K Reliable Network Boot Service for PCs

by
BHARTENDU SINHA

ogre
199¢
M

E&” DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

| lﬂDlAH INSTITUTE OF TECHNOLOGY, KANPUR
RE L July, 199




A Reliable Network Boot Service for PCs

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

fLovAY " H.
[ B H
B T R I T
——— A
by

Bhartendu Sinha

to the
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

July 1996



= 4 SEP 1996
@N{lﬁ:t. LIBRARY

@l Al

CSE- 1996 - M-<IN - REL



AL

gl

CERTIFICATE

This is to certify that the work contained in the thesis entitled
A Reliable Network Boot Service for PCs by Bhartendu Sinha has been carried out
under my supervision and that this work has not been submitted elsewhere for a

degree.

\%M |

Dr. Rajat Moona,
Associate Professor,
Department of Computer Science & Engineering,

Indian Institute of Technology, Kanpur.



Abstract

Remote booting of a PC| using its network interface instead of local disk drives,
offers significant advantages to PC users, to system administrators, and also to
system designers. The basis of remote boot is the use of an extension ROM, called

a boot ROM, the availability of boot servers on the network, and the existence of a
boot image.

In this thesis, existing implementations of PC remote boot have been studied,
the remote bhoot procedure has been largely redesigned, and the new design has
been fully implemented. The goal has been to make a reliable and robust remote
boot product. In particular, the emphasis has been on overcoming existing bugs,
providing boot management flexibility, using a simpler and more standard set of
protocols, optimizing client code, data & stack size, transparent handling of any PC
disk configuration, providing multiple ethernet card support, ensuring portability
across servers, handling security issues and giving improved diagnostics. Equal
emphasis has been put on keeping a high standard of code quality, and on providing

complete documentation of the product from all perspectives.



Acknowledgements

I am grateful to my thesis supervisor, Dr. Rajat Moona, who allowed me to
choose a problemm which 1 felt would be challenging and add substantially to my
knowledge. Thanks to him, I now have an understanding of the implementation of
networking protocols from the ethernet layer to the application layer, as well as a
much improved knowledge of DOS and BIOS internals. When I would be unable to
diagnose a problem, Dr. Moona always had a solution, an insight, or some guidelines

to offer. More importantly, he set for ine an example of technical excellence which

I hope to follow.

I would like to thank the staff of the CSE lab, who were always patient with my
demands on their time, and had enough trust in me to allow me to meddle with the
system configuration & hardware - both patience and trust being rare qualities in

system administrators.

I must thank my friends who tolerated my long absences from their midst, and

provided me with much needed entertainment when I would be with them.

And also, I have to thank God for providing inspiration when all else seemed to

have failed.



Contents

1 Introduction 1
LT Motivation . . 0 00 00 oL 1
1.2 The Concept of Remote Boot. .. o 00 oo ... 2

1.2.1  Advantagesto Users .. . .0 o oL oL ... 3
1.2.2  Advantages to System Administrators . . . . ... ... ... 3
1.2.3  Advantages to System Designers . . . . . 0. o0 4
1.3 Design Goals and Implementation Features . . . . . . .. .. ... .. 4
1.4 Overviewof the Thesis . . .. . .. 0. 0. o0 o0 0., 6

2 The Existing Frammework 7
2.1 Remote Boot of UNIX Machines . . . .00 00000000000 7
2.2 Remote Boot of Personal Computers . . . . ... 000000 . 8

2.2.1  Startup Procedure by BIOS . .. ... ... o000 8
2.2.2  Loading of PC Operating System . . .. . .. ..o .00 9
2.2.3 Networking and Authentication . .. ... .. ... .. .. 10
2.3 Commercial Background . . . .. .. ... . o 0oL 10
2.4 Thesis by Ravichandar . . . . .. ... ... ... o000 11
2.5 ‘Thesis by Manjunath . . . . ... o o oo o 11
2.5.1 Boot ROM Program Execution . ... .. ... ... ..... 11
2.5.2 Disk Interrupt Handler . . . . . ... ... o 0oL 12
2.53 ProtocolsUsed . . ... ... . .. ... .. ..o 12
254 ServersUsed. . . . .. ... .. ... .. 13
255 DataBasesUsed . . ... ... ... ... . ... ....... 14



2.6

3.1
3.2

3.3

3.4

3.6

.......................... 14
2.5.7 Boothle Restrictions . . . . ... oo L. 15
Starting Point for the Thesis . . 0.0 00000 15

Design Issues 17
The Need fora New Design . . . . ... .. ... ... ... ..... 17
Design Limitations: Server . . . . . . L L 0L L L. 18
3.2.1 TCP/IP Supported Protocols . . . . ... ... ... ..... 18
Design Limitations: Client . . . . .. .. ... . ... .. ..., .. 18
3.3.1 Upper Limit on ROM Code Size . . . . ... ... ... ... 18
3.3.2 Standard Boot Interface .o 0 000000000 19
3.3.3 NoUsage of DOS Functions . .. .. ... .. ... .. .... 19
3.3.4  No Changes in PC other than Boot ROM . . ... ... ... 19
3.3.5  No Degradation in Performance . . . ... ... ... ..... 19
Design Specifications: Server . . . . o0 oL Lo oo 0oL, 20
3.4.1  Providing Boot Management Flexibility . . . . ... ... ... 20
3.4.2  Usage of Standard Services . . .. . .0 00000 20
3.4.3  Minimization of Non-Standard Services . . . . .. .. ... .. 20
344 Elimination of Non-Staudard Data Bases . . ... .. .. ... 21
3.4.5  Ensuring Portability Across Servers . . . . . . .. oL 21
3.4.6  Logging of PC Remote Boot Activities . . . . ... ... L. 21
Design Specifications: Client . .00 0000000000000 22
3.5.1  Usage of Low Weight Protocols: UDP ..o oo 00000 22
3.5.2  Optimization of Code, Data and Stack Size. . . . .. ... .. 22
3.5.3 ‘Transparent Handling of Disk Configurations . . . . . ... .. 22
3.5.4 Operating System Independence . . . . .. ... ... ... 23
3.5.5 Providing Multiple Ethernet Card Support . . . . .. ... .. 23
3.5.6 Handling of Security Issues . . . . ... ... ... ... ... 23
3.5.7 Providing Improved Diagnostics . . . . ... ... ....... 24
3.5.8 Provision for Testing without a Boot ROM . . . . . ... ... 24
Design Specifications: Software Quality . . . . . ... ......... 25
3.6.1 Producing High Quality Code . . . . . ... .......... 25



(411

3.6.2  Providing Complete Documentation . . . . .. . ... ... .. 25

3.7 Overview of the Implementation

..................... 25
Server Implementation Details 29
4.1 Usage of BOOTP Service . . . . . . . . .. . 29
+.1.1  History of Development . . . . . .. ... ... .. ... .. 30
L12 DetailsofUse .o 0000000000 30
413 bootptab File . .. . 00000 32
410 Advantagesof Use .. 00000 L 33
105 An Example Configuration File . . . . . . ... 0. ... .. 34
4.2 Single Authentication and Boot File Server . . . . . . . . . ... ... 36
4.3 PFnsuring Portability Across Servers . . . .. ... ..o oL L. 38
4.3.1 Usage of Platform Independent Data Types . . . .. ... .. 38
Client Implementation Details 39
5.0 Handling the BOOTP Information . . . .. 000000000 ... 39
5.2  Usage of UDP for Boot File Access .. . .. . ... ... ... .. 40
5.3 Optimizations of Code, Data and Stack Size . . . .. .. ... ... 41
5.3.1  Elimination of RARP, ARPand TCP . . . . . .. .. ... 41
5.3.2  Eflicient Global Variable Declarations . . . . ... .. ... .. 42
5.3.3  Bflicient Parameter and Local Variable Declarations . . . . . . 43
5.3.4  Merging of Similar Functions . . ... ..o 0000 43
5.3.5  Blhimination of Pseudo-Redundant Code 00 0000000 L 44
54  Transparency to PC Disk Configuration. .. . .. .. .. ... 0. 44
5.4.1  New Disk Interrupt Handler . . . .. . 0000000 45
5.4.2  Restoring Old Disk Interrupt Handler . .0 000 o000 46
5.4.3 RAMDrive Creation, ldentification and Use . . . .. .. ... 46
55 Rewriting DOS Functions . . .. ... ..o o o 47
5.6 Operating System Independence . . . . . .o oo 48
57 Bthernet Card Probes . . . . . . . . . . . oo 49
5.8 ne2000 Card Device Driver . . . .. . . . . oo oo 49
5.9 Ensuring Password Security . . ... ... oo 50

i



5.10

Improved Diagnostics and Error Handling . . . . .. ... ... ... 50

5.11 Terminate and Stay Resident Client Code . . . . . . ... ... ... 52
Software Quality Implementation Details 53
6.1 Guidelines for High Quality Code . . . . . . . ... ... ... .... 53
6.1.1  File and Function Headers . . . . . . . ... ... ... .. .. 54
6.1.2  Header File Partitioning . . . .. .. .. ... ......... 55
6.1.3  Macro, Typedef, Function and Variable Declarations . . . . . 56
6.1.4  Design Modularity: Coupling and Cohesion . . . . ... ... 58
6.1.5 Conditionals and Control Flow . . . ... .. ... ...... 58
6.1.6  Spacing, Line Wrap and Comments . . . . .. ... ... ... 59
6.2 Product Documentation . . . .. ... ... L L., 60
6.2.1 Documentation Provided . . . . . ... ..o 00000, 61
The Remote Boot File 62
7.1 Definition of the Remote Boot File . . . .. ..o 0000000 62
7.2 Restrictions on the Remote Boot File . . . . . .. . ... .. ... 63
7.2.1 FError Free Floppy . . . . . . o oo 0o oo 63
7.2.2  RAMDrive Creation, Identification and Use . . . . . . . ... 63
7.2.3  Restoring Old Disk Interrupt Handler . . . . 00000 000 63
7.3 An Example Boot File .. 0o oo o 64
731 The Root Directory . . . o o o oo v oo i e o 64
732 configsys. . . . .. oo 65
7.3.3 command.COmM . . . . . . .. 65
734 autoexec.bat. . ... ... . ... .. oo 66
735 proceed.bat . . ... ..o oo 67
T.3.6 TeSet.BX€ . . . . v it e e e e e 67
7.3.7 Thedos Directory . . .. . . .o i 68
7.3.8 The xfs Directory . . . . . . . . . oo 68
7.3.9 The bin Directory . . . . . . oo 68
7.4 Utilities to Create Remote Boot Files . . . . . .. .. ... ... ... 69

v



8 Conclusions
8.1 Product Status . .. oL L
8.2 Modes of Operation . . . ... .. ... ...

R.3  Parameters of Performance

..........

8.4  Restrictions

..................

8.5 Posstble Future Fxtensions . . . . . . .. ..

A PC Remote Boot Installation Manual
A.1 Hardware and Software Requirements . . . .
A1 Hardware Requirements . .. . . L.
A.1.2 Software Requirements
A.2 Distribution Diskettes
A.2.1 Client and Server Software Floppy
A.2.2 Sample Boot Floppy

A.3 Server Installation

A.3.1 Preparation of Server Binaries . . . .

A.3.2 Setting up Server Configuration Files
A4 Client Installation . . .. o0 0000 0L
A4l Client Testing without a Boot ROM

............

.........

..............

..............

..............

..............

..............

..............

..............

--------------

..............

..............

..............

..............

..............

..............

A4.2 Preparation of ROM binaries . . . . .. .. ... 0oL,
Ad43 Fusinga Boot ROM . ... 0000000
A4.4 Installing a Boot ROMinaPC .. 0.0 o000
A.4.5 Updating Server Configuration Files . .. .. ... ..o
A5 Boot File Installation . . . . . . . ... oo o oo
A.5.1 Modifying the Boot Floppy for the Local Network . . . . . ..
A.5.2 Preparation of Boot File Utilities . . . .. .. ... .. ...
A.5.3 Using Boot File Creation Utilities . . . . . .. ... ... ..
A.5.4 Updating Server Configuration Files . . .. ... .......

References

70
70
71
71
73
74

76
7
77
78
79
79
80
81
81
82
84
84
86
86
89
90
91
91
93
94
95

98



Chapter 1

Introduction

1.1 Motivation

The concept of stand-alone computing is fast becoming redundant. A networking
interface is now accepted as an integral part of modern computing systems. This
is because networking allows distributed computing, using which the cost of a
computing facility can be significantly reduced by the sharing of resources. Such
sharing has only a marginal effect on the availability of resources to any one user.
Resource sharing has been successful for a variety of software services and hardware
1/O peripherals.

Personal Computers (PCs) are the most widely used computational platform.
In a distributed environment, PCs can share common file systems and no longer
need to store files locally. However, PCs have an intricate booting procedure design,
which is dependent on the existence of a local floppy disk or hard disk. If this
dependency on local disks for booting can be bypassed by booting over the network,
truly networked PCs can be be created.

Simply booting over the network is not sufficient. Equally important is to make
the remote boot of PCs fully transparent and reliable. Primarily, this means that
the response of the PCs during and after the remote boot is identical to the response
of the PCs during and after a local boot. It also means several other things, as are

discussed in this thesis.



Thus, the motivation of this thesis is to develop a remote boot product for PCs
which can be easily and reliably implemented on any set of PCs in a networked

environment, without affecting the behavior of the system in any adverse manner.

1.2 The Concept of Remote Boot

The process of bringing a computer system up into an operational state, after
powering it up, is called booting. The goal of booting is to initialize the hardware
components and then get a copy of the operating system into memory. Remote
booting of a computer is the booting of a computer using its network interface
instead of its local disks. The core technology behind this concept is to use an
extension ROM, called a boot ROM, which can be added to any computer’s network
interface card. A code in this ROM relies on the availability of specific servers on
the network, and the existence of a boot file, i.e. a binary image of a boot floppy.
While booting, BIOS transfers control to the program in the boot ROM, which
communicates with the servers to access the boot file over the network. Together,
they enable any PC to boot over the network, without requiring any changes other
than the addition of a boot ROM in the network interface card, the existence of
certain servers on the network, the creation of a boot file, and the management of
servers Lo allow a PC to access its boot file.

The routines in the boot ROM are quite complicated. They must support
networking protocols from the medinm access control (MAC) layer to the application
layer, they must not use any operating system calls - none being available during
the booting process, they must fit into a standard size boot ROM, they cannot be
tested using debuggers, ete. As such, the development of a hoot ROM is a very
different task from the development of general application or system software.

Given the complexity and criticality of the boot ROM design, it becomes essential
to follow high quality soltware engincering guidelines in its development. This
greatly reduces the cost of future maintenance and upgradation of the code.

Remote booting offers significant advantages to computer users, to system ad-

ministrators, and also to systeimn designers. All workstations have built in support



for remote boot (also referred to as network bootstrap). Therefore, the advantages

discussed below are relevant to PCs, which do not have any standard built-in support
for remote boot,

1.2.1 Advantages to Users

o With todays high speed networks, network file access is significantly faster
than floppy disk file access. Thus remote boot takes much less time than a

floppy disk boot - although a bit more time than a hard disk boot.

o Users no longer need to worry about the virus problems associated with the

multiple and unprotected usage of floppy disks for booting, thus saving them
time and money.

o The users no longer need to worry about version incompatibility between their
boot files and the files stored on the network drives. This job gets centralized

with the system administrator.

1.2.2 Advantages to System Administrators

e The system administrator’s job of providing a controlled computing environ-
ment becomes centralized and simple. Only the boot files and some configu-

ration files need to be changed to control the computing environment.

e With the users’ problems of virus attacks and software version incompatibility
centralized at one point, i.e. at the boot file, the system administrator will
reccive far fewer complaints and maintenance requests, thus saving time for

more important work.

o As a PC can boot and be operational even if its disk drives have malfunctioned,
such problems can be given a lower priority and handled in batches rather than
immediately. It should be noted that most PC boot failures are generally due
to bad drives or corrupted boot disks. Networks today arc highly reliable, and

thus remote boot usage can avoid most cases of boot failure.



» The user activity on PCs can be recorded, as when the PC is booting the user

can be forced to authenticate with a server. This discourages misuse of the
systems, and allows misuse to be traced.

1.2.3 Advantages to Systemm Designers

e The major advantage of remote boot is that it gives feasibilty to a diskless PC
configuration. With the present demands on the size, weight, power and cost

of PCs, eliminating disks by using remote boot can give system designers a
significant competitive advantage.

o Remote boot is a particularly attractive component in mobile PCs, which must

be low weight, low power, small and cheap. If the PC has no local disks, it

helps to meet the above requirements.

o Networks today provide highly a reliable 1/0 service, whereas disks (in partic-
ular floppy disks) are relatively error prone. As such, the reliability of remote
boot is better than that of a local disk boot. Therefore, systems using remote
boot will result in better availability of the system. This can be used to reduce

the cost of built-in redundancy and maintenance overheads.

1.3 Design Goals and Immplementation Features

The design goals and implementation features of this thesis are summarized here,

to serve as a quick reference. They are explained in detail from chapter 3 onwards.

e Server Design Goals: The server design goals are to use or develop UNIX
platform services (based on the TCP/IP protocol suite) to support remote
boot. Simple boot management flexibility is to be provided for the system
administrator. As far as possible, standard UNIX services are to be used, and
non-standard services should be eliminated or merged. The non-standard data
bases should be eliminated. The PCs’ user login activity should be recorded
in a secure and standard data base. Finally, all the server source code should

he fully portable.



o Server Implementation Features: The server implementation uses the
BOOTP protocol for access to boot initialization information. There is a
UDP protocol to provide boot file access. This UDP protocol also provides an

authentication service and it uses platform independent data types.

e Client Design Goals: The client design goals include adhering to a 16 kB
boot ROM size limit. The PC should provide an unchanged user interface
for booting (apart from the authentication). The client code must not use
operating system calls. No changes should be required in the PC other than
the addition of a boot ROM. The PC must maintain a reasonable boot perfor-
mance in terms of time. The protocols used should be light weight protocols.
The size of the code, data & stack in the ROM should be optimized. The
client code should be able to handle any PC disk configuration transparently.
The client code should also provide operating system independence. There
should be multiple ethernet card support. Sccurity issues should be properly
addressed. The diagnostics should be properly designed. In addition, it should

be possible to test the system without the creation of a boot ROM.

e Client Implementation Features: The client implementation uses BOOTP
to obtain the boot information and procecds on the basis of this information.
UDP is used for boot file access. Techniques for optimization of code, data
and stack size are implemented. ‘Transparency to the PC disk configuration
has been provided. The required DOS function calls have been rewritten.
Care has been taken to allow for for operating system independence. Ethernet
card probes have been implemented. An ne2000 card device driver has been
written and integrated with the system. Steps have been taken to ensure
password security. There is intelligent handling of errors and diagnostics. The
implementation of a Terminate and Stay Resident (TSR) version has also been

done.

e Software Code Quality: With a goal of producing high quality code, soft-

ware quality guidelines were followed. These guidelines take into account file

(13



and function headers, partitioning of header files, and macro, typedef, func-
tion & variable declarations. These guidelines also take into account design

modularity, conventions for conditionals and control flow, and conventions for

spacing, line wrap & comments.

