
PERL – A Register-Less Processor

A Thesis Submitted
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by
P. Suresh

to the

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur
February, 2004

Certificate

Certified that the work contained in the thesis entitled

“PERL – A Register-Less Processor”, by Mr.P. Suresh,

has been carried out under my supervision and that this

work has not been submitted elsewhere for a degree.

(Dr. Rajat Moona)

Professor,

Department of Computer Science & Engineering,

Indian Institute of Technology,

Kanpur.

February, 2004

ii

Synopsis

Computer architecture designs are influenced historically by three factors: market

(users), software and hardware methods, and technology. Advances in fabrication

technology are the most dominant factor among them. The performance of a proces-

sor is defined by a judicious blend of processor architecture, efficient compiler tech-

nology, and effective VLSI implementation. The choices for each of these strongly

depend on the technology available for the others. Significant gains in the perfor-

mance of processors are made due to the ever-improving fabrication technology that

made it possible to incorporate architectural novelties such as pipelining, multiple

instruction issue, on-chip caches, registers, branch prediction, etc. To supplement

these architectural novelties, suitable compiler techniques extract performance by

instruction scheduling, code and data placement and other optimizations.

The performance of a computer system is directly related to the time it takes to

execute programs, usually known as execution time. The expression for execution

time (T), is expressed as a product of the number of instructions executed (N), the

average number of machine cycles needed to execute one instruction (Cycles Per

Instruction or CPI), and the clock cycle time (�), as given in equation 1.

time

program
=

instructions

program
· cycles

instructions
· time
cycle

(1)

or

T = N · CPI · �

Fundamentally, any effort to improve the performance tries to bring down the ex-

ecution time. A change in the processor architecture or technology usually affects

iii

one or more terms in equation 1.1. While � is the factor of fabrication technology,

CPI is dependent upon the architecture and compiler level instruction scheduling.

Traditionally programs are written with a memory model in mind. A pure

memory-to-memory instruction set can represent the program without any tem-

porary variables resulting in a maximum code compaction. As instructions can

specify operations to be performed directly on memory, compilers can get away

with the complex register allocation process. The overhead during procedure call

is also minimal. The operands in memory are typed, because that is the way the

programs view the operands. When operands are brought into the registers this in-

formation is lost as registers have no data type associated with them. To overcome

this problem, register-to-register instruction set provide additional instructions like

load byte, load word, load signed byte etc. These instructions are not necessary in

a memory-to-memory instruction set.

In modern processors, caches provide an access speed close to that of the reg-

isters and technology allows to implement caches with multiple ports. Thus, the

old notion of registers yielding enormous performance gains may not be valid to-

day. Further, by keeping the instruction set orthogonal with only few and simple

addressing techniques, a RISC like memory-to-memory processor can be built. By

providing suitable hardware resources such as branch prediction, reorder buffers,

multiple functional units, multi-ported caches, etc., a superscalar implementation of

the same is possible.

In this thesis, we critically investigate the usage of registers and caches as local

memory. We also investigate their organizational benefits. We find that on-chip

registers that have a different address space from that of the memory are not the best

way to organize local memory. Previous studies have shown diminishing returns with

large number of registers. However, technology today enables to have a large number

of on-chip registers and use dynamic register renaming to improve performance.

We also observe that the performance of on-chip cache scales well with the size.

The caches are transparent to the users and exploit program and data locality to

bridge the processor-memory speed gap. Further, because of the regularity in their

organization, caches yield higher density in implementation than that of the registers

iv

and other logic.

With current technology, it is possible to have high speed, multi-port on-chip

caches. With the same technology, it is also possible to have a large number of

on-chip registers. We argue that in such a case it is better to map “registers”

into memory address space and use them as cache. The programs are written with

memory model in mind, and hence a memory-to-memory instruction set is the most

natural choice for compilation. We find registers, as used by the processors today,

have many disadvantages like load/store overhead, large context, extra instructions

to change the type of the memory operands etc. We also note that compilers for

ILP (Instruction Level Parallelism) processors while register allocation introduce

artificial dependences among instructions that were not there in the original program

and hinder multiple instruction issue mechanisms.

The investigations clearly indicate that a better way of utilizing on-chip registers

is to use them as the first level in memory hierarchy. We introduce a new technique

called on-chip registering of memory locations, where the on-chip register set is

mapped on to memory locations. We refer to this as level zero (L0) cache.

To exploit on-chip registering of memory location, we determined that a pure

memory-to-memory instruction set is the most suitable one. As there is no need of a

separate address space for registers, compilers need not perform register allocation.

However, compilers will play a significant role in scheduling instructions for efficient

execution on the pipeline. We hope that as there is no register pressure on compilers,

they can perform a better job in scheduling.

We name the new memory-to-memory architecture as Performance Enhanced

Register–Less architecture (PERL). We also propose a simple, reduced, RISC like

instruction set. As the instructions are simple, we show that a superscalar imple-

mentation of PERL will be an efficient utilization of the resources.

We first analyze the performance of PERL processor using an analytical model.

We take the dynamic instruction count statistics from DLX, a hypothetical generic

processor. From these statistics we remove all Load/Store instructions (about 33%)

and form the instruction count for the PERL processor. We clearly show in the

analysis that at high cache hit ratios (which is also possible due to registers mapped

v

to the memory address space), the proposed PERL architecture consistently per-

forms better than DLX. The analysis also shows that at higher hit ratios, PERL

processor can tolerate high miss penalties.

Simulation studies are carried out to further investigate the performance of the

new architecture. A highly configurable instruction set simulator is built with vari-

ous superscalar features. We have retargeted the GNU C cross compiler for PERL.

We have also built a cache simulator capable of simulating several bandwidth im-

provement techniques. The instruction set simulators for DLX and PERL are used

to compare their performance.

We performed simulation over several benchmark programs from NASA test

suites as well as from SPEC95. The simulation results clearly show that PERL exe-

cutes about 30% fewer instructions compared to the DLX for any given C program.

In addition, it was seen that PERL requires significantly fewer cycles compared to

the DLX to execute a program. The results are also consistent across superscalar

processors with degree of 2 and 4, with or without branch prediction. Some programs

performed better on DLX than on PERL after machine dependent optimizations

are performed on DLX programs. In our compiler, we have not implemented any

machine level optimization on PERL. We anticipate that PERL code will perform

significantly better when machine specific optimizations are used.

In PERL, a new branch prediction technique using a pair of stacks to predict

indirect branches is also used. It shows significant performance improvements in

predicting indirect branches, especially for call/return pair of branch instructions.

With our simulations, we noticed that the number of data cache misses for

programs in PERL is more than that of DLX programs. But as PERL performs

more memory accesses than DLX, the miss ratios are better in PERL. This is in

tune with our expectation. However, we feel compiler techniques can further help

in bringing down the cache misses.

The thesis concludes that a memory-to-memory architecture is an attractive

and viable way to improve the processor performance using the existing processor

technologies.

vi

Acknowledgements

It is a great pleasure to thank my thesis supervisor Dr. Rajat Moona for his help,

encouragement and support throughout the course of this thesis work. But for his

insightful comments and guidance, I would not have finished this work successfully.

I also wish to express my thanks to Dr. Deepak Gupta for his kind advises

towards the later part of my work. I also express my sincere gratitude to Prof.

Somenath Biswas, Prof. Harish Karnick and Prof. Pankaj Jalote for their encour-

agement, co-operation and support.

I also thank my teachers Dr. S. K. Agarwal, Dr. Dheeraj Sanghi, Dr. T. V.

Prabhakar and Dr. R. Sangal. I thank Dr. S. Saxena, Dr. R. K. Ghosh, Dr. P.

Gupta, Dr. R. M. K. Sinha, Dr. A. Jain, Dr. S. Ganguly and other faculty in the

department for their co-operation and kindness.

Equally important is the role of my beloved parents who have always stood by

me. They never expected anything from me and I feel that there is nothing more

one can expect from the aging parents. I also thank my elder brother Nagesh and

sister Ambika for taking my responsibilities at home.

I also acknowledge my in-laws, who like my parents did not expect anything from

me.

I want to thank my wife Mamatha for her support and for taking the responsi-

bility of home without any complaints, especially during my frequent long absence

from home. I also like to thank my two kids Jatin and Hithan, with whom I was

not able to spend as much time as they would have wished.

I thank the management of my college P.E.S.C.E., Mandya, for having sponsored

me to this program. My special thanks to the Principal Dr. B. Chandrashekar for

his kind cooperation, especially after my three years of study leave were over.

vii

My thanks also go to Mr. T. Vasudev, Dr. S. Murli, Dr. K.R. Anand Kumar, for

their cooperation and help during my absence there. My special thanks also go to

Dr. B.G. Prasad. My sincere gratitude goes to all my colleagues in the department.

I express my sincere gratitude to the department staff, for their cooperation. My

special thanks also go to Mr. Bore Gowda and Mr. Basavaraj for their cooperation

and affection.

My sincere thanks to Dr. M.S. Shivkumar for his guidance and support. I express

my gratitude to Dr. B. Ramachandra, for his advises and affection he has shown to

me. My thanks also go to Dr. P.S. Puttaswamy and late Dr. C.L. Puttaswamy for

their advises and affection.

I also spent some pleasurable time with Prof. Subramanya, Mrs. Prabha Sub-

ramanya, Prof. Gangadhariah, Mrs. Kamala Gangadhariah. Prof Sathyamurthy,

Mrs. Sathyamurthy, my special thanks go to all of them. I had special relationship

with Dr. Raghavendra, Shantakka, Dr. T.K Chandrashekar and Ashaji, I express

my sincere gratitude to them.

I also thank Dr. Puttaraju and Mrs. Roopa Puttaraju for their kind hospitality

and frequent lunches/dinners at their home.

I will never forget the time I spent with Arvind Galagali. I enjoyed the company

of Srikanth P.C (lallu), Praveen, Shyamsundar, Shyama, Sriharsha, Govinda, Srid-

har, Fedriks, Subramanya, Rajnish, Sunil, Kamath, Girish, Gopi, Srikar, Prasanna,

who all were juniors to me and had sought my advise many times and hope I have

not disappointed them, they were all cheerful and at times have helped me also.

I also thank my Friends during my stay in SBRA Dr. Harish, Dr. Vivek Mudgil,

Dr. Manjula, S. Mishra, K. S. Grover with whom I and my wife had good time.

I also thank G. V. Ramana Kumar, T. S. Balaji and S. K. Bhatnagar for their

contributions in this work.

I enjoyed the company of Dr Veena Bansal, Dr. M. M. Gore, Dr. S.V. Rao, Dr.

Sajith, Mr. Kshitiz Krishna and Mr. Rajiva. I shared a special relation with Dr.

Atul Kumar, especially after 1997 and I cherish every moment of it. I also thank

my new friends in Ph.D room Alpana, Vijay Saradhi and K. V. Arya.

I enjoyed the great time I had with Lamba, Santosh, Narayana and others in

viii

Hall 4. I thank all of them for the nice company that they gave me.

I cannot forget to thank Ashok Kumar Bhatt and Praveen Mahapatra for their

kind assistance and hospitality during my stay in Hyderabad.

I also thank Mentor Graphics India, Hyderabad for allowing me free access to

office space during my visits to meet Dr.

my beloved parents

Dedicated

to

Contents

Synopsis iii

Acknowledgements vii

1 Introduction 1

1.1 Overview of Microprocessors . 1

1.1.1 Instruction Set: RISC or CISC - A non-issue 2

1.1.2 Instruction Level Parallelism (ILP) 6

Pipeline . 7

Superscalar Processors 7

1.2 Variable Naming . 10

1.3 Benefits in Memory to Memory Instruction Set 11

1.4 Salient Features of the Thesis . 12

1.5 Thesis Organization . 14

2 Related Work and Contemporary Technologies 16

2.1 Related Work . 16

2.2 Review of Some Contemporary Technologies 19

2.2.1 UltraSPARC III and IV . 19

2.2.2 MIPS R18000 . 22

2.2.3 Alpha Architecture . 23

2.2.4 HP-Precision Architecture . 26

2.2.5 Pentium-4 Processor . 27

NetBurstTM Micro-architecture 28

xi

2.2.6 IA-64 Architecture . 30

Itanium Processor 31

2.2.7 CrusoeTM Processor . 32

3 A Case for Memory to Memory Architecture 34

3.1 Background . 34

3.2 Cache Memory . 36

3.3 Registers . 38

3.4 On-chip Registering of Memory Locations 41

3.5 Memory to Memory Architecture . 42

3.6 Analysis . 44

4 PERL - A Memory to Memory Architecture 50

4.1 Instruction Set Architecture . 51

4.1.1 Addressing Modes . 51

4.1.2 Key Features . 52

4.2 Processor Datapath . 55

4.2.1 Pipeline Stages . 56

4.3 Superscalar Processor Model . 57

4.3.1 Important Resources . 61

4.4 Branch Prediction . 62

4.4.1 2-bit Branch Prediction . 62

4.4.2 Indirect Branch Prediction . 63

4.5 Memory Subsystem . 65

4.5.1 Increasing Cache Port Efficiency 67

4.5.2 Multi-Ported Cache . 67

5 Simulation Methodology 69

5.1 Evaluation Process . 70

5.2 Implementation of supersim . 72

5.2.1 Underlying Data Structures 72

5.2.2 Instruction Table . 73

5.2.3 Basic Processor Elements . 74

xii

Memory . 74

Functional Units . 74

5.2.4 Superscalar Elements . 76

Branch Target Buffer 76

Instruction Fetch Queue 76

Instruction Windows 77

Reorder Buffers . 78

5.2.5 Overall Functional Organization 80

5.3 Implementation of perlcc . 84

5.3.1 Machine Description . 84

Instruction Patterns 84

5.3.2 Machine Description for PERL 84

Architecture Specification 84

Instruction Patterns 85

5.4 Implementation of Cache Simulator 88

5.4.1 Simulator Input . 88

5.4.2 Simulator Output . 89

6 Results 90

6.1 Benchmark Programs . 90

6.2 Machine Models . 91

6.3 General Observation . 94

6.3.1 Program Size . 94

6.3.2 Dynamic Instruction Count 96

6.4 Performance Results and Analysis . 96

6.4.1 perm benchmark . 98

6.4.2 relax benchmark . 103

6.4.3 across benchmark . 106

6.4.4 mult benchmark . 109

6.4.5 ttn benchmark . 113

6.4.6 compress benchmark . 116

6.4.7 go benchmark . 119

xiii

6.5 Other Issues . 122

6.5.1 Operand Forwarding / Operand Renaming 123

6.5.2 SP/FP Accesses . 125

7 Analysis of Memory System 127

7.1 Cache Hierarchy in PERL and DLX 128

7.2 Instruction Cache . 129

7.2.1 Varying Block Size . 130

7.2.2 Varying Cache Size . 134

7.3 Data Cache . 134

7.3.1 Data-Cache Hierarchy . 138

7.3.2 Evaluation Methodology . 138

7.3.3 Impact of L0 Cache . 138

7.3.4 Performance of L1 and L2 Cache 139

7.3.5 Impact of Load-all-wide Technique 139

7.3.6 Effect of Misses and Bank Clashes 146

7.3.7 Impact on Execution Time . 146

8 Conclusions 150

8.1 Contributions . 150

8.2 Future Work . 152

8.2.1 Some Possible Optimizations 152

References 153

A PERL Instruction Set 165

A.1 Instruction Format . 165

A.1.1 Non-Branch Instructions . 165

A.1.2 Branch Instructions . 166

A.2 Instruction Encoding . 167

A.2.1 Opcodes . 167

A.2.2 Data Types . 169

A.2.3 Addressing Modes . 169

xiv

B Simulator Configuration File 171

B.1 Instructions Process per Cycle . 171

B.2 Memory . 172

B.3 Reorder Buffer Size . 172

B.4 Instruction Window Size . 172

B.5 Instruction Queue Size . 172

B.6 Branch Buffer Size . 173

B.7 Integer Functional Units . 173

B.8 Floating Point Functional Units . 174

C Cache Simulator Input Files format 175

C.1 Trace File . 175

C.2 Cache Configuration File . 176

C.2.1 Levels . 176

C.2.2 Cache Specification of Each Level 176

xv

List of Tables

6.1 Parameter values used in different variations of DLX and PERL . . . 93

6.2 Success rate of different branch prediction schemes in perm 100

6.3 Fetch and decode stall cycles in perm (percentage of total cycles) . . . 101

6.4 Instructions fetch, decode, issue and commit per cycle (for perm) . . . 102

6.5 Success rate of different branch prediction schemes in relax 105

6.6 Fetch and decode stall cycles in relax (percentage of total cycles) . . . 105

6.7 Instructions fetch, decode, issue and commit per cycle (for relax) . . . 106

6.8 Success rate of different branch prediction schemes in across 107

6.9 Fetch and decode stall cycles in across (percentage of total cycles) . . 109

6.10 Instructions fetch, decode, issue and commit per cycle (for across) . . 111

6.11 Success rate of different branch prediction schemes in mult 112

6.12 Fetch and decode stall cycles in mult (percentage of total cycles) . . . 112

6.13 Instructions fetch, decode, issue and commit per cycle (for mult) . . . 113

6.14 Success rate of different branch prediction schemes in ttn 114

6.15 Fetch and decode stall cycles in ttn (percentage of total cycles) 114

6.16 Instructions fetch, decode, issue and commit per cycle (for ttn) 116

6.17 Success rate of different branch prediction schemes in compress 117

6.18 Fetch and decode stall cycles in compress (percentage of total cycles) 119

6.19 Instructions fetch, decode, issue and commit per cycle (for compress) 119

6.20 Success rate of different branch prediction schemes in go 121

6.21 Fetch and decode stall cycles in go (percentage of total cycles) 121

6.22 Instructions fetch, decode, issue and commit per cycle (for go) 122

6.23 Memory references in PERL . 123

6.24 Success rate of finding addresses and operands in reorder buffers . . . 125

xvi

6.25 Accesses to SP/FP and to other memory locations in PERL 126

7.1 Code and data sizes of programs in DLX and PERL 128

7.2 Instruction fetch count of all programs in DLX and PERL 128

7.3 L1 I-cache misses with varying block size 133

7.4 L2 I-fetch misses for varying L1 I-cache block size 133

7.5 L1 I-cache misses with varying L1 I-cache size 137

7.6 L2 I-fetch misses with increasing L1 I-cache size 137

7.7 Performance of L0 cache with 16 registers in PERL 140

7.8 Number of write backs from L0 cache 141

7.9 Memory references to L1 data cache in DLX and PERL 141

7.10 L1 D-cache performance in DLX and PERL 142

7.11 L2 cache misses for varying associativity in L1 D-cache 144

7.12 Number of requests served by Load-all-wide technique 146

7.13 Extra cycles required to serve misses 147

7.14 Extra cycles required to serve bank clashes in DLX 147

7.15 Execution time including the time to access memory 149

A.1 Opcode table . 169

A.2 Data types of operands . 170

A.3 Addressing modes for operands . 170

xvii

List of Figures

1.1 Superscalar architecture . 9

2.1 UltraSPARC III . 20

2.2 The micro-architecture of MIPS R18000 22

2.3 The Alpha 21364 core . 24

2.4 Block diagram of HP PA-8700 processor 26

2.5 Basic block diagram of NetBurstTM micro-architecture 28

2.6 Block diagram of Pentium–4 processor 29

2.7 Itanium processor core . 32

2.8 Code morphing and the Crusoe processor 33

3.1 Growing processor-memory speed gap 35

3.2 Memory hierarchy in modern computers 36

3.3 On-chip registering of memory locations 42

3.4 Normalized CPI vs. hit ratio . 48

3.5 Tolerable miss penalty vs. hit ratio 49

4.1 PERL instruction encoding . 54

4.2 The processor datapath of PERL . 56

4.3 The superscalar PERL processor model 59

4.4 State diagram for a 2-bit branch prediction scheme 63

4.5 Example for call to the same function from different locations 64

4.6 Branch prediction using a pair of stacks 65

4.7 Memory hierarchy in PERL processor 66

5.1 Evaluation process . 71

5.2 Keeping instruction in-order in the instruction window 78

5.3 Reorder buffer entries . 79

xviii

5.4 Overall functional diagram of supersim 81

5.5 Function coordination . 82

5.6 User interface functional diagram . 83

6.1 Static code size of programs in DLX and PERL 95

6.2 Dynamic instruction counts in DLX and PERL 97

6.3 Execution time in cycles for perm . 99

6.4 Execution time in cycles for relax . 104

6.5 Execution time in cycles for across 108

6.6 Execution time in cycles for mult . 110

6.7 Execution time in cycles for ttn . 115

6.8 Execution time in cycles for compress 118

6.9 Execution time in cycles for go . 120

7.1 L1 I-cache misses with increasing block size 131

7.2 L2 I-fetch misses with increasing block size 132

7.3 Effect of L1 I-cache size on number of L1 I-cache misses 135

7.4 Impact of L1 I-cache size on number of L2 I-fetch misses 136

7.5 Number of L1 D-cache misses with varying associativity 143

7.6 Number of L2 misses with varying associativity in L1 D-cache 145

7.7 Extra cycles required to service misses and bank clashes 148

A.1 PERL instruction format . 165

A.2 PERL instruction encoding . 168

xix

Chapter 1

Introduction

Excellent processor performance is the result of a judicious blend of smart processor

architecture, efficient compiler technology and effective VLSI implementation. The

choices for each of these strongly depend on the technology available for the others.

Microprocessors are widely used today as Central Processing Units (CPU) in all

types of computers ranging from Personal Computers (PC) to large Shared Memory

computers. Significant gains in the performance of processors are due to the ever-

improving fabrication technology that made it possible to incorporate architectural

novelties such as pipelining, multiple instruction issue, on-chip caches, registers,

branch prediction, etc. To supplement these architectural novelties, suitable com-

piler techniques extract performance by techniques such as instruction scheduling,

code and data placement.

1.1 Overview of Microprocessors

Computer architecture designs are influenced historically by three factors: market

(users), software and hardware methods, and technology. Advances in fabrication

technology is the most dominant factor among them.

Chip fabrication technology has improved almost unimaginably over the past

two decades, since much of the early research on RISC (Reduced Instruction Set

Computers) [1]. The number of transistors on a CPU chip in 1980 was in tens of

1

thousands. Hardware designers today are packing about 200 million transistors on

a single chip [2, 3, 4, 5].

The performance of a computer system is directly related to the time it takes to

execute programs, usually known as execution time. The expression for execution

time (T), is expressed as a product of the number of instructions executed (N), the

average number of machine cycles needed to execute one instruction (Cycles Per

Instruction or CPI), and the clock cycle time (�), as given in equation 1.1.

time

program
=

instructions

program
· cycles

instructions
· time
cycle

(1.1)

or

T = N · CPI · �

Fundamentally all efforts to improve the performance try to bring down the exe-

cution time. A change in the processor architecture or technology usually affects one

or more terms in equation 1.1. While � is the factor of fabrication technology, CPI

is dependent upon the architecture and compiler level instruction scheduling. Some

important architectural features of processors today are instruction set, pipeline,

Instruction Level Parallelism (ILP), etc.

1.1.1 Instruction Set: RISC or CISC - A non-issue

The evolution of instruction set can be classified into 3 phases, the CISC (70’s and

early 80’s), the RISC (late 80’s and early 90’s), and the POST-RISC (late 90’s

till date). In the early days of microprocessors the machines were all CISC (the

term did not exist then; it was coined to contrast with the RISC in mid-1980’s)

and instructions took multiple and variable number of cycles to execute. Because of

change in technology, many architectural changes were made possible and it resulted

in improvement of the speed of individual instruction execution. In time, designers

could fit enough transistors on the chip to make the most-used instructions in the

instruction set execute in a single machine cycle. RISC machines were first to

execute instructions in a single cycle but the CISC machines, mostly from Intel and

2

Motorola, were there right behind. In the POST RISC era today, the challenge is

to exploit the ILP and execute more than one instruction in a single clock.

The design philosophy during the early days of microprocessor (70’s and early

80’s), i.e., the period during which CISC architecture evolved can be characterized

as follows.

• reduce the amount of storage used (memory was small, slow and expensive).

• reduce the number of load and store operations (number of registers was small

and hence it was better to access operands directly from memory).

• support compatibility by making sure that new processors could execute the

existing code.

• have high level software functionality in the hardware to reduce “semantic

gap”.

• support instructions that will allow assembly language programmers to be

creative in being able to write efficient codes.

The state-of-the-art VLSI technology, storage/memory technology, and compiler

technology during 70’s and early 80’s had significant role for CISC designers to adopt

the above philosophy. In order to meet these goals, CISC designs supported com-

plex instructions. These complex instructions had variable length and took multiple

and often variable number of clock cycles to execute [6]. Each instruction was de-

signed with the maximum possible functionality in order to minimize the number of

instructions that a program needed. Control units were mainly microprogrammed

because large and complex instructions made it difficult to implement them in hard-

ware. Variable length instructions were implemented in order to reduce code-size

and storage used. Higher functionality was used to reduce the number of stor-

age accesses. The processors supported, memory-to-memory, memory-to-register,

register-to-memory and register-to-register operations to provide maximum flexibil-

ity to the compiler writers. Memory-to-memory operations were supported to reduce

the number of instructions (N in equation 1.1). To reduce the memory traffic and

3

to improve execution speed, they also supported register-to-register and register-

to-memory operations. The processors supported a variety of addressing modes to

access operands. Assembly language programming was very common, and the use

of high level languages (HLLs) was not as dominating as it is today. Compilers just

converted the expressions in HLL into equivalent assembly language code, and if

one required an optimized code, writing it directly in the assembly language was the

only choice. Hence, the strategy employed was “to move complexity from software

to hardware”.

CISC design philosophy tried to improve performance by keeping the number

of instructions per program (N) in equation 1.1 low. The programmer/compiler

was expected to achieve this by optimizing the code using appropriate complex

instructions to close the semantic gap. Because of its complexity, instructions took

multiple and variable number of cycles to execute resulting in a high CPI and for

the same reason the processor also had longer clock time.

At this time, Patterson and others began to question whether implementing all of

these complex, elaborate instructions in microcode was really the best use of limited

transistors [7]. They argued against continuing CISC philosophy and advocated to

move complexity from hardware to software.

The transition from CISC to RISC was a radical change in architecture. Instruc-

tion sets were changed, sacrificing binary compatibility for performance [8]. RISC

class of processors grew out of research on the usage of various class of instructions

by compilers and also their dynamic profile [6, 9, 10]. The problem of semantic clash

made most complex instruction sets less usable by the compilers [11]. Semantic clash

is due to the problems caused by some HLL statements that seemed to be function-

ally the same as the machine instructions but were actually different in subtle ways.

The concluding evidence was that CISC programs used complex instructions infre-

quently (about 20%) than simple instructions (about 80%). These findings gave way

to reduced instruction set adopting “make the common case fast” principle. RISC

processors provide simple register-to-register instructions except for load and store

instructions, which move data between memory and registers. A simplified instruc-

tion set also led to better utilization of hardware techniques such as pipelining and

4

hardwired decoding. The silicon space vacated by microprogram gave room for more

on-chip registers and caches. Smart compiler techniques were employed to keep the

frequently used local variables in registers resulting in reduction in memory traffic

and improved execution speed.

RISC design philosophy tried to reduce the time per program (T), by decreasing

the CPI. The reduction in CPI was achieved by having simple and reduced instruc-

tion set, employing hardwired control and pipelined execution. However, the use of

simpler instructions by the compilers took the instruction count (N) a little high.

The use of simple instructions, pipeline and fabrication technology all contributed

to keep the clock cycle time low. Compilers employed smart techniques to allo-

cate registers and schedule instructions to obtain maximum performance from the

pipeline.

Early 90’s witnessed a convergence of microprocessor architectures, primarily due

to advances made in the VLSI technology. Technology allowed designers of CISCs to

adopt some features associated with the RISC [12, 13]. Using suitable decoding tech-

niques current CISC processors are able to break complex instructions into sequence

of simple micro operations inside the processor. Most of these micro operations are

similar to RISC instructions and are executed using a pipeline. RISC processors

in turn have enlarged their instructions by adding floating point and multi–media

instructions, apparently to improve performance [14, 15]. Many instructions in the

current generation of high performance processors bear no resemblance with original

RISC and are called POST-RISC processors [8].

One hallmark of RISC CPUs is that the majority of their instructions are hard-

wired. This is becoming more and more true of traditional CISC machines as

well [16]. The IA-32 processors today, execute the bulk of the instructions in a

single cycle [17, 18]. On the other hand, RISC CPUs have floating point and SIMD

(Single Instruction Multiple Data) instructions that require multiple cycles. The

real challenge today is to make more than one instruction execute in a single cycle.

Both RISC and CISC processors today are superscalar processors [2, 3, 4, 5, 18, 19],

and they issue multiple instructions in a single clock. The advances in technology

5

have made it possible for these processors to use complex techniques like regis-

ter renaming, dynamic scheduling, branch prediction etc., in order to improve the

performance. These techniques are highly complex and against the original RISC

philosophy of keeping processor implementation simple.

An instruction set can be better than the other in many ways. An orthogonal

instruction set, in which all the instructions are generally of same length makes code

generation easier for the high-level language compilers. Further, if all instructions

are of same length, the process of decoding and early detection of branch and jump

instructions is simplified, resulting in improvement in the overall code execution

speed. It also makes instruction prefetch simple and efficient as the instructions do

not extend beyond cache line boundaries. The issues of number and complexity of

individual instructions are (these days at least) close to irrelevant.

1.1.2 Instruction Level Parallelism (ILP)

Instruction level parallelism is exploited by the instruction execution techniques

that cause individual machine operations, such as memory loads and stores, inte-

ger arithmetic, and floating point operations to execute in parallel [20]. Hardware

and software techniques are employed to extract ILP from programs written with

sequential execution semantics. The techniques employed to exploit ILP are largely

transparent to the users. Superscalar processors employ complex hardware tech-

niques like dynamic scheduling and register renaming to extract ILP. In order to

gain maximum benefits out of these hardware techniques, software techniques like

software pipelining and trace scheduling are employed to expose more ILP. Very Long

Instruction Word (VLIW) processors take advantage of ILP to reduce the number

of instructions (N). A single instruction in VLIW processor specifies more than one

concurrent operation. The high performance is achieved only when the software is

able to pack the collection of concurrent operations into instructions [21].

6

Pipeline

Pipelining is a technique to exploit ILP and is used to break up the execution of

each instruction into several steps, each step performed by a separate circuit called

pipeline stage. Pipelining has been used in computers since many years now, starting

from the IBM 7030 - Stretch in 1961 [22, 23]. Pipelining is the key implementation

technique used in the CPUs today and is applied to instruction execution, memory

references and floating point operations.

Performance from pipeline is maximized if the pipeline stages are always kept

busy. Several situations during program execution prevent the processor to keep

the pipeline busy. The execution path on a branch can be determined only after its

evaluation and hence processor has to stall until the outcome of branch execution

is known (control hazards). Data dependences between instructions in the program

force the pipeline to stall. Long latency instructions like load/store, multiply, divide

etc., cause resource conflicts resulting in pipeline stalls (structural hazards). Branch

prediction and delayed branches are techniques used to reduce the effect of control

stalls. Register renaming and data forwarding are used to lessen the effect of data

stalls. Multiple functional units are used to reduce the number of resource conflicts.

The IBM 360/91 [24] computer employed pipelining techniques to a great extent

and provided dynamic instruction issuing mechanism, known as Tomasulo’s algo-

rithm [25] after its inventor. It could sustain only one instruction per cycle and was

not superscalar, but the strong influence of Tomasulo’s algorithm is evident in many

superscalar processors today.

