
A Software Environment for General Purpose
MIMD Multiprocessors

H/W specific
\ -

Rajat Moona
and

V. Rajarainan

Supercomputer Education and Research Centre
Indian Institute of Science

Bangalore India.

H/W independenl
/

Abstract: I n this paper, we describe a software environment
for general purpose MIMD machines based on packet switched
message passing paradigms. The environment provides system
calls for communication between various processing elements in
the machine and system calls to get the configuration of the sys-
tem. It assumes the presence of a Host processor through which
facilities are provided for forking remote processes on various pro-
cessing elements. The Host processor has all peripherals of the
system and acts as an I /O processor of the system. During nor-
mal course of execution, it forks processes, collects results f rom
various processing elements, sequences them. and then produces
output of the program.

1 Introduct ion

A multiple instruction multiple data (MIMD) multiprocessor
classification is given to the parallel computing machines which
have multiple instruction streams over a set of interactive pro-
cessing elements with shared resources. These multiple instruc-
tion streams operate on multiple data streams which are rela-
tively independent of each other. Processing elements in a MIMD
multiprocessor system operate asynchronously with separate con-
trollers thus providing a flexible means of programming for gen-
eral purpose applications. Various MIMD architectrure have been
reported in the litrature. Most popular of these architectures are
hypercube, mesh connected, ring connectgd, shared memory mul-
tiprocessors, processing elements connected in a circuit switched
network.

Programming such a multiprocessor machine can be done in
one of the two ways. In one case, a programmmer specifies his
program in a programming language and the compiler running
on parallel machine compiles this program, and create the task
graph which can be loaded on various processing elements. Such a
scheme requires enormous intelligence at the compiler as it has to
identify parallelism in the program. Example of such approaches
are the vectorizing compilers for languages available on today’s su-
percomputers. In this catagory are also emerging new languages
which are more natural for concurrent computing. Functional pro-
gramming languages, data flow languages and logic programming
languages are examples of these languages. However, majority of
scientific applications lead to inefficient programming with such
languages.

The other approach which has been widely adopted for the
MIMD architecture is the one in which a programmer specifies
parallelism in the program using constructs provided by a soft-
ware environment. Such an approach is adopted in the CrOS 111
environment designed for a hyprecube [l].

A program for a multiprocessor system can be viewed as a col-
lection of cooperative tasks which can be executed in parallel.
These tasks communicate using the communication instructions

impleincnted through the usage of shared resources. Such mul-
titasking environments are available in UNIX operating system
[2,3], Linda software environment [4] etc. We assume that one
task is executed by only one processing element in the multipro-
cessor. A software environment can hide the underlying hardware
and use this structure model for parallel computing.

In this paper, we describe a general purpose software environ-
ment (Figure 1) suitable for MIMD multiprocessor architectures.
We assume a message passing paradigm between the processing
elements and existence of local memory with each processing el-
ement. We also assume the model in which at one time only one
task is executed by one processing element. A task can be ex-

User Interface

Figure 1: Structure of a complete Software Environment

ecuted in parallel and asynchronously with other tasks. A host
processor or an 1 / 0 processor is used for interaction with the pro-
grammer. The host loads the tasks into the memories of various
processing elements. The host also provides inputs to the tasks,
collects results, sequences and produces results at the output. We
assume that a reliable method of communication is available be-
tween the processing elements. If communication is not reliable
a t the hardware level, a software layer can be built over the hard-
ware which can make the communication reliable with message
retransmissions in case of unreliable communications.

6.2.1

98 CH2766 - 4/89/0000 - 0098 0 1989 IEEE

Certain algorithms are specific to the architecture and work
eficiently if coded with the hardware dependencies. In section
2, we will describe the system parameters which are specific to
the architecture. We will also discuss how to model hardware
dependencies in the software environment. In section 3, we will
describe the part of the software environment which is specific to
the hardware. In section 4, we describe ways to create and termi-
nate tasks, and methods to achieve inter-task communication. In
section 5, we present a sample program for numerical integration,
written in C using this software environment. Section 6 concludes
the papcr.

2 Hardware Dependencies

Multiprocessor systems have a particular node connectivity
which is suitable for a class of applications e.g. a point to
point mesh connected multiprocessor may be suitable for prob-
lems where communication is restricted to only the nearest neigh-
bours. Such an information is coded in the software environment
using certain variables. There are subroutines available for the
programmers wliicli can be called with hardware specific infor-
mation such as connectivity of the processing elements.

Any MIMD architecture can be parameterized using certain
parameters specific to the architecture. A tree structure, for ex-
ample, can be parameterized by depth and arity parameters. A
hypercube structure is parametrized by its dimension and a mesh
connected processor is parameterized by its dimension and num-
ber of processing elements in each dimension. In our software en-
vironement we have an array of system parameters call ParamArr.
It codes all the hardware specific information of the architecture.