¢ Software Documentation Quality: With a goal of producing high quality
documentation, a PC Remote Boot Installation Manual was written deal-

ing with all aspects of the installation of the remote boot system.

1.4 Overview of the Thesis

The rest of this thesis is organized as follows. In chapter 2 we explain the earlier
framework, which is also the basis for the current work. Chapter 3 explains the
design issues for the entire work. Chapters 4, 5 and 6 discuss the server, client and
software quality implementation. Chapter 7 is about the remote boot file. Chapter 8
sumimarizes the conclusions and results. Finally, there is a comprehensive appendix
providing guidelines for the implementation and installation of remote boot in a

typical setup. T'wo distribution diskettes are supplied as part of the appendix.



Chapter 2
The Existing Framework

This thesis is a continnation of earlier work done on remote booting. As such, it
is necessary to explain the earlier framework which was available. This framework
relates to technical aspects of the remote boot of UNIX machines and personal
computers, to the commercial background of the implementations that are available
in industry, and to the work already done in this arca at 11'T" Kanpur. In particular,
it describes in some detail the thesis work done by T. J. Manujnath under Dr. R.
Moona in 1994 [Man94], and some of the features of the remote boot system that
was developed. This chapter is largely a condensation of the material presented in
the above thesis by 1. J. Manjunath. ‘The chapter is lengthy as many of the key
concepts involved in remote boot are explained here.

Reading of this chapter is essential to understand the starting point for the work
done in this thesis, and also to understand the background and history of remote

boot in general.

2.1 Remote Boot of UNIX Machines

The booting of UNIX workstations uses a simple and cleanly designed procedure,
which makes it suitable for the implementation of remote boot. A special program,
called boot, is loaded into the main memory and started running. On diskless UNIX

workstations, this program resides in a ROM, but in general, it may be kept in any



storage device accessible to the workstation.

The boot program’s task is to load the executable image of the UNIX kernel
code. The UNIX kernel is a single program, whose binary image resides in a file,
usually called /unix or /vmunix. The kernel file is loaded using a standard file
transfer utility like TF'TP [SC81], and the file is read from the file system of a server
machine [Fin&4].

After loading the UNIX kernel, the boot program hands over control to the kernel
to complete the booting procedure.

Because of the simplicity of the booting procedure, diskless UNIX workstations

fitted with a boot ROM to support remote boot are commonly available in the
industry.

2.2 Remote Boot of Personal Computers

Unlike UNIX workstations, whose booting procedure makes implementing remote
boot relatively simple, personal computers have a complicated booting procedure.
This procedure involves multiple states, multiple operations and multiple files. There
is also no built-in support in PCs for booting from any media other than their local
disks. Due to these reasons, alinost all networked PCs today still boot from their
local disks.

To understand how to remote boot a PC, the earlier booting procedure must

first be understood. A sumunary is presented here.

2.2.1 Startup Procedure by BIOS

When a PC is switched on, the program execution starts at a well defined location
(OxFFFFO) in the ROM-BIOS. After the initial power on self test, hardware &
interrupt vector table initialization, the BIOS software checks for the existence
of extension ROMs, which contain routines to integrate extra services with the
standard ones.

Extension ROMs are identified at 2K blocks between addresses 0xC8000 and
0xE0000, with 0x55 and 0xAA in bytes 0 and 1, length in terms of 512 byte blocks in



byte 2 and the code’s starting address in byte 3. These ROMs are also checked for
the modulo 0x100 checksum over the entire extension ROM length (the checksum
should be zero). If these conditions are satisfied, the program in an extension ROM
is executed.

After this the bootstrap routine in the ROM is executed. This uses the BIOS
0x13 disk services interrupt handler (this handler is referred to as the BIOS 0x13 disk
interrupt handler in the rest of this document) to read the disk bootstrap routine
into memory at a predefined location. The disk bootstrap routine is contained in
the first sector (the boot sector) of the system startup disk. The bootstrap routine

in the ROM then transfers control to the disk bootstrap routine.

The above steps are common for any PC. Beyond this, the steps become specific
to the operating system being loaded.

2.2.2 Loading of PC Operating System

As DOS is the most commonly used operating system on PCs, the loading of DOS
will be explained. A more detailed description of the DOS loading sequence can
found in [Dunss).

Continuing from earlier, the disk bootstrap routine, now in memory, checks to
see if the disk contains a copy of MSDOS. It does this by reading the root directory
of the system startup disk and determining whether the first two files are io.sys and
msdos.sys (or ibmio.sys and ibmdos.com for PCDOS), in that order. If these two
system files are found, the disk bootstrap reads them into memory and executes
them to initialize the DOS kernel. In some implementations, the disk bootstrap
reads only io.sys into memory, and io.sys in turn loads the msdos.sys file. The
DOS kernel consists of resident device drivers for console, printer, block devices, etc.

When the DOS kerndl has been installed and all resident device drivers are
available, normal MSDOS file services are used to read the config.sys file. This
optional file can contain a variety of commands that enable the user to customize
the MSDOS environment. For instance the user can specify additional hardware
device drivers known as installable device drivers, the number of disk buffers, the

maximum number of files that can be open at one time, etc.



Then the DOS shell or command interpreter is loaded into the memory. The
default shell is command . com, and a different shell can be specified in the conf ig.sys
file. Finally, the system startup bateh file, autoexec.bat is executed to perform
additional initializations. The shell then displays a prompt and waits for the user

to enter a command. The process of MSDOS booting ends at this point.

2.2.3 Networking and Authentication

It should be noted that up to this point, there has been no provision for authentica-
tion of any sort, or for initialization of the network interface. In an open networked
environment, unauthenticated users on PCs running DOS put the security of the
system at risk, as DOS does not in any way distinguish between ordinary and privi-
leged users. As such, it is advisable to precede the loading of DOS by authentication.
The DOS kernel also does not support networking. Various networking software such
as PONFS and XFS can be run on top of DOS to make a distributed file system
available to the user of the PC. Prior to the installation of such software, an ethernet

adapter card device driver, (e.g. wd8003e.com or ne2000. com) must be installed on
the PC.

2.3 Commercial Background

Many commercially available UNIX implementations (SunOS, HP-UX, etc.) offer a
remote boot facility. The availability of UNIX source code has helped programmers
understand its bootstrap sequence. As such, the procedure used to boot disk-
less UNIX workstations is well known. For PCs, Novell Netware and some other
commercial vendors provide software for loading DOS remotely from a file server,
although little is known about its implementation. However, all the commercial

implementations use the common underlying features of a boot ROM and a file

server.

10



2.4 Thesis by Ravichandar

Two M. Tech theses in T Kanpur have dealt with the remote boot of PCs. The
tirst, by L. Ravichandar in 1992 [Ravy2] adapted the method used to boot diskless
UNIX workstations to remote boot PCs,

This was done by first copying the memory contents of a booted PC into a binary
file in the order in which they are present in memory. This file is stored on the disk
of a remote machine, which acts as the boot server. The boot ROM of the diskless
PO nses the File Transfer Protocol (F'TP) [PR85] to get this file from the server and
load the contents into its own corresponding memory locations. After this, the boot
ROM transfers control to DOS.

Such a booting procedure is very different from the step by step sequence of
initializations that are followed in the normal DOS boot sequence. As a result,
some machine state dependent initializations may be left incomplete, leaving the
system in an unstable state. These drawbacks are discussed by Ravichandar.

This approach has not been followed, and as such will not be discussed further.

2.5 Thesis by Manjunath

The second thesis on PC remote boot in I Kanpur, by T. J. Manjunath in 1994
[Man94], designed a booting procedure that conformed with the normal DOS boot

sequence, 'This approach was successfully implemented and is described below.

2.5.1 Boot ROM Program Execution

On finding a valid extension ROM at the boot ROM base address of the installed
network interface card, the BIOS module transfers control to the program in this
boot ROM. The boot ROM code copies itsell (using a small routine in its Program
Segment Prefix) to the top of the RAM, with 18 kB of space for code, data and stack,
and starts execution of the code. After this program has executed, it exits but is
left resident in the memory to allow BIOS access to the new 0x13 disk interrupt

handler service described helow.

11



2.5.2 Disk Interrupt Handler

The boot RONM contains a new BIOS 0x13 interrupt (disk interrupt) handler to
simulate A: diive over the network.  The original BIOS 0x13 interrupt vector
is stored, and the new iaterrupt handler is substituted in its place. This new
interrupt handler returns default values for all BIOS 0x13 interrupt functions,
except for functions 0x02 (disk sector read), 0x03 (disk sector write), and 0x08
(disk parameters). For functions 0x02 and 0x03, it maps the disk address, in terms
of track number, head number and sector number, to a file offset. It then accesses
the remote boot file at this offset using the protocols and servers described below.
For function 0x08, it returns hard coded values for a 1.2 MB floppy disk. It also
provides a non standard function 0x1b, which restores the original disk interrupt
handler vector in the interrupt vector table (after the new disk interrupt handler’s
work is finished), The new BIOS 0x13 disk interrupt handler is a central feature

around which this remote boot design was based.

2.5.3 Protocols Used

Several standard networking protocols were implemented to support communication
between the boot ROM and the UNIX servers.

o IEEE 802.3: The client code initializes the Western Digital wd8003e ethernet
adapter card at 1/O base address 0x280, and obtains the PC’s cthernet address
from the card. It sets up the card, which sends and receives standard 1EELE
802.3 ethernet packets. It operates in a polling mode rather than being

interrupt driven,

e Reverse Address Resolution Protocol: The PC now knows its ethernet
address, but does not know its internet address. This is a generic problem
with any machine having no non-volatile storage. So RARP [FMMT84] was
implemented to allow the PC to broadcast a RARP packet to resolve its
internet address. The reply sent by the RARP server is read by the PC to

determine its internet address.

12



e Address Resolution Protocol: ARP as described in [Plu82], was imple-
mented at the dlient side, both to send queries and o resolve mappings from

the internet address to the ethernet address. A small table of mappings was
maintained by ARP at the client side.

o Internet Protocol: An IP [Pos8la] implementation, was developed upon

which the higher layer TCP and UDP protocols could be supported.

e User Datagram Protocol: A UDP implementation [Pos80], was developed
to contact the UDP server which supplied the initial booting information.
Connectionless UDP was chosen over a connection oriented protocol because
the initial packet sent to the above server must be broadcast. This is because
the server's ethernet and internet addresses cannot be initially known by the
client. After receiving the UDDP reply, the internet addresses of the both the

booting information server and the boot file server are known.

e Transmission Control Protocol: A TCP implementation [Pos81b], using
the limited features supported by the public domain tinytcp software, was
chosen to implement the remote boot file access service. This was because
the reliability of data transfer was critical and the server’s internet address is

available at this stage. A full TCP implementation was not used because it
would not it in a 16 kB3 boot ROM.

2.5.4 Servers Used

Two servers were used, both non-standard UNIX servers.

¢ pchootp Server: This server was designed to supply the client ROM code
with the initial booting information, such as the boot file name, the PC-
NFS number and the boot file server internet address (its own address); and
also to do acceptance or refusal of password based authentication. It was
built on UDP and the requesting PC was identified in the pcbootp database,

pcbootinfo, by the P(’s cthernet address.

13



o pchoot Server: This server was designed to provide remote boot file access
to the chent ROM code Tt was built on 'TCP, and established a new TCP
connection with each booting PC. The client code sent a file offset and number
of bytes to this server, corresponding to the logical sector on the disk. The
client code would open a connection to this server and read the boot sector
from the remote boot file before exiting. The connection would finally be

closed by the new BIOS 0x13 disk interrupt handler function 0x1b.

2.5.5 Data Bases Used

Only one data base was used, but it was a non-standard data base.

o pchootinfo Database: This database was accessed by the UDP pcbootp
server. It would be indexed by the ethernet address of the requesting PC. It
stored the name of the boot file that the PC was to use for booting, and the
PCONFS number of the PC.

2.5.6 RAMDrive Usage

Another important requirement of this remote boot procedure is the use of a RAM-
Drive on which to duplicate the contents of the remote boot file. The reason is
intricate. ‘The ethernet adapter card device driver developed provides a skeletal
and non-standard network interface. So it must be replaced by a standard ethernet
adapter card device driver (e.g. wd8003e.con) before XFS or PCNFS is installed.
However, doing this will immediately disable the remote A: drive, after which the
files required to install XFS or PCNFS are no longer accessible from the remote
boot file being simulated on A: drive. Therefore, before the standard ethernet card
device driver is installed, all the files still required for booting must be made available
locally on the PC. But the PC may be diskless. So the only solution is to simulate
a disk in the RAM, into which the necessary files can be copied and later accessed.
This simulated disk is called a RAMDrive. A new RAMDrive creation utility, called
ramdisk, had been written, as DOS’s RAMDrive utility cannot later release its

memory.

14



2.5.7 Bootfile Restrictions

Thiee restiictions had been defined on the boot file,

RAMDrive Location: Some lines need to be specified in config. sys, which

ensured that the RAMDrive would be created with a predefined drive name,

so that it could be correctly accessed.

Call to ramdisk: A call to ramdisk must be present in the batch files run

during booting.  This call must be before access to the RAMDrive. The

ramd1sk program mnst be present on the boot file.

Call to reset: A call to reset must be present in the batch files run during
booting, and the reset utility must be on the boot file. The call to reset
must be made after duplicating the remote boot file on the RAMDrive. This
call must made be before the installation of the standard ethernet card device
driver, i.c. wd8003a.com. The reset utility calls the new BIOS 0x13 disk
interrupt handler function 0x1b, to restore the old BIOS 0x13 disk interrupt

handler.

2.6 Starting Point for the Thesis

‘The sections deseribed in this chapter deseribe the earlier framework and the starting

point for this thesis. The problems in the carlier implementation are summarized

below.

PCs’ disks not operational

No boot management flexibility
Cryptic, non-standard server database
File server unreliable

No password security

15



No spare ROM code space

o Hard coding of variable disk parameters

Support for single ethernet card & 1/0 base address

Code quality

Docnmentation guality

As a result of these problems, the earlier remote boot system could not be
successfully installed o T Kanpur's Computer Center.

Due to the number and complexity of the design and implementation changes
that had to be made, it was necessary to completely re-design PC remote boot,
rather than just modily the earlier code.  Nonetheless, the work done by T. J.

Manjunath serves as the starting point for the work done in this thesis.

16



Chapter 3
Design Issues

This chapter describes the design considerations that were taken into account to
develop a high quality remote boot product. Some of these were limitations which
were not to be violated under any case, and others were specifications which were
less stringent but equally important. A few of the limitations were carried over
from the carlier implementation, but have been explained here for clarity. The
remaining issues either deal with drawbacks in the earlier system or with more
general modifications, An overview of the implementation has been given at the
end of this chapter, and the implementation is dealt with in detail in the following
three chapters,

Understanding of the design issues is necessary for understanding the goals of
this thesis, and for understanding the complexity of the re-design problem handled.
The issues are separated into server and client design limitations, and server and
client design specifications. All issues are explained in terms of their background,

so that they are easier to understand.

3.1 The Need for a New Design

In chapter 2, the earlier implementation on which this thesis is based was explained.
This implementation resulted in a working remote boot system, but one which had

several minor and major limitations and problems in its usage. Not all of them

17



were apparent at the time this thesis was begun. Many were identified during the
design stage of the new remote boot product, and some were also identified during

the testing of the created product,

The complexity of the design issnes discussed below makes it clear why there

was a need for a new design for the remote boot system.

3.2 Design Limitations: Server

3.2.1 TCP/IP Supported Protocols

This limitation seems obvious, as most commonly developed networking applications
are based on the TCP/IP protocol suite, However, it it should be noted that there
are networking and transport layer protocols in use, e.g. SNA, DECnet, etc., which
are not based on TCP/IP. As such, this server limitation means that the remote boot

system developed is hmited in use to networks which provide support for TCP/IP.

3.3 Design Limitations: Client

3.3.1 Upper Limit on ROM Code Size

ROM BIOS has provision to support extension ROMs up to 128 kB in size (i.e. 256
blocks, each of 512 bytes). However, standard network interface cards only support
limited boot ROMs of various sizes (like 8 kB, 16 kB or 32 kB), as this has been
found suflicient for boot ROM applications. If several extension ROMs are being
used, they will compete for address space in the memory [Gill94]. Therefore the
minimum possible boot ROM size should be used. As cards supporting 8 kB boot
ROMs are relatively less common, and as 8 kBB boot ROMs would be infeasible for
PC remote boot, a strict upper limit of 16 kB was adhered to for the boot ROM

code size.

18



3.3.2 Standard Boot Interface

When the user has commenced the booting of a PO, there is a standard sequence
of operations which oceur, and which the user expects. Any significant deviation
from this standard behavior may make the user uncomfortable with the system.
Thus, apart from authentication, there should be no or minimum change in the user

interface of a remote boot from the user interface of a local boot.

3.3.3 No Usage of DOS Functions

When the boot ROM in the network interface card takes over control from the
ROM BIOS, DOS operating system calls are not available because DOS has not
been loaded and installed. (Actually, no operating system is available). As such,
while programming the client code, usage of DOS functions will result in fatal run-

time errors, and so their usage must be avoided.

3.3.4 No Changes in PC other than Boot ROM

PCs come with standard built-in hardware and ROM-BIOS software. Although it
is possible to make unsupported modifications in these in order to support remote
boot, this would be an erroneous approach. ‘This is because future changes made
by PPC vendors may make such modifications ineffective or conflicting, thus making
the remote boot product obsolete, As such, only standard supported modifications,

such as the addition of a boot ROM, are to be allowed.

3.3.5 No Degradation in Performance

Performance is a critical issue wherever a user has to wait for an application to
complete its work. Booting is one such issue. The redesign of remote boot, to
meet the required limitations and specifications, should not result in a noticeable
degradation in the time taken to boot. On a 10 Mbs LAN, network access is faster
than floppy disk access, but slower than hard disk access. In the worst case, remote

boot should not be any slower than a floppy disk boot.

