
Migrating Software to Hardware on FPGAs

Russell A Klein

Mentor Graphics Corp.
[russell_klein@mentorg.com]

Rajat Moona
Indian Institute of Technology Kanpur

[moona@iitk.ac.in]

Abstract

The demands on embedded processors are growing
faster than CPU developers can respond. This has lead
to a number of academic and commercial processors,
such as Tensilica [13, 14] and ARC [15], which allow
hardware extensions in the form of new instructions to
improve the overall throughput. Unfortunately, it is
rarely obvious at the application level which new
instruction would accelerate a given function. This paper
proposes a design flow that migrates performance critical
sections of software into hardware by automatically
creating application specific hardware blocks that
accelerate the overall software execution. The hardware
implementation of the function is interfaced to the
general-purpose processor, which runs the remainder of
the software. Targeting FPGA fabric maintains the re-
programmable nature of the algorithm that was originally
in software. We will present our results on using this flow
on the G.729 audio encoding algorithm.

1. Introduction

Designers of embedded systems often face a problem
where the final design of the system fails to meet the
expected performance. The problem is often resolved by
one of the several “hacks”, including migration of
software functionality to the hardware. We are proposing
a design methodology that allows designers to efficiently
migrate functions from software as part of the body of
embedded code running on a general purpose processor to
an efficient implementation in FPGA gates as a means of
accelerating the overall throughput of the system. Such
an approach is extremely useful for prototype systems,
platform FPGAs with embedded processors and finally in
the product realizations. Our proposed methodology starts
with a system that is implemented on an FPGA with an
embedded processor (either hard or soft) containing both
hardware and software - the hardware represented at the
register transfer level (RTL) in a hardware description
language (HDL) and the software as executable image.
This system is profiled to determine the overall

throughput and the time spent in individual software
functions. Using this profile the designer determines the
functions that are taking the most time in software. Using
an estimation tool, the designer tests moving various
functions from software to hardware. The estimation tool
shows the designer the area that will be taken by the
function in hardware and the amount of computation and
communication time consumed by the function in
hardware on a specific interface to the processor. This is
compared with the time the various functions took in
software on the processor. Once a function or a set of
functions is selected, an automated tool will convert the
software from a procedural language representation, in
this case C, into a synthesizable RTL HDL representation.
A software function is automatically created that interface
the remaining software on the processor to the Hardware
function that has been created. Finally, a verification
testbench with stimulus and expected responses is created
for the new HDL implementation.

Profiler

code
Executable

Profile Viewer
Profile

Source Code

Identified C Function

HDL
Code

Software
Driver code

Verification

Input−Output
Behavior

HW Compilation

Figure 1. The design flow

2. Related Work

There are numerous academic and commercial tools
that convert modified versions of software programming
language source into an HDL representation suitable for

RTL synthesis. These include Handle-C from Oxford
University [4] and Spec-C from the University of Irvine
[5] and a host of others [1, 2, 3, 6, 7, 8, 9, 16]. Generally
they have started with the C language and targeted either
the VHDL or Verilog language. Since C has no notions
of parallelism or the passage of time, these concepts are
added, either as extensions to the language (or via
“pragmas”) or are built into the tool and annotated by the
programmer against the original C description. In effect,
these tools allow a designer to use a software
programming language as a hardware description
language. This can be quite useful when the original
implementation of an algorithm is in a given
programming language, assuming that the performance
and area constraints can be met by the tool. Some other
approaches [12] perform extensive analysis of the
program to come up with the hardware to be
implemented. Also, an interesting idea has emerged from
Carnegie Mellon University (CMU) [11] to seamlessly
migrate software functions into hardware while providing
a facility to allow the hardware to make system calls into
an RTOS.

