
Variable resizing for area improvement in behavioral synthesis

R. Gopalakrishnan
Mentor Graphics (India), Hyderabad

gopalakrishnan r@mentor.com

Dr. Rajat Moona∗

Deptt. of CSE, IIT Kanpur
moona@iitk.ac.in

Abstract

High level synthesis tools transform an algorithmic de-
scription to a register transfer language (RTL) description
of the hardware. The algorithm behavior is typically de-
scribed in languages like C, C++ or their variants. The
generated RTL is described in a hardware specification lan-
guage like VHDL or Verilog. The size of the variables spec-
ified in the algorithm has a significant impact on the area
of the generated hardware. The language accepted by the
High Level Synthesis tools typically allow the size or bit
width of a variable to be specified explicitly. This paper de-
scribes a method to automatically determine the minimum
bit width of the variables from a performance profile. This
would be effective to reduce the combinatorial and the non-
combinatorial area of the generated hardware.

1. Introduction

High Level Synthesis tools [1, 2, 3, 4, 5] take an algo-
rithm description as input and transform it to an RTL de-
scription. The algorithm behavior is typically described in
description languages similar to C, C++ or their variants.

These description languages enhance the basic C/C++
grammar and typically allow the bit size of variables to be
specified explicity. However often the algorithm develop-
ers do not use such constructs and use basic C constructions
with a very coarse data width specification.

During the high level synthesis, the C variables get trans-
lated to registers (or at best may be optimized as a set of
wires in some cases). This results in high area due to the
fact that not only the larger registers are used, the datap-
ath elements to process these variables also become larger
than what is optimally needed. Thus, the bit width of a vari-
able in the algorithm has an impact on the total area of the
generated hardware. In most designs, the area due to large
components such as multipliers, dividers and shifters can be

∗ Dr. Moona’s authorship of this article occured while on sabbatical
from IIT Kanpur and while consulting for Mentor Graphics Corpo-
ration

drastically reduced if appropriate bit-widths are used for the
variables.

This processs however tends to be a manual one. A
user must inspect the function and determine the bit width
for each variable. This therefore becomes an infeasible ap-
proach for large algorithms. This approach can become
fairly time consuming and cumbersome when the function
has considerable complexity.

Several techniques have been used to reduce the size of
the hardware in behavioral synthesis. Various compiler opti-
mizations such as dead-code removal, removal of common-
sub-expression, movement of loop invariant code etc. all re-
sult in reduced data path size (and faster speed of generated
hardware). Various scheduling techniques [6, 7, 8, 9, 10, 11]
result in a faster, smaller control circuit. Converting opera-
tions (like changing multiplication to shifts etc.) also results
in a reduced hardware of data path. Some static code analy-
sis techniques exist to find the sizes of variables that is pes-
simestic but guaranteed to be correct [12, 13, 14].

In this paper, we describe a method to use the perfor-
mance profile of the algorithm and to find out the size of the
C variables. We also describe a tool called asapra that im-
plements this technique. The rest of the paper is organized is
as follows. In the next section, we describe our technique.
We then describe the asapra tool in section 3 that imple-
ments this techique. We then describe our results for an ap-
plication in section 4.

2. Technique for determing variable size

In our approach, the original C function is first trans-
fomed into an equivalent C function, called the Register An-
alyzer (RA) model. The RA model is then compiled and
linked with a statically provided library, to create an exe-
cutable program. This program, when executed will get its
inputs from a performance profile and creates a report show-
ing the bit width of all variables. The performance profile
is created by running the original application and it con-
tains the execution and memory accesses and function call
traces.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

2.1. Register Analyzer Model

The RA model is a C program that represents the behav-
ior of the original software function. It is created by pars-
ing the original C code and converting it to new code. In
the new code, the read and write access to each variable is
transformed to call to C functions ‘get’ and ‘set’ respec-
tively. The ‘get’ and ‘set’ functions are implemented within
a library. The ‘set’ function keeps track of the maximum
and minimum values of a variable, and updates them, when
a variable is updated. The ‘get’ function returns the current
value of a variable. Similarly, the data reference using point-
ers is transformed into call to library functions ‘getmem’
and ‘setmem’ respectively. In the new code, function calls
are inlined and arithmetic operations are redefined. All vari-
ables are converted to a data structure. Information about
one variable, regardless of its type or scope, is stored in one
element of the data structure.