19



3.4 Design Specifications: Server

3.4.1 Providing Boot Management Flexibility

The remote boot procedare and its features may need to be configured in a simple
and centralized manner by the system administrator. It may be required on some
PCs to allow a local disk boot, or to bypass authentication, or to boot with a new
boot file, or to allow the hooting process to maodify the boot file, or to test with a
different server, or to print debugging information at the PC, etc. Thus, a speci-
fication is to provide to the system adiministrator simple-to-use boot management

flexibility for the above features, in a single, centralized and secure place.

3.4.2 Usage of Standard Services

There are a number of services, or protocols, which are defined as standard protocols
[Comsg] by the Internet Activities Board (IAB). All hosts and gateways are required
or recotnmended to implement these services, As such, they come freely available
with any UNIX implementation. H the remote boot process can be constrained to
use only such services, there will be no need of any explicit remote boot server. This
will make the remote boot system portable to any network without the addition of
any new services, which is very attractive from an acceptability point of view. Thus,
a specification is to use a standarnd service wherever there exists a standard service

which can perform the reguired job,

3.4.3 Minhnization of Non-Standard Services

There may be some jobs for which standard services do not exist or for which the use
of the standard services will result in violations of the design limitations such as the
boot ROM code size. As such, some non-standard services may have to be used. The
more non-standard services that are used, the more numerous will be the possible
points of remote boot failure, and thus the reliability of the remote boot system
will decrease. ‘Thus, a specification is to minimize (by merging or elimination) the

number of non-standard services that are being used for remote boot.

20



3.4.4 Elimination of Non-Standard Data Bases

Althongh there mnay exist some non standard services, is was decided to disallow
the existence of non standand databases. This is because a reliable non-standard
service will need hittle or no maimtenance by the system administrator, whereas a
non-standard database will require regular maintenance whenever changes are made
in the system confignration. The addition of a non-standard database will thus
make a new product unattractive for svstem administrators. As there are already a
variety of configurable standard databases available for standard services on UNIX

implementations, a speafication was to disallow the use of non-standard databases
altogether,

3.4.5 Ensuring Portability Across Servers

The (s 80x86 architecture has been designed to ensure portability of data types
across different generations of machines, There is no such compatibility amongst the
various machines  supplied by different vendors - that can play the role of a UNIX
server in a remuote boot system. For example, an int data type may be 16 bit or 32
bit, and if this is not taken care of, server code written and tested on one machine
may not work on a different machine  a major drawback. Thus, a specification was

to develop fully portable server code,

3.4.6 Logging of PC Remote Boot Activities

There are a nunber of reasons why a history of PC logins should be maintained. PCs
running simple DOS constitute a security risk in an open networked environment,
as the PO user has all system privileges, and may act maliciously. For these reasons,
and in order to estimate PC usage and availability for planning purposes, it is useful
to maintain a log of PC login activity which is available to the system administrator.
Thus, a specification was to maintain a standard, secure and easily readable database

to record login activity on PCs.

21



3.5 Design Specifications: Client

3.5.1 Usage of Low Weight Protocols: UDP

The weight of a protocal refers to its overhead in terms of packet header length,
initialization time, packet processing time and implementation code size. A heavy
weight protocol (e TCP) generally results in an increase of reliability and bulk
data transfer speed, at the cost of all the above factors. However, for the remote
boot application in which 600 byte packets have to be transferred over a local LAN,
light weight protocols (e, VD) are not at a disadvantage in terms of reliability
or data transfer speed, The advantages of using light weight protocols then become

primary. Thus, a specilication was to use only light weight protocols.

3.5.2 Optimization of Code, Data and Stack Size

The optimization of client code, data and stack size is a different issue than the
upper limit on the ROM cade size discussed earlier. By further reducing the ROM
code size below the 16 kKB limit defined, more functionality (e.g. extra ethernet card
drivers) can be added, more meaningful diagnostics can be provided, and space can
be left to accommodate code in the future due to maintenance and upgradation.
However, such omissions should not take place at the cost of the quality of the
remote boot, The bout ROM program is copied to the top of the PC’s 640 kB
RAM, with suilicient space for its data and its stack. As this program must be left
resident in memory when DOS is initialized, the memory used by remote boot at
the top of the RAM is never available to DOS later. Thus, optimization of the code,

data and stack size also makes more memory available to DOS.

3.5.3 Transparent Handling of Disk Configurations

The boot file that stores the binary image of a floppy disk contains parameters which
are specific to a particular floppy disk. When these are accessed during booting,
they are stored in the local BIOS disk parameters table [Gill94]. If the local PC
supports a different A: drive floppy type than that of the boot file, A: drive may

22



not be accessaible to the user later Inaddition, the number of drives scen by the
remote boot system will allect the later availability of both the hard disks and floppy
disks. Disk unavailability will not be acceptable to users. Thus, a specification was
to make remote boot handle any disk configuration transparently, i.e. all disks

supported should be available after booting. Further, a diskless PC should also be

able to boeot and run.

3.5.4 Operating System Independence

Today, DOS and Windows are not the only operatings system being used on PCs.
Many users want their PO to provide them with the secure and, in some cases,
the familiar euvitonment of another operating system such as UNIX, Linux, 0S/2,
NetBBsSD, or Mach. The ROM BIOS interface used at initialization time by all
these operating svstems is necessarily the same. However, some things such as the
boot floppy format type, may vary between operating systems. Any hard coding
specifically for DOS may make other operating systems unloadable by remote boot.
Thus, a specification was to design the remote boot to make it transparent to the

uperating system being loaded.

3.5.5 Providing Multiple Ethernet Card Support

There are two ethernet adapter cards that are most commonly used in PCs, the
ne2000 (or its compatible), and the wd8003e (or its compatible). In addition the
1/0 base addresses of these cards can be at various locations. If only one card or
one 1/0 address is supported by remote boot, it can only be used in a very limited
set of networks, or its usage would require changes in the networked PCs’ hardware.
Thus, a specification was to identify and support both these cards at any of their

recommended 1/0 addresses, with the use of the same boot ROM.

3.5.6 Handling of Security Issues

When the user enters a login name and password, these are stored by the remote

boot program at the top of the memory, in data structures used by protocols from

23



the application to the MAC layer.  Ag this memory is not reclaimed by DOS, it
remains unmodified, and can be scanned for copies of the user’s password., Another
issue is the transmission of the tnencrypted password across the LAN. Any network
snooping utility such as tepdump can be used to pick up the login packets and then
scan them for passwords. Thus, a specification was to eliminate such loopholes in
security.

3.5.7  Providing Improved Diagnostics

If for some reason the remote boot system does not work, it must be made re-
operational as quickly as possible. This is impossible if the diagnostics reported at
the PC and at the server are absent, excessively brief, misleading, badly laid out or
cryptic. Clear and concise diagnostics make the system both pleasant to use and
casy to maintain. However, diagnostics may use up a lot of scarce ROM code space.

Thus, a specification was Lo use improved and intelligent diagnostics.

3.5.8 Provision for Testing without a Boot ROM

The cycle of making changes in the boot ROM code, creating a file to download to
a ROM, programming the ROM » installing it on a PC, testing it and then erasing
the ROM for its future reuse is a lengthy cycle. A Terminate and Stay Resident
executable ('I'SR) was carlier implemented which tests the ROM code as a user
program, thus avoiding the above cycle. With all the issues involved in the re-
design, this TSR program must be updated to test the functionality, and not have
dependencies on old functionality that was removed. Thus, 2 specification was that
the new remote hoot system should also be testable in the TSR mode without the
programming of a boot ROM.

24



3.6 Design Specifications: Software Quality

3.6.1 Producing High Quality Code

Code quality is a critical issue if a software product is to have a long lifetime. In the
carlier implementation, this was noticeably absent, and a third of the time spent on
this project was spent on fully understanding the earlier code. Following a good set
of guidelines while writing code is essential if the code may be later read by someone
else. Thus, a specification was to choose and adhere to a standard set of software

programuming guidelines, resulting in high quality code.

3.6.2 Providing Complete Documentation

Even a simple software system needs comprehensive documentation of its features
in order that it may be used correctly,. When a system consists of complex and
multi-platform software, databases and floppy image files, hardware modules and
processes and hardware programiing and erasing utilities, the system may become
unimplementable due to its complexity.  As such, a specification was to provide
step by step procedures for all the stages involved in implementing the remote boot

system, together with any trouble shooting information that would be useful.

3.7 Overview of the Immplementation

The steps followed to implement PC remote boot are summarized below. They are
explained in more detail in chapters 4 6. The sequence of steps listed starts from
the point where the ROM BIOS hands over control to the boot ROM.

* (1) The act.bin binary (a program lying between bytes 0 and 255) in the boot
ROM copics main. com to the top of the RAM. It reserves 18 kB for main .com’s
code data and stack, changes the segment registers and then hands over control

to main.com.

25



(2) The boot ROM probes for the presence of wd8003e or 12000 ethernet

adapter eavds, If either is present its name and location are displayed, else an

error is reported and booting stops,

(3) The ethernet adapter card is initialized and its ethernet address is read
and displaved.

(4) The PC formats and broadcasts a BOOTP request packet on the BOOTP

server port number, The PC then polls for a BOOTP reply, and sends a fresh

packet every 2 seconds if a reply is not received.

(5) The anetd dacmon process, on receiving the BOOTP request packet, starts
the BOOTYE server if it is not already running. This server extracts the client’s
ethernet address from the packet and uses it to find the client’s entry in the
/etc/bootptab file. On finding an crror free entry, a BOOTP reply packet is

formatted and sent to the client PC. Errors are logged in daemon.log.

(8) The client reads the BOOTP reply packet. This contains boot configura-
tion control information, the client’s 1P address and the boot file name. The

client TP address and boot file name are displayed.

(7) If anthentication is to be done, the PC prompts users for their login and
password. ‘These are enerypted and broadeast on the authentication and boot
file server port number. The PC then polls for an authentication reply, and

sends a fresh packet every 2 seconds if a reply is not received.

(8) The inetd daemon process, on receiving the authentication request packet,
starts the authentication and boot file server if it is not already running.
This server reads the client’s authentication request, decrypts the login and
password, and accesses the NIS ‘password database entries to check the login-
password combination. It sends an appropriate authentication reply. The

request is logged in daemon.log.

(9) The client reads the authentication reply packet. If authentication failed

the client goes back to step (7).

26



e (10) If a local boot is to be done, this is reported to the user and the boot

ROM code exits. Booting then proceeds from the P(s local disks.

e (11) The PU prompts the user to enter a different boot file name. If no name

15 entered, the boot file name sent by the BOOTP server is taken as the boot
file.

o (12) The PO sends a read request packet to the authentication and boot file
server to read the boot sector of the boot file. T'he file offset is calculated from

the sector, head and track number by using the following formula:

Logical sector =  (cylinder * number of sectors per cylinder)
+ (head * number of sectors in a side)

+ (sector ~ 1);
File offset = logical sector * 512;

After any read [ write request is sent to this server, the PC polls for a read /

write reply, and sends a fiesh packet every 2 seconds if a reply is not received.

e (13) The anthentication and boot file server reads the client’s read [/ write
reguest, and reads [ writes 512 bytes of the boot file at the requested offset.

A read [ write reply is formatted and send back to the client.

e (14) The PC extracts the boot sector parameters from the reply packet and
stores them. These are used to calculate the number of cylinders and the

remote boot drive type, and to check for invalid boot files.

e (15) The PC stores the old floppy disk parameters using the 0x08 function of
the old BIOS 0x13 disk interrupt handler.

e (16) The PC stores the old BIOS 0x13 disk interrupt handler vector. It then
changes this vector to point to the new remote disk interrupt handler. Now
any read / write requests to A: drive will result in accesses to the remote boot

file, as explained in steps (12) and (13).

27



(1R) 1 the TEST flag was specilied during compilation, the PC tests the
new BIOS 0x13 disk interrapt handler, It then calls geninterrupt(0z19) to

bootstrap the operating system from the remote boot file, and then terminates
and stays resident i the memory,

(19) The boot ROM routine exits and returns control to the ROM-BIOS.

(20) ROM BIOS bootstraps the operating system from its A: drive. As the
BIOS 0x13 disk interrupt vector has been changed, this results in the contents

of the remote hoot file being loaded as the operating system.

(21) Duning booting of MSDOS, & RAMDrive is created in the PC. Boot
file contents are copied to this RAMDrive, Then the new BIOS 0x13 disk
interrupt handler function 0x1b is called. This resets the BIOS 0x13 interrupt
vector back to the old disk interrupt vector stored in step (16). The remote

boot file is now no longer accessed.

(22) The authentication and boot file server times out after 1 minute and

exits. The BOOTE server also tines out after 15 minutes and exits.

(23) The RAMDrive is identified and the remaining parts of the the boot (e.g.
installing the pevnanent packet deivers, starting XFS, ete.) use the files stored

in the RAMDrive,

(24) The PC is now fully booted, and its behavior is the same as that of a
PC booted from its local disks.

28



Chapter 4
Server Implementation Details

The Tast chapter dealt swath the desien Bmitations and specifications. The imple-
mentation of w design soa sigalicantly different issue, Given a set of requircments
for a design, thewe can be a mumber of different ways to implement them. The one
to be chosen i dependent on many factors such as cost, availability, etc, and these
choices form the implementation details,

In this chapter the details of the hoplementation of the remote boot server
are explained, and the choices made for the implementation of each of the design
specifications are justified. Although these details are primarily concerned with the
server implementation, the cotresponding details of the client interaction are also

'

explained. -

4.1 Usage of BOOTP Service

The BOOTP protocol was used to implement the server which is to provide the
initial boot configuration information to the PC. This is one of the key aspects of
this remote boot implementation. In this seetion, the unelaborated terms server,
client and packet, refer to the BOO'TP server, client and packet respectively. Various

aspects behind the choice of BOOTP are also explained below.

29



4.1.1 History of Development

The BOOTP protocolis a standard protocol recommended by the Internet Activities
Board. 1t is extensively used for the booting of diskless workstations on a network,
and as such is available on most UNIX or UNIX like implementations. It has
a long and stable history of development, as given in [CG85], [Prin88], [Rey88],
[Wim93] and [ADU3]. The version of BOOTP supported by the server is defined
by the Request For Comments (RFC) number, corresponding to which there is a
magic cookie sent in the server’s packet. The service defined by rfc1048 is upward
compatible with the service defined by rfc1533, but the reverse is not true. As such,
the client has been designed to ignore the magic cookie, and to expect rfc1533
service,  This approach enables the client to interpret packets sent by rfc1048
servers, rfc1533 servers, and servers implementing any future versions of BOOTP

which are compatible with the r£c1533 service.

4.1.2 Details of Use

When the ROM code has identified and initialized its ethernet adapter card interface,
it can send and receive packets, However, as the PC may not have any non-volatile
storage, it cannot be assumed to know its internet address, and only knows its
ethernet address. So the PO uses a broadeast address to communicate [Mor84]. In
this broadcast packet, the client ethernet address is the true address available in the
network interface card, the client internet address is null, and the server ethernet
and internet addresses are broadcast addresses. The broadcast is sent from the client
UDP port 68 to the server UDP port 67, both being reserved for use by BOOTP.

In the request packet created by the client, its ethernet address is filled for
matching by the BOOTP server in its configuration file, /etc/bootptab. A random
identification number is also sent, so that the received reply can be matched with
the sent request. The number of hops is set to zero, so that only a server on the
local LAN is contacted. Other fields are left null, and the packet is transmitted over
the LAN.

The server can be started either as an independent process, or as an inetd

dacmon process. The former can be used for testing, and the latter should be used

30



for the permanent service. These details are available in section A.3.2. The server
picks up the packet and matches the sent ethernet address with the host ethernet
addresses in the bootptab configuration file. Optionally it logs the receipt of the
request packet and any error messages caused by incorrect syntax in the bootptab
file, in the daemon.log file. This is done by specifying the appropriate debug level
in the command to start the server. This option is useful for debugging and for
maintaining a record of PO login activity.

A number of fields are obtained from the bootptab file or other databases such
as Network Information Services (NIS). These are packed into the reply packet and
sent back to the client. In the reply packet, some of the fields are essential, while
some others are optional and others are default. IEssential fields include the boot
file name, physical layer type and address length. Remote boot does not need the
subnet mask. Defanlt fields include the 1P address of the client. Optional fields
include the internet address and port number of the authentication and boot file
server, the client hostname, and a boot configuration control flag.

These fields are placed either in standard locations in the reply packet, or as
a sequence of bytes with tag and length identifiers within a 64 byte array known
as vendor crtensions, ‘The client’s internet address and the matching identification
number are always present in standard locations in the reply. The vendor extensions
may have standard tags (from 0 to 127, 255), or they may have implementation
defined tags (128 - 254). This remote boot implementation uses the new and
optional tags 128, 129 and 130 to store the boot configuration control flag, the
authentication & boot file service port number and the authentication & boot file
server’s IP address respectively. Although there is a standard tag for the boot file
server’s internct address, it is not used. This is because it is defined by BOOTP as
the address of a TFTP service, and our boot file service does not implement TFTP.
The reply packet is sent to the client on port 68, using the client’s ethernet address

and a broadcast internet address (as the client does not know its IP address yet).

31



4.1.3 bootptab File

The information present in a valid bootptab host or client entry includes the client
name, the physical layer type, the physical address length, and the physical layer
address, all of which are essential. Other information includes the boot file name, the
boot configuration control flag, the subnet mask, and the port number & internet
address of the authentication & boot file server, all of which are optional. If essential
information is not found in the bootptab file, or if information from other databases
(such as the client's internet address) cannot be obtained, or if a syntax error is found
in the bootptab file, the server logs an error in daemon.log and does not send a
reply.

The boot configuration control flag is a bit-wise flag with options for remote or
local boot, authentication or no authentication, control of write permission to the
boot file, and step by step printing of debug information when the client is complied
as a TSR program. The client defaults are remote boot, authentication, no write
permission and no printing of information. All these options are simple to control
from the bootptab configuration file.

The subnet mask is set to 255.205.205.250 by default if not specified, but is not
used by the remote boot. Some other programs like XES, etc., use this field after
contacting the BOOTP server at a later stage. By using the subnet mask, the first
packet sent to the authentication and boot file server becomes a subnet broadcast
rather than a full LAN broadcast.

The port number and IP address of the authentication and boot file server are
meant for testing a client with a new authentication and boot file server, without
disturbing the existing service. The default for the authentication and boot file
service port number is 146. This choice was made as the service must be secure
from user impersonation and therefore must lie in the port number range 0 - 1023,
and as this port number must be unused by any standard UDP service (this was
verified from the /etc/services system file). The default for this server’s internet
address is the broadcast address. This is possible because the use of UDP for the
boot file service in place of TCP allows communication without knowing the server’s

internet address. T'he authentication and boot file server’s correct internet address

32



is used after receiving the first reply from this server.