However, describing hardware and writing software
are two quite different tasks and they are not easily
interchangeable. Using code that was originally written
as software, and simply compiling it through a converter
to synthesizable HDL rarely (and only coincidentally)
produces satisfactory results when compared with what a
skilled hardware designer could achieve. Writing Spec-C
or Handle-C for an efficient hardware implementation
requires a different skill set than writing a C program to
be run on a general purpose processor.

3. Software to Hardware Migration

The input to our approach is software, as it would be
written for an embedded system - not a modified or
extended language. For the purposes of this paper the
specific language used will be ANSI C, but the same
concepts should apply to any programming language. We
will note the exceptions to the ANSI C standard, which
cannot be supported by our approach. Our design flow
will build on the existing C to VHDL tools, specifically
Bach-C from Oxford University [18].

3.1 Bach-C

Bach-C system has several features which make it
attractive to use in our design flow. Firstly, it performs a
control flow analysis to schedule as many operations in
parallel as possible subject to the constraint on the

hardware use. There are several controls that can be
described using the code annotations (using pragmas) to
control the C to RTL conversion for speed or for space.
The system can identify the parallelism within the loops
and can pipeline the loop execution making the generated
hardware efficient.

3.2 Limitations

Bach-C had a number of limitations on the ANSI C

that it would support, we extended the Bach-C compiler
to address many of these, but there are still several C
constructs that we do not support. Because the algorithm
is converted to a complete hardware implementation (as
opposed to a programmable architecture and a program)
there is no stack, thus all programming structures that rely
on the stack cannot be supported, these include variable
argument lists and recursion. The “goto” keyword is not
supported – support for this could cause inefficient
hardware to be created. The union operator is not
supported, this was simply a matter of time. Finally, real
floating point is not supported – our approach
automatically converts floating points to fixed-point
numbers. In many cases this yields a more efficient
implementation, but if the application needs actual
floating point values then it cannot be supported by this
approach.

3.3 Implementation Efficiency

Even though the implementation created by the Bach-

C compiler does not reach the performance that skilled
hardware designers create, we believe that it will be
adequate to significantly improve the throughput of the
overall system.

In our experience, a hardware implementation
automatically created by a high-level synthesis program,
such as Bach-C, runs the algorithm in hardware at least 20
times faster then the same algorithm running on a general
purpose processor such as ARM926ejs or PowerPC
405d5. A skilled hardware designer may be able to
improve on this implementation, in some cases, by as
much as a factor of 10. However such a handcrafted
solution would improve system throughput only
marginally as shown in Figure 2. In general, any further
performance improvements than what is obtained through
automated tools will provide only minimal impact to the
overall performance of the system with diminishing
returns for the effort.

Figure 2. System Speedup vs. Speedup due to the migration of the
functionality to hardware. Each curve corresponds to different
percentage of total time consumed by the software functionality being
considered for migration

4. Profiling the System

Our design flow begins with getting a detailed profile
of the system being developed. This profile includes
artifacts of code execution, specifically the entry and exit
from all software functions and all branch instructions
that are taken. From this set of data the complete flow of
the program can later be reconstructed. On function entry
the input parameters of the function are logged and on
exit the return value is logged. The profile also includes
all memory transactions from the processor core to any
local caches as well as all memory transactions from the
caches to main memory. Finally, the profile includes the
bus traffic on buses specifically identified by the designer.

This profile is initially used to determine the amount
of time spent on different software functions over time as
the system executes. We built a viewer system that
allows the design to view this profile data in a number of
ways to help identify candidate functions for conversion
to hardware. One viewer shows the code profile. It
shows the percentage of time spent in each function,
much like code profilers found on general purpose
desktop computers like gprof [19]. The major difference
being that the designer can specify an arbitrary starting
time and end time for the profile. Quite often, at least in
embedded systems, it is important to see the profile
during specific operations and not from the start of code
execution to the end of code execution. Another view
shows a Gantt chart of the software execution by function
over time. This provides the designer with a view of how
the software is executing over time.

