
TransCrypt: A Secure and Transparent
Encrypting File System for Enterprises

Satyam Sharma, Rajat Moona and Dheeraj Sanghi
Department of Computer Science and Engineering

Indian Institute of Technology Kanpur
{ssatyam, moona, dheeraj}@cse.iitk.ac.in

Abstract— Increasing thefts of sensitive data owned by individ-
uals and organizations call for an integrated solution to the prob-
lem of storage security. Most existing systems are designed for
personal use and do not address the unique demands of enterprise
environments. An enterprise-class encrypting file system must
take a cohesive approach towards solving the issues associated
with data security in organizations, such as flexibility for multi-
user scenarios, transparent remote access of shared file systems
and defense against an array of threats including insider attacks
while trusting the fewest number of entities. In this paper, we
formalize a general threat model for storage security and discuss
how existing systems tackle a narrow threat model and are thus
susceptible to attacks. We present the conceptualization, design
and implementation of TransCrypt, a kernel-space encrypting file
system that incorporates an advanced key management scheme
to provide a high grade of security while remaining transparent
and easily usable. It examines difficult problems that are not
considered by any existing system such as avoiding trusting
the superuser account or privileged user-space processes and
proposes novel solutions for them. These enhancements enable
TransCrypt to protect against a wider threat model and address
several lacunae in existing systems.

I. INTRODUCTION

The need for data security emerges from the widespread
deployment of shared file systems, greater mobility of com-
puters and the rapid miniaturization of storage devices. It is
increasingly obvious that the value of data is much more than
the value of the underlying devices. The theft of a laptop
or a USB thumbdrive leaves the victim vulnerable to the
risk of identify theft in addition to the loss of personal and
financial data. Several recent incidents accentuate the need
for a cohesive solution to the problem of storage security
that protects data using strong cryptographic methods in both
personal and organizational scenarios.

An encrypting file system employs secure and efficient
mechanisms to encrypt or decrypt data on-the-fly as it is being
written to or read from the underlying disk, to provide a level
of data privacy that goes beyond simple access control. Issues
such as trust models, backups and data recovery must also be
resolved. Other challenges faced when designing a storage se-
curity framework include immunity from attacks launched by
privileged entities, enabling legitimate remote access to shared
encrypted volumes and providing a scalable and transparent
key management scheme suitable for enterprise deployment.

In this paper, we describe the conceptualization, design
and implementation of TransCrypt, an encrypting file system

for Linux that takes a holistic approach towards solving the
aforementioned issues. TransCrypt makes a crucial distinction
between the kernel and user-space from a security perspective.
It incorporates an advanced key management scheme that
excludes the administrator account and user-space processes
with superuser privileges from the trust model. This enables
TransCrypt to assume a wider threat model than that tackled
by existing systems making it immune to several attacks that
may be launched from the inside. It also provides fine-grained
access control and supports the use of hardware authentication
tokens. Mechanisms for data recovery and secure remote
sharing are also included to make TransCrypt truly enterprise-
ready. Encouragingly, initial performance evaluations indicate
that these security and usability benefits can be availed with
small and tolerable run-time overheads.

The next section discusses a representative cross-section of
the popular encrypting file systems in use today. Section III
formalizes a generic attack model on file system security
and describes the salient features of our solution. In Sec-
tion IV, the cryptographic design and key management scheme
are presented in an operating system agnostic fashion. The
architecture, configuration parameters, software components,
implementation and working of TransCrypt are explained in
Section V. Section VI provides an informal performance
analysis and compares the features of TransCrypt against
related work, clearly bringing out the differentiating aspects.
Finally, concluding remarks are presented in Section VII.

II. RELATED WORK

The Cryptographic File System [1] was the first encrypting
file system for Unix. It is implemented as a user-space NFS
server to introduce a cryptographic layer between the virtual
file system and the disk, employing a double-mount technique.
This design leads to data copy and context switch overheads.
Also, it uses a common passphrase-derived mount-wide key
and a basic key management scheme that provides coarse
granularity of access control. Several other solutions such as
EncFS [2] use a similar design approach.

Microsoft Windows includes a native Encrypting File Sys-
tem [3] tightly integrated with NTFS. It uses per-file en-
cryption keys and per-user public and private keypairs, thus
enabling fine-grained access control. Although bulk encryption
is done in kernel-space, key management tasks are delegated
to a user-space service. This hybrid design makes it vulnerable



to user-space attacks and the superuser account must thus be
a trusted entity. Also, it makes no provision for file integrity.
Apple FileVault [4], the native file encryption mechanism in
Mac OS, creates and maintains encrypted sparse images to
store home directory contents and provides virtual memory
encryption. However, it fails to provide any file sharing or
integrity and cannot be used outside the users’ home directory.

The most popular encrypting file system for Linux that
is part of the standard kernel is dm-crypt [5]. It uses the
kernel’s device mapper infrastructure to implement a cryp-
tographic layer using functions provided by the native kernel
CryptoAPI [6]. However, it lacks flexibility due to the use of
a common mount-wide key and tackles a narrow threat model.

eCryptfs [7] is the first attempt at designing an enterprise-
class cryptographic file system for Linux. It uses per-file keys
and user-specific keys to enable fine-grained sharing. A PGP-
inspired file header format stores the cryptographic metadata
associated with each file. The kernel implementation uses
stackable vnodes to introduce a layer of encryption that can
fit over any underlying file system, similar to Cryptfs [8].
eCryptfs is the only existing work with specifications similar to
those of TransCrypt, though vastly different in design. Its hy-
brid design employing a user-space key management daemon
exposes the system to user-space attacks and fails to exclude
the superuser account from the trust model. Also, including
metadata in file contents as a header reduces transparency for
end-use and requires separate tools for managing file sharing.

TransCrypt trusts fewer entities, protects against a wider
threat model, provides fine-grained file sharing and integrity
protection, and utilizes a kernel-space approach for greater
security and better performance. The additional demands of
enterprise environments such as secure remote sharing, data
recovery and immunity from attacks launched from the inside
are also met.

