not fully utilized by RLcc [Kum97].

7.2 Future Directions

SuperSIM was developed within the limited scope of a Master’s thesis, so there is
certainly a lot of room for improvement and modification of the simulator. The goal
of this section is to give some ideas for future enhancements of the simulator. This

list of proposals is not intended to be exhaustive.

7.2.1 Improving or adding superscalar features

The implemented branch prediction mechanism permits to start execution of one
conditional path of a branch. It will be interesting to experiment branch speculation

on both paths of the branch and compare the two branch processing techniques.
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This type of branch speculation is certainly very complex to implement; buffering
of instructions has to be provided to support execution of two conditional streams
of instructions at a time, which implies some kind of replication of the reorder

buffer and instruction window. Duplication of hardware elements has to stay within

realistic limits.

7.2.2 Improving the simulator interface and usability

The on-line interface allows the user to interact with the simulator through the use
of some display and execution commands. There are others interesting commands

that could be added to give to the simulator a full debugging capability:

e commands to inspect memory locations. The commands would return values
in format specified by the user (decimal, hexadecimal binary, floating point
double, floating point simple, character, string ...). Getting a memory lo-
cation’s value in a context of a superscalar machine could mean getting the

values of the current instances of this location in the processor.

e commands to modify memory locations. The user should be able to store
numbers, like integers or floating point. Again, this may not work the same
way as in a scalar simulator: storing a value in a location can affect all the
current semantic instances of that location present in the machine (this is

because we support operand renaming).

e commands to inspect machine characteristics. The user could display param-
eters from the machine configuration file, and also changing values, like the
current size of a window/buffer, the maximum size of a window/buffer so

far ...
e commands to modify machine configuration parameters.

e providing an X-window interface. This could make the simulator more inter-
active. Also, the simulator can be used as part of the Computer Architecture

course to study the working of a superscalar machine.
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¢ adding new traps. C library functions are compiled by RLcc [Kum97] into

traps. Also, as there are not enough traps(e.g., scanf, fscanf), a lot of bench-

marks could not be simulated.

e adapting RLcc [Kum97] to the simulator. RLcc generates code for a non-
superscalar machine. It would be interesting to study what compiler optimiza-

tions the superscalar machine could exploit and implement them in RLcc.
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Appendix A
User Manual

NAME
SuperSIM - Simulator for assembly programs of our Register-less RISC

architecture.

SYNOPSIS

supersim

OPTIONS
[-f filename ] [-bp] [-ms#]

-f filename machine description file specifying user parameters.
-bp Turn on the branch prediction scheme.

-ms#  Specify the size of the memory.

DESCRIPTION
SuperSIM is an interactive program that loads assembly programs and
simulates the operation of a register-less RISC computer on those programs.
Once started, SuperSIM loops forever reading commands from standard

input and printing results on standard output.

NUMBERS
Whenever SuperSIM reads a number, it will accept the number in either
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decimal notation, hexadecimal notation if the first two characters of the

number are 0x (e.g. Ox3actf), or octal notation if the first character is 0

(e.g. 0342).

ADDRESS EXPRESSIONS

Many of SuperSIM’s commands take as input an expression identifying a
register or memory location. Symbolic expressions may be used to specify
memory addresses. The simplest form of such an expression is a number,
which is interpreted as a memory address. More generally, address ex-
pressions may consist of numbers, symbols (which must be defined in the
assembly files currently loaded), the operators *, /, %, +, —, <<, >>,
&, |, and T (which have the same meanings and precedences as in C), and

parentheses for grouping.