4.1.4 Advantages of Use

» BOOTP protocol is built on top of UDP, and so it can be supported on all
networks which support at least UDP over IP.

e Boot management flexibility is provided in a single centralized and secure
place. The options in the /etc/bootptad file can allow the system adminis-
trator to decide for each P(! on the network whether it should boot from local
disks or do a remote boot; whether authentication is required or not; which
boot file should be used for boot; which authentication & boot file server is
to be used (in terms of 1P address and port number); and whether the boot
process can modify the boot file. In addition, it allows printing of debugging

messages with the run of a ‘Terminate and Stay Resident version of the client

program.

o The BOOTPE protocol is a standard protocol as defined by the Internet Ac-
tivities Board. All hosts and gateways suppérting UNIX are recommended to
implement the BOOTP protocol. Therefore the remote boot system’s usage of
the BOOTP service does not decrease its portability to new networks (given
that they have UNIX servers).

o The usage of the BOOTP protocol helps avoid the use of the pcbootp server
used in the carlier implementation of remote boot. This reduces the number of
non-standard services that are used on the server side, and simplifies the server

implementation. This increasing the reliability of the remote boot system.

o The usage of the BOOTP protocol eliminates the use of the pcbootinfo
database used in the earlier implementation, and replaces it with additional
entries in the standard /etc/bootptab configuration file. As the bootptab
file is alrcady used to configure the boot of diskless workstations, using it to
configure the boot of diskless PCs does not change the semantics of its usage.

This makes the maintenance job easy for system administrators. Thus, the

33



use of non standard databases is completely eliminated in the remote boot
system,

o The BOOTP service has built in features to allow it to log request packets,
reply packets and errors in the bootptab file into the daemon.log file. This
maintains a part of the required remote boot usage history, and makes the

identification of syntactical errors in the bootptab file easy.

4.1.5 An Example Configuration File

Sections of a standard bootptabd file modified to support PC remote boot are shown

below. The comments make it self explanatory.

# Example /etc/bootptab: database for bootp server (/etc/bootpd).
#

# Format:

# nodename:tag=value:tag=value: ... :tag=value

RRBEABERURRERARERRERRIRBRURERARVARRBABUABEREHRBREBRRBRBRRRBURBRRRBLBRRURRURY
EERARABRSSEARLABANRRARERRRERY PCBOOT OPTIONS HRURHERRRRABRUNVRURBRBR AU URY
HRERRRARRBALRGRBLERABUSREDREXRBRRARRRRREBRRRBBY HHRBHRABRRRBRBRBRARVRBYBRARRE SRS

# Optional vendor specific flags for PC boot are explained below

# T128=C0:\

¥ b7: 0 => Local boot, 1 => Remote A: drive boot DEFAULT: 1
# b6: 0 => No authentication, 1 => Authentication required DEFAULT: 1
# Db5: 0 => Remote A: drive 1 => Remote A: drive writable DEFAULT: 0
* never writable before reset of disk handler

# b4: 0 => No debug info 1 => Print debug info with Term. DEFAULT: 0
# & Stay Resident version

#  b3-b0 => Not used DEFAULT: 0
#  T129=0092:\ '

#  Authentication + éoot file server port number DEFAULT 0x0092

34



T130=9010A221:\

Authentication + boot file server IP address DEFAULT subnet broadcast
NOTE: After getting the first valid reply,

% ® ® M

the correct IP addr is set

.PC_DEFAULTS:\

ht=ethernet :hn:sm=255.255.0.0:vm=rfc1048:\

ht: Ethernet LAN, having 8 byte hardware addresses

hn: Write host name in the BOOTP reply

sm: Subnet mask 1s 255.255.0.0

vm: BOOTP version corresponding to rfc1048

NOTE: hosts internet address is picked up from the NIS
T129=0092:\

T130=9010A221:\

% % % ¥ X N BN

# PCs with wd8003e cards must install the wd8003e packet driver
pclo: tc= . PC_DEFAULTS :ha=00803c570040:T128=C0:bf="/usr/adm/xfswd. ing":

pcil: tc=.PC_DEFAULTS :ha=0000c00£00dd : T128=C0:bf="/usr/adn/xfswd.ing":
pc20: tc*.PC_DEFAULTS:ha'OOOOCOOfOOTa:T128”CO:bf="/usr/adm/foWd.img":
pc35: tc-.PC,DEFAULTS:ha-0000c054002b:T1283C0:bf="/usr/adm/xfswd.img":
pc37:  tcm.PC_DEFAULTS:ha=00803c57003a:T128=C0:bf="/usr/adn/xfswd.ing":

# PCs with ne2000 cards must install the ne2000 packet driver

pci2: tc=.PC_DEFAULTS:ha=00803c57002f:T128=CO:bf="/usr/adm/xfsne.img":
pcb2: tCﬂ.PC_DEFAULTS:ha=0000E8€3A59b:T128=CO:bf="/usr/adm/xfsne.img":
pcbh9: tc=.PC_DEFAULTS:ha=OOOOe8c51bdc:T128=CO:bf="/usr/adm/xfsne.img":
#######ﬂ#####################################ﬂ##############################
BRRARARERARERBHRRERLALRULE AR PCBOOT OPTIONS ####HHRAFMMURUAVRURBARAUR USRS
BRBRRERRBRRBRBRRBHERRRRABE LR BRRRECRARRRRRARRRBLBRRRRRRRRRRREVRRRRBRBRR R RR BB



4.2 Single Authentication and Boot File Server

The carlier implementation used two non-standard remote boot services, the UDP
based pebootp for the initial booting information and authentication, and the TCP
based peboot fur access to the boot file. The initial boot information which was
supplied by pcbootp is now supplied by the BOOTP service, along with other
information. The two remaining tasks are authentication and boot file access.

To do these tasks, the pebootp and pcboot servers may be used. However, this
would increase the complexity of the system and reduce its reliability. So a new
pcboot server was written, which wonld supply both authentication and boot file
access services in a single serviee,

Before the development of a new service, it was necessary to see whether there
exist standard protocols which can perform the required tasks. This is because
by the elimination of all non-standard services, a much more portable and reliable

remote hoot product could be developed. However, this was not possible for the

reasons listed below.

e For anthentication, there is no standard protocol recommended by the Internet
Activities Board. The closest match is a ‘T'CP authentication service auth
(port 113), as discussed in [StJ85]. However this provides a very limited au-
thentication mechanism based on port numbers for a specific TCP connection,
and it is not a more generic password authentication service to authenticate
a user. There are two UDD authentication services, the passwd_server (port
752) of kerberos, and rauth2 (port 2001). However, neither of these are
standard protocols, and so need not be considered as they will have to be

rewritten to make the remote boot system portable.

¢ The BOOTP protocol assumes that TFTP will be used for access and transfer
of the remote boot file [Fin84]. This is possible on workstations, where the
boot file is transferred as a single in-order file before control is transferred to
it. While booting DOS or a gencral operating system, this assumption does
not hold. DOS sees the boot file as a floppy disk on A: drive, and accesses

the floppy’s sectors in any order. TFTP can only transfer consecutive blocks

36



of atile [SOST] and so cannot be used for the remote boot of PCs. The File

Transfer Protacol, [PRSS], has the same problem.

o Another aption is to use the Network File System (NFS) protocol [Sun89]
which ix built on top of SUNS Remote Procedure Call (RPC) protocol [Sun88].
Sun RPC s built up using SUN's eXternal Data Representation (XDR) [Sun87].
This meets our requirements of a file access protocol which is both a standard
protocolamd can give any onder file access. However, at the time of the design
of the new remote hoot system, it was felt that this approach would use up
too pch scaree RON code size, as it would require the implementation of 3
new protocals, 2 of which (NFS and RPC), would have to support complex

features. Ax such, this option was also abandoned.

For these reasons, a new peboot service was written, which would perform both
authentication and boot file aceess. New data structures were developed which allow
a single packet format to be used for both the services, both for requests and for
replies. ‘The operation code in the requests and replies made the nature of the packet
clear, e, for anthentication or boot file serviee, Such an approach simplified the
overall system design,

Key packets relating with this new peboot service, such as those indicating boot
file access failure, and all packets relating with authentication, are logged in the
daemon.log database, which is a standard and secure database. This allows the
system administrators to diagnose remote boot failure quickly and also keep track
of PC logins by users.

It should be noted that both of the non-standard protocols used in the earlier
implementation could not be eliminated, as there existed no standard authentication
protocol for user authentication. By reducing the number of non-standard protocols

used from two to one, the server side reliability is enhanced.

37



4.3 Ensuring Portability Across Servers

4.3.1 Usage of Platform Independent Data Types

In order to handle the portability of server code across UNIX platforms supporting
different machine architectures, a set of data types defined by Dr. Moona were used

for the implementation of all data types used in the authentication and boot file

server. These data types are listed below.

/] 3Kk e e i oo o ok koo ok ok K Unsigned Data Type Defimnitions ksksoksokokkskkkokok ok ok dokkok

typedef unsigned int ubyte4; /% 32 bit unsigned */
typedef unsigned short ubyte2; /* 16 bit unsigned */
typedef unsigned char ubytel; /% 8 bit unsigned */

2 30 ke ke e e ke e ke e ke sk ok ok ke o ok ke Unsigned Data Type Definitions s dkskk dkokk ok ok dk ok dk ok 3k ok dk ok 3k ok & ¥k %k

7 2 sk e ek sk s e s o 3k o Kk o ok ok K Signed Data Type Definitions #ksksksokskskokskokkskokoksdokkk ¥k koK

typedef int byte4; /* 32 bit signed */
typedef short byte2; /* 16 bit signed */
typedef char bytel; /x 8 bit signed */

/1 3 ek ok o o ks ok ok ok o skl ok ok e o Signed Data Type Definitions kkokokokkokok sk dk ok ok s ok o ok ok okook & o

By avoiding the use of any other data types in the server code than those defined
above, it was ensured that all the server code is portable to any UNIX platform.

Portability across machines is achicved by changing the above definitions only.

38



Chapter 5

Client Implementation Details

Chapter 4 dealt with the remote boot server side implementation details. In this
chapter the details of the implementation on the client side are explained, and the
choices made for the implementation of each of the design specifications are justified.
Again, although these details deal primarily with the client implementation, the

corresponding details of the server interaction are also explained.

5.1 Handling the BOOTP Information

The server side issues relating to the BOOTP protocol were dealt with in the chapter
4. The client aspect, that is how the boot information in a successfully received reply
packet is interpreted and used to handle the flow of control in the client code, is
dealt with here.

On the successful receipt of a BOOTP reply packet at the client, it extracts infor-
mation from the packet. The server does not send an invalid reply, as was explained
in the chapter 4. Further, as the optional fields have built-in and valid defaults in
the client code, there is no possibility of incomplete or incorrect information being
present with the client once a valid BOOTP reply has been received. For a reply
to be recognized as valid, the sent and received identification numbers must be the
same. (Note: the boot file name may be incorrect, but this cannot be known at

this stage). However, if the client does not receive a valid reply, it cannot proceed

39



with the remote boot ~ the client then continues to try to contact the server in an
infinite loop, reporting after every 16 seconds that the BOOTP server could not be
contacted. Under this case, it should not proceed with a local boot, as this would
become a loophole in the system security.

On receiving a valid reply, it is interpreted as follows. The client’s IP address in
the reply packet is stored and used in all future communication by the client. The
boot file name is read and stored, but for testing purposes and for boot flexibility at
the client side, the user is allowed to override the boot file choice with a new choice.
The client hostname is printed for the PC to be identified before booting.

The boot control flag is a byte wide vendor extension, consisting of 8 bit-wise
flags. Bit 6 is used to define whether the PC boot requires an initial authentication
(= 1) or not (= 0). If required, the authentication routine is called, which executes
in an infinite loop until a correct login-password combination is entered.

Bit 7 is used to define whether the PC boot should be from local disks (= 0) or
remote boot file (= 1). If a remote boot is to be done, the client code changes the
BIOS 0x13 disk interrupt handler vector in the interrupt vector table to the new
remote disk interrupt handler, and then the client program exits. If a local boot is
to be done, the interrupt handler vector is left unchanged, and the client program
exits.

It should be noted that the functionality of bits 6 and 7 are independent, and
any combination of local vs. remote boot and authentication vs. no authentication
can be specified for a PC. The other bits that are used in the boot control flag,
1.e. bits 4 and 5, do not significantly affect the flow of control, and the bootptab
example given in chapter 4 should be referred to to understand them. Bits 0 - 3 are

not used at all, and should be zero to be compatible with future extensions.

5.2 Usage of UDP for Boot File Access

In the earlier implementation, the Transmission Control Protocol (TCP) [Pos81b)]
was used to develop the boot file access server, pcboot. This was replaced by the

use of the User Datagram Protocol (UDP) [Pos80] to implement the authentication

40



and boot file access sever.,

The reason for doing this was that UDP being a light weight protocol, its use
results in far fewer overheads in processing, initialization, termination and client
ROM code size than by using the heavy weight protocol TCP. This gives advantages
in terms of booting time and code size, as shown in the results given in chapter 8.

The fact that all sectors of a disk are of 512 bytes means that any sector’s data
can be put into a single UDP packet. Thus, a request to the new BIOS 0x13 disk
interrupt handler to access N consecutive sectors can be broken down into N separate
accesses to the remote boot file. The semantics of the operation are fully maintained.
Further, on a LAN, the reliability of TCP and checksum based UDP are effectively
equivalent for our remote boot system. These were the key factors which allowed
UDP to be used for boot file access from the client side.

Apart from this, the use of TCP can result in half open connections if the PC
is rebooted before the existing TCP boot file server connection is terminated. On
the Dec Alphas used in our environment, these half open connections and their
corresponding server processes remained existing for long periods, slowing down the
system.

The use of UDP meant that a single server could be used for both authentication

and boot file access, thus simplifying the server side of the remote boot system as

discussed in chapter 4.

5.3 Optimizations of Code, Data and Stack Size

This was one of the most important goals of this thesis work, as substantial func-
tionality was to be incorporated without exceeding the defined 16 kB ROM code
size limit. Optimization of the RAM code, data and stack size was also to be done.

Many approaches were used, some of which were gquite innovative.

5.3.1 Elimination of RARP, ARP and TCP

The code implementing RARP, ARP and TCP was removed from the client side
of the remote boot system, frecing about 6 kB of the 16 kB ROM code size. The

41



reasons why this was possible are described below.

¢ Because the BOOTP protocol does not require the client request packets to
contain their IP addresses, the client does not need to know its IP address be-
fore it can contact a server. Earlier, the Reverse Address Resolution Protocol,
[FMMTR&4], was used to get the client’s IP address from its ethernet address,
by taking the help of RARP servers on the network. Thus, using BOOTP

allowed the client code implementing RARP to be removed.

e ‘The implementation of the Address Resolution Protocol (ARP), [Plu82], seems
to have been an oversight in the carlier implementation. It is true that the
booting PC receives ARP requests to supply its ethernet address given its
internet address. However, such requests can be ignored at no significant cost
until the P(’s booting process is complete and its operating system is installed.

As such, the client code for ARP could be removed.

e RARP and ARP are both light weight protocols, and the code size required to
implement them is small compared with the code size required to implement
a heavy weight protocol such as TCP. This was a major reason why TCP was
bypassed by using UDP to develop the boot file access service. The elimination

of T'CP saved about 5 kB of ROM code size.

5.3.2 Efficient Global Variable Declarations

There were two aspects to this optimization, the obvious precaution of avoiding
the duplication of global variables, and the less obvious step of centralizing the

declaration of all global variables at one place.

e Large data structures may be used by multiple routines. An intelligent design
of Lthe routines that use them means that a single data structure can be used
by all the routines without any conflicts. This was done for all large data

structures, saving considerable space.

e By declaring all the global variables at a single place, e.g. the main.c file, an

interesting aspect of the behavior of the Turbo C linker was observed: code

42



size equal to the size of the data structure is saved. For example, if the 1518
byte pePacket array is defined in file twd.c, the ROM code size is 1518 bytes
higher than if the same array is defined in the file main.c, together with all
the other global data. This was despite the fact that the total object code size
was the same in both cases, and seemed to be because the target file for the

Turbo C linker was main. As such, all global data was defined in main.c.

5.3.3 Efficient Parameter and Local Variable Declarations

It is important to control the parameter and local variable declarations for two
reasons. Iirstly, they increase the space consumed on the stack, which requires a
larger stack. Secondly, identifying how the stack will build up requires a study of
the function call hierarchy, and thus it is difficult to safely estimate the required
stack size.

The technique used to handle these problem was to avoid declaring any structures
as parameters or local variables. If any such structures were required by routines,
pointers to global variables were passed to / used by the routines. If the required
global variables did not exist, the global variables were declared — the RAM size
used would be the same, but calculating how much RAM space is required became
simpler.

5.3.4 Merging of Similar Functions

While designing the new remote boot system, it was observed that many functions
would do similar tasks with some minor variations. Software enginnering principles
state that such functions should not be merged. However, since this remote boot
application is special in that it requires code size optimization, such functions were
merged in the remote boot client code. These include all the BOOTP and new
pcboot communication routines and the disk sector read and write routines. A lot

of code size was saved as a result.

43



5.3.5 Elimination of Pseudo-Redundant Code

"Pseudo-redundant’ code is not standard terminology, but is introduced here to
signify code that seems to have no redundancies, but actually has redundancies.
Finding and eliminating pseudo-redundant code gives no major gain at any one
place, but if done throughout the code, it gives significant advantages. However,

such optimizations should not unduly increase the code complexity. A few examples
are given below.

e When initializing complex data structures, most fields and arrays are initial-
ized to null. Setting each field and each element of each array to null results
in redundant code. The whole structure can be initialized to null in one loop,

and the non-null fields can be filled later.

e When printing strings, such as for diagnostics, often different conditionals
print strings which have matching substrings. As strings consume much more
data space than the code space used by either conditionals or print function
calls, a lot of space is saved by restructuring the conditionals to print a given

substring only once.

o In certain types of code, such as ethernet card drivers, there are long chains
of the same function call with diflerent parameters. By using arrays to store
the parameters of the function calls, and using a loop to execute the function
calls with the different paramecters, it was found that over half the originally
used code and data space was saved (for chains with more than 10 consecutive
instructions). This approach was picked up from linux source code, [Don92],
[Don93], and was used in the ethernet card drivers for both the wd8003e and
ne2000 cards.

5.4 Transparency to PC Disk Configuration

There are some precautions that must be taken to ensure that the remote boot

product is transparent to the PC disk configuration. These will ensure that all disks

44



present on the PC will still be available after a remote boot, and that the remote

hoot is possible even if the PC is diskless. These are described below.