III. THE TRANSCRYPT APPROACH

We now present a generic threat model for file systems
and a formal categorizaton of various attacks. A consistent
understanding of the kind of attacks that must be prevented and
those that are beyond the threat model has been the deciding
factor in the design of our key management scheme.

A. Threat Model

Threat models for network security assume that any message
sent over the communication channel can be intercepted, read,
deleted or modified by an attacker at will. Similarly, Trans-
Crypt’s storage security threat model assumes the attacker to
be capable of reading, deleting or modifying any data on the
disk at any point of time. This assumption significantly widens
our threat model to include attacks that are not addressed by
any related work, such as those discussed below. Essentially,
an attack on stored data is an unauthorized attempt to access it.
Attacks may thus be classified into offline and online attacks
based on the mode of access.

1) Offline attacks: In the most common offline attack, an
attacker gets physical access to the storage device and connects
it to another system to circumvent the access control on the
victim’s file system and read the plaintext data. Encrypting file
systems generally deal with this attack by encrypting the disk
contents with a key that may be randomly generated or derived
from a passphrase. Systems that provide for user-specific keys
encrypt copies of the file encryption key itself with the keys
of various users who can access that file.

We also believe that file keys must only be known to the
kernel of the operating system. Such a view is necessary for
sharing files securely among multiple users. This prevents an
attack in which a user whose access to a file has been revoked
continues to use the old key to read it. Changing the file key
and re-encrypting the entire file with the new key at every
revocation may not be acceptable from a performance point
of view. Systems that provide for user-specific keys encrypt
copies of the file key itself with the keys of various users who
can access that file. These encrypted per-user tokens are then
stored along with the file. However, such systems are easily
broken in our wide threat model that assumes any data or
metadata can be read and modified on the disk at any instant.
For example, a malicious user can read his token, decrypt it
using his private key and store the file key for future use. He
may even share it with other unauthorized users, thus granting
them access to the file illegally. This attack is easy to execute
but not addressed by any existing system. We call it the key
leak attack and propose a solution to it.

2) Online attacks: Online attacks exploit the fact that
sensitive data or encryption keys may be present in the system
memory in plaintext when an encrypted volume is mounted.
Although superuser privileges may be required for launching
such attacks, we choose not to trust the administrator account.

• A general key scavenging attack attempts to intelligently
run through the system memory (the kernel’s address
space in case of kernel-based encrypting file systems)
trying to locate and read encryption keys.

• Any system that requires the communication of key ma-
terial between kernel-space and user-space components
is vulnerable to a general user-space attack, wherein the
attacker tries to capture the key when it is present in the
address space of an exploitable user-space process.

• Daemon masquerading is another online attack on
schemes that employ a trusted user-space process for key
management. An attacker can replace the trusted daemon
with a malicious program or launch a man-in-the-middle
attack on the kernel-space user-space channel to gain
access to encryption keys.

• In the page cache attack, an attacker may insert and load
a malicious kernel module from the user-space (using the
insmod command, for example) at run-time to traverse the
page cache and access file contents.

Attacks that require superuser privileges may be classified
as hard or easy depending on the level of sophistication
and effort required to execute them. Although accessing or
modifying specific kernel-space data structures of a running



system is difficult even for the administrator, exploiting user-
space vulnerabilities is clearly easy. In a typical compromise,
an attacker may gain superuser privileges for a short duration
and trivially undertake the above attacks. A distinction be-
tween the kernel and user-space from a security perspective is
becoming crucial as temporary root attacks become common.
Such a distinction is sound, given that it is easier to trust the
kernel, a smaller entity that can be conveniently secured, than
user-space processes that can be compromised in several and
simpler ways. Newer Linux kernels, moreover, include several
advancements such as disabling potential points of attack (like
/dev/kmem and /proc/core) and enforcing verification of digi-
tally signed kernel modules before loading them [9] through
compile-time options, thus making it possible to efficiently
secure the few entry points into a running kernel even from a
privileged attacker. The design decisions of TransCrypt have
been taken to prevent practically viable attacks that are not
addressed by existing systems, while ignoring attacks that
require substantially greater sophistication. No existing system
attempts to exclude the superuser account from the trust model
and tackle the above attacks.

B. TransCrypt Specifications

TransCrypt’s basic feature is the privacy and integrity of
a user’s data and the ability to share file system objects
among multiple users without having to share passphrases
or use common mount-wide keys. Avoiding the use of a
common key also leads to less ciphertext encrypted with the
same key, making cryptanalysis more difficult. Thus, the key
management scheme proposes per-file encryption keys and per-
user public and private keypairs. Also, TransCrypt uses only
randomly generated keys instead of passphrase-derived ones,
thus preventing dictionary-based attacks.

1) File integrity: It must be ensured that a file or its
metadata can only be modified by an entity that knows its
file encryption key. This is accomplished by utilizing message
authentication codes or keyed hashes that combine the plain-
text with the secret key to generate a hash that is used to detect
when a file has been tampered by an attacker. This scheme is
secure because the only entity that ever has access to plaintext
file keys in TransCrypt is the kernel itself that recovers it after
an authenticated user has decrypted his file token.

2) Recovery agents: A critical demand in enterprise envi-
ronments is a recovery mechanism to deal with the loss of a
user’s private key. An administrator cannot read the contents
of files that do not grant access to him explicitly. Hence, we
support a data recovery agent with the privilege to read any
file system object on the encrypted file system. The policies
of the organization may ensure that the private key of the data
recovery agent is split and entrusted with multiple persons
to ensure that a successful subversion of this facility can
only be undertaken with the collusion of all the concerned
administrators, which may be difficult to achieve in practice.