We collect our profile data using a commercial
simulation environment called Seamless from Mentor
Graphics [10]. This is a tool that includes an HDL
simulator for the external logic of the design and an
instruction set simulator (ISS) for the software running on
the processor. This tool has a number of optimizations
that allow for execution of the design faster than

traditional logic simulations [20]. However, even while
taking full advantage of these “optimizations” this
environment ran quite slowly, sometimes requiring runs
greater than 48 hours. This tool did give us the ability to
non-intrusively collect data on the system operation
needed for later analysis. The same data could have been
collected off an FPGA evaluation board like the ML-300
from Xilinx [21] and we are looking into ways to perform
this data collection as part of our future work.

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120

Speedup of Identified Function

Sy
st

em
 S

pe
ed

up

0.5
0.66
0.75
0.8

5. Performance Estimation

Once the candidate functions have been identified, the
next step is to determine the impact of migrating the
function from software to hardware. There are three areas
that need to be considered, the area in FPGA resources
that will be consumed by the hardware implementation,
the time in clocks (at a given frequency) that the function
will take to complete in hardware, and finally, the
communication overhead associated with having the
function in hardware. When considering the
communication overhead, the existing load on the
communication paths should be included in assessing the
overall performance. Estimation of these items is
performed in the following manner. First the embedded C
function (or set of functions) is wrapped in a Bach-C
function. Bach-C implements a set of extensions to the
ANSI C standard. These extensions introduce “channels”
as a way of describing hardware type interfaces between
functions. We developed a utility that reads the program
signature from the C file and creates a Bach-C wrapper
that implements registers of an appropriate size for the
input parameters, the return value (if not a “void”), any
output parameters (output parameters are those passed by
reference). There is also a 1 bit register added as a “busy”
semaphore, a 1 bit register as a ready bit – signifying that
the inputs are in place and processing can commence, and
a done bit, which is written by the function after the return
value and outputs have been registered. This Bach-C
wrapper is then put around the ANSI C function and the
result is run through the Bach-C compiler and it is
directed to generate a cycle accurate model in C, but at
the RT level of detail. Thus all of the state machines and
control logic that will end up in the final implementation
are created, but the output language is C and not VHDL.
This C code describes the hardware in a way that is quite
similar to System-C [22]. While this implementation is
constructed, it uses a characterized version of the FPGA
synthesis library to determine the size of the
implementation. As Bach-C goes through the compilation
process, it records the number of functional units used,
(LUTs, multipliers, etc.) and reports this usage at the end
of the compilation. This provides an estimate of the area
that will be consumed by the function in hardware. Most
RTL synthesis tools can provide further optimizations

than Bach-C, so this estimate generally ends up being 5 to
10 percent higher than the final implementation.

To estimate the performance, the cycle accurate C
model created by Bach-C is run in a simple cycle
simulator. The inputs to the function, which were
collected as part of the performance profiling step are
passed as inputs to the input registers and the function is
executed and the results are received and compared
against the results that were received when the code was
run as software. This verifies that the behavioral
synthesis transformation resulted in a correct
implementation. Also, since the simulation is clock cycle
accurate, this provides an accurate measure of the time in
clock cycles that the function will take when implemented
in hardware. This takes into account all of the data
dependent computation time, since the same input values
are presented to the hardware block as we processed when
the function was implemented in software. We must
stress here that to draw a valid conclusion on which
function to migrate requires that a representative set of
data be run through the simulation of the system when the
profile is obtained.

To determine the communication overhead, the
interface to the processor needs to be known, as well as
some of the characteristics of the software interface. The
software interface is created at the same time that the
Bach-C wrapper is created, so the number of transactions
and their attributes are known at this time. Using this
data, along with the bus loading from the system profile,
the communication overhead can be computed.