5.4.1 New Disk Interrupt Handler

The new BIOS 0x13 disk interrupt handler needs to provide many different services.
During the booting process, these are reset (0x00), read (0x02), write (0x03), get
parameters (0x08), get changeline support (0x15) and get changeline status (0x16).
These must provide the correct interface and return values when called. Complexity
arises in achieving this for the get paramcters service (0x08), which is described
here.

The parameters of interest are the disk parameter table segment and offset, the
maximum cylinder number, the maximum sector number, the number of heads and
the number of drives.

The location of the disk parameter table is specific to cach PC’s BIOS con-
figuration. The same location must be returned by the old and new BIOS 0x13
disk interrupt handlers, and so it is necessary to initially call the old BIOS 0x13
service 0x08 before replacing it with the new interrupt handler, and to store the
data thus obtained. In this way the correct location of the disk parameter table can
be returned.

‘The maximum cylinder number, the maximum sector number and the number of
heads must be corresponding to those on the remote boot file, else the data offsets in
the remote boot file cannot be correctly calculated. These parameters are obtained
by initially reading the boot sector (logical sector 0) of the boot file, and extracting
the required boot parameters.

The values listed in the above paragraph for the remote boot file and for the
disk supported on the local A: drive may not be the same, e.g. a 1.44 MB boot file
may be used to boot a PC with a 1.2 MB A: drive. This causes no problems on
MSDOS, as MSDOS later re-reads the drive parameters and sets them to the local
drive paramenters. The behavior of other operating systems in this regard is not
known. This may result in the A: drive being inaccessible after booting operating
systems other than MSDOS.

45



Finally, the issue of the number of drives to be returned is left. The original
BIOS 0x13 disk interrupt handler will return 0 for a diskless PC, 1 for a PC with 1
or more floppy drives, and 14N for a PC with N hard drives. For the remote boot
application, a minimum value of 1 must be returned even for a diskless PC, else
the A: drive required for remote boot will not be recognized. If the PC has 1 or
more drives, the true number of drives must be returned, to make sure that the

RAMDrive created is not given the same name as that of an existing hard drive.

This issue is dealt with in more detail below.

5.4.2 Restoring Old Disk Interrupt Handler

The old disk interrupt handler must be restored at some stage of the remote boot, so
that the original disk drive services supported by BLOS are available to the PC. This
is done by using the new BIOS 0x13 disk interrupt handler non-standard service
Ox1b. This service restores the old disk interrupt vector in the interrupt vector
table. The service 0x1b can be used because BIOS does not define or reserve its
usage. As the remote disk interrupt handler can no longer be accessed after a call
to this service, the client code can be removed from the RAM, and the RAM space
freed. However, this does not make any additional memory available to MSDOS, as
MSDOS checks the maximurn RAM available only once at the time of boot. The
BIOS 0x13 service 0x1b should be called when the A: drive is no longer required for
booting. How this is done is discussed in the next section.

The program reset.exe was written to call this service, and its call appears in

the batch file proceed.bat in the remote boot file image. This is shown in chapter
7.

5.4.3 RAMDrive Creation, Identification and Use

The reason for the creation of the RAMDrive is discussed in chapter 2. For MSDOS,
the creation of the RAMDrive is achieved by using a command in the config.sys

file. This forms a part of the boot file image, as shown in chapter 7.

46



The name of the RAMDrive is not explicitly specified, but is calculated from
the number of drives returned by the new BIOS 0x13 disk interrupt handler service
0x08 and from the number of MSDOS partitions on the hard drives. For example,
a PC with no hard drives will create a RAMDrive at C:, and a PC with one hard
drive with 2 MSDOS partitions or 2 hard drives with 1 MSDOS partition each will
create a RAMDrive at E:. To use the RAMDrive in the batch file commands in the
remote boot file, it is necessary to identify the location of the RAMDrive. This is
achieved by scanning drives V: to C: until the first existing drive is found - this will
always be the RAMDrive. The search must be in reverse order as access to a disk
may result in a disk read error. For example, if D: drive has a bad DOS format, and
the RAMDrive is created at I:, scanning from C: onwards will result in a read error
at D:. The sample batch commands to do this, and to later use the RAMDrive,
appear in the batch file autoexec.bat in the remote boot file. These are shown in
chapter 7.

Only after all the required A: drive files have been copied on to the RAMDrive
can the original BIOS 0x13 disk interrupt handler be restored. The booting proceeds
using the files in the RAMDrive.

It should be noted that in order to achieve operating system independence,
equivalent conunands for the creation and identification of the RAMDrive must

appear in the remote boot file image for the operating system being booted.

5.5 Rewriting DOS Functions

The DOS library functions used were existing in the earlier implementation of remote
boot. Care had to be taken to ensure that no other DOS library functions were used.
These functions included kbdhit, inputch, cgetsne, cprintf and Move. Some other
useful functions written were ntohs, ntohl and pcGetClockValue. The htonl and
htons functions were not required as they were the same as of the ntohs and ntohl

functions.

47



5.6 Operating System Independence

To achieve guaranteed operating system independence for the PC remote boot
system, a knowledge of various operating system internals is necessary. Since this
was diflicult to obtain for all operating systems, a simpler approach was used —
no MSDOS based dependencies were introduced into the client ROM code. The
basis for this is the assumption that all PC operating systems must be built upon
BIOS functions. The only BIOS function remote boot modifies is the BIOS 0x13 disk
interrupt handler routine. This meant that to ensure operating system independence
care had to be taken in the design of the new disk interrupt handler. It happens
that the precautions required to be taken for this are included in the precautions
to be taken to ensure transparency to the PC disk configuration, as was discussed
earlier.

However, the need for a RAMDrive to be created, identified and used during
remote boot introduces an additional complexity. Each operating system will have
different commands which are to be used to create and identify a RAMDrive. It
is left to the installer of a new operating system to identify these commands and
appropriately configure the remote boot file.

In addition, the local A: drive of a PC booting an operating system other than
MSDOS may become unavailable. This will happen if after remote boot, upon
accessing the A: drive, the operating system does not re-read the local A: drive
parameters, and if the local A: drive parameters are different from those of the
remote boot file.

Beyond this, no precautions or guidelines were found to be appropriate or generic
enough to ensure support for operating system independence during PC remote boot.
Some situations could not be handled. For example, if the boot sector parameters
of the remote boot file are not recognized by BIOS as standard, a warning is printed

and users are allowed to continue booting at their own risk.

48



5.7 Ethernet Card Probes

As explained in chapter 3, the two most widely used ethernet adapter cards are
the wd8003e and the ne2000. The remote boot product should support both these
cards. The remote boot ROM code should be able to identify which card is installed
on the PC and at which 1/O base address it is installed. Therefore it is necessary to
use ethernet card probes. The example probes for the ethernet adapter cards were
studied from the linux source code, [Don92], [Don93].

Card probes were implemented for both the ethernet cards at 1/0 base addresses
between 0x240 and 0x380. The wd8003e card probe was simple -~ just a test for
a checksum mateh on the first 8 bytes read from the base 1/0 address, plus an
elimination check for soundeards which use the same checksum match. The ne2000
card probe was more complex - first a check for a dp8390 chip [NSC86], followed
by an initialization of the dp8390, followed by reading in the first 16 bytes from the
1/0 base address, distinguishing between the ne2000 and ne1000 cards, and finally
a check that bytes 14 and 15 both equal 57.

If neither card is found, the ROM code reports this error and the PC boot

stops. If either card is found, that card is initialized and used for future MAC layer

comimunication.

5.8 1ne2000 Card Device Driver

The device driver for the the ne2000 cthernet adapter card was developed and
integrated with the remote boot product. The Crynwr source code, [CHDTNSS],
[HHC88], and the dp8390 technical reference, [NSC86], were used to develop the
device driver. A general purpose ne2000 packet driver takes up 6 — 7 kB of code
size. However, the lack of ROM code space meant that a 2 - 3 kB device driver had
to be developed. This was achieved by eliminating all functionality that would not
be required by the remote boot system, such as multicast, receiver overrun check,
asynchronous sends, etc. A cyclic buffer scheme was used to store the packets for
transmission and the packets received. The dp8390’s two DMA channels were used

to transfer data from the ne2000 card’s local memory to the network FIFO, and from

49



the PC’s main memory to the ne2000 card’s local memory. Packets were formatted
according to the HEEE 802.3 ethernet standard.,

5.9 Ensuring Password Security

The user’s login name and password were copied into RAM at multiple locations
- in the buffers used to read the strings, in the packets created and returned for
authentication, in the packets created and returned by the UDP layer and in the
packets created and returned by the MAC layer. As the RAM space used by the
remote boot system is never reused, these strings would remain in certain locations
at the top of the memory, and could be searched for and read by a PC user. To
eliminate this security loophole, all copies of the packets used at various layers were
cleared to null after a successful authentication.

Further, earlier these strings were sent unencrypted over the network, and a
user sitting with a network snooping program such as tcpdump could scan the
authentication packets and extract the login names and passwords. To reduce the
chances of this happening, a simple but unusual encryption algorithm is used to
encrypt the password at the client side and decrypt is at the server side. This
makes the location and identification of the login name and password difficult for
a malicious network snooper.  However, decoding by a network snooper is still
possible. The coding of algorithms required to make security foolproof would require

substantial programming effort.

5.10 Improved Diagnostics and Error Handling

Diagnostics is an area where substantial coding effort has gone. About 15 % of the
total ROM code size consists of error analysis, error reporting, and general status
reporting. All the diagnostics cannot be described here, but a few examples are
given to show how diagnostics were coded to improve usability and maintainability.
In addition, the layout and line spacing of all messages has been designed to make

them pleasant to read.

50



o Even before the BOOTP server is contacted, information relating to the ether-
net adapter card is printed on the sereen. Thus, if the PC has an ethernet card
which is not supported by the remote boot system, or will be incompatible with
the packet driver installed by the remote boot file, the relevant information is
reported to the user right at the beginning, before the ethernet adapter card
18 used for booting. The ethernet address of the PC is also reported, to allow

the PC's entry in the bootptab database to be made simply and quickly.

o After the BOOTP server is contacted, the internet address of the PC, its host
name, and the name of the boot file that will be used for booting are printed
on the screen. These help to identify the PC in the bootptab database, help
to easily diagnose booting problems due to an incorrect boot file specification,

and serve as a simple check that syntactically correct BOOTP information

was received by the PO

o A distinction is made between errors arising out of a server not being con-
tactable, and a server reporting back a failed operation. This helps tracing of

booting errors more casily.

o [f the boot file does not correspond to a standard BIOS floppy type, this is
reported to users, and they are advised to reboot. However, users also are give

the option of continuing with the boot, even though it may fail.

e If an entry in bootptab has configured a PC to do a local disk boot, the user
is asked to prompt the PC to continue. This is so that the initial ethernet
card information and the BOOTP information can be viewed by the user, and

so that the user knows that a local disk boot is about to take place.

There are many other places where similarly intelligent diagnostics and error

handling have been built into the remote boot system.

aom‘iQL LIBRARY
LT, )

51  den N A‘---‘M



5.11 Terminate and Stay Resident Client Code

The earlier remote boot implementation had provision for a TSR client executable.
With the new implementation, the features which were to be tested by the TSR
cade had to be supported and extended.

The major new features which were added to the TSR code were the display of
the BOOTP packet parameters, the display of the remote boot sector parameters,
a step by step remote boot implementation which stops at key points in the client
code, and a display of the packet header information in the ethernet, internet and
UDP layers.

'To save space in the ROM code, these features are available only with special
compilation using the TEST and DEBUG flags. The features they support are
not meant to be pmgrmm'nvd into a ROM, and they are only used for testing and

debugging the remote boot system as a user program.

52 . e P s



Chapter 6

Software Quality Implementation
Details

In modern software products, the cost of maintaining and upgrading a software
product over its life-cycle is 3 to 5 times the cost of development of the software
product. In turn, the cost of development of a software product is about 10 times
higher than the cost of the developiment of a functional program [Jal91].

The starting point of this thesis work was a remote boot system, which had
to be re-designed to overcome several limitations, which had to be made into a
viable software product, and whose future usage and maintenance costs had to be
minimized. From the facts given in the above paragraph, it is clear that a great deal
of care and effort had to go into the software engineering aspect of this work. That

is why a complete chapter has been devoted to this aspect of the work.

6.1 Guidelines for High Quality Code

In order to write high quality code, some standard guidelines have to be followed.
These guidelines are based on my industrial experience at Inter Software and Tech-
nologies, Pvt. Ltd, and on the specifications in [Jal91], and have been strictly

adhered to in the new remote boot implementation.

53



6.1.1 File and Function Headers

All files have headers to summarize their purpose, contents and history. An example
file header is given here.

/*#####****##****#*********#***********************************************/

=

*
* Filename: tinyudp.c *
* *
* Owned by: IIT Kanpur *
* *
* Last mod. date: 27th May 1986 *
* *
* Contents: . This file contains the routines implementing UDP *
* and IP for the remote boot system. In addition, the *
* UDP application routines for BOOTP, authentication *
* and boot file service are implemented here. Several *
* test and debugging routines are also in this file. *
* */

/*#************************************************************************/

Similarly, functions have headers which allow the reader to understand the
interface and purpose of a function without going over the code. An example

function header is give here.

ko o o ok ks s ok ok ok ks s sl ok ksl ok iRk ok sk ok ol ok KoK sRoK koK o ok ok ok o ok sk ok ok /

/* *
* Function name: udpInit *
* *
* Arguments: *
* argl: p_pcUdpSocket - s: pointer to the socket structure *
* arg2: pclpHwAddress - inaddr: IP address of destination *
* arg3: word - localPort: local port number *

54



* argd: word - foreignPort: foreign port number

*
* *
* Return value: void *
* *
* Purpose: This function fills in the socket structure with *
* the necessary parameters. The s_pcUdpSocket *
* structure is that of a UDP socket. *
* */

/#t‘tt**#*t‘t*#lt#*ﬁ*#****#*#**********************************************/

6.1.2 Header File Partitioning

Guidelines for header file partitioning include several things. Firstly, design of header
files such that the information contained in them is cohesive. This in turn makes
the dependencies on header files simple and easy to understand. Secondly, separate
inclusion of the operating system header files and the local header files. Thirdly,
avoiding hierarchical inclusions of local header files, as these make dependencies
diflicult to understand.

Some of the header files used and their inclusion is shown in an example here.

/% %ok sk okokiokokkokk k- Standard Include Files ok ok ok ok kR kol o ok ok sk ok ok sk skok ok f
#include <conio.h>

#include <dos.h>

#include <bios.h>

JrkskoioRook ok ook kokk Standard Include Files sokiokskdokskskkikkkkokiok koo ok /

[ ok sokokkok ok kR kR okiokk Local Include Files kkokkkskksorkkoksokdomksdokorkok [
#include <pcboot.h>
#include <handler.h>
#include <tinyudp.h>

[/ Forkorkokkkokrkkkookkkkkk Local Include Files skskkokskkikikokokkkikiokkiokdkk /

55



6.1.3 Macro, Typedef, Function and Variable Declarations

Good guidelines for the declarations of macros, typedefs, functions and variables
make the code casy to read and understand, and thus easy to maintain.

For macros, fully descriptive names (in capitals with separating underscores),

are used to make macros stand out from variables.

300k ko Ok KRR KR ROk ROk Rk MacTos s ke s s ok s e sk ok oo o ok K oK R o s ok ok ko

#define PC_TIMER_INTERRUPT Oxia

/o ok R RO R ROKKOR ROk KoKk Rk MacTos I n——————r e T P PR PR R L LY

For typedefs, fully descriptive names in small case, with an s_ or p- prefix to
distinguish structures from pointers are used. Capitalization serves the purpose of

the underscores in macros. For the variables in typedef structures, the guidelines

for local variables are followed.

Jaormcknkoronsookiokokaeokkokk . Data Type Definitions m———————— L T T T L T L LS Y

typedef struct

{
longword authcode;
byte loginld [PC_MAX_LOGIN_ID_SIZE];
byte password [PC_MAX_PASSWORD_SIZE];

} s_pcAuthInfo, *p_pcAuthInfo;

[Hdkokokkik ok kk kR kkxkkk Data Type Definitions ———— T T PR P L L L Ll Y

For functions, a clear distinction between global, external and static functions is
made. All functions are to be kept static if possible. Function and argument names
are fully descriptive. Capitalization replaces the function of underscores in macros.
Global functions start with a uniform prefix, which is pc for the PC remote boot

system.

[ Hkkksokkokkokdokkokkokkkkk Global Function Declarations ——— T P P L I I LY

void pcStringCopy (char *dest, char xgource) ;

56



Jrwenmpssnannnrenwnsn Global Function Declarations ************************/

/##*#t#tt#*t#t'#tt*# External Function Declarations ***********************/
extern longword pcClockValueRough (void);

/tlt#'#ttt*tttt#t##* External Function Declarations #*#********************/

Jrwnnarnnnnasanionexss Static Function Declarations skkskkickkskiokksdkkkskkkkikkdkkkk/
static int bootpOrPcbootRoutine (pcIpHwAddress inAddr, word
localPort, word foreignPort,

p_pcInfo pcbootInfo, p_pcBootplnfo
bootpInfo);

Jesnsnnsnhsnnsrnsnnnx Static Function Declarations sk sk ok K ok KoKk ok K ok ok sk kK ok ok

For variables, the naming guidelines are similar to those for functions. Variables
are distinguished as global, extern, static or local. The first two start with the same
pc prefix. Names are descriptive and in small letters. Capitalization replaces the

function of underscores in macros.

J#wsomnkannkmnrkkrkkx Global Variable Declarations sk ok kKRR KRR Aok K ok ok /
s_pcUdpSocket pcUdpSocket ;

Jrmonmnaaonnookknnkk Global Variable Declarations sk ok ok ok KR ko Kok ok ok [

/#sorkxkmokakooookrkk External Variable Declarations st ok ko kKo ok ok ok Kk ok

extern byte pcBootfileName [PC_MAX_FILENAME_SIZE];

[k sakkkksdorkkkickkk External Variable Declarations koK kR sklkoR Kok ok ok kKK okok o /

[/ dkokskokkdokdokok kR kookkx Static Variable Declarations sokokk ok ok ok Kok Kok ok ok ok ok ok ok f

static word userAuthenticated;

[ Fxkookokkdokkokkkokksokkokk Static Variable Declarations sk ok sk ook ok sk ook Skl k ok ke k

int pcInitialise ()
{
/%

a7



* Local variables

«/
word localPort;
word foreignPort;

6.1.4 Design Modularity: Coupling and Cohesion

Coupling ix a measure of the interdependence between functions. Cohesion is a
measure of how tightly bound the elements of a function are to one another. The
goals of low coupling and high cohesion have been followed, except in cases where
these requirements cause a conflict with the design limitations and specifications.