3) Minimum trust model: TransCrypt employs a minimum
trust model, trusting the fewest number of entities for correct

operation. The kernel implements all the cryptographic pro-
cesses and is hence completely trusted. A malicious kernel
may trivially leak encryption keys or sensitive plaintext data
present in its address space. Therefore, the superuser account
is only partially trusted. Although it would be easy for a mali-
cious administrator to substitute the kernel image with a mali-
cious version over a system reboot, our design protects against
a more common scenario in which an attacker temporarily
gains root privileges. TransCrypt is thus immune to the key
leak attack and other threats by avoiding the centralization of
power and responsibility with the administrator. User-space
processes, even those running with superuser privileges, are
untrusted. The division of functionality between the kernel
and the user-space components of TransCrypt has been done
suitably to ensure consistency with our threat and trust models
so that all security rests with the kernel and untrusted user-
space processes merely perform non-cryptographic jobs. Thus,
even if those user-space components are compromised or
replaced with malicious versions, the system’s security is not
compromised.

4) Smart cards: TransCrypt supports the use of smart cards
as a trusted tamper-proof hardware authentication mechanism
for users. This provides the highest grade of security wherein a
file encryption key can be recovered only after being decrypted
on a user’s smart card to ensure that the private key is never
sent out of the smart card. This feature, however, comes at
a small run-time overhead when opening any encrypted file.
Also, issuing and deploying smart card infrastructure may
not be feasible for some organizations. TransCrypt leaves
this choice with the end-user who must evaluate his security
threshold and may configure TransCrypt to use alternative less
secure mechanisms such as storing the users’ encrypted private
keys on the disk or on USB thumbdrives.

5) Remote access: Encrypted volumes may be shared over
the network in most organizations. TransCrypt’s design en-
ables secure remote access to such shared file systems and
integrates a protocol for communication between a client
system and a server component such that a user’s file metadata
token is appropriately routed to the client system to be
decrypted whenever opening an encrypted file. The encryption
of file system data over the network itself is not considered
by TransCrypt, as it is the job of network encryption systems
like IPsec to secure such traffic.

6) Performance: The system’s design must be least in-
trusive in the normal working of the protected file system.
Often, the demands of performance are orthogonal to those
of security. The system needs to balance the two. For ex-
ample, we may choose to keep plaintext file data in the
page cache. Clearly, this provides performance benefits by
avoiding repeated decryption of file contents that have been
read and decrypted once already. But an attacker with supe-
ruser privileges can launch the page cache attack to read this
plaintext. TransCrypt’s flexible design leaves this choice with
the end-user who can specify whether to maintain plaintext
or ciphertext file data in the page cache as a configuration
parameter at the time of creating new encrypted volumes.



7) Other issues: Incremental differential backup software
copy only the changes detected in a file system since the
last backup. A typical solution may traverse the file system
to detect files whose ‘last modified time’ falls after the last
backup, thus requiring access to metadata such as filenames
stored in directory entries and timestamps in the corresponding
inode. However, an encrypting file system must not leave
metadata exposed to avoid leaking information. TransCrypt
chooses to encrypt directories, thus ruling out backup software
operating in such file-by-file incremental mode.

We choose not to support file access control based on
user groups. The owner of a file must explicitly share it
with other users on an individual basis. Although groups
can be easily supported using methods such as group keys
(keypairs associated with groups) or reference counts, their
introduction leads to messy administrative overheads making
them unusable in practice. Also, the swap partition on a disk
may contain fragments of sensitive data. TransCrypt does not
encrypt swap, but other solutions for the same exist [10] that
may be used alongside TransCrypt for this functionality.

IV. CRYPTOGRAPHIC DESIGN AND KEY MANAGEMENT

This section describes TransCrypt’s key management
scheme independent of operating system details. First, the
entities and keys that lie at the heart of TransCrypt are
introduced. We then explain the cryptographic metadata format
and related mechanisms.

A. Key Management Scheme

The main entities in TransCrypt are the individual files, the
file system and users. The superuser account and data recovery
agent are like any other users. The kernel is the primary active
agent of the system, implementing all cryptographic processes
and key management.

1) File encryption keys: Files are automatically encrypted
using random secret per-file encryption keys generated at the
time of their creation. We denote a file encryption key (FEK)
as k. For bulk encryption of file contents, any block cipher in
an appropriate mode such as Cipher Block Chaining (CBC)
may be used, where the ciphertext is chained only within one
block of the underlying file system to support random access
within the file. This avoids re-encryption overheads due to
minor changes at the start of a file or decrypting the entire
file to read the last few bytes. A new Initialization Vector
(IV) must be used for every file system block, which may be
derived from the physical block number itself, using a secure
method such as Encrypted Salt-Sector IV [11]:

IV (block) = Esalt(block) where salt = H(k)

Here, block is the file system block number and Esalt

represents symmetric encryption using salt as the key. The
salt is derived from the FEK k using a hash function H
whose blocksize equals the keysize of the encryption algorithm
E. Encrypting files on a block-by-block basis also enables
TransCrypt to transparently support sparse files containing
holes.

TransCrypt incorporates a scheme utilizing keyed hashes
similar to the one proposed by eCryptfs [12] to provide file
integrity and prevent undetectable modification of file contents
without the knowledge of its secret encryption key. A separate
message authentication code is computed for every file system
block used by a file’s contents and metadata such as access
control lists. Finally, a top hash is also computed over all the
other hashes. Such a scheme employing a hash list and a top
hash enables random write access to any part of the file without
requiring the recalculation of any single hash over the entire
file. The top hash prevents an attack where the contents of a
file as a whole may be modified by swapping (but not altering)
two complete underlying blocks so that their individual block-
level hashes remain the same.

2) User keypairs: At least one public and private keypair
is associated with every user of the authentication domain.
A single user is allowed to possess more than one keypair,
which would be useful when transitioning from an old keypair
to a new one. This keypair enables the design of a hybrid
cryptosystem in which separate copies of a file encryption key
may be encrypted with the public keys of all users who have
access to the file. When a file is created, such metadata entries
are created and stored only for the owner and those users with
default access to the file. Later, such metadata entries are also
created for other users when they are granted access to a file.
We denote the public key of a user with ID uid as KUuid and
the corresponding private key as KRuid.