Superscalar Processors

Superscalar processing is the ability of the processor to issue multiple instructions

during the same clock cycle. Initially viewed as an extension of RISC technology,

today superscalar methods are applied to a spectrum of instruction sets. Prominent

examples of superscalar processors are DEC Alpha, ARM, MIPS, PowerPC and

Ultra SPARC [26, 4, 27, 15] for RISC and Intel Pentium and Itanium for CISC [17,

18]. Several variations of superscalar processors are possible. A super-pipelined

machine issues one instruction per cycle, but the cycle time is set to much less than

7

the typical instruction latency [28, 29]. A VLIW machine is similar to a superscalar

machine, except that parallel instructions must be explicitly packed by the compiler

into very long instruction words [30]. Intel’s first 64-bit CPU Itanium’s micro-

architecture is based on EPIC (Explicitly Parallel Instruction Computing), which is

an extension of VLIW technique [31].

Figure 1.1 shows the structure of a generic superscalar processor. A fixed number

of instructions are fetched from memory, and augmented with a few characteristic

bits in the I-cache. These additional bits identify the type of the instruction such as

branch, memory reference etc., and type of execution unit required. The pre-decode

technique improves the performance by reducing the complexity of the regular de-

code stage. The Fetch/Flow unit bring instructions from I-cache using a program

counter (PC).

Instructions are decoded and more accurate branch prediction is performed in

the decode unit. Most processors use large Branch Target Buffer (BTB), to maintain

branch history and to predict the outcome of a branch instruction. If the prediction

is later found to be wrong, all results of speculatively executed instructions beyond

the branch are discarded. Current processors can simultaneously handle more than

one unresolved branches and the corresponding speculative executions.

The superscalar processors place a very high demand on bandwidth of the mem-

ory subsystem. With Memory speed not improving at the same rate of proces-

sor, superscalar processors have to address the growing processor-memory speed

gap [32, 33]. Large multi-ported on-chip caches and large register sets are some of

the techniques used to mitigate this problem. Use of on-chip instruction cache, on-

chip cache bandwidth and branch prediction has effectively satisfied the instruction

bandwidth of ILP processors. However, the same is not true for the data, as the

working set of data shows less locality than that of instructions.

There are several studies regarding the available ILP in programs [28, 34, 35,

36, 37]. The limited size of the register set, inherent data dependences that exist

in usual program, branches and memory latencies all become a hurdle to maximize

the ILP. Studies have indicated that on an average the available ILP in programs

is about two [37, 28]. The studies have also indicated that in order to be able to

8

MemoryPREDECODEINSTRUCTION CACHE 1

1

INSTRUCTION DISPATCH

AND REORDER BUFFER

FETCH/FLOWDECODE/BRANCHSL TO OA

D R

E

B

R

A

N

C

H

BUFFER

COMPLETED INSTRUCTION

RETIRE UNIT

CACHE DATA2

3

4

5

6

6EXECUTION UNITSFigure 511: Sup erscalar arc hitecture9

extract more ILP, compilers require to look beyond basic blocks [34]. The register

allocation plays a very important role in such a compiler technology.

1.2 Variable Naming

A program can be viewed as a sequence of instructions that take a set of values as

input and produce another set of values as output.

The variables stored in memory are brought into faster caches during program

execution. This renaming of memory operands into cache locations is transparent

to the programs. The mapping of memory addresses into cache addresses is done

by the hardware. Cache just holds small subsets of memory address space.

On the other hand, the variables may be stored in the CPU register. Registers

have a separate address space and are addressed using fewer bits compared to the

memory addressing. Compilers manage the use of registers. They decide the values

that should be kept in the available registers at each point in the program through

a process called register allocation [38]. There is a natural advantage in keeping

the data in the registers as they provide high speed access to the operand values

required by the processor. The allocation of registers to program variables is static

and done at compile time.

Traditionally the register allocation was done before the instruction scheduling.

The processors had no mechanisms to exploit ILP and had very few registers. The

performance could be extracted by good register allocation mechanisms and there

was very little to be gained by good instruction scheduling [38]. In the ILP proces-

sors, the register allocation prior to the instruction scheduling introduces anti and

output dependences that can constrain parallelism. Several new techniques such as

modulo variable expansion [39] have been proposed to improve register allocation

and obtain good schedule. Register allocation techniques to improve ILP demand

large number of registers. Studies have shown that register allocation policies of

compilers do not sufficiently exploit the number of registers and reuse registers for

data values [22].

10

Reuse of registers introduces false dependencies between instructions [40]. Su-

perscalar processors handle this problem by performing dynamic register renaming

to break the conflict. As there are small number of registers, renaming and resolving

data dependencies are fairly simple [22, 41].

1.3 Benefits in Memory to Memory Instruction

Set

Programs are written with memory model in mind. A pure memory-to-memory

instruction set can represent the program without any temporary variables giving

maximum code compaction. As instructions can specify operations to be performed

directly on memory, compilers can get away with the complex register allocation

process. The overhead during procedure call is also minimal. In register-to-register

machines, memory operands which carry type of the operand (int, char etc.) are

renamed into registers without any data type information. Extra operations are

sometimes necessary to be performed to adjust the data in the register to correspond

to its type in memory. These operations could as well be done on the fly while

bringing them from memory and before the execution unit uses them. This can be

easily done in a memory-to-memory architecture.

As caches today provide an access speed close to that of the registers and tech-

nology allows to implement multi-ported caches, a processor with pure memory-to-

memory instruction set is surely possible. Further, by keeping the instruction set

orthogonal with only few and simple addressing techniques, a RISC like memory-

to-memory processor can be built. By providing suitable hardware resources such

as branch prediction, reorder buffers, multiple functional units, multi-ported caches,

etc., a superscalar implementation of the same is possible.

In this thesis, we investigate the need for a pure memory-to-memory architecture.

We also assess its performance by comparing it with a hypothetical RISC processor

(DLX [22]).

11

1.4 Salient Features of the Thesis

In this thesis, we critically investigate the usage of registers and caches as local

memory. We also investigate their organizational benefits. We find that on-chip

registers, which have a different address space from that of the memory, are not

the best way to organize local memory. Previous studies have shown diminishing

return with large number of registers [22]. However, the technology today permits

to have a large number of on-chip registers and use dynamic register renaming to

improve performance. We also observe that the performance of on-chip cache scales

well with the size. The caches are transparent to the users and exploit program and

data locality to bridge the processor-memory speed gap. Further, because of the

regularity in their organization, caches yield higher density in VLSI than that of the

registers and other logic.

With current technology, it is possible to have high speed, multi-port on-chip

caches. With the same technology, it is also possible to have a large number of on-

chip registers. We argue that in such a case it is better to map registers into memory

address space. The programs are written with memory model in mind, and hence

a memory-to-memory instruction set is the most natural choice for compilation.

We find registers, as used by the processors today, have many disadvantages like

load/store overhead, large context, extra instructions to change the type of the

memory operands etc. We also note that compilers for ILP processors create artificial

dependences among instructions that were not there in the original program and

hinder multiple instruction issue mechanisms.

The investigations clearly indicate that the better way of utilizing on-chip reg-

isters is to use them as the first level in memory hierarchy. We introduce a new

technique called on-chip registering of memory locations, where the on-chip regis-

ters are mapped on to memory locations. We refer to this as level zero (L0) cache.

To exploit on-chip registering of memory location, we determined that a pure

memory-to-memory instruction set is the most suitable one. As there is no need of a

separate address space for registers, compilers need not perform register allocation.

However, compilers will play a significant role in scheduling instructions for efficient

execution on the pipeline. We hope that as there is no register pressure on compilers,

12

they can perform a better job in scheduling. Compilers can also plug in hints into

the instructions to assist in predicting branches and resolving data dependences.

They can also intelligently assist in prefetching data and instructions into the cache.

As registers are to be addressed using memory addresses in the proposed archi-

tecture, the instructions become very long. We can provide the associated memory

bandwidth by having wide buses between instruction cache and decode unit. We

show that the instruction bandwidth required for a four way superscalar processor

of this kind can be provided using existing technology. Further, we expect program

dynamics will be able to capture frequently used operands in the L0 cache.

We also propose a pure memory-to-memory architecture. We name the new

architecture as Performance Enhanced Register–Less architecture (PERL). We also

propose a simple reduced RISC like instruction set. As the instructions are simple,

we show that a superscalar implementation of PERL will be an efficient utilization

of the resources.

In this thesis, we also analyze the performance of PERL processor using an

analytical model. We take the dynamic instruction count statistics from DLX, a

hypothetical generic processor [22]. From these statistics, we remove all Load/Store

instructions and form the instruction count for the PERL processor. We clearly

show in the analysis that at high cache hit ratios (which is also possible due to

registers mapped to the memory address space), the proposed PERL architecture

consistently performs better than DLX. The analysis also shows that at higher hit

ratios, PERL processor can tolerate high miss penalties.

Simulation studies are carried out to further investigate the performance of the

new architecture. A highly configurable instruction set simulator is built with var-

ious superscalar features. We have also built a C cross compiler for PERL using

gcc. We have also built a cache simulator capable of simulating several bandwidth

improvement techniques. A superscalar DLX instruction set simulator is used to

compare the performance of PERL and DLX.

We performed simulation over a few benchmark programs including the go and

compress programs of SPEC95. The simulation results clearly show that PERL

executes fewer instructions (6% to 65%) compared to the DLX for the benchmark

13

C programs. In addition, it was seen that PERL requires significantly fewer cycles

compared to the DLX to execute a program. The results are also consistent across

superscalar processors with degree of 2 and 4, with or without branch prediction.

The performance does not vary much even if we provide the same kind of instruc-

tion bandwidth to DLX. The Average ILP achieved by DLX across all benchmark is

about 2.1. PERL also exhibits an average ILP of about 1.5 (which include loading

operands from memory and storing back into memory). As PERL executes fewer

instructions this figures indicates that PERL can indeed perform better.

A new branch prediction technique using a pair of stacks to predict indirect

branches is used. It shows excellent performance in predicting indirect branches,

especially for call/return pair of branch instructions.

The demand on data caches are reduced by operand renaming and forwarding

results to waiting instructions. This technique reduced the data cache read traffic

(28% to 58%). A small number of registers used as L0 cache where stack pointer

and frame pointer are cached along with other program variables. It is shown that

this L0 cache caters to more than 20% of total access. The remaining accesses are

served efficiently by a large dual-ported cache. A large L2 cache is required to keep

the miss penalty down.

The number of data cache misses in PERL and DLX programs were almost

same. This is in tune with our expectation. However, we feel compiler techniques

can further help in bringing down the cache misses.

1.5 Thesis Organization

The rest of the thesis is organized as follows.

In the next chapter, we present few related works and discuss their innovations

and impact on the architectures. Technical details of many contemporary processor

technologies are also presented.

In Chapter 3, we discuss the issues involved in the usage of registers such as

the weakness of register allocation performed by the compiler. We also look at the

cache and various cache performance enhancements used by current day processors.

14

We also introduce the novel concept of on-chip registering of memory locations and

define a pure memory-to-memory architecture (PERL). An analytical performance

model of PERL is also presented comparing it with DLX.

In Chapter 4, we present an example design of PERL. We describe a sample

instruction set architecture and the pipeline data path to execute the same. We

also describe a superscalar implementation of PERL along with techniques such as

dynamic scheduling, branch prediction, data forwarding etc.

In Chapter 5, we describe the simulation methodology used to study the per-

formance of PERL. We describe various tools such as perlcc (a cross compiler from

gcc), supersim (a superscalar instruction set simulator) and cachesim (a trace

driven cache simulator used to study the cache performance of PERL).

The results of the simulations are presented in Chapter 6. The performance

of PERL and DLX are compared by executing seven benchmark programs (from

SPEC95 and NASA Numerical Aerodynamic Simulation test suites), on the respec-

tive simulators. Apart from the execution time, other factors like impact of branch

prediction, fetch and decode stalls, and IPC are discussed. In addition, the impact

of operand renaming, address/data forwarding and SP/FP accesses are discussed.

We discuss the results of the off-line simulation of memory subsystem in Chapter

7. The impact of L0 cache in PERL is presented and the performance of L1 and L2

caches in DLX and PERL is discussed.

Finally, in Chapter 8, we conclude this thesis. We also present some improve-

ments and identify compiler optimizations specific to PERL. We also present few

ideas worth investigating in future.

15

Chapter 2

Related Work and Contemporary

Technologies

In this thesis we used several techniques and results of many research works car-

ried out elsewhere. We present a survey of those research works. We also present

technical features of some important contemporary processors.

2.1 Related Work

There are a number of research studies attempting to improve the processor per-

formance by employing intelligent techniques in using local memory (registers and

caches). Most of them have addressed the problem within the framework of existing

architectures.

The requirement of large register-set by compilers to generate efficient code in

superscalar processors have been addressed by many [42, 43, 44]. The approaches

involve splitting the register file or providing a cache of the most frequently used

registers and having a large backup store for the full set of registers. Postiff et

al., proposed a technique [45], where a large logical register file is cached into a

small physical register file. This technique then provides a large register set to

the compiler. Similarly some researchers have addressed the issue of register port

requirement of ILP processors [46, 47]. Register renaming is implemented in several

16

different ways in commercial processors and a detailed survey of them can be found

in the paper by Sima [48].

Improving the memory system is also a subject of major concern and addressed

by many research studies. Austin and Sohi [49] showed that the renaming of reg-

isters and memory can open up ways to increase ILP several fold. McNiven and

Davidson [50] found that values with long live ranges also have long reuse distances.

By using compiler directives to keep these and other dead values out of cache, they

were able to use the cache better and achieve 25%–30% reduction in memory traffic.

Huang and Shen [51] have analyzed the intrinsic memory bandwidth requirements

of ordinary programs. They report that with the microprocessors issuing between

one and four instructions, the bandwidth requirement scales linearly with the issue

rate. They also report that as issue rate increases beyond eight instructions per

cycle, the growth in bandwidth requirement increase much more rapidly.

The memory system design considerations for dynamically scheduled processors

are well addressed by Farkas et al. [52]. Sites in his paper [53], discusses a spec-

trum of ways to exploit large number of registers in an architecture – ranging from

programmer-managed cache (large number of explicitly addressed registers, as in

CRAY-I) to better schemes for automatically managed cache. A combination of

compiler and hardware techniques will be needed to maximize effective register use

while minimizing transmission bandwidth between various memories. Discussions

include merging activation records at compile time, predictive cache loading, and

dribble-back cache unloading. In this paper, he also notes that if caches are as fast

as registers then we do not need registers at all, as there is no need of any temporary

storage. Davidson and Vaughan in their paper [54], report the results of a set of ex-

periments to isolate and determine the effect of instruction set complexity on cache

memory performance and bus traffic. They report that the miss ratio is affected

by the object program size and hope that it can be corrected by just increasing

the cache size. They conclude that RISC machines require about 4 times larger

instruction cache than that in CISC to achieve the same hit ratios as object codes

for RISC machines are twice as big as their CISC counterparts. Increasing cache

size above 64KB does not provide any additional improvement in performance.

17

Jouppi [55] proposes three new techniques – miss caching, victim caching and

stream buffers, to improve the performance of direct-mapped cache. Miss caching

and victim caching techniques effectively reduce the conflict misses while stream

buffers reduce the capacity and compulsory misses.

Sohi and Franklin introduce multi-port non-blocking L1 cache to improve the

data bandwidth to greater than 1 request per cycle [56]. The multi-port cache is

built using duplicate cache banks and interleaved banks in their paper.

Several other researchers [21, 57] have looked at the efficiency of multiple ports

in the cache.

Wilson et al., propose three techniques to increase the cache port efficiency for

dynamic superscalar processor [58]. The three techniques are load-all, load-all-wide,

keep tags and line buffers. Wilson and Olukotun [59], report that an increase in

cache port from 1 to 2 increases the processor performance by 25%, from 2 to 3

ports gives 4-5% increase and from 3 to 4 ports gives 1% increase.

Various researchers have worked on alternative ways of organizing and using on

chip local memory [60, 61, 62, 63].

Wall in his paper [35] finds that even with impossibly good techniques, average

ILP rarely exceeds 7, with 5 more common. Butler et al. [34], exhibits that when

all constraints are removed except those required by the program, the degree of

parallelism found can be in excess of 17 instructions per cycle.

The case for processor/memory integration (IRAM) in view of growing chip

densities and slow DRAMs has attracted lot of interest [64, 65]. The system level

implications of processor-memory integration are studied in a paper by Burger,

Goodman and Kagi [66].

The only work that has a strong resemblance to our work is the F-CPU project

(F for freedom). This is the only work where a memory-to-memory architecture with

some twists has been chosen. The latest document [67] from them says that they

have abandoned memory-to-memory architecture. They now use Transport Trig-

gered Architecture (TTA). No reason has been given for their decision to abandon

memory-to-memory architecture.

18

2.2 Review of Some Contemporary Technologies

It is important to look into the technical features of the state-of-art processors to

know what they offer in order to improve performance. We also look into new

innovative ways of processor implementation technique in the form of CrusoeTM

processor from Transmeta.

2.2.1 UltraSPARC III and IV

The UltraSPARC-III is the third generation of Sun Microsystem’s most powerful

microprocessors. The UltraSPARC-III design extends Sun’s SPARC Version 9 ar-

chitecture a 64-bit extension to the original 32-bit SPARC architecture that traces

its roots to the Berkeley RISC-I processor. It can sustain the execution of up to four

instructions per cycle, even in the presence of conditional branches and cache misses,

mainly because the units asynchronously feed instructions and data to the rest of the

pipeline. Instructions that are predicted for execution are issued in program order

to multiple functional units, executed in parallel, and for added parallelism can be

completed out-of-order. To further increase the number of instructions executed per

cycle, instructions from two basic blocks can be issued in the same group [15, 68].

The core instruction set has been extended to include graphics instructions that

provide the most common operations related to two-dimensional image processing,

two and three dimensional graphics and image compression algorithms, and parallel

operations on pixel data with 8 and 16-bit components.

Some of the UltraSPARC III processor features are shown in figure 2.1 and listed

below.

• 4-way superscalar processor with nine execution units and six execution pipes

(2 integer, 2 floating-point, 1 load/store and 1 branch).

• 14 stage, non-stalling pipeline.

• 64-bit data paths including 64-bit ALUs and 64-bit address arithmetic.

• 64-bit virtual address and 43-bit physical address space.

19

Figure 2.1: UltraSPARC III1

1 < Source: “An Overview of UltraSPARC III Cu Processor”, Sun Microsystems, A white paper,
Jun 2002 [68] >

20

• Data and instruction prefetching mechanism.

• Data Memory Management Unit with 1040 Translation Lookaside Buffer (TLB)

entries that can support up to 4 MB pages.

• 900 MHz or higher frequency (Currently shipping 1.2 GHz processor).

• Primary instruction cache (e.g., 32KB, 4 way set associative in UltraSPARC

III).

• Primary data cache (e.g, 64 KB, 4-way set associative supporting one load or

store instruction per cycle in UltraSPARC III).

• Prefetch cache for software prefetch (e.g., 2 KB, 4-way set associative in Ul-

traSPARC III).

• Write cache that reduces store bandwidth to Level 2 cache (e.g., 2 KB, 4-way

set associative in UltraSPARC III).

• Support for L2 cache (e.g., 8MB, 2-way set associative external L2 cache in

UltraSPARC III).

The data cache is virtually indexed, physically tagged cache (VIPT) with a two

cycle latency and one-cycle throughput. It employs write-through, no write-allocate

policies. The L1 cache miss penalty is 10 cycles and L2 miss penalty is about 100

cycles.

The UltraSPARC III Cu processor contains 160 general purpose registers. They

are windowed into 32 registers addressable by Integer Unit Instructions. The Floating-

point register file contains sixty four 32-bit registers and can be addressed as thirty

two 32-bit FP registers, thirty two 64-bit FP registers and sixteen 128-bit registers.

The details of the register addresses and allocation can be found in [3].

The SUN’s fourth-generation Ultra SPARC IV is made up of two UltraSPARC-

III cores (code-named Cheetah) and includes on-chip tags for 8 MB of off-chip 2-way

set-associative level 2 cache per core. Other shared interfaces on the UltraSPARC IV

processor include an on-chip memory controller supporting up to 16 GB of DRAM.

21

The new chips are part of Sun’s “Throughput Computing” strategy, which the com-

pany acquired from Afara Websystems in 2001. At the heart of this new strategy

is Chip Multi-Threading (CMT), a design concept that allows the processor to ex-

ecute tens of threads simultaneously. The first generation of CMT, such as the

UltraSPARC IV family of processors, will enhance current UltraSPARC III system

throughput, initially by up to 2 times, and later by up to 3 to 4 times the current

levels. In future, Sun says it will be rolling out a more radical CMT design, which

will first appear in Sun’s Blade platform in 2006, which will increase the throughput

of today’s UltraSPARC IIIi systems by up to 15 times.

2.2.2 MIPS R18000

Figure 2.2: The micro-architecture of MIPS R180002

2< Source: Fu et al., “R18000TM The Latest SGITM Superscalar Microprocessor” - Hot Chips
13, Aug 2001 [4] >

22

The MIPS R18000 is a four-way superscalar processor. It fetches and decodes

four instructions per cycle and speculatively executes beyond branches with a four-

entry branch stack. It uses dynamic out-of order execution, implements register

renaming logic using map tables and achieve in-order graduation for precise excep-

tion handling.

It employs both branch prediction and speculative execution. The instructions

are executed out-of-order and committed in-order. The processor uses register re-

naming to reduce the latencies due to false data dependencies. To sustain the four-

way issue, there are five fully pipelined, low latency execution units. More details

of the performance aspects of the processor can be found in a paper by Fu et al. [4].

The MIPS R18000 can hold up to 48 decoded instruction (active list). This helps

in issuing a large number of speculative instructions. Split transfer from system

address bus to secondary cache shortens the busy periods and hence provides better

utilization of system bus.

The MIPS R18000 has a 2-way set-associative 32KB on-chip L1 data cache and

32KB instruction cache. It has 1MB 4-way set associative on-chip L2 cache. Both

L1 and L2 are non-blocking, write back caches and employ LRU replacement policy.

2.2.3 Alpha Architecture

Even though Alpha architecture has not been a very popular architecture, it de-

ployed many novel schemes. The Alpha 21364 is the latest of alpha processor from

the Compaq computer corporation. The 21364 use the same core as that of 21264

with some minor enhancements. Compaq had also released the design of 21464 with

a completely new micro-architecture [19]. Originally scheduled to be ready by 2002,

the chip is yet to be launched.

Some of the features of alpha 21364 (figure 2.3) are as follows.

• 0.18�m CMOS, 1250 MHz.

• 152 million transistors (15 million logic, 137 million SRAM).

• Four-issue superscalar processor.

23

Figure 2.3: The Alpha 21364 core3

• 64KB I-cache, 64KB D-cache.

• Integrated L2 cache (1.75 MB).

• Integrated system/multiprocessor interface.

• Integrated memory controller (RAMBUS interface), high data capacity per

processor, 800 MHz with 30ns CAS latency pin to pin.

• Integrated network interface (3GB/s I/O interface per processor).

• Supports lock-step operation to enable high availability.

• System-on-a-chip concept.

Alpha 21364 has the alpha 21264 core with 64 KB of instruction cache and

data cache. Both of them are 2-way set associative and have a latency of 2 cycles.

3< Source: P. Bannon, “Alpha 21364 – A Scalable Single–Chip SMP”, Microprocessor Forum,
Oct 1998 [69] >

24

However, they are pipeline and hence the execution engine can issue two loads or one

store simultaneously. To support the dual port, the entire data cache is duplicated

unlike other processors that have multiple banks. It has an on-chip L2 cache of

1.75MB (7-way set associative), with a huge 12 cycle latency (due to the reuse of

21264 core). The L2 cache offers a total read/write bandwidth of 20GB/s. Data can

be accessed in 4 cycle blocks. The 21364 can buffer up to 16 L1 cache miss requests

at a time. Similarly, it has 32 victim buffers, which hold dirty cache lines on their

way back to memory (16 each for L1 and L2).

The core of the 21364 is an out-of-order processor with a peak execution rate

of size seven instructions per cycle and a sustainable rate of four per cycle. The

processor can keep up this pace on either integer or floating-point code. Up to 80

instructions can be in processed at a time. Registers are renamed on the fly, with

80 integer registers and 72 floating-point registers. The 21364 duplicates the integer

register file, with each copy having four read and six write ports.

The alpha 21464 has a totally new micro-architecture and is designed to have

the following features.

• An aggressive instruction fetch unit.

• 8 wide superscalar execution unit.

• 4-way Simultaneous Multi-Threading (SMT).

• Large on-chip L2.

• Direct RAMBUS interface.

• On-chip router for system interconnect.

• Up to 512-way multiprocessing.

• Directory-based Non Uniform Memory Architecture (CCNUMA).

The 21464 has a single-issue queue with 112+ entries and is 8-instruction wide

superscalar issue capability. To support this it has features like next address gen-

eration, line predictor, branch predictor, jump target prediction and return address

stack.

25

Data

Cache
Address
Reorder
Buffer

28 entries

TLB

Load Store
Dual

Address
Adders

Rename
Registers

Memory
Buffer

28 entries

Sysytem Bus
Interface

Instruction
Fetch Unit

Dual
64−bit

ALUs
Integer

Dual FP
Multiply/
Accumulate

Units

Dual
Shift/
Merge
Units

Dual FP
Diveide/
SQRT
Units

Rename
Registers

Sort

ALU
Buffer

28 entries

Retire

Architected
Registers

Instruction

Cache

System Bus

0.75 Mb
4−way

set assoc.

0.75 Mb
4−way

set assoc.

Figure 2.4: Block diagram of HP PA-8700 processor4

It has 8 integer and 4 floating point ALUs and 4 memory (2 read and 2 write

units). All these are pipelined. To support this wide issue execution engine it has

512 registers with 16 read ports and 8 write ports.

The L1 instruction cache is dual ported and is capable of supplying two eight-

instruction bundles per cycle.

2.2.4 HP-Precision Architecture

Hewlett-Packard (HP) over the years has developed a highly successful RISC pro-

cessor line – the PA-RISC (Precision Architecture RISC) family. The PA-8700

(figure 2.4) is the latest among them with the following features [5].

• 64-bit extensions for both data and addresses.

• Multi-media extensions.

• branch prediction with “hints”.

4< Source: “PA-RISC 8X00 Family of Microprocessors with Focus on PA-8700”, Technical
white paper, Hewlett Packard, April 2000 [5] >

26

• Weak memory ordering.

Some notable features of PA-8700 are the following.

• Clock frequency greater than 800 MHz.

• 1.5 MB of L1 data cache and 0.75 MB of L1 instruction cache (4-way set

associative).

• Data prefetching capability.

The advanced micro-architecture of the PA-8700 aggressively executes as many in-

structions as possible in each cycle to maximize performance. The processor exploits

techniques such as out-of-order execution, speculative execution, and non-blocking

caches. The Instruction Fetch Unit can fetch 4 instructions each cycle from the in-

struction cache. From there, the instructions are forwarded to the Sort unit, which

places instructions into either the 28 entry ALU Reorder Buffer or the 28 entry Mem-

ory Reorder Buffer depending on the instruction type. As soon as an instruction is

identified as ready to be executed, and an appropriate functional unit is available,

the instruction is dispatched to the functional unit to begin execution. Each cycle,

up to four out-of-order instructions can be dispatched. The PA-8700 includes 10

functional units to maximize the number of instructions that can be executed in

each cycle. These functional units consist of 4 integer units (2 Arithmetic/Logic

Units and 2 Shift Merge Units), 4 floating point units (2 Multiply and Accumu-

late Units and 2 Divide/Square Root Units), and 2 Load/Store Units (one for even

double-word addresses and one for odd double-word addresses). After instructions

have completed execution in the various functional units, they return to the Retire

Unit to update the architected state of the processor and thus complete execution.

2.2.5 Pentium-4 Processor

The Pentium-4 (P4) is the Intel’s state-of-the-art processor based on IA-32 architec-

ture [17]. It uses the NetBurst micro-architecture [70]. Its deeply pipelined design

delivers high frequencies and performance. It uses many novel micro-architectural

27

ideas including a trace cache, double-clocked ALU, new low latency L1 data cache

algorithms, and a new high bandwidth system bus.

NetBurstTM Micro-architecture

Intel’s NetBurstTM micro-architecture consists of four main sections as shown in

figure 2.5

System Bus

Bus Unit

Level 2 cache

Memory Subsystem Integer and FP Units

Execution Units

Level 1 Data Cache

Fetch /

Code

Trace Cache

Microcode
ROM

BTB / Branch Prediction

Front End

logic
execution
Out−of−order

Retirement

Branch History Update

Out−of−order Engine

Figure 2.5: Basic block diagram of NetBurstTM micro-architecture5

The in-order front end uses very aggressive instruction fetch techniques supported

by highly accurate branch prediction logic. These IA-32 instruction bytes are then

decoded into basic operations called �ops (micro-operations) that the execution core

will execute. The NetBurstTM micro-architecture has an advanced form of level 1

(L1) instruction cache called the execution trace cache. The trace cache stores the

already decoded IA-32 instructions or �ops. The IA-32 instruction decoder is only

used when the machine misses the trace cache and needs to go to L2 cache to get

5< Source: Hinton et al., ”The Micro-architecture of Pentium 4 Processor” - Intel Technology
Journal Q1, 2001 [70] >

28

Figure 2.6: Block diagram of Pentium–4 processor6

and decode new IA-32 instruction bytes.

In the out-of-order execution engine, instructions are aggressively reordered to

allow them to execute as quickly as their input operands are ready. It even executes

the instructions in the program that follow a delayed instruction as long as they

are independent from the delayed instruction. Register renaming logic renames the

logical IA-32 registers such as EAX onto the processors 128-entry physical register

file. This allows the small, 8-entry, architecturally defined IA-32 register file to

be dynamically expanded to use the 128 physical registers. The retirement logic

reorders the instructions executed out-of-order. Pentium 4 can retire up to three

�ops per clock cycle. The logic also reports branch history information to the branch

6< Source: Hinton et al., ”The Micro-architecture of Pentium 4 Processor” - Intel Technology
Journal Q1, 2001 [70] >

29

predictors at the front end of the machine.

The L1 data cache in the processor is an 8KB-byte, 4-way set-associative cache

with block size of 64 bytes. It uses write-through policy and can sustain one load

and one store per clock cycle. For cache misses the data obtained is treated as

speculated data and the instructions go ahead with incorrect data. A mechanism

called replay is used to re-execute instructions that use incorrect data.

Pentium 4 uses deep pipelining to obtain high frequency. Different parts of

Pentium 4 processor run at different clock frequencies. The frequency of each section

of logic is set to be appropriate for the performance it needs to achieve.

2.2.6 IA-64 Architecture

Intel and Hewlett-Packard(HP) jointly developed the instruction set architecture

for IA-64, with a goal of maintaining backward compatibility with existing IA-32

and HP’s Precision Architecture (PA)-RISC software. IA-64 maintains full binary

compatibility with IA-32 instructions in hardware and full binary compatibility with

PA-RISC instructions through software translation [2, 71].

IA-64 includes features that overcome many of the limitations of IA-32 architec-

ture. In addition to performance improvements, IA-64 has other enhancements.

• Larger memory addresses: 64-bit address space can accommodate nearly

18TB of physical memory.