Each element of the data structure is represented as a C
type ‘integer info t’ and contains (a) Name of the variable,
(b) Filename and line number corresponding to the variable
declaration, (c) The current value associated with the vari-
able, (d) The maximum and minimum values assumed by
the variable so far (only 1 maximum and minimum value
is maintained for an array variable,since array element size
depends on values assumed by any one of the array ele-
ments), (e) The size of the variable (1 for scalar, array di-
mension for arrays), (f) The declared bit width for the vari-
able: For array variable, it is the bit width of the array el-
ement, (g) Flag to indicate if the current value is valid or
not. A value is valid, if the variable has been assigned at
least once and (h) Flag to indicate if the minimum and max-
imum values are valid.

The RA model creates 3 C functions. The first initial-
izes the static variables in the original C function. The sec-
ond one performs the computation done by the original C
function. The third is a software driver with the same signa-
ture as the original C function. The driver gets the input val-
ues for the parameters from the profile, performs the com-
putation and checks the results.

2.2. Performance Profile

The performance profile is created while executing the
original C application. It contains the execution/memory
and function call traces. It consists of a set of records, each
of which contains a “time” field indicating the time of oc-
curance of the event (examples: memory access or entry to
a function). The Function Entry record is created while
starting the execution of a function. It contains the func-
tion name, number of parameters and a unique function call
identifier. The Function Exit record is created while exit-
ing a function. It contains a unique invocation identifier and

the return value. The Function Parameter record is cre-
ated for each parameter of a function that is called. It con-
tains a unqiue invocation identifier, parameter name and the
parameter value. The Memory Record is created for each
memory access. It contains the address, data, size and at-
tributes (fetch, read, or write) of the access.

The performance profile is used to provide the input (or
stimulus) to the Register Analyzer Model. The Function pa-
rameter record contains the value to be provided as stimulus
for a scalar parameter. It contains the address of the first ar-
ray element, and it is used to compute the addres of each
array element. The value of the array element is found by
searching the Memory records, for the specified function in-
vocation. The first memory record for the array element ac-
cess after the function entry time will be its stimulus.

The performance profile is used to verify the response
from the RA model. The expected return value of a func-
tion is determined from the Function Exit record. The ele-
ments of an array can be modified within the function. The
expected value of an array element can be determined by
searching the memory record, for a particular function in-
vocation. It will be the last memory record for the array el-
ement access prior to function exit time. The expected val-
ues will be compared with the actual values for the verifica-
tion.

2.3. Library functions

The library consists of the following functions:

typedef long long intlimit_t;
intlimit_t get(integer_info_t *p,

int index)
void set(integer_info_t *p,

int index,intlimit_t value)
intlimit_t getmem(int address,

int size)
void setmem(int address, int size,

intlimit_t value)
int fentry(char *function_name)
out_scalar(integer_info_t *p,

char *name)
out_array_scalar(integer_info_t *p,

char *name, int size)
in_ret(integer_info_t *p, char *name)
in_array_scalar(integer_info_t *p,

char *name, int size)

The ‘get’ function returns the current value for the vari-
able represented by the array element ‘p’. The ‘index’ rep-
resents the array index for array variables and is 0 for
scalars. The ‘set’ function sets the current value for the
variable represented by the array element ‘p’ to ‘value’.
The ‘index’ represents the array index for array variables,

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Figure 1. ASAPRA flow

Software
Function

Report
Bit

Create and
run new

Performance

Profile

ASAP
Hardware
Compiler C program

Width

RA ModelASAP C Library

program

and is 0 for scalars. The ‘getmem’ and ‘setmem’ func-
tions are used to perform the pointer dereference opera-
tions. The ‘fentry’ function reads the performance profile
and finds the next invocation of the function specified in
‘function name.’ The ‘out scalar’ function will determine
the stimulus for a scalar function parameter ‘name’ from
the performance profile, and update the value in ‘p’. The
‘out array scalar’ function will determine the stimulus for
an array function parameter ‘name’ from the performance
profile, and update the value in ‘p’. ‘size’ is the array dimen-
sion. The ‘in ret’ function will check the return value in the
performance profile with that in the variable represented by
‘p’. The ‘in ret array scalar’ function will check the value
in the array parameter ‘name’ in the performance profile
with the value of the variable in ‘p’. ‘size’ is the array di-
mension.