To present the performance data to the designer, a new
performance profile is created which can be viewed by
the viewing tool referenced above. This is done by
removing all data from the original performance profile
associated with the function in software and then
replacing it with the new performance data collected
during the cycle simulation of the C model. In this way,
the designer can quickly see the impact of the change to
the overall system. This method requires simulation of
only those parts of the design that are to be changed, thus
it is much faster to observe the results. There are some
second and third order effects which are not taken into
account by this method; in most cases these effects are
inconsequential. One area where this estimation method
would fail is if hardware related events were moved from
one time-slice given to an RTOS task, where the RTOS is
operating in a pre-emptive mode. In this case a small
change in the timing of software events in a give task can
have large effects on the operation of the system.

It is essential to determine the performance of the
system with the new hardware. While the function being
converted is almost certain to run significantly faster than
a software implementation, when the overhead of
communication, data transfers and bus loading are

considered not all functions will end up going faster in
hardware than in software.

6. Implementation

Once the candidate functions have been identified and
the performance gain has been estimated, the next step is
to go to implementation. This involves creating the
synthesizable HDL for the function, a connection to the
appropriate interface on the processor, and the replacing
the software function with the created software interface.

The first step in going to implementation is creating
the synthesizable HDL. For this the Bach-C compiler is
used on the created Bach-C file. This time, instead of C,
synthesizable VHDL or Verilog is created. There are a
number of options for the creation of the HDL to allow it
to conform to a number of coding styles and standards.
Next, an HDL wrapper is created that combines the
parameter and control registers of the created hardware to
a synchronous SRAM type interface. Each of the
parameter registers is assigned an address. A local
decoder directs data to the appropriate register off the data
input bus. A multiplexer is used to drive the outputs to the
data output bus. This synchronous SRAM (SSRAM)
interface is then wrapped in a bus wrapper to a standard
bus. We have created bus wrappers for the ARM AMBA
interface, ARM TCM and ARM co-processor interface in
addition to the PLB and OCM interfaces that exist on the
Xilinx VirtexIIPro and to the FIL interface for the
MicroBlaze. An extensible interface was defined so that
new bus interface modules can be easily added by the
designer for additional bus support. For ease of
integration with the rest of the circuit, for Xilinx devices,
the component is packaged as a Xilinx Platform Studio
component, where it can be “dragged and dropped” into
the circuit [23]. From that point, on the hardware side,
the remainder of the implementation uses the standard
FPGA vendor tools.

A software function is created which has the same
name and signature as the function being migrated. We
call this function, the hardware driver. Instead of
performing the computation of the original function, it
handshakes with the hardware implementation, passes the
input values to the hardware and retrieves the results. The
original software function needs to be removed from the
application and the new hardware driver function needs to
be put in its place. In this way there are no other changes
needed to the overall body of software.

The hardware driver function, when invoked, acquires
a lock on the hardware function. This is implemented in
the Bach-C wrapper as a hardware semaphore, which is
set when it is read. This is done to prevent multiple
threads of an RTOS or multiple CPUs from accessing the
same non-reentrant hardware simultaneously. If the
hardware is unavailable, the software can either wait for

the hardware to be released, or if it is being run on an
RTOS it can relinquish its thread. Once the lock is
acquired, the input parameters are written to the
appropriate registers. Then the “go” bit is set. The “go”
bit signifies to the hardware that all input parameters are
set and processing can begin. The hardware block will
complete the processing and write output parameter and
the return value to the output registers and then set the
“done” bit. The software either polls the done bit, or if it
is part of an RTOS it relinquishes its thread until the
processing is done. Once the done bit is set, the results
are picked up by reading the output registers. Finally, the
lock is released by clearing the semaphore.