• Explicit Parallelism: With the Explicitly Parallel Instruction Computer

(EPIC) instruction set developed for IA-64, the compiler plays a much larger

role in ensuring parallel execution of instructions. The EPIC compiler analyzes

the source code to determine which operations can be executed in parallel,

enhances the code to make these operations parallel, and then generates the

appropriate machine code.

• Predication: The IA-64 uses a technique called predication to handle condi-

tional branches in an efficient manner. The predicates are used by the EPIC

compiler. In a simple “if, then, else” statement, the compiler generates

30

straight-line predicated code(no conditional branch) for both true and false

paths. At run time, a compare statement stores either a one (true) or zero

(false) value in a special predicate register for each branch. Then, the execu-

tion unit executes both paths, but only uses the results from the path with

the true predicate register. The results of the path with the false predicate

register are ignored. The IA-64 architecture includes 64 of these special 1-bit

predicate registers.

• Speculation: The IA-64 architecture includes mechanisms that permit the

compiler to direct control (instruction) and data speculation to reduce or elim-

inate latency in certain types of operations.

• Bundled Instructions: In the IA-64 architecture, instructions are packed in

128-bit bundles to facilitate parallel execution.

• Byte Ordering: IA-64 architecture supports both little-endian (low-order

bytes first) and big-endian (high-order bytes first) byte ordering for loads and

stores longer than 1 byte. A bit in the user mask register controls the processor

endianity.

Itanium Processor

Itanium is the Intel’s first 64-bit microprocessor (figure 2.7) based on IA-64 architec-

ture. Itanium features 14 port 128 integer registers, 128 floating-point registers, 64

predicate registers, and a large number of special-purpose registers. The CPU core

is made up of 25.4 million transistors whereas the L3 cache consists of 295 million

transistors.

Itanium features a three-level cache hierarchy with L1 and L2 cache on the

microprocessor die and a large 4-MB L3 cache connected to the microprocessor

through a dedicated 128-bit bus running at full processor clock speed. The L1 cache

includes a separate dual ported 16KB data cache and 16KB instruction cache.

31

Figure 2.7: Itanium processor core7

2.2.7 CrusoeTM Processor

Transmeta Corporation introduced the CrusoeTM processors [73], an x86-compatible

family of solution that combines strong performance with remarkably low power

consumption. The new technology is fundamentally software based: the power

savings come from replacing large numbers of transistors with software.

The Crusoe processor solution consists of a hardware engine logically surrounded

by a software layer as shown in figure 2.8. The engine is a VLIW CPU capable of

executing up to four operations in each clock cycle. The VLIW’s native instruction

set bears no resemblance to the x86 instruction set; it has been designed purely

7< Source: Sharangpani, “Intel ITANIUMTM Processor Micro-architecture Overview”, Intel
Microprocessor Forum, Oct 1999 [72] >

32

VLIW Engine

Code Morphing
Software

Applications
Operating

System

BIOS

Figure 2.8: Code morphing and the Crusoe processor8

for fast low-power implementation using conventional CMOS fabrication. The sur-

rounding software layer gives x86 programs the impression that they are running on

x86 hardware. The software layer is called Code MorphingTM software because it

dynamically “morphs” x86 instruction into VLIW instructions.

The Code Morphing software is fundamentally a dynamic translation system,

a program that compiles instructions for one instruction set architecture (in this

case, the x86 target ISA) into instructions for another ISA (the VLIW host ISA).

The Code Morphing software resides in a ROM and is the first program to start

executing when the processor boots.

Transmeta’s Code Morphing technology change the entire approach to designing

microprocessors in which practical microprocessors can be implemented as hardware-

software hybrids.

8< Source: Klaiber, “The Technology Behind CRUSOETM Processors”, Transmeta Corpora-
tion, Jan 2000 [73] >

33

Chapter 3

A Case for Memory to Memory

Architecture

In the systems today, the processor-memory speed-gap is a major performance bot-

tleneck and is likely to continue to be a worrying issue in future also. In this chapter,

we critically view the two widely used ways of reducing the processor-memory band-

width gap, namely the registers and cache memory. We also bring out the drawbacks

of register-to-register architecture. We then propose a new way of organizing local

memory called on-chip registering of memory locations. In this context, we also

discuss the advantages of memory-to-memory architecture.

3.1 Background

Predominantly the memory in the systems today is realized using Dynamic Random

Access Memory (DRAM). Unfortunately, the speed of DRAM is not improving at

the same rate as that of processor (figure 3.1). However, DRAMs are still in use

because, they offer the best price/performance ratio due to their extremely low cost

and high densities [74, 75].

Programs are written in “infinite” memory model, ever since the introduction of

the virtual memory concept. During program execution, both instructions and data

are in main memory. Once the program starts executing, the processor fetches the

34

Processor−Memory
Performance−Gap

(grows 50%/year)

(2X / year)
60% /year
uProc

DRAM
9% /year
(2X / 10 years)

19
80

20
00

19
90

19
85

19
95

TIME

Pe
rf

or
m

an
ce

"Moore’s Law"

1

10

100

1000

10000

Microprocessor
DRAM

Figure 3.1: Growing processor-memory speed gap

required instruction and data on demand from the memory, using virtual addresses.

The execution of the instruction is typically much faster than the fetch of instruction

and data from memory. As every operation has to fetch instruction and data from

memory, the processor-memory speed-gap is crucial to performance.

Several solutions are used to reduce the growing processor-memory speed gap.

Two traditional methods that are widely used even today are on-chip registers and

caches. They are primarily a small number of high speed buffers placed between

memory and processor to hold the most frequently used data and instructions. In the

early days of microprocessors, caches were outside the CPU chip due to technological

limits. As VLSI technology improved these were placed inside the CPU. Processors

today have large register sets and multi-level caches right inside the chip. Both

on-chip registers and on-chip caches are implemented using the same technology as

that of the processor. A typical memory hierarchy in systems today is as shown in

figure 3.2. Typically, a low cost technology is used for larger memories but it also

yields slower access times. Keeping the necessary instructions and data inside the

processor (caches, registers) before they are actually required, reduces or eliminates

the speed-gap between processor and memory. There are many different ways in

35

Processor

Core

Cache

D

Cache

I

Cache Bypass Bus

L1 Bypass

L2
Cache

L3
Cache

Memory

Main

Figure 3.2: Memory hierarchy in modern computers

which registers and caches are implemented and also the ways in which they are

used by the programs. Sites in his paper [53] gives an excellent insight on this issue.

3.2 Cache Memory

One of the time-tested mechanisms for improving memory system performance is the

use of cache – a redundant and dynamically varying subset of the memory system.

Transparent to the user, caches try to hold the most frequently accessed portions of

main memory by the program. Cache memory reduces the effective memory access

time and main memory traffic by exploiting temporal and spatial locality of reference

in program and data. Processors can fetch the required instruction and data much

faster if they are in cache (hit) than when they are not in the cache. The caches

also reduce the demand on the memory bandwidth by reducing the memory traffic.

Caches are typically independent of the architecture and consistently work well by

exploiting dynamic program behavior. The caches are invisible to the programmer.

An exhaustive survey on cache memories can be found in a paper by Smith [76].

36

Cache memories, their design and techniques to improve their performance have

been a major topic for research over the last two decades. Performance tradeoffs in

cache design with respect to the interaction of cache design parameters like cache size

v/s CPU/cache cycle time, set associativity v/s cycle time and block size v/s main

memory speed is well addressed by Przybylski et al. [77]. Performance of on-chip

cache memories with miss ratio and traffic ratio as metrics is presented by Hill and

Smith [78]. Several different local memory organizations applicable for single-chip

processors like instruction cache, data cache (split and unified), stack and multiple

register set are described and studied in a paper by Eickmeyer and Patel [79].

Current day processors have extremely powerful caching mechanisms. All of

them have large on-chip split instruction and data cache as shown in figure 3.2. The

effective access time of on-chip caches with some architectural enhancement features

comes close to that of the registers. The access time of cache is comparatively slow

when compared to that of registers, because they are addressed using memory ad-

dresses, which are long. Further, as the cache size increases the access time also

increases because of increased complexity in the decoding logic. However, various

tasks associated with cache access, such as TLB (Translation Lookaside Buffer) ac-

cess, tag comparison and actual cache access are pipelined making their effective

access time quite comparable to that of registers. Many of today’s processors also

support simultaneous multiple access to the cache [80, 15, 12]. They either dupli-

cate the entire cache [26] or use interleaved memory banks [15, 17] to implement

multi-port cache. They employ lockup-free techniques wherein the cache system

continues to receive memory requests from the process, even when a miss occurs

(non-blocking cache). Some of them employ techniques like miss caching and victim

caching to reduce conflict and capacity misses [80]. Some of them employ techniques

like line buffer and stream buffers to reduce compulsory misses. Load-all technique

improves the port efficiency of caches by serving multiple reads to the same word

simultaneously. Load-all-wide builds on load-all by serving multiple reads to the

same cache block [58].

Superscalar processors place a very high demand on instruction bandwidth. To

meet this demand all modern processors have efficient fetch mechanisms supported

37

by large on-chip instruction caches, wide buses and branch prediction. Instruction

bandwidth today is not viewed as a bottleneck. However, the same thing cannot be

said with data. It has been seen by experience, that most programs will give instruc-

tion hit ratios of above 90% even with a small cache of 1 KB [81]. Many processors

today also have large L2 caches and controllers for L3 cache on the chip [19, 15].

In the current technology, processors have about 8–64KB of on-chip L1 instruction

cache and about 8–64KB dual port L1 data cache. The entire process of cache access

is pipelined to give an effective access time of one or two cycles.

3.3 Registers

Registers are used for various reasons. Their small size and proximity to the ALU

offers faster access speeds than that of the main memory. Registers are small in

number resulting in short addresses and less complex hardware for decoding them

than the one for addressing cache or main memory. They provide a physically sepa-

rate memory that can be accessed in parallel with the main memory. While caches

depend on the dynamic program behavior to get the data and instructions into

them, registers depend entirely on compilers and programmers to explicitly load

the required data into them. Compilers and programmers use exclusive load/store

instructions to move data between memory and registers. Once the operands are

loaded into registers from memory they can be accessed at very high speeds until the

same register is used to hold a different data. The registers therefore improve the ef-

fective memory access time and reduce the pressure on the memory bandwidth. The

registers provide multiple simultaneous accesses such that one can perform several

reads and one write operations on a register in the same clock. Since their accesses

do not clash with the memory access, compilers can reschedule the instructions for

better performance. Because of their short addresses, performing data dependence

analysis and breaking the false dependencies using dynamic register renaming is

much simpler than doing the same with the cache memory.

Compilers perform global register allocation to determine which values to keep in

registers. The superscalar processors on the other hand perform dynamic instruction

38

scheduling by looking through a window of instructions in the instruction stream.

However, compilers also reorders instructions to avoid pipeline hazards. These three

techniques are typically performed independent of each other. In reality, these steps

are dependent on each other and can impose constraints on the other, sometimes

producing inefficient code [21]. Keeping a large number of values in a small number

of registers creates a large number of conflicts when the execution order is changed

from the order assumed by the register allocator [82].

Code inefficiencies creep in when a memory location is accessed or when pipeline

delays occur. If the register allocation is performed first, the same physical registers

may be assigned to hold values from independent expressions, reducing the potential

ILP. This, in turn, decreases the scheduler’s opportunities to mask pipeline delays.

If the scheduling precedes register allocation, the number of simultaneous live values

may be increased, creating register spills to memory. Many studies have focused on

issues related to register allocation in the context of dynamic scheduling [82, 83, 84].

A novel method called RASE (Register Allocation with Schedule Estimates) [85]

integrates register allocation and instruction scheduling by giving register allocator

cost estimates that quantify the effect of its allocation choices on the subsequently

generated schedule. Several other works also address this problem [39]. In summary

we can say that register induce artificial dependence among program variables which

were not there in the original program.

In register-to-register machines, all the operands have to be in registers before

any operation can be performed on them. Load/Store instructions account for ap-

proximately 30-40% of dynamically executed instructions [22]. Further, registers

have to be saved across procedure calls. As registers are not typed and memory are,

additional instructions are required to type convert data in the registers with respect

to the data type of the values they hold. An excellent study is done by Franklin and

Sohi [86] about register traffic analysis in a load-store architecture. In this paper

the authors have found that more than 95% of register instances are used at most 3

times. Those instances which are used more than 4 times constitute primarily the

read traffic. About 10% of register instances constitute 20-30% of source operands

of all instructions. They also find that holding a few register instances in a buffer

39

in execution unit can reduce read register traffic by 80% and write traffic by 50%.

All processors today have a separate set of integer and floating point register sets.

Register sets in current superscalar processors are very complex with large number

of ports typically in the range of 8–10 read ports and 4–6 write ports for a four issue

processor. Manufacturers use lot of tricks to implement this, Alpha 21364 duplicated

the integer register file, with each copy having 4 read ports and six write ports,

giving a total of 8 read ports and 6 write ports (Writes are performed on both the

copies simultaneously) [19]. In contrast, the register file in Alpha 21464 has 16 read

ports and 8 write ports. In superscalar processors, much of the data flow activity is

concentrated around the rename registers and reorder buffer. Registers are renamed

dynamically and placed in the rename registers. The subsequent instructions read

the register from the rename registers rather than the register set itself.

In this scenario our argument is that the on-chip registers as used today in the

memory hierarchy is not the best way of using for the following reasons.

• Programs are written using infinite memory model.

• Compilers are too conservative and fail to find variables to allocate registers.

• Very few register instances (about 5%) are used more than three times.

• While compiling programs to superscalar processors, compilers fail to generate

efficient code and often introduce data dependences that were not there in the

original programs.

• Caches today offer effective memory access times which are comparable to that

of registers.

• Additional instructions are necessary to adjust the data in the registers ac-

cording to the data type that it had when loaded from the memory or when

stored in the memory.

• The operands that are brought into registers by explicit load instructions are

also brought into cache at the same time and hence could be accessed at the

speed of the cache.

40

• Explicit Load/Store contributes about 30% of the instructions in a register-

to-register architecture.

• Registers contribute large overheads during procedure calls.

We argue that the same multi-ported register set can be used as say a level zero

cache (L0). In other words, the first level of memory hierarchy is realized using

registers. We believe due to the program dynamics these small number of memory

locations will be able to automatically capture bulk of the frequently used operands.

This coupled with a pure memory-to-memory instruction set will eliminate many of

the overheads associated with the register set.

3.4 On-chip Registering of Memory Locations

We call this concept of L0 cache (figure 3.3) the on-chip registering of memory

locations. This concept serves well to implement a pure memory-to-memory archi-

tecture. This renaming of memory locations to on-chip registers is transparent to

the programmer and the performance purely depends on locality exhibited by the

programs.

As the registers are mapped on to memory locations, they have long addresses

unlike conventional registers, which have short addresses. Since all programs exhibit

locality, the on-chip registers are expected to observe very high hit ratio. If properly

supported by large on-chip caches, the miss penalty on a register miss will be very

low and can be kept to a single clock if it hits in L1 and to a few cycles if it hits in

L2.

With the modified scheme of registers, compilers can do a better job in exploiting

available ILP as they need not perform register allocation. They need to optimize

only on scheduling the instructions. As a large number of temporary variables are

not necessary in a memory-to-memory architecture, the on-chip registers can capture

more useful locality. By exposing cache to programmers, compilers can optimize the

code to prefetch data into cache.

Further, we can place a small set of high speed buffers in the execution path and

dynamically schedule the instructions. The instructions waiting for the operands will

41

On−Chip Registers
L0 Cache

mapped to
memory locations

Processor Core Processor Core

On−Chip Registers

Cache Memory Cache Memory

Main Memory Main Memory

Cache
Bypass

Memory Hierarchy in

Traditional Register Architecture

Memory Hierarchy in

Memory to Memory Architecture

Figure 3.3: On-chip registering of memory locations

get them either from cache or from this buffer (data forwarding). If the operands are

still in the process of computation, they are dynamically renamed to the physical

buffer assigned to hold the required value. Thereby a superscalar implementation of

a pure memory-to-memory architecture is possible. Even then, one has to find better

ways to handle the long addresses of memory while analyzing data dependences.

3.5 Memory to Memory Architecture

The memory-to-memory processors perform operations directly on the memory ad-

dress space.

Programs are compiled with a particular memory model in consideration. High

42

level programs typically use variables in the memory. Thus, a pure memory-to-

memory instruction set has the highest capability to capture the program behavior

as written by the programmer. Therefore, the compiled programs use the least

number of instructions in the memory-to-memory instruction set. The expression for

execution time (eqn. 3.1), gives a powerful formulation tool for analyzing, comparing

and projecting processor performance.

time

program
=

instructions

program
· cycles

instructions
· time
cycle

(3.1)

or

T = N · CPI · �

Programs compiled for memory-to-memory processor exhibits the most compact

code, hence the first term (N) in equation 3.1 is low when compared to a register-to-

register architecture. With careful design of instruction set and efficient hardware

implementation the average number of cycles per instruction can be kept low. By

using the best available technology and efficient pipelines the machine cycle time

(�) can be kept low. The characteristics of register-to-register architecture have

a natural ability to keep the CPI and � low. However, with the speed of cache

memory reaching close to that of the registers, the same thing can be worked out

for memory-to-memory processor.

The presence of large and fast caches inside the CPUs and the constant improve-

ments in VLSI technology provide several choices for an efficient memory hierarchy.

Current processors can perform simultaneous multiple cache accesses in a single

cycle.

Traditionally memory-to-memory processors were not considered as ideal choices

for pipelining. But with the presence of large, fast caches which are as fast as regis-

ters and with an orthogonal instruction set with a few simple addressing techniques,

we believe a pipelined implementation of memory-to-memory architecture is not

only possible but is more efficient than the register architecture.

43

3.6 Analysis

In our work, we named the register–less (read register address space less) architecture

as Performance Enhanced Register–Less (PERL) architecture. We compare the

PERL processor with the DLX, a hypothetical processor presented by Hennessy

and Patterson [22]. We chose DLX, because it is a classic example for a register-

to-register architecture. Further, it is the most chosen architecture to study many

of the architectural novelties, especially in the academia. Excellent simulation tools

are available for DLX across the World Wide Web. Many statistics describing the

performance aspects of DLX are well documented in [22].

We take the dynamic instruction count statistics of DLX as provided by Hennessy

and Patterson [22]. We analyze the performance of PERL processor against the DLX

using an analytical model. For the analysis, we make the following assumptions.

1. As the PERL processor operates directly on operands in memory, there are

no explicit Load/Store instructions. The Load/Stores amounts to 30-40% of

dynamically executed instructions (we will average it to 33%) in the DLX

applications. Even though there are fewer instructions in PERL programs,

each instruction is long and may not result in saving in the number of bytes

required to store the program.

2. The number of other ALU instructions executed is the same in both DLX and

PERL. Though PERL is likely to execute less number of instructions as extra

instructions to adjust the operands in registers are not required.

3. We also assume that all the operands in an ALU instruction of PERL use

indirect mode address and hence require 5 reads and one write to memory.

That is we assume worst case always, however, in reality many operands will

be accessed using direct and immediate addressing modes.

4. The number of dynamically executed branches will be same in PERL and

DLX. Further, we take the cost of branch as one clock in DLX, assuming the

branch prediction performs with great accuracy. We assume all the branches

44

in PERL are indirect and hence need two memory access (always the worst

case).

The above assumptions are carefully made so that there is absolutely no benefit

given to PERL. In fact, we have assumed worst case memory requirement for PERL.

From the data provided in [22], we extract that the instruction-use break up of the

DLX is 25-45% of Load/Store, about 45-65% of ALU and about 7-20% of branches.

For our analysis, we assume that there are about 33% of Load/Store, 54% of ALU

and 13% of branch instructions.

The computation of effective access time for n simultaneous accesses in an n-

ported cache is computed by modeling n accesses as a sequence of Bernoulli tri-

als [87].

The outcome of each access of the n accesses per cycle is either a hit or miss

(mutually exclusive) and are independent of each other. The outcome of each trial

can be represented by an n-tuple of 0’s and 1’s as follows.

On = (R1; R2; · · · ; Rn) Where Ri

0 if the access on ith port results in a miss

1 if the access on ith port results in a hit

The sample space of the outcome of the above trial is defined by

Sn = {2n n− tuples of 0′s and 1′s}

The probability assignment over the sample space S1 is already specified:

P (1) = (h) hit ratio in single port cache

P (0) = (1− h) miss ratio in single port cache

The probability of any sample point of r hits and (n − r) misses is assigned a

probability hr · (1 − h)(n−r). Noting that there are nCr such sample points, the

probability of obtaining exactly r hits in n accesses is given by

p(r) = nCr · hr · (1− h)n−r (3.2)

45

It can be verified that equation 3.2 is a legitimate probability assignment over the

sample space Sn since:
n∑

r=0

nCr · hr · (1− h)n−r = (h+ (1− h))n (3.3)

= 1

The average access time for n accesses in an n-ported cache is given by equation 3.4,

where h is the hit ratio, thit is cache access time and mp is the miss penalty. Every

access that results in a miss is served in mp cycle (i.e, no overlap), where as up to

n hits can be served in thit cycles.

T =
n∑

r=0

nCr · hr · (1− h)n−r · (r · thit + (n− r) ·mp) (3.4)

Where r · thit =

thit if 1 ≤ r ≤ n

0 if r = 0

We take the equations for Clocks Per Instruction (CPI) as the base for reference.

In the equation for CPIDLX (eqn. 3.5), 54% instructions take only one clock to

execute (ALU), 33% instructions (load/store) perform one memory access and hence

depend on the hit ratio (h) and miss penalty (mp), 13% instructions (branch) are

assumed to execute in one clock.

In the equation for CPIPERL (eqn. 3.6), 54% instructions (ALU) are assumed to

perform six memory accesses (worst case) and hence depend on hit ratio (h) and miss

penalty (mp), the 13% (branch) instructions are assumed to perform two memory

accesses (again the worst case) and hence depend on h and mp. 33% (load/store)

instructions are not applicable for the PERL. We assume that the L0 cache has 6

ports and has an access time of 1 cycle. However, there are no explicit load/store

instructions. Hence the equation for CPIPERL is normalized with respect to the

instruction count of DLX, where as equation 3.5 gives the actual CPI for DLX.

CPIDLX = 0:54 + 0:33 · h+ 0:33 · (1− h) ·mp + 0:13 (3.5)

CPIPERL = 0:54 ·
6∑

r=0

6Cr · hr · (1− h)6−r · (1 + (6− r) ·mp) +

0:13 ·
2∑

r=0

2Cr · hr (1− h)2−r · (1 + (2− r) ·mp) (3.6)

46

Using normalized CPIs we can calculate the CPU execution time of the pro-

gram on both the machines given only the total number of dynamically executed

instructions on DLX(NDLX) as shown in equations 3.7 and 3.8

CPU Execution T ime on DLX = NDLX · CPIDLX (3.7)

CPU Execution T ime on PERL = NDLX · CPIPERL (3.8)

The miss penalty is same in both cases since both machines are expected to use the

same technology for memory. But a well designed second level cache and possibly

a third level cache can potentially improve the miss penalty. Further, PERL can

depend on the compiler to provide effective hints to the cache to improve the hit

ratio and avoid unnecessary write backs.

Two performance curves of interest are given in figure 3.4 and 3.5. Figure 3.4

gives the variation of normalized CPI for both DLX and PERL for varying hit ratio.

The curves are just the plots of equations 3.5 and 3.6 with constant miss penalty

(mp) and variable hit ratios (0.95–1.0).

Equations 3.7 and 3.8, show that the performance of DLX and PERL are equal

when the normalized CPI of PERL and DLX are equal. So, if we equate equations 3.5

and 3.6 and solve for miss penalty (mp), then we get an equation in terms of hit

ratio (h). If we substitute a value for h in the resultant equation, we get the miss

penalty at which both DLX and PERL will have same CPI, this we call as tolerable

miss penalty. Figure 3.5 shows the tolerable miss penalty for hit ratios varying from

0.9 to 0.99.

The figure 3.4 clearly shows that at higher hit ratios PERL exhibits a lower nor-

malized CPI and hence would perform better than DLX with reference to execution

time. The maximum CPI that the DLX can achieve is 1, while PERL achieves CPI

(normalized one) of less than one at higher hit ratios (h > 0:99). However, it may

be noted that compilers can further reduce the CPIs in both the cases. This is

significant because it helps to compare the two machines for different hit ratios, as

we expect hit ratios will not be the same in the two machines.

The plots in figure 3.5 clearly shows that at higher ratios both DLX and PERL

can tolerate higher miss penalties. Typically, in processors today it requires about 6–

8 cycles to access the L2 cache on a L1 cache miss. From the plot in figure 3.5 we can

47

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0.95 0.96 0.97 0.98 0.99 1

Normalized
CPI

Hit Ratio

Mp2 = 6
Mp1 = 6
Mp2 = 10
Mp1 = 10

Best of DLX

Figure 3.4: Normalized CPI vs. hit ratio

see that PERL has to achieve a hit ratio of 0.985 or more to perform as good as DLX.

The plot does not look very appealing for PERL as the plot indicate that PERL

would perform better only when miss penalties are very low. However, in practice

PERL has a better hit to the cache than the DLX as all the register accesses in DLX

(traditional register machine) are turned into memory (cache) access in PERL. The

register access of DLX therefore translates to cache hit in PERL. Intuitively we can

expect the number of misses will be the same in both DLX and PERL. As PERL

has more memory accesses than DLX, the hit ratio for PERL are much better than

the DLX. Therefore, we can expect PERL to perform better than DLX, especially

at high hit ratios. With a perfect cache PERL will definitely outperform DLX as

shown in figure 3.4

In future, processors can be built with large on-chip memory enough to hold

the entire program and data in them [65]. Compilers would be able to further

boost the performance of PERL by performing proper code scheduling, prefetching

and producing valuable hints in operand access and branch prediction. This along

with the expected high performance of PERL at higher hit ratios gives us enough

motivation to further investigate the case of register–less processor.

48

0

2

4

6

8

10

12

14

16

18

20

22

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Tolerable
Miss Penalty

Hit Ratio

Tmp(h)

Figure 3.5: Tolerable miss penalty vs. hit ratio

49

Chapter 4

PERL - A Memory to Memory

Architecture

In this chapter, we present an example design of a memory-to-memory processor.

This processor is defined for the study purposes and we do not claim it to be the

ideal one or the best. Many alternatives to the architecture are possible and here

we define and explore one of them.

As discussed earlier, the PERL (Performance Enhanced Register–Less Processor)

has the following features.

• It has no explicit register name space.

• The first level of memory hierarchy L0, consists of a set of high speed registers

mapped to memory locations in a manner similar to mapping the cache to

memory. The organization of L0 hierarchy is implementation dependent and

is invisible to the programmer.

• All instructions operate on memory and hence there are no explicit load/store

instructions.

• The instruction set is conducive for superscalar execution.

50

4.1 Instruction Set Architecture

PERL instruction set is based on a pure memory-to-memory architecture. We use

three address format that provides maximum code compaction [22]. All instructions

operate on memory and have a general format as follows.

instruction mnemonic dest<:dType>, src1<:dType>, src2<:dType>

for example, add p:b1, q:b2, r:b4

Here dest, src1 and src2 are all memory addresses. The first operand dest is

the destination of the operation on memory locations src1 and src2. Data type of

each operand can be specified with the associated dType fields. For example in the

instruction above, add is performed on data stored in location q and r. The sizes

of the operands are two bytes and four bytes respectively. The result is stored in

1 byte location at p. A shorter version of the instruction when all operands and

destination have same data type can be written with dType associated with the

instruction mnemonic. For example the instruction addb4 p, q, r is a short form

of the instruction add p:b4, q:b4, r:b4.

Details of the PERL instruction set are provided in Appendix A.

4.1.1 Addressing Modes

Addressing modes have the ability to significantly reduce instruction counts (N

in equation 3.1). They however, also add complexity in the micro-architecture of

the processor and increase the average number of cycles per instruction (CPI). A

judicious choice of them can keep the instruction count (N) low without such com-

plexities. Several studies have been done related to instruction sets and their us-

age [88, 89, 90, 91, 92, 9].

In choosing the addressing techniques for PERL, we consider the results reported

by Hennessy and Paterson [22]. They made the following observations about the

characteristics with reference to the addressing techniques used by the compilers,

while generating memory addresses (i.e., for memory operands in ALU and Con-

trol instructions and memory addresses in Load/Store instructions). They use VAX

51

architecture for measurements related to memory addressing and MIPS/DLX archi-

tecture for measurements on the usage of instruction sets of current machines.

• Frequently used memory addressing modes are displacement, immediate and

register indirect and these represent 75-99% of all the memory addressing

modes used in a program.

• A large percentage (75%) of displacement values could be represented within

12 bits. This percentages increase to 99% if 16-bit offsets are used.

• About 50% to 70% of the immediate constants can be accommodated using 8

bits. This number increases to 75% to 80% if 16 bits are available for storing

constants.

• Memory indirect addressing represents only a very small percentage (1-6%) of

all addressing modes used.

• Offsets for the PC-relative jump instructions can be accommodated within 8

bits for most of the instructions.

• In programs for the VAX architecture, register addressing modes account for

one half of the operand references, while memory addressing modes (including

immediate) account for the other half.

As a consequence, load/store instructions in all modern instruction sets have reg-

ister indirect with immediate index addressing mode (EA = register + immediate).

Some processors also support register indirect mode (EA = register) and register

indirect mode with register index (EA = register + register). This results in a reduc-

tion of instructions per program in certain applications (to the order of 5–6%) [92].

4.1.2 Key Features

PERL instruction set has the following features based on the studies as described

previously and the fact that it is a memory-to-memory architecture.

1. All instructions are of the same length and use three address format.

52

2. The machine supports eight integer data types namely byte, half word (16

bit), word (32 bit) and double word (64 bit) – each in signed and unsigned

flavors. It also supports single and double precision floating point operands.

3. The two operands are specified by any one of the four addressing methods

namely direct, indirect, displacement and Immediate. The destination of the

instruction is also specified by any of the four addressing modes. If an imme-

diate addressing mode is used for the destination, the result of the instruction

is not saved and this instruction then almost behaves as NOP. The source

operands are however fetched from memory (and therefore may result in page

faults). Compilers can use such an addressing mechanism to prefetch data into

caches.

In displacement addressing mode the instruction should specify a base address

and displacement. To specify the base address, PERL provides a The
 Td2Td
(de)Tjj
82.0581 Td65Td
(in)Tj231.5102560
(the)Tj
i4.3656 0 5d
(orts)Tj
54.47313 0 Td
(in)T
39.1056 0 Td
(b)Tj
2.1412 910
(the)Tj
11.4098 addrd
(and)Tjt7.6193 01
(four)Tj
cc4008 0 Td37(vides)Tj431.5102560
(the)Tj
13-defi125 0 Td
 Tdructess

f39
(orts)Tjw27.00581 Td4 Td
(of)Tj
14.5558 083
(ors.)Tj
22.0581 0 70 base

cac areev 653 9tess base– hins520d
(of)Tj
1at9395 0 7d
(the)Tj
23.4465 0 Td
(sp)Tj
11.4s8 0 Td
235esultdes(base)Tj
2-8.367 0 T19urcehesult

b displacemenmo o

theedh

mo

opsrc18.367 00 0 Tceis sp btiTd
27
(eha)Tj
17.2145060d
(an)Tj
lu8.4959d
34(ecify)Tj
16.96464 3(hesult)Tj1 -18.7937 Td
(op)Tj
12.67 0 T2.18
(then)Tj2
6.16640574sionis sp Td
ge anan Td
(d.)Tj
2d
e

des. pro
(also)Tj
23.4988 0 5 80
(base)Tjcyc4988 0 0.1887idesin de6 00d
(ord)Tj
15.0145 0 Td
4 Td
(a)TjADD,62 0 Td
(bit))TjSUB,0581 0970d
(an)TjAND,62 0 Td0 779tessasd. supp base in

supp oin oford (to)Tj
-385.05sh7.6193 0 Td(des.)Tjw-18.7933ructionin and floating oin o

OPC
AD, AS1 & AS2
DTD, DS1 & DS2
BD, BS1 & BS2

Operation Code
Addressing modes for destination and source operands
Data types of destination and source operands
Base pointers for destination and source operands

Unspecified BS2 BS1 BD DS2 DS1 DTD AS2 AS1 AD OPC

Instruction dest src2src1

5 2 2 2 3 3 3 2 2 2 6

32 bits 32 bits 32 bits 32 bits

128 bits

Figure 4.1: PERL instruction encoding

mul p:b4, q:b2, r:b2

divf8 i, j, k

6. Jump and conditional branch instructions are also supported. Call to functions

and return from them are implemented as jumps. In conditional branch class

of instructions the dest field specifies the target address, the src1 and src2

addresses specify the operands used to evaluate the condition. For example

the instruction jltb4 L19, -16(fp), firstsquare represents a conditional

branch which is taken when -16(fp) is less than firstsquare.

