
Processor Modeling for Hardware Software Codesign

V. Rajesh Rajat Moona
gvrajesh@hotmail.com moona@iitk.ernet.in

Cadence Research Center
Indian Institute of Technology Kanpur

Department of Computer Science and Engineering
Kanpur, India

Abstract

In hardware - software codesign paradigm often a per-
formance estimation of the system is needed for hardware
- software partitioning. The tremendous growth of applica-
tion specific embedded systems necessitate high level system
design tools for rapid prototyping. This work involves de-
sign of a languageSim-nML which will be the base for a
high level system design environment. The language is sim-
ple, elegant and powerful enough to express the behavior of
the processor at instruction level. This language is used as
the base for a whole set of tools such as assembler, disas-
sembler and simulator generator. As a part of this work, we
implemented an instruction set simulator generator which
takesSim-nML description of the processor as input and
producesC++ code for performance simulator. We envis-
age the use of the generated simulator for cycle based anal-
ysis of the processor and for performance estimation of the
system. This work is primarily an extension of nML[2] lan-
guage.

1. Introduction

With the complexity of the processors growing rapidly
and with increasing number of special purpose processors
being developed, system designers require modeling tools
with high level of abstraction for hardware - software par-
titioning. In addition, they want to simulate and analyze
the performance impact due to various hardware - software
codesign trade-offs. Toward this end, designers are using
languages such as C, VHDL and Verilog. The difficulty in
using these languages is that the level of abstraction pro-
vided by these languages doesn’t allow rapid prototyping.
Moreover, it is convenient to have one specification and use
it for various applications such as simulation, assembler and
disassembler generation and compiler back-end generation.

Today, there are a class of special purpose machine descrip-
tion languages which are developed keeping in mind a par-
ticular application. GCC’s .md format[7] is such a language
developed for the purpose of compiler back end generation.

nML[2] is an extensible formalism developed for speci-
fying the processor at higher level of abstraction. nML for-
malism models the instruction set architecture of a machine
but does not provide any control flow constructs. In this
paper, we have attempted to capture control flow and inter-
instruction dependencies by extending nML formalism. We
extended nML formalism by adding new pre-defined at-
tribute for specifying the control flow.

This paper is not intended to be complete reference for
Sim-nML, but it highlights the extension to nML. In Sec-
tion 2, we discuss the salient features of nML. Section 3
describes the resource usage model. Section 4 describes
Sim-nMLand focuses on the extensions to nML. Section 5
gives some example models. Section 6 discusses some of
the implementation issues of simulator generator. Some of
the related works are reported in [1], [3],[4], [5], [6].

2. nML

nML [2] is a formalism targeted for describing arbitrary
single processor computer architecture. nML works at in-
struction set level and hides the implementation details. In
nML, the instruction set is enumerated by anattribute gram-
mar 1 . The semantic action of any instruction is composed
of fragments that are distributed over the whole grammar
tree. i.e. the common behavior of a class of instructions is
captured at the top level of the tree and the specialized be-
havior of sub-classes are captured in the subsequent lower
levels.

1An attribute grammar is a context free grammar in which for each non-
terminal a fixed set of attributes and for each production a set of semantic
rule is given. In nML grammar, all non-terminals have to havederivations.
So, we don’t differentiate between productions and non-terminals.

2.1. nML Grammar

nML grammar has a fixed start symbol namelyinstruc-
tion and two kind of productions namely,or-rule which
looks like,

op n0 = n1 | n2 | n3 | ...

andand-rulewhich looks like,

op n0 (p1 : t1, p2 : t2, ...)
a1 = e1 a2 = e2 ...

where eachni is a non-terminal and eachti is a token.
Eachai is an attribute name andei their respective def-
inition. The pi are names of the parameters used in the
attribute definitions.

nML grammar pre-defines three attributes namelysyn-
tax, imageandaction. The syntaxattribute describes the
textual syntax of the instruction. Theimageattribute de-
scribes the binary coding of the instruction andaction at-
tribute describes the semantics of an instruction.

type addr = card (32)
type byte = card (8)
mem AC [1, byte]
mem PC [1, addr]
mem temp [1, byte]
op instruction(x:binaction, data:byte)
syntax = format("%s %d",x.syntax,data)
image=format("11%6b %8b",x.image,data)
action = {

PC = PC + 2;
tmp = data;
x.action;

}
op binaction = plus | multiply
op plus ()
syntax = "add"
image = "000000"
action = { AC = AC + tmp; }
op multiply ()
syntax = "mult"
image = "000001"
action = { AC = AC * tmp; }

Example 1 : nML Description of a Simple Processor

The nML grammar in Example 1 describes a simple ma-
chine with two instruction. The add instruction which adds
the data to the accumulatorACand the multiply instruction
which multiplies the data to the accumulatorAC. PChas a
special semantics and points to the next-to-be-executed in-
struction.

