
Design and Implementation of a File System withon-the-y Data Compression for GNU/LinuxPraveen B, Deepak Gupta and Rajat MoonaDept. of Computer Science and Engineering,Indian Institute of Technology, Kanpur,INDIA-208 016email : fdeepak,moonag@iitk.ac.inAbstractData compression techniques have long been assisting in making e�ective useof disk, network and other similar resources. Most compression utilities requireexplicit user action for compressing and decompressing of �le data. However,there are some systems in which compression and decompression of �le data isdone transparently by the operating system. A compressed �le requires fewersectors for storage on the disk. Hence, incorporating data compression tech-niques into a �le system gives the advantage of larger e�ective disk space. Atthe same time, the additional time needed for compression and decompressionof �le data gets compensated to a large extent by the time gained because offewer disk accesses. In this paper we describe the design and implementation ofa �le system for the Linux kernel, with the feature of on-the-y data compressionand decompression in a fashion that is transparent to the user. We also presentsome experimental results that show that the performance of our �le system iscomparable to that of Ext2fs, the native �le system for Linux.Keywords: GNU/Linux, File System, VFS, On-the-y Data Compression, LZRW1IntroductionData compression techniques have long been assisting in making e�ective use of disk,network and similar resources. Compressing the data before storing it on the disk ortransferring it over a network reduces the amount of bandwidth required for the datatransfer. Compress and pack for Unix; pkzip[1], lha[2] and many others for MS-DOS;and gzip[3] developed by the GNU software foundation are a few widely used utilitiesfor this purpose. These utilities require explicit user intervention for compressing1

and decompressing of data. Doublespace for MS-DOS[4], Stacker[5] for MS-DOS andMacintosh are utilities in which compression and decompression of �le data takesplace on-the-y, and is transparent to the user.When a �le is compressed before being written onto the disk, in most of the cases itoccupies a lesser number of disk sectors than for the corresponding uncompressed �le.This leads to e�cient usage of the available disk space, i.e., the same amount of diskspace can be used to store a larger amount of data. It also results in faster disk accesssince we need to access fewer number of sectors. Thus by choosing a compressionalgorithm that is fairly fast, the time spent in compressiion and decompression of datacan be compensated for by the time gained in disk access. This leads to increasede�ective disk space with not much loss in terms of performance.In �le systems such as Ext2, a disk partition is divided into multiple block groupsfor e�cient allocations of disk blocks for inodes and data blocks of a �le. If the �ledata is stored in compressed form, it requires a lesser number of disk blocks whichleads to more e�ective grouping of the inodes and the associated data blocks.We have designed and implemented a �le system with the feature of on-the-ytransparent compression and decompression of �le data for the Linux kernel. Linux isa Unix-like kernel that was �rst developed for Intel 80x86 platforms and later portedto other platforms. It was �rst implemented as an extension to the Minix operatingsystem[6]. Many modules of the kernel were later recoded and newer versions werereleased with advanced features. Our implementation was done by modifying theExt2 �le system code[7] distributed with the GNU/Linux distribution. GNU utilitiessuch as mkfs, fsck , tunefs etc., for managing the �le system have also been modi�edaccordingly.Design ObjectivesThe compressed �le system has been designed with the aim of incorporating thefeature of on-the-y compression and decompression of �le data while keeping theperformance comparable to other �le systems.The design has been guided by the idea that it should be possible to integrate our2

�le system into the Linux kernel, with minor modi�cations to the generic �le systemcode.We aim at providing this feature in a fashion that is transparent to the users. Theyshould remain unaware of the fact that the �le is stored in a compressed form on thedisk. The size and other attributes of the �le as seen by them should be the same asthat of the uncompressed �le. We also aim at providing binary compatibility with theexisting programs. All the existing programs should work without any modi�cationsor re-compilation.Another aim of our design is to allow multiple compression techniques to be usedsimultaneously in the �le system. Thus the option of selecting a suitable compressionalgorithm for a speci�c �le at the time of creating that �le should be provided.File System DesignIn this section we present various design decisions that we have made to achieve ourobjectives. Then we discuss the issues related to the implementation of our �le system.The Virtual File SystemThe Linux kernel contains a Virtual File System (VFS) layer similar to the one that wasoriginally introduced in SunOS for supporting NFS[8]. VFS is an indirection layerwhich handles the �le oriented system calls. When a process issues a �le orientedsystem call, the kernel calls a function in the VFS code. This function handles thestructure independent manipulations and redirects the call to a function contained inthe �le system speci�c code, which is responsible for handling the structure dependentoperations.Our �le system can be easily integrated with the VFS. All through our design weaimed at making as little changes to the generic code as possible. Whatever littlechanges are made to this code only enhance its functionality. This means that codefor other existing �le systems can work unchanged with the changed generic code.3