Other hardware specific information is coded in a parameter
called mask. It codes the connectivity information of a processing
element. This parameter may be obtained by a call to the software
environment which .takes the addresses of the processing elements
aa an input and returns the mask.

Using these hardware specific information, a programmer may
program a multiprocessor machine independent of its configura-
tion. We will now be describing the part of the software envion-
ment which returns the system parameters.

We will be describing the subroutines available in the software
environment from the C interface. Software environment does not
however, impose any restriction on the programming languages.

3 System Parameters

Subroutines in this section describe the interface for getting
system parameters and address of a processing element.
3.1 sysparam Subrout ine

ParamArr. Structure of the subrout;ne is as follows.
sysparam routine returns the system parameters in an array

void sysparam(ParamArr);
int *ParamArr;

3.2 w d e i d Subrout ine
nodeid routine returns the address of the processing element

on which this subroutine is called. Syntax of nodeid subroutine
is given below.

int nodeid();

3.3 ptslask Subrout ine
Subroutine getslask takes a list of processing elements’ ad-

dresses aa input and returns an integer mask specific to the archi-
tecture. This integer is used by process creation and communica-
tion calls. Syntax of routine getslask is given below.

int get-mask(n,list);
int 11, *list;

Having described these subroutines, we will now describe pro-
cess creation, termination and the interprocess communication.

4 Process Management

In any AlIMD system, there are two type of communications
(1) data communication and (2) program communication. In the
first type of communication, data is passed from the source pro-
cessing elenient to the destination processing element and in the
second type of communication, a program or a task is sent to the
destination processing element by a source processing element or
a host processor. Here again we have two models of execution of a
program. In one case, there are multiple programs running on the
multiple processing elements. In the other case a single program,
but its different copies, run on multiple processing elements. In
both cases, a program is sent to the destination processing ele-
ments by a host processor.

In the process creation part, we have the following subroutines.
4.1 fork Subrout ine

fork call is used to create processes on multiple processing ele-
ments. Model of execution in this case is “single program multiple
data”. Each newly created process has‘ same code as of the old
process. After new processes are created, execution of all pro-
cesses proceeds concurrently from the same program location as
in the source process. Syntax for this call is as follows.

int fork(mask) ;
int mask;

Mask is hardware dependent parameter which is used for estab-
lishing communication as described earlier. This call may also be
used for creating more than one process at a time.

4.2 sendp Subrout ine
This subroutine is used for other mode of communication where

a remote task is totally independent of the source task. It is
a [‘multiple program multiple data” mode of process creation.
Syntax for this call is as follows.

void sendp(addr, prog, goaddr, loadaddr, len);
in t addr;
char *prog, *goaddr, doadaddr;
in t len

A program is first loaded in the memory of the host processor at
the address prog. It is then sent to the processing element whose
address is given by addr. This processing element stores the task
in its memory at the address loadaddr and starts execution from
the address goaddr. Size of the task is given by len.

A task can be made “load only” type by making its goaddr=-1.
This feature is required for certain applications like inital load-
ing of the operating system. A task may be made completely
relocatable if its loadaddr is specified as -1

4.3 nbroadD Subrout ine
This subroutine is used for creating multiple jobs each having

the same program which need not be the same as the program in
source processing element. Syntax for this call is as follows.

void gbroadp(prog, goaddr, loadaddr, len);
char *prog, *goaddr, *loadaddr;
in t len;

This subroutine creates as many tasks as there are processing
elements in the system, with the parameters specified.

6.2.2
99

4.4 terminate Subrout ine
A process may call procedure terminate which terminates the

calling process. Syntax of this routine is given below.

void terminate()

We now describe the inter-task communication routines which
implement data communication among the processing elements
in the MIMD architecture.
4.5 bread a n d ubread Subrout ines

bread and ubread routines are used for reading a message from
the processing element specified by one of its parameters. Syntax
of these subroutines are given below.

void bread(mask, var, sizevar);
int mask; char war;
int sizevar;
int ubread(mask, var, sizevar);
int mask; char war;
int sizevar;

These procedures read s izevar amount of data bytes from the
processing element specified in variable mask in memory location
whose address is given by variable var.

bread subroutine reads data in blocked mode of communica-
tion. Calling process is suspended till all requested data bytes
are received. ubread subroutine reads data in unblocked mode of
communication. If data bytes are not available then the control is
returned back to the calling process with return value indicating
the number of bytes that could not be read.
4.6 bwrite and ubwrite Subrout ines