In most of the processors addressing modes and instruc-
tions are orthogonal to each other. Therefore, describing

an instruction with different addressing modes explode the
size of the description. So, nML separates addressing mode
descriptions. nML formalism helps to describe the proces-
sor concisely and precisely. However, nML lacks control
flow constructs and cannot depict the inter-instruction de-
pendencies. Therefore, it is not possible to use nML for
performance estimation.

3. Resource Usage Model

At the time of hardware - software partitioning, design-
ers like to study the performance impact due to their design
decision. This is an active phase and the design is changed
frequently. This necessitates a way to depict the design in
easy way and estimate the performance with the help of
simulation. We extend nML, by abstracting out the control
flow with the help ofresource usage model.

The resource usage model is based on the assumption
that at any instant, an instruction on execution, holds a set
of resources and does some action. The resources held by
the instruction and the action taken change progressively.

In resource usage model, a resource is an abstraction
of a piece of hardware such as registers, ALUs, functional
blocks, etc. for which instructions contend and control flow
is nothing but a way of resolving conflicts due to contention.
When two instructions are waiting simultaneously for a sin-
gle resource, the conflict will be resolved by FIFO order i.e.
the instruction that entered the pipe earlier will be allocated
with the resource. This simple model is powerful enough to
model pipelines.

For example, consider our simple processor described
in the Example 1. We model the processor with three
pipeline stages, viz.,fetch unit , execution unit
and retire unit . The primary extension made to in-
corporate resource usage model in nML is, the addition
of a new pre-defined attributeuses. The usesattribute
describes the resource usage model and the action of an
instruction. TheSim-nMLspecification of the processor
is given in Example 2. It specifies that all instructions
first use thefetch unit for one unit of time. The in-
structions then use theexecution unit for the dura-
tion dependent on the type of instruction and then the
retire unit for one unit of time. Theadd instruction
uses theexecution unit for one time unit whereas the
multiply instruction uses theexecution unit for three
time units. The tokenactionat the end ofusesspecifies that
after the specified resources are used for the specified dura-
tion, the function specified inactionattribute is performed.
The resourcesdeclaration is used to declare the functional
blocks such as thefetch unit , theexecution unit
and theretire unit . The description of actual func-
tionality of these resources is not in the scope ofSim-nML
formalism and is hidden.

resource fetch_unit,execution_unit,
retire_unit

reg AC [1, card(8)]
reg PC [1, card(32)]
reg temp [1, card (8)]
op plus ()
syntax = "add"
image = "000000"
action = { AC = AC + tmp; }
uses = execution_unit #1
op multiply ()
syntax = "mult"
image = "000001"
action = { AC = AC * tmp; }
uses = execution_unit #3
op binaction = plus | multiply
op instruction(x:binaction, data:card(8))
syntax = format("%s %d",x.syntax,data)
image=format("11%6b %8b",x.image,data)
action = { tmp = data; x.action; }
preact = { PC = PC + 2; }
uses = fetch_unit : preact,x.uses,

retire_unit #1 : action

Example 2 : Sim-nML Description of the Simple Processor

The unit of time can be thought-of as machine clock cy-
cle although it is not imposed by theSim-nML. But, sub-
unit timings are not allowed. In a nut-shell, if unit of time
is same as machine clock cycles then we can estimate the
number of clock cycles taken by a program to complete.

4. Sim-nML

4.1. Uses Attribute

In resource usage model, a set of resources are ac-
quired by an instruction and the resources are held till
the next set of resources are available. Therefore, a
specification of sequence of resources used by an in-
struction results in an abstract specification of the control
flow. For example,fetch unit, execution unit,
retire unit means that at firstfetch unit is ac-
quired if it is free and it is held till theexecution unit
becomes free. Whenexecution unit becomes free,
execution unit is acquired andfetch unit is
freed. The same procedure is repeated in acquiring
retire unit .