Compress What and How?The data in a �lesystem is stored on the disk using logical blocks. Logical blocksare an operating system provided abstraction of physical disk blocks. Typically thelogical block size is taken as a �xed multiple of the physical block size.One can choose to do the data compression at the �le level, or at the logical blocklevel. Compressing at �le level �le would lead to a heavy degradation of performancewhile reading and writing small parts of the �le, since the whole �le needs to becompressed for each write and needs to be decompressed for each read. If the �ledata is compressed at the logical block level, some disk space may be wasted if thesize of compressed data for a logical block is not an integral multiple of the size of aphysical block. Further this would require that the size of a logical block should now beallowed to vary from the size of one physical block to some maximum integral multipleof physical block size. That is, a logical block should now be allowed to occupy 1, 2or more (upto some maximum) physical blocks. Another advantage of using a logicalblock as the unit of compression is that if a disk block gets corrupted, only the datacorresponding to that logical block is lost. If the �le were to be compressed as a whole,the entire data of the �le might be lost even if only one block was corrupted.The performance advantage of compressing data at the logical block level, in ouropinion, far outweighs the di�culties associated with implementing it. Therefore wehave to chosen to compress data at the logical block level. The logical block size isalways as an integral multiple of the physical block size. However, the number ofphysical blocks required to store a logical block depends upon how well that block ofdata gets compressed. For example, a logical block of 4K size can occupy one, two,three or four 1K physical blocks depending on the amount of compression achieved.Thus the kernel must support varying logical block sizes. Changes were required togeneric �le system code of the Linux kernel to achieve this. These are the only changesthat have been made to the generic code.The logical block size (which is the same as the physical block size in the case ofan Ext2 �le system) has to be speci�ed at the time of creation of the �le system. In4

the case of a compressed �le system, both the logical and physical block sizes have tobe speci�ed at the time of its creation.The compressed data is padded to �t into an integral number of physical blocks.In order to retrieve the decompressed data, the actual size of the compressed data (inbytes) is stored in the �rst two bytes of the compressed data.The gain due to compression is not very signi�cant in the case of very small �les.Therefore, in our implementation, we only compress �les which have a size largerthan a certain threshold. The threshold can be speci�ed at the time of creating the�le system. Further, since directories are usually small in size and more frequentlyaccessed, we have chosen not to compress directories. Other special types of �les arealso not compressed.Bu�ering of Decompressed and Compressed dataWhen on-the-y compression is incorporated into the �le system, physical blocks fora logical block can be allocated only after the compressed size of that logical block ofdata is known. This means that a logical block of data cannot be placed on the bu�ercache queues till it is compressed. This fact has serious design implications that arediscussed below.In case of asynchronous �le writes, the actual writing of data onto the disk takesplace in background by the bdush daemon, which periodically checks the bu�er cachefor entries which are marked dirty and ushes them onto the disk. Hence, to supportasynchronous writes in our �le system, we either need to store the compressed datain the bu�er cache or allow the compression to take place at the time when the bu�ersare ushed. The �rst alternative implies that decompressed data can no longer bebu�ered, since the bu�er cache can have only one entry for a logical block. This leadsto paying a heavy penalty for �le reads, since for every read, data from the bu�ercache has to be decompressed before being given to the user program. The physicaldisk block allocation cannot be delayed till the bu�ers are being ushed because thesebu�ers cannot be put on proper queues until their size and associated physical blocksare known. Thus they cannot be processed by the bdush daemon unless we modify5