‘Thus, by and large the function design is modular, apart from aspects such
as a single authentication and boot file service which was required to minimize
the number of non-standard services, and merged functions which were required to
reduce the ROM code size, ote,

6.1.5 Conditionals and Control Flow

A good design of conditionals and their resulting control flow makes code casy to
read and follow. The goal is to make conditionals as simple as possible, define
logical order of choices as naturally as possible, use only explicit comparisons, use
brackets clearly to define arithmetic order, use parenthesis to mark conditional code,
and restructure code to avoid nesting over 2 - 3 levels deep. The following badly
structured code is rewritten to show the effect on readability of good conditionals
and control flow.

Original code:

rxMitTime = pcClockValueRough() + PC_UDP_WAIT;
while (rxMitTime > pcClockValueRough())
if (!(ipHeaderPtr = (p_pclpHeader)nelsPacket()))

58



if (checkPacket((byte *) ipHeaderPtr, 0x800))
if (boothrPcbootHandler(ipHeaderPtr, pcbootOpcode,
bootpOpcode, isPcboot))
return(i);

Rewritten code (without comimnents)

rxMitTime = pcClockValueRough() + PC_UDP_WAIT;
while (rxMitTime > pcClockValueRough())
{
ipHeaderPtr = (p_pclpHeader)neIsPacket();
if (ipHeaderPtr == NULL)
{
continue;
}
if (checkPacket((byte *)ipHeaderPtr, 0x800) != 1)
{
continue;
}
if (bootpOrPcbootHandler(ipHeaderPtr, pcbootOpcode, bootpOpcode,
isPcboot))
{

return(i);

6.1.6 Spacing, Line Wrap and Comments

Though these seem trivial aspects to use guidelines for, these items significantly
aflect code readability, and thus the cost of maintenance.
For spacing, a uniform indentation of 4 white spaces is used for each additional

scope or conditional level (and not at any other place), and the area is marked out

59



by parenthesis on separate lines. No tabs appear in the code. Space is left before
conditionals, after commas, and on either side of arithmetic operators.

For line wrap, no line is longer that 80 characters, even if it means leaving large
parts of the line blank or breaking up strings across lines. This ensures that a
printout of the code on any printer will be fully readable.

(‘fomments are the most important aspect for readability. They follow a uniform
pattern  leave a blank line and then to indent to the same depth as the code to
be explained. Comments explain the action being taken together with the reasons.

Long comments are used if some unusual behavior is to be explained.

/*

* Call pclnitialise again to reinitialize parameters

* This is required because when the PC is on and waiting for the

* login, after 5 - 10 minutes data corruption occurs (maybe due to
* the other interrupts meanvhile handled by the PC), due to which
* the pcboot .server cannot be contacted. Resetting the PC removes
* the problem. Instead of that, recalling pcInitialise here will

* have same effect

x/
while (pcInitialise() == 0);

6.2 Product Documentation

Code will be read by persons who arc to maintain or upgrade a system. But the
users of the system should never have to go through the code to understand it. There
should be complete user documentation of all aspects of the system use, describing
the hardware and software requirements, installation and usage procedures, and the
supported features of the system.

The docurnentation written for the remote boot system is centralized in one place
in the Appendix to this thesis. It is arranged in a logical sequence of sections and

is structured as a step by step set of instructions and trouble shooting options.

60



6.2.1 Documentation Provided

The documentation in the Appendix has a section on the hardware and software
requirements, on the diskettes provided with this thesis and on the installation of
the server. It has a section on the installation of the client - the creation of the
ROM code to download, its fusing into the ROM, and the ROM’s installations in
the PC. The Appendix also has a section on the boot file creation and installation.
All sections are complete in themselves, that is, all changes that are related to a
section are specilied within the same section.
The Appendix is intended to serve as the complete PC Remote Boot Installation

Manual, which should be supplied to system administrators wishing to install PC

Remote Boot on their network of PCs.

61



Chapter 7

The Remote Boot File

The remote boot file is not just an image of any bootable floppy - it must perform
special operations specifically for remote boot. Thus its creation is not straightfor-
ward, and requires to be explained. This is done in this chapter, so that the design

and implementation details of the remote boot file are centralized in one place.

7.1 Definition of the Remote Boot File

The remote boot file is a binary dump of all the sectors of a bootable floppy (i.e.
one which can be used to boot a PC). The dump is in the logical order of sectors,
e.g. on a 1.44 MB floppy, track 0, head 0, sector 1 to track 0, head 0, sector 18, and
so on to track 79, head 1, sector 18.

The boot floppy used to make a remote boot file must have, in addition to the
normal booting operations, certain commands which are specifically required for a
remote boot. Thus, for remote boot to be implemented on a network of PCs, the
normal booting floppy must be taken and modified before a dump of the floppy can

be used to create a remote boot file.

62



7.2 Restrictions on the Remote Boot File

‘There are a few restrictions on the remote boot file, as pointed out above. These

restrictions are discussed here.

7.2.1 Error Free Floppy

The floppy used to create a remote boot file must have no bad sectors. This is not an
inherent limitation in remote boot, but due to the fact that a remote boot file can be
dumped back onto a floppy to inspect it. Take the case that the original floppy used
to create the remote boot file had a bad sector at location X, that the new floppy
used to inspect a reverse dump of the remote boot file has a bad sector at location
Y, and that X is different from Y. Then the remote boot file will be incorrectly
dumped back onto the second floppy, and therefore it cannot be correctly inspected.
As such, it is necessary that all floppies used to create or inspect a remote boot file
have no bad sectors, i.e. high quality floppies should be used for these purposes.
|

7.2.2 RAMDrive Creation, Identification and Use

This aspect of the restrictions on the remote boot file has been already discussed in
chapter 2 and chapter 5. As such, it will not be discussed again here. Examples of
the commands that are used on a MSDOS boot floppy to create, identify and use a
RAMDrive are given later in this chapter. It should be noted that for each operating
system for which remote boot is to be implemented, if a RAMDrive is required, its
equivalent commands must be added to the boot floppy before creating the remote
boot file.

7.2.3 Restoring Old Disk Interrupt Handler

This aspect of the restrictions on the remote boot file has also been discussed in
chapter 2 and chapter 5. An example of the command that is used on a MSDOS
boot floppy to restore the old BIOS 0x13 disk interrupt handler is given later in this

chapter. It should be noted that the reset.exe program called to restore the old

63



handler remains the same across operating systems, and only needs a recompilation
for the new operating system for which remote boot is to be implemented.

There is no restriction on the floppy type used to create the remote boot file.
All floppies in standard use, i.c. 360 kI3, 720 kI3, 1.2 MB and 1.44 MB can be used
to create the remote boot file, and the choice will not affect the availability of the
PC’s A: drive after booting.

Because files are stored on a floppy in order of the logical sectors, and because
the binary dump of a floppy is also taken in the same order, the remote boot file
can be much smaller than the floppy size. So if all the booting files of a 1.44 MB

boot floppy fill in only the first half of the disk space, the remote boot file can be
as small as 722 kB in size.

7.3 An Example Boot File

Since the correct creation of a remote boot file is a critical and slightly obscure
step in the installation of the remote boot system, an example is used to show how
the boot file should be structured. This example should be studied carefully before
creating and installing a new remote boot file. The example is for MSDOS on the
top of which XFS is to be run. For other operating systems logically equivalent

restrictions (as discussed above) hold true.

7.3.1 The Root Directory

The root directory contains the standard system configuration file, config. sys, the
default MSDOS shell command . com, the standard startup batch file autoexec.bat,
a new batch file proceed.bat, the executable to restore the old BIOS 0x13 disk
interrupt handler reset.exe, and the dos, xfs and bin directories. Two files,
io.sys and msdos.sys are actually the first two files in the root directory, but are
hidden files, as specified by their attributes.

64



7.3.2 config.sys

This is the standard system configuration file used by MSDOS at boot time. It is
normally optional, but as remote boot requires it for the creation of the RAMDrive,

it is an essential file in the remote boot systerm. The fully commented file is shown
below.

rem ** Here A: refers to the remote boot image
DEVICE=A:\DOS\HIMEM.SYS /TESTMEM:OFF

DEVICE=A:\DOS\EMM386 .EXE RAM X=B800-C7FF X=D000-D7FF

rem ** Above two lines to be commented if there is no extended memory
DEVICE=A:\DOS\ANSI.SYS

SHELL=A:\COMMAND.COM A:\ /E:1024 /P

BUFFERS=20

FILES=40

DOS=HIGH,UMB

rem ** Above line to be commented if there is no extended memory
LASTDRIVE=V

STACKS=9,256

DEVICE=A:\DOS\RAMDRIVE.SYS 168 512 16 /E
rem ** Creates a RAMDrive at C:, D:, E:, ... depending on PC hard disk s
rem ** disk:: 0 MSDOS partitions => c:, 1 => d:, 2 => e:,

rem *+x /E flag to be removed if there is no extended memory

7.3.3 command.com

This is the default MSDOS shell. It is a program running under the control of
MSDOS which provides the user’s interface to the operating system. It parses and
carries out the user’s commands, including the loading and execution of programs
from a disk or other mass storage device. It can be replaced with a shell of the

users’s own choice.

65



7.3.4 autoexec.bat

This is the standard startup batch file called by MSDOS at boot time. It is also an
cssential file in the remote boot system, as it identifies the RAMDrive and duplicates
those contents of A: drive on to the RAMDrive which are required for the continued

booting ©f MSDOS and the installation of XFS. The fully commented file is shown

below.

Qecho off

ver
prompt $p¥g

rem ** Identify RAMDrive ’dl’ (last drive)
set dl=none
if m/.dl'/,'-sz"none" if exist v:\nul set dl=v:\

if u-/_dl'/,"=="none" if exist u:\nul set dl=u:\

if .,%dl'/."--"none" if exist d:\nul set dl=d:\
if ..y.d]_%n--"none" if exist c:\nul set dl=c:\
rem *%* Identifies RAMDrive at V:, ..., D:, C: depending on PC hard disk
rem ** This allows the use of a single boot image for any hard disk set

rem ** IS complex because a bad disk before the RAMDrive will report er

copy command .com %dl%;> nul

copy proceed.bat %d1% > nul

md %d1l%xfs > nul

copy \xIs %d1Y%xfs > nul

m k¥ Contents of remote boot floppy copied onto RAMDrive

Ire

rem ** Booting will be from RAMDrive

set COMSPEC=%dl%command.com

vd1%proceed

66



7.3.5 proceed.bat

This is a new batch file called at the end of autoexec.bat in the remote boot file.
It is also an essential file in the remote boot system, as it restores the old BIOS
0x13 disk interrupt handler. After this call, XFS is set up, and then the network

specific initializations are done. The fully commented file is shown below.

path=%d1l%xfs
A3 ¥A

rem ** Comes out of the remote A: drive and into the RAMDrive

a:\reset

rem ** Last line restores the PC’s local disk interrupt handler

rem ** Only the PC’s local A: drive can be accessed after this

wd8003e 0x60 0x2 0x280

rem ** ne2000 0x60 0x3 0x300

winpkt Ox60

xfskrnl 0x60

xfstool Q%dl%xfs\init

winpkt 0x62

rem ** Last 6 lines set up wd8003e / ne2000 packet drivers and XFS

g:\rboot\autoexec

rem ** Last line specific to the network setup in CSE Deptt, IIT Kanpu:

7.3.6 reset.exe

This executable in the root directory of the boot file is called to restore the old BIOS
0x13 disk interrupt handler, by calling the 0x1b service of the new BIOS 0x13 disk
interrupt handler. This call must occur in proceed.bat, after the RAMDrive has
copies of all files required for the remaining boot, and before remote boot’s device

driver for the ethernet card is replaced by the new permanent packet driver. The

67



second restriction is because after installing the permanent packet driver, reset . exe

will not be accessible to restore the A: drive interrupt handler on the PC.

7.3.7 The dos Directory

This directory contains system and executable files required for the specific DOS
configuration to be set up on the PC. The file ramdrive.sys is the standard
DOS system file to setup a RAMDrive. The file ansi.sys it the standard DOS
system file to support ANSI terminal emulation. The file himem.exe is the standard
DOS executable to manage areas of extended memory. The file emm386. exe is the

standard DOS executable to simulate expanded memory and provide access to the

upper memory areas.

7.3.8 The xfs Directory

This directory contains system and executable files required for the XFS configura-
tion to be set up on the PC, and for the installation of packet drivers. The file init
is the standard XIS system file to store the network drive initialization information.
The file hosts is the standard XFS system file to identify recognized hosts on the
network by their internet addresses. The files xfskrnl.exe and xfsinit.exe are
the standard kernel and initialization programs of XFS. The files wd8003e.com and
ne2000.com are the standard wd8003e and ne2000 ethernet adapter card device
drivers, only one of which is installed by proceed.bat. The file winpkt.com is the
standard windows virtual packet driver which must be installed over the wd8003e

or ne2000 packet driver.

7.3.9 The bin Directory

This directory is not used by remote boot. It is used as a store for executables that
may be required when the boot floppy is used to boot a PC from its local drives.
These executables can also be run during the TSR version of remote boot, in which

the remote A: drive can be explicitly accessed by the user.

68



7.4 Utilities to Create Remote Boot Files

T'wo utilities, scand2f and scanf2d, were written to create a boot file from a disk,
and to write back a boot file to a disk. The second utility is necessary as an existing
boot file may need to be inspected. Both these utilities can handle any floppy type
(360 kB, 720 kB, 1.2 MB and 1.44 MB) in any floppy drive. They have been designed

to be easy and fast to use. Their usage is discussed in more detail in the Appendix.

69



Chapter 8
Conclusions

This chapter deals with the final remote boot system status, and the results of re-
design in terms of improvement of certain parameters of performance as compared
to the earlier implementation. In addition, some suggestions are made for possible

future extensions of the remote boot system.

8.1 Product Status

The remote boot system developed is a fully reliable system to authenticate users
and boot PCs, on a LAN having a UNIX server, from the network. It is transparent
to the PC configuration in terms of hard disks and ethernet adapter cards (for the
most commonly used wd8003e and ne2000 cards). The product has been in use on 5
PCs in the Department of Computer Science and Engineering, IIT Kanpur for over
4 months. For the last 3 months, there have been no complaints reported by the
PC users or system administrators. As such, it can be considered a stable product.

The re-designed PC remote boot system has also been installed on over a dozen
PCs in the Computer Center of ' Kanpur, and no complaints have been reported

for 3 weeks.

70



8.2 Modes of Operation

As discussed in the earlier chapters, there are two modes of operation of the client
ROM code: (1) a Terminate and Stay Resident version of the program that can
be run as a user program for testing of code changes in the client code, (2) a fully
operational ROM version which is fused into a ROM and plugged into the network
interface card of a PC to make it boot from a remote server.

8.3 Parameters of Performance

A large amount of new functionality has been added in the re-designed remote
boot system as compared to the earlier implementation. It is useful to see how
these changes have affected the performance of the system in terms of various key

parameters.

e Code, Data and Stack Size: The carlier implementation reserved 18 kB of
RAM for code, data and stack. The re-designed version, despite the additional
functionality, also reserves only 18 kB of space in the RAM for code, data and
stack. The sizes of some of the important client object files and the ROM

download file are listed below for the two implementations.

FILE EARLIER PC REMOTE BOOT RE-DESIGNED PC REMOTE BOO
main.com : 16.9 kB 13.2 kB

main.obj ‘3.3 kB 3.0 kB
tinyudp.obj 3.0 kB 5.3 kB
handler.obj 2.4 kB 2.3 kB

twd.obj 2.0 kB 1.8 kB

tne.obj -- 2.8 kB
tinytcp.obj 4.9 kB --

arp.obj 1.0 kB -=

71



¢ Booting Time: The earlier implementation took 32-36 seconds to do a
remote boot on a PC-386. This should be compared to the 52 seconds required
to do a local boot from the floppy drive and to the 15 seconds to do a local
boot from the hard drive. The re-designed system also takes about 30 seconds
after authentication to do a remote boot. On a PC-486, remote boot takes 14
seconds compared to 42 seconds required for a floppy drive boot. The absence
of performance degradation despite increased functionality is mainly due to
the use of light weight boot file access protocols. The processing time taken

at the server side of the remote boot application is about 1.5 seconds.

¢ Security, Reliability and Robustness: The system is almost fully secure,
with a single loophole which is in the case of a dedicated network snooper
picking up authentication packets, and then locating and decrypting the login
names and passwords in them. This is an unlikely event but still possible.
However, security is much improved over the earlier system, where login names
and passwords could be read by anybody using the PC. The system has proved
highly reliable, and its only point of failure is if the network is down. This is a
significant improvement over the earlier implementation, which had multiple
points of failure and was olten unoperational due to server problems. If the
network is down, the remote boot systemn cannot contact the BOOTP server
and does not, allow a local boot. In such a case, PC becomes unusable unless
the boot ROM is physically removed from the PC. However, in such cases, as
workstations also cannot boot and as network drives are inaccessible, the PCs’
use would anyway be limited. As for robustness, the new remote boot system
has no known bugs and implements a truly transparent remote boot, which

was not the case earlier.

e Management from Server Side: The management of PC remote boot by
system administrators from the server side is one of the major gains of the
re-design of PC remote boot. As described in chapter 4, many aspects of
the PC boot can be controlled from the standard BOOTP configuration file,
/etc/bootptab. As the system administrators will already be using this file

to control the booting of workstations, using it to control the booting of PCs

72



is only a marginal overhead. In the earlier system, this was a major overhead
and often a bottleneck, due to the limited control provided.

e Product Maintainability: This has been one of the most important goals
of the re-design of PC remote boot. In the earlier implementation, it took
over 3 months to fully understand the code and installation procedures, and a
few aspects remained unclear until very late in the thesis work. It is estimated
that the fully documented code and detailed Appendix will cut this time down

to a couple of weeks for future upgradation and maintenance, if required.

8.4 Restrictions

There is one restriction on the PC remote boot system which had not been antici-
pated. This relates to the ne2000 card support.

Using the ne2000 ethernet card driver, access to the BOOTP server and user
authentication (using the authentication and boot file server) were successfully
implemented. However, the loading of MSDOS from the remote boot file was not
successful. During the booting sequence, MSDOS would hang at the instruction
QUT 85, AL. Port 85 is a port for the DMA chip. No logical reason could be found
for this behavior during remote boot with an ne2000 card, despite 6 weeks of study
on this problem. The standard Crynwr packet driver, ne2000.con, gave the same
problem. It should be noted that PC packet drivers are intended to be installed only
after a PC has booted. It may be possible that there is an undocumented conflict
which occurs if the ne2006 packet driver is installed before the PC has booted, as
is required by the remote boot system. However, the source of such a conflict or the
means of resolving it could not be found.

