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Abstract 
 

The demands on embedded processors are growing 
faster than CPU developers can respond.  This has lead 
to a number of academic and commercial processors, 
such as Tensilica [13, 14] and ARC [15], which allow 
hardware extensions in the form of new instructions to 
improve the overall throughput.  Unfortunately, it is 
rarely obvious at the application level which new 
instruction would accelerate a given function.  This paper 
proposes a design flow that migrates performance critical 
sections of software into hardware by automatically 
creating application specific hardware blocks that 
accelerate the overall software execution. The hardware 
implementation of the function is interfaced to the 
general-purpose processor, which runs the remainder of 
the software.  Targeting FPGA fabric maintains the re-
programmable nature of the algorithm that was originally 
in software.  We will present our results on using this flow 
on the G.729 audio encoding algorithm. 
 
 
1. Introduction 
 

Designers of embedded systems often face a problem 
where the final design of the system fails to meet the 
expected performance. The problem is often resolved by 
one of the several “hacks”, including migration of 
software functionality to the hardware. We are proposing 
a design methodology that allows designers to efficiently 
migrate functions from software as part of the body of 
embedded code running on a general purpose processor to 
an efficient implementation in FPGA gates as a means of 
accelerating the overall throughput of the system.  Such 
an approach is extremely useful for prototype systems, 
platform FPGAs with embedded processors and finally in 
the product realizations. Our proposed methodology starts 
with a system that is implemented on an FPGA with an 
embedded processor (either hard or soft) containing both 
hardware and software - the hardware represented at the 
register transfer level (RTL) in a hardware description 
language (HDL) and the software as executable image.  
This system is profiled to determine the overall 

throughput and the time spent in individual software 
functions.  Using this profile the designer determines the 
functions that are taking the most time in software.  Using 
an estimation tool, the designer tests moving various 
functions from software to hardware.  The estimation tool 
shows the designer the area that will be taken by the 
function in hardware and the amount of computation and 
communication time consumed by the function in 
hardware on a specific interface to the processor.  This is 
compared with the time the various functions took in 
software on the processor.  Once a function or a set of 
functions is selected, an automated tool will convert the 
software from a procedural language representation, in 
this case C, into a synthesizable RTL HDL representation.  
A software function is automatically created that interface 
the remaining software on the processor to the Hardware 
function that has been created.  Finally, a verification 
testbench with stimulus and expected responses is created 
for the new HDL implementation. 
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Figure 1. The design flow 
 
 
2. Related Work 
 

There are numerous academic and commercial tools 
that convert modified versions of software programming 
language source into an HDL representation suitable for 



RTL synthesis.  These include Handle-C from Oxford 
University [4] and Spec-C from the University of Irvine 
[5] and a host of others [1, 2, 3, 6, 7, 8, 9, 16].  Generally 
they have started with the C language and targeted either 
the VHDL or Verilog language.  Since C has no notions 
of parallelism or the passage of time, these concepts are 
added, either as extensions to the language (or via 
“pragmas”) or are built into the tool and annotated by the 
programmer against the original C description.  In effect, 
these tools allow a designer to use a software 
programming language as a hardware description 
language.  This can be quite useful when the original 
implementation of an algorithm is in a given 
programming language, assuming that the performance 
and area constraints can be met by the tool.  Some other 
approaches [12] perform extensive analysis of the 
program to come up with the hardware to be 
implemented. Also, an interesting idea has emerged from 
Carnegie Mellon University (CMU) [11] to seamlessly 
migrate software functions into hardware while providing 
a facility to allow the hardware to make system calls into 
an RTOS. 

However, describing hardware and writing software 
are two quite different tasks and they are not easily 
interchangeable.  Using code that was originally written 
as software, and simply compiling it through a converter 
to synthesizable HDL rarely (and only coincidentally) 
produces satisfactory results when compared with what a 
skilled hardware designer could achieve.  Writing Spec-C 
or Handle-C for an efficient hardware implementation 
requires a different skill set than writing a C program to 
be run on a general purpose processor.  

 
3. Software to Hardware Migration 
 

The input to our approach is software, as it would be 
written for an embedded system - not a modified or 
extended language.  For the purposes of this paper the 
specific language used will be ANSI C, but the same 
concepts should apply to any programming language.  We 
will note the exceptions to the ANSI C standard, which 
cannot be supported by our approach.  Our design flow 
will build on the existing C to VHDL tools, specifically 
Bach-C from Oxford University [18]. 