its code which we wish to avoid.One solution to this problem is to �rst estimate and allocate the number of physicalblocks that would be required to store a logical block after it is compressed. Whenthe actual compressed size is known, either extra physical blocks need to be alloc-ated or the surplus physical blocks need to be freed. This may lead to heavy diskfragmentation which is undesirable.To overcome this problem, we use the two level bu�ering mechanism, as imple-mented in Linux version 1.3.51 [9] onwards, to bu�er the decompressed and the com-pressed data. Bu�ering decompressed data retains the advantage of bu�er cache,while bu�ering the compressed data is required to support the asynchronous writes.As shown in Figure 1, when a �le is being written, data from the user bu�er�rst gets copied into the virtual memory (VM) pages associated with that �le. Theappropriate VM pages are identi�ed based upon the pagesize and the o�set at whichdata is being written. All the VM pages corresponding to a �le are arranged in adoubly linked list. These VM pages act as the �rst level bu�ers. Data from these �rstlevel bu�ers is compressed and stored in the corresponding bu�er cache entry whichgets written onto the disk, either synchronously, or asynchronously by the bdushdaemon. The bu�er cache thus acts as the second level bu�er.Similarly when the �le is being read, data from the disk is �rst read into the bu�ercache. It is then decompressed into the appropriate set of VM pages associated withthat �le. Any further reads on that logical block of data can thus be directly satis�edusing these VM pages, without the need for decompressing the data or accessing thedisk.Thus, while the VM pages maintain the advantage of speeding up the reads, thebu�er cache aids in allowing writes to proceed asynchronously.Support for Multiple Compression TechniquesAs stated in the design objectives, our goal is to make the process of compressionand decompression transparent to the user. At the same time, exibility should beprovided so that the user can choose the �le system behavior with respect to individual6

�les, if required.One goal of our �le system is to support multiple compression techniques simultan-eously in the �le system. The choice of choosing a particular compression techniqueis available both to the system administrator and the user.The system administrator can chose the compression technique to be used at thetime of mounting the �le system. Any �le now created in this �le system will becompressed by the compression algorithm thus chosen.However, a user can override this default compression technique for the �les hisprogram creates. He can decide whether these �les are to be stored in the compressedform or not, and can also choose the compression technique that is to be used tocompress them. New ags, that can be speci�ed with the open system call have beenadded for this purpose. This option facilitates choosing an appropriate compressiontechnique based on the �le type and also the requirements of the user. Thus thecompression technique used is an attribute of the �le rather than the attribute of the�le system, and hence this information hence is stored in the inode structure for the�le.It may be noted that any compression algorithm as well as its implementationmust be throughly tested before being incorporated in the kernel. Otherwise critialdata may be lost due to bugs in the compression code.Currently we have implemented LZRW1[10, 11], LZW12 and Hu�man[12] com-pression techniques.Disk Block AllocationAfter a logical block of data has been compressed into a bu�er, we allocate the requirednumber of physical disk blocks, associate them with the bu�er and store them in theblock entry table of the inode. For e�ciency we allocate all the physical blocks fora logical block in a contiguous fashion on the disk. It then su�ces that we store theaddress of only the �rst of these physical blocks as the physical block number of thebu�er. This along with the size of the compressed data determines the number ofphysical blocks that correspond to this logical block of data. Contiguous allocation7

of physical blocks for a logical block allows the kernel to read a logical block with asingle disk transfer. We have used a goal block allocation policy similar to that ofExt2fs for allocating the disk blocks.The disk is partitioned into multiple block groups in a way that is done in Ext2fs.A block bitmap is used to represent the availability of disk blocks within a blockgroup. A bit value of 0 indicates that the corresponding block is free and a value of 1indicates that the block is allocated.The goal block allocation policy tries to allocate contiguous blocks on the disk tostore a �le. When disk blocks for a logical block of a �le are to be allocated, the blockfollowing the last allocated block for the previous logical block of the �le is designatedas the goal block.The algorithm for allocating disk blocks �rst searches for the required number offree blocks starting from the goal block. If the required number of free blocks arefound starting at the goal block, the search ends.In case the required number of free blocks are not found at the goal block, wesearch in the near vicinity of the goal block to satisfy the request. This search islimited to the next 64 bits of this block group.If the request is not yet satis�ed, we then search for a free byte in this blockbitmap. Starting from the �rst bit of this free byte, a search is made backwards tolocate the �rst 0 bit in this sequence of 0 bits. Starting from this �rst free bit, weallocate the required number of blocks. Searching for a free byte has the advantagethat block allocation request for the next logical block of the �le can be satis�ed atthe goal block.If a free byte is not found, the entire block bitmap is scanned for the requirednumber of free blocks. If this too fails, each of the remaining block groups is trieduntil we get the required number of contiguous free blocks.Representation of Logical Block AddressesThe other issue we need to deal with is the way the disk addresses of logical blocksare represented in the block entry table of the inode. In the Ext2 �le system, a 32 bit8