The polling type interface that is created, while very
inefficient, was easily created and guarantees correct
operation. It is easily modified by the software designer
to a more efficient interface. In some cases the polling
interface is preferred, this will be the case if the function
completes in a very few clocks. For functions that take an
intermediate number of clocks it is most desirable to have
the CPU perform software functions in parallel with the
hardware function. For very long functions, an interrupt
driven function would be ideal. Even though we generate
the interrupt in the hardware, we do not use it in the
generated hardware driver function primarily due to the
complexity and lack of standardization surrounding
interrupts driven systems. Our future work will include
analysis of the software running on the general purpose
processor to automatically find opportunities for
parallelism. For now, running software in parallel with
the hardware function needs to be done manually by the
designer.

Pointers and arrays in the software function can be
handled in a couple of different ways. In one case, the
pointer may be passed to the hardware block, and the
hardware block will then use the pointer as an address and
dereference it through a bus master interface that is added
to the hardware function. Alternatively, the software
interface can copy N bytes from memory pointed to by
the pointer at the start of the function and copy back the
same N bytes at the conclusion of the function. If the data
pointed to by the processor is referenced frequently it is
better to copy the data to the hardware block, as the
current implementation does not have facilities for the
hardware block to maintain local caches. If the data is
sparsely or infrequently referenced, then it is better to
pass the pointer to the hardware block and allow the
hardware to perform the references directly. If the data is
referenced by the hardware block it is important to make
sure the data is not in the processor’s cache – as the
hardware block will not have access to the current version
of the data.

The syntax that used to direct the tool to handle the
pointer in these two ways is to put N in the function
signature. For example if a function dct has a buffer of 64

short integers that we want to copy down to the hardware
block because the data is referenced frequently we would
define the function as

void dct(short buf[64])

This is referred to the “copy” syntax. The observant
reader will immediately note that a simple DMA device
can be constructed by converting “memcpy()” to a
hardware block. Alternatively, if we wanted to add a bus
master interface to the hardware block and have the
hardware reference the data directly we would use the
unbounded array or pointer syntax such as one of the
following.

void dct(short *buf)

void dct(short buf[])

For values that are returned from a function as
parameters, rather than the return value, the “copy” syntax
could be used. For example a function that returns an
integer value by reference would be defined as follows:

int foo(int output_param[1])

All of these are legal C syntax, and do not interfere with
the development or testing of the code. In cases where
the connection to the processor is through a local memory
bus or a co-processor type interface a bus master cannot
be added to the hardware block. In such cases, the
hardware function will not be able to dereference the data.
For such interfaces only the copy syntax is supported. It
may be noted that even when the hardware block uses the
bus master interface to dereference, the software block
running on the CPU can work concurrently on some other
part of the code. As with any multiple master design, the
CPU and the hardware block may collide for the bus and
will arbitrate before assuming the mastership. As a
recommended design practice, the hardware block must
be given precedence over the CPU to get the bus access.

7. Verification

Once the new HDL is created through an automated
process, it needs to be verified. In typical design cycles
today verification takes significantly more effort than
design [24]. Through the data that was collected as part
of the performance profiling we have the input values to
each invocation of the converted function and the return
value. If the function performs a pointer dereference
these accesses to memory have been recorded as well.
For memory accesses we verify only that the last memory
write to any memory location from the hardware device is

the same as the last memory value written by the software
implementation. This ensures that the memory image of
the system is the same after either the hardware or
software implementation is run. Certain memory locations
may be I/O devices, where the number and order of
memory cycles is significant. For this we allow the
designer to designate memory regions as “volatile”. For
all volatile memory accesses the verification program
ensures that the number and order of memory accesses is
maintained by the hardware implementation. 0 20 40 60 80 1

Lag_max

Pitch_ol

D4i40_17

ACELP_Codebook

L_mac

Coder_ld8k

data_init

_zero_init

_move_region

__rt_entry

ResetHandler

00

8. Results

In our approach, the designer is quickly able to
convert the software to the hardware and assess the
impact on the performance. Thus this permits him to do a
“what-if” analysis for fine tuning the design. We have
applied this system to a number of algorithms, which are
accessible in the public domain. In this paper we present
the results for the G.729 audio encoder [17].