The public keys of all users are encapsulated in X.509
certificates signed by a certification authority trusted by the
organization. An authentication domain-wide certificate repos-
itory containing these user certificates is established at a
publicly known network location. This enables the owner of a
file system object to grant access to another user transparently,
without the need for any communication between them. A
successful attack and subversion of the repository clearly
does not compromise the security of TransCrypt, because
certificates are always verified before using their public keys.
A corresponding trusted certificates store is maintained by all
computer systems that contain an encrypted file system. This
store contains the certificates of trusted certification authorities
used to verify user certificates. The private key parameters of
users may either be stored on smart cards or on a separate
disk or USB thumbdrive after encryption.

3) File system key: The file system key is a secret key
specific to a particular encrypted file system. It is used and
managed solely by the kernel. An encrypted copy of the
file system key is stored in the superblock of the encrypted
volume. The file system key is denoted as FSK. FEKs are
first encrypted using the FSK before being encrypted using a
user’s public key.

B. Cryptographic Metadata Format

A cryptographic context must be associated with every file,
containing its FEK in the form of separate per-user tokens,
similar to the scheme used by Pretty Good Privacy [13] when
encrypting mail intended for multiple recipients. The per-user



records have the following 3-tuple schema:

uid : certid : token

where, token = EKUuid
(EFSK(k))

therefore, k = f(token, KRuid, FSK)

Here, uid is the user’s UID (for that authentication domain)
and certid is a string that uniquely identifies the user’s
certificate. A single user may have multiple keypairs and
thus the pair <uid, certid> uniquely identifies a particular
keypair. EFSK represents symmetric encryption using a block
cipher with FSK as the key and EKUuid

represents public key
encryption using the appropriate algorithm corresponding to
KUuid. Thus, decrypting the FEK from a token is a function
requiring three inputs: the token, the user’s private key and
the file system key. This combines the security of multiple
entities. Clearly, a malicious user is unable to launch an offline
key leak attack on the token without first compromising and
gaining access to FSK.

The token format has been constructed to incorporate a
form of blinding. TransCrypt does not trust the user-space
and hence a file encryption key must only be known to
the kernel of a running system. However, it may still be
necessary to send cryptographic metadata outside the kernel
for various purposes. In such cases, the security of the FEK
must be maintained by blinding it using a factor known only
to the kernel. Here, symmetric key encryption is the blinding
operation and FSK is the blinding factor.

The file system key FSK is a novel feature of TransCrypt
that is not provided by other solutions. It may be recalled
that any scheme that encrypts FEKs using only public keys is
vulnerable to the key leak attack. Also, employing daemons
without blinding makes the system susceptible to user-space
exploits. The file system key provides blinding and prevents
the key leak attack. However, it makes a file’s cryptographic
context dependent on the particular encrypted file system on
which it is stored. This is not an issue when the file is copied
from one encrypted volume to another, in which case a new
FEK would be generated for the target file and the target
volume’s FSK would be used for blinding. But the file and
its metadata cannot be simply plucked out of an encrypted
file system and sent by mail to a recipient while remaining
encrypted. We believe that the security benefits of the file
system key far outweigh this feature. Moreover, email security
is clearly not the job of an encrypting file system. Software
such as PGP may be used for the same.

V. TRANSCRYPT ARCHITECTURE

Figure 1 illustrates the architecture of TransCrypt. The
platform chosen for the first reference implementation is Linux
kernel version 2.6.11. In this section, we describe the software
modules that need to be implemented in the Linux kernel
and allied user-space support utilities. Finally, we explain the
installation and operation of the entire system.

A. Authentication Domain-wide Certificate Repository

The public certificate repository is maintained at a single
network location and made available throughout the authenti-
cation domain using an appropriate service such as NIS, NFS
or LDAP. In the case of NFS, the certificate repository server
exports a directory that is mounted by systems containing
encrypted volumes as /etc/efscertificates/. It has a single file
called certtab containing user records of the format:

uid : cert

Here, uid is the user’s UID in the authentication domain and
cert is his Base64-encoded X.509 certificate in PEM format.
Every user (including the data recovery agent) has exactly
one such record. When a user is transitioning from an old
keypair to a new one, only the latest certificate is maintained
in the repository. Whenever a user’s public key is needed,
the corresponding certificate is retrieved from the repository
and verified using the local trusted certificates store. This
avoids administrative and performance overheads associated
with certificate revocation lists and online certificate status
protocols.

B. Cryptographic Metadata Storage

TransCrypt provides user-level access control and hence
chooses to integrate the per-user metadata tokens with an
encrypted file’s access control list itself. In Linux, POSIX
ACLs are implemented using extended attributes [14]. It must
be noted that TransCrypt does not support groups and hence
the ACL of an encrypted file must only utilize ‘named user’
entries [14]. We augment such entries with two more fields,
certid and token, introduced in the previous section. Hence, a
typical named user ACL entry in TransCrypt is:

user : username : rwx : certid : token

Here, rwx are the permissions of user username. The
‘others’ ACL entry for all files in the encrypted volume is set
to null permissions. This ensures that a separate ACL entry
(and token) exists for every user who can access the file.

C. Linux Kernel Hooks

Kernel-based encrypting file systems introduce a layer of
indirection between the upper virtual file system layers and
the low-level block device driver to implement the encryption
and decryption processes. We believe encryption is merely a
property of any underlying file system that can be turned on
or off using a mount option. When specified, the ‘encrypt’
mount option enables kernel hooks that implement the cryp-
tographic processes and key management transparently. When
not specified (the default case for unencrypted volumes), these
hooks are simply bypassed. Such an approach maintains the
same on-disk partition layout for encrypted and unencrypted
volumes. It gives the added benefit that encrypted backups
may be taken simply by remounting the encrypted file system
and turning off the ‘encryption’ functionality. The choice of
whether smart cards or alternative means are used for private
key storage is also specified as a mount option. The bulk of



 VFS and

File Systems

Super
Block

User
Certs

CA
Certs

Smart
Card
Service

Process
User

ACL
Command

Card
Smart

User−space Kernel−space

TransCrypt Core

Data ACL

File

Encrypted File System

PKI Support

CryptoAPI

Netlink Socket

EA Syscall

VFS Syscall

Fig. 1. Overview of TransCrypt architecture

TransCrypt’s implementation is independent of the underlying
file system type. Only the on-disk superblock and ACL data
structures need to be altered for all supported underlying file
systems. These changes are fairly basic and easily duplicated
for various file system types. Also, all cryptographic processes
and key management are performed in the kernel and user-
space utilities are only support applications. The kernel patches
required by TransCrypt are described later in this section.