number is used to represent a physical disk block. Since the size of a logical block isalways the same for Ext2, this information does not need to be stored. For our �lesystem, however, each logical block corresponds to a variable number of consecutivephysical blocks. We represent this information in the block table in the following way.Of the 32 bits that are used to store the physical block number, we allocate nbits to store number of physical blocks corresponding to the logical block and theremaining 32�n bits to store the �rst physical block number (Figure 2. The value ofn depends on the logical and physical block sizes chosen. If we choose a logical blocksize of L bytes and the physical block size of P bytes, then the maximum number ofphysical blocks needed to store L bytes of data is L=P . Thus we need n = dlog2 L=P ebits to store the number of physical blocks required. This implies that the maximumtotal �le system size is less than that of Ext2fs. But in practice however, since thesenumbers are enough to represent a very large �le system, this does not make muchof a di�erence. For example, if the logical block size is 8KB and the physical blocksize is 1KB, n is 3 and 29 bits are used for the physical block number. Thus diskpartitions of sizes upto 239 bytes can be handled.Implementation of the File System InterfaceFile system related system calls in Linux have a �le system independent portion and a�le system speci�c portion of the code. In this sub-section, we discuss the �le systemspeci�c issues of mount, open, read and write system calls.Mounting a �le systemThe �le system speci�c portion of the code for mounting a �le system involves pro-cessing any �le system speci�c options to the mount call and then reading the superblock of the �le system being mounted. The compression technique that will be usedas a default for any newly created �les in the compressed �le system can be be speci�edat the time of mounting the �le system.A new <string=value> pair is added to the mount options for this purpose. In or-der to specify the compression technique to be used, the string \compress=<COMPR ALGO>"9

is to be passed as a mount time option. Based upon the value of <COMPR ALGO>,the ID of the speci�ed compression technique is stored. This value is then storedin the inode of any newly created �les in the �le system. Currently the value of<COMPR ALGO> can be one of lzrw1, huffman and lzw12 which correspond tothe LZRW1, Hu�man and LZW12 compression techniques respectively.Opening a new �leThe �le system speci�c portion of the open system call just chooses a compressiontechnique if the �le is being created. New open ags allow the default compressiontechnique speci�ed with the mount call to be overridden, thus allowing multiple com-pression techniques to be used simultaneously in the �le system. Using these ags, thecompression technique to be used for the �le being created can be speci�ed. Followingis an example of a call to the open system call for overriding the default compressiontechnique.fd = open("/tmp/example", O CREAT|O HUFFMAN COMPR, 0644);In the above example, O HUFFMAN COMPR could have been replaced with O LZRW1 COMPRfor LZRW1 compression or with O NOCOMPR for no compression.The default compression technique cannot be overridden for a �le created using thecreat call since the creat call does not have ags and adding an additional argumentmay cause the existing programs to stop working.Reading from a �leThe read system call in Linux gets directed to the generic �le read routine, which is a�le system independent interface for reading the data from the VM pages associatedwith the �le into the user bu�er[13]. The process of updating the VM pages with datafrom the bu�er cache is implemented as a �le system speci�c routine, which performsthe following actions.1. If the appropriate bu�er cache entry is found and is up-to-date, data from thebu�er cache entry is transferred into the appropriate VM pages For uncom-pressed �les this implies a simple copy, while for compressed �les this implies10