 
3.1 Bach-C 
 

Bach-C system has several features which make it 
attractive to use in our design flow. Firstly, it performs a 
control flow analysis to schedule as many operations in 
parallel as possible subject to the constraint on the 

hardware use. There are several controls that can be 
described using the code annotations (using pragmas) to 
control the C to RTL conversion for speed or for space. 
The system can identify the parallelism within the loops 
and can pipeline the loop execution making the generated 
hardware efficient. 

 
3.2 Limitations 

 
Bach-C had a number of limitations on the ANSI C 

that it would support, we extended the Bach-C compiler 
to address many of these, but there are still several C 
constructs that we do not support.  Because the algorithm 
is converted to a complete hardware implementation (as 
opposed to a programmable architecture and a program) 
there is no stack, thus all programming structures that rely 
on the stack cannot be supported, these include variable 
argument lists and recursion.   The “goto” keyword is not 
supported – support for this could cause inefficient 
hardware to be created.  The union operator is not 
supported, this was simply a matter of time. Finally, real 
floating point is not supported – our approach 
automatically converts floating points to fixed-point 
numbers.  In many cases this yields a more efficient 
implementation, but if the application needs actual 
floating point values then it cannot be supported by this 
approach. 

 
3.3 Implementation Efficiency 

 
Even though the implementation created by the Bach-

C compiler does not reach the performance that skilled 
hardware designers create, we believe that it will be 
adequate to significantly improve the throughput of the 
overall system.   

In our experience, a hardware implementation 
automatically created by a high-level synthesis program, 
such as Bach-C, runs the algorithm in hardware at least 20 
times faster then the same algorithm running on a general 
purpose processor such as ARM926ejs or PowerPC 
405d5. A skilled hardware designer may be able to 
improve on this implementation, in some cases, by as 
much as a factor of 10.  However such a handcrafted 
solution would improve system throughput only 
marginally as shown in Figure 2. In general, any further 
performance improvements than what is obtained through 
automated tools will provide only minimal impact to the 
overall performance of the system with diminishing 
returns for the effort. 
 



Figure 2. System Speedup vs. Speedup due to the migration of the 
functionality to hardware.  Each curve corresponds to different 
percentage of total time consumed by the software functionality being 
considered for migration 
 
4. Profiling the System 
 

Our design flow begins with getting a detailed profile 
of the system being developed.  This profile includes 
artifacts of code execution, specifically the entry and exit 
from all software functions and all branch instructions 
that are taken.  From this set of data the complete flow of 
the program can later be reconstructed.  On function entry 
the input parameters of the function are logged and on 
exit the return value is logged.  The profile also includes 
all memory transactions from the processor core to any 
local caches as well as all memory transactions from the 
caches to main memory.  Finally, the profile includes the 
bus traffic on buses specifically identified by the designer.   

This profile is initially used to determine the amount 
of time spent on different software functions over time as 
the system executes.  We built a viewer system that 
allows the design to view this profile data in a number of 
ways to help identify candidate functions for conversion 
to hardware.  One viewer shows the code profile.  It 
shows the percentage of time spent in each function, 
much like code profilers found on general purpose 
desktop computers like gprof [19].  The major difference 
being that the designer can specify an arbitrary starting 
time and end time for the profile.  Quite often, at least in 
embedded systems, it is important to see the profile 
during specific operations and not from the start of code 
execution to the end of code execution.  Another view 
shows a Gantt chart of the software execution by function 
over time.  This provides the designer with a view of how 
the software is executing over time. 

We collect our profile data using a commercial 
simulation environment called Seamless from Mentor 
Graphics [10].  This is a tool that includes an HDL 
simulator for the external logic of the design and an 
instruction set simulator (ISS) for the software running on 
the processor.  This tool has a number of optimizations 
that allow for execution of the design faster than 

traditional logic simulations [20].  However, even while 
taking full advantage of these “optimizations” this 
environment ran quite slowly, sometimes requiring runs 
greater than 48 hours.  This tool did give us the ability to 
non-intrusively collect data on the system operation 
needed for later analysis.  The same data could have been 
collected off an FPGA evaluation board like the ML-300 
from Xilinx [21] and we are looking into ways to perform 
this data collection as part of our future work. 
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5. Performance Estimation 
 