Therefore, it has been decided to restrict PCs having an ne2000 cthernet adapter
card to the first two stages of remote boot, i.e. BOOTP server access and user
authentication. The third stage of downloading the remote boot file is replaced by a
forced local drive boot. This restriction on PCs having an ne2000 ethernet adapter
card does not downgrade the utility of the PCs, as without using remote boot a

local boot was anyway being done. Such PCs can however now access the BOOTP

73



server to configure their boot, and authenticate their users. Thus, the remote boot
system can be installed on a heterogeneous network of PCs having both wd8003e

and ne2000 ethernet adapter cards.

8.5 Possible Future Extensions

A few possible extensions have been identified, on which future work can be done

on the remote boot system.

* The ne2000 card problem needs to be resolved. Two manuals, giving details of
the 74LS612 chip (DMA’s memory mapper), need to be referred to to diagnose

the problem. These are:
(1) LSI Logic Data Book - 1986, [SDVD0O01],
(2) TTL Data Book Vol 2 (Std. T'T'L, S and LS) - 1985, [SDLD001]

* A network snooper can, with sufficient dedication, break into the security of
the system. If a sceure encryption algorithm is used, such a possibility is
eliminated. This however, may require up to a few kbytes of client code, and
will probably be necessary if PC Remote Boot is to become a commercial

product.

* Only 13.2 kB of the 16 kB ROM code space available has been used. The
remainder can be used to implement additional functionality. It is possible
that a standard protocol for user authentication becomes established in the
future, even though none is defined today. In anticipation of this, the remote
boot file access service can be redesigned to use the standard Network File
System, as was discussed in chapter 5. It is estimated that less that 2 kB of
client code would be required to implement NFS on top of RPC and XDR.

* On the client side, the routines in twd.c and tne.c contain probes to identify
the ethernet card and its I/O base address. However, separate boot files must
be used for different ethernet adapter cards at different 1/O base addresses, so

that the permanent packet driver is correctly installed. If the existing probes

74



are used in a program on the boot file to identify, locate and install the correct

packet driver, a single boot file can be used for PCs with different ethernet
adapter card configurations.

As described in chapter 3 and chapter 5, true operating system independence
requires a knowledge of the internals of a variety of operating systems. This

is an area where more study should be done.

()



Appendix A

PC Remote Boot Installation

Manual

This manual is meant for system administrators intending to install or maintain PC
Remote Boot in the PCs on their network. It is also meant to be read by persons
who need to maintain or upgrade the PC Remote Boot software, and thus need to
be able to install and test any changes they make.

This manual contains a detailed step by step guide to the installation and mainte-
nance of this product. It covers all the aspects of installation, in logically partitioned
and individually complete sections. It includes trouble shooting measures in case
problems are encountered in the instalkation.

Some paragraphs and'sentences in this document are prefaced with the char-
acters [*]. These deal with issues relating to the hardware available specifically
in the Computer Science and Enginnering Department of the Indian Institute of
Technology, Kanpur. Such an approach is necessary as PC Remote Boot has been
developed using certain commercial hardware, and some essential information may
be specilic to the hardware used. It is expected (but not guaranteed) that this
information will also be relevant when different but equivalent hardware is used.

In this manual there is some duplication of the material presented in the M.Tech
thesis A Reliable Network Boot Service for PCs. This thesis, supervised by Dr.
Rajat Moona, was submitted by Bhartendu Sinha at IIT Kanpur in July 1996. This

76



manual forms the Appendiz to the above thesis. The duplication of material was

necessary to make the manual an independent and complete document.

A.1 Hardware and Software Requirements

A.1.1 Hardware Requirements

e Network: A Local Area Network (LAN) on which the IEEE 802.3 ethernet
protocol can be run.

e Personal Computer(s): One or more IBM compatible PCs with ethernet
adapter cards connecting them to the LAN. The cards should be either ne2000
or wd8003e ethernet adapter cards, or their compatibles. They must be able
to support a boot ROM of at least 16 kB size. At least one PC must have a
1.44 MB 3.5 inch floppy disk drive, to rcad the distribution diskettes. At
present, PCs having ne2000 cards are restricted to doing boot configuration
and user authentication only. Therefore, PCs having ne2000 cards can config-
ure their booting procedure and can authenticate the user, but they will boot

only from their local disks instead of from a remote boot file.

e UNIX Server: A UNIX server machine connected to the LAN and supporting
the TCP/IP protocol suite.

e EPROMs of size 16 kB (27128A): A supply of 271284 EPROMs. These
have a 16 kB address space. Note: EEPROMs or EPROMs with a larger
address space may also be used. As these are not dealt with in this manual,
the use of 271284 EPROMs is strongly recommended.

e EPROM Programmer: An EPROM programmer which can program the
271284 EPROM. It must be interfacable with a computer from which it can
download files, and it must be able to calculate its buffer checksum & modify
its buffer data. [*] The ESA UPAT of Electro Systems Associates Pvt. Ltd.
was used in IIT Kanpur’s CSE lab. '

77



¢ EPROM Eraser: An EPROM eraser which can erase data from the EPROM
using ultraviolet radiation. This is necessary only if used boot ROMs are to

be reprogrammmed. [*] The EPROM eraser by Microtech Instruments and
Controls was used in II'T Kanpur’s CSE lab.

¢ Error Free Floppies: High quality floppies, i.e. having no bad sectors and a
long life, should be available. These will be used to make copies of the sample
boot floppy, and be used as boot floppies for creating and inspecting the boot

file. PC Remote Boot can be installed by using only the two distribution
diskettes supplied with this manual.

A.1.2 Software Requirements

e Server Platform Software: The UNIX server machine must support stan-
dard protocols recommended by the Internet Activities Board. In particular,
the TCP/IP suite and BOOTP must be supported. If the server code is to be

compiled, make utilities and a C compiler must be available.

e Client Platformx Software: The PC must have standard ROM-BIOS sup-
port. If the ROM code or boot file creation utilities are to be compiled,
make utilities, a Turbo-C compiler, assembler and linker, and the exe2com or

exe2bin program must be available.

e EPROM Programming Software: The software to configure and control
the EPROM programmer must be available. The EPROM programming
software, the EPROM programmer and its adapter card would normally be
supplied together. 1

e Network Interface Card Setup Software: The software to configure the
ne2000 or wd8003e cards should be present, unless these cards are configurable

by manually operated DIP switches.

78



A .2 Distribution Diskettes

Two 144 MB 3.5 inch distribution diskettes are supplied with this manual.
These are described in this section.

A.2.1 Client and Server Software Floppy

This floppy contains the source code for the PC Remote Boot client and server, and

the binaries for the PC Remote Boot client. Server binaries are not supplied as they

will be platform dependent. It also contains an example /etc/bootptab entries file,

an cxample /etc/inetd.conf entries file, an example /etc/services entries file,

and a copy of this manual in 1j (laser jet) format. The directory structure with

comments is given below.

manual.lj

bootptab

inetd.con

services

source

-> client

->
->
-2
->
-2
-2
-2
->
->
->
-
-2

main.c
tinyudp.c
handler.c
tne.c
twd.c
tests.c
pcboot.h
tinyudp.h
handler.h
tne.h
twd.h

act.asm

This manual in 1j (laser jet) format */
Example /etc/bootptab entries */
Example /etc/inetd.conf entries */

Example /etc/services entries */

Source code */

Client source code */

ROM code main program */

ROM code UDP routines */

New BIOS 0x13 interrupt handler routine */
ne2000 card driver routines */

wd8003e card driver routines */

Terminate and Stay Resident (TSR) routines
PC Remote Boot header file */

UDP header file */

BIOS 0x13 interrupt handler header file */
ne2000 card driver header file */

wd8003e card driver header file */

ROM code routine for relocation */

79



-> newintr.asm
=> ourproc.asm
=> <cO.asm
=> rules.asi
-> scand2f.c
~> scanf2d.c
-> reset.c
-> make.rom
-> make.tsr
-> nmake.dbx

-> server
=> pcboot.c
=-> pcboot.h.
-> makefile

binary

-> client
-> main.com
-> act.bin
-> reset.exe
-> scand?2f.exe
-> scanf2d.exe

/*
/*
/*
/*

/%
/*
/*
/*
/*
/*
/*

New BIOS 0x13 interrupt interface routine */
Some rewritten DOS functions */

Turbo C start up code */

Turbo C assembler rules and structures */
Disk to boot file dump utility */

Boot file to disk dump utility */

0ld BIOS 0x13 interrupt restore utility */
ROM code and utils creation makefile */

TSR code creation makefile */

Debug code creation makefile */

Auth. & boot file server source code */
Auth. & boot file server main program */
Auth. & boot file server header file */

Auth. & boot file server creation makefile 1

Binaries */

Client binaries */

Downloadable ROM code executable */

ROM code executable for relocation */

01d BIOS 0x13 interrupt restore utility */
Disk to boot file dump utility */

Boot file to disk dump utility */

A.2.2 Sample Boot Floppy

This floppy is a sample MSDOS boot floppy, from which an MSDOS boot file can

be created for use by PC Remote Boot. The directory structure, with comments is

given below.

io.sys
msdos.sys

config.sys

(hidden file) /* Resident device drivers */

(hidden file)

/* MSDOS kernmel */

/* System configuration file */

K0



command . com
autoexec.bat
proceed.bat

reset.exe

dos
-> ramdrive.sys
-> ansi.sys
-> himem.sys
-> emm386.s8ys
xfs
-> init
-> hosts
-> xfskrnl.exe
-> xfsinit.exe
-> wd8003e.com
=> ne2000.com
-> winpkt.com
bin

/*
/*
/*
/*

/*
/*
/*
/%
/*
/%
/*
/%

/*

Default MSDOS shell */

System startup batch file */

Additional batch file */

0ld BIOS 0x13 interrupt restore utility *

MSDOS utilities directory */
RAMDrive creation file */

ANSI terminal emulation file */
Extended memory management file */

Expanded memory simulation file */

XFS directory */

Network initialization information */
Internet addresses of hosts */

XFS kernel */

XFS initialization */

wd8003e packet driver */

ne2000 packet driver */

Windows virtual packet driver */

DOS utilities directory (not accessed) */

A.3 Server Installation

This section deals with the setting up of the PC Remote Boot servers - the BOOTP

server and the authentication & boot file access server.

A.3.1 Preparation of Server Binaries

Only the authentication & boot file access server is to be compiled, as the BOOTP

server is already available on UNIX platforms. The procedure to prepare the

authentication and boot file server binary is as follows.

81



e Boot a PC having a 1.44 MB 3.5 inch floppy disk drive. The sample boot
floppy can be used to boot this PC.

e Copy the contents of directory source\server from the client and server

software floppy to a directory which has been mounted on the UNIX server.

e On the UNIX server, enter the above mentioned directory. Remove all the
occurrences of CTRL-M, in all the files present.

o Give the command make clean install. If errors occur at this stage, contact

the supplier of the distribution diskettes. Otherwise the pcbootd binary
is now installed as /var/adm/pcbootd.

Note: pcbootd can be run as an inetd daemon process or as a normal user
process. To run it as a normal user process, either the user must be root, or
the program must be recompiled after changing the PC_.SERVER_PORT in
the server source code file pcboot.h to a value above 5000. To run it as an

inetd daemon process, a =i flag must be added.

A.3.2 Setting up Server Configuration Files

There are three standard UNIX system configuration files that need to be modified
to set up PC Remote Boot at the server side: /etc/bootptab, /etc/inetd.conf

and /etc/services. The steps to modify these files are given as follows.

e Boot a PC having a 1.44 MB 3.5 inch floppy disk drive. The sample boot
floppy can be used to boot this PC.

e Copy the bootptab, inetd.con and services files of the root directory from
the client and server software floppy to a temporary directory which

has been mounted on the UNIX server.

e Study these files and make the corresponding additions in the UNIX con-
figuration files /etc/bootptab, /etc/inetd.conf and /etc/services. The
/etc/bootptab file should be updated after reading the man page of bootp,

and the additions made will be dependent on the local network environment.



The entries for the individual PCs will be described in sections A.4.5 and A.5.4.
The latter two files, /etc/inetd.conf and /etc/services have standard

additions. Examples for changes in all three files are shown here.

/etc/bootptab entries for remote boot:

#%#%%###%%‘%%#%#

Optional vendor specific flags for PC boot are explained below
T128=C0:\

b7: 0 => Local boot, 1 => Remote A: drive boot DEFAULT:
b6: 0 => No authentication{ 1 => Authentication required DEFAULT:
b5: 0 => Remote A: drive 1 => Remote A: drive writable DEFAULT:
never writable before reset of disk handler
b4: 0 => No debug info 1 => Print debug info with Term. DEFAULT:
& Stay Resident version

b3-b0 => Not used DEFAULT:
T129=0092:\

Authentication + boot file server port number DEFAULT 0x0(

T130=9010A221:\

Authentication + boot file server IP address DEFAULT subnet broadc:
NOTE: After getting the first valid reply,

the correct‘IP addr is set

.PC_DEFAULTS:\

# B # # *H

ht=ethernet :hn:sm=255.255.0.0:vm=rfc1048:\

ht: Ethernet LAN, having 8 byte hardware addresses
hn: Write host name in the BOOTP reply

sm: Subnet mask is 255.255.0.0

vm: BOOTP version corresponding to rfc1048

NOTE: hosts internet address is picked up from the NIS

T129=0092:\
T130=9010A221:\



/etc/inetd.conf entries for remote boot:

# Start the BOOTP server with debug level 2

bootps dgram udp wait root /usr/sbin/bootpd bootpd -d 2 /etc/bootp
# Start the authentication & boot file access server as an inetd daemon

pcbootd dgram udp wait root /var/adm/pcbootd pcbootd -i

/etc/services entries for remote boot:

# Define port numbers of the BOOTP server and client
bootps 67 /udp

bootpc 68/udp

# Define port number of the authentication and boot file access server
pcbootd 146/udp ’

e After the above changes have been made, the inetd network services daemon
must be restarted by root, by giving the command kill -HUP <inetd_process_id>.
All the changes in the server configuration files are now effective, and the
servers required for PC Remote Boot are installed.

A.4 Client Installation

This section deals with all aspects of the testing and installation of PC Remote Boot
clients, i.e. the PCs.

A.4.1 Client Testing without a Boot ROM

The client code can be tested as a Terminate and Stay Resident (TSR) user program.
If any changes have been made to the client code, they should be tested in this mode
before fusing the client code into a boot ROM. A description of how to do this is

given below.

e Boot a PC having a 1.44 MB 3.5 inch floppy disk drive. The sample boot
floppy can be used to boot this PC.



Copy the contents of directory source\client from the client and server

software floppy to another directory on the above PC.

Enter this above mentioned directory, and give the command make ~fmake.tsr
clean all. If errors occur at this stage, check if they are a result of any changes
made in the client code or in the makefile. If they are not due to such changes,
contact the supplier of the distribution diskettes. If no errors occur, the

Terminate and Stay Resident binary main.com is now ready.

Update the UNIX server file /etc/bootptab as described in sections A.4.5
and A.54.

If changes were made to files existing on the network drives of the PC which
was used to create the TSR binary, these network drives must be unmounted
at this stage. This i's because the running of the TSR program will reset the
ethernet adapter card, and this will result in a loss of network cache coherence,
due to which modified files will get severely corrupted. After unmounting,

remount the network drive containing the TSR binary main.com.

The client TSR binary is now ready to be tested. Give the command main,

and observe the behavior of the client program.

Notel: The run of the TSR binary leaves the user in the remote A: drive.
The utilities in the bin directory can be run by the user. Write permission
to the remote boot file is controlled by bit b4 in the T128 option of the

/etc/bootptab file, as shown earlier.

Note2: In order to force a complete boot, the line geninterrupt(0z19); in the
file main.c of the client code must be uncommented, and the TSR binary
recompiled. Then the TSR program will take the PC through the complete
BIOS bootstrap sequence.

Note3: The make.dbx makelile is rarely used for compilation, as it results in
the printing of a large amount of debugging information. However, the user
may also wish to see these messages using the -DDEBUG option used in the

make .dbx makefile.



A.4.2 Preparation of ROM binaries

The modified and tested client ROM code can be compiled to prepare binaries for
downloading to the EPROM. Thesc binaries, i.e. main.com and act.bin can also
be picked up directly from the directory binary\client in the client and server

software floppy. A description of how to compile these binaries is given below.

e Boot a PC having a 1.44 MB 3.5 inch floppy disk drive. The sample boot
floppy can be used to boot this PC.

o Copy the contents of directory source\client from the client and server

software floppy to another directory on the above PC.

¢ Enter this above mentioned directory, and give the command make —fmake.rom
clean all. If errors occur at this stage, check if they are a result of any changes
made in the client code or in the makefile. If they are not due to such changes,
contact the supplier of the distribution diskettes. If no errors occur, the

EPROM downloadable binaries, main.com and act.bin, are now ready.

A.4.3 Fusing a Boot ROM

The fusing of the downloadable client binary into an EPROM to create a boot ROM

is a complex procedure, and is described below.

e On the computer which is to be used to run the EPROM programmer, mount

the directory containing the main.com and act.bin downloadable binaries, or

copy these binaries to a local disk.

o Set up the EPROM programmer. This is done by first attaching the EPROM
programmer’s adapter card to a computer and copying the EPROM program-
mer’s software to the computer. The EPROM programmer should then be
started up using the appropriate command. It may report a number of possible
problems. The EPROM programmer’s manual should be referred to to correct

these problems.

oan



[*] In IIT Kanpur’s CSE lab, the major problem encountered initially was a
conflicting device I/O base address. DIP switches on the adapter card and
a setup utility available with the EPROM programmer software were used

together to change this I/O base address. The details are supplied in the
EPROM programmer manual.

Once the EPROM programmer is in operation, check for its error free running.
This is done by leaving the EPROM socket on the programmer empty and

doing a blank check on the socket. If errors are reported, refer to the manual.

[*] In IIT Kanpur’s CSE lab, erroneous blank checks were handled by either
tightening the cable between the EPROM programmer and its adapter card,
or by leaving the programmer powered on and switching the computer off and

then on again. The second approach was very reliable.

Once the EPROM programmer is running without error, set it up to handle the
27128A EPROM. This is done by setting the type option (or equivalent option)
to 27128A. This is necessary to define the address range, voltage supplies and
the programming algorithm. If the 27128A option is not available on your
EPROM programmer, PC Remote Boot 271284 ROMs cannot be fused.

Now the EPROM programmer is set up to fuse 27128A EPROMs. A 27128A
EPROM should be inserted into the socket on the EPROM programmer. The
details to do this should be studied from the EPROM programmer manual.

[*] In IIT Kanpur’s CSE lab, this was done by aligning the EPROM’s pins
with the pin numbers marked beside the socket, and then pushing down a
lever to lock the EPROM into the socket.