COMMANDS

SuperSIM provides the following application-specific commands:

asn file file file ...
Read each of the given files. Treat them as assembly language
files for our machine, and load memory as indicated in the files.
Code (text) is normally loaded starting at address 0x100, but the
codeStart variable may be used to set a different starting address.
Data is normally loaded starting at address 0x8000, but a different
starting address may be specified in the dataStart variable. The
return value is either an empty string or an error message describing
problems in reading the files. A list of directives that the loader

understands is in a later section of this manual.

go [address]
Start simulating the machine. If address is given, execution starts
at that memory address. Otherwise, it continues from wherever
it left off previously. This command does not complete until sim-
ulated execution stops. The return value is an information string

about why execution stopped and the current state of the machine.
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help [command]

When followed by a command name, it gives information on the

command and how to use it. Otherwise, it gives all the available

commands.

print [queue] [window] [reorder] [unit] [all] [help]

This command displays the contents of the machine elements spec-
ified by the options at the clock cycle when simulation last stopped.

Any combination of options may be selected. The options and the

result of choosing them are as follows:

queue display the instruction queue in a table with the following

column header:

#: entry number.

icount: dynamic instruction count.
address: instruction address in memory.
opcode: the instruction opcode.

rsl: source operand 1.

rs2: source operand 2.

rd: register destination.

window print both instruction windows: integer and floatingpoint

with the following column headers:

#: instruction entry number in the window.
opcode: instruction opcode.
address: instruction address (Program Counter).

rb entry: reorder buffer entry number of the instruc-

tion

operandl: contains either the value of the firstoperand
or a reorder buffer entry from where the value will be

taken when computed.
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okl: the validity field of the firstoperand: it contains
0 if the operand refers to a reorder buffer entry and 1

if the operand value is available.

typl: type of the firstoperand (INT: integer, FPS:
floating point simple, FPD: floatingpoint double IMM:
immediate). The type of the operand indicates from

which reorder buffer the operand value can be taken.

operand2: second operand, just like the firstoperand,

it can contain either a value or a reorder buffer entry.
ok2: validity field of the second operand.
typ2: type of the second operand (same as typel).

pred: only for branch instructions, indicates what pre-
diction has been made at fetch stage (PT: predict taken
PNT: predict not taken).

’

reorder display the integer and the foatingpoint reorder buffer,

in tables with the following column headers:

#: instruction entry number.

icount.

opcode.

loc: memory location address for the result.

unit: functional unit where the instruction executes.

result: instruction result when produced (some instruc-

tions such as branches produce no result).
ok: validity of the result.

ready: indicates at what clock cycle the computation

of the result will be over.

fish: the flush bit; it is set to 1 when the instruction

follows a wrong branch prediction. In that case, when
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the instruction arrives at the head of the reorder buffer,

it is discarded.

unit  show the latency, number, and current usage of the func-

tional units.

help print help information on how to interpret the displayed
data, for any of the above machine elements. The machine
components for which information is requested must be
passed as arguments to the commands. If none of the

components is specified, information is provided for all of
them.

reset
This command resets the superscalar machine, though keeping the
parameters specified by the machine configuration file. The permits
to run different simulations without quitting the simulator. After

resetting the machine, the .s files will have to be reloaded using the

asm command.

stats [-p#] [-g] [-x] [-i] [-b] [-f filename] [-a]

This command will dump various statistics collected during simu-
lation. Various options are provided to take those statistics that

are necessary and also to redirect the output to a file.

-f filename Redirects the output to a file. The file name is

specified one space after f.

-p Set the minimum value for percentages (percentages lower
than this value will not be output). The value is specified

just after p. It can be an integer or a real number.

-g General information display.

e Number of fetched, decoded and issued instructions.

¢ Number of committed instructions, writes to memory

locations and useless writes. A useless write is a write
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to a location that could have been avoided because the
writing instruction is followed in the reorder buffer by

another instruction writing to the same location.
o Per cycle rates of fetch, decode, issue and commit.

e Branch information: correct and wrong prediction (if

branch prediction is performed).
o Fetch stalls.

¢ Information on renaming

— Renamed Operands: a table gives the distribution

of the number of operands renames per clock cycle.

— Operands searching information: a table gives the
distribution of the number
of operands searched (in the reorder buffer) per clock

cycle.