In the unconditional jump instructions, the dest field specifies the target ad-

dress, src1 field, if used, specifies the address where the current PC value will

be saved. The src2 field of the instruction is not used. Following example

shows the way in which call and return could be realized using jump instruc-

tions,

j init, -8(sp) ;; call init by saving PC onto stack

j -8(sp) ;; return

54

Among the four memory locations cached permanently in the L0 cache, gcc compiler

uses two for stack pointer (SP) and frame pointer (FP). Various other compilers can

use these locations for storing intermediate values (the same way as they use registers

in a conventional processor) or array bases for base addressing.

It can be observed that the instruction length in PERL is very long. PERL

instructions load upto two operands, and operate on them before storing one result.

In an instruction, if both the operands and the destination are specified using indirect

addressing, the processor has to perform as many as 6 memory accesses to execute

such an instruction. As one would expect, the performance of PERL is highly

dependent on the cache hit rates. However, some instructions in a conventional

processor where registers are used to keep values, will corresponds to the PERL

instructions that access memory for operands or no instructions at all. Thus, the

program locality is higher compared to the conventional processor and typically

results in a better cache hit ratio.

There are some additional advantages of the PERL processor compared to a

conventional processor. In Reg–Reg machine all operations where operands are less

than the size of the register require additional instructions for data conversions such

as sign-extension, bit-masking etc. In PERL processor, however all operands are in

memory. The types of the operands and destination are specified in the instruction

itself. This does not require additional instructions for doing so. The overhead in

context switch is also minimal as the machine state is very small (only PC, SP and

FP).

4.2 Processor Datapath

PERL processor executes the instructions in a pipelined fashion. A pipelined execu-

tion of instructions benefits both the superscalar and non-superscalar implementa-

tion of the processor. The datapath of PERL processor pipeline is given in figure 4.2.

55

4.2.1 Pipeline Stages

The basic pipeline comprises of fetch, decode and address generation, operand access,

execute and write back stages as shown in figure 4.2.

L0 cache

src1

src1

src2 src2

result

Operand
access

Compute WriteBack
ID WBEX

D

D
cache

addr

addr

dest
addr

dest
addr

Res

cache

dest
addr

IF

opc

Decode &
address
generation

cache

cache

cache

D

D

D

Cache access for
Base and Indirect address

cache
D

Figure 4.2: The processor datapath of PERL

Fetch stage: This stage brings in the next instruction from the I-cache and places

it in the instruction queue for decode. In branch instructions, the next instruction

fetch depends on the outcome of branch execution. The branch hazards are reduced

using branch prediction mechanisms and are explained later in section 4.4.1.

Decode and Address generation stage: In this stage, the instruction that was

fetched in the previous cycle is taken from the buffer and decoded. The effective

addresses of dest, src1 and src2 of the instruction are computed based on the address-

ing modes and placed in the buffers. If the addressing mode is direct or immediate

then the memory is not accessed to get the address of the operand. In such cases,

address/value present in the instruction is forwarded to the buffers of the next stage.

If an operand is addressed using 2-bit base or indirect addressing modes, a memory

access is performed to get the base/address. This access always results in a hit in

56

L0 cache which contains the base pointers cached permanently. In all such cases

data dependencies on the other instructions in the pipeline are resolved before the

memory access is performed. An ALU operation is required for base addressing

mode, to add the offset specified in the instruction with the base value. Thus, this

stage performs upto a maximum of three memory accesses (to L0 cache) and upto

a maximum of three additions.

Operand access stage: This stage uses the effective address computed in the

decode stage to read the operands from the memory. If required operand is not

found in L0 or L1 cache then a memory access is performed and the pipeline is

blocked until the data is brought into the cache. Data dependencies are also resolved

before the memory access.

Execute stage: In this stage, the actual operation on the operands is carried out.

In case of a branch instruction, outcome of the branch instruction is known at this

stage. If the prediction was wrong, the instructions following the branch are flushed

and the BTB is updated. The computed result is placed in the buffer of the next

stage and also forwarded to the earlier stages if required.

Write Back stage: The write back stage writes the result computed into the

memory location pointed by the destination address.

Each PERL instruction execution results in 1 fetch (I-cache), upto 5 data reads

and 0 or 1 write access to the cache. Thus, the cache system design is extremely

important for the efficiency of the processor. In the worst case when all memory

accesses result in a cache miss, PERL can produce upto 5 memory reads and one

memory write. By restricting the base addresses to some fixed locations in the

memory and registering them on chip (L0 cache) brings down the maximum reads

from 5 to 2. Cache port efficiency improvement techniques like Read All and Read

All Wide [58] also benefit PERL to a great extent (as discussed later in section 4.5.1).

4.3 Superscalar Processor Model

Superscalar execution of instructions is an attractive technique to exploit the ILP

in a program. Hence, it is necessary for us to discuss how a superscalar model of

57

PERL is implemented. Techniques like branch prediction, out-of-order instruction

issue, renaming etc., are employed to extract ILP from the programs. Superscalar

processors need multiple functional units so that they can issue multiple instructions

in the same cycle.

PERL simulator is highly configurable and the configuration of a superscalar

version can be specified with varied parameters. A particular superscalar processor

model of PERL is shown in figure 4.3, that has two operational units – an integer

unit and a floating point unit. These operational units are supplied with instruc-

tions coming from the instruction queue, where fetched instructions are buffered.

Each operational unit contains a set of functional units where instructions are exe-

cuted, and the results are written to the data cache. In order to support multiple-

instruction-issue we have some more techniques embedded into PERL architecture.

These techniques are not specific to the superscalar model but can be used to im-

prove the performance of non-superscalar pipeline as well. However, their benefits

are generally more pronounced in superscalar processors.

• Fetch. The instruction fetcher brings in a fixed number of successive instruc-

tions in program order from instruction cache and places them in an instruction

queue. Branch prediction is used to speculatively fetch instructions from the

predicted target address.

• Decode. The decode unit performs its operation in two stages. A fixed

number of instructions are taken in program order from the instruction queue,

decoded and dispatched to the appropriate central window (Integer/Float).

The address of dest, src1 and src2 are computed for each of the instruction

decoded in exactly the same way as discussed in section 4.2.1.

The actual operand access is done in the second stage. Data dependencies

are resolved by placing the values of the instructions operands in the window

entry. Each operand address is first searched in the reorder buffer to see if

the operand’s value is generated by a previously issued instruction. If found

and its value is not yet valid, then the reorder buffer entry is taken in place

of the operand value. If the operand value in the reorder buffer is valid then

that value is taken. The reorder buffer is searched starting from the tail and

58

Insn/
Reservation

Insn/
Reservation

Instruction
Queue

D
E
C
O
D
E
R

C
E
N
T
R

L

W
I
N
D
O
W

Instructions
Decoded

C
E
N
T
R

L

W
I
N
D
O
W

Out
 Of
Order

Issue
Logic

Out
 Of
Order

Issue
Logic

Instructions
Decoded

C
O
M
I
T

W
R
I
T
E

B
A
C
K

W
R
I
T
E

B
A
C
K

D
A
T
A

C
A
C
H
E

Operands

I−Fetch

I−Cache

Bramch

ALU

Shifter

Comp

FP Add

FP Div

FP Mul

FP Branch

Result Forward

Result Forward

Reorder Buffer

Reorder Buffer
Integer

Floating Point

Operands

Integer Unit

Floating Point Unit

Operands

A

A

BTB

Figure 4.3: The superscalar PERL processor model

the first match is taken as it holds the most recent value of the operand. The

operand is fetched from the memory (cache) if it is not found in the reorder

buffer. The operands can be fetched out-of-order, i.e. the operands of a later

instruction can be fetched before the operands of earlier instruction.

Such a technique decouples instruction decoding from instruction execution

thereby simplifying dynamic scheduling. For every instruction that is decoded,

an entry is made in the corresponding reorder buffer and its destination address

is placed in it. The entries in the reorder buffer are made in program order.

• Out-of-order instruction issue. Instruction-issue logic examines instruc-

tions in the window, instructions whose operands are available and the required

59

functional unit is available are termed as ready instructions. The issue logic

picks up a fixed number of ready instructions, not necessarily in program or-

der, and dispatches them to their appropriate functional unit. When more

than one instruction needs the same functional unit, the oldest one among

them gets the priority. Thus, there can be many active instructions as long as

there are no resource conflicts.

• Out-of-order completion. Because of the out-of-order instruction issue pol-

icy and various latencies of the functional units, instructions can complete out

of program order. Hardware mechanism must ensure that results are written

in correct order into memory.

All the results of the instructions are written into the reorder buffer by the

write back unit. The write back logic finds the completed operations in the

reorder buffer and frees the corresponding functional units. The completed

results are validated and forwarded to the instructions waiting for them in the

instruction windows.

The outcome of the branch instruction is compared with the corresponding

prediction made. If the prediction turns out to be wrong, the instruction

following the branch are flushed (by marking reorder buffer entries as invalid),

and the BTB is updated accordingly. Finally, the computed results are written

into the reorder buffer. Results are also forwarded to those instructions in

central window waiting for operands.

• In-order commit. The validated results are written back to memory (data

cache) during this stage. Writes are processed in order, from the head to

the tail of the reorder buffer, until an instruction with an incomplete result

is found. By this, instructions are made to complete in program order. The

committed instructions are removed from the reorder buffer. Invalidated in-

structions that follow a mis-predicted branch are simply discarded.

60

4.3.1 Important Resources

Some important resources and mechanisms are used to accelerate instruction pro-

cessing and thus enhance the above superscalar features. They are the following.

• Reorder Buffer. There are two instances of reorder buffer one in each opera-

tional unit. They are implemented as circular queues with a head position and

tail. Newly decoded instructions are assigned an entry at the tail of queue, and

they commit in order at the head. With this mechanism, instruction entries

do not have to move towards the bottom or top of the queue, instead only the

head and tail pointers are adjusted. Thus, the memory addresses of the results

of the instructions get mapped to reorder buffer entries. This may complicate

cache coherence protocols if the PERL processor is used in an SMP machine.

All the reorder buffer entries are going to commit at appropriate time in their

natural course, if some other processor writes into the memory location that

is currently in the reorder buffer then the reorder buffer entry has to be inval-

idated. This approach gets complicated and may bring down the performance

if there are many such invalidations. A better approach is to obtain exclusive

copy of the location in the reorder buffer thereby blocking all other processor

from writing into that location. The exclusive rights are released once the

location is written back to the L1 cache.

The reorder buffer is one of the major source for operands. It holds the results

of the instructions, which have completed out-of-order which in turn, may be

required as operands for the following instructions. It captures the temporal

locality of the data very effectively. The fact that these operands can be

supplied from the reorder buffer reduces the accesses to memory.

• A branch target buffer (BTB) between the instruction fetch and the de-

coder enables branch prediction by the instruction fetch unit. It allows the

processor to execute instructions beyond conditional and indirect branches,

the reorder buffer is then used to recover from any mis-predicted branch. The

instruction fetch unit starts fetching instructions from the target address in

case of a direct jump.

61

• A multi-ported interleaved data cache is provided to support multiple

data accesses due to multiple instructions being executed. Techniques to im-

prove the cache bandwidth like victim caches, line buffer, load-all-wide etc.,

yield extremely good benefits depending on the address pattern. A wide bus

between instruction cache and Instruction queue is provided as it has to carry

multiple instruction words.

4.4 Branch Prediction

The branch instructions in PERL instruction set are categorized as conditional di-

rect, conditional indirect, unconditional direct and unconditional indirect. It may

be noted that conditional indirect branches are used very infrequently [93].

4.4.1 2-bit Branch Prediction

Our initial design of PERL [94] made use of a 2-bit branch prediction as described

by Lee and Smith [95]. This scheme improves the performance of both pipelined and

superscalar versions of PERL. In this scheme past behaviors of a branch are recorded

and used to find the outcome of the branch instruction. For branch prediction,

PERL uses a Branch Target Buffer (BTB), whose contents are used by during the

instruction fetch to predict the outcome of the fetched branch instruction. Each

entry in this BTB contains the following fields.

• address field holds the address of the branch instruction for which the entry

corresponds to. This field is used to resolve conflicts between branch instruc-

tions whose addresses have the same low-order bits.

• predict state is a two bit number that stores one of the four states for the

next predicted outcome of the branch. The four states are strongly taken (11),

taken (10), not taken (01), strongly not taken (00). The first two states result

in the branch predicted as taken. The other two states predict the branch as

not taken. The transition among these states is as shown in figure 4.4.

• predict target this gives the target address of the branch if it would be taken.

62

This scheme however does not perform very well for the indirect branches. In

such cases even if the outcome of the branch is predicted correctly, the target address

may not be predicted correctly as it depends on the contents of memory locations.

We therefore use a modified scheme for the indirect branches.

TakenTaken

Not Taken Not Taken
Strongly

Taken

Not Taken

TakenNot Taken

Taken

Not Taken

Not Taken

Taken

Strongly

Initial

Figure 4.4: State diagram for a 2-bit branch prediction scheme

4.4.2 Indirect Branch Prediction

In the PERL programs, the most common use of indirect branches is for the func-

tion calls and return from the function. PERL programs use jump instruction to

implement call to a function and return from the function. Call is performed by a

direct or indirect jump in which the second operand specifies the location to store

the return address. On the other hand, return from the function is performed always

by an indirect jump. Since the function may be called from different locations in

the program, same return instruction results in returning the control to different lo-

cations depending upon from where the function was called. This creates a problem

in branch prediction. For example consider a code shown in figure 4.5. The printf

63

100 j _print, -8(SP)

/* call to print storing return

address on stack */

110 ------

120 ------

130 j _print, -8(SP)

/* call to print storing return

address on stack */

140 ------

150 ------

_print:

600 ------

610 ------

620 ------

700 j -8(sp), #0

/* return by taking the return

address from stack */

Figure 4.5: Example for call to the same function from different locations

function is called twice from location 100 and 130 respectively. When the first time

the function returns (from location 700), no prediction is made (as there is no infor-

mation for address 700). However, the BTB is updated to show the target address

as 110. When the second time a return is made from the function, the target PC is

predicted to be 110, whereas the actual target is 140. Thus, the target is wrongly

deduced even when the prediction was right. However, in such cases the address

from where call was made is related to the address where the control returns after

the call is over.

This problem is solved by Kaeli and Emma [96] with a pair of stacks. In their

scheme a pair of stacks S1 and S2 are used along with the BTB as shown in figure 4.6.

When a jump instruction is used to call a function (100 in the example), target

address (600) and the next sequential address (110) are pushed into S1 and S2

respectively. When a return instruction executes first time (700), the computed

target is compared with the top of S2. If a match is found the corresponding entry

64

BTB

Procesor

S1

S2

Figure 4.6: Branch prediction using a pair of stacks

in S1 is picked up and used as target address (branch address as 700 and target

address as 600). For such handling, a bit is set in the BTB to indicate that the

target address should be obtained from the stack rather than from the BTB.

When the call to the function is made again (at address 130 in the example),

target address (600 in the example) and the next sequential address (140) are pushed

into S1 and S2 respectively. When the return instruction (at location 700) is fetched,

the BTB is searched for 700. At this time, an entry is found for address 700 in the

BTB with the special entry bit being set. Therefore, the corresponding entry in S2

is picked up as the target address, which in this case is 140.

The processor simulation model that we use for our study implements all the

features discussed here. It allows configuring various parameters of the superscalar

processor and observing their effects on performance. The simulator is explained in

detail in section 5.2.

4.5 Memory Subsystem

An example memory subsystem for PERL is shown in figure 4.7. We used this

memory subsystem in our cache analysis done by the cache simulator. However, the

cache simulator is highly configurable and can be used to experiment with several

configurations.

The example memory subsystem of PERL contains an L0 cache that consists

of physical registers mapped on to memory locations. L1 cache is a split cache

65

L0
Cache

L1 Bypass

Core

Processor

Memory

MainCache

L3

Cache

L2

Cache

D

Cache

I

One Single Chip

Figure 4.7: Memory hierarchy in PERL processor

between I-cache and D-cache. The bus between the I-cache and the processor is a

wide bus capable of transferring multiple PERL instructions (needed by superscalar

versions). The data cache is multi-ported, to enable simultaneous read of operands

for multiple instructions. The L1 cache is supported by a large L2 cache. An L3

cache can also be deployed to reduce the memory latency.

In our cache simulation model, the memory subsystem consists of two primary

caches, for the instruction and data respectively. The secondary cache can be config-

ured either as unified or split. In the simulation model, there is a wide bus between

instruction cache and the fetch unit capable of fetching upto 4 full instructions

(aligned). Some memory locations such as stack pointer (SP), frame pointer (FP)

and a small number of memory locations (e.g., temporaries) are always cached to

on-chip registers (L0 cache).

The memory bandwidth requirement for PERL processor is very high. Each

instruction may require up to a maximum of six memory requests: three for resolving

operand een erand a42olvingf5787e

4.5.1 Increasing Cache Port Efficiency

Wilson et al. [58], proposed several techniques for improving cache port efficiency.

Among those techniques load-all (LA) and load-all-wide (LAW) are the most suitable

ones for PERL.

Load all technique increases the cache bandwidth by satisfying as many out-

standing loads in parallel as possible when data is returned from the cache. The

load-all-wide builds upon load-all by widening the single cache port up to the cache

block size to increase cache bandwidth. All outstanding loads reside in cache access

buffer. To make use of an entire cache line, each cache access buffer entry must

contain a multiplexer as well as a comparator. If the comparator detects that tags

are equal, then the multiplexer is used to select the correct data block from the

returning cache line.

4.5.2 Multi-Ported Cache

Multiple ports are needed in the cache to meet the memory requirements of the

superscalar processor. Two techniques for implementing multiple cache ports are:

(i) to duplicate the cache and (ii) to interleave the cache [56].

• Duplicate cache banks: A straightforward way to implement multiple read

ports is to provide multiple copies of the cache. For example, 4 read ports

can be provided to a 16KB cache by using four caches, each of size 16KB with

identical contents. This approach has a significant overhead in the amount of

memory used, especially when considering an on-chip cache.

• Interleaved banks: A better way to provide multiple cache ports is to inter-

leave the cache blocks amongst multiple banks, much in the same way as in

an interleaved memory. A cache block is present entirely in one single cache

bank.

The cache simulator that we use in our study gives the statistics about the per-

formance of load-all-wide. It can also be configured to simulate multi-port cache

67

(both interleaved and duplicate banks). However, in our studies we used the inter-

leaved bank mechanism. The details of the cache simulator are explained later in

section 5.4.

68

Chapter 5

Simulation Methodology

There are various different ways to evaluate the benefits of design ideas for an ar-

chitecture. The most accurate way is to build a prototype, which is time consuming

and expensive.

Another efficient way is to build a trace-driven simulator, which uses an instruc-

tion trace generated by a trace generator. In this approach, the program trace is

generated on a known machine and this trace is simulated over the machine under

study. Trace-driven simulation is fast to execute, because for the simulation, only

those features of the processor are modeled that affect the performance. For exam-

ple, the simulator does not record the values in the register file or memory. This

approach however has a disadvantage where the evolving design is not debugged

because the programs are never executed. The design flaws due to cross-interacting

hardware elements typically get unnoticed.

The third approach is to build an instruction set simulator. We undertook this

approach in case of PERL. It offers several advantages.

1. Accuracy

We wanted the results of simulated assembly instructions to be computed and

the state of various hardware elements to be recorded on a cycle to cycle basis.

Correctness of simulated program output was very important for us to assess

the proper coordination of all the different simulated hardware components.

69

2. Configurability

The various parameters of the architecture are made configurable in the sim-

ulator. This is important because it enables us to explore various design

alternatives.

3. Portability

We wanted a simulator to execute assembly language programs generated by

a cross compiler, so that it would be portable to different machines.

4. Availability

A superscalar simulator superDLX [97], was available as a free software. It

is a generic superscalar processor simulator and we have re-used many parts

of this simulator. In addition, we implemented the new features for simulating

PERL RISC architecture. Our simulator is called supersim.

5.1 Evaluation Process

We chose to compare the performance of the PERL processor with that of the DLX

processor mainly because of availability of its simulator. The dynamic instruction

count (N) and total cycle count are the two most important performance metrics

observed by us. We also give the performance of branch prediction, operand access

distribution and memory subsystem to observe the details of PERL processor and

its impact on the performance.

The figure 5.1, shows the step by step method adopted to evaluate the perfor-

mance of PERL processor. The same steps are carried out for DLX by using dlxcc,

superDLX and the appropriate configuration files.

A benchmark program is first compiled to obtain the assembly language program

for PERL or DLX. The simulator takes the assembly level program, assembles, links

and loads it directly into its memory. In addition, the simulator takes a processor

configuration file that defines various processor parameters like order of superscalar-

ity, size of reorder buffer, size of branch target buffer, size of instruction queue,

integer and floating point instruction windows etc. A sample processor configura-

tion file is given in appendix B.

70

Benchmark Programs (C)

Language Program

Configuration

Memory

CacheSim

gcc

Re−Build
Compile

Results
Simulation

Simulation
Results

PERL
machine

description

Memory
Subsystem
Configuration

Processor

(RTL) PERL Assembly

Address Trace
(dinero format)

make
perlcc

supersim

Figure 5.1: Evaluation process

During simulation, the program is executed cycle by cycle. In each cycle of the

instruction, status of various processor components can be observed. Optionally we

can set the simulator to generate the memory address trace in dinero format [22]

(explained in section 5.4.1). These traces can be used off-line to evaluate the design

of memory subsystem.

Several tools were used to conduct simulations, some of them were developed

by us and some were freely available software. Some other freely available tools

were enhanced to incorporate our requirements. The tools that were used are the

71

following.

1. A superscalar instruction set simulator for PERL supersim [98].

2. A superscalar instruction set simulator for DLX superDLX [97].

3. C cross-compilers for PERL (perlcc) [99] and DLX (dlxcc), both of them being

port of gcc.

4. A trace driven cache simulator cachesim incorporating advanced features of

multi-port caches [99]. This simulator takes the memory traces in dinero

format [22] (explained in appendix C).

5.2 Implementation of supersim

supersim implements sophisticated and configurable superscalar instruction pro-

cessing policy: multiple out-of-order issue, multiple out-of-order completion etc. To

achieve this policy efficient hardware mechanisms were selected for simulation, such

as, a central window to buffer decoded instructions prior to issue, and a reorder

buffer, supporting operand renaming etc. Other features such as branch prediction

were built around them to further boost the performance.

5.2.1 Underlying Data Structures

Supersim models PERL processor with the following two types of components.

• Memory and the functional units, which are the fundamental components of

the processor.

• Other machine components such as the branch target buffer (BTB), the in-

struction queue, the instruction windows and reorder buffers. We collectively

call them the superscalar hardware elements.

The simulation environment is configured using a processor configuration file (ap-

pendix B). This file describes the number of instantiations of various components,

their sizes, latencies etc.

72

In order to execute instructions, supersim needs to know the details about the

usage of various hardware components by the processor for each instruction. For

this purpose, an instruction table is used.

5.2.2 Instruction Table

The opcode field of the instructions (figure 4.1) is used as index into the instruction

table maintained by the simulator. Using this table supersim determines the be-

havior of instructions at each pipeline stage. An entry in the table reflects all the

resources needed for processing of the instruction in the superscalar processor.

Each entry in the table gives the following information.

• opName: the character string for the mnemonic of the instruction.

• opUnit: the kind of the operational unit where the instruction must be pro-

cessed. Only two kinds of operational units are available in the simulator,

INTEGER and FLOAT.

• class: this field groups instructions into categories such as BRANCH, ALU,

etc.

• funcUnit: the functional unit within an operational unit to which the instruc-

tion must be issued for execution.

• firstOperand: the type of the first operand, if it exists (NONE, INTEGER,

FP SIMPLE, FP DOUBLE).

• secondOperand: the type of the second operand, if it exists (NONE, INTE-

GER, FP SIMPLE, FP DOUBLE).

• result: the type of the result, if it exists (NONE, INTEGER, FP SIMPLE,

FP DOUBLE).

The following examples give the entries corresponding to instructions add and addf.

{"ADD", INTEGER, ALU, INT_ALU, INTEGER, INTEGER, INTEGER}

{"ADDF", FLOAT, FADD, FP_ADD, FP_DOUBLE, FP_DOUBLE, FP_DOUBLE}

73

5.2.3 Basic Processor Elements

Memory

Two kinds of memories are implemented in the PERL simulator – instruction and

data.

The instruction memory is modeled as an array of the structure where each

element consists of the following.

• opcode that facilitates the access to the instruction table. This field is initial-

ized to NOP (zero).

• src1, src2, dest: The 32-bit addresses (or value when the addressing mode of

the corresponding operand is immediate) of source and destination operands

of the instruction.

• as1, as2, adest: Specify the addressing modes of src1, src2 and dest respec-

tively.

• ds1, ds2, ddest: Specify the data types of src1, src2 and dest respectively.

Memory for instructions is so modeled to avoid bit manipulations and instruction

decoding during simulation. As an example, the opcode, which is usually encoded

in the first word of an instruction, is copied to the opcode field of the structure

(similarly the addressing modes and data types).

Memory for data is modeled as an array containing memory values. The memory

locations are accessed using address as index into this array. The size of the memory

is a configurable parameter provided in the configuration file.

Functional Units

Functional Units are classified into two operational unit classes namely, integer and

floating point.

• There are the following 5 functional units in the integer operational unit.

74

– INT ALU: for all one byte, 2 byte or 4 byte additions, subtractions and

logical instructions.

– INT SHIFT: for all integer (signed/unsigned) shift operations.

– INT MUL: for integer (signed/unsigned) multiply operations.

– INT DIV: for integer (signed/unsigned) division operations.

– INT BRANCH: for all integer conditional branch and unconditional branch

operations.

• There are the following 4 functional units in the floating point operational

unit.

– FP ADD: for all floating point additions and subtractions.

– FP MUL: for all floating point multiply operations.

– FP DIV: for all floating point division operations.

– FP BRANCH: for all floating point conditional branch operations.

The parameters for functional units are stored in two tables in the simulator.

Nine entries in these tables (5 for the integer units in the first table and 4 for

the floating point units in the second table) correspond to 9 functional units and

contain the following configurable parameters.

• latency: This corresponds to the number of cycles that elapse between issue

and completion of the computation. This is used to fill the ready field of an

instruction in the reorder buffer.

• num units: number of available instances of that type of functional unit.

• num used: number of functional units of that type, which are currently used

by the instructions in the pipeline. This parameter is evaluated dynamically,

is non configurable and is used during the run time of the simulator to identify

the structural hazards.

75

5.2.4 Superscalar Elements

This section details the mechanisms and data structures used to support the super-

scalar aspects of supersim.

Branch Target Buffer

supersim uses the 2-bit branch prediction scheme which is widely used by current

day superscalar microprocessors. This mechanism helps the instruction fetch stage

to predict the outcome of a conditional branch based on its past behavior and confine

fetching instructions in the predicted path.

In supersim a table is used to model the Branch Target Buffer. The index

to the table is the lower order bits of the address of the branch instruction (i.e.,

address modulo size of the table). The fetch stage uses contents of this table to

predict a branch. Size of the BTB can be specified in the machine configuration

file. The structure of the BTB and the branch prediction algorithm is implemented

as described in section 4.4.1. In addition supersim also implements the branch

prediction scheme for indirect jump (call/return), as described in section 4.4.2. A

particular branch prediction scheme can be chosen for the simulation through a

command line option while executing supersim.

Instruction Fetch Queue

The Instruction Queue is a FIFO queue where the fetch stage adds a fixed number

of elements (each element corresponds to an instruction) at the top, and the decode

stage takes a fixed number of elements from the bottom. Each item in the list

contains the following information:

• wordPtr: a pointer to simulator’s instruction memory from where this instruc-

tion is fetched.

• address: instruction address (pc).

• prediction: prediction information for branches: TAKEN, NOT TAKEN. This

is the prediction made by the fetch process when it encounters a branch.

76

This field is used only for the branch instructions and is ignored for other

instructions.

The maximum number of elements in the instruction queue (numEntries) is a user

set parameter from the machine configuration file.

Instruction Windows

Instructions windows are realized as compressible stack where the decode stage adds

decoded instructions in the program order. However, the issue stage can remove the

instructions from anywhere in the stack (figure 5.2).

There are two instances of instruction windows in supersim– iWindow for in-

teger instructions and fpWindow for floating point instructions. The sizes of the

two windows can be configured by specifying them in the machine configuration file.

Keeping instructions in order makes it simpler to prioritize among ready instruc-

tions, as older instructions appear at the bottom of the stack. In supersim the

instruction windows are implemented with linked lists.

Each entry in the instruction window corresponds to an instruction that has been

decoded, and contains the following fields.

• opCode: the decoded opcode of the instruction.

• class: the instruction class corresponding to the type of the functional unit.

• unit: the functional unit where the operation must take place; it is determined

by the decode function (using the opcode description table).

• reorderEntry: the reorder buffer entry the instruction is assigned to.

• prediction: the prediction information (TAKEN, NOT TAKEN) for branches.

• firstOperand: the information on the first operand and contains the following

sub-fields.

– value, which contains the operand value or the reorder buffer entry from

where the value will be forwarded when computed.

77

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i0

i4

i5

i7

i8

i9

i10

i11

i12

i13

Before Issue After Issue

Issue

Figure 5.2: Keeping instruction in-order in the instruction window

– type, which contains the type of the operand (integer, floating point dou-

ble, floating point single).

– valid, which indicates if the operand is ready to be used.

• secondOperand: the information on the second operand if it exists (same

structure as for the firstOperand).

Reorder Buffers

Supersim maintains two reorder buffers, iReorderBuffer and fpReorderBuffer, one for

the integer instructions and another for the floating point instructions. Their sizes

78

Head

Tail

resAddr Result Valid

Figure 5.3: Reorder buffer entries

are configurable parameters and are specified through the machine configuration file.

The buffers are implemented as circular queues with a head position (bottom of the

queue) and tail (top of the queue) as shown in figure 5.3. New decoded instructions

are assigned an entry at the tail of the queues, and they commit in order at the

head. With this mechanism, instruction entries do not have to move towards the

bottom or top of the queue, only the head and tail pointers move. Each entry in

the reorder buffer consists of the following.

