
Processor Models for Retargetable Tools�
Rajat Moona

moona@iitk.ac.in
Department of Computer Science and Engineering,

Indian Institute of Technology, Kanpur 208 016

Abstract

This paper describes a methodology for developing pro-
cessor specific tools such as assemblers, disassemblers,
processor simulators, compilers etc., using processor mod-
els in a generic way. The processor models are written in a
language called Sim-nML [1] which is powerful enough to
capture the instruction set architecture of a processor.

We describe a few tools in this paper which can be retar-
geted to any processor using the high level Sim-nML model
of the processor.

1. Introduction

In applications that involve the development of applica-
tion specific processors, often there is a need to generate
various processor specific tools such as assemblers, compil-
ers, simulators etc. Often unavailability of such tools cause
the design to fail as the development of tools is a time con-
suming process and results in delay in the application de-
velopment.

The problem gets compounded in scenarios where sev-
eral design alternatives are to be explored. It essentially
involves, rewriting the tools completely as well as rewriting
the application with each design alternative. While some of
it can be simplified by having executable specifications at
a high level, the process does not yield high accuracies in
estimating costs for choosing the design alternatives.

Automatic generation of tools is an attractive option
which saves design time and is cost effective. In such a
process, the instruction set architecture of the processorcan
be described in an abstract way using a high level language
and various tools can be generated using tool generators.�This work is supported by Cadence Research Centre at IIT Kanpur,
India.

2. Related work

Several works have been reported in the literature in this
direction. Our own work is highly influenced by the nML
work done by Freerick et.al. [2]. While it is possible to
specify the instruction set architectures in the nML, it is
difficult to specify processors where multiple instructions
execute and interact simultaneously such as pipelined pro-
cessors, superscalar processors, VLIW processors etc.

ISDL [3] work by the group at MIT aims at developing
retargetable assemblers, disassemblers etc. They are also
exploring the ways to synthesize the processor out of the
ISDL specifications.

New Jersey tool-kit developed in the SLED [4] work es-
sentially uses the specification level of the instruction set
coding for the processors which can be used by the retar-
getable assemblers and disassemblers.

PlayDoh [5] architecture specification methodology de-
veloped by the HP laboratories aims at developing perfor-
mance oriented compilers for the VLIW and superscalar
processors. While SimOS [6] work is not directly relevant
here, our work has been greatly influenced by this work in
achieving high speeds of the simulation.

3. Sim-nML and Processor Models

Sim-nML [1] is a language used to describe the instruc-
tion set architecture of processors with minimal knowledge
about its microarchitecture. It is possible to use the proces-
sor models developed in Sim-nML for generation of vari-
ous processor specific tools such as assemblers, disassem-
blers, processor simulators, debuggers, functional simula-
tors, compilers etc. in a generic way.

The processor models in Sim-nML are described using
attribute grammar in a hierarchical manner. To facilitate
this, Sim-nML defines two kinds of primitive rules, namely,
op-rules and mode-rules. While op-rules are primarily used
for describing instructions within the processor, mode-rules
describe the addressing modes for the operands. A top level

1

op-rule, calledinstruction is used to describe the col-
lection of all instructions of the processor in a hierarchical
manner. There are two types of constructions supported in
the Sim-nML. Theand-rule constructions are used for the
terminal symbol definitions. Theor-rules are non-terminals
which can expand to furtherand-rules oror-rules or both.

Sim-nML supports the resource tree level specification
of the processor wherein the processor is viewed as a col-
lection of several hardware resources. As the instructions
descend the processor microarchitecture for execution, they
utilize several resources each for a pre-defined and known
amount of time. In case, a resource is not available, the
instruction waits till instructions ahead of it release there-
source. This model is extremely powerful and can capture
the timing details of modern processors such as pipelined
processors, VLIW processors, superscalar processors etc.
An example model for a superscalar processor is shown in
here (figures 1 and 2). In this processor, there are several
resources. All instructions are read by the resource instruc-
tion fetch unit (IFU). The instructions are of variable length
(16 bits or 32 bits) and accordingly take one or two units
of time at the IFU. In addition, there is a branch unit, a re-
source that is used by the branch instruction. The target
address of the branch instruction can be either PC relative
or direct addressing. There are two ALUs, both alike, and
are used by the ADD instruction (and other ALU instruc-
tions) or by the load store instructions. In addition there is
a write back unit (wb) which is used by the instructions that
need to write the result back into the registers.