-i Instruction process information:

e Instruction issue distribution table per clock cycle.

o Instruction delay distribution table: the distribution
of the number of cycles that instructions have to wait

in the central window before issue.
e Instruction commit distribution table, per clock cycle.

-b Occupancy rate tables of the instruction windows and the

reorder buffers, throughout simulation.

-a Display all the above statistics. This is also the default

when no options are given.

step [ address ]

If no address is given, the step command executes a single instruc-
tion, continuing from wherever execution previously stopped. If

address is given, then the program counter is changed to point to
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address, and a single instruction is executed from there. In either
case, the return value is an information string about the state of

the machine after the single instruction has been executed.

trace on/off filename

This command is used to write the memory access trace to a file.
This is later fed to the cache simulator to identify the performance
of different cache configurations, like multi-ported caches, inter-
leaved cache banks etc. When trace is turned on, the type of mem-
ory access, address accessed and clock cycle are written to the file.

The trace can also be turned off selectively.

quit

Exit the simulator.

ASSEMBLY FILE FORMAT

The assembler built into SuperSIM, invoked using the asm command, ac-
cepts standard format assembly language programs. The file is expected to

contain lines of the following form:

o Labels are defined by a group of non-blank characters starting with
either a letter, an underscore, or a dollar sign, and followed immedi-
ately by a colon. They are associated with the next address to which
code in the file will be stored. Labels can be accessed anywhere else
within that file, and in files loaded after that if the label is declared as
.global (see below).

o Comments are started with a semicolon, and continue to the end of

the line.

e Constants can be entered either with or without a preceding number
sign.

e Immediate values can be specified with a # preceding the value.

e The address of a variable can be accessed as a immediate value by

specifying the symbol before the variable.
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¢ The format of instructions and their operands are as shown in chapter

3.

While the assembler is processing an assembly file, the data and instructions
it assembles are placed in memory based on either a text (code) or data
pointer. Which pointer is used is selected not by the type of information,
but by whether the most recent directive was .data or .text. The program

initially loads into the text segment.

The assembler supports several directives which affect how it loads the
machine’s memory. These should be entered in the place where you would
normally place the instruction and its arguments. The directives currently

supported by SuperSIM are:

.align n Cause the next data/code loaded to be at the next higher address
with the lower n bits zeroed (the next closest address greater than

or equal to the current address that is a multiple of 2771).

.ascii “stringl”, “string?”, ...
Store the strings listed on the line in memory as a list of characters.

The strings are not terminated by a 0 byte.

.ascliz “stringl”, “string2”, ...
Similar to .ascii, except each string is followed by a 0 byte (like C

strings).

Dbyte “bytel”, “byte2”, ...

Store the bytes listed on the line sequentially in memory.

.byte2 wordl, word2, ...

Store the 16-bit values listed on the line sequentially in memory.

.byted wordl, word?, ...

Store the 32-bit values listed on the line sequentially in memory.

.byte8 wordl, word?2, ...

Store the 64-bit values listed on the line sequentially in memory.
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.data [address]

Cause the following code and data to be stored in the data area.
If an address was supplied, the data will be loaded starting at that
address, otherwise, the last value for the data pointer will be used.
If we were just reading code based on the text (code) pointer, store

that address so that we can continue from there later (on a .text

directive).

float8 numberl, number?, ...

Store the numbers listed on the line sequentially in memory as

double precision floating point numbers.

float4 numberl, number?, ...
Store the numbers listed on the line sequentially in memory as

single precision floating point numbers.

.global label
Make the label available for reference by code found in files loaded
after this file.

.space stze
Move the current storage pointer forward size bytes (to leave some

empty space in memory).

text [address]
Cause the following code and data to be stored in the text (code)
area. If an address was supplied, the data will be loaded starting
at that address, otherwise, the last value for the text pointer will
be used. If we were just reading data based on the data pointer,
store that address so that we can continue from there later (on a

.data directive).