After the pipeline flush, when the first instruction
enters the pipeline, all the resources are immediately
available. Therefore, to control the flow of instruc-
tions, it is also necessary to specify the minimum
amount of time for which each resource is held. For

example, fetch unit #1, execution unit #1,
retire unit #1 means that at first thefetch unit
is acquired. Although,execution unit is available im-
mediately, the instruction waits infetch unit for one
time unit before acquiring theexecution unit . Then,
it holdsexecution unit for one time unit. In the sim-
ilar manner, before completion, it acquiresretire unit
and holds it for one time unit.

In some cases, it is not possible to specify the resource
hold times statically. The instruction has to wait till a
condition becomes true. For example, to model in-order-
retirement of instructions, an instruction before comple-
tion should wait till the completion of all the instructions
that precede it. These kind of models can be described
by the specification of conditional waits inusesattribute.
For example, execution unit , retire reg ==
present instruction id , retire unit means
that execution unit is acquired and held till the con-
dition retire reg == present instruction id
becomes true andretire unit is free. Then
retire unit is acquired andexecution unit is
freed.

Modern processors has multiple execution units to in-
crease the performance. Specification of these proces-
sor models, is facilitated by theor construct ofusesat-
tribute. For example,fetch unit , execution unit1
| execution unit2 , retire unit means that the
fetch unit is acquired at first and held till either
execution unit1 or execution unit2 becomes
free. Then the free execution unit is acquired. If both execu-
tion units are free, thenexecution unit1 is acquired.

In some cases, the resources used depends on a con-
dition. For example, time for memory access depends
on cache hit and cache miss. This can be speci-
fied by the if construct of uses attribute. For exam-
ple, fetch unit , memory unit , if cache miss
== 1 then #10 else #2 , retire unit means that
memory unit is held for atleast 10 units of time in case
of cache miss == 1 is true and atleast 2 units of time
in case ofcache miss == 1 is false.

The specification of the action that has to be carried
out at any instant can be specified by ’:’ operator. For
example, fetch unit : preact means that once
fetch unit is acquired, the action specified inpreact
attribute is executed.

4.2. Declarations� Resourcessuch asfetch unit , execution unit
can be declared withresource key word. For exam-
ple,

resource fetch_unit, execution_unit

� Exceptionsare useful to capture asynchronous behav-
iors such as branch error, interrupts etc. Exceptions
can be declared withexception keyword. For ex-
ample,

exception overflow, branch_error� Registersare same as any memory except that they are
assumed to be inside the processor. Moreover, a se-
quence of memory locations specified bymemdecla-
ration is considered to be one resource whereas a se-
quence of memory locations specified byreg decla-
ration are considered to be different resources. For ex-
ample,

reg R [32, card (64)]

in the above declaration R [1] is a different resource
than R [2] i.e. R [1] can be acquired and freed
independent of R [2].� Instruction Identifiertype is useful to uniquely identify
an active instruction. This is helpful to streamline the
retirement of instructions in a superscalar processor.
MAXINSTR COUNTconstant is related with this type.
This constant specifies the number of instructions that
can be present inside the processor at any instant. This
constant should be appropriately specified by the user.

4.3. Predefined Canonical Functions

Canonical functions[2] are those functions whose se-
mantics are known only to the entity that reads the de-
scription.In our instruction set simulator generator, other
than few pre-defined canonical functions, all other canon-
ical functions are mapped directly toC++ functions.

Handling exceptional conditions is complicated because
it is likely that the exceptions are handled differently at dif-
ferent machine states. Therefore, it is necessary to pro-
vide mechanism to change the handler at any instant. In
our model, we propose the following canonical functions
related to the exceptions.� sethandler - used to set a new handler for a partic-

ular exception� ignore - used to ignore a particular exception� raise - used to broadcast the occurance of an excep-
tion to all instructions in execution.� abort - used to abort an instruction on execution and
free the resources held by the instruction immediately.

In addition to the exception related canonical functions we
propose a canonical function to uniquely identify an instruc-
tion.

� instid - returns a key which uniquely identifies the
calling instruction. The return value is of instruction
identifier type.