3. ASAPRA Tool

The ASAPRA tool creates a report containing the vari-
able name, maximum and minimum values, bits used by the
variable and number of bits in the declared type of the vari-
able. This information is reported for all variables in the
original software function.

The asapra tool flow is shown in Fig. 1.
Steps performed by the executable program created by

ASAPRA: (a) It calls a C function (part of RA model) to ini-
tialize the static and global variables in the original C func-
tion. (b) It calls a library function ”fentry”, to search the per-
formance profile for an invocation of the specified function.
If an invocation is found, it calls the software driver func-
tion to execute the RA model. This step is repeated as long
as ‘fentry’ finds a new invocation. (c) It calls a library func-
tion to print the report containing the bit width for all vari-
ables, computed across all function invocations. The AS-
APRA program runs the new code created for the C func-
tion on a host processor. The original performance profile
is collected by running the entire application on the tar-
get system. The execution of the new code will be slower,
due to the overhead of maintaining the maximum, and min-

imum values. Since ASAPRA is running the new code for
the specified function only, and does not run the entire ap-
plication, the performance degradation will not be signifi-
cant.

4. Result of using ASAPRA

This describes the results of using ASAPRA for a scan-
ner application. In the application, an image is scanned and
each pixel is converted to its RGB components, each of
which take a value between 0 and 255. The scanner op-
tics quality is not very good, and hence it is compensated
with a software function to correct the color of each pixel,
based on a reference black and white pixel. The applica-
tion is written in C, and it is compiled for the ARM926
[15] platform. The application is executed using the Seam-
less Co-verification Environment [16], and the performance
profile is collected during the execution. The C code for the
function fix pixel is shown, which corrects the color for one
pixel.

unsigned fix_pixel(unsigned pixel,
unsigned black, unsigned white)

{
int red, green, blue;
int r_min, r_max, g_min;
int g_max, b_min, b_max;
r_min = black >> 16 & 0xFF;
r_max = white >> 16 & 0xFF;
g_min = black >> 8 & 0xFF;
g_max = white >> 8 & 0xFF;
b_min = black >> 0 & 0xFF;
b_max = white >> 0 & 0xFF;
red = (pixel >> 16) & 0xFF;
green = (pixel >> 8) & 0xFF;
blue = pixel & 0xFF;

red = (red - r_min)*(256 * 255 /
(r_max - r_min));

green = (green - g_min)*(256 * 255 /
(g_max - g_min));

blue = (blue - b_min)*(256 * 255 /
(b_max - b_min));

red = red >> 8; green = green >> 8;
blue = blue >> 8;
return ((red << 16) + (green << 8)

+ blue);
}

The report generated by ASAPRA is shown in Table 1
The report shows that only 16-bits are used by the vari-
ables, ‘green’, ‘blue’ and ‘red’. Similarly there are some
variables that use only 8-bits (‘r min’, ‘r max’, ‘b min’,
‘b max’, ‘g min’ and ‘g max’).

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

Table 1. ASAPRA report for fix pixel

Variable Max Min BU BD
pixel 11206570 11206570 32* 32
black 21760 21760 16* 32
white 11206570 11206570 32* 32
green 65280 255 16 32
blue 65280 170 16 32
red 65280 170 16 32
r min 0 0 1 32
r max 170 170 8 32
g min 85 85 7 32
g max 255 255 8 32
b min 0 0 1 32
b max 170 170 8 32

Legend:
BU: Bits Used BD: Bits Declared
*Parameters can be 8/16/32 only.

Table 2. Area report for original fix pixel

Area Type Original Function
Combinatorial 125156.000
Non-combinatorial 3500.000
Cell Area 128656.000

The function was modified, by changing the types of (a)
variables ‘red’, ‘green’ and ‘blue’ to a width of 16 bits and
(b) variables ‘r min’, ‘r max’, ‘g min’, ‘g max’, ‘b min’
and ‘b max’ to a width of 8 bits.