D. Public Key Cryptography Support

Public key cryptography support has been incorporated into
the kernel’s native CryptoAPI [6] as a part of TransCrypt. A
generic asymmetric key API has been integrated that provides
an interface to call public key encryption, decryption, signature
generation and verification functions from within the kernel.
Public key cryptosystems such as RSA are implemented as
kernel modules underlying the generic asymmetric API. The
Multi Precision Integer support patch recently ported to the
kernel [15] is used to provide the underlying math functions.
However, a scheme that calls on a user-space service for only
certificate verification is as insecure as one in which all public
key management and operations occur in user-space. Thus, a
skeletal Public Key Infrastructure support library must also be
integrated into the kernel that provides functionality to decode
and parse Base64-encoded PEM format X.509 certificates,
verify their validity and extract the public key.

It may be argued that PKI support and public key cryptog-
raphy should not be implemented in the kernel due to their
complexity, computational costs and space costs. However,
we choose to do so because our threat model does not trust
user-space key management daemons which can be easily

masqueraded or attacked in practice. Incorporating full PKI
support in the kernel also simplifies the design and increases
performance by avoiding bouncing around from the kernel to
user-space and back for system calls such as open and creat.

The kernel also maintains the trusted certificates store that
contains the certificates of trusted certification authorities.
It may be implemented as a local unencrypted file called
/etc/efstrustedcerts containing records of the format:

CAid : cert

Here, CAid is a string that uniquely identifies a particular
CA and cert is its Base64-encoded X.509 certificate in PEM
format. In the simplest case, the organization runs its own
special root CA to issue TransCrypt-specific user certificates.
In this case, the trusted certificates store contains only one
record corresponding to the organization’s CA. On the other
hand, the organization may issue certificates signed by a
commercial CA (such as Verisign). It is also possible that
user certificates are not directly signed by a root CA. In case a
hierarchy of intermediate CAs exists, efstrustedcerts stores the
certificates of the root CA as well as all the intermediate CAs.
An intermediate CA certificate is verified using the trusted
root CA certificates already present in this file before being
added to the store. However, the security of this system is
contingent upon the integrity of the local file that contains
the trusted certificates. Clearly, this is not acceptable if the
superuser account is kept out of the trust model. Hard-coding
the public keys of well known CAs in the kernel itself is
a possible solution, but it reduces the maintainability of the
code. A better solution is to maintain the trusted certificates



(or public keys) in a separate local file whose integrity is
protected with a message authentication code computed using
a key known and used only by the kernel.

An implementation issue here is the overhead due to access-
ing certtab and efstrustedcerts whenever new encrypted files
are created. A more fundamental issue is accessing and reading
configuration files from within the kernel itself. Although
possible, such a design is generally deprecated as it reduces the
maintainability of the kernel. A solution is to use an alternative
mechanisms such as configfs. For example, a special user-
space program may be executed once whenever the system
is booted up that feeds the configuration data to the kernel.
An optimization could be to run this module periodically
(or on-demand) to parse the configuration files and maintain
their information in appropriate kernel-space data structures
to minimize run-time overheads. Maintaining such a cache of
certificates or verified public keys in the kernel also ensures
seamless operation when the system is disconnected from
the network apart from providing the obvious performance
benefits.

E. Key Acquisition for Token Decryption

The use of a user’s private key by the kernel to decrypt
the per-user tokens is trivial when the private parameters are
stored on the disk or a USB thumbdrive. However, TransCrypt
also supports the use of smart cards to store the private keys of
users and perform operations requiring them. The Linux kernel
does not provide a smart card interface library to enable kernel
modules to directly interact with smart cards. Ongoing projects
such as SmartK [16] aim to integrate smart card support into
the kernel but TransCrypt utilizes a user-space daemon for this
purpose. The architecture of TransCrypt has been designed to
partition responsibilities between the kernel and the support
service such that all cryptographic operations are performed
by the kernel.

The kernel uses Netlink sockets to send per-user metadata
tokens to the smart card service when opening encrypted files.
The service forwards the token to the smart card that decrypts
it using the user’s private key and sends back the response that
consists of the FEK still encrypted with the file system key
FSK to the kernel. Although this blinding prevents daemon
masquerading, the blinded FEK is still vulnerable to replay
attacks. A malicious daemon may log responses received from
the smart card and attempt to replay them in future. This
attack may be thwarted by establishing an authenticated and
encrypted session between the kernel and the smart card before
any data exchange. This protects against eavesdropping and
also prevents replay attacks on the physical channel between
the computer and the smart card. The PKI-capable kernel acts
as the trusted end point in the authentication and session key
establishment protocol with the smart card. The user-space
daemon merely routes tokens and their decrypted responses
(blinded FEKs) on the secure channel between the kernel and
the smart card and may thus be an untrusted process.

An issue is acquiring the file key from a per-user token when
remotely accessing and opening encrypted files on a networked

file system. The support daemon on the file server also routes
the token from the encrypted volume to the corresponding
smart card support daemon on the client system for decryption
using the user’s smart card (the decrypted blinded FEK is
similarly routed back to the server) so that the file encryption
key decrypted from it can then be used to encrypt or decrypt
file data on the server. An authenticated and encrypted session
must first be established between the file server kernel and
the remotely inserted smart card. This allows TransCrypt to
transparently serve multiple simultaneous remote requests,
thus satisfying a basic demand of enterprise environments.