5. Specification with Sim-nML

5.1. Specification of Memory Hierarchy

To avoid the severe bottleneck due to memory access and
to increase the performance, modern machines use hierar-
chical memory. The precision of handling memory hier-
archies depends on the specification. Below we model a
memory system with adata cache whose hit ratio is pre-
sumed to be 95%. The time for cache access is assumed to
be two units of time and for that ofmain memory is as-
sumed to be ten units of time.

mem data_cache [1024, word]
uses = #2
mem main_memory [2**16, word]
uses = #10
mode IND(R:Address_Register)=M[R]
uses = if "drand48"() < 0.95

then data_cache.uses
else main_memory.uses

syntax = format ("(A%3b)", R)
image = format ("#3b", R)

In the above example,"drand48" denotes that it is a
canonical function call. If we want more precise model in
which we actually check whether the data is present in the
cache. This we can do by writing aC++ function which
keeps track of the contents of the cache.

mode IND(R : Address_Register)=M[R]
uses = if "is_hit"(data_cache, R)

then data_cache.uses
else main_memory.uses

syntax = format ("(A%3b)", R)
image = format ("#3b", R)

The is hit function uses the address argument to im-
plement the cache replacement policy such as least recently
used or less frequently used etc. The above example shows
the ease with which the semantics of description can be in-
creased. The implementation details are discussed in next
section.

5.2. Specification of Branch Prediction

. The processor modeled below is a very simple pro-
cessor with only two instructions viz.plus instr and
branch instr . The processor contains an accumulator
and a zero flag registerZ, which is set only if the result

of computation is zero. TheSim-nMLcode, describes the
plus instruction which adds an immediate value to the accu-
mulator. In case of branch misprediction,branch error
exception is fired. At the time of the exception if an instruc-
tion from mispredicted path is atfetch unit , then the
instruction is aborted. If the instruction from mispredicted
path is down below the pipe at the time ofbranch error ,
then the instruction continues execution, but it does not
change any registers. This is done by setting the value of
reorder buffer associated with the plus instruction to
255.

const MAX_INSTR_COUNT = 8
resource fetch, execution1,

execution2, retire,
branch_unit, halt_unit

exception branch_error
type addr = card (32)
type byte = card (8)
type bit = card (1)
reg AC [1, byte]
reg PC [1, addr]
reg Z [1, bit]
mem speculated [1, bit]
mem oldpc [1, addr]
mem retire_reg [1, instid_type]
mem reorder_buffer[8 , byte]
op initial ()
action = { PC = 0; }
op plus_instr (data : byte)
syntax = format ("add %d", data)
image = format("11000000%24b",data)
action = {

AC = AC + data;
if AC == 0

then Z = 1; else Z = 0; endif;
}
uses = fetch #1,execution1 #1 |
execution2 #1,retire_reg=="instid"(),
retire & AC & Z & #1,
if reorder_buffer[retire_reg] != 255

then retire : action
op branch_instr (target : addr)
syntax=format("brnz %24b" , target)
image=format("01000000%24b",target)
preact = {

bran_inst_id = "instid"();
reorder_buffer[bran_inst_id] = 255;

}
action = {

if Z == 0
then PC = target; endif;

speculated = 0;
}

always_taken = {
oldpc = PC;
PC = target;
speculated = 1;

}
restore = { bran_inst_id = 88888; }
check_pred = {

if Z == 1 then
PC = oldpc;
"raise" (branch_error);

endif;
}
uses=if "is_blocked" (Z)

then fetch : always_taken & #1
else fetch : action & #1,
branch_unit : preact,

if speculated==1 then Z : check_pred,
retire_reg==bran_inst_id,
retire #1 : restore

op instr = branch_instr | plus_instr

op instruction (x : instr)
syntax = x.syntax
image = format ("%s", x.image)
action = { x.action; }
handler= {

if reorder_buffer["instid"()]==
bran_inst_id then

reorder_buffer ["instid"()] = 255;
endif;

}
preact = {

PC = PC + 4;
reorder_buffer["instid"()] =

bran_inst_id;
"sethandler"(branch_error,handler);

}
reorder ={ retire_reg=retire_reg+ 1; }
uses = fetch : preact , x.uses,

retire : reorder

Example 3 : A Processor Model with Branch Prediction

The above code describe the branch instruction. The pro-
cessor followsalways taken policy for branch predic-
tion. In case of speculation, the value ofZ is checked once
it is evaluated. If prediction is found to be wrong then a
branch error is signaled which is caught by all instruc-
tions. On catching thebranch error , the instructions
that follow branch instruction set their associated value in
reorder buffer to 255. Since this model allows only
one branch instruction at any instant, nested branch errors
are not taken care of.