In the model, two instances of the ALU resource are
available. However, the instructions that use the ALU can
use any one of these two resources. This way it is simple to
specify the superscalar model of the processor. A three way
superscalar processor with 3 integer units can be obtained
by just changing the resource declaration.

Registers are special resources declared using thereg
declaration. For each register, there are multiple read port
resources and one write port resource is declared by de-
fault. For read from the registers, any one of the read port
is needed. For writing in the register, all its read ports and
one write port are needed. This ensures that no instruction
can read the register while some other instruction modifies
the same register.

Sim-nML supports the canonical functions which are
plugged from outside by the tools. In this example (fig-
ure 1), memory access times are modeled by a simple ran-
dom number generator. It is assumed that the system has a
data cache and it takes one unit of time to access from the
cache in case of a hit to supply the data. In case of a cache
miss, the memory takes 10 units of time. In our example
model, we have assumed a 95% cache hit ratio.

This type of canonical function interface, permits very
powerful tools to be built using generic tools. For example,

an on-line cache simulator can be plugged in by making a
canonical call to the simulator in each memory access.

4. Our Approach

In our approach, we specify the processor models in
Sim-nML. The models thus developed are parsed, checked
for the errors and converted to a compact intermediate form
(IR). It is fairly simple for various tools to read the informa-
tion from the IR.

The IR is organized as a collection of tables. Each table
contain various fixed size records. A ‘table of index’ table
in the beginning provides the size and locations of the ta-
bles in the file. Thus a tool need to look at only those tables
which are needed by it and can ignore the rest of them. An
assembler for example need to find only the syntax and im-
age attributes for various instructions. It therefore can read
only those tables which provide these informations.

Figure 3 provides a typical scenario where the Sim-nML
based models are used for tools development. A tool called
irg [7, 8] is used to generate the IR specification of the
processor model from the Sim-nML based model. Various
tools and meta-tools use this IR model and corresponding
processor binaries.

5. Retargetable tools

In this section we describe various tools developed at ca-
dence research centre. All these tools work with the Sim-
nML based flow and are retargetable. The tools have been
developed keeping in mind the endian-ness of various pro-
cessors. In our approach, therefore, it is possible to have
tools developed on a processor whose endian-ness differs
from that of the target processor. For example, the disas-
sembler for the PowerPC processor generated using Sim-
nML model works on the Sun Sparc processor as well as on
the Intel x86 platform. Even the IR generated is a universal
one. Thus the IR generated on one processor can be used
for the tool generation on another processor.

5.1. Retargetable Assembler Generator

The retargetable assembler generator generates assem-
bler for a processor from its model. The assembler emu-
lates GNU assemblers for various processors. The gener-
ated assembler uses the similar pseudo operations as in var-
ious GNU assemblers. The instruction set format used by
the generated assembler is the one that is described in the
Sim-nML specifications for the processor.

The assembler generator generates several files which
are together used to generate the assembler. To compile the
generated assembler, various tools such as GNU flex and

type word =card(16)
type byte =card(8)
reg R[4, word]
reg PC[1, word]
memM[2**16, byte]
resourcesifu, bu, lsu, alu[2], wb

//Addressing Modes
mode immediate(x:word) = x
syntax= format(“%d”, x)
image= format(“%16b”, x)

moderegister(i:card(2)) = R[i]
syntax= format(“R%d”, i)
image= format(“0%2b”, i)

modedirect(addr:word) = M[addr]::M[addr+1]
uses= if “rand”()< 0.95 #1else#10
syntax= format(“%d”, addr)
image= format(“%16b”, addr)

modereg indirect(i:card(2)) = M[R[i]]::M[R[i]+1]
uses= if “rand”()< 0.95 #1else#10
syntax= format(“(R%d)”, i)
image= format(“1%2b”, i)

op instruction(x:insttype)
uses= x.uses
syntax= x.syntax
image= x.image
action = x.action