These subroutines are complementary to bread and bwrite.
The syntax of these routines is the same as described earlier.
These routines also allow a multicast of data messages in which
one processing element can send data to more than one processing
element. This information is coded in the variable mask.
4.7 sendd Subrout ine

Subroutine sendd is used to send data message to a processing
element whose address is specified in variable addr. Syntax of
this call is as follows.

void sendd(addr, var, sizevar);
int addr;
char war;
int sizevar;

s izevar amount of data bytes from the memory location whose
address is given by variable var are sent to the processing element
whose address is given by addr.
4.8 gbroadd Subrout ine

Subroutine gbroadd is used to send data messages to all pro-
cessing elements in the system. Syntax of this routine is as follows.

void gbroadd(var, sizevar);
char *var;
int sizevar;

Using a set of the above routines, we will now be describing an
application which performs the numerical integration of a function
of one independent variable on an array of processing elements.
We will be using a hardware dependent parameter p which gives
the number of processing elements in the system.

5 Numerical Integration

For this problem, each processing element in the system in-
tegrates the function over a specific subrange of the integration

f l PE0 PE1 PE2 PE3

3
Figure 2: Partitioning of integration range for a function f

interval and sends results back to the host processor whose ad-
dress is 0. Host processor receives integrated values from all other
processing elements and adds them.
5.1 Mapping of t h e problem

If the function f is to be integrated over the range (U , uf) , then
this range is divided into p equal subranges. As there are p pro-
cessing elements in the system, each processing element gets one
such subrange for integration. The subrange (p i , p i) for a process-
ing element with nodeid=i can be found by the following formula.

U' - U

P
pi = pi + -.

One such partitioning for an arbitrary.chosen function f is
shown in Figure 2 with reference to a 4 processing element ma-
chine.

We now describe the algorithms used for this problem.
5.2 Algori thm and Implementat ion

to run in parallel.
We now give the C code for implementing the above algorithm

#include <math.h>
#include <stdio.h>
#include <comm.h>
#define STEPS 60

int peid, p, x
float min, max; / * p, pf * /
float gmax, gmin; / * d, U * /
float -1ocalrange; / * p' - p * /

main() {
int i, mask, k;
float integloc, readint;

initbufo;
mask = (1 << (p - 1)) - 1;
fork(mask);
peid = nodeid();
maxmin(peid) ;
integloc = integ(STEPS);
if (peid != 0)

else {
sendd(0, Stintegloc, sizeof(integ1oc));

for (k=O; k< p - 1; k++) {
bread(1 << k, Streadint, sizeof(readint));
integloc + = readint ;

I
printf("integrd=%f 'I ,integloc);

6.2.3
100

1
terminate();

1
void max-min(peid)
iiit peid;

min=gmin + peid * localrange;
max=min + localrange;

t

1
float integ(NUMSTEPS)
iiit NUMSTEPS;

int i;
float total, halfstep, step;

{

step=(max-min)/(float)NUMSTEPS;
halfstep=0.5*step;
for(i=O, total=0.0; i<=NUMSTEPS-1; i++) {

total + = step*func(min+halfstep);
min += step;

1
returii(tota1);

1
float func(x)
float x;

re turn(exp(-x));
1

1

void initbuf()

sgqiarain(s t p) ;
priiitf(”Lower and Upper range : ”);

{

(65) scaiif(”%f % f ’ l , &gmin, stgmax);
(66) localrange=(gmax-gmin)/(float)p;
(67) 1

6 Coiiclusioii

In this paper, we described a general purpose software envi-
ronment for a MIMD multiprocessor. This environment has been
implemented on a broadcast cube architecture implemented at
Indian Institute of Science Bangalore. The environment allows a
programmer to exploit all features of the architecture but keeps
its interface same across the architectures. A programmer may
have to modify his program in terms of partitioning of the task
but can use the same set of routines.

Ackiiowledgeiiieiits : Authors would like to thank Mr. S. I<.
Nandy for his suggestions in improving the paper style, and cor-
recting the manuscript.

References

[11 Fox G. C., et. al. “Solving Problems on Concurrent Prbces-
sors” vol. 1, Prentice Hall, New Jersey, 1988.

[2] Rebecca Thomas, et. al. “Advanced Programmer’s guide to
UNIX system V”, McGraw Hill, 1987.

[3] Maurice J. Bach, “The design of the UNIX operating cystem”,
Prentice Hall, New Jersey, 19SS.

[4] Ahujn S., ct. al. “Matching Language and Hardware for Par-
allel Computation in the Linda Machine”, IEZE Trans. Com-
puters, vol 37, no. 8, Aug 19SS, pp. 921-929.

6.2.4
101

