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Abstract

In this paper we propose design of three sys-
tolic arrays to perform QR decomposition of
a square matrix. Our first design is based
on Given’s rotation method [1]. In contrast
to the earlier designs [1], [2] based on this
method, our design uses n(n − 1)/2 homo-
geneous PEs. Our next design is based on
Householder method [4]. This method per-
forms only (n− 1) square root operations in
contrast to n(n − 1) square root operations
performed in Given’s method [6]. Our third
design first reduces the given matrix to Hes-
senberg form [5] and then applies Q-R de-
composition to it.

1 Introduction

An important matrix problem that arises
in many applications like signal processing
[8], image processing, solution of differential
equations etc. is that of solving a set of simul-
taneous linear eqations. The usual numer-

ical method adopted to solve this problem
is to triangularize the coefficient matrix and
then use back substitution. There are sev-
eral methods to triangularize matrix, how-
ever a numerically attractive method is the
QR decomposition [7] that can be defined as
follows.

Given an N ×N matrix A, there exists an
orthogonal matrix Q and an upper triangular
matrix R where A = QR.

In this paper we propose three designs of
systolic array for QR decomposition. Our
first design is based on Given’s rotation [1]
method. S.Y. Kung proposed two systolic ar-
rays [1], [2] for doing QR decomposition with
hardware complexity O(n2) and time com-
plexity O(n) based on Given’s method. Here
we propose yet another design based on the
Given’s rotation method with similar hard-
ware and time complexity. However, in our
design the PE utilization is better compared
to the other designs. Moreover in compari-
son with designs proposed by S.Y. Kung, our
design uses homogeneous PEs and is ther-
fore simpler to implement. The second de-



sign is based on the Householder transforma-
tion method [4]. This design uses a triangu-
lar array. The Householder transformation
method performs less number of square root
operations in comparison to Given’s method.
Our third design takes the advantage of the
fact that although the factorization is possi-
ble for any matrix, the numerical procedure
is very much faster for a Hessenberg matrix
[5]. So we first propose a systolic array that
reduces the original matrix into Hessenberg
form and then applies the QR decomposition
to it. In contrast to the design proposed by
N. Torratba and J.J. Navarro [3] our design
reduces the matrix to Hessenberg form using
Householder reduction. This array can be
used in applications such as finding eigenval-
ues, where QR decomposition is performed
several times.

2 A Systolic array based

on Given’s Rotation

In the Given’s algorithm the subdiagonal el-
ements of the first column are nullified first,
followed by the subdiagonal elements of the
second column and so forth until an upper
triangular form is eventually reached. The
complete procedure can be described as be-
low.

For an invertible matrix A, the upper tri-
angular matrix R is obtained as follows.

QTA = R

QT = QN−1QN−2 . . . Q1

and QP = Q(P,P )Q(P+1,P ) . . . Q(N−1,P )

where Qq,p is the Given’s rotation operator
used to annihilate the matrix element located
at row (q + 1) and column p and has the
following form.



1 0 . . . . 0 0
0 1 . . . . 0 0
0 0 . . . 0 0
. . . cosθ sinθ . . .
. . . −sinθ cosθ . . .
0 0 . . . . 0 0
0 0 . . . . 1 0
0 0 . . . . 0 1


row q
row q + 1

where θ = tan−1[aq−1,p/aq,p]. The above
operation of creating cosθ and sinθ is named
Given’s generation (GG).

The matrix product A′ = Qq,pA is then.

a′q,k = aq,kcosθ + aq+1,ksinθ

a′q+1,k = −aq,ksinθ + aq+1,kcosθ

a′jk = ajk ∀j <> q and q + 1;

and ∀k = 1..N

The operations in first two eqauations
above form the Given’s rotation (GR).

The sequential program for QR decompo-
sition can be written as follows.

For k from 1 to N − 1
For i from N − 1 to k
θ = tan−1(a(i+ 1, k)/a(i, k))
For j from k to N

temp1 = a(i, j)cosθ + a(i+ 1, j)sinθ
temp2 = a(i, j)sinθ + a(i+ 1, j)cosθ
a(ij) = temp1
a(i+ 1, j) = temp2

This sequential program is of O(N3),
where N is the problem size. The single as-
signment form of this program and the cor-
responding dependence graph (DG) (fig. 1)
as given by S.Y. Kung in his book [1] are as
follows.

For k from 1 to N − 1
For i from N − 1 to k

For j from k to N
ox(i, j, k) = xy(i− 1, j, k − 1)
if i = N − 1



oy(i, j, k) = ny(i, j, k − 1)
else
oy(i, j, k) = nx(i+ 1, j, k)

if j = k

θ(i, j, k) = tan−1 oy(i,j,k)
ox(i,j,k)

else
θ(i, j, k) = θ(i, j − 1, k)

nx(i, j, k) =
ox(i, j, k)cos(θ(i, j, k))+
oy(i, j, k)sin(θ(i, j, k))

ny(i, j, k) =
−ox(i, j, k)sin(θ(i, j, k))+
oy(i, j, k)cos(θ(i, j, k))

At each node (i, j, k), ox(i, j, k) and
oy(i, j, k) denote the old values of two ele-
ments in a rotation. New values of these
two elements are represented by nx(i, j, k)
and ny(i, j, k). The initial conditions are
nx(i, j, 0) = aij and ny(N−1, j, 0) = a(N, j).
At the end of the computation, nx(i, j, i)
will contain row i of the resultant matrix R
(i ≤ j < N). Row N of matrix R will be
available in ny(N − 1, j, N − 1).

There are only one kind of arcs between
K-planes of the DG, (i, j,K − 1) to (i, j, k).
Kung suggested two designs of systolic ar-
rays [1], [2] by taking the projection direc-
tion [0 −1 1] and [1 0 0]. The array with
projection direction [1 0 0] saves half of the
hardware, but both arrays make use of two
different type of PEs; one at the boundary
which performs Given’s generation (GR) and
the second which performs the Given’s gen-
eration (GG). (The actual implementation
makes use of three different types of cells [3])
Here we suggest a systolic array by taking
the projection direction [0 1 0]. This array
is also a triangular array but all the PEs are
of same type and so PE utilization is more
in this case as clear by the space-time dia-
gram (fig. 4). Moreover the number of PEs

required is less (n−1)n
2

as opposed to n(n+1)
2

in this case for same matrix