F. ACL Manipulation Commands

Storing a file’s cryptographic metadata in the ACL itself of-
fers several transparency benefits. The design becomes cleaner
and the implementation effort reduces to merely patching the
ACL manipulation mechanisms to ensure consistency between
user entries and per-user tokens by creating and storing an
additional per-user token every time a user is granted access
to a file system object by its owner. Whenever a user’s access
is revoked, the corresponding ACL entry (that includes the
token) is simply removed.

POSIX ACL manipulation in Linux [14] is implemented
using library functions provided by libacl. The kernel does not
yet provide ACL system calls but uses the extended attributes
interface to copy ACLs between user-space and kernel-space.
The libacl library and the chacl and setfacl commands that
modify the ACL of a file must be patched to support the
augmented ACL entry structure defined earlier. Modifications
must also be made to prevent the owner of a file system object
from removing the data recovery agent entry or specifying
non-null permissions for the ‘others’ entry in the ACL.

Blinding protects the file encryption key from being leaked
when tokens are handled by untrusted user-space programs.
Also, including a separate keyed hash to protect the integrity
of the ACL prevents an attack wherein a malicious user
may attempt to re-encrypt the blinded FEK (obtained after
decrypting his token) using another user’s public key and insert
the resultant token with an illegal entry into the file’s ACL.
The keyed hash ensures that only the kernel of a running
system can modify an ACL after getting the owner’s token
decrypted in response to a access granting command. However,
this requires the kernel to do ACL manipulation work. Hence,
TransCrypt proposes to shift ACL manipulation into the kernel
and introduce the necessary system calls.

G. TransCrypt in Action

1) Enterprise deployment: The following pre-requisite ac-
tivities must first be carried out:

• A public and private keypair must be generated for all
users in the authentication domain who require access to
encrypted file systems.

• The public keys must be signed by an appropriate CA
and the certificates made publicly accessible in the cer-
tificate repository. The trusted certificates store must be



TransCrypt
and PKI

CryptoAPI

ACL

File

User
and CA
Certs

Encrypted
File System

User
Process

Kernel

User−space

VFS

file

super_block

(1) open, creat

(4) cert(5) token

(2) k

(3) FSK

(a) Creating a new file

TransCrypt
and PKI

CryptoAPI

ACL

File

Encrypted
File System

Smart Card
Service

User
Process

Kernel

User−space

VFS

(1) open

super_block

file

(3) netlink

(2) token

(5) k

(4) FSK

(b) Opening an existing file

Fig. 2. File operations: creation and access

established for all computer systems that mount encrypted
volumes. Smart cards, if used, must be issued to users.

• The data recovery agent account must be established in
the authentication domain and its certificate added to the
repository. The corresponding private key may be split
into multiple smart cards and issued to different persons.

2) Encrypted file system creation: The on-disk superblock
structure of the underlying file system and the corresponding
mkfs command are suitably modified to take the following
actions when creating an encrypted volume:

• The block cipher algorithm to be used for symmetric key
encryption, chaining mode, keysize (of FEKs and the file
system key), IV generation method and the user’s choice
regarding page cache encryption are specified on the
mkfs command line. These parameters are appropriately
encoded and stored in the superblock.

• The file system key FSK is randomly generated and
encrypted using key material derived from a passphrase
(or an external trusted hardware to avoid trusting the
administrator). The result is stored in the superblock.

• The DRA is added as a named user with read and execute
permissions to the default and access ACLs [14] of the
root directory of the encrypted volume. Additionally, the
permissions for the ‘others’ entry are set to null. This
recursively ensures that all further subdirectories and files
created in the encrypted file system would automatically
inherit these two entries in their access control lists.

3) Mounting an encrypted file system: An encrypted file
system is mounted by specifying the encrypt option. Trans-
Crypt is integrated with POSIX ACLs and hence the acl
mount option must also be specified. Also, the mechanism

that is used to store private keys is specified as a mount
option. During mount, algorithm parameters are copied from
the on-disk superblock of the underlying file system to the
kernel’s in-core superblock structure. The encrypted FSK is
also read from the on-disk superblock, decrypted using the
same mechanism used at the time of creation and copied into
the in-core superblock.

4) File creation and access: The general architecture of
TransCrypt for open and creat is shown in Figure 2. The
following actions are taken whenever a new file (or directory)
is created in an encrypted file system:

• A file encryption key k is randomly generated. It is put
into the entry corresponding to this instance of open (or
creat) in the VFS open file structure. Also, the FSK
is read from the kernel’s in-core super block structure
associated with the underlying volume. It is used to
encrypt the FEK using the specified algorithm parameters.

• The kernel determines the UID of the file’s owner from
the current process context. This is used to access the
owner’s certificate from the repository. The certificate is
first verified and then its public key is used to encrypt the
result of the previous step. The resulting token is copied
into the corresponding field of the owner’s ACL entry.

• The above step is repeated for all the users present in the
default ACL inherited by the file (or directory) from its
parent directory.

The actions taken when opening an existing encrypted file
are as follows:

• The kernel determines the UID of the current process
context and checks the user’s permissions to open the file
using the appropriate ACL entry. If successfully verified,



Owner’s
token user’s

token

Target

Blinded
FEK

libacl

ACL

Owner’s
Smart
Card

Certificate
Repository

(5) Target
cert

File

chacl, setfacl

User−space

Kernel (1) getxattr (8) setxattr

(7) acl_set_file(2) acl_get_file

(3)

(4)

(6)

Fig. 3. Granting file access to other users

the corresponding token is pulled out of the ACL entry
and decrypted using either the smart card or the user’s
private key acquired from the disk.

• The file system key is read from the in-core super block
and used to decrypt the result of the previous step.

• If the user is genuine, we now have the original FEK k
used to encrypt the file. It is copied into the file structure
corresponding to this call of open. If a wrong smart card
was inserted, an incorrect FEK would be decrypted.