• OpCode: the opcode of the instruction.

• class: the class of the instruction (e.g., DIRECT JUMP, TRAP etc.).

• resAddr: the memory address of the result.

• result: the computed result of the instruction.

• op1, op2: the value of the operand 1 and operand 2 of the instruction are

stored here. In case the operand is being computed in the pipeline, it will

have a pointer to the buffer entry holding the result.

79

• valid: the validity of the result, which indicates if the operation has been

completed and result is available.

• ready: it indicates at what clock cycle the computation of the result is going

to complete.

• flush: the flush bit is set if the instruction falls in a mispredicted path.

• status: cache consistency status.

A list is maintained, which links reorder buffer entries of currently executing opera-

tion. This list of pending operations (listOfExec) makes the work of the write back

stage easier and faster.

5.2.5 Overall Functional Organization

Figure 5.4 gives the overall functional organization of the simulation core of super-

sim. The processes on the diagram represent groups of functions. The supersim is

modeled on a consumer–producer relationship between processes. For example, the

decode functions produce instruction information that is placed in the instruction

windows and is then removed by execute functions as operations to be executed.

The supersim works on a per cycle basis, calling each function in a consumer-

to-producer order. That is, the result commits are called first, then the write back

functions etc., and this ends with the fetch process, as shown in figure 5.5 This

organization prevents data from different cycles to be mixed up in the shared re-

sources such as instruction window or the reorder buffer. But, in reality the pipeline

stages are independent and communicate through shared resources (buffers).

The supersim simulates the processes of fetch, decode, operand fetch, execute,

write back and result commit in exactly the same way as described in section 4.2.1.

The user commands are processed as shown in figure 5.6. To monitor the process

of execution the supersim provides step, next n and go commands. To observe the

status of the processor elements it has print command, using which one can observe

the contents of instruction queue, instruction window, reorder buffers and functional

units. To print the statistics of the execution one can use stats command.

80

Execute

Reorder Buffers

Result_Commit

Memory
(I−Cache)

Fetch

Instruction Queue

Decode

Instruction
Window

BTB

Write_Back

Operand_Fetch

Operations

entries
Tags

values

address

Data

Tags

values

operations

results

forwarded
operand

values

entries

release

vaildations

Data Structures

Process

reads and modifications

Added / Removed data

address
data

Instructions

address
value

Memory
(L0 D−Cache)

Figure 5.4: Overall functional diagram of supersim

81

Result Commit

Write Back

Execute

clock cycle

clock cycle

clock cycle

clock cycle

clock cycle =
 clock cycle + 1

Decode

Operand Fetch

clock cycle

Fetch

Figure 5.5: Function coordination

82

string

machine
structure Machine

Configuration
File

machPtr

machPtr

options

filename/
options/

commands/

Sim_Create
Sim_Init

main load

step

go

next Sim_NextCmd

Sim_GoCmd

Sim_StepCmd

Sim_LoadCmd

user

Simulate

options

Display
Functions

reset

stats

print

quit

Sim_ResetCmd

Sim_QuitCmd

Sim_PrintCmd

Sim_InspectCmd
options

Inspect
Functions

options

filename

read

machPtr

Figure 5.6: User interface functional diagram

83

5.3 Implementation of perlcc

The PERL C compiler [99] takes C language program as input and produces as-

sembly code of PERL as output. It is built upon GNU C [100], a fast and highly

portable compiler available in source form. GCC gets most of the information about

the target machine from a machine description which provides templates for each of

the machine’s instruction.

5.3.1 Machine Description

A machine description has two parts: a file of instruction patterns (‘.md’ file) and

a C header file of macro definitions. The ‘.md’ file for a target machine contains a

pattern for each instruction supported by the target machine. Information about the

target machine architecture such as registers, addressing modes, stack organization

etc. is supplied in a C header file. In our compiler, we have not implemented any

machine dependent optimizations.

Instruction Patterns

Each instruction pattern contains an incomplete parameterized RTL expression,

with pieces to be filled in later, operand constraints that restrict how pieces can

be filled in, and an output pattern or C code to generate the assembler output, all

wrapped up in a define insn expression.

5.3.2 Machine Description for PERL

Architecture Specification

Storage layout

The processor is defined as big endian, most significant byte in a word has the lowest

address. In a multi-word the most significant word has the lowest address. The least

addressable storage unit is a byte, which has eight bits. Word size and the addresses

are 32 bits. Function entry points and instruction addresses such as branch target

84

are aligned on sixteen byte blocks (instruction boundaries), to fetch an instruction

in a single read request. All other objects are aligned on word boundaries.

Temporary locations usage

The number of registers of the processor, and their usage is supplied to GCC through

C Macro definitions. Compiler needs at least two registers to be specified, stack

pointer (SP) and frame pointer (FP). In order to access indirect operands, we use

temporary locations in PERL. As GCC has no concept of temporary locations, these

are faked as registers in the .md file. Assembly code declares temporaries for global

references. Size of each temporary location is four bytes. Currently we are using

sixteen such temporary variables (including SP and FP).

Stack layout

The PERL has no hardware stack. The stack has to be implemented in software

itself. GCC allocates space for local variables of a function in its frame. The frames

for the functions are allocated on the stack.

In our implementation, we use the frame in a certain format. First three words

(12 bytes) on the frame have the following fixed usage.

• The first word (4 bytes) is used to store the old frame pointer at the function

entry point.

• The next word is used to store the return address from the function.

• The last word is used to pass the function results to the caller function. It

contains the address in memory where the return value is present.

In PERL, there is no function call instruction. Stack adjustment is done by the

explicitly generated assembly code, both at the function entry and exit points.

Instruction Patterns

All the available assembly instructions in PERL are specified to the compiler using

instruction pattern.

For the purpose of specifying instruction patterns, the assembly instructions can

be broadly classified into two types: arithmetic and flow control instructions.

85

Arithmetic instructions

For each available assembly instruction, a named define insn pattern is specified.

For example the addb4 instruction is specified by using the following instruction

pattern.

(define_insn "addsi3"

[(set (match_operand:SI 0 "general_or_addr_operand" "")

(plus:SI (match_operand:SI 1 "general_or_addr_operand" "")

(match_operand:SI 2 "general_or_addr_operand" "")))]

""

"*

{

return \"addb4 %0,%1,%2\";

}")

The function general or addr operand checks the operand addressing mode. In case

of a valid addressing mode, the functions matches the instruction pattern.

Control instructions

GCC assumes that the machine has a condition code. A comparison instruction sets

the condition code, recording the results of both signed and unsigned comparison

of the given operands. A separate branch instruction tests the condition code and

branches or not according its value.

PERL has compare-and-branch instructions and has no condition code. As there

is no assembly instruction in PERL corresponding to a comparison instruction gen-

erated by the compiler, a define expand expression is specified to record the operands

in two static variables.

For example a define expand expression for integer comparison instruction is spec-

ified as follows.

(define_expand "cmpsi"

[(set (cc0) (compare

(match_operand:SI 0 "general_or_addr_operand" "")

(match_operand:SI 1 "general_or_addr_operand" "")))]

86

""

"

{

compare_op0 = operands[0];

compare_op1 = operands[1];

DONE;

}")

The DONE macro in C preparation statements specifies that no RTL code

will be generated for this instruction. When outputting the branch-on-condition-

code instruction that follows, the compiler actually outputs a compare-and-branch

instruction that uses the remembered operands.

For example, a branch-on-equal instruction is specified as follows.

(define_insn "bge"

[(set (pc)

(if_then_else (eq (cc0)

(const_int 0))

(label_ref (match_operand 0 "" ""))

(pc)))]

""

"*

{

operands[1] = compare_op0;

operands[2] = compare_op1;

return \"jeqb4 %l0,%1,%2\";

}

For call instructions an unconditional jump instruction, j function, -8(sp), is gener-

ated. The jump instruction stores the return address on the stack, which is later

used to return from the function.

87

5.4 Implementation of Cache Simulator

The cache simulator is a modified version of an existing cache simulator [101]. It

was modified to simulate ‘Load All Wide’ technique and multi-port caches. It can

be used either as a stand alone trace-driven simulator or along with an Instruction

set simulator to simulate entire memory-hierarchy. In our simulations, we use the

simulator in stand-alone trace-driven mode. We describe the details of the simulator

in this section.

5.4.1 Simulator Input

The input to the simulator is a memory trace file and a cache configuration file. The

format of these files is given in appendix C.

The trace file is generated by the processor instruction set simulator while exe-

cuting a program. For each reference, a trace contains the following information in

addition to the address of the memory reference.

• Type of reference. Specifies whether the reference is fetch, read or write.

• Clock cycle. Specifies the processor clock cycle with reference to the start of

execution in which the reference is made.

The configuration file supplies different parameters of cache hierarchy. It specifies

number of levels of cache hierarchy and the following for each level of the cache.

• Type of cache: Unified or split cache. In case of split cache, the cache param-

eters are specified separately for both Instruction and data cache. In case of

Unified cache, these parameters are specified only once.

• Number of cache lines.

• Line size.

• Associativity.

• Number of interleaved cache ports.

88

• Number of duplicate cache ports.

• Write policy, only in case of Unified or data cache. This can be either write

back or write through.

• Number of clock cycles required to satisfy the request, in case of a cache miss

at the current level but a hit at the next level.

All parameters of the cache can be configured except the cache block replacement

policy, which is fixed as least recently used in the simulator.

5.4.2 Simulator Output

The simulator gives the following performance metrics for each level of cache.

• Miss-ratio for each category of misses.

• Total number of write backs required in case of a write back cache.

In addition the simulator also gives the number of references that are served by

load-all-wide optimization and the worst case clock cycles required for execution of

the program. Worst case clock cycles are calculated by adding penalties due to cache

bank clashes and misses. Simulator serves references in a particular clock cycle only

after serving all references of the previous clock cycle.

89

Chapter 6

Results

Extensive simulations were carried out to study the performance of the PERL pro-

cessor. The exact steps involved in the simulations have already been explained in

chapter 5. We compared the performance of the PERL processor with that of the

DLX processor. The summary of the results are presented here.

Simulations were performed on a collection of seven benchmark programs. First,

we discuss the general performance trends exhibited by all these programs such as

program size and dynamic instruction count. Following this, we discuss the results

of simulations on each of the benchmark programs.

6.1 Benchmark Programs

We have performed simulations on programs taken from several users in our lab,

and from SPEC95 [102] and NASA Numerical Aerodynamic Simulation (NAS) [103]

test suites. The following programs were simulated and the simulation results are

presented here.

1. Permute. This is a highly recursive program, which given a positive integer

n, computes all n! permutations of numbers from 1 to n. For simulations we

have taken n as 5. This is a very tiny program and is CPU-intensive.

2. relax, across and mult. These three programs are taken from NASA NAS

test suite for parallelizing compilers. All of them contain nested do loops and

90

operate on vectors. The original codes of these programs are in FORTRAN

and the UNIX f2c utility is used to convert them to C code.

3. ttn. This is a timetable scheduler program. Given a list of courses, preferences

of timing for allotting slots to the course and a given set of class rooms (it

takes this information from two files), the program uses a heuristic approach

to get the timetable schedule. This program uses some floating point instruc-

tions (about 10.5% and 5.4% of dynamic instruction count in DLX and PERL

respectively). This program is CPU intensive but also performs I/O.

4. compress. This is a standard benchmark program from SPEC95. It performs

the standard compress and decompress (similar to UNIX utilities) over a set

of randomly generated files. It also compares the decompressed file with the

original file to verify the results of compression and decompression. The files

are generated directly in memory and hence compress benchmark performs no

disk access. This benchmark is a CPU-bound integer program, but also uses

a small number of floating point instructions (about 3% and 1.7% of dynamic

instruction count in DLX and PERL respectively).

5. go. This is a standard benchmark program from SPEC95. It is an example of

the use of artificial intelligence in game playing. This program plays the game

of go against itself. The benchmark is stripped down version of a success-

ful go-playing computer program. This benchmark is a CPU-bound integer

benchmark.

Thus, these programs represent a variety of execution behaviors ranging from I/O

bound jobs to compute bound jobs, small to large programs, and memory intensive

to non-memory intensive programs.

6.2 Machine Models

We carried out simulations for three variations of PERL and DLX each. The vari-

ations are non-superscalar (md1), superscalar of order 2 (md2) and superscalar of

91

order 4 (md4). The number of arithmetic units for corresponding PERL and DLX

models are kept the same and is shown in table 6.1.

As PERL is a memory-to-memory processor, we provided it the capability of 2

memory accesses (to D cache) per clock for md1 and 3 memory accesses (to D cache)

per cycle for md2 and md4. The question that immediately arises is whether the

DLX would perform better given the same memory bandwidth or not. Therefore,

DLX is also provided with the same configuration of memory (i.e. 2-port L1 cache

in md1 and 3-port L1 cache in md2 and md4). Therefore, even though the md1

configuration of DLX machine is a non superscalar model, it has the capability to

issue simultaneous memory accesses. Similarly, the md2 and md4 configuration can

issue three simultaneous memory accesses.

PERL has a small number of registers that are mapped onto memory locations

(L0 cache). L0 cache is expected to cache all temporary variables including the SP,

FP and the base address holders specified using a shorthand representation.

In addition to the above variations, branch prediction schemes are used in both

PERL and DLX simulators. DLX has a branch prediction mechanism using a 2-bit

branch history (bp). PERL has four branch prediction schemes, namely, branch

prediction using a 2-bit branch history (bp), indirect branch prediction using a 2-bit

branch history (bi), indirect branch using a single stack (bs) and indirect branch

using a pair of stacks (bS). The branch prediction schemes bi, bs and bS perform

direct branch prediction using bp scheme in addition to predicting indirect branches

using the respective schemes (using the same BTB). Therefore in all we have six

machine configurations of DLX and fifteen machine configurations of PERL.

The six machine configurations of DLX are md1, md2 and md4 each with no

branch prediction (nbp) and branch prediction (bp).

The fifteen machine configurations of PERL are md1, md2 and md4 each with

the following branch prediction schemes.

1. No branch prediction (nbp).

2. Branch prediction using (bp).

3. Branch prediction using (bi).

92

param DLX PERL
md1 md2 md4 md1 md2 md4

Maximum number of Instruction Processed Per Cycle
fetch 1 2 4 1 2 4
decode 1 2 4 1 2 4
issue 1 2 4 1 2 4
write back 1 2 4 1 2 4
commit 1 2 4 1 2 4

Buffer size
IQ size 32 32 32 32 32 32
int IW size 32 32 32 32 32 32
flt IW size 32 32 32 32 32 32
int rob size 32 32 32 32 32 32
flt rob size 32 32 32 32 32 32
BTB size 111 111 111 111 111 111

No. of functional units (their latenices)
int alu 1(1) 2(1) 4(1) 1(1) 2(1) 4(1)
int shift 1(1) 1(1) 2(1) 1(1) 1(1) 2(1)
int comp 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
int addr 2(1) 3(1) 3(1) – – –
int branch 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
flt add 1(2) 2 (2) 2(2) 2(2) 2(2) 2(2)
flt mult 1(5) 1(5) 1(5) 1(5) 1(5) 1(5)
flt DIV 1(8) 1(8) 1(8) 1(8) 1(8) 1(8)
flt convt 1(2) 1(2) 1(2) – – –
flt comp 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
flt addr 2(1) 3(1) 3(1) – – –
flt branch 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

Table 6.1: Parameter values used in different variations of DLX and PERL

93

4. Branch prediction using (bs).

5. Branch prediction using (bS).

Each benchmark program was simulated on all configurations of PERL and DLX.

We used dlxcc and perlcc compilers to perform machine independent optimiza-

tions. The DLX compiler also performs many machine dependent optimizations.

The perlcc compiler, however, does not perform any machine specific optimizations.

In case of some programs (ttn, compress and go), dlxcc was not able to perform any

machine dependent optimizations. It should be noted that in general the quality of

the code generated by dlxcc is better than that of the code generated by perlcc.

6.3 General Observation

We first present some basic characteristics of PERL architecture and compare it

with that of DLX. We present two important characteristics namely the program

size and dynamic instruction count. These characteristics have no dependence with

the simulator, however they strongly depend on the compiler and the processor

instruction set.

6.3.1 Program Size

To start with, we expected the number of instructions for a program to be smaller in

PERL than in DLX as PERL does not require Load and Store instructions. However,

we were not sure whether this would result in a smaller program size for PERL than

that for the DLX. A program is typically composed of data, code and some blank

space introduced by the compilers to align addresses of variables. Contribution in

program size due to data is the property of program and remains the same in both

DLX and PERL. The blank space due to data alignment is also roughly the same

for both processors. Therefore, it is ideal to consider only the code size of each

program. The plots and table in figure 6.1 show the program size for all benchmark

programs. The figures are presented for both optimized and unoptimized code.

94

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

P
ro

gr
am

 s
iz

e
in

 B
yt

es

perm

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

P
ro

gr
am

 s
iz

e
in

 B
yt

es

relax

 0

 500

 1000

 1500

 2000

 2500

 3000

P
ro

gr
am

 s
iz

e
in

 B
yt

es

across

PERL optimized
DLX optimized
PERL unoptimized
DLX unoptimized

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

P
ro

gr
am

 s
iz

e
in

 B
yt

es

mult

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

P
ro

gr
am

 s
iz

e
in

 B
yt

es

ttn

 0

 5000

 10000

 15000

 20000

 25000

P
ro

gr
am

 s
iz

e
in

 B
yt

es
compress

 0

 200000

 400000

 600000

 800000

 1e+06

P
ro

gr
am

 s
iz

e
in

 B
yt

es

go

Program Unoptimized Optimized
DLX PERL factor DLX PERL factor

perm 1404 3536 2.51 1232 3280 2.66
relax 1588 2624 1.65 1276 2240 1.75
across 1120 2592 2.31 1028 2224 2.16
mult 1468 3104 2.11 1312 2704 2.06
ttn 21416 42496 1.98 16396 33360 2.03
compress 12476 23456 1.88 10136 21300 2.10
go 499064 1032160 2.07 381484 770832 2.02

Figure 6.1: Static code size of programs in DLX and PERL

95

It is seen from the plots in figure 6.1 that the static sizes of PERL programs are

approximately twice the corresponding sizes of DLX programs. This was expected

as size of each PERL instruction is 4 times that of the size of a DLX instruction.

The program size of PERL varies from 1.65 to 2.52 times the size of DLX programs.

6.3.2 Dynamic Instruction Count

We expected that number of instructions that are required to execute a program (N)

in PERL would be at least 30% less than those in DLX, as explained in chapter 3.

The dynamic instruction counts for all benchmark programs are shown in the table

and plots in figure 6.2.

PERL consistently executes fewer instructions compared to the DLX across all

benchmarks both in unoptimized and optimized codes. The actual reduction in the

instruction varies from program to program as shown in figure 6.2. The optimized

code of mult has only about 0.6% more instructions in DLX than those in PERL

– a notable exception where PERL compiler has generated a very bad code. The

unoptimized code of relax results in the execution of three times more instructions

in DLX than those in PERL. On the other hand, the difference in the number of

instructions executed for the optimized and unoptimized code for perm benchmark

is very small. The optimized code of DLX requires significantly fewer instructions

to execute than those required for its unoptimized code.

This is an important result for us in making the case for PERL. This was one

of the very important factors, which motivated us to study PERL, the register–less

processor.

6.4 Performance Results and Analysis

In this section, we present the performance results obtained from the simulation

carried out for each benchmark program. In particular, we discuss the execution

time of program, extracted ILP, performance boost from branch prediction etc. We

also discuss the fetch stalls due to filled up instruction queue.

96

 0

 5000

 10000

 15000

 20000

D
yn

am
ic

 in
st

ru
ct

io
n

co
un

t

perm

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

D
yn

am
ic

 in
st

ru
ct

io
n

co
un

t

relax

 0

 2000

 4000

 6000

 8000

 10000

 12000

D
yn

am
ic

 in
st

ru
ct

io
n

co
un

t

across

PERL optimized
DLX optimized
PERL unoptimized
DLX unoptimized

 0

 500000

 1e+06

 1.5e+06

 2e+06

D
yn

am
ic

 in
st

ru
ct

io
n

co
un

t

mult

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

D
yn

am
ic

 in
st

ru
ct

io
n

co
un

t

ttn

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

D
yn

am
ic

 in
st

ru
ct

io
n

co
un

t
compress

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

D
yn

am
ic

 in
st

ru
ct

io
n

co
un

t

go

Program Unoptimized Optimized
DLX PERL factor DLX PERL factor

perm 16016 12020 1.33 14376 10524 1.37
relax 11875491 3858898 3.07 1708895 1210018 1.41
across 11355 5975 1.90 4634 2804 1.65
mult 1924406 1110566 1.73 681760 677413 1.006
ttn 6420407 3669564 1.75 – – –
compress 13291927 5856103 2.26 – – –
go 7222377 4046282 1.78 – – –

Figure 6.2: Dynamic instruction counts in DLX and PERL

97

Since each program exhibits unique behavior with respect to these metrics, we

discuss these issues by taking one program at a time.

While executing the programs the simulator does not account for any memory

stalls, instead it assumes a perfect cache (100% hit). It also does not model any

I/O (the code contains a trap instruction for every system/library call). The trap

instructions to system calls/library calls are implemented in the simulator by exe-

cuting code on the host machine.

The results of the execution driven simulation are presented in this chapter while

the results of off-line memory simulations are presented in chapter 7.

6.4.1 perm benchmark

The perm benchmark program is a permutation program which uses recursion ex-

tensively and performs no input output. Given n it computes all n! permutation of

natural numbers from 1 to n. For simulation we take n as 5.

The plots and table in figure 6.3 give the execution time of perm on all the sim-

ulation models of DLX and PERL. The results are presented for both unoptimized

and optimized code.

The plots in the figure 6.3 give the general trend that we also observed across

all other programs. The best performance is always obtained on md4 with branch

prediction (bp in DLX and bs in PERL). However, the scale of performance gain

from md1 to md4 and the effect of branch prediction vary according to the execution

behavior of the program.

The execution time of perm in PERL is consistently better than that in DLX

across all models and is true for both unoptimized and optimized codes.

The performance of various branch prediction schemes used in DLX and PERL

is shown in table 6.2. It may be noted that the number of branches (417: direct and

447: indirect) executed in DLX and PERL is identical (as expected and assumed in

the analytical model described in section 3.6).

The perm program uses recursive calls extensively and hence the effect of indirect

branch prediction is reflected in the execution time. The execution time is the least

with branch prediction schemes bs and bS. The performance of the branch prediction

98

 0

 5000

 10000

 15000

 20000

md1 md2 md4 md1 md2 md4

E
xe

cn
. t

im
e

in
 c

yc
le

s

Unoptimized Optimized

Comparison of execution time for perm

DLX (nbp)
DLX (bp)

PERL (nbp)
PERL (bp)
PERL (bi)
PERL (bs)
PERL (bS)

Config DLX PERL
nbp bp nbp bp bi bs bS

Unoptimized code
md1 17190 16700 15790 15199 14351 13859 13873
md2 11695 10912 11559 10777 9938 9465 9480
md4 9725 8725 9623 8931 8083 7590 7605

Optimized code
md1 15215 14673 13696 13099 12251 11759 11773
md2 10165 9274 10315 9591 8659 8059 8076
md4 7728 6740 8620 7709 6810 6210 6227

Figure 6.3: Execution time in cycles for perm

99

Program Metric DLX-md4 PERL-md4
bp bp bi bs bS

D BR D BR IND BR IND BR IND BR
perm Total # 417 417 447 447 447

Correct 197 197 208 447 442
Succ.rate 47.24% 47.24% 46.53% 100% 98.88%

Table 6.2: Success rate of different branch prediction schemes in perm

scheme bi is not the same as that of bs or bS because the scheme may lead to wrong

predictions as explained in section 4.4.2

The performance of bp branch prediction scheme is same in both DLX and PERL

with a success rate of 47%. However, perm has a significant number of indirect

branches due to recursive calls, which are predicted with an accuracy close to 100%

in both bs and bS. The small difference in the number of correct predictions in bs

and bS are due to returns from first time calls which are not predicted correctly in

bS. The success rate of bi scheme of branch prediction is poor (46.5%) for the reason

explained in section 4.4.2. The number of collisions in BTB is zero in both DLX

and PERL as the program is small and contains very few branches. The bi, bs and

bS schemes predict direct branches using the same scheme as in bp and show the

same accuracy for perm benchmark.

The processor cannot fetch any instructions if it has no space in the instruction

queue or when it cannot determine the address of the next instruction (Fetch Stall

cycles). The number of fetch stall cycles reduces when the branch prediction is used

and the reduction depends on the accuracy of branch prediction scheme. As perm

executes many indirect branches, the percentage of fetch stall cycles is more in DLX

than in PERL. The table 6.3 shows the number of fetch stall cycles in both DLX

and PERL for the model md4 with all branch prediction schemes used.

The number of fetch stall cycles due to filled up instruction queue is observed to

be smaller in DLX than that in PERL.

The processor has to introduce decode stall if the instruction queue is empty

or if there is data dependency between the instruction being decoded and another

100

DLX-md4 PERL-md4
nbp bp nbp bp bi bs bS

Fetch stalls in Opt. code of perm on md4
3776 2273 5586 3999 498 984 1029

48.86% 33.72% 64.8% 51.87% 7.31% 15.85% 16.52%

Decode stalls in Opt. code perm on md4
3211 1928 5228 4021 2909 2608 2624

41.55% 28.61% 60.65% 52.16% 42.72% 42.0% 42.14%

Table 6.3: Fetch and decode stall cycles in perm (percentage of total cycles)

instruction already in execution (Decode Stall cycles). We show the number of

decode stall cycles in table 6.3 for both DLX and PERL. The figures are shown only

for model md4 with all branch prediction schemes used. Due to the presence of large

number of indirect branches in perm, DLX has more decode stall cycles than PERL.

An important observation here is that bi scheme gives a better reduction in fetch

stall cycles. However, the same reduction is not shown in decode stall cycles. This

is due to poor success rate of indirect branch prediction that has forced PERL to

fetch instructions in wrong path.

The number of fetch and decode stall cycles increases from model md1 to md4

in both DLX and PERL across all benchmark programs.

The average number of Instructions Processed per Cycle (IPC) is shown in ta-

ble 6.4 at each of the fetch (FPC), decode (DPC), issue (EPC) and commit (CPC)

stages. The figures are given for all the models with branch prediction (bp for DLX

and bs for PERL), because the machines perform best with these branch prediction

schemes.

The relation FPC ≥ DPC ≥ EPC ≥ CPC is observed. This is due to specula-

tive instruction processing. Speculatively fetched instructions may not be decoded

if speculation is determined to be wrong just prior to decoding. Similarly, all in-

structions, which are decoded may not execute and all instructions executed may

not commit. Hence, at every successive stage there may be some instructions which

101

Model FPC DPC EPC CPC

Unoptimized Code
DLX-md1-bp 0.99 0.97 0.93 0.93
PERL-md1-bs 0.98 0.88 0.87 0.87

DLX-md2-bp 1.63 1.59 1.59 1.47
PERL-md2-bs 1.81 1.34 1.27 1.27

DLX-md4-bp 2.35 2.14 2.09 1.84
PERL-md4-bs 2.51 1.71 1.59 1.58

Optimized Code
DLX-md1-bp 0.99 0.98 0.95 0.95
PERL-md1-bs 0.98 0.91 0.90 0.89

DLX-md2-bp 1.62 1.59 1.56 1.55
PERL-md2-bs 1.87 1.39 1.31 1.31

DLX-md4-bp 3.14 2.34 2.23 2.13
PERL-md4-bs 2.83 1.86 1.73 1.69

Table 6.4: Instructions fetch, decode, issue and commit per cycle (for perm)

are discarded due to wrong speculation. In case of perm the success rate of direct

branch prediction is about 47% and its effect is observed on the IPC.

Data dependency between instructions also reduces IPC. However, in case of

data dependency only the instruction processing is stalled, and the instructions are

not flushed.

An interesting observation is that the performance of unoptimized code for PERL

is better than the optimized code for the DLX. This is due to the facts that the

PERL requires fewer instructions and uses indirect branch prediction.

102

6.4.2 relax benchmark

The relax benchmark is a small program and performs no input output. This pro-

gram uses a single matrix, initializes it to zero, and performs complicated transfor-

mations using a nested for loops of depth three. The matrix is declared as a local

variable. The key feature in this program is the order in which the elements of the

matrix are accessed.

The bar charts and the table in figure 6.4 give the execution time of relax on

all the simulation models of DLX and PERL. The results are presented for both

unoptimized and optimized code.

The least execution time is observed in md4 model with branch prediction (bp in

DLX and bs in PERL). However, in relax there is exactly one indirect branch due to

a return from library function printf, which is executed 10 times. Hence, it can be

observed that there is no significant impact of indirect branch prediction schemes

on the execution time.

An interesting feature in figure 6.4 is that for the unoptimized code the speedup

obtained in both DLX and PERL for models md1 to md4 is almost linear. This gives

an indication that there is good amount of ILP available in the program. The same

kind of scaling is observed for optimized code as well. The speedup obtained by

PERL in unoptimized code is more pronounced primarily because of the instruction

count, where the number of instructions executed by DLX is about 3 times than

that by PERL. In optimized code this is considerably reduced and the number of

instructions executed by DLX is about 1.4 times than that by PERL.

The performance of various branch prediction schemes used in DLX and PERL

is shown in table 6.5. It can be seen that the number of branches executed in DLX

is identical to that in PERL (as expected and assumed in the analytical model

described in section 3.6). The performance of bp is same in both DLX and PERL

with a success rate of 99%. The only indirect branch present in the program is

executed 10 times, the bs branch prediction scheme predicts it with a 100% accuracy.

Whereas bS and bi schemes predict it with 90% accuracy, the only misprediction

occurs when the branch is encountered for the first time.

The number of fetch and decode stall cycles in both DLX and PERL are shown

103

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

md1 md2 md4 md1 md2 md4

E
xe

cn
. t

im
e

in
 c

yc
le

s

Unoptimized Optimized

Comparison of execution time for relax

DLX (nbp)
DLX (bp)

PERL (nbp)
PERL (bp)
PERL (bi)

Program Metric DLX-md4 PERL-md4
bp bp bi bs bS

D BR D BR IND BR IND BR IND BR
relax Total # 108021 108021 10 10 10

Correct 106925 106925 9 10 9
Succ.rate 98.99% 98.99% 90% 100% 90%

Table 6.5: Success rate of different branch prediction schemes in relax

DLX-md4 PERL-md4
nbp bp nbp bp bi bs bS

Fetch stalls in Opt. code of relax on md4
422289 1127 653713 156416 156398 156396 156398
45.58% 0.19% 67.77% 27.32% 27.31% 27.31% 27.31%

Decode stalls in Opt. code of relax on md4
422285 3312 558643 260605 260587 260585 260587
45.58% 0.55% 57.91% 45.51% 45.51% 45.51% 45.51%

Table 6.6: Fetch and decode stall cycles in relax (percentage of total cycles)

in the table 6.6. As expected, the number of fetch and decode stall cycles reduce

when branch prediction schemes are used. The reduction in fetch and decode stalls

in DLX is more pronounced than in PERL. However, this reduction is not due to

branch prediction alone. While executing relax, 98% of the fetch stalls in PERL are

due to filled up instruction queue, whereas there are no such fetch stalls observed in

DLX. The number of decode stall cycles are significantly more than the number of

fetch stall cycles in both DLX and PERL. There is no significant impact of indirect

branch prediction scheme as indirect branches are executed only ten times.