op inst type = addinstj branchj loadstore
op addinst(x:addtype)
uses= x.uses
syntax= format(“ADD %s”, x.syntax)
image= format(“00000001%s”, x.image)
action = x.action

op addtype = addRtoRj addItoR
op addRtoR(R1:register, R2:register)
uses= ifu#1, alu#1, wb#1
syntax= format(“%s, %s”, R2.syntax, R1.syntax)
image= format(“00%s%s”, R1.image, R2.image)
action = f
R2 = R2 + R1;
PC = PC + 2;g

op addItoR(x:immediate, R:register)
uses= ifu#2, alu#1, wb#1
syntax= format(“%s, %s”, R.syntax, x.syntax)
image= format(“01%s000%s”, R.image, x.image)
action = f
R = R + x;
PC = PC + 4;g

Figure 1. Addressing modes, top level in-
struction and flavors of ADD instruction

op branch(x:branchtype)
uses= ifu#2, alu#1, bu#1, wb#1
syntax= format(“JMP %s”, x.syntax)
image= format(“00010000%s”, x.image)
action = x.action

op branchtype = branchrelativej branchabsolute
op branchrelative(target:card(16))
syntax= format(“%d”, target)
image= format(“00000000%16b”, target�($ +4));
action = f
PC = target;g

op branchabsolute(target:card(16))
syntax= format(“%d”, target)
image= format(“00000001%16b”, target);
action = f
PC = target;g

op loadstore = loadj store
var tmp[1,word]
op load(r:register, l:loadmode)
uses= l.uses
syntax= format(“LOAD %s, %s”, r.syntax, l.syntax)
image= format(“00010000%s%s”, r.image, l.image)
action = f
l.action;
r = tmp;g

op loadmode = loaddirectj load indirect
op load direct(m:direct)
uses= ifu#2, m.uses, wb#1
syntax= format(“%s”, m.syntax)
image= format(“01000%16b”, m.image)
action = f
PC = PC + 4;
tmp = m;g

op load indirect(r:regindirect)
uses= ifu#1, r.uses, wb#1
syntax= format(“%s”, r.syntax)
image= format(“00%s”, r.image)
action = f
PC = PC + 2;
tmp = r;g

.

.

.

Figure 2. Flavors of Branch and Load instruc-
tions

Processor Model
in Sim-nML

IRG

Processor Model
intermediate form

Disassembler Functional
Simulator generator

Assembler

generator

ELF Binary

Disassembled
program

Binary program

Assembler
Functional

Simulator

Assembler
program

ELF binary

Figure 3. Typical flow for the Sim-nML based
development

GNU bison are used. The output of the generated assem-
bler are the binary in the ELF [9] format and various list
files. The ELF standard specifies certain processor specific
values for the relocatable variables. To implement this, the
assembler generator uses an external configuration specifi-
cation and generate such relocation information. The gen-
erated assembler is a traditional two pass assembler.

5.2. Retargetable Dis-assembler

The retargetable disassembler uses the intermediate rep-
resentation of the processor model and performs full sym-
bolic disassembly of an ELF binary program for that pro-
cessor. The disassembler performs various analysis on the
binary program. The first analysis is to find out the code
and data area. To do so, the disassembler first finds out the
code blocks. The algorithm given in figure 4 is used to do
that. The algorithm works as follows. From the ELF binary,
first find out the addresses of various functions in the pro-
gram. This information is stored in the symbol table section
of the binary. Assuming that each of these will be starting
point of the code block, the code is traced till a branch in-
struction is found. The branch instruction is used to denote
the end of the code block. A call instruction provides an-

From the binary file, extract the addresses of
various functions;

put these addresses in startcodeblock list;
i=0;
while startcodeblock list is not emptyf
//take out the address from the list
address = listout(startcodeblock);
codefragmentstart[i] = address;
follow binary till an instruction that changes PC;
if a call instruction then
put the target address in startblock list;

else
codefragmentend[i] = address of the

current instruction;
i = i+1;g

Generate label for each codefragmentstart;
Merge adjacent codefragments into one;

Figure 4. Code block identification for the dis-
assembler

other starting point of a code block. The process is repeated
as long as there is any untraced starting address. For each
starting point, a label is used which is either the name pro-
vided in the symbol table of the binary file or the one that is
generated internally by the disassembler.