6. Implementation of Simulator Generator

The implementation of complete simulation environ-
ment involves two phases. The first phase is the implemen-
tation of instruction set simulator generator forSim-nML.
The simulator generator outputs a number ofC++class tem-
plates which describe the processor at instruction level. A
part of code generated for Example 2 is shown below. The
second phase is the implementation of a generic simulator
library which is to be linked with the classes produced by
the simulator generator to give a complete performance sim-
ulator.

template < class T0 >
class instruction {
private:
image_type image;
T0 x;
byte data;
public:
string syntax () { ... }
string image () { ... }
void action ()

{ tmp = data; x.action (); }
void preact () { PC = PC + 2; }
void uses(resource_list& rlist){ ... }
instruction(image_type img=0,int s=0)

: image (img), x (img, s + 2)
{

...
data=extract_bits(image,8,16);

}
};

The sequence of resources required by an instruction is
maintained as a list of records. Each record in this list gives
the resources used by an instruction at a particular instant.
The states of the partially executed instructions are captured
by storing their present list pointers.

To correctly implement theSim-nMLsemantics that each
instruction holds a set of resources at any instant, the gener-
ated simulator acquires next set of resources before freeing
the old resources. Resource conflicts are resolved by first-
instruction-first-served policy. If different policy is to be
followed then the designer has to specify it by using con-
ditional waits. In Example 3, we depict different policy by
usingretire reg .

The simulator is implemented with the help of an event
manager which keeps track of the blocked events. When-
ever possible, the simulator reads next instruction from the
address pointed byPC. Then it creates an instruction ob-
ject of the class whose image best matches with the newly
read instruction image. The reading of next instruction is
stopped when the first resource request is not satisfiable.

7. Results

As part of this work, we developed performance mod-
els for two processors usingSim-nML. The first one is a
performance model of a hypothetical superscalar processor
employing branch prediction to reduce branch penalties. A
part ofSim-nMLspecification for this model is shown in Ex-
ample 3. The second one is a performance model of a DEC
Alpha 211064 processor. We have modeled only a partial
set of instructions. This set is sufficient to encode appli-
cations such as bubble sort. The performance simulator for
these models were generated and tested. The generated sim-
ulator runs at a speed of 3,000 instructions per second.

8. Conclusion

In this paper we have proposed an environment for hard-
ware software codesign based on a simple languageSim-
nML. We have shownSim-nMLto be powerful enough to
describe the complex issues such as branch prediction, hi-
erarchical memory etc. We have implemented a simulator
generator which takesSim-nMLdescription as input and
produces code for performance simulator. The work for
implementation of complete simulation environment is in
progress. We envisage the use of this language in various
other applications in hardware software codesign domain.

The simulator generator software package can be ob-
tained from authors.

References

[1] M. R. Barbacci. Instruction Set Processor Specifications
(ISPS) : The Notation and Its Application.IEEE Trans on
Computers, Vol. C-30(No.1), Jan 1981.

[2] M. Freerick. The nML Machine Description Formalism.
http://www.cs.tu-berlin.de/˜ mfx/dvi docs/nml2.dvi.gz.

[3] R. K. Gupta and S. Y. Liao. Using a Programming Language
for Digital System Design.IEEE Design & Test of Computers,
Apr-Jun 1997.

[4] A. Poursepanj. The PowerPC Performance Modeling
Methodology.Comm. ACM, pages 47–55, Jan 1994.

[5] M. Reilly and J. Edmondson. Performance Simulation of an
Alpha Microprocessor.IEEE Computer, 31(5):50–58, May
1998.

[6] M. Rosenblum and E. B. et al. Using the SimOS Machine
Simulator to Study Complex Computer Systems.ACM Trans
on Modeling and Computer Simulation, Vol. 7(No. 1), Jan
1997.

[7] R. M. Stallman.Using and Porting GNU CC.