decompressing the data from the bu�er cache into VM pages. The exact size ofthe data that is to be decompressed (in bytes) is available in the �rst two bytesof the compressed data. Data from these updated VM pages is then copied intothe user bu�er.2. If the corresponding entry is not found in the bu�er cache, data is to be readfrom the disk. For this purpose, an entry is created in the bu�er cache anddata from the disk is transferred into this bu�er. For compressed �les, this datais then decompressed into the corresponding VM pages, and then copied intothe user bu�er. For decompressed �les, a direct copy from bu�er cache to VMpages and then to the user bu�er is carried out.As can be seen, �le data needs to be decompressed only when it is not present inthe VM pages. Once the VM pages contain the data in the decompressed form, anyfurther reads of the same data do not involve either disk access or the overhead ofdecompression.Writing to a compressed �leWriting to a compressed �le di�ers from writing to an decompressed �le in the waydisk blocks and the corresponding bu�er cache entries are allocated. For a �le thatis to be stored in compressed form, the allocation of disk blocks for a logical blockof the �le can be done only after the data in the logical block is compressed. This isachieved in the following manner.After determining the logical block number to be written for the current �le o�set,the block entry table of the corresponding inode is used to locate the physical diskblocks for this logical block. If no physical blocks have yet been allocated for thislogical block, a bu�er (of the size of a logical block) is �rst created for it. This bu�erdoes not yet appear in any of the bu�er cache queues. Data from the user bu�eris �rst copied into the corresponding VM pages. The data from these VM pages isthen compressed. In the allocated bu�er, we write the size of the compressed data (inbytes) in the �rst two bytes, followed by the compressed data itself.11

The size of the bu�er is changed to two plus the size of the compressed data,rounded o� to the next higher integral multiple of physical block size.The number of physical blocks required to store this logical block on the disk isnow known. The block allocation routine is used to allocate the required number ofphysical blocks for this logical block. The bu�er is then placed on the appropriatebu�er cache queues.On the other hand, if the physical blocks for this logical block have already beenallocated, the bu�er cache is checked to �nd the corresponding entry. If an entryis found, it is updated by the data from the corresponding VM pages. The updatedbu�er size is then checked against the available size for this logical block on the disk. Ifthe number of physical blocks allocated for this logical block are such that the updatedbu�er does not �t into them, a reallocation of physical blocks for this logical block isdone.Avoiding Compression of Small FilesOne problem that is encountered in a compressed �le system is regarding the storageof small �les. Storing smaller �les in compressed form does not give any e�ectiveadvantage, since both compressed and decompressed data require the same number ofphysical blocks in many cases. Moreover, we need to pay the penalty for compressingand decompressing the �le for writes and reads. Hence we followed an approach thatallows us to store the smaller �les in uncompressed form and compress only those �lesthat are larger than a certain threshold.The threshold value can be chosen at the time of creating the �le system. All �leswhose sizes are less than the threshold are stored in uncompressed form irrespective ofthe compression mode speci�ed at the time of mounting or at the time of �le creation.Once the �le size crosses the threshold, and the NO COMPR ag was not speci�ed whilecreating the �le, we start storing the �le in compressed form. This technique requiresthe threshold size to be less than the logical block size of the �le system since otherwisethe change from uncompressed to the compressed mode would require additional readsand writes. 12

Performance MeasurementsThe performance of the compressed �le system is a�ected by two factors, the timelost in compression and decompression of �le data, and the time gained because oflesser data transferred to/from the disk. Thus, by using a good compression techniquewhich is fairly fast, the time lost in compression and decompression can be made upto some extent by the time gained because of lesser disk transfer required. Hence wehypothesized that the performance of our compressed �le system would not be muchworse than that of Ext2fs.In order to validate this hypothesis, we ran benchmark programs and comparedthe performance of our �le system with that of Ext2fs. In this section, we describeour experiments and the results.We used a rather low end computer with a Pentium 133 MHz processor and 32MB of main memory to run the benchmarks. An IDE hard disk was used. The diskhad the following characteristics.Number of cylinders = 4385Number of sectors per cylinder = 63Number of heads = 16Disk RPM = 5400We conducted experiments to measure the time required for reading and writingone logical block of data. We compared the statistics obtained for our �le system withthat of an Ext2 �le system with the same logical block size.For this purpose we created a compressed �le system with the logical block sizeequal to 4K bytes and physical block size of 1K bytes. We also created an Ext2 �lesystem with the same logical block size. We chose a mix of �le types (C source �les,binary executables, text �les etc.,) with an aim of achieving reasonable averages forthe compression ratio. We used the LZRW1 compression technique for compressionand decompression of �le data. 13