In the second part, the data analysis is done. Depending
on the access pattern of the data, it is defined as byte array
(.byte pseudo op), or a word array, or string of characters
etc.

The third part of the analysis involves the generation of
the assembly language program using the binary program.

At all steps, the Sim-nML specification is used to iden-
tify various instructions. For example, the branch instruc-
tions are the ones that modify a program counter register
in the Sim-nML specifications. The call instructions are
the ones that save the program counter before modifying.
These heuristics, though prone to failure, work wonderfully
for most programs.

5.3. Retargetable Functional Simulator

The retargetable functional simulator [10, 11] takes a bi-
nary program for a processor and ‘compiles’ it into a C pro-
gram that is functionally equivalent to the binary program
running on the processor. Essentially, for each instruction
in the binary program, corresponding C code fragment is
generated that simulates the action for the instruction. The
functional simulator take the processor model in its inter-
mediate form and a processor binary in ELF to generate a

functionally similar C program. The generated functional
simulator program (fsim.c) contains the following.

1. A set of functions, one for each instruction in the in-
struction set description of the processor.

2. An initialized table of function pointers, along with the
parameters. The table contains the instructions for the
programs including the operands as parameters.

3. The memory image of the program initialized from the
binary program.

4. Registers and other memory elements of the processor
constituting the visible state of the processor. These
are mapped to the host data structures.

5. A driver routine that initializes the memory and regis-
ters and calls the first and subsequent functions stored
in the function pointer table. Thus it implements the
program’s functional simulation.

In the generated simulator, various calls to the library
functions can be routed to other functions in the host pro-
gram. This is achieved by a configuration file that speci-
fies the way the parameters are passed. The generator then
appropriately calls the routed function passing parameters
from the target address space. Similarly the values returned
are put back into the target address space. Thus it is pos-
sible, for example, to route theprintf andscanf func-
tions in the target code, to the host functions that will do the
input output on the host and pass the values to the target.

The simulation speeds for this simulator exceed 1 MIPS
on host processors like 233 MHz Pentium for a PowerPC
603 model[10].

Various other tools have been developed around the
functional simulator. These include, the instruction trace
generator[10], code instrumentation tool[8], on-line cache
simulation[8] etc.

5.4. Retargetable timing simulator

The timing simulator takes the processor binary and
simulates each of its instruction while applying the re-
source graph model of the Sim-nML. As the instructions
descend the processor microarchitecture they utilize various
resources. The simulator takes a model wherein all instruc-
tions of the program are enabled to execute. However, be-
cause of the resource conflicts all instructions can not be al-
lowed to execute. In such cases, the simulator takes instruc-
tions in the program order of execution and makes other
instructions wait. The data dependencies are captured by
assuming that the registers are also the resources. With the
speeds of the simulation being around 4000 instructions per
second, the simulator is rather slow and the work is going
on to speed it up further.

5.5. Retargetable Compiler Back-end generation

This work, though in a very early stage, aims at generat-
ing the GNU.md files which are the machine description
files for the GNU C compiler. Our aim here is to be able to
generate most of the back-end automatically and resort to
the manual generation of various routines such as floating
point library etc.

5.6. Retargetable Processor Synthesis

We are also aiming at the automatic synthesis of the pro-
cessor from its instruction set architecture description.We
intend to synthesize the datapath as well as the controlpath
of the processor. This work is again in very early stage.

6. Conclusion

We have shown the effectiveness of the high level pro-
cessor models in developing various retargetable processor
specific tools. With the increase in the number of applica-
tion specific processors, this approach provides a very at-
tractive solution to the tools generation problem.

We have developed the processor models for the Pow-
erPC 603[12], Motorola 68HC11[13], Intel 8085[14] pro-
cessors. Various tools developed work for all such proces-
sors. Currently we are also developing processor models for
Sun Sparc[15], ARM[16], DLX[17] and ADSP 2100 [18]
series processors.