Once the candidate functions have been identified, the 
next step is to determine the impact of migrating the 
function from software to hardware.  There are three areas 
that need to be considered, the area in FPGA resources 
that will be consumed by the hardware implementation, 
the time in clocks (at a given frequency) that the function 
will take to complete in hardware, and finally, the 
communication overhead associated with having the 
function in hardware.  When considering the 
communication overhead, the existing load on the 
communication paths should be included in assessing the 
overall performance.  Estimation of these items is 
performed in the following manner.  First the embedded C 
function (or set of functions) is wrapped in a Bach-C 
function.  Bach-C implements a set of extensions to the 
ANSI C standard.  These extensions introduce “channels” 
as a way of describing hardware type interfaces between 
functions.  We developed a utility that reads the program 
signature from the C file and creates a Bach-C wrapper 
that implements registers of an appropriate size for the 
input parameters, the return value (if not a “void”), any 
output parameters (output parameters are those passed by 
reference).  There is also a 1 bit register added as a “busy” 
semaphore, a 1 bit register as a ready bit – signifying that 
the inputs are in place and processing can commence, and 
a done bit, which is written by the function after the return 
value and outputs have been registered.  This Bach-C 
wrapper is then put around the ANSI C function and the 
result is run through the Bach-C compiler and it is 
directed to generate a cycle accurate model in C, but at 
the RT level of detail.  Thus all of the state machines and 
control logic that will end up in the final implementation 
are created, but the output language is C and not VHDL. 
This C code describes the hardware in a way that is quite 
similar to System-C [22].  While this implementation is 
constructed, it uses a characterized version of the FPGA 
synthesis library to determine the size of the 
implementation.  As Bach-C goes through the compilation 
process, it records the number of functional units used, 
(LUTs, multipliers, etc.) and reports this usage at the end 
of the compilation.  This provides an estimate of the area 
that will be consumed by the function in hardware.  Most 
RTL synthesis tools can provide further optimizations 



than Bach-C, so this estimate generally ends up being 5 to 
10 percent higher than the final implementation. 

To estimate the performance, the cycle accurate C 
model created by Bach-C is run in a simple cycle 
simulator.  The inputs to the function, which were 
collected as part of the performance profiling step are 
passed as inputs to the input registers and the function is 
executed and the results are received and compared 
against the results that were received when the code was 
run as software.  This verifies that the behavioral 
synthesis transformation resulted in a correct 
implementation.  Also, since the simulation is clock cycle 
accurate, this provides an accurate measure of the time in 
clock cycles that the function will take when implemented 
in hardware.  This takes into account all of the data 
dependent computation time, since the same input values 
are presented to the hardware block as we processed when 
the function was implemented in software.  We must 
stress here that to draw a valid conclusion on which 
function to migrate requires that a representative set of 
data be run through the simulation of the system when the 
profile is obtained. 

To determine the communication overhead, the 
interface to the processor needs to be known, as well as 
some of the characteristics of the software interface.  The 
software interface is created at the same time that the 
Bach-C wrapper is created, so the number of transactions 
and their attributes are known at this time.  Using this 
data, along with the bus loading from the system profile, 
the communication overhead can be computed.  

To present the performance data to the designer, a new 
performance profile is created which can be viewed by 
the viewing tool referenced above.  This is done by 
removing all data from the original performance profile 
associated with the function in software and then 
replacing it with the new performance data collected 
during the cycle simulation of the C model.  In this way, 
the designer can quickly see the impact of the change to 
the overall system.  This method requires simulation of 
only those parts of the design that are to be changed, thus 
it is much faster to observe the results.  There are some 
second and third order effects which are not taken into 
account by this method; in most cases these effects are 
inconsequential.  One area where this estimation method 
would fail is if hardware related events were moved from 
one time-slice given to an RTOS task, where the RTOS is 
operating in a pre-emptive mode. In this case a small 
change in the timing of software events in a give task can 
have large effects on the operation of the system.  

It is essential to determine the performance of the 
system with the new hardware.  While the function being 
converted is almost certain to run significantly faster than 
a software implementation, when the overhead of 
communication, data transfers and bus loading are 

considered not all functions will end up going faster in 
hardware than in software. 
 
6. Implementation 
 

Once the candidate functions have been identified and 
the performance gain has been estimated, the next step is 
to go to implementation.  This involves creating the 
synthesizable HDL for the function, a connection to the 
appropriate interface on the processor, and the replacing 
the software function with the created software interface.  