5) Reading and writing file data: Other than read and
write, file data may be accessed using the mmap system call.
The 2.6 series kernels incorporate a unified page cache and
bio infrastructure that provide a common interface to the
disk regardless of the system calls used. TransCrypt takes
advantage of these unified interface to hook in the encryption
and decryption processes.

A file’s contents are accessed after it has been opened. The
FEK already present in the corresponding file structure is used
to do encryption or decryption transparently. Implementation
issues such as locking and synchronization determine the exact
placement of the encryption and decryption hooks in the
kernel. The implementation effort in TransCrypt has proceeded
in an exploratory fashion and evolved towards the best alterna-
tive. A preliminary version plugged encryption and decryption
at the page cache layer around the submit bh function. This
approach leads to individual bio requests being submitted for
every file system block, thus causing a significant performance
degradation of about 40%, as determined experimentally. This
preliminary implementation approach is being discarded in
favour of a design that uses the workqueue interface, thus
enabling the coalescing of multiple bio requests to avoid the
aforementioned overhead. Separate per-CPU kernel threads
created in advance are executed in user process context. After
encrypted data is read from the disk, the callback function
executing in hard IRQ context merely enqueues the actual de-
cryption job in the corresponding kernel thread’s workqueue.
The implementation of dm-crypt [5] uses a similar design and
integrating TransCrypt with it may be explored in the future.

Test Parameter Read (sec) Write (sec)
Elapsed Real Time 30.193 47.651

TransCrypt User CPU Time 0.061 0.074
System CPU Time 14.273 2.499
Elapsed Real Time 9.687 13.104

Normal User CPU Time 0.065 0.071
System CPU Time 0.754 2.458

TABLE I
PERFORMANCE OF TRANSCRYPT AGAINST NORMAL UNENCRYPTED FILE

OPERATIONS

In case encrypted file data must be maintained in the page
cache, the encryption and decryption processes are imple-
mented in the actor functions that copy the data between the
kernel’s page cache and the user-space buffers specified by the
application to the read or write system calls.

As discussed earlier, TransCrypt also utilizes keyed hashes
to enforce file integrity. The hash list for a file consists of a
separate message authentication code computed for every file
system block used by that file’s contents (including the block
containing its ACL) that are verified for every read and updated
on every write operation on the corresponding block. The top
hash, computed over the hash list itself, must be verified and
updated for every read and write call respectively.

The present architecture of TransCrypt does not use the in-
kernel key management service [17] recently introduced in
Linux and stores encryption keys directly in VFS objects.
Future versions of TransCrypt may integrate with kernel
keyrings. Another implementation tweak could be to store the
secret keys used by TransCrypt in kernel structures in a key
schedule form. This avoids the repeated overhead of converting
the plaintext key into a key schedule at every read or write and
speeds up encryption or decryption at the cost of greater space.
However, this is not yet supported by the present architecture
of the kernel CryptoAPI and hence left out of our design.

6) Granting and revoking file access: TransCrypt utilizes a
keyed hash to protect the integrity of a file’s ACL. Hence,
ACL manipulation system calls must be provided by the
kernel to make the mechanism of file access granting and
revoking similar to the handling of open and creat. Presently,
however, ACL manipulation in Linux is through the libacl
library that exports ACL interface functions to the chacl and
setfacl commands and in turn communicates with the kernel
using extended attribute system calls. Figure 3 illustrates the
flow of control and data whenever the owner of an encrypted
file grants access to another user.

• The owner’s token is read from his ACL entry and
decrypted using his smart card or private key to produce
the blinded FEK.

• The target user’s certificate is fetched from the repository
and verified. The public key is extracted from it.

• The blinded FEK (the FEK encrypted with the file system
key) is directly re-encrypted using the target user’s public
key to get his per-user token.

• The certid and token fields of the target user’s newly
created ACL entry are updated and stored.



Feature CFS Windows EFS dm-crypt eCryptfs TransCrypt
Design Approach user-space hybrid kernel hybrid kernel
Key Management common mount-

wide key
per-file keys and
per-user keypairs

common mount-
wide key

per-file keys and
per-user keypairs

per-file keys and
per-user keypairs

Recovery or Escrow
Agent

no yes no yes yes

Superuser Account trusted trusted trusted trusted untrusted
User-space trusted trusted trusted trusted untrusted
FEK Blinding no no no no yes
Integrity not supported not supported not supported supported supported
Sparse Files supported supported supported not supported supported
Smart Card Support no no no no yes
ACL Integration no no no no yes

TABLE II
FEATURES OF TRANSCRYPT VERSUS OTHER ENCRYPTING FILE SYSTEMS

When revoking access, the target user’s ACL entry, includ-
ing the token, is simply deleted. Re-encrypting the file with a
new key is not necessary.

H. Procedures

We now discuss various administrative and maintenance
procedures that must be followed by the organization.

1) Change of user keypair and smart card: This case is
handled using a special utility implemented in user-space.
When a user changes his keypair, the old certificate in the
public repository is immediately replaced with the new one
to ensure that his token for any newly created files would
be generated using the new public key for encryption. Then,
the special tool must be run through the entire encrypted file
system to find all files that are accessible by the user. The
user’s token for such files is extracted from the corresponding
ACL entry and decrypted using the old smart card. The
resultant blinded FEK is re-encrypted using the new public
key. This new token is then stored back into the ACL. This
tool runs with special privileges so that the ACLs of files that
are not owned by the user may also be modified. Because
this operation may potentially take a lot of time, TransCrypt
allows it to be run in the background and provides for a
period of transition during which the user may possess both
the keypairs. The public certificate repository, however, always
only contains the latest public key certificate for every user.