VARIABLES
SuperSIM uses or sets the following Tcl variables:

codeStart
If this variable exists, it indicates where to start loading code in
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asm commands.

dataStart
If this variable exists, it indicates where to start loading data in

asm commands.

insCount
SuperSIM uses this variable to keep a running count of the total

number of instructions that have been simulated so far.
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Appendix B

An Example Machine Description
File

Instructions_process_per_cycle

fetch 2

commit 2
Memory

size 262144

latency 1

accesses 4

Reorder_Buffer_sizes
integer 20
float 20

Instruction_Window_sizes
integer 20

float 20

Instruction_Queue_size 20
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Branch_Buffer_size 111

Integer_Functional_Units

alu
number 4
latency
shift
number 2
latency 1
branch
number 1
latency 1
mult
number 2
latency 5
div
number 2
latency 10

Floating_Point_Units

add
number 4

latency 2



mult

div

branch

number

latency

number

latency

number

latency

10
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Appendix C

Instruction Set

Opcode | Value
ADD 1
ADDF 2
AND 3
DIV 4
DIVF 3
J 6
MUL 7
MULF 8
OR 9
SLL 10
SRA 11
SRL 12
SUB 13
SUBF 14
XOR 15
TRAP 16
JEQ 17
JNE 18
JGT 19
JLT 20
JGE 21
JLE 22

Table 6: Opcode Table

All the instructions except unconditional jumps and traps have 3 operands. The
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format of 3 operand instructions is:
OPC DEST, SRC1, SRC2

where OPC specifies the data type, addressing modes of operand in addition to
opcode which can be any of the entries in table 6. DEST, SRC1 and SRC2 specify
the operands in any of the 4 addressing modes specified in table 1.

The format of Unconditional jumps is as follows:
J DEST, SRC1

where DEST specifies the address to which control has to be transferred. As our
machine implements procedure calls also using jump instructions, the current PC
value should be saved somewhere. The place where PC should be saved is specified
by SRC1.

Traps have only one operand. They just have a trap number which is specified
by DEST. As for conditional jumps, there are 3 operands. The DEST field specifies
the address to which control has to shift if condition is evaluated to be true. The
condition to be evaluated is the comparison of SRC1 and SRC2.
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Appendix D

An Example Assembly Program

D.1 A C benchmark program

/* This is a sample DAXPY benchmark program which we have written.

* It does the following operation:

* Y=AX+Y

* where X and Y are vectors (of double precision numbers) of size ’n’.
*’A’ is a double precision number which is multiplied with X[i]’s

* and the result is added to Y[i] and the final result is stored back
* in Y[i].

*/
#include <stdio.h>
#define a 3.5000000000000
#tdefine n 100

double x[n], y[nl;
main()
¢
int 1i;
for(i=0; i < m; i++)

y[il = a*x[i] + y[il;
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D.2 PERL RISC Assembly code

This section gives the assembly code generated by the C compiler [Kum97] for
PERL RISC for the above mentioned C program. It should be clear that the C
compiler compiles the system calls and library functions into traps and the sim-
ulator handles them by using the corresponding UNIX system call or the library
function in the trap handler. “fp” and “sp” are 2 global variables which the simu-
lator automatically recognizes as the frame pointer and the stack pointer which are
used as base addresses as explained in chapter 3. The assembler directives .global,
float8, ... are explained in appendix A. Many other traps which are generated
by the compiler are removed as they are not relevant to this example.

First, the stack pointer is loaded with the highest address of the simulator’s
memory, indicated by the memSize variable. The symbol # is used to indicate
an immediate value. If the address of a variable is needed, it can be obtained by
preceding the variable with a @ sign. Both these are encoded as immediate values
but two different symbols are used for the assembler to understand the context
in which the variable occurs and for better understanding. Direct addressing is
used if a variable is just specified as one of the operands. Indirect addressing is
specified by enclosing the operand within parentheses as in (t1). Base addressing
is specified by specifying the offset and giving the base address within parenthesis
as in -16(fp). And finally, anything after a semicolon(;) on a line is ignored by the
assembler and is assumed to be a comment. The format and number of operand
of different types of instructions is given in appendix C. The mnemonic indicates
the type of the operands. As explained in chapter 3, even though provision is
available for representing the data type of each operand in the instruction, the C
compiler [Kum97] doesn’t use them. It encodes the data type in the mnemonic

itself. For example, addb4 means all the operands are 32-bit integers.