Parameters MeasuredWe have measured the following parameters while reading and writing �les in our �lesystem. These parameters were also measured for the Ext2 �le system. All the valuesare the time taken for reading/writing a single logical block (4K). For each of theseparameters, we have measured both the CPU time and the real time.� Time for Synchronous WritesIn order to measure this time, we created �les of di�erent types (C sources, bin-ary executables, text �les etc.,) in the compressed �le system and in Ext2fs. Werestricted the size of these �les to 48K in order to avoid the overhead of indirectblocks. Then we measured the times by overwriting these �les in synchronousmode and taking the average of the obtained timings. Measuring the times whileoverwriting the �les is to avoid the overhead of writing the block bitmap and theinode bitmap onto the disk.� Time for asynchronous writesIn order to measure the time, the same setup as used for the synchronous writeswas used, except that the �les are written in asynchronous mode.� Time for unbu�ered readsIn order to measure this time, we created several �les of size 4K in the com-pressed �le system and in Ext2fs. We then rebooted the system in order toensure that the data of these �les is not in the bu�er cache. Now, each �le wasread once and averages of the measured times was taken.� Time for bu�ered readsIn order to measure this time we �rst read a �le to ensure that it was in thebu�er cache. The same �le was then read multiple number of times. This wasrepeated for several �les and the averages of the measured times was taken.� Amount of disk space savedIn order to measure the amount of saving in disk space achieved by using our14

Synchronous Writes Asynchronous WritesCPU Time Real Time CPU Time Real TimeCompressed fs 296 �secs 6852 �secs 280 �secs 1273 �secsExt2fs 131 �secs 6692 �secs 122 �secs 169 �secsRatio of Comprfs to Ext2fs 2.25 1.02 2.29 7.53Table 1: Times for WritesUnbu�ered Reads Bu�ered ReadsCPU Time Real Time CPU Time Real TimeCompressed fs 102 �secs 2106 �secs 10 �secs 79 �secsExt2fs 45 �secs 2086 �secs 10 �secs 76 �secsRatio of Comprfs to Ext2fs 2.26 1.01 1.00 1.03Table 2: Times for Readscompressed �le system as compared to the Ext2 �le system, we created two �lesystems. The �rst �le system was of Ext2 type and had a block size of 1K.The second one was a compressed �le system with a logical block size of 4Kand physical block size of 1K. We copied the /usr directory tree to both the �lesystems and used the df utility to �nd the number of disk blocks used in thetwo cases.It was observed that the Ext2 �le system used 81722 1K blocks while the com-pressed �le system used 61073 physical blocks (of size 1K). Thus there was asaving of 25.3% in the disk space. This was inspite of the fact that out of the8129 �les copied to both of the �le systems, there were 2805 already compressed�les which occupied 10100 blocks in both �le systems. Additionally, there were3045 �les of size 1K or less which our �le system did not compress.Results and AnalysisTable 1 presents the average CPU times and real times required for writing one logicalblock of data to the compressed �le system and to Ext2fs. In case of synchronousTime for Compression Time for decompression132 �secs 51 �secsTable 3: Times for Compression and decompression of 4KB data15

writes, the CPU time required for writing one logical block of data into the compressed�le system is more than twice the time that is required for a similar write into Ext2�le system. This is because of the extra time spent in compressing the data beforewriting it onto the disk. The ratio of the real times however indicate that the time lostin compression of �le data is compensated to some extent by the time gained becauseof lesser disk transfer involved.In case of asynchronous writes, the CPU times and the real times indicate that thecompressed �le system performs badly in comparison with Ext2fs. Since disk transferin this case takes place in the background by the bdush daemon, and the compressiontakes place in the foreground, the time lost in compression cannot be compensatedfor, to a signi�cant amount, by the time gained by lesser disk transfer.Table 2 presents the average CPU times and real times required for reading onelogical block (4K) of data from the compressed �le system and the Ext2fs. As seen,the CPU time required for an unbu�ered read of 4K data from the compressed �lesystem is over two times that required for a similar read from Ext2fs. This is clearlybecause of the extra time spent in decompressing the data. However, the ratio of realtimes for both the �le systems show that the time lost in decompression is almostcompensated for by the time gained because of lesser disk transfer involved.In case of bu�ered reads, since the decompressed data is already available in thevirtual memory pages, the CPU times and the real times for the compressed �le systemare equal to that of Ext2fs.Table 3 presents average CPU times taken for compressing and decompressingone logical block (4K) of data using the LZRW1 compression technique. We chose amix of �le types (C source �les, binary executables, text �les etc.,), compressed the�le data in chunks of 4K and decompressed it back, to obtain the average values forcompression and decompression.Table 3 also shows that most of the di�erence between the CPU times taken byExt2 and our �le system for reads and writes can be attributed to the CPU timerequired for decompression and compression respectively. For example, the di�erencebetween the CPU time for write in the case of Ext2 and the compressed �le system is16