Perform a blank check on the 27128A EPROM present in the socket. If an error
is reported, the EPROM is not blank. It must be then left in the EPROM
eraser for a specified amount of time to erase the data in it. After this, a blank
check should report no error. If an error is still encountered, the EPROM

programmer manual should be studied for possible errors in its use.

A



[*] In IIT Kanpur’s CSE lab, the EPROM eraser was powered on with a setting

of 70. The 271284 EPROM was then left in it face up for 45 minutes or more
to erase all the data.

After the blank check, remove the 271284 EPROM from the socket (this is
important). The downloadable binaries can now be loaded into the EPROM
programmer’s buffer, using the appropriate option in the EPROM programmer
software. Binary act.bin is to be downloaded at location 0, and binary

main.com is to be downloaded at location 100 (hex).

Obtain the value of the checksum of data in EPROM programmer buffer. If
the EPROM programmer cannot display the checksum, it cannot be used to
install PC Remote Boot. The checksum will be displayed either by a direct

checksum option or by options such as read or program.

If the checksum’s last two digits are not 00, data in the EPROM programmer
buffer must be modified to make the last two digits 00. This is done by

displaying and then modifying byte number £0 (hex) in the buffer as per the
following hexadecimal formula:

newValue = (oldValue + (0x100 - (checksum & Oxff))) & Oxff

The checksum will now have the last two digits as 00.

Now put the 271284 EPROM back in the EPROM programmer socket, and
lock it in place. Then enter the option to program all the locations of the
EPROM. No error should be reported. If an error occurs, study the EPROM

programmer manual to check for incorrect usage.

Remove the programmed 271284 EPROM from the socket. Now any number
of 271284 EPROMs can be programmed using the same buffer contents by
repeating the blank check and the last step.



A.4.4 Installing a Boot ROM in a PC

The programmed EPROM must be fitted into the boot ROM socket in the PC’s
network interface card (NIC), also known as the ethernet adapter card. The proce-

dure below should be carefully followed, as incorrect steps can harm the user and
damage the PC.

o Switch off the power supply to the PC and its monitor. Open and remove the
cover of the PC, by pulling the cover back and then lifting it up. Touch the

power supply box to remove any static charge.

o Disconnect the ethernet cable from the NIC, by gently turning its connector

and then pulling it back. Pull the NIC from the I/O slot on the PC mother-
board, and take it out.

e Put the programmed EPROM into the boot ROM socket in the NIC. The
notch on the EPROM and on the socket must be on the same side. Care must

be taken that all the pins make contact and that none of the pins get bent.

e Reverse the procedure described above to connect the NIC back to the ethernet
cable and close the PC.

e Switch on power supply to the PC and the monitor. If the message "PC
Remote Boot Version 2.0” appears on the screen, proceed to the next step.
Otherwise remove the boot ROM from the NIC by reversing the above pro-
cedure. Do a local boot on the PC, and then use the NIC setup software
or DIP switches on the NIC to configure the card as follows: boot ROM -
enabled; boot ROM base address — 0xD000 (any non-conflicting setting will
work); IRQ number — 0x2 or 0x9 (for wd8003e) and 0x3 (for ne2000); I/O
base address — any location between 0x240 and 0x380. If using the NIC se~tup
software, save these changes to the NIC card, and test using setup. Re-install
the programmed EPROM in the PC as described earlier. Upon switching on
power to the PC and monitor, if the message "PC Remote Boot Version 2.0”

still does not appear, there is likely to be a problem with either the NIC or
the PC.



e If the message "Error: wd8003e and ne2000 cards not found” appears on your
screen, the installed NIC is not supported by this version of PC Remote Boot.

To use PC Remote Boot, a wd8003e or ne2000 card or one of their compatibles
must be used.

o The name of the card, its I/O base address and its ethernet address are
reported on the screen. Note these down. This ends the sequence of operations

that have to be done at the client side to install PC Remote Boot.

A.4.5 Updating Server Configuration Files

For each PC on which PC Remote Boot is to be installed, an entry has to be
added to the UNIX server configuration file /etc/bootptab. These entries must be
in addition to the .PC_DEFAULTS information added while setting up the server

configuration files as described earlicr in section A.3.2. Some example additions to

this file are shown below.

# PCs with wd8003e cards must install the wd8003e packet driver
pc10:  tc=.PC_DEFAULTS:ha=00803c570040:T128=C0:bf="/usr/adm/xfswd.img":
pc37:  tc=.PC_DEFAULTS:ha=00803c57003a:T128=C0:bf="/usr/adm/xfswd.img":

# PCs with ne2000 cards must install the ne2000 packet driver
pcl2:  tc=.PC_DEFAULTS:ha=00803c57002f :T128=C0:bf="/usr/adm/xfsne.img":
pc52:  tc=.PC_DEFAULTS:ha=0000E8C3A59b:T128=C0:bf="/usr/adm/xfsne.imng":

A PC host name must be associated with its ethernet address. This address
is reported by PC Remote Boot on the PC’s screen. The boot file to be used for
booting depends on the N1C installed, its I/O base address and its interrupt number,
as was described earlier. This is further discussed in section A.5.

This ends the description of the PC Remote Boot client installation.

PaYal



A.5 Boot File Installation

The server and client are both installed, but until the boot files specified in the
/etc/bootptab file are installed, PCs will not boot. The sample boot floppy is
a 1.44 MB 3.5 inch floppy which can be used to create boot file(s) required by PC
Remote Boot. A copy of the original floppy supplied should be made, and the copy

should be used for the operations described here. The creation and installation of
the boot file is described in this section.

A.5.1 Modifying the Boot Floppy for the Local Network

The sample boot floppy contains files to do remote boot of MSDOS and install
XFS on top of MSDOS. None of files on this floppy, except proceed.bat, xfs\init
and xfs\hosts, need to be modified by the user. These 3 files need to be modified
to set up the local network environment.

If some PCs on the network do not provide extended memory, changes also need
to be made in the file config.sys. Because these changes are simple and well
documented within the config.sys file itself, they are not explained here. Note:
The RAMDrive on PCs with no extended memory is created in conventional memory.
The remaining available memory is then insuflicient for certain programs such as
telnet and ftp. Therefore, such PCs should have extended memory installed if
possible.

[*] In'1IT Kanpur’s CSE lab, XFS support is available using the PCNFS servers.
If XFS is not to be used, modifications also need to be done on the file autoexec.bat,
and the directory xfs may need to be replaced. Such changes should be done by a
PC software configuration expert, and are not dealt with in this manual.

The file proceed.bat is given below.

path=4dl%xfs
%d1%

rem ** Comes out of the remote A: drive and into the RAMDrive

a:\reset



rem ** Last line restores the PC’s local disk interrupt handler

rem ** Only the PC’s local A: drive can be accessed after this

wd8003e 0x60 0x2 0x280

rem ** ne2000 0x60 0x3 0x300
winpkt Ox60

xfskrnl 0x60

xfstool O%dl%xfs\init
winpkt O0x62

rem ** Last 6 lines set up wd8003e / ne2000 packet drivers and XFS

g:\rboot\autoexec

rem ** Last line specific to the network setup in CSE Deptt, IIT Kanpu

The packet driver installed, its interrupt number and its /O base address must
match with the configuration of the network interface card on the PC. This config-
uration was described earlier in scction A.4.4. A different boot file must be created
for cach different configuration used. Because of this, it is advised that all NICs
used on the PCs in the network be configured in the same manner. This will ensure
that only two boot files - one for the wd8003e card and one for the ne2000 card ~
will need to be installed.

[*] The last line of proceed.bat is specific to the network drive setup in IIT
Kanpur's CSE lab. This will need appropriate modification on a different network.
The G: drive was created by xfsinit, as specified in file xfs\init.

The file xfs\init is given below.

init BOOTP csum=off

pcnfsd cd2

login

mount g: cspl:/g rsize=1024 wsize=1024
mount s: cs21:/s rsize=1024 wsize=1024
mount lptl: csi:lp timeo=30

show

92



T'o take advantage of PC Remote Boot, there should be a common network drive

- M 1 ryeg o . . .
s ~cailable to all PCs. This common network drive will contain shared software, such

«a~ for telnet, ftp, Turbo-C, etc. This will allow a copy of commonly used utilities

T« » be kept and maintained in a single place. Another common network drive can be
s ~ed as a user writable area. Setting up such drives is advisable.

[*] The above file is used in IIT Kanpur’s CSE lab to initialize XFS, identify
t Baer PPCNFS server, prompt the user for a login and password, set up the G: and S:

1y «~twork drives, set up the printer 1pt1, and show the XFS settings. These will need
~ grpropriate modification on a different network setup.

The file xfs\hosts is given below.

144. 16,

144.16

144.16.
144.16.
144.16.

144.16

144.16.
1 44. 16,
144.16.
144.16.
144.16.
144.16.

162.33 cdl
.162.34 cd2
162.21 csi
162.41 cs21
162.101 cspl
.162.21 csesunl
162.101 csesparcl
162.254 cse_router_in
163.1 prithvi
163.4 vayu
;63.20 wsi2

160.

228 ftp.iitk.ernet.in ftp.ee ee

[*] The above file is used in IIT Kanpur’s CSE lab to identify the internet
addresses of hosts which can be contacted by XFS. These entries must be modified

on a different network.

A.5.2 Preparation of Boot File Utilities

*I’here are certain utilities which are to be used to create or download the boot

file. The source code of these utilities should not be modified by the user. These

utilities, i.e. scand2f.exe, scanf2d.exe and reset.exe can be picked up directly

93



from the directory binary\client in the client and server software floppy.
The creation of these utilities is also described here.

e Boot a PC having a 1.44 MB 3.5 inch floppy disk drive. The sample boot
floppy can be used to boot this PC.

e Copy the contents of directory source\client from the client and server

softvare floppy to another directory on the above PC.

e Enter this above mentioned directory, and give the command make -fmake.rom
elean ulils. 1f errors occur at this stage, check if they are a result of any changes
made in the makefile. If they are not due to such changes, contact the sup-
plier of the distribution diskettes. If no errors occur, the scand2f . exe,

scanf2d.exe and reset.exe utilities are now ready.

A.5.3 Using Boot File Creation Utilities

Now that the utilities are available, they are to be used as follows.

e scand2f.exe: This is used to create a boot file from a boot floppy. The boot
floppy should have been modified as described carlier to support remote boot.
This utility can read 360 kI3, 720 kB, 1.2 MDB or 1.44 MB floppies from A:
drive or B: drive and dump their image to a specified file. It gives diagnostics
showing floppy status, copy status, and errors if any. The usage is simple and
can be seen by giving the command scand2f. Boot files should be placed in a

well defined location, such as /usr/adm.

o scanf2d.exe: This is used to create a boot floppy back from a boot file. It
is used to cxamine the contents of an existing boot file. This utility can write
to 360 kB, 720 kB, 1.2 MB or 1.44 MB floppies from a boot file, but the boot
file’s boot sector parameters must be the same as those of the floppy. This
utility gives diagnostics showing boot file status, floppy status, copy status,
and errors if any. The usage is simple and can be seen by giving the command
scanf2d.

94



e reset.exe: This is used to restore access to the PC’s local A: drive after
booting using the remote A: drive. It must be called from file proceed.bat
before any packet drivers are installed. No accesses can be made to the A:
drive during the remaining booting process after reset.exe has been called.
This file is available in the sample boot floppy, and is also supplied with

the the client and server software floppy.

It should be noted that error free floppies should be used. If floppies having bad

sectors are used to create or download boot files, unexpected behavior is possible.

A.5.4 Updating Server Configuration Files

The /etc/bootptab file should be updated if it is required that a PC boot from a
different boot file. The PC identity, in terms of its ethernet address, internet address
or hostname can be found by observing the initial PC Remote Boot diagnostics on
the PC’s screen. This is used to identify the PC’s entry in the /etc/bootptab file.
‘Then the string following the bf: option should be modified to the full pathname
of the boot file to be used for booting. This pathname should be visible by the
machine providing the authentication and boot file service.

The PC will now boot from the new boot file.

95



Glossary

ARP - Address Resolution Protocol

BIOS - Basic Input Output System

BOOTP - Boot Protocol

CSE - Computer Science and Engineering

CTRL - Control Key

DIP - Dual Inline Package

DMA - Direct Memory Access

DOS - Disk Operating System

EEPROM - Electrically Erasable Programmable Read Only Memory
EPROM ~ Erasable Programmable Read Only Memory
FIFO - First In First Out

FTP - File Transfer Protocol

HP-UX - Hewlett Packard UNIX

I/0 - Input / Output

IAB - Internet Activities Board

IBM - International Business Machines

IEEE - Institution of Electrical and Electronic Engineers
IIT - Indian Institute of Technology

IP - Internet Protocol

IRQ - Interrupt Request

LAN - Local Area Network

MAC - Medium Access Control

NFS - Network File System

96



NIC ~ Network Interface Card

NIS - Network Information Services

PC - Personal Computer

RAM - Random Access Memory

RARP - Reverse Address Resolution Protocol
RFC

]

Request For Comments

ROM ~ Read Only Memory
RPC - Remote Procedure Call
SNA - System Network Architecture

Sun0S - Sun Operating System

TCP - Transmission Control Protocol
TFTP - Trivial File Transfer Protocol
TSR - Terminate and Stay Resident
UDP - User Datagram Protocol

XDR - eXternal Data Representation
XFS - X File System

97



References

[Man94]

[Rav92]

[CG8s5)

[Prin88]

[Rey88]

[Wim93]

[AD93]

[StJ85)

[SC81]

T. J. Manjunath Remote Booting of Networked PCs, M. Tech Thesis. De-
partment of Computer Science and Engineering, IIT Kanpur, February
1994

L. Ravichandar Booting Diskless PCs from a remote UNIX server, M.
Tech Thesis. Department of Electrical Engineering, IIT Kanpur, June
1992.

B. Croft and J. Gilmore BOOTSTRAP Protocol (BOOTP), RFC 951.
Stanford and SUN Microsystems, September 1985.

P. Prindeville BOOTP Vendor Information Eztensions, RFC 1048.
McGill University, February 1988.

J. K. Reynolds BOOTP Vendor Information Estensions, RFC 1084.

Information Sciences Institute, December 1988.

W. Wimer Clarifications and Eztensions for the Bootstrap Protocol, RFC
1582. Carnegie Mellon University, October 1993.

S. Alexander and R. Droms DHCP Options and BOOTP Vendor Ez-
tensions, RFC 1533. Lachman Technology, Inc. and Bucknell University,

October 1993.

Mike StJohns Authentication Server, RFC 931. NIC, January 1985.

K. R. Sollins, Noel Chiappa The TFTP Protocol, RFC 783. NIC, June
1984.

98



[Fin84)

[PR8S5)

[Sun87]

[Sung8)

[Sung9y]

[Pos81a]

[Pos81b]

[Pos80]

[Plug2] -

Ross Finlayson Bootstrap Loading using TFTP, RFC 906. Stanford
University, June 1984.

Postel, J., Reynolds, J. File Transfer Protocol, RFC 959. Information
Sciences Institute, October 1985.

XDR: Esxternal Data Representation Statndard, RFC 1014. Sun
Microsystems Inc., June 1987.

RPC: Remote Procedure Call Protocol specification: Version 2, RFC
1057. Sun Microsystems Inc., June 1988.

NFS: Network File System Protocol specification, RFC 1094. Sun
Microsystems Inc., March 1989.

Postel, J., ed. Internet Protocol - DARPA Internet Program Protocol
Specification, RFC 791. Information Sciences Institute, September 1981.

Postel, J., ed.  Transmission Control Protocol - DARPA Internet
Program Protocol Specification, RFC' 793. Information Sciences Institute,
September 1981.

Postel, J. User Datagram Protocol, RFC 768. Information Sciences
Institute, August 1980.

David Plumer An Ethernet Address Resolution Protocol, RFC 826.
Symbolics, September 1982.

[FMMT84] Ross Finlayson, Timothy Mann, Jeffrey Mogul, Marvin Theimer A

[Mor84]

[Com88]

Reverse Address Resolution Protocol, RFC 903. Stanford University, June
1984.

Jeffrey Mogul Broadcasting Internet Packets, RFC 919. Stanford
University, October 1984.

Comer, D. E. Internetworking with TCP/IP: Principles, Protocols and
Architecture. Prentice-llall, Englewood cliffs, N. J., 1988.

99



[Stevo2)

[Jal9l]

[Dun88]

(13M84)

[Nor91]

[Gill94]

[Stev89]

[NSC86]

Richard Stevens UNIX Network Programming. Prentice-Hall of India
Private Limited, 1992.

Pankaj Jalote An Integrated Approach to Software Engineering. Springer-
Verlag New York Inc.

Ray Duncan Advanced MSDOS Programming. Microsoft Press, 1988.

PC/AT Technical Reference. International Business Machines Corpora-
tion, 1984.

Peter Norton Inside the IBM PC. Prentice-Hall of India Private Limited,
1991.

Frank V. Gilluwe The Undocumented PC. Addison-Wesley, 1994

Al Stevens TURBO C: Memory Resident Utilities, Screen I/O and
Programming Techniques. Tech Publications, 1989.

Series 32000 Databook, 1986. National Semiconductor Corporation.

[CHDTN88] Bob Clements, Eric Henderson, Dave Horne, Glenn Talbott and Russell

[HHCSS]

[Don92]

(Don93]

Nelson dp8390 assembly language device driver: Source Code. Crynwr
Software Inc.

David Horne, Eric Henderson, and Bob Clements NE2000 assembly

language routines: Source Code. Crynwr Software Inc.

Donald Becker A general non-shared-memory NS8390 ethernet driver for
linuz: Source Code. Goddard Space Flight Center, NASA

Donald Becker A WDB0x3 cthernet driver for linuz: Source Code.
Goddard Space Flight Center, NASA

100



il 22104

Date Slip

This book I3 to be returned on the

date last mmpet 1 2 2 ] 6 4

A TR

T R R LA R B I N W

Veuvssanvernrvosaans sansfawanun s

e

asrawasrwns sawbavar B avuavwiray .

cvesoemsnvranavay sxwnans Feaawina . e re o
TR R R NN v o v R R v
yavemmava iy vaaad At vr BeoaNa gy o4

IR E R R LR EEE I I IR IR

Mewpr RV AL 10 n

wswwrmansarssrmrane i v ay B s W e e

sS4 as et Beaavang sy e

R N R I

v wremesurnn T vwrenny Ky R BB RIABNB S o vk b
Mewsaeve o suas e arves v oraBuure HEwnan sy W an
LI T IR T N I A W L L L)
- e ™

’ .
( ,/ ™o [ ” v
— b *

»