The table 6.7 shows the average number of instructions processed per cycle. Both

PERL and DLX achieve good numbers here. An interesting observation is that while

executing unoptimized code DLX shows better IPC in md1 and md2 while PERL

has better IPC in md4. While executing the optimized code, DLX has better IPC

in md1 and md4, where as PERL has better IPC in md2. This indicates that the

105

relax benchmark has good ILP in it, which has been exploited by both DLX and

PERL.

An interesting observation is that the performance of unoptimized code for PERL

is better than the optimized code for DLX. PERL performs consistently better than

DLX while executing both unoptimized and optimized code of relax. This is because,

PERL requires fewer instructions than DLX, has got high rate of success in branch

prediction, and has an ILP of 2.1.

Model FPC DPC EPC CPC

Unoptimized Code
DLX-md1-bp 1.0 0.99 0.99 0.99
PERL-md1-bs 0.99 0.99 0.99 0.99

DLX-md2-bp 1.98 1.97 1.96 1.96
PERL-md2-bs 1.89 1.89 1.89 1.89

DLX-md4-bp 2.26 2.24 2.24 2.23
PERL-md4-bs 2.51 2.49 2.29 2.48

Optimized Code
DLX-md1-bp 1.0 1.0 1.0 1.0
PERL-md1-bs 0.88 0.86 0.86 0.86

DLX-md2-bp 1.89 1.89 1.89 1.89
PERL-md2-bs 1.92 1.91 1.90 1.90

DLX-md4-bp 2.88 2.83 2.83 2.83
PERL-md4-bs 2.18 2.12 2.11 2.11

Table 6.7: Instructions fetch, decode, issue and commit per cycle (for relax)

6.4.3 across benchmark

The across benchmark is also a very small program with no input output. This

program initializes five vectors to zero and performs some simple computation using

106

Program Metric DLX-md4 PERL-md4
bp bp bi bs bS

D BR D BR IND BR IND BR IND BR
across Total # 201 201 0 0 0

Correct 197 197 — — —
Succ.rate 98.01% 98.01% — — —

Table 6.8: Success rate of different branch prediction schemes in across

them in a single for loop. The feature of this program is the data dependency among

the instructions in the loop (intra loop data dependency).

The table and bar charts in figure 6.5 give the execution time of across on all

the simulation models of DLX and PERL. The least execution time is seen in md4

model with branch prediction (bp in DLX and bs in PERL).

PERL consistently takes fewer cycles to execute the unoptimized code of across.

However, DLX-bp with md2 and md4 configurations take smaller execution time

to execute the optimized code compared to its PERL counterparts. It can also be

observed that the improvement from md2 to md4 models when executing optimized

code is only a few cycles (1 cycle in DLX and 5 cycles in PERL); this indicates

that across has a poor ILP. This is indeed true as there are true data dependencies

between the statements in the loop.

The performance of various branch prediction schemes used in DLX and PERL

is shown in table 6.8. The performance of bp is same for both DLX and PERL with

a success rate of 98%.

The table 6.9 shows the number of fetch and decode stalls. The number of fetch

and decode stalls in DLX are significantly fewer than those in PERL. As seen with

all benchmark programs, the number of fetch and decode stall cycles reduce when

the branch prediction is used.

The reduction in fetch and decode stalls in DLX is more pronounced than in

PERL. In PERL 99% of the fetch stalls are due to filled up instruction queue, while

DLX does not have any such stalls.

The average number of instructions processed per cycle is shown in table 6.10.

107

 0

 2000

 4000

 6000

 8000

 10000

 12000

md1 md2 md4 md1 md2 md4

E
xe

cn
. t

im
e

in
 c

yc
le

s

Unoptimized Optimized

Comparison of execution time for across

DLX (nbp)
DLX (bp)

PERL (nbp)
PERL (bp)
PERL (bi)
PERL (bs)
PERL (bS)

Config DLX PERL
nbp bp nbp bp bi bs bS

Unoptimized code
md1 12162 11820 7084 6493 6493 6493 6493
md2 7186 6219 5495 4707 4707 4707 4707
md4 7086 5707 5494 4706 4706 4706 4706

Optimized code
md1 5041 4647 4303 3614 3614 3614 3614
md2 3027 2337 3898 3110 3110 3110 3110
md4 3026 2336 3893 3105 3105 3105 3105

Figure 6.5: Execution time in cycles for across

108

DLX-md4 PERL-md4
nbp bp nbp bp bi bs bS

Fetch stalls in Opt. code of across on md4
1816 16 3091 1985 1985 1985 1985

60.01% 0.68% 79.4% 63.93% 63.93% 63.93% 63.93%

Decode stalls in Opt. code of across on md4
608 13 2693 2001 2001 2001 2001

20.09% 0.56% 69.18% 64.44% 64.44% 64.44% 64.44%

Table 6.9: Fetch and decode stall cycles in across (percentage of total cycles)

The DLX shows a significant improvement in CPC from md1 to md4 with the

unoptimized code. While PERL shows no improvement in CPC from md2 to md4.

However, with the optimized code, both PERL and DLX show no improvement in

CPC from md2 to md4. This shows that the average ILP in DLX is about 2. With

the optimized code DLX has a CPC of 1 in md1 model.

PERL performs better than DLX in all the configurations except in md2 and

md4 with optimized code. DLX is able to extract more ILP (1.98) than PERL (0.9).

Even though DLX executes about 1.65 times more instructions than those in PERL,

it has a better execution time as it is able to extract twice the ILP than that found

in PERL.

6.4.4 mult benchmark

The mult benchmark initializes two matrices, and computes the product of these

two matrices using nested for loops of depth six (sub block multiplication). Both

matrices are 32x32 in size. The key features in this program are the order in which

the elements of the matrices are accessed and variable loop parameters.

The table and bar graphs in figure 6.6 give the execution time of mult for both

unoptimized and optimized code. The execution time is least in md4 model with

branch prediction (bp in DLX and bs in PERL).

An interesting feature in figure 6.6 is that with the unoptimized code the speedup

109

 0

 500000

 1e+06

 1.5e+06

 2e+06

md1 md2 md4 md1 md2 md4

E
xe

cn
. t

im
e

in
 c

yc
le

s

Unoptimized Optimized

Comparison of execution time for mult

DLX (nbp)
DLX (bp)

PERL (nbp)
PERL (bp)
PERL (bi)
PERL (bs)
PERL (bS)

Config DLX PERL
nbp bp nbp bp bi bs bS

Unoptimized code
md1 2171865 1963842 1325191 1115923 1115923 1115923 1115923
md2 1364579 994482 824248 581156 581156 581156 581156
md4 1063487 816146 594869 381443 381443 381443 381443

Optimized code
md1 825592 687136 892038 682755 682755 682755 682755
md2 556059 379585 591835 348730 348730 348730 348730
md4 421901 240182 593528 245272 245272 245272 245272

Figure 6.6: Execution time in cycles for mult

110

Model FPC DPC EPC CPC

Unoptimized Code
DLX-md1-bp 0.99 0.97 0.96 0.96
PERL-md1-bs 0.93 0.92 0.92 0.91

DLX-md2-bp 1.88 1.84 1.83 1.83
PERL-md2-bs 1.29 1.27 1.27 1.27

DLX-md4-bp 2.04 2.0 1.99 1.99
PERL-md4-bs 1.29 1.27 1.27 1.27

Optimized Code
DLX-md1-bp 1.0 1.0 1.0 1.0
PERL-md1-bs 0.79 0.78 0.78 0.78

DLX-md2-bp 1.99 1.99 1.98 1.98
PERL-md2-bs 0.92 0.90 0.90 0.90

DLX-md4-bp 2.04 1.99 1.98 1.98
PERL-md4-bs 0.93 0.91 0.90 0.90

Table 6.10: Instructions fetch, decode, issue and commit per cycle (for across)

obtained in both DLX and PERL from models md1 to md4 is almost linear. However,

the speedup from md2 to md4 is not as pronounced as from md1 to md2. This gives

an indication that there is good amount of ILP available in mult. Also for optimized

code both PERL and DLX show the same kind of speed up from md1 to md2.

The most important feature while executing the optimized code is that the md4

model of DLX with bp takes marginally smaller time than in the corresponding

model of PERL. The reason for this feature is that although PERL still executes

fewer instructions than in DLX, the ratio is much smaller as seen in table 6.2. In

optimized code DLX executes only about 0.6% more instructions than PERL. While

in unoptimized code DLX executes about 73% more instructions than PERL.

The performance of branch prediction schemes used in DLX and PERL is shown

in table 6.11. It may be noted that the number of branches executed in DLX and

111

Program Metric DLX-md4 PERL-md4
bp bp bi bs bS

D BR D BR IND BR IND BR IND BR
mult Total # 70857 70857 0 0 0

Correct 69756 69756 — — —
Succ.rate 98.45% 98.45% — — —

Table 6.11: Success rate of different branch prediction schemes in mult

DLX-md4 PERL-md4
nbp bp nbp bp bi bs bS

Fetch stalls in Opt. code of mult on md4
214737 12373 288453 20332 20332 20332 20332
50.9% 5.15% 58.45% 8.29% 8.29% 8.29% 8.29%

Decode stalls in Opt. code of mult on md4
216813 32931 287430 41143 41143 41143 41143
51.39% 13.71% 58.24% 16.77% 16.77% 16.77% 16.77%

Table 6.12: Fetch and decode stall cycles in mult (percentage of total cycles)

PERL is identical. The performance of bp is same in both DLX and PERL with a

success rate of 98%.

The number of fetch and decode stall cycles are presented in table 6.12. Though

DLX has fewer fetch and decode stall cycles than those in PERL, it can be observed

that the difference is not as big as found in other benchmark programs. The number

of fetch stalls due to filled up instruction queue is 95% in PERL and 91% in DLX.

The average number of instructions processed per cycle at each stage of the pipeline

is shown in table 6.13. Both PERL and DLX achieve good numbers here. An

interesting observation is that while executing unoptimized code, DLX show better

IPC in md1 and md2 where as PERL has better IPC in md4. On the other hand, for

the optimized code DLX has better IPC in md1 and md4, while PERL has better

IPC in md2.

112

Model FPC DPC EPC CPC

Unoptimized Code
DLX-md1-bp 0.9 0..89 0.89 0.89
PERL-md1-bs 1.0 1.0 1.0 1.0

DLX-md2-bp 1.99 1.95 1.95 1.94
PERL-md2-bs 1.92 1.91 1.91 1.91

DLX-md4-bp 2.48 2.40 2.38 2.36
PERL-md4-bs 3.01 2.93 2.91 2.91

Optimized Code
DLX-md1-bp 1.0 0.99 0.99 0.99
PERL-md1-bs 1.0 0.99 0.99 0.99

DLX-md2-bp 1.81 1.8 1.8 1.8
PERL-md2-bs 1.96 1.95 1.94 1.94

DLX-md4-bp 3.01 2.86 2.85 2.84
PERL-md4-bs 2.92 2.78 2.77 2.76

Table 6.13: Instructions fetch, decode, issue and commit per cycle (for mult)

6.4.5 ttn benchmark

The ttn is a time table scheduler program picked up from our lab exercises. This

takes the information from two disk files and hence performs input output. The ttn

program has some floating point operations.

The table and bar charts in figure 6.7 give the execution time of ttn on all the

simulation models of DLX and PERL. The results are presented only for unoptimized

code. The execution time is the least in md4 model with branch prediction (bp in

DLX and bs in PERL). The speed up obtained by DLX and PERL from md1 to md2

is more significant than that from md2 to md4. PERL takes fewer cycles than DLX

to execute ttn across all models. Interestingly md2 model of DLX with bp performs

113

Program Metric DLX-md4 PERL-md4
bp bp bi bs bS

D BR D BR IND BR IND BR IND BR
ttn Total # 293049 350165 146587 1456587 1456587

Correct 255752 308954 108017 1465587 1456389
Succ.rate 87.27% 88.23% 73.69% 100% 99.99%

Table 6.14: Success rate of different branch prediction schemes in ttn

DLX-md4 PERL-md4
nbp bp nbp bp bi bs bS

Fetch stalls in Unopt. code of ttn on md4
3284030 1537755 3219214 1794590 1499413 1495136 1495983
64.13% 41.78% 68.6% 52.91% 47.79% 50.16% 50.16%

Decode stalls in Unopt. code of ttn on md4
1819295 246213 3241181 1882800 1627950 1602065 1602769
35.53% 6.69% 69.07% 55.51% 51.88% 53.74% 53.74%

Table 6.15: Fetch and decode stall cycles in ttn (percentage of total cycles)

better than the corresponding model of PERL, however by using bi, bs and bS PERL

outperforms DLX.

The performance of various branch prediction schemes used in DLX and PERL

is shown in table 6.14. It may be noticed that the number of branches in DLX

and PERL is not identical (contrary to what is assumed in the analytical model

described in section 3.6).

The table 6.15 gives the number of fetch and decode stalls. Thetha4 branc the

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

md1 md2 md4

E
xe

cn
. t

im
e

in
 c

yc
le

s

Unoptimized

Comparison of execution time for ttn

DLX (nbp)
DLX (bp)

PERL (nbp)
PERL (bp)
PERL (bi)
PERL (bs)
PERL (bS)

Config DLX PERL
nbp bp nbp bp bi bs bS

Unoptimized code
md1 7848946 6747745 6576652 5581954 5328272 5288858 5289691
md2 5418521 3806608 5121319 3992075 3737833 3697008 3698083
md4 5121131 3680393 4692468 3392068 3137703 2982786 2994078

Figure 6.7: Execution time in cycles for ttn

115

Model FPC DPC IPC CPC

Unoptimized Code
DLX-md1-bp 0.99 0.97 0.95 0.94
PERL-md1-bs 0.75 0.73 0.72 0.69

DLX-md2-bp 1.90 1.81 1.77 1.69
PERL-md2-bs 1.12 1.08 1.05 0.99

DLX-md4-bp 2.20 1.84 1.80 1.74
PERL-md4-bs 1.48 1.39 1.32 1.23

Table 6.16: Instructions fetch, decode, issue and commit per cycle (for ttn)

The results show that the improvement in CPC from md1 to md2 is significant from

0.94 to 1.69 in DLX, whereas it is 0.69 to 0.99 in case of PERL. The improvement

in CPC from md2 to md4 is not appreciable, DLX improves from 1.61 to 1.74

while PERL improves from 0.99 to 1.23. The better IPC in DLX is not enough to

outperform PERL because DLX executes 70% more number of instructions than

those in PERL.

6.4.6 compress benchmark

The compress benchmark program is the in-memory version of the standard UNIX

compress utility. Files of variable lengths are created, compressed and decompressed.

The original file is compared with the compressed/decompressed file. Though, the

program is categorized as integer benchmark, compress uses a few floating point

data, primarily to generate random numbers. The program does not perform any

disk access, however, it has few printf statements to display the results. The

compress program requires three input values, which are given as the test data

values (supplied with the benchmark).

The bar charts and the table in figure 6.8 give the execution time of compress

on all the simulation models of DLX and PERL. The results are presented for

unoptimized code. The least execution time is seen for md4 model with branch

116

Program Metric DLX-md4 PERL-md4
bp bp bi bs bS

D BR D BR IND BR IND BR IND BR
compress Total # 249610 214581 48404 48404 48404

Correct 242370 200872 10904 44144 43932
Succ.rate 97.1% 97.77% 24.53% 91.19% 81.23%

Table 6.17: Success rate of different branch prediction schemes in compress

prediction (bp in DLX and bs in PERL).

The speed up obtained by DLX and PERL from md1 to md2 is significant while

the speedup from md2 to md4 is marginal. It indicates that the average ILP available

in this program is about two for DLX. The results in table 6.19 also show this.

The performance of various branch prediction schemes used in DLX and PERL

is shown in table 6.17. It is noticed that the number of branches executed in DLX

and PERL is not identical (contrary to what is assumed in the analytical model

described in section 3.6). Further, as compress is fairly large program, PERL has a

few collisions in BTB when indirect branch prediction schemes are used. However,

DLX did not encounter any collision in BTB.

The number of fetch and decode stall cycles in DLX and PERL is presented in

table 6.18. The reduction in fetch and decode stalls in DLX is more pronounced

than in PERL. This is because, while executing compress, 92% of the fetch stalls in

PERL and about 17% in DLX, are due to filled up instruction queue.

The average number of instructions processed per cycle is shown in table 6.19.

The results show that the improvement in CPC from md1 to md2 is significant from

0.98 to 1.89 in DLX, while it is from 0.73 to 0.85 in case of PERL. The improvement

from md2 to md4 is not appreciable, DLX improves from 1.89 to 1.94 while PERL

improves from 0.85 to 0.91. This clearly shows that compress has a limited ILP.

The results show that PERL performs consistently better than DLX in all mod-

els. However, it should be noted that both DLX and PERL codes are unoptimized.

117

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

md1 md2 md4

E
xe

cn
. t

im
e

in
 c

yc
le

s

Unoptimized

Comparison of execution time for compress

DLX (nbp)
DLX (bp)

PERL (nbp)
PERL (bp)
PERL (bi)
PERL (bs)
PERL (bS)

Config DLX PERL
nbp bp nbp bp bi bs bS

Unoptimized code
md1 14189482 13562222 8696015 8073333 8010428 7976525 7977138
md2 8308085 7020037 7772519 6953266 6874186 6839400 6840293
md4 8119692 6838387 7510513 6342390 6276756 6209845 6210838

Figure 6.8: Execution time in cycles for compress

118

DLX-md4 PERL-md4
nbp bp nbp bp bi bs bS

Fetch stalls in Unopt. code of compress on md4
3892719 421400 5694825 3955507 3826342 3831942 3832714
47.94% 6.16% 75.82% 62.37% 61.71% 61.71% 61.71%

Decode stalls in Unopt. code of compress on md4
448449 146581 4838546 3977685 3910684 3877215 3877940
17.84% 2.14% 64.42% 62.72% 62.30% 62.44% 62.44%

Table 6.18: Fetch and decode stall cycles in compress (percentage of total cycles)

Model FPC DPC EPC CPC

Unoptimized Code
DLX-md1-bp 1.0 0.98 0.98 0.98
PERL-md1-bs 0.75 0.74 0.73 0.73

DLX-md-bp 1.93 1.89 1.89 1.89
PERL-md2-bs 0.88 0.86 0.85 0.85

DLX-md4-bp 2.07 1.95 1.95 1.94
PERL-md4-bs 0.95 0.93 0.91 0.91

Table 6.19: Instructions fetch, decode, issue and commit per cycle (for compress)

6.4.7 go benchmark

The go is go-playing computer program. It is set up to play a single game of Go

against itself, with the game record sent to stdout. This is an integer program and

requires two input values to start the game, which are given the test data values

(supplied with the benchmark). We stop the game after five moves. The main

feature of this program is the extensive use of different control statements (if then

else, switch etc.).

We present the execution time for go program on all the simulation models in

figure 6.9. PERL consistently takes fewer cycles to execute the go program than the

119

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

md1 md2 md4

E
xe

cn
. t

im
e

in
 c

yc
le

s

Unoptimized

Comparison of execution time for go

DLX (nbp)
DLX (bp)

PERL (nbp)
PERL (bp)
PERL (bi)
PERL (bs)
PERL (bS)

Config DLX PERL
nbp bp nbp bp bi bs bS

Unoptimized code
md1 9131970 7607180 6632591 4523526 4463294 4398139 4376428
md2 7293239 4635033 5960036 2974764 2948325 2910994 2930462
md4 6854394 3636048 5793400 2734721 2637416 2593769 2614366

Figure 6.9: Execution time in cycles for go

120

Program Metric DLX-md4 PERL-md4
bp bp bi bs bS

D BR D BR IND BR IND BR IND BR
go Total # 605581 684598 110419 110419 110419

Correct 554868 617204 67488 101751 95313
Succ.rate 90.59% 90.16% 61.12% 92.14% 86.32%

Table 6.20: Success rate of different branch prediction schemes in go

DLX-md4 PERL-md4
nbp bp nbp bp bi bs bS

Fetch stalls in Unopt. code of go on md4
4639382 572975 4350854 1248127 1117122 1012089 1296726
67.68% 15.76% 75.10% 45.64% 42.40% 39.02% 40.12%

Decode stalls in Unopt. code of go on md4
4712905 786841 4364427 1425337 1334687 1283916 1296726
68.76% 21.64% 75.33% 52.12% 50.60% 49.50% 49.60%

Table 6.21: Fetch and decode stall cycles in go (percentage of total cycles)

DLX across all models. The least execution is seen in md4 with branch prediction

(bp in DLX and bs in PERL). The speedup obtained from md1 to md2 is significant,

where as only a marginal improvement is seen in speedup from md2 to md4 in both

DLX and PERL.

Table 6.20 gives the performance of all the branch prediction schemes used in

DLX and PERL. The go program contains indirect branches (to implement the C

switch construct), these are not predicted in PERL (only indirect branches which

use base addressing are predicted).

We present the number of fetch and decode stall cycles in DLX and PERL in

table 6.21. DLX has fewer fetch and decode stalls than those in PERL as in case of

other benchmark programs.

The average number of instructions processed per cycle is presented in table 6.22.

The go program exhibits a CPC of 2 in DLX on md4, while on the same model PERL

121

Model FPC DPC IPC CPC

Unoptimized Code
DLX-md1-bp 0.99 0.96 0.95 0.95
PERL-md1-bs 0.98 0.95 0.92 0.91

DLX-md2-bp 1.78 1.70 1.63 1.56
PERL-md2-bs 1.71 1.62 1.41 1.37

DLX-md4-bp 2.65 2.36 2.20 1.99
PERL-md4-bs 2.10 1.98 1.78 1.54

Table 6.22: Instructions fetch, decode, issue and commit per cycle (for go)

has a CPC of 1.54.

The results show that PERL performs better than the DLX in all models. How-

ever, the results presented are for the unoptimized code.

6.5 Other Issues

The results presented in the previous section show that PERL performs better than

DLX for most of the benchmarks. For many programs PERL performs better even

against the optimized code of DLX.

There may be many reasons behind PERL to perform better than DLX, but

some of the important ones are listed below.

1. Fewer instructions.

2. Operand forwarding / Operand renaming.

3. SP/FP accesses.

We have already seen that PERL executes fewer instructions (figure 6.2). We

present the results with respect to the other two points here.

122

Program PERL-md4-bs
Tot. Acc Avg/ins Tot. Rd Avg/ins Tot. Wr Avg/ins

perm 21316 2.03 11745 1.12 9571 0.91
relax 1986332 1.64 883257 0.73 1103075 0.91
across 5583 1.99 2981 1.06 2602 0.93
mult 1194162 1.76 588702 0.87 605460 0.89
ttn 6570941 1.79 3558522 0.97 3012419 0.82
compress 14441838 2.46 9014709 1.54 5427129 0.93
go 8699505 2.14 5300629 1.31 3398876 0.84

Table 6.23: Memory references in PERL

6.5.1 Operand Forwarding / Operand Renaming

An interesting related issue in PERL is the number of memory accesses made during

the program execution.

Each PERL instruction performs six memory accesses in the worst case. The

worst case occurs when all operands of the instruction are specified using indirect

addressing. However, in programs many operands are specified using direct and

immediate addressing as well. In addition, unconditional jump instructions use only

two operands. Hence, on the average the number of memory requests per instruction

during execution of the program is expected to be smaller than six.

We present the actual number of memory references made by PERL in table 6.23.

These include the memory references made due to speculative execution.

Interestingly the average number of memory accesses made per instruction is very

low. This is because many of the addresses and operands required during execution

are obtained from data forwarding/operand renaming.

PERL instructions are decoded in two stages, namely, address generation and

operand access as shown in figure 4.2 and explained in section 4.2.1. The effective

address is computed in the address generation stage for all operands that are spec-

ified using indirect or base addressing modes. The actual operand value is fetched

in the operand access stage.

In superscalar PERL, all data dependencies among the instructions are resolved

123

before the instruction is decoded and placed in the instruction window. To improve

the ILP, PERL uses operand renaming and address/operand forwarding. The decode

unit places the decoded instructions in the reorder buffer. The destination addresses

of all the instructions are then renamed to the reorder buffer entry number (thereby

eliminating the anti-dependencies). New instructions coming into the pipeline may

find their operands in the reorder buffer.

In the address generation stage, memory accesses need to be made to get the

value of the base. The base addresses for the indirect operands (destination and

source) are searched in the reorder buffer to get the value. A match indicates that a

previously decoded instruction in the pipeline will be providing the value. If a match

is found then the effective address is picked up from the reorder buffer entry provided

the entry was valid. In case a match is found and the corresponding instruction is

yet to write-back the data (i.e. the reorder buffer entry is invalid), the processor

stalls the current instruction. If the match was searched for the source operand, the

decoding is continued for further instructions. However, if the match was searched

for destination operand, the processor stalls and does not decode further instruc-

tions. These stalls are named decode stalls. The decoding is resumed later when

the instruction owning the address is executed completely. However, if there was no

match, the processor performs a memory read to obtain the address. Thus, every

successful address search avoids one memory access to obtain the effective address

of an indirect operand.

Similarly, in the operand access stage, the operands are read from the memory.

For this the addresses are searched in the reorder buffer and a similar action is

performed. Thus, memory accesses are avoided if the corresponding value was found

in the reorder buffer.

We present the number of addresses and operand searches made, and the success

rate in table 6.24. The success rate of address search ranges from 20% to 100%. It

can also be observed that the success rate of finding the operand in reorder buffer

ranges from 25% to 65%. As each successful search avoids a memory access, the

actual number of memory accesses comes down as shown in table 6.23.

124

Program Address Search Operand Search
of srch Succ. rate # of srch Succ. rate

perm 8840 65.18% 10337 27.79%

relax 492104 100% 1885536 53.16%

across 1595 93.73% 3791 24.00%

mult 378476 35.18% 983743 65.09%

ttn 2397090 20.39% 2349502 61.06%

compress 6766680 31.31% 5640950 25.41%

go 5034192 28.26% 9345672 66.48%

Table 6.24: Success rate of finding addresses and operands in reorder buffers

6.5.2 SP/FP Accesses

Programs make frequent access to local variables during execution, which are al-

located on the stack by the compilers. The frame and stack pointer registers are

frequently used to access the local variables. PERL is expected to cache SP and

FP in L0 cache to give almost 100% hit. The number of SP/FP accesses and total

memory accesses are shown in table 6.25. It can be observed that in case of some

programs the combined SP and FP accesses are about 30% to 38% of total memory

accesses. Programs relax, across and mult implement one function each that uses

global arrays and hence have very few accesses to SP and FP.

The high percentage of SP and FP accesses justifies our assumption that the

access to these will yield a hit ratio of almost 100% in L0 cache.

The execution of programs on the simulator has shown that PERL perform better

than DLX for most of the programs. With the exception of mult and across, where

the optimized code for DLX performs better than the optimized code for PERL,

the PERL code consistently runs faster than the DLX. It may be noted that the

optimizations in PERL do not include any machine specific optimizations.

125

Shown as percentage of Total memory access

Program SP/FP. Acc SP. Rd SP. Wr Mem. Acc Mem. Rd Mem. Wr

perm 7509 5309 2200 13807 6436 7371
35.23% 45.20% 22.99% 64.77% 54.80% 77.01%

relax 1158 1135 23 1985174 882122 1103052
0.06% 0.13% 0.00% 99.94% 99.87% 100.00%

across 14 11 3 5569 2970 2599
0.25% 0.37% 0.12% 99.75% 99.63% 99.88%

mult 245328 245325 3 948834 343377 605457
20.54% 41.67% 0.00% 79.46% 58.33% 100.00%

ttn 2554953 2255018 299935 4015988 1303504 2712484
38.88% 63.37% 9.96% 61.12% 36.63% 90.04%

compress 4884016 4761274 122742 9557822 4253435 5304387
33.82% 52.82% 2.26% 66.18% 47.18% 97.74%

go 3448334 2992205 456129 5251171 2308424 2942747
39.64% 56.45% 13.42% 60.36% 43.55% 86.58%

Table 6.25: Accesses to SP/FP and to other memory locations in PERL

126

Chapter 7

Analysis of Memory System

The performance of memory subsystem plays a very significant role in the overall

performance of the machine. PERL being a purely memory-to-memory architecture,

the performance of memory subsystem is even more significant to the performance

of the processor. There are several studies [46, 51, 66, 104, 105], discussing the

performance of memory subsystem for RISC processors including that for DLX.

However, there are no such studies for a memory-to-memory processor like PERL.

We analyze the performance of cache in both DLX and PERL. The study is based

on the memory trace obtained during simulation. Traces are collected for each of the

benchmark programs on models md4 with branch prediction scheme bp in DLX and

bs in PERL. We perform simulations to assess the performance of both instruction

and data caches. It is generally known that the data access and instruction access

patterns of programs vary differently. Processors of today therefore have a split

instruction and data caches at L1 cache hierarchy.

We present the data and code sizes for the benchmark programs in table 7.1 and

the total number of instructions fetched for DLX and PERL in table 7.2. These

figures are important for analyzing the cache simulation results. The relax bench-

mark has no global variables and the single array in the program is declared as local

variable and allocated onto stack, hence its data size is one.

127

Program Code Size in bytes Data Size
DLX PERL in bytes

perm 1232 3280 32
relax 1276 2240 1
across 1028 2224 2000
mult 1312 2704 12288
ttn 21416 42496 70579
compress 12476 23456 44111823
go 499064 1032160 565717

Table 7.1: Code and data sizes of programs in DLX and PERL

Program DLX-md4-bp PERL-md4-bs

perm 21190 17552
relax 1745262 1248908
across 4783 2877
mult 723617 716728
ttn 8117721 4430877
compress 14196657 5899370
go 10060599 5446915

Table 7.2: Instruction fetch count of all programs in DLX and PERL

7.1 Cache Hierarchy in PERL and DLX

The cache hierarchy in DLX and PERL is similar to the one shown in figure 3.3.

PERL has a small number of registers mapped on to memory locations. We expect

it to cache the most frequently used memory locations. We treat this as L0 cache

in our discussion. The likely candidates to occupy these locations are SP, FP, local

variables and temporary variables. The access time of this is assumed to be one

clock (equal to that of registers). The L0 cache is capable of serving multiple (eight

in our model) memory requests in a single cycle in the same way as registers. All

requests in PERL first go to L0 as it is the highest level in the memory hierarchy.

The misses in L0 cache is passed on to L1 cache. The way in which accesses to L1

128

and beyond are processed is similar in both DLX and PERL.

It is important to model L0 cache to assess the performance of PERL prop-

erly. We modeled L0 cache to contain 16 registers with 8 ports. Registers in some

processors today have more than 8 ports. DLX has a register set with 32 regis-

ters, the benefit of which is extracted by compiler and superscalar execution (in the

simulator).

Some of the common parameters that are used in our simulations are the follow-

ing.

• L0 cache is present only in PERL. It has 16 registers of 32-bits, fully associative

and has 8 ports.

• L1 is a split cache.

• L1 instruction cache is 8 KB, direct mapped and has one port.

• L1 data cache is 8 KB, 32 byte block size, 4 interleaved ports and employs

write back policy.

• L1 miss penalty is 4 cycles.

• The cache size of L2 is 256 KB, as this is the minimum size of L2 cache in

most current processors.

• L2 is a unified, four-way set associative , write back cache with miss penalty

of 13 cycles.

7.2 Instruction Cache

PERL fetches fewer instructions than DLX. However, each PERL instruction is four

times (128 bits) the size of a DLX instruction (32 bits). We study the performance

of instruction cache by performing two sets of simulation.