8.1 G.729 Audio Encoder

The G.729 audio encoder [17] is a compute intensive
algorithm which encodes audio data at rate of 8 KHz. It
uses conjugate structure algebraic-code-excited linear
prediction (CS-ACELP). The source code for a reference
algorithm can be found at http://www.itu.int.
Running this code as provided by the International
Telecommunications Union (ITU) on a MicroBlaze
processor requires 10.3 millions clocks to process one
buffer of 80 8-bit data samples. The profile of function
usage is shown in figure 3. Almost 40% of the load on
the CPU is being consumed by the function L_Mac().
This is a relatively small function which takes two
parameters as input and returns a single value. On
average, this function takes 91 clocks to complete (using
the test datasets provided by the ITU). When converted
to hardware this function can be completed in 4 clocks
cycles. Added to this time is the time required to pass the
data to the function and the time to pick up the result.
From the processor to the FPGA fabric using the main
processor bus through a memory mapped interface adds 8
clocks per access (in our circuit, other configurations may
vary). There is a minimum of 6 accesses that need to be
made to complete this function if the semaphore is used.
This reduces the function to 48 clocks, since the 4 clocks
of computation in hardware are run in parallel with the
accesses. This yields a 19% improvement in throughput.
However, in an implementation if it is known that more
than one thread cannot access the hardware block at the
same time, the hardware semaphore implementation can
be avoided. This then results in a 25% increase in
performance of the audio decoder.

Figure 3. Code Profile, cumulative by function

A higher performance interface is available on the
MicroBlaze processor, the FIL interface. This provides a
co-processor like interface where a single instruction can
move data to and from a non arbitrated interface. Since
this function does not dereference a pointer, it can be put
on this interface. Accesses on this interface take 2 clocks
(again, on our design). The total time to run this function
using this interface is 12 clocks. This is an 87%
improvement in the throughput of this function, and gives
a 35% improvement in throughput for the overall
application.

Using the different interfaces on the hardware side is a
simple means of selecting a different HDL “wrapper”
which goes between the processor and the hardware
block. On the software side, the interface function is the
same for both interfaces; the code that accesses the
registers of the hardware is a set of C macros. A different
header file is included for each interface, which provides
different macros that will access the hardware in the
appropriate manner. For memory mapped registers, the
macros provide a dereferencing of an offset from the base
address of the hardware block. In the case of the FIL
interface, the macros provide the required in-line
assembly language statements that read and write to the
FIL interface.

With the function L_mac() moved to hardware, using
the FIL interface the encoder runs 35% faster. Profiling
the new configuration of hardware and software shows
that the function ACELP_Codebook() takes
approximately 25% of the remaining time on the
processor. The ACELP_codebook() function is
comprised of 3 main functions, D4i40_17(), Cor_h(), and
Cor_h_X(). D4i40_17() takes about 17% of the
remaining time, with Cor_h() and Cor_h_X() taking about
5%. Each of the three functions was converted
individually.

The function D4i40_17() had two changes to the
source code that were required before the code could be
synthesized correctly. First, in the main body of the
function, there is “goto” which is used to exit the function
after a maximum number of iterations. This goto was
eliminated by converting the code to use if-then-else
constructs. The second change was to eliminate potential

http://www.itu.something/

recursion in the code. The shift left function, L_shl(),
calls the shift right function, L_shr(), when passed a
negative parameter as the shift, and the shift right function
calls the shift left function when passed a negative
parameter. While this never actually causes recursion in
the code, the static analysis performed by the Bach-C
compiler find this potentially recursive path. Copying
parts of the shift left function into the shift right function
(and vice versa) eliminated this problem. The remainder
of the code was converted at it was received from the
ITU.

The software implementation of the D4i40_17
function takes approximately 1.5 million clocks to
complete. In hardware it takes about 129,000 clocks to
complete. As stated earlier, a skilled hardware designer
could implement this function to take less time, but after
conversion it amounts to less than 1% of the total time
processing time for the algorithm.