Area Comparison The original and modified C func-
tion, fix pixel are synthesized to an RTL description in
VHDL. The generated RTL interfaced with the ARM926
processor using AMBA AHB interface. A software driver
program wrote the parameters and read the return value
from the RTL block. The RTL is input to the Synopsys
Design Compiler, and the area reports for the original and
modified fix pixel function are shown in Table 2 and Ta-
ble 3.

The results indicate the savings in the combinatorial area
are substantial. This is mainly because the size of the mul-
tipliers and dividers are much smaller. The savings in the
register area are also reasonable (about 30%).

5. Conclusion

ASAPRA provides a systematic method of optimizing
the size of the variables in a C function, by reporting the bit
widths of all variables, based on a performance profile. Its
approach for variable sizing is data centric and the results

Table 3. Area report for modified fix pixel

Area Type Modified Function
Combinatorial 20767.000
Non-combinatorial 2387.000
Cell Area 23154.000

are as good as the performance profile. Hence, it does not
modify the variable size automatically since the size is pri-
marily dependent on the algorithm. It brings greater aware-
ness on the importance of specifying bit width precisely.

References

[1] Mentor Graphics Corp, Wilsonville, USA, “Catapult C Synthesis”
http://www.mentor.com/c-design/catapult.html/.

[2] Ian Page, “Constructing Hardware-Software Systems from a Single
Description”, Journal of VLSI Signal Processing, 12(1), pp. 87-107,
1996.

[3] Kambe, T.; Yamada, A.; Nishida, K.; Okada, K.; Ohnishi, M.; Kay, A.;
Boca, P.; Zammit, V.; Nomura, T.; “A C-based synthesis system, Bach,
and its application”, Design Automation Conference, 2001. Proceed-
ings of the ASP-DAC 2001. Asia and South Pacific , 30 Jan.-2 Feb.
2001, Pages:151 - 155

[4] Rainer Domer, Daniel D. Gajski, Andreas Gerstlauer, Junyu Peng,
“System Design: A Practical Guide With Spec C” Kluwer Academic
Publisher, 2001

[5] John P. Elliot, “Understanding Behavioral Synthesis: A practical
guide for high level design”, Kluwer Academic Publisher, 1999

[6] Pierre G. Paulin and John P. Knight, “Algorithms for High-Level Syn-
thesis,” IEEE Design and Test of Computers, Dec. 1989, pp. 18-31.

[7] J. Lee, Y. Hsu, and Y. Lin, “A new Integer Linear Programming For-
mulation for the Scheduling Problem in Data-Path Synthesis,” Proc.
of the Int. conf. on Computer-Aided Design, pp. 20-23, 1989.

[8] R. Camposano, “Path-Based Scheduling for Synthesis,” IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, vol.
10, no. 1, pp. 85-93, Jan 1991.

[9] T. Kim, N. Yonezawa, J. Liu, C. Liu, “A Scheduling Algorithm for
Conditional Resource Sharing - A Hierarchical Reduction Approach”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol 13, No. 4, April 1994.

[10] Lakshminarayana, G., Khouri K., Jha N., “Wavesched: A Novel
Scheduling Technique for Control-Flow Intensive Designs”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 18, No. 5, May 1999

[11] Bergamaschi R., Raje S., Trevillyan L., “Control-Flow Versus Data-
Flow-Based Scheduling: Combining Both Approaches in an Adaptive
Scheduling System”, IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, Vol. 5, No. 1, 1997

[12] M. Stephenson, J. Babb and S. Amarasinghe. Bitwidth Analysis with
Application to Silicon Compilation. In Proceedings of the SIGPLAN
conference on Programming Language Design and Impl ementation,
Vancouver, British Columbia, June 2000.

[13] M. Stephenson. Bitwise: Optimizing Bitwidths Using Data-Range
Propagation. Master’s thesis. Massachusetts Institute of Technology.
May 2000.

[14] Mihai Budiu, Seth Copen Goldstein, Kip Walker, Majd Sakr. Bit-
Value Inference: Detecting and Exploiting Narrow Bitwidth Compu-
tations. In Proceedings of Euro-Par 2000 Munich, Germany Septem-
ber 2000.

[15] ARM9E Family: “ARM926EJ-S”,
http:www.arm.com/products/CPUs/ARM926EJS.html.

[16] Mentor Graphics Corp, Wilsonville, USA, “Seamless Hardware Soft-
ware Co-verification” http://www.mentor.com/seamless/.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