The first step in going to implementation is creating 
the synthesizable HDL.  For this the Bach-C compiler is 
used on the created Bach-C file.  This time, instead of C, 
synthesizable VHDL or Verilog is created.  There are a 
number of options for the creation of the HDL to allow it 
to conform to a number of coding styles and standards.  
Next, an HDL wrapper is created that combines the 
parameter and control registers of the created hardware to 
a synchronous SRAM type interface.  Each of the 
parameter registers is assigned an address.  A local 
decoder directs data to the appropriate register off the data 
input bus. A multiplexer is used to drive the outputs to the 
data output bus.  This synchronous SRAM (SSRAM) 
interface is then wrapped in a bus wrapper to a standard 
bus.  We have created bus wrappers for the ARM AMBA 
interface, ARM TCM and ARM co-processor interface in 
addition to the PLB and OCM interfaces that exist on the 
Xilinx VirtexIIPro and to the FIL interface for the 
MicroBlaze.  An extensible interface was defined so that 
new bus interface modules can be easily added by the 
designer for additional bus support.  For ease of 
integration with the rest of the circuit, for Xilinx devices, 
the component is packaged as a Xilinx Platform Studio 
component, where it can be “dragged and dropped” into 
the circuit [23].  From that point, on the hardware side, 
the remainder of the implementation uses the standard 
FPGA vendor tools. 

A software function is created which has the same 
name and signature as the function being migrated.  We 
call this function, the hardware driver. Instead of 
performing the computation of the original function, it 
handshakes with the hardware implementation, passes the 
input values to the hardware and retrieves the results. The 
original software function needs to be removed from the 
application and the new hardware driver function needs to 
be put in its place.  In this way there are no other changes 
needed to the overall body of software. 

The hardware driver function, when invoked, acquires 
a lock on the hardware function.  This is implemented in 
the Bach-C wrapper as a hardware semaphore, which is 
set when it is read.  This is done to prevent multiple 
threads of an RTOS or multiple CPUs from accessing the 
same non-reentrant hardware simultaneously.  If the 
hardware is unavailable, the software can either wait for 



the hardware to be released, or if it is being run on an 
RTOS it can relinquish its thread.  Once the lock is 
acquired, the input parameters are written to the 
appropriate registers.  Then the “go” bit is set.  The “go” 
bit signifies to the hardware that all input parameters are 
set and processing can begin.  The hardware block will 
complete the processing and write output parameter and 
the return value to the output registers and then set the 
“done” bit.  The software either polls the done bit, or if it 
is part of an RTOS it relinquishes its thread until the 
processing is done.  Once the done bit is set, the results 
are picked up by reading the output registers.  Finally, the 
lock is released by clearing the semaphore. 

The polling type interface that is created, while very 
inefficient, was easily created and guarantees correct 
operation.  It is easily modified by the software designer 
to a more efficient interface.  In some cases the polling 
interface is preferred, this will be the case if the function 
completes in a very few clocks.  For functions that take an 
intermediate number of clocks it is most desirable to have 
the CPU perform software functions in parallel with the 
hardware function.  For very long functions, an interrupt 
driven function would be ideal.  Even though we generate 
the interrupt in the hardware, we do not use it in the 
generated hardware driver function primarily due to the 
complexity and lack of standardization surrounding 
interrupts driven systems. Our future work will include 
analysis of the software running on the general purpose 
processor to automatically find opportunities for 
parallelism.  For now, running software in parallel with 
the hardware function needs to be done manually by the 
designer. 

Pointers and arrays in the software function can be 
handled in a couple of different ways.  In one case, the 
pointer may be passed to the hardware block, and the 
hardware block will then use the pointer as an address and 
dereference it through a bus master interface that is added 
to the hardware function.  Alternatively, the software 
interface can copy N bytes from memory pointed to by 
the pointer at the start of the function and copy back the 
same N bytes at the conclusion of the function.  If the data 
pointed to by the processor is referenced frequently it is 
better to copy the data to the hardware block, as the 
current implementation does not have facilities for the 
hardware block to maintain local caches.  If the data is 
sparsely or infrequently referenced, then it is better to 
pass the pointer to the hardware block and allow the 
hardware to perform the references directly.  If the data is 
referenced by the hardware block it is important to make 
sure the data is not in the processor’s cache – as the 
hardware block will not have access to the current version 
of the data.  