.global _exit
.global t1
.global t2
.global t3
.global t4
.global t5
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.global
.global
.global
.global
.global
.global
.global
.global
.global

LCO:

.global

_main:

L5:

t6
t7
t8
t9
t10
t11
t12
t13
t14

.align 2

.float8 3.50000000000000000000
.align 4

_main

addb4 sp,¥memSize, #0

;5 Save the old frame pointer
addb4 -4(sp),fp,#0

;; Establish new frame pointer
addb4 fp,#0,sp

;5 Adjust Stack Pointer

addb4 sp,sp,#-52

;; Save Temporary locacations
addb4 t3,#0,#0

addb4 t5,#0,0Q_y

addb4 t4,#0,0_x

addf8 -28(fp),#0,LCO

sllb4 t2,t3,#3
addb4 t1,t5,t2
addb4 t2,t4,t2
addb4 t6,#0,t2
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mulf8 -20(fp),-28(£fp), (t6)
addb4 t6,#0,t1
addf8 (t6),-20(fp), (t6)
addb4 t3,t3,#1
jleb4 L5,t3,#99
;; Restore the saved Temporary locations
;; Restore stack pointer
addb4 sp,#0,fp
; 5 Restore frame pointer
addb4 fp,-4(£fp),#0
;3 HALT
j _exit,#0
_exit:
trap #0
j -8(sp),#0
_printf:
trap #5
j -8(sp),#0
-Strcmp:
trap #20
j -8(sp),#0
_strncmp:
trap #21
j -8(sp),#0
-strcasecmp:
_stricmp:
_strcmpi:
trap #22
j -8(sp),#0
_strncasecnmp:
_strnicmp:
trap #23
j -8(sp),#0
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_strcpy:

trap #24

j -8(sp),#0
-strncpy:

trap #25

j -8(sp),#0
-strlen:

trap #26

j -8(sp),#0
tl: .space 4
t2: .space 4
t3: .Space 4
t4: .space 4
t5: .space 4
t6: .space 4
t7: .space 4
t8: .space 4
t9: .space 4
t10: .space 4
tit: .space 4
t12: .space 4
t13: .space 4
t14: .Space 4
.global _y
_y: .space 800
.global _x
_X: .space 800
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Appendix E

An Example of Statistical Output

This corresponds to the statistics generated by the simulator after executing a matrix
multiplication program. The machine configuration file given in appendix B was

used. The size of the 3 matrices was 32x32 each.

E.1 Performance Metrics

Number of cycles: 428573

Instructions fetched 583567

Instructions decoded 580242 (99.43), of total fetched)
Instructions issued 578014 (99.05%, of total fetched)

-> integers 578014 (100.00% of total issued)

-> floating points 0 ( 0.00% of total issued)
Instructions committed 578010 (99.05Y%, of total fetched)

-> integers 578010 (100.00% of total committed)
-> floating points -0 ( 0.00% of total committed)
-> writes to memory 507153 (87.74), of total committed)

73



Per Cycle Rates

-> fetch 1.36 instructions/cycle
-> decode 1.35 instructions/cycle
-> issue 1.35 instructions/cycle
-> commit 1.35 instructions/cycle

Number of branches: 70857, taken 34883 (49.23%), untaken 35974 (50.77%)

Correct predictions 69761 (98.45% of total branches)

-> taken 34883 (100.00% of total taken branches)
-> not taken 34878 (96.95% of not taken branches)
Wrong predictions

-> lost cycles 72 ( 0.02% of total cycles)

-> flushed instructions 2231 ( 0.38% of total fetched)
Collisions in the BTB 0 ( 0.00% of total branches)