about 160 �sec which is slightly more than the average CPU time required (132 �sec)for compressing a 4K block of data. Thus if more optimized, hand-coded assemblyimplementations of the LZRW1 compression and decompression algorithms are used,the di�erence between the performance of Ext2 and our �le system can be reducedsubstantially. Techniques for optimizing the LZRW1 algorithm in assembly are wellknown (see, for example, Reference [11]).From the results presented above, we see that in case of reads the performance ofthe compressed �le system is almost as good as that of Ext2fs. While synchronouswrites are also as fast as that of Ext2fs, the performance loss is signi�cant in case ofasynchronous writes.Since reads typically constitute a large majority of the �le system operations, andsince most of the read requests are satis�ed by the data readily available in the virtualmemory pages, the overall performance of the compressed �le system is not muchworse as compared to that of Ext2 �le system.ConclusionsIn this paper, we have presented the design and implementation of a Linux �le systemwith on-the-y compression and decompression of �le data.We started with the hypothesis that by using an e�cient compression techniquewhich is fairly fast, the extra time spent in compression and decompression is com-pensated to some extent by the time gained because of lesser disk access. Our ex-periments have validated this hypothesis and have shown that the performance of our�le system is comparable to that of Ext2fs. Performance of our �le system clearlydepends, to a very large extent, on the ratio of CPU speed to disk speed. Since pro-cessor speeds are increasing much more rapidly than disk speeds. the gap betweenthe performance of our �le system and that of usual, uncompressed �le systems willdecrease further. The experiments have also shown that the choice of a logical blockas the unit of on-the-y compression is a reasonable one.Hence, though disk space is not at premium these days, going for a compressed�le system to get the advantage of increased e�ective disk space at a little cost in17

terms of performance may not be a bad idea.References[1] PkWare. pkzip. http://www.pkware.com/[2] SimTel Collection. lha. ftp://ftp.cdrom.com/pub/simtelnet/msdos/arcers[3] GNU. gzip. http://www.gzip.org/[4] HewlettPackard. Doublespace.http://hpcc920.external.hp.com/isgsupport/cms/docs/lpg12045.htm[5] Macintosh. Doumentation on stacker. http://www.stac.com/pss/techmac.html[6] A Tanenbaum, Operating Systems: Design and Implementation, Prentice HallIndia, 1987.[7] Remy Card, Theodore Ts'o, and Stephen Tweedie, `Design and implementationof the second extended �le system', Proceedings of the First Dutch InternationalSymposium on Linux (1990).[8] Sandberg.R, D.Goldberg, S.Kleiman, D.Walsh, and B.Lyon, `Design and imple-mentation of the sun network �lesystem', Proceedings of the USENIX Conference,119{131 (Summer 1985).[9] Michael Elizabeth Chastain. Kernel change summaries for linux releases.ftp://ftp.shout.net/pub/users/mec/kcs/v2.0/[10] Ross N. Williams, `An extremely fast Ziv-Lampel data compression algorithm',IEEE Computer Society Data Compression Conference, 362{371 (1991).[11] Ross N. Wil-liams. Dr. Ross's Compression Crypt. http://www.ross.net/compression forup-to-date information on the LZRW* series of algorithms.[12] Mark Nelson, The Data Compression Book, M&T Books, New York, 1992.18

[13] Michael K Johnson. Linux kernel hackers' guide, version 0.7.ftp://sunsite.unc.edu/pub/Linux

19

- - -.� .�User Bu�er ::: Bu�er CachePAGESIZE Disk Block 1Disk Block nFirst Level Caching Second Level CachingCompress ReadWrite(VM Pages)O�set =O�set = DecompressO�set =PAGESIZE2*PAGESIZEO�set = 0 Disk Block 2....(n-1)*Figure 1: Bu�ering Mechanism in Linux

20

0n31 n-1Disk address of �rst physical block Number ofPhysicalBlocksFigure 2: Representation of the disk address of a logical block in an inode.
21