Among the parameters to D4i40_17 are several arrays.
Because these variables are reference frequently in the
algorithm, the copy interface is used. Since the array
parameters are only input or output parameters only it is
not necessary to copy both to and from the hardware
block. Through “pragmas” the arrays are defined as input
or output arrays, and they are only copied when needed.
Likewise on the Cor_h() and Cor_h_X() functions the
arrays are passed by copy.

Cor_h and Cor_h_X are not dependent on each other,
that is they can be run in parallel. This is not done
automatically by the tool, but the software interfaces that
communicate with the block can easily be broken down
into “start” and “end” functions. In this way, the
hardware for Cor_h() can be started – that is to write the
input parameters to the input registers and write to the
start bit. Then the hardware for Cor_h_X can be started.
Then the results for each be picked up. In this way the
greatest performance increase can be achieved. Although
it requires restructuring the code, a similar approach can
be used to run the CPU and the hardware blocks in
parallel. This will effectively reduce the time for a
function to be executed in hardware to the time to initiate
the operation.

With D4i40_17, Cor_h, and Cor_h_X converted to
hardware the system runs 22% faster. The combined
effects of moving the 4 functions, the previous three plus
the L_mac function, provides a 50% speed up for the
algorithm. Only minimal code changes were required to
one of the functions to achieve these results. The time
required to perform this repartitioning of the system is a
matter of a few days.

9. Conclusion

The approach presented allows embedded system

designers to postpone some of the hardware/software

partitioning decisions when implementing systems that
include FPGAs with embedded processors. Certain
functions can be implemented in software and quickly
migrated to software if the performance is found to be
inadequate for the application. We believe that through
out quick turn-around methodology, a designer is
empowered to explore different alternatives to reach to an
acceptable design. With programmable hardware such as
FPGAs this will also enable him to quickly prototype the
design and evaluate different alternatives to improve the
system performance. Our system will estimate the area
and performance, including the communication overhead.
A synthesizable implementation will be created, as well
as the desired hardware and software interfaces. Finally,
a verification testbench with stimulus and expected results
is created from an earlier simulated execution of the
system. Our results show that the throughput of a system
could potentially doubled by utilizing the FPGA fabric to
implement functions originally in software

References

[1] Synopsys Inc., “CoCentric SystemC Compiler”,

http://www.synopsys.com

[2] Jon Connell, Bruce Johnson, “Early Hardware Software

Integration Using SystemC 2.0” Embedded Systems
Conference 2002, San Francisco, 2002

[3] Celoxica Ltd., “C to RTL, Software Compiled System

Design”, http://www.celoxica.com, Oxford, UK

[4] S.M. Loo, B Earl Wells, N Freije, J.Kulick, “Handel-C for

rapid prototyping of VLSI Coprocessors for Real Time
Systems”, Proceedings of the Southeastern Symposium on
System Theory (SSST-2002) pp.6-10, Huntsville, AL,
March 18-19, 2002

[5] D. Gajski, J. Zhu, R Domer, A Gerstlauer, S Zhao, “Spec

C: Specification Language and Design Methodology”,
University of California at Irvine, 1999

[6] Giovani De Micheli, “Hardware Synthesis from C/C++

Models”, Proceedings of Design Automation and Test
Europe (DATE) pp.382-383, 2003 Munich, Germany

[7] Guido Arnout “C for System Level Design”, Proceedings

of Design Automation and Test Europe (DATE) pp.384-
386, 2003, Munich, Germany

[8] CoWare Inc., “CoWare N2C Products”,

http://www.coware.com

[9] Critical Blue, “Cascade Design Tools”, Edinburgh, UK

http://www.criticalblue.com

[10] Mentor Graphics Corp., “Seamless Hardware Software Co-

verification”, Wilsonville, OR,
http://www.mentor.com/seamless

http://www.synopsys.com/
http://www.celoxica.com/
http://www.coware.com/
http://www.criticalblue.com/
http://www.mentor.com/seamless