Fetch Stalls: 120916 (28.21% of total cycle count)
Fetch stalls due to full buffers: 0 (0.00% of total stalls)
Decode Stalls: 122012 (28.47) of total cycle count)

**0perands Renaming (flow/anti-dependencies)

Renamed operands: 25.96% of total operands

l I BOTH UNITS |  INTEGER UNIT | FLOATING POINT UNITI
| NUM | total [ oo total | % | total | oo
| === | —=m——m - | -—==---- | === | -—==-=-- |=======- |-======- I
| o] 159058 | 37.11% | 159058 | 37.11% | ol 0.00% |
| 1] 136297 | 31.80% | 136297 | 31.80% | 01 0.00% |
I 2| 84065 | 19.62Y | 84065 | 19.62% | 01 0.00% |
| 3| 49153 | 11.47% | 49153 | 11.47% | 0|l 0.00% |

("NUM": number of operands renamed ;'total": total number of clock

cycles; "%": percentage of clock cycles)
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* From the above table, it is clear that 2 operands were renamed in
each of the 84065 cycles and all these were of type integer. Same

inference is valid for all the entries.

**0Operands Searching Information

——— — — v ———————— —— —— ———— T — —— " (o~ —— —

I | BOTH UNITS |  INTEGER UNIT |FLOATING POINT UNIT|
| NUM | total | % total | % | total I hol
| -——-- | —==—m—m— e [======== | | === | === | ~=-———- |
Il o | 122012 | 28.47% | 122012 | 28.47% | 0| 0.00%l
I 1] 11 0.00% | 11 0.00% | 01 0.00%I
| 3| 32879 | 7.67h | 32879 | 7.67% | 01 0.00%]
| 61 273681 | 63.86% | 273681 | 63.86) | 01 0.00%l

("NUM": number of operands searched;''total": total number of clock
cycles; "h" : percentage of clock cycles)

* The above table gives statistics regarding searching the reorder
buffers. It, for example, says that 3 operands were searched in the
integer reorder buffers during each of the 32879 cycles (which is 7.67%
of total cycle count).

*xInstruction Issue Distribution

l I BOTH UNITS |  INTEGER UNIT |FLOATING POINT UNIT |
| NUM | total | ool total | % | total | hoo |
| === | === |-====--- | === R e | === I
I o | 90339 | 21.08% | 90339 | 21.08% | 0| 0.00% |
R 163001 | 38.03% | 163001 | 38.03% | 01| 0.00% |
I 21 111709 | 26.07% | 111709 | 26.07% | 0 0.00% |
| 3| 62501 | 14.58} | 62501 | 14.58Y | 0| 0.00% I
| 4 | 1023 | 0.24% | 1023 | 0.24% | 01 0.00% I

("NUM": number of instructions issued:"total": total number of clock

cycles; "I" : percentage of clock cycles
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* The above statistics corresponds to the number of instructions issued
in a cycle. It can be inferred that 3 instructions were issued in each

of the 62051 cycles from the integer instruction window.

**Issue Delay Distribution

e - —— ——— —— —— — T — ———————————— T —— - ——— " ————— " - o

I I BOTH UNITS |  INTEGER UNIT |FLOATING POINT UNIT|
| NUM | total | ool total | h | total I % |
|-=--= e |-==-==-- | === | === | === | -—=====- l
1] 36971 | 6.40% | 36971 | 6.40% | 01l 0.00% |
I 2 345421 | 59.76) | 345421 | 59.76% | 01 0.00% |
| 31 146470 | 25.34% | 146470 | 25.34), | 01 0.00% |
Il 4| 31745 | 5.49% | 31745 | 5.49% | 0l 0.00% |
| 5| 1023 | 0.18% | 1023 | 0.18% | 01 0.00% |
| 6| 15361 | 2.66% | 15361 | 2.66% | 01l o0.00% |
| 7 1023 | 0.18% | 1023 | 0.18% | 01 o0.00% |

[— mmmm e 1-3 54D A e 1 =4 lmmmmm e [P I
("NUM": number of clock cycles;'"total": total number of instructions;

"%'": percentage of issued instructions)
* The Delay distribution table gives information about instructions which
were placed in the instruction windows but not issued due to may be non-

availability of operands, structural hazard etc.