A bigger cache block size in instruction cache is likely to improve the perfor-

mance of PERL more than DLX. A bigger instruction cache is also likely to benefit

129

PERL more than the DLX. We study these two issues through the following set of

simulations.

• Constant cache size with varying block size: We performed three simu-

lations on each trace. The size of L1 I-cache (8KB) and L2 cache (256KB) are

kept constant. The simulation are conducted for block sizes of 32, 64 and 128

bytes respectively (in both L1 and L2). The associativity of L1 I-cache and

L2 cache is kept at 1 and 4 respectively and only one port is provided.

• Varying Cache size: The number of blocks in L1 I-cache is kept constant

(256). The simulations are conducted for block sizes of 32, 64 and 128 bytes.

In effect we study the performance of I-cache for sizes 8 KB, 16 KB and 32

KB respectively. The size of L2 cache is kept constant (256KB), the block size

is varied to match the size of the L1 I-cache. The associativity of L1 I-cache

and L2 cache is kept at 1 and 4 respectively.

7.2.1 Varying Block Size

The significance of this set of simulation is to observe the effect of larger block size

in reducing the number of instruction cache misses.

The performance of L1 I-Cache over this set of simulations is presented in ta-

ble 7.3. The results show that the number of misses reduce as the block size increases

(even though the total cache size is kept constant). The reduction in number of

misses is more pronounced in PERL than in DLX across all programs. This is ex-

pected as the size of a PERL instruction is larger than that of a DLX instruction.

Thus larger cache block size brings in and holds more instructions per block for

future use. A bigger block size therefore benefits PERL more than DLX.

The performance of L2 cache is presented in the table 7.4. The results here

also show the same trend with the reduction in the number of misses being more

pronounced in PERL than in DLX. It can also be observed that all the L1 I-cache

misses are compulsory misses except in the case of ttn and compress.

130

 0

 10

 20

 30

 40

 50

 60

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

perm

DLX
PERL

 0

 5

 10

 15

 20

 25

 30

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

relax

DLX
PERL

 0

 5

 10

 15

 20

 25

 30

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

across

DLX
PERL

 0

 5

 10

 15

 20

 25

 30

 35

 40

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

mult

DLX
PERL

 0

 2000

 4000

 6000

 8000

 10000

 12000

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

ttn

DLX
PERL

 0

 5000

 10000

 15000

 20000

 25000

 30000

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

compress

DLX
PERL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

go

DLX
PERL

Figure 7.1: L1 I-cache misses with increasing block size

131

 0

 10

 20

 30

 40

 50

 60

 70

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

perm

DLX
PERL

 0

 5

 10

 15

 20

 25

 30

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

relax

DLX
PERL

 0

 5

 10

 15

 20

 25

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

across

DLX
PERL

 0

 5

 10

 15

 20

 25

 30

 35

 40

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

mult

DLX
PERL

 0

 200

 400

 600

 800

 1000

 1200

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

ttn

DLX
PERL

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

compress

DLX
PERL

 0

 5000

 10000

 15000

 20000

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in Bytes

go

DLX
PERL

Figure 7.2: L2 I-fetch misses with increasing block size

132

Program machine # Ifetch 32 bytes 64 bytes 128 bytes
of imiss # of imiss # of imiss

perm DLX 21190 25 13 7
PERL 17552 60 32 17

relax DLX 1745262 24 12 6
PERL 1248908 27 15 8

across DLX 4783 17 9 5
PERL 2877 24 12 6

mult DLX 723617 26 13 7
PERL 716728 39 20 10

ttn DLX 8117721 2070 1244 858
PERL 4430877 11033 6129 4011

compress DLX 14196657 1566 893 572
PERL 5899370 29908 17627 9766

go DLX 10060599 27681 16949 14226
PERL 5446915 38989 30508 29874

Table 7.3: L1 I-cache misses with varying block size

Program Machine 32 bytes 64 bytes 128 bytes
Acc # imiss # Acc # imiss # Acc # imiss

perm DLX 25 24 13 12 7 7
PERL 60 60 32 31 17 16

relax DLX 24 24 12 12 6 6
PERL 27 27 15 15 8 8

across DLX 17 17 9 9 5 5
PERL 24 24 12 12 6 6

mult DLX 26 26 13 13 7 7
PERL 39 39 20 20 10 10

ttn DLX 2070 637 1244 325 858 166
PERL 11033 1152 6129 585 4011 301

compress DLX 1566 1467 893 791 572 473
PERL 29908 6460 17627 3655 9766 2125

go DLX 27681 4882 16949 3409 14226 2203
PERL 38989 16424 30508 9134 29874 6442

Table 7.4: L2 I-fetch misses for varying L1 I-cache block size

133

7.2.2 Varying Cache Size

In these set of simulations, the number of sets in L1 I-cache is maintained constant

(256). The simulations are conducted for block sizes of 32, 64 and 128 bytes (total

cache size equal to 8KB, 16KB and 32KB respectively). The size of L2 cache is

however kept constant at 256KB. The significance of this set is to show that PERL

responds to bigger instruction caches more favorably than the DLX.

The results for L1 I-cache for this set of simulation are presented in table 7.5.

The results substantiate our expectation that instruction cache misses reduce more

drastically in PERL with large block size and larger caches. The misses also come

down in DLX, but the reduction is much more pronounced in PERL. While all

programs show the same trend, the reduction is more dramatic in ttn and compress

than compared to that in relax.

The results for L2 cache is presented in table 7.6. Here also the reduction in

the number of misses is more pronounced in PERL than in DLX. It may also be

noted that the number of L2 accesses reduce as the size of I-cache in L1 increases.

Again it is observed that all the L1 misses are compulsory misses except in ttn and

compress.

7.3 Data Cache

From the results obtained, we observe the following characteristics in the memory

access pattern of PERL.

• PERL is a memory-to-memory processor and hence generates more memory

accesses than DLX.

• Since PERL takes smaller time to execute, the number of memory requests

per cycle are generally more than that in DLX.

To be able to meet such memory access requirements, PERL requires an efficient

cache system. We present the results of the cache subsystem of cache in both DLX

and PERL. While describing the results we consider only the md4 models of DLX-bp

and PERL-bs which gave the best performance over all benchmarks.

134

 0

 10

 20

 30

 40

 50

 60

 70

32 62 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

perm

DLX
PERL

 0

 5

 10

 15

 20

 25

 30

32 62 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

relax

DLX
PERL

 0

 5

 10

 15

 20

 25

 30

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

across

DLX
PERL

 0

 5

 10

 15

 20

 25

 30

 35

 40

32 62 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

mult

DLX
PERL

 0

 2000

 4000

 6000

 8000

 10000

 12000

32 62 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

ttn

DLX
PERL

 0

 5000

 10000

 15000

 20000

 25000

 30000

32 62 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

compress

DLX
PERL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

32 62 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

go

DLX
PERL

Figure 7.3: Effect of L1 I-cache size on number of L1 I-cache misses

135

 0

 10

 20

 30

 40

 50

 60

 70

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

perm

DLX
PERL

 0

 5

 10

 15

 20

 25

 30

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

relax

DLX
PERL

 0

 5

 10

 15

 20

 25

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

across

DLX
PERL

 0

 5

 10

 15

 20

 25

 30

 35

 40

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

mult

DLX
PERL

 0

 200

 400

 600

 800

 1000

 1200

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

ttn

DLX
PERL

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

compress

DLX
PERL

 0

 5000

 10000

 15000

 20000

32 64 128

N
o.

 o
f I

-C
ac

he
 m

is
se

s

Block size in bytes

go

DLX
PERL

Figure 7.4: Impact of L1 I-cache size on number of L2 I-fetch misses

136

Program machine #Ifetch 32-8KB 64-16KB 128-32KB
of imiss # of imiss # of imiss

perm DLX 21190 25 13 7
PERL 17552 60 32 17

relax DLX 1745262 24 12 6
PERL 1248908 27 15 8

across DLX 4783 17 9 5
PERL 2877 24 12 6

mult DLX 723617 26 13 7
PERL 716728 39 20 10

ttn DLX 8117721 2070 499 166
PERL 4430877 11033 1474 429

compress DLX 14196657 1566 163 85
PERL 5899370 29908 1426 143

go DLX 10060599 27681 14955 11088
PERL 5446915 38989 23454 14345

Table 7.5: L1 I-cache misses with varying L1 I-cache size

Program Machine 32-8KB 64-16KB 128-32KB
Acc # imiss # Acc # imiss # Acc # imiss

perm DLX 25 24 13 12 7 7
PERL 60 60 32 31 17 16

relax DLX 24 24 12 12 6 6
PERL 27 27 15 15 8 8

across DLX 17 17 9 9 5 5
PERL 24 24 12 12 6 6

mult DLX 26 26 13 13 7 7
PERL 39 39 20 20 10 10

ttn DLX 2070 637 499 325 166 166
PERL 11033 1152 1480 585 430 301

compress DLX 1566 1467 163 158 85 83
PERL 29908 6460 1426 1399 143 140

go DLX 27681 4882 14955 3412 11088 2187
PERL 38989 16424 23454 6134 14345 3342

Table 7.6: L2 I-fetch misses with increasing L1 I-cache size

137

7.3.1 Data-Cache Hierarchy

The data cache hierarchy in PERL includes an L0 cache, which are a small number

of registers mapped on to memory. The DLX, being a load-store machine has the

register set, the benefit of which is statically extracted by the compiler by means of

register allocation.

There are many cache enhancement schemes available to improve the cache per-

formance. We consider two of them namely, multi-port cache and load-all-wide

technique. Multi-port caches serve multiple accesses in a single cycle. Where as the

load-all-wide technique serves multiple misses to the same cache block simultane-

ously. Both these techniques help in serving multiple simultaneous memory accesses

and hence will benefit both DLX and PERL processors.

The L1 data cache is common to both DLX and PERL. Both DLX and PERL

issue multiple memory requests in a single cycle. Therefore, we provide 4 interleaved

ports in L1 cache. The other parameters of L1 cache is as given in section 7.1.

7.3.2 Evaluation Methodology

The least execution times are obtained in md4-bp of DLX and md4-bs of PERL. As

these configurations are superscalar and use efficient branch prediction schemes, the

memory requirement for these configurations are also the maximum. The memory

traces were collected during the execution of programs on simulators configured as

md4-bp for dlxsim and md4-bs for perlsim. These traces are used to analyze the

performance of the cache subsystem.

The performance metrics that are important for our study are miss rate, extra

cycles required to serve the misses and bank clashes. Bank clashes are important as

they affect the time required to serve multiple simultaneous hits to the same cache

bank.

7.3.3 Impact of L0 Cache

The L0 cache is the first level of cache hierarchy in PERL. It consists of 16 registers

mapped to memory locations and is expected to cache the most frequently accessed

138

data. We present the number of misses in L0 cache in table 7.7. We also present the

number of write backs from L0 cache in table 7.8. Even with 16 registers L0 cache

captures substantial number of hits.

The L0 cache miss rate is the lowest in ttn (3.36%) and highest in mult (53.95%).

The misses out of L0 cache are served by L1 cache and therefore these are signif-

icantly reduced. We present the number of accesses that go to L1 cache in DLX

and PERL in table 7.9. Interestingly in case of compress, relax and ttn programs

fewer accesses are sent to L1 cache in PERL than the number of of Load/Store

instructions executed by DLX.

This observation also indicates the effectiveness of dynamic register allocation in

PERL as compared to static allocation by the compiler in DLX.

7.3.4 Performance of L1 and L2 Cache

All the parameters of L1 data cache and L2 cache are fixed except the associativity.

The performance of L1 and L2 cache are evaluated for 1-way, 2-way and 4-way set

associativities. The size of L1 data cache and L2 cache are kept at 8KB and 256KB

respectively.

We present the read, write and total miss ratios in L1 cache in table 7.10. The

miss ratios decrease as the associativity is increased from 1 to 4 for all programs

except ttn. We present the variations in the number of read, write and total misses

in L1 cache in figure 7.5.

The misses in L2 cache for programs perm, across, mult are constant and comprise

of only the compulsory misses in DLX. Except mult, the other two programs show

the same behavior in PERL. We present the number of read, write and I-fetch

misses from L2 cache in table 7.11 for both PERL and DLX and the variations in

the number of misses in L2 cache in figure 7.6.

7.3.5 Impact of Load-all-wide Technique

We present the number of misses served by load-all-wide technique in table 7.12.

As clear from this table, the load-all-wide scheme benefits PERL more than DLX

139

Metric # of Acc # of Misses miss rate

perm
Reads 8741 2100 24.03%
Writes 9571 2440 25.49%
Total 18312 4540 24.79%

relax
Reads 883256 323622 36.64%
Writes 1103075 43197 3.92%
Total 1986331 366819 18.47%

across
Reads 2780 974 35.04%
Writes 2602 807 31.02 %
Total 5382 1781 33.10%

mult
Reads 479889 325572 67.84%
Writes 605460 259982 42.94%
Total 1085349 585554 53.95%

ttn
Reads 2773079 104834 3.78%
Writes 3012418 89742 2.97%
Total 5785497 194576 3.36%

compress
Reads 6529918 356173 5.45%
Writes 5427129 2132082 39.29%
Total 11957047 2488255 20.81%

go
Reads 4894793 587952 12.01%
Writes 2694921 853914 31.68%
Total 7589714 1441866 19.0%

Table 7.7: Performance of L0 cache with 16 registers in PERL

140

Program # of Write backs

perm 3939
relax 108968
across 902
mult 260040
ttn 109397
compress 2300993
go 790450

Table 7.8: Number of write backs from L0 cache

Program PERL DLX
Tot. Acc Tot. Rd Tot. Wr Tot. Acc Tot. Rd Tot. Wr

perm 8479 4540 3939 8113 3538 4575
relax 475787 366819 108968 488569 382700 105869
across 2683 1781 902 1515 604 911
mult 845594 585554 260040 133158 98319 34839
ttn 303973 194576 109397 1647047 1179578 467469
compress 4789248 2488255 2300993 7007185 4556628 2450557
go 2232316 1441866 790450 2088626 1548650 539976

Table 7.9: Memory references to L1 data cache in DLX and PERL
(Total Read include the read and write misses from L0 cache since

L0 cache is writeback cache and hence requires a read as well)

141

Assoc DLX PERL
Reads Writes Total Reads Writes Total

perm
of Acc 3528 4575 8113 4540 3939 8479
1-way (m) 0.03% 0.24% 0.15% 0.26% 0% 0.14%
2-way (m) 0.03% 0.24% 0.15% 0.26% 0% 0.14%
4-way (m) 0.03% 0.24% 0.15% 0.26% 0% 0.14%

relax
of Acc 382700 105869 488569 366819 108968 475787
1-way (m) 3.27% 1.18% 2.82% 3.89% 0.14% 3.03%
2-way (m) 3.27% 1.18% 2.82% 3.75% 0% 2.89%
4-way (m) 3.27% 1.18% 2.82% 3.75% 0% 2.89%

across
of Acc 604 911 1515 1781 902 2683
1-way (m) 0% 7.24% 4.36% 4.38% 0% 2.91%
2-way (m) 0% 7.24% 4.36% 4.38% 0% 2.91%
4-way (m) 0% 7.24% 4.36% 4.38% 0% 2.91%

mult
of Acc 98319 34839 133158 585554 260040 845594
1-way (m) 0.53 0.75% 0.59% 3.04% 3.47% 3.16%
2-way (m) 0% 0.75% 0.2% 0.34% 0.15% 0.28%
4-way (m) 0% 0.75% 0.2% 0.09% 0% 0%

ttn
of Acc 1179578 467469 1647047 194576 109327 303973
1-way (m) 0.12% 0.04% 0.09% 1.14% 0.07% 0.76%
2-way (m) 0.11% 0.02% 0.08% 0.84% 0% 0.53%
4-way (m) 0.14% 0.02% 0.11% 1.15% 0% 0.74%

compress
of Acc 4556628 2450557 7007185 2488255 2300993 4789348
1-way (m) 0.61% 9.63% 3.76% 9.26% 0.19% 4.9%
2-way (m) 0.21% 9.10% 3.32% 9.18% 0.03% 4.8%
4-way (m) 0.21% 9.10% 3.31% 9.15% 0% 4.8%

go
of Acc 1548650 539976 2088626 1441866 790450 2232316
1-way (m) 2.04% 2.95% 2.28% 6.32% 1.12% 3.29%
2-way (m) 1.52% 2.41% 1.75% 5.71% 0.32% 2.52%
4-way (m) 1.46% 2.33% 1.69% 4.69% 0.04% 1.94%

Table 7.10: L1 D-cache performance in DLX and PERL

142

 0

 2

 4

 6

 8

 10

 12

 14

1-way 2-way 4-way

N
o.

 o
f m

is
se

s

Associativity

perm

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1-way 2-way 4-way

N
o.

 o
f m

is
se

s

Associativity

relax

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

1-way 2-way 4-way

N
o.

 o
f m

is
se

s

Assocaitivity

across

 0

 5000

 10000

 15000

 20000

 25000

1-way 2-way 4-way

N
o.

 o
f m

is
se

Associativity

mult

 0

 500

 1000

 1500

 2000

 2500

1-way 2-way 4-way

N
o.

 o
f m

is
se

s

Associativity

ttn

 0

 50000

 100000

 150000

 200000

 250000

1-way 2-way 4-way

N
o.

 o
f m

is
se

s

Associativity

compress

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

1-way 2-way 4-way

N
o.

 o
f m

is
se

s

Associativity

go
Read misses (DLX)
Write misses (DLX)
Total misses (DLX)

Read misses (PERL)
Write misses (PERL)
Total misses (PERL)

Figure 7.5: Number of L1 D-cache misses with varying associativity

143

Program/ Metric 1-way 2-way 4-way
Machine # Acc # miss #Acc #miss #Acc #miss
relax Reads 13764 1157 13764 1166 13764 1247
DLX Writes 13261 227 13261 118 13261 12

Ifetch 24 24 24 24 24 24
Total 27049 1408 27049 1308 27049 1283

relax Reads 14430 1199 13772 1182 13772 1249
PERL Writes 13554 127 13269 87 13269 44

Ifetch 27 27 27 27 27 27
Total 28011 1353 27068 1296 27068 1320

ttn Reads 1558 199 1425 199 1884 198
DLX Writes 305 50 141 32 137 40

Ifetch 2070 637 2070 637 2070 637
Total 3933 886 3636 868 4091 875

ttn Reads 2311 199 1631 200 2255 200
PERL Writes 491 46 134 23 136 37

Ifetch 11033 1151 11033 1152 11033 1152
Total 13835 1396 12798 1375 13424 1389

compress Reads 263589 99572 232733 98978 232627 98474
DLX Writes 245010 6379 229630 4736 229561 3188

Ifetch 1566 1467 1566 1443 1566 1467
Total 510165 107418 463929 105157 463754 103129

compress Reads 234773 107033 229050 104620 227892 103987
PERL Writes 229320 3602 226174 2826 225284 1571

Ifetch 29908 6460 29908 6445 29908 6460
Total 494001 117095 485132 113891 483084 112018

go Reads 47564 14682 36603 14470 35207 14457
DLX Writes 19678 2271 15348 2533 14838 2247

Ifetch 27681 4843 27681 4965 27681 4882
Total 94923 21796 79632 21968 77726 21586

go Reads 47406 15303 360305 14960 27916 14123
PERL Writes 19321 1993 18443 1729 17924 1677

Ifetch 38989 16424 38989 15414 38989 14842
Total 105716 33720 417737 32103 84829 30642

Table 7.11: L2 cache misses for varying associativity in L1 D-cache

144

 0

 10

 20

 30

 40

 50

 60

 70

 80

1-way 2-way 4-way

N
o.

 o
f L

2
m

is
se

s

Assocaitivity

perm

 0

 200

 400

 600

 800

 1000

 1200

 1400

1-way 2-way 4-way

N
o.

 o
f L

2
m

is
se

s

Assocaitivity

relax

 0

 20

 40

 60

 80

 100

1-way 2-way 4-way

N
o.

 o
f L

2
m

is
se

s

Assocaitivity

across

 0

 100

 200

 300

 400

 500

 600

 700

1-way 2-way 4-way

N
o.

 o
f L

2
m

is
se

s

Assocaitivity

mult

 0

 200

 400

 600

 800

 1000

 1200

 1400

1-way 2-way 4-way

N
o.

 o
f L

2
m

is
se

s

Assocaitivity

ttn

 0

 20000

 40000

 60000

 80000

 100000

 120000

1-way 2-way 4-way

N
o.

 o
f L

2
m

is
se

s

Assocaitivity

compress

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

1-way 2-way 4-way

N
o.

 o
f L

2
m

is
se

s

Associativity

go
Read misses (DLX)
Write misses (DLX)
Ifetch misses (DLX)
Total misses (DLX)

Read misses (PERL)
Write misses (PERL)
Ifetch misses (PERL)
Total misses (PERL)

Figure 7.6: Number of L2 misses with varying associativity in L1 D-cache

145

(except for relax benchmark). This means that PERL in general requires fewer

cycles to serve its misses than the DLX.

Program No. of requests served
PERL DLX

perm 3004 1453
relax 1 1478
across 201 5
mult 108813 11
ttn 785443 77834
compress 2484791 276313
go 799432 487988

Table 7.12: Number of requests served by Load-all-wide technique

7.3.6 Effect of Misses and Bank Clashes

The impact of misses is measured by finding the number of extra cycles required to

process them (table 7.13 and figure 7.7). Similarly the number of cycles required

to serve the bank clashes are presented in table 7.14 and figure 7.7. The number of

bank clashes in PERL was found to be zero for all benchmarks.

PERL requires fewer cycles to process its misses than the DLX for across, relax

and compress benchmark programs. However DLX requires fewer cycles to serve

misses in perm, mult and ttn benchmarks.

7.3.7 Impact on Execution Time

The execution time presented in the previous chapter assumed a perfect memory for

both PERL and DLX. The number of extra cycles required to process the misses and

bank clashes were not accounted for. However, they should be added to the execution

time in order to get the execution time including the time to access memory.

We present the modified execution time required in table 7.15. The execution

time shown here are for md4 model with bp and bs branch prediction schemes in

146

program machine 1-way 2-way 4-way
of cycles # of cycles # of cycles

perm DLX 463 463 463
PERL 832 832 832

relax DLX 59715 58734 57780
PERL 9288 16928 17027

across DLX 1079 1079 1079
PERL 429 429 429

mult DLX 5802 3738 3756
PERL 56461 5209 1743

ttn DLX 22180 21558 23493
PERL 60056 59120 60418

compress DLX 1158225 1014425 1002679
PERL 228543 212546 206195

go DLX 406676 367845 359219
PERL 811484 723998 719440

Table 7.13: Extra cycles required to serve misses

Program # of cycles
perm 30
relax 980
across 48
mult 4096
ttn 20630
compress 29737
go 85788

Table 7.14: Extra cycles required to serve bank clashes in DLX

147

 0

 200

 400

 600

 800

 1000

1-way 2-way 4-way

N
o.

 o
f C

yc
le

s

Associativity

perm

 0

 5000

 10000

 15000

 20000

1-way 2-way 4-way

N
o.

 o
f C

yc
le

s

Associativity

relax

 0

 200

 400

 600

 800

 1000

1-way 2-way 4-way

N
o

of
 C

yc
le

s

Associativity

across

 0

 10000

 20000

 30000

 40000

 50000

 60000

1-way 2-way 4-way

N
o.

 o
f C

yc
le

s

Associativity

mult

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1-way 2-way 4-way

N
o.

 o
f C

yc
le

s

Associativity

ttn

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

1-way 2-way 4-way

N
o.

 o
f C

yc
le

s

Associativity

compress

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1-way 2-way 4-way

N
o.

 o
f C

yc
le

s

Associativity

go
Extra Cycles to serve misses (DLX)

Extra Cycles to serve bank clashes (DLX)
Extra Cycles to serve misses (PERL)

Extra Cycles to serve bank clashes (PERL)

Figure 7.7: Extra cycles required to service misses and bank clashes

148

Program Mach. Ex.Time Extra cycles Corr Ex.Time Speed Up
BC Miss

perm DLX 6740 463 30 7233 1.027
PERL 6210 832 0 7042

relax DLX 604554 57780 980 663314 1.125
PERL 572601 17027 0 589628

across DLX 2336 1079 48 3463 0.980
PERL 3105 429 0 3534

mult DLX 240182 3756 4096 248034 1.004
PERL 245272 1743 0 247015

ttn DLX 3680393 23493 20630 3724516 1.224
PERL 2982786 60418 0 3043204

compress DLX 6838387 1002679 29737 7870803 1.227
PERL 6209845 206195 0 6416040

go DLX 3636048 359219 85788 4081055
PERL 2593769 719440 0 3313209 1.231

Table 7.15: Execution time including the time to access memory

DLX and PERL respectively. The extra cycles required is taken with 4-way set

associative L1 data cache.

After compensating for the cycles required to process misses and bank clashes

PERL performs better than DLX in all programs except across. A notable observa-

tion is that PERL performs better than DLX for mult program for which DLX was

earlier performing better than PERL.

After the detailed execution simulation followed by the cache memory simulation,

we find PERL performs better than DLX with most of the programs. As some

programs considered were small the speed up obtained is not pronounced. The two

programs compress and ttn which were reasonably large programs have shown better

speed up than other programs.

149

Chapter 8

Conclusions

In this thesis, we presented a case for Performance Enhanced Register–Less (PERL)

RISC processor. With improvement in memory subsystem architecture, the access

time of on-chip caches have come very close to that of the registers. The performance

obtained due to bigger on-chip caches is very impressive, whereas the same cannot be

said of registers. Having more registers has not shown any significant improvement

in the performance.

In the current situation, we argue that the time has come to re-look and redesign

the instruction set architecture. A pure memory-to-memory instruction set is an

ideal choice as it gives the maximum code compaction. Compilers can do away with

complex register allocation process and instead work on techniques to extract more

ILP.

8.1 Contributions

In this thesis, we surveyed the benefits of cache memory and registers. A new

technique called “On-Chip registering of memory location” is proposed. The concept

has been shown to be of great help in implementing a pure memory-to-memory

processor. We use this technique as the first level of cache in PERL (L0 cache).

An analytical model of PERL was presented considering the worst case memory

requirement of PERL. We compared the CPI of DLX and PERL using this model

150

and show that at higher hit ratios PERL would outperform DLX.

A hypothetical memory-to-memory instruction set for PERL was presented along

with a hypothetical superscalar pipeline to implement the proposed instruction set.

A new branch prediction scheme was proposed to predict indirect branches using

a pair of stacks. This technique is expected to predict the call/return instructions

with an accuracy close to 100%.

We used the instruction set simulators to execute seven benchmark programs

chosen from SPEC95 and NASA NAS test suites. We assumed a perfect cache

during the execution of programs on simulators and collected the memory traces.

The traces were then analyzed off-line to obtain the performance of cache memory

subsystem.

The simulations show that PERL requires fewer cycles than DLX to execute most

benchmark programs. The simulations also show that PERL consistently executes

fewer instructions (6% to 65%) than the DLX. The indirect branch prediction scheme

used succeeded in predicting with a success rate of close to 100%.

The off-line memory trace analysis shows that the average number of memory

accesses per instruction in a superscalar PERL (order 4) is about 2–2.5. The L0

cache was able to provide 21%-97% hit ratio. For some programs, it was found that

the number of memory references that actually go to L1 cache is smaller in PERL

than in DLX. The extra cycles required to process the misses and bank clashes

were more in DLX than in PERL for most of the programs. Further, because of L0

cache PERL does not have any bank clashes. The load-all-wide technique is found

to benefit PERL more than the DLX. Large instruction cache block size and large

instruction cache is also found to benefit PERL more than the DLX.

The effective execution time after considering the performance of cache sub sys-

tem was determined. The results show clearly that PERL outperforms DLX in all

but one program. The main contribution for PERL to perform better is certainly the

instruction count, which in turn is a direct implication of the memory-to-memory

instruction set and the compiler.

151

8.2 Future Work

Each instruction in PERL, as proposed, is very long (128 bits). This results in a

bigger static code size of programs, which on an average is twice the code size of pro-

grams in a register-to-register machine. This puts enormous pressure on instruction

cache bandwidth. We feel that some mechanisms for code compaction are possible

and should be investigated.

Some resources in PERL such as L0 cache, reorder buffer etc., are complex and

their effect on clock cycle time has to be investigated. Finding optimal sizes of these

resources is also an interesting work.

The gcc compiler is perhaps not the best compiler for memory-to-memory in-

struction set. Building a compiler for PERL would be more beneficial. While the

machine specific optimizations for register architectures are well known and im-

plemented by the compilers, the same was not done for PERL. Machine specific

optimizations provide good performance enhancements. Some machine dependent

optimizations for PERL should also be identified and implemented.

8.2.1 Some Possible Optimizations

The results clearly show that a large percentage of cycles in PERL are fetch and

decode stalls. Further, it is also observed that most of the fetch stalls are due to

filled up instruction queue. This indicates that the decode unit is not processing

instructions at the same rate as the fetch unit. This is primarily because of data

dependencies. Techniques like loop unrolling can be adopted efficiently in PERL

to extract more ILP as there is no register pressure. Techniques like instruction

reordering will definitely result in reduced number of fetch and decode stalls resulting

in more ILP.

Apart from these, cache prefetching techniques can also be used to reduce the

impact of cache misses.

Based on this study and results for the benchmark programs, we conclude that

a memory-to-memory architecture like PERL is definitely an attractive and viable

method to obtain better performance than register-to-register architecture using the

current technology.

152

Bibliography

[1] David A. Patterson and David R. Ditzel, “The Case for the Reduced Instruc-

tion Set Computer,” Computer Architecture News, ACM SIGARCH, vol. 8,

no. 6, pp. 25–33, Oct 1980.

[2] Dell Computers, IA-64 Architecture and ITANIUMTM , White paper, April

1999.

[3] Sun Microsystems, UltraSPARC III Cu User’s manual, May 2002.

[4] Tim Fu, Farshid Iravani, Mahdi Seddighnezhad, Kenneth Yeager, and David

Zhang, “R18000 The latest SGITM Superscalar Microprocessor,” Hot Chips,

Aug 2001.

[5] Hewlett Packard, PA-RISC 8X00 Family of microprocessors with Focus on

PA-8700, Technical white paper, April 2000.

[6] David A. Patterson and R. Piepho, “RISC assessment. A high-level language

experiment,” Proceedings of the 9th annual Symposium on Computer Archi-

tecture, ACM SIGARCH, pp. 3–8, Apr 1982.

[7] David A. Patterson, “Reduced Instruction Set Computers,” Communications

of the ACM, vol. 28, no. 1, pp. 8–21, Jan 1985.

[8] Mark Brehob, Travis Doom, Richard Enbody, William H. Moore, Sherry Q.

Moore, Ron Sass, and Charles Severance, “Beyond RISC - The Post-RISC

Architecture,” Tech. Rep. CPS-96-11, Michigan State University, Department

of Computer Science, Mar 1996.

153

[9] Dileep Bhandarkar and Douglas W. Clark, “Performance from Architecture:

Comparing a RISC and a CISC with Similar Hardware Organization,” Pro-

ceedings of 4th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS-IV), pp. 310–319, Apr

1991.

[10] David A. Patterson and Carlo H. Sequin, “RISC I: A Reduced Instruction

Set VLSI Computer,” Proceedings of the 8th annual Symposium on Computer

Architecture, pp. 443–457, May 1981.

[11] Wulf W, “Compilers and Computer Architecture,” IEEE Computer, vol. 14,

no. 7, pp. 41–47, July 1981.