The syntax that used to direct the tool to handle the 
pointer in these two ways is to put N in the function 
signature.  For example if a function dct has a buffer of 64 

short integers that we want to copy down to the hardware 
block because the data is referenced frequently we would 
define the function as  

 
void dct(short buf[64]) 

 
This is referred to the “copy” syntax. The observant 
reader will immediately note that a simple DMA device 
can be constructed by converting “memcpy()” to a 
hardware block.  Alternatively, if we wanted to add a bus 
master interface to the hardware block and have the 
hardware reference the data directly we would use the 
unbounded array or pointer syntax such as one of the 
following. 
 

void dct(short *buf) 
 

void dct(short buf[]) 
 

For values that are returned from a function as 
parameters, rather than the return value, the “copy” syntax 
could be used. For example a function that returns an 
integer value by reference would be defined as follows: 
  

int foo(int output_param[1]) 
 
All of these are legal C syntax, and do not interfere with 
the development or testing of the code.  In cases where 
the connection to the processor is through a local memory 
bus or a co-processor type interface a bus master cannot 
be added to the hardware block.  In such cases, the 
hardware function will not be able to dereference the data. 
For such interfaces only the copy syntax is supported. It 
may be noted that even when the hardware block uses the 
bus master interface to dereference, the software block 
running on the CPU can work concurrently on some other 
part of the code. As with any multiple master design, the 
CPU and the hardware block may collide for the bus and 
will arbitrate before assuming the mastership. As a 
recommended design practice, the hardware block must 
be given precedence over the CPU to get the bus access. 

 
 
7. Verification 
 

Once the new HDL is created through an automated 
process, it needs to be verified.  In typical design cycles 
today verification takes significantly more effort than 
design [24].  Through the data that was collected as part 
of the performance profiling we have the input values to 
each invocation of the converted function and the return 
value.  If the function performs a pointer dereference 
these accesses to memory have been recorded as well.  
For memory accesses we verify only that the last memory 
write to any memory location from the hardware device is 



the same as the last memory value written by the software 
implementation.  This ensures that the memory image of 
the system is the same after either the hardware or 
software implementation is run. Certain memory locations 
may be I/O devices, where the number and order of 
memory cycles is significant.  For this we allow the 
designer to designate memory regions as “volatile”.  For 
all volatile memory accesses the verification program 
ensures that the number and order of memory accesses is 
maintained by the hardware implementation.    0 20 40 60 80 1
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8. Results 
 

In our approach, the designer is quickly able to 
convert the software to the hardware and assess the 
impact on the performance. Thus this permits him to do a 
“what-if” analysis for fine tuning the design. We have 
applied this system to a number of algorithms, which are 
accessible in the public domain. In this paper we present 
the results for the G.729 audio encoder [17]. 
 
8.1 G.729 Audio Encoder 
 

The G.729 audio encoder [17] is a compute intensive 
algorithm which encodes audio data at rate of 8 KHz.  It 
uses conjugate structure algebraic-code-excited linear 
prediction (CS-ACELP).  The source code for a reference 
algorithm can be found at http://www.itu.int.   
Running this code as provided by the International 
Telecommunications Union (ITU) on a MicroBlaze 
processor requires 10.3 millions clocks to process one 
buffer of 80 8-bit data samples.  The profile of function 
usage is shown in figure 3.  Almost 40% of the load on 
the CPU is being consumed by the function L_Mac().  
This is a relatively small function which takes two 
parameters as input and returns a single value.  On 
average, this function takes 91 clocks to complete (using 
the test datasets provided by the ITU).  When converted 
to hardware this function can be completed in 4 clocks 
cycles.  Added to this time is the time required to pass the 
data to the function and the time to pick up the result.  
From the processor to the FPGA fabric using the main 
processor bus through a memory mapped interface adds 8 
clocks per access (in our circuit, other configurations may 
vary).  There is a minimum of 6 accesses that need to be 
made to complete this function if the semaphore is used.  
This reduces the function to 48 clocks, since the 4 clocks 
of computation in hardware are run in parallel with the 
accesses.  This yields a 19% improvement in throughput.  
However, in an implementation if it is known that more 
than one thread cannot access the hardware block at the 
same time, the hardware semaphore implementation can 
be avoided. This then results in a 25% increase in 
performance of the audio decoder. 

 

Figure 3. Code Profile, cumulative by function 
 

A higher performance interface is available on the 
MicroBlaze processor, the FIL interface.  This provides a 
co-processor like interface where a single instruction can 
move data to and from a non arbitrated interface.  Since 
this function does not dereference a pointer, it can be put 
on this interface.  Accesses on this interface take 2 clocks 
(again, on our design). The total time to run this function 
using this interface is 12 clocks.  This is an 87% 
improvement in the throughput of this function, and gives 
a 35% improvement in throughput for the overall 
application. 