2) Backups: Encrypted backups of the full image of a file
system are taken by remounting the encrypted volume without
the ‘encrypt’ option in read-only mode. Any backup software
may be used for this purpose after turning off the incremental
mode of operation. Because the cryptographic context of a
file is dependent on the file system blocks containing it, the
restore process must be applied using the full source image
to the same target file system. Thus, TransCrypt disables the
recovery of individual files to other file systems, preventing
the leak of data from stolen backups. Also, it must be noted
that FEKs are stored as tokens generated after encrypting them
with the FSK, thus making them dependent on the file system.
The FSK is itself stored encrypted in the superblock of the
volume and must also be backed up.

3) Data recovery: The recovery process employs a special
user-space solution. A separate tool must be implemented that
may require multiple administrators to insert multiple smart
cards simultaneously to reconstruct the private key of the
data recovery agent. It is then used to decrypt the files to
be recovered.

VI. PERFORMANCE EVALUATION AND FEATURE
COMPARISON

A. Analysis of Results

A brief analysis of the performance results of TransCrypt
follows, in terms of the time overhead to read and write file
contents on an encrypted file system utilizing the AES block
cipher with 128-bit keys against the normal unencrypted case,
as shown in Table I. The system under test had an Intel
Pentium 4 CPU running at 3 GHz with Hyper-Threading and
2 GB RAM. For each test, the numbers indicate the elapsed
real time, user CPU time and system CPU time outputs of the
time command when reading or writing a file of size 512 MB.
These results do not consider the overhead due to file integrity
checks or smart card access and assume the availability of a
user’s public and private key parameters with the kernel itself.
Although a degradation of more than 200% has been observed,
the performance is likely to improve as the implementation is
refined and optimized, as explained in the previous sections. A
more formal analysis and comparison with existing solutions
may be undertaken in the future when the implementation
stabilizes as planned. Moreover, the existing performance
overhead is still better than most user-space cryptographic
file systems that degrade performance by several times [1]
and may be acceptable in typical end-use scenarios given the
unique security benefits offered by TransCrypt.

B. Comparison with Related Work

Table II provides a tabular comparison of the usability
features and security benefits offered by TransCrypt against
Cryptographic File System (CFS), the native Microsoft Win-
dows Encrypting File System (Windows EFS), dm-crypt and
eCryptfs, clearly bringing out the differentiating aspects of
TransCrypt.



VII. SUMMARY

Data security has emerged as a critical need in both personal
and multi-user scenarios. Most existing encrypting file systems
do not meet the diverse requirements of security and usability,
due to the lack of flexible key management, fine-grained access
control and security against a wide range of attacks.

TransCrypt provides a solution that is both secure and
practically usable. We assume an attacker has the capability
to launch attacks that are beyond the threat models of existing
systems and propose solutions to such threats. We make a
crucial distinction between the kernel and user-space from a
security perspective. Employing a completely kernel-space im-
plementation enables us to avoid trusting the superuser account
and protect against various user-space attacks. Integration of
cryptographic metadata with POSIX ACLs greatly simpli-
fies key management. Enterprise-class requirements such as
integrity, data recovery, backups and remote secure access
to shared file systems are also supported. Future versions
of TransCrypt would explore deeper integration with trusted
platform module hardware, especially in the areas identified in
this paper, to further minimize the number of trusted entities
and provide even greater security.

REFERENCES

[1] M. Blaze, “A Cryptographic File System for UNIX,” in Proceedings
of the ACM Conference on Computer and Communications Security,
Fairfax, VA, USA, Nov. 1993, pp. 9–16.

[2] Encfs - Virtual Encrypted Filesystem for Linux. [Online]. Available:
http://encfs.sourceforge.net/

[3] How the Encrypting File System Works. [Online].
Available: http://technet2.microsoft.com/WindowsServer/en/Library/
997fdd99-73ec-4041-9cf4-1370739a59201033.mspx

[4] Apple Mac OS X FileVault. [Online]. Available: http://www.apple.com/
macosx/features/filevault/

[5] dm-crypt: a device-mapper crypto target for Linux. [Online]. Available:
http://www.saout.de/misc/dm-crypt/

[6] J.-L. Cooke and D. Bryson, “Strong Cryptography in the Linux Kernel,”
in Proceedings of the Linux Symposium, Ottawa, Canada, July 2003, pp.
139–144.

[7] M. A. Halcrow, “eCryptfs: An Enterprise-class Encrypted Filesystem for
Linux,” in Proceedings of the Linux Symposium, Ottawa, Canada, July
2005, pp. 201–218.

[8] E. Zadok, I. Badulescu, and A. Shender, “Cryptfs: A Stackable Vnode
Level Encryption File System,” Department of Computer Science,
Columbia University, Tech. Rep. CUCS-021-98, 1998.

[9] Cryptographic signatures on kernel modules. [Online]. Available:
http://lwn.net/Articles/92617/

[10] N. Provos, “Encrypting Virtual Memory,” in Proceedings of the USENIX
Security Symposium, Denver, CO, USA, Aug. 2000, pp. 35–44.

[11] C. Fruhwirth. New Methods in Hard Disk Encryption. [Online].
Available: http://clemens.endorphin.org/nmihde/nmihde-letter-os.pdf

[12] M. A. Halcrow, “Demands, Solutions, and Improvements for Linux
Filesystem Security,” in Proceedings of the Linux Symposium, Ottawa,
Canada, July 2004, pp. 269–286.

[13] S. Garfinkel, PGP: Pretty Good Privacy. O’Reilly Media, 1995.
[14] A. Grunbacher, “POSIX Access Control Lists on Linux,” in Proceedings

of the USENIX Annual Technical Conference (FREENIX Track), San
Antonio, Texas, USA, June 2003, pp. 259–272.

[15] D. Hardeman. (2006, Jan.) [PATCH] add multi-precision-integer
maths library. Linux Kernel Mailing List. [Online]. Available:
http://lkml.org/lkml/2006/1/26/295

[16] SmartK: a smart card framework for the Linux Kernel. [Online].
Available: http://smartk.dia.unisa.it/

[17] D. Howells. (2004, Aug.) [PATCH] implement in-kernel keys &
keyring management. Linux Kernel Mailing List. [Online]. Available:
http://lkml.org/lkml/2004/8/6/323