[11] Mihai Budiu, Mahim Mishra, Ashwin R. Brarambe, Seth

Copen Goldstein, “Peer-to-peer Hardware-Software
Interfaces for Reconfigurable Fabrics”, Proceedings of the
IEEE Symposium on Field Programmable Custom
Computing Machines 2002 (FCCM) Napa, CA 2002

[12] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau,

D. Cronquist, M.Sivaraman, “PICO-NPA: High Level
Synthesis of Non-programmable hardware accelerators”,
Technical Report HPL-2001-249, HP Labs, October 2001

[13] S. Liebson, “SoC Logic Development Using Configurable,

Application Specific Processors”, International Symposium
on SoC 2003, Tampere, Finland, November 19, 2003

[14] Tensilica Inc., “The Xtensa Processor”,

http://www.tensilica.com Santa Clara, CA

[15]ARC Ltd. “ARC-700 Processor”,

http://www.arc.com/products/soc/microprocessors/arcproce
ssors/arc7_processor.html

[16] A. Singh, A. Chabra, A. Gangwar, B. Diwedi, “SoC

Synthesis with Automatic Hardware Software Interface
Generation”, VLSI Design 2003, Delphi, pp. 585-590,
January 2003

[17] International Telecommunications Union (ITU) “Coding of

Speech at 8kbits/s using Conjugate-Structure Algebraic-
Code-Excited Linear-Prediction (CS-ACELP)”, ITU-T
Recommendations G.729, March 1996

[18] T. Kambe, A. Yamada, K. Nishida, K. Okada, M. Onishi,

A. Kay, P. Boca, “A C-Based Synthesis System, Bach-C,
and its Application”, Proceedings of the Asian South
Pacific Design Automation Conference, pp. 151-155, 2001

[19] S. Graham, P. Kessler, M. McKusick, “Gprof: A Call

Graph Execution Profiler” Proceedings of SIGPLAN
Symposium on Compiler Construction pp.120-126, Boston
MA, 1982

[20] R. Klein “Miami: A Hardware Software Co-verification
System” Proceedings 7th IEEE Workshop on Rapid
Systems Prototyping, 1996, p173-177.

[21] http://www.xilinx.com/products/boards/ml300

[22] W. Müller , W. Rosenstiel , J. Ruf, “SystemC:

methodologies and applications”, Kluwer Academic
Publishers, Norwell, MA, 2003

[23]http://www.xilinx.com/publications/products/v2pro/xc_edk4

5.htm

[24] J. Bergeron, “Writing Testbenches, Functional Verification
of HDL Models”, Kluwer Academic Press, 2000

http://www.tensilica.com/
http://www.xilinx.com/products/boards/ml300
https://portal.acm.org/poplogin.cfm?dl=ACM&coll=portal&comp_id=COMPONENT031&want_href=citation%2Ecfm%3Fid%3D886376&CFID=22353462&CFTOKEN=15448069
https://portal.acm.org/poplogin.cfm?dl=ACM&coll=portal&comp_id=COMPONENT031&want_href=citation%2Ecfm%3Fid%3D886376&CFID=22353462&CFTOKEN=15448069
https://portal.acm.org/poplogin.cfm?dl=ACM&coll=portal&comp_id=COMPONENT031&want_href=citation%2Ecfm%3Fid%3D886376&CFID=22353462&CFTOKEN=15448069

	Mentor Graphics Corp.
	Indian Institute of Technology Kanpur
	Abstract
	1. Introduction
	2. Related Work
	3.1 Bach-C
	3.2 Limitations
	3.3 Implementation Efficiency

	4. Profiling the System
	5. Performance Estimation
	6. Implementation
	8. Results
	8.1 G.729 Audio Encoder