**Instruction Commit Distribution

I | BOTH UNITS |  INTEGER UNIT | FLOATING POINT UNIT|
| NUM | total l hoo | total l o total | hol
|----- | === |-=====-- | === | —~====-= | == | -—~—- |
| 11 39060 | 9.11% | 39060 | 9.11% | 0 | 0.00%]
I 2 269475 | 62.88% | 269475 | 62.88Y | 01 0.00%l

b omemm R R lmmmmmm e e R R R !

("NUM": number of instructions;"total": total number of clock cycles;

"%": percentage of clock cycles)
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**0ccupancy of the Integer Buffers

REORDER BUFFER |

I
| %0CC |  total cc | %ee | total cc | Y%ecc |
[===——= B |-~=-===-- [-==—mmm—m e | == l
| + 0% | 87200 | 20.35% | 1035 |  0.24% |
[ +10% | 106809 | 24.92% | 2200 |  0.51% |
| +20% | 217157 | 50.67% | 99514 | 23.22% |
| +30% | 17407 | 4.06% | 77987 | 18.20% |
| +40% | 01l 0.00% | 74778 | 17.45Y |
| +50% | ol 0.00% | 90116 | 21.03% |
| +60% | 01l 0.00% | 32768 | .65% |
| +70% | ol 0.00% | 32768 | .65% |
| +80% | o1l 0.00% | 17407 | .06% |

E.2 Fetch Stalls

The simulator gives various metrics which are explained in the last section. Of these,

the number of fetch stalls are also output. Fetch is stalled only in the following cases:

1. During the entry point to a function. Thisis because, the “sp” value is changed
to create a new frame and the temporaries used during this procedure call are

stored in this frame. We have commands like the following:

; ;Establish new frame pointer
addb4 fp, #0, sp

; ;Adjust stack pointer

addb4 sp, sp, #-24

; ;5ave temporary locations
addb4 0(sp), t1, #0

addb4 4(sp), t2, #0
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As the destination address of the third and fourth addition instructions are
not known till the second add is computed, fetch is stalled after second add
instruction. Note that fetch is not always stalled at the entry point of every
function. It is stalled only if it is absolutely necessary. Such code appears

usually at the entry point of function calls.

. During exit from a function. Note that, procedure calls are handled by un-
conditional jumps. This jump actually saves the return address in the stack.

At exit from function calls, we encounter instructions like:

; ;Restore stack pointer
addb4 sp, #0, fp

; ;Restore frame pointer
addb4 fp, -4(fp), #0

; ;Return

j —8(SP): #0

The jump instruction restores the PC value so that execution returns to the
callee and fetch proceeds from that address. But we do not know what should
be loaded into PC till the stack pointer is restored. Thus the fetch is stalled.

. Due to indirection.

addb4 t1, t2, t1
addb4 (t1), #0, t3
addb4 t2, t2, #1

In the above case also fetch is stalled after the second add instruction. This
is because, the destination address of second add is known only after the first
add is executed and all instruction that follow the second add stall because
we do not know into which location the second instruction writes. If we allow
the following instruction to proceed, it may result in a hazard which goes
undetected and end up producing wrong results. This is similar to case 1 but

there the culprit is based addressing and here it is indirect addressing.

addb4 t1, t2, #0
addb4 t3, (t1), #24
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Note that there is a dependence due to indirection here also, but fetch is not
stalled because we handle this dependence by address forwarding and this
doesn’t introduce any hazard with subsequent instructions. So the subsequent

instructions are also fetched and issued.

As all cases of stalls are clearly defined, the compiler can do some optimizations

(like instruction reordering and loop unrolling) to improve performance by reducing
stalls.
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