Using the different interfaces on the hardware side is a 
simple means of selecting a different HDL “wrapper” 
which goes between the processor and the hardware 
block.  On the software side, the interface function is the 
same for both interfaces; the code that accesses the 
registers of the hardware is a set of C macros.  A different 
header file is included for each interface, which provides 
different macros that will access the hardware in the 
appropriate manner.  For memory mapped registers, the 
macros provide a dereferencing of an offset from the base 
address of the hardware block.  In the case of the FIL 
interface, the macros provide the required in-line 
assembly language statements that read and write to the 
FIL interface. 

With the function L_mac() moved to hardware, using 
the FIL interface the encoder runs 35% faster.  Profiling 
the new configuration of hardware and software shows 
that the function ACELP_Codebook() takes 
approximately 25% of the remaining time on the 
processor.  The ACELP_codebook() function is 
comprised of 3 main functions, D4i40_17(), Cor_h(), and 
Cor_h_X().  D4i40_17() takes about 17% of the 
remaining time, with Cor_h() and Cor_h_X() taking about 
5%.  Each of the three functions was converted 
individually. 

The function D4i40_17() had two changes to the 
source code that were required before the code could be 
synthesized correctly.  First, in the main body of the 
function, there is “goto” which is used to exit the function 
after a maximum number of iterations.  This goto was 
eliminated by converting the code to use if-then-else 
constructs.  The second change was to eliminate potential 

http://www.itu.something/


recursion in the code.  The shift left function, L_shl(), 
calls the shift right function, L_shr(), when passed a 
negative parameter as the shift, and the shift right function 
calls the shift left function when passed a negative 
parameter.  While this never actually causes recursion in 
the code, the static analysis performed by the Bach-C 
compiler find this potentially recursive path.  Copying 
parts of the shift left function into the shift right function 
(and vice versa) eliminated this problem.  The remainder 
of the code was converted at it was received from the 
ITU. 

The software implementation of the D4i40_17 
function takes approximately 1.5 million clocks to 
complete. In hardware it takes about 129,000 clocks to 
complete.  As stated earlier, a skilled hardware designer 
could implement this function to take less time, but after 
conversion it amounts to less than 1% of the total time 
processing time for the algorithm. 

Among the parameters to D4i40_17 are several arrays. 
Because these variables are reference frequently in the 
algorithm, the copy interface is used. Since the array 
parameters are only input or output parameters only it is 
not necessary to copy both to and from the hardware 
block.  Through “pragmas” the arrays are defined as input 
or output arrays, and they are only copied when needed.  
Likewise on the Cor_h() and Cor_h_X() functions the 
arrays are passed by copy. 

Cor_h and Cor_h_X are not dependent on each other, 
that is they can be run in parallel.  This is not done 
automatically by the tool, but the software interfaces that 
communicate with the block can easily be broken down 
into “start” and “end” functions.  In this way, the 
hardware for Cor_h() can be started – that is to write the 
input parameters to the input registers and write to the 
start bit.  Then the hardware for Cor_h_X can be started.  
Then the results for each be picked up.  In this way the 
greatest performance increase can be achieved.  Although 
it requires restructuring the code, a similar approach can 
be used to run the CPU and the hardware blocks in 
parallel.  This will effectively reduce the time for a 
function to be executed in hardware to the time to initiate 
the operation. 

With D4i40_17, Cor_h, and Cor_h_X converted to 
hardware the system runs 22% faster.  The combined 
effects of moving the 4 functions, the previous three plus 
the L_mac function, provides a 50% speed up for the 
algorithm.  Only minimal code changes were required to 
one of the functions to achieve these results.  The time 
required to perform this repartitioning of the system is a 
matter of a few days. 

 
9. Conclusion 

 
The approach presented allows embedded system 

designers to postpone some of the hardware/software 

partitioning decisions when implementing systems that 
include FPGAs with embedded processors.  Certain 
functions can be implemented in software and quickly 
migrated to software if the performance is found to be 
inadequate for the application. We believe that through 
out quick turn-around methodology, a designer is 
empowered to explore different alternatives to reach to an 
acceptable design. With programmable hardware such as 
FPGAs this will also enable him to quickly prototype the 
design and evaluate different alternatives to improve the 
system performance. Our system will estimate the area 
and performance, including the communication overhead. 
A synthesizable implementation will be created, as well 
as the desired hardware and software interfaces.  Finally, 
a verification testbench with stimulus and expected results 
is created from an earlier simulated execution of the 
system.  Our results show that the throughput of a system 
could potentially doubled by utilizing the FPGA fabric to 
implement functions originally in software 
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