Much of the information about the work is available at
http://www.cse.iitk.ac.in/sim-nml . Various
tools are also available in public domain downloadable from
the same site.

Acknowledgement
The author would like to acknowledge Prof. S.K. Aggar-

wal, Prof. Deepak Gupta, V. Rajesh, N. C. Jain, K. Krishna,
Y. Subhash Chandra, Rajiv A.R., Sarika Kumari, P. Pogde
and others in the Cadence Research Centre for their contri-
bution in the Sim-nML based projects and to make them a
reality.

References

[1] V. Rajesh, A Generic Approach to Performance Mod-
eling and its Application to Simulator GeneratorMas-
ter’s thesis, Department of CSE, IIT Kanpur, 1998.

(http://www.cse.iitk.ac.in/research/

mtech1996/9611132.html).

[2] M. Freerick,The nML Machine Description Formalism,

http://www.cs.tu-berlin.de/˜mfx/

dvi docs/nml 2.dvi.gz , 1993

[3] G. Hadjiyiannis, S. Hanono and S. Devadas,ISDL: An
Instruction Set Description Language for Retargetabil-
ity, Proceedings of the 34th Design Automation Con-
ference, 1997.

[4] N. Raksey and Fernandez,Specifying representations of
machine instructions, ACM transactions on Program-
ming Languages and Systems, 19(3), May 1997.

[5] Vinod Kathail, Michael Schlansker, B. Ramakrishna
Rau, HPL PlayDoh Architecture Specifications: Ver-
sion 1.0 HP Laboratories Technical Report, HPL-93-
80, February 1994.

[6] Mendel Rosenblum, Edouard Bugnion, Scott Devine
and Stephen A.Herrod,Using the SimOS Machine Sim-
ulator to Study Complex Computer Systems, ACM
Transactions on Modeling and Computer Simulation,
Jan 1997, vol. 7, no. 1, pp. 78-103.

http://simos.stanford.edu

[7] N.C. Jain, Disassembler using high level processor
models, Master’s thesis, Department of CSE, IIT Kan-
pur, 1999,

(http://www.cse.iitk.ac.in/research/

mtech1997/9711113.html)

[8] Rajiv A.R., Retargetable Profiling Tools and their Ap-
plication in Cache Simulation and Code Instrumenta-
tion, Master’s thesis, Department of CSE, IIT Kanpur,
1999.

(ftp://www.cse.iitk.ac.in/pub/moona/sim-

nml/simnml-rajiv-thesis.ps.gz)

[9] Executable and Linkable Format (ELF), version 1.1,
Tools interface Standards (TIS), Portable formats spec-
ifications.

[10] Subhash Chandra, Rajat Moona, Retargetable
Functional Simulator Using High Level Proces-
sor Models, Proceeding of 13th International
Conference on VLSI Design, January 2000.
(ftp://www.cse.iitk.ac.in/pub/moona/sim-nml/simnml-
fsimg-vlsi2000.ps.gz)

[11] Y. Subhash Chandra,Retargetable functional simula-
tor, Master’s thesis, Department of CSE, IIT Kanpur,
1999,

(http://www.cse.iitk.ac.in/research/

mtech1997/9711121.html)

[12] IBM Microelectronics and Motorola,PowerPC 603
RISC Microprocessor User’s Manual, 1995.

(http://mot-sps.com/powerpc)

[13] Motorola Inc.,M68HC11 Reference Manual, 1994

(http://mot-sps.com/mcu/documentation/

pdf/hc11rmr3.pdf)

[14] Gaonkar R.S., Microprocessor Architecture, Pro-
gramming and Application with 8085/8080A, New Age
International Publication, 1995

[15] David L. Weaver, Tom Germond,The SPARC Archi-
tecture Manual v9, Prentice Hall, 1994.

[16] D.V. Jaggar, Advanced RISC Machines Architecture
Reference Manual, Prentice Hall, London, 1996

also,http://www.arm.com/ .

[17] J.L. Hannessy, D.A. Patterson,Computer Architec-
ture: A Quantitative Approach, Morgan Kaufmann
Publishers Inc., 1996.

[18] Analog Devices Inc.,ADSP-2101/2 User’s Manual,
1988.