[12] Tom Shanley, Pentium Pro Processor System Architecture, Addison Wesley

Developers Press, 1997.

[13] Dave Christie, “Developing The AMD-K5 Architecture,” IEEE Micro, vol.

16, no. 2, pp. 16–26, Apr 1996.

[14] MOTOROLA, IBM and APPLE, Power PC 601 RISC Microprocessor User’s

Manual, 1993.

[15] Tim Horel and Gary Lauterbach, “UltraSPARC-III:Designing Third-

Generation 64-Bit Performance,” IEEE Micro, vol. 19, no. 3, pp. 73–85, 1999.

[16] David B. Papworth, “Tuning the Pentium Pro Microarchitecture,” IEEE

Micro, vol. 16, no. 2, pp. 8–15, Apr 1996.

[17] Intel Literature center, IA-32 Intel Architecture Software Developer’s Manual

Manual Volume 1: Basic Architecture, 2001.

[18] Advanced Micro Devices Inc, AMD ATHLON Processor Technical Brief, Dec

1999.

[19] Linley Gwennap, “Alpha 21364 to Ease Memory Bottlenec,” Cahners Mi-

croDesign Resources, Microprocessor Report, Oct 1998.

154

[20] B. Ramakrishna Rau and Joseph A. Fisher, “Instruclion-Level Parallel Pro-

cessing: History, Overview, and Perspective,” The Journal of Supercomputing,

vol. 7, no. 1/2, pp. 9–50, 1993.

[21] Mike Johnson, Superscalar Microprocessor Design, Prentice Hall Series in

Innovative Technology, PTR Prentice Hall, Englewood Cliffs, New Jersey,

1991.

[22] John L. Hennessy and David A.Patterson, Computer Architecture A Quanti-

tative Approach, Morgan Kaufmann Publishers, INC, San Mateo, California,

1991.

[23] Kogge P.M., The Architecture of Pipelined computers, McGraw-Hill, New

York, 1981.

[24] D.W. Anderson, F.J. Sparacio, and R.M. Tomasulo, “The IBM/360 Model

91: Machine Philosophy and Instruction-Handling,” IBM Journal of Research

and Development, vol. 11, pp. 8–24, Jan 1967.

[25] R.M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic

Units,” IBM Journal of Research and Development, vol. 11, pp. 25–33, Jan

1967.

[26] John H.E. Edmondson, Paul Rubinfeld, and Ronald Preston, “Superscalar

Instruction Execution in the 21164 Alpha Microprocessor,” IEEE Micro, vol.

15, no. 2, pp. 33–43, Apr 1995.

[27] IBM Microelectronics, Motorola, Advance Information PowerPC 620TM RISC

Microprocessor Technical Summary, 1994.

[28] Norman P. Jouppi and David W. Wall, “Available Instruction-Level Paral-

lelism for Superscalar and Superpipelined Machine,” Tech. Rep. WRL-TR-

89.7, Digital Western Research Laboratory, July 1989.

[29] Daniel Tabak, Advanced Microprocessors, McGraw-Hill, New York, second

edition, 1991.

155

[30] Fisher J. A., “Very Long Instruction Word Architectures and the ELI-512,”

Conference Proceedings of the 10th annual International Symposium on Com-

puter Architecture (SIGARCH’83), ACM SIGARCH, pp. 140–150, Jun 1983.

[31] M. S. Schlansker and B. R. Rau, “EPIC: Explicitly Parallel Instruction

Comupting,” IEEE Computer, vol. 33, no. 2, pp. 37–45, Feb 2000.

[32] Wm. A. Wulf and Sally A. Mckee, “Hitting the Memory Wall: Implications

of the Obvious,” ACM SIGARCH, Computer Architecture News, vol. 23, no.

1, pp. 20–24, Mar 1995.

[33] Maurice V. Wilkes, “The Memory Wall and the CMOS End - Point,” ACM

SIGARCH, Computer Architecture News, vol. 23, no. 4, pp. 4–6, Sep 1995.

[34] Michael Butler, Tse-Yu Yeh, Yale Patt, Mitch Alsup, Hunter Scales, and

Michael Shebanow, “Single Instruction Stream Parallelism Is Greater than

Two,” Proceedings of the 18th annual International Symposium on Computer

Architecture (ISCA’91), ACM SIGARCH, pp. 276– 286, May 1991.

[35] David W. Wall, “Limits of Instruction Parallelism,” Proceedings of 4th In-

ternational Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS-IV), pp. 176–188, Apr 1991.

[36] Michael D. Smith, Mike Johnson, and Mark A. Horowitz, “Limits on Multiple

Instruction Issue,” Proceedings of 3rd International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS-

III), pp. 290–302, Apr 1989.

[37] Matthew A. Postiff, David A. Greene, Gary S. Tyson, and Trevor Mudge, “The

Limits of Instruction Level Parallelism in SPEC95 Applications,” Computer

Architecture News, ACM SIGARCH, vol. 27, no. 1, pp. 31–34, Mar 1999.

[38] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles,

Techniques, and Tools, Addison-Wesley, 1986.

156

[39] Lam M., “Software Pipelining: An Effective Scheduling Technique for VLIW

Machines,” In Proceedings., ACM SIGPLAN ’88 Conference on Programming

Language Design and Implementation, pp. 318–327, Jun 1987.

[40] Backus J., “Can Programming Be Liberated From the Von Neumann Style?

A Functional Style and Its Algebra of Programs,” Communications of the

ACM, vol. 21, no. 8, pp. 613–641, Aug 1978.

[41] Teresa Monreal, Antonio Gonzalez, Mateo Valero, Jose Gonzalez, and Victor

Vinals, “Dynamic Register Renaming Through Virtual-Physical Registers,”

MICRO 32, Proceedings of the 32nd Annual ACM/IEEE International Sym-

posium on Microarchitecture, pp. 186–192, Nov 1999.

[42] John A. Swenson and Yale N. Patt, “Hierarchial Registers for Scientific Com-

puters,” In Proceedings of the International Conference on Supercomputing,

pp. 346–343, Jul 1988.

[43] Robert Yung and Neil C. Wilheim, “Caching Processor General Registers,”

International Conference on Computer Design, pp. 307–312, Oct 1995.

[44] Robert Yung and Neil C. Wilheim, “Caching Processor General Registers,”

Sun Microsystems Laboratories Technical Report, Jun 1995.

[45] Matthew A. Postiff, David A. Greene, Steven Raash, and Trevor Mudge, “In-

tegrating Superscalar Processor Components to Implement Register Caching,”

Proc. 15th ACM International Conference on Supercomputing (ICS’01), ACM

SIGARCH, pp. 348–357, 2001.

[46] Soo-Mook Moon and Kemal Ebcioglu, “A Study of the Number of Memory

Ports in Multiple Instruction Issue Machines,” MICRO 26, Proceedings of the

26th Annual International Symposium on Microarchitecture, pp. 49–58, Dec

1993.

[47] Jan Hoogerbrugge and Henk Corporaal, “Register File Port Requirements

of Transport Triggered Architecture,” MICRO 27, Proceedings of the 27th

157

Annual ACM/IEEE International Symposium on Microarchitecture, pp. 191–

195, Nov 1994.

[48] Dezso Sima, “The Design Space of Register Renaming Techniques,” IEEE

Micro, vol. 20, no. 5, pp. 70–83, Sep/Oct 2000.

[49] Todd M. Austin and Gurinder S. Sohi, “Dynamic Dependency Analysis of

Ordinary Programs,” Proceedings of the 19th annual International Symposium

on Computer Architecture (ISCA’92), ACM SIGARCH, May 1992.

[50] G.D. McNiven and E.S. Davidson, “Analysis of Memory Reference behavious

For Design of Local Memories,” Proceedings of the 15th annual International

Symposium on Computer Architecture (ISCA’88), ACM SIGARCH, pp. 56–

63, 1988.

[51] Andrew S. Huang and John Paul Shen, “The Intrinsic Bandwidth Require-

ments of Ordinary Programs,” Proceedings of 7nd International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-VII), pp. 105–114, Oct 1996.

[52] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic,

“Memory-System Design Considerations for Dynamically-Scheduled Proces-

sors,” Proceedings of the 24th annual International Symposium on Computer

Architecture (ISCA’97), ACM SIGARCH, pp. 133–143, Jul 1997.

[53] Richard L. Sites, “How to use 1000 Registers,” Proceeding of 1st Caltech

Conference on VLSI, pp. 527–532, 1979.

[54] Jack W. Davidson and Richard A. Vaughan, “The Effect of Instruction

Set Complexity on Program Size and Memory Performance,” Proceedings

of 2nd International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-II), pp. 60–64, Oct 1987.

158

[55] Norman P. Jouppi, “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers,” Proceed-

ings of the 17th annual International Symposium on Computer Architecture

(ISCA’90), ACM SIGARCH, pp. 364–373, Jun 1990.

[56] Gurindar S. Sohi and Manoj Franklin, “High-Bandwidth Data Memory Sys-

tems for Superscalar Processors,” Proceedings of 4th International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-IV), pp. 53–62, Apr 1991.

[57] Andrew Wolfe and Rodney Boleyn, “Two-ported Alternatives for Superscalar

Processors,” MICRO 26, Proceedings of the 26th Annual International Sym-

posium on Microarchitecture, pp. 41–48, Dec 1993.

[58] Kenneth M. Wilson, Kunle Olukotun, and Mendel Rosenblum, “Increasing

Cache Port Efficiency for Dynamic Superscalar Microprocessor,” Proceed-

ings of the 23rd annual International Symposium on Computer Architecture

(ISCA’96), ACM SIGARCH, pp. 147–157, May 1996.

[59] Kenneth M. Wilson and Kunle Olukotun, “Designing High Bandwidth On-

Chip Caches,” Proceedings of the 24th annual International Symposium on

Computer Architecture (ISCA’97), ACM SIGARCH, pp. 121–132, Jul 1997.

[60] Lizy Kurian John, Raghuveer Reddy, Vijay Kammila, and Peter Maurer, “In-

vestigating the Use of Cache as a local Memory,” 1st IEEE Symposium on

High–Performance Computer Architecture, pp. 117–122, Dec 1995.

[61] Philip Machanick, “The Case for SRAM Main Memory,” Computer Architec-

ture News, ACM SIGARCH, vol. 24, no. 5, pp. 23–30, Dec 1996.

[62] Michel Cekleov and Michel Dublois, “Virtual-Address caches,” IEEE Micro,

vol. 17, no. 5, pp. 64–71, Sep/Oct 1997.

[63] D. Burger and J. Goodman, “Billion-Transistor Architecures,” IEEE Com-

puter, vol. 30, no. 9, pp. 46–57, Sep 1997.

159

[64] Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk, “Missing the Memory

Wall: The Case for Processor/Memory Integration,” Proceedings of the 23rd

annual International Symposium on Computer Architecture (ISCA’96), ACM

SIGARCH, pp. 90–101, May 1996.

[65] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kim-

berly Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick,

“A Case For Intelligent RAM: IRAM,” IEEE Micro, vol. 17, no. 2, pp. 34–44,

Apr 1997.

[66] Doug Burger, James R. Goodman, and Alain Kagi, “Limited Bandwidth To

Affect Processor Design,” IEEE Micro, pp. 55–62, Nov/Dec 1997.

[67] Freedom CPU Project, Draft and Request for comment, Patch YG 2001.1.1.14,

FCPU MANUAL REV.0.2.2.�, 2001.

[68] Sun Microsystems, An Overview of UltraSPARC III Cu Processor, A white

paper, Jun 2002.

[69] P. Bannon, “”alpha 21364 – a scalable single–chip smp”,” Intel Microprocessor

Forum, Oct 1998.

[70] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan

Kyker, and Patrice Roussel, “The Microarchitecture of the PentiumR 4 Pro-

cessor,” Intel Technology Journal Q1, 2001.

[71] Intel Corporation, IA-64 Application Developer’s Architecture guide, May

1999.

[72] Harsh Sharangpani, “”intel itaniumTM processor micorarchitecture

overview”,” Intel Microprocessor Forum, Oct 1999.

[73] Alexander Klaiber, “The Technology Behind CRUSOETM Processors,” Tech.

Rep., Transmeta Corporation, Jan 2000.

[74] Vinod Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge, “A Performance

Comparison of Contemporary DRAM Architectures,” Proceedings of the 26th

160

annual International Symposium on Computer Architecture (ISCA’99), ACM

SIGARCH, pp. 222–233, May 1999.

[75] Brian Davis, Bruce Jacob, and Trevor Mudge, “The New DRAM Interfaces:

SDRAM, DRDRAM and Variants,” In High Performance Computing, Lecture

Notes in Computer Science, pp. 25–31, Oct 2000.

[76] Alan J. Smith, “Cache Memories,” ACM Computing Surveys, vol. 14, no. 3,

pp. 473–530, Sep 1982.

[77] Steven Przybylski, Mark Horowitz, and John L. Hennessy, “Performance

Tradeoffs in Cache design,” Proceedings of the 15th annual International Sym-

posium on Computer Architecture (ISCA’88), ACM SIGARCH, pp. 290–298,

May 1988.

[78] Mark D. Hill and Alan Jay Smith, “Experimental Evaluation of On-Chip Mi-

croprocessor Cache Memories,” Proceedings of the 11th annual International

Symposium on Computer Architecture (SIGARCH), pp. 158–166, Jun 1984.

[79] Richard J.Eickmeyer and Janak H.Patel, “Performance Evaluation of On-Chip

Register and Cache Organizations,” Proceedings of the 15th annual Interna-

tional Symposium on Computer Architecture (ISCA’88), ACM SIGARCH, pp.

64–70, 1988.

[80] Linley Gwennap, “Digital 21264 Sets New Standard,” Cahners MicroDesign

Resources, Microprocessor Report, vol. 10, no. 14, Oct 1996.

[81] James R. Goodman and Wei Chung Hsu, “On the Use of Registers Vs. Cache

to Minimize Memory Traffic,” Proceedings of the 13th annual International

Symposium on Computer Architecture (ISCA’86), ACM SIGARCH, pp. 375–

383, Jun 1986.

[82] Hwu W and P. P. Chang, “Exploiting parallel Microprocessor Microarchitec-

ture With a Compiler Code Generator,” Proceedings of the 15th annual Inter-

national Symposium on Computer Architecture (ISCA’88), ACM SIGARCH,

pp. 45–53, Jun 1988.

161

[83] David G. Bradlee, Susan J. Eggers, and Robert R. Henry, “The Effect on

RISC Performance of Register Set Size and Structure Versus Code Genera-

tion Strategy,” Proceedings of the 18th annual International Symposium on

Computer Architecture (ISCA’91), ACM SIGARCH, pp. 330–339, May 1991.

[84] Tokuzo Kiyohara and John C Gyllenhaal, “Code Scheduling for

VLIW/Superscalar Processors With Limited Register Files,” MICRO 25, Pro-

ceedings of the 25th Annual ACM/IEEE International Symposium and Work-

shop on Microarchitecture, pp. 197–201, Dec 1992.

[85] David G. Bradlee, Susan J. Eggers, and Robert R. Henry, “Integrating Regis-

ter Allocation and Instruction Scheduling for RISCs,” Proceedings of 4th In-

ternational Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS-IV), pp. 122–131, Apr 1991.

[86] Manoj Franklin and Gurindar S. Sohi, “Register traffic Analysis for Streamlin-

ing Inter-Operation Communication in Fine-Grain Parallel Processors,” MI-

CRO 25, Proceedings of the 25th Annual ACM/IEEE International Sympo-

sium and Workshop on Microarchitecture, pp. 236–245, Dec 1992.

[87] Kishor S. Trivedi, Probability & Statistics with Reliability, Queuing and Com-

puter Science Applications, Prentice Hall, Inc, Englewood Cliffs, N.J., U.S.A,

1982.

[88] D. Alpert, A. Averbuch, and O. Danieli, “Performance Comparison of

Load/Store and Symmetric Instruction Set Architectures,” Proceedings of the

17th annual International Symposium on Computer Architecture (ISCA’90),

ACM SIGARCH, pp. 172–181, Jun 1990.

[89] Amund Lunde, “Empirical Evaluation of Some Features of Instruction Set

Processor Architecture,” Communications of the ACM, vol. 20, no. 3, pp.

143–153, Mar 1977.

162

[90] Douglas W. Clark and Henry M. Levy, “Measurement and Analysis of Instruc-

tion Set Use in the VAX-11/780,” Proceedings of the 9th annual Symposium

on Computer Architecture, ACM SIGARCH, pp. 9–17, Apr 1982.

[91] Cheryl A. Wiecek, “A Case Study of VAX-11 Instruction Set Usage for Com-

piler Execution,” Proceedings of the Symposium on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-I), pp. 177–184,

Mar 1982.

[92] Robert Cmelik, Shing I. Kong, David R. Ditzel, and Edmund J. Kelly, “An

Analysis of MIPS and SPARC Instruction Set Utilization on the SPEC Bench-

marks,” Proceedings of 4th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-IV), pp. 290–

302, Apr 1991.

[93] Po-Yung Chang, Eric Hao, and Yale N. Patt, “Target Prediction for Indirect

Jumps,” Proceedings of the 24th annual International Symposium on Com-

puter Architecture (ISCA’97), ACM SIGARCH, pp. 274–283, Jul 1997.

[94] P. Suresh and Rajat Moona, “PERL - A Registerless Architecture,” Process-

dings of The 5th International Conference of High Performance Computing,

Dec 1998.

[95] J.K.F. Lee and A.J. Smith, “Branch Prediction Strategies and Branch Target

Buffer Design,” IEEE Computer, vol. 17, no. 1, pp. 6–22, Jan 1984.

[96] David R. Kaeli and Philip G. Emma, “Branch History Table Prediction of

Moving Target Branches Due to Subroutine Returns,” Proceedings of the 18th

annual International Symposium on Computer Architecture (ISCA’91), ACM

SIGARCH, pp. 34–42, May 1991.

[97] Cecile Moura, “SuperDLX–A Generic Superscalar Simulator,” Masters the-

sis, Advanced compilers, Architecture and Parallel Systems Group, McGill

University, May 1993.

163

[98] T. S. Balaji, “Design and Simulation of PERL RISC,” Masters thesis, Indian

Institute of Technology Kanpur, Kanpur, Feb 1997.

[99] G. V. Ramana Kumar, “C compiler and cache performance studies for perl risc

processor,” Masters thesis, Indian Institute of Technology Kanpur, Kanpur,

Feb 1997.

[100] Richard M. Stallman, Using and Porting GNU C Compiler, Free Software

Foundation, 1992.

[101] New Mexico State University, ACS: Cache Simulator.

[102] http://www.specbench.org, SPEC95 CPU benchmark.

[103] David H. Bailey and John T. Barton, THE NAS Kernel Benchmark Program,

Numerical, Aerodynamic Simultions Systems Division, NASA, Ames Research

center, Aug 1986.

[104] Samson Belayneh and David R. Kaeli, “A Discussion on Non-

Blocking/Lockup-Free Caches,” Computer Architecture News, ACM

SIGARCH, vol. 24, no. 3, pp. 18–25, Jun 1996.

[105] Michael Butler and Yale Patt, “The Effect of Real Data Cache Behavior on

the Performance of a Microarchitecture That Supports Dynamic Scheduling,”

MICRO 24, Proceedings of the 24th Annual ACM/IEEE International Sym-

posium on Microarchitecture, pp. 34–41, Nov 1991.

164

Appendix A

PERL Instruction Set

In this appendix, we present the instruction architecture of PERL. The PERL in-

struction set is designed primarily for the studies in this thesis and no emphasis is

given on the code density reduction etc.

A.1 Instruction Format

PERL instruction set is based on memory-to-memory architecture. A three address

format is used for all instructions. The general format of PERL instructions bit

encoding is as shown in the figure A.1.

128 bits

dest src1 src2instruction

Figure A.1: PERL instruction format

A.1.1 Non-Branch Instructions

All PERL non-branch instructions have three operands. The format of 3 operand

instructions is as shown below.

165

instruction mnemonic dest<:dType>, src1<:dType>, src2<:dType>

In this format, the instruction mnemonic can refer to any of the instructions given

in table A.1. The dType field in the instruction depends upon the kind of the

instruction. There are eight integer data types and two floating point data types as

shown in table A.2. In the first example below the data types of dest, src1 and src2

are specified individually. Whereas, a shorter form is used in second example where

src1, src2 and dest have the same dTypes.

1. add _p:ub4, _q:b2, _r:b1 ;;data types specified individually

2. addb4 _p, _q, _r ;;same data type for dest,src1 and src2

The dest, src1 and src2 specify the destination and source operands each in any one of

the 4 addressing modes as specified in table A.3. In the first example below dest, src1

and src2 are specified using direct, base and indirect addressing modes respectively.

Whereas in the second example the dest, src1 and src2 are specified using base,

direct and immediate addressing modes respectively. In the third example the dest

is specified by direct address and is a 4 byte integer, while src1 and src2 are both 1

byte integers specified by base and indirect addressing modes respectively.

1. addb4 _p, 28(SP), @_square

2. mulb4 8(SP), _q, #100

3. add _p:b4, 32(SP):b1, @_comm:b1

If an immediate addressing mode is used to specify the destination, then the

result is not saved and this instruction then behaves as NOP. However, the source

operands are fetched by the processor and the operation is performed. Such instruc-

tions could be used for prefetching the operands into cache by the compilers.

A.1.2 Branch Instructions

PERL processor supports unconditional and conditional branch instructions, each

with direct or indirect addressing mode. There is also a trap instruction to support

calls for the operating system.

The format of unconditional jumps is as follows.

166

j target, savePC

Here target field specifies the address to which control has to be transferred, savePC

is an optional field. PERL implements procedure calls using jump instructions in

which the current PC value is saved in location savePC. In the instruction’s binary

coding target is stored in dest field whereas savePC is stored in src1. The field src2

of instruction coding is not used.

The conditional jump instructions use 3 operands. The target is specified in the

dest field. Other two operands are used to evaluate the condition. If the condition

evaluates to true, control is transferred to the target.

The following is an example of a conditional jump. In this instruction, if 4 byte

signed number total is less than 4 byte constant 100, the control is transfered to

location target.

jltb4 target, total, #100

Trap instruction has only one operand that provides the trap number. This operand

is stored in the dest field of the instruction. Traps are typically used for library and

operating system calls. An example below shows how a call to an operating system

function exit is implemented in PERL.

j _exit

_exit:

trap #0

j -8(sp)

A.2 Instruction Encoding

Figure A.2 shows the encoding scheme of PERL instruction.

A.2.1 Opcodes

PERL instructions are broadly classified into Integer and Floating point class. Ta-

ble A.1 gives a 6–bit encoding scheme for all the instructions in PERL. This scheme

facilitates an early detection of Jump and Branch instructions.

167

OPC
AD, AS1 & AS2
DTD, DS1 & DS2
BD, BS1 & BS2

Operation Code
Addressing modes for destination and source operands
Data types of destination and source operands
Base pointers for destination and source operands

Unspecified BS2 BS1 BD DS2 DS1 DTD AS2 AS1 AD OPC

Instruction dest src2src1

5 2 2 2 3 3 3 2 2 2 6

32 bits 32 bits 32 bits 32 bits

128 bits

Figure A.2: PERL instruction encoding

CLASS 6–bit encoding Value Mnemonic Function Class

Integer 0 0 0 0 0 0 0 NOP NONE

Arithmetic & 0 0 0 0 0 1 1 ADD INT ALU

Logical 0 0 0 0 1 0 2 SUB INT ALU

0 0 0 0 1 1 3 SLL INT SHIFT

0 0 0 1 0 0 4 SRL INT SHIFT

0 0 0 1 0 1 5 SRA INT SHIFT

0 0 0 1 1 0 6 OR INT ALU

0 0 0 1 1 1 7 AND INT ALU

0 0 1 0 0 0 8 XOR INT ALU

0 0 1 0 0 1 9 MUL INT MUL

0 0 1 0 1 0 10 DIV INT DIV

...continued

168

CLASS 6–bit encoding Value Mnemonic Function Class
Control 0 1 0 0 0 0 16 J INT BRANCH

0 1 0 0 0 1 17 JEQ INT BRANCH
0 1 0 0 1 0 18 JNE INT BRANCH
0 1 0 0 1 1 19 JGT INT BRANCH
0 1 0 1 0 0 20 JLT INT BRANCH
0 1 0 1 0 1 21 JGE INT BRANCH
0 1 0 1 1 0 22 JLE INT BRANCH

Floating Point 1 0 0 0 0 1 33 ADDF FP ADD
Arithmetic 1 0 0 0 1 0 34 SUBF FP ADD

1 0 1 0 0 1 35 MULF FP MUL
1 0 1 0 1 0 36 DIVF FP DIV

Floating point 1 1 0 0 0 1 49 JEQF FP BRANCH
Control 1 1 0 0 1 0 50 JNEF FP BRANCH

1 1 0 0 1 1 51 JGTF FP BRANCH
1 1 0 1 0 0 52 JLTF FP BRANCH
1 1 0 1 0 1 53 JGEF FP BRANCH
1 1 0 1 1 0 54 JLEF FP BRANCH

Trap 0 1 1 1 1 1 31 TRAP TRAPS

Table A.1: Opcode table

A.2.2 Data Types

PERL architecture supports 8 types of integer data and two floating point data

types as shown in table A.2.

A.2.3 Addressing Modes

PERL architecture supports 4 addressing modes as shown in table A.3. If address-

ing mode indicator bits are 00, it indicates base addressing mode for arithmetic

and logical instructions, and PC relative addressing for branch instructions. If an

immediate mode is used for destination the results are discarded.

In the example below the dest, src1 and src2 are respectively represented using

direct, base and indirect addressing modes.

add p:b1,200(SP):b2,(size8):b4

169

Data Type Value(3 bits) mnemonic

unsigned byte1(8 bits) 0 ub1
unsigned byte2(16 bits) 1 ub2
unsigned byte4(32 bits) 2 ub4
unsigned byte8(64 bits) 3 ub8
signed byte1(8 bits)/float4(Single Precision FP) 4 b1/fp4
signed byte2(16 bits)/float8(Double Precision FP) 5 b2/fp8
signed byte4(32 bits) 6 b4
signed byte8(64 bits) 7 b8

Table A.2: Data types of operands

Addressing Mode Value (2 bits)

Base/PC relative 0
Direct 1
Memory Indirect 2
Immediate 3

Table A.3: Addressing modes for operands

The three memory operands can be specified independently using any of the 4

addressing modes. Further, the data type of each of them can also be independently

specified. The base addresses are specified using only 2 bits. These refer to one of

the four addresses stored in fixed locations and are cached permanently.

170

Appendix B

Simulator Configuration File

To analyze the effect of various parameter values on processor performance, the

simulators for PERL and DLX read a configuration file. Values for various different

parameters can be specified in this file. In this appendix, we describe the format of

this file.

The simulator has a set of default values for all these parameters and it is forced

to pick up the parameter values from this configuration file by invoking the simulator

with a command line argument as shown below (md is the configuration file name).

supersim -f md

B.1 Instructions Process per Cycle

The number of instructions that needs to be fetched, decoded, issued and committed

per cycle during simulation is specified as shown below. The first field indicates the

operation and the second field specifies the value for it.

Instructions_process_per_cycle

fetch 4

decode 4

issue 4

commit 4

171

B.2 Memory

The size of simulator’s memory in bytes, the latency in terms of number of cycles

and the maximum number of memory accesses (L1 cache) per cycle are specified as

shown below. The maximum number of memory accesses is essentially the number

of ports in L1 data cache.

Memory

size 19000000

latency 1

accesses 2

B.3 Reorder Buffer Size

The maximum number of entries in each of the integer and floating point reorder

buffers are specified as shown below.

Reorder_Buffer_size

integer 40

float 40

B.4 Instruction Window Size

The maximum number of entries in each of the integer and floating point instruction

windows are specified as shown below.

Instruction_Window_size

integer 40

float 40

B.5 Instruction Queue Size

The maximum number of entries in instruction queue is specified as shown below.

Instruction_Queue_size 40

172

B.6 Branch Buffer Size

The maximum number of entries in the branch target buffer (BTB)is specified as

shown below.

Branch_Buffer_size 111

B.7 Integer Functional Units

The number of each of the integer functional units ALU, shift, branch, multiply

and divide and their respective latencies in (number of cycles per operation), are

specified as shown below.

Integer_Functional_Units

alu

number 4

latency 1

shift

number 2

latency 1

branch

number 1

latency 1

mult

number 2

latency 5

div

number 2

latency 10

173

B.8 Floating Point Functional Units

The number of each of the integer functional units ALU, shift, branch, multiply and

divide and their respective latencies are specified as shown here.

Floating_Point_Units

add

number 4

latency 2

mult

number 4

latency 5

div

number 2

latency 10

address

number 4

latency 1

branch

number 1

latency 1

174

Appendix C

Cache Simulator Input Files

format

C.1 Trace File

The dinero format is a very simple and effective format to capture the memory

address trace. In dinero format every memory reference is characterized in a 3-tuple

written in a single line as shown below. The first field is an integer representing the

reference type, the second field specifies the memory address in hexadecimal format

and the third field specifies the clock cycle at which the processor generated this

reference. There are three types of memory references: memory read (0), memory

write (1) and instruction fetch (2).

#reference type memory address(in hexadecimal) clock-cycle

2 100 1

2 104 1

1 4af 5

1 4af 5

0 4ff 7

0 4f0 7

175

C.2 Cache Configuration File

The cache simulator will simulate the cache whose organization is specified in the

configuration file (cache.config). The format of cache.config is explained below.

C.2.1 Levels

The first parameter that has to be specified is the number of cache level to be

simulated. The first field in the file specifies this parameter.

C.2.2 Cache Specification of Each Level

Depending on the number of cache levels specified, the user has to specify the pa-

rameters for each levels of cache starting from the highest level of cache. Comments

can be inserted by placing a # symbol as the first character in the line.

For each level the first parameter is the type of cache, which can be either unified

(0) or split(1). This is followed by the number of blocks, block size in bytes, the

associativity, number of interleaved ports and number of duplicate ports. This is

followed by the write policy (write-back is specified by 0 and write-through by 1).

The last parameter is the miss penalty for this level of cache.

In case the cache is of split type, the instruction cache specification has to be

specified first. Since instruction cache blocks are read only, the write policy is not

specified. However, the miss penalty, which would be common for both instruction

and data cache, is specified at the end of data cache specification of that level.

A sample specification is given below. It specifies a 2 level cache. The second

level cache is a unified cache with 1024 blocks and has a block size of 64 bytes. It

is a 4-way set associative. It has a single port, employs write back policy and has a

miss penalty of 10 cycles.

The first level cache is a split type. The instruction cache has 256 blocks with

a block size of 64 bytes. It is a direct mapped cache (1-way associative) and has

a single port. The data cache has 256 blocks with a block size of 32 and is direct

mapped. It has 2 interleaved ports, 2 duplicate ports and employs a write-through

policy with a miss penalty of 4 cycles.

176

#Number of Cache levels

2

#Level 2 cache specification

#Type of cache Number of blocks Block size(bytes) Associativity

0 1024 64 4

#Number of Interleaved ports Duplicate Ports Write Policy

1 1 0 (write back)

#miss penalty for this level

10

#Level 1 cache specification

#Type of cache

1

#Instruction cache specification

#Number of Blocks Block size Associativity

256 64 1

#Number of Interleaved ports Duplicate Ports

1 1

#Data Cache specification

#Number of Blocks Block size Associativity

512 32 1

#Number of Interleaved ports Duplicate Ports Write Policy

2 2 1 (write through)

#miss penalty for this level

4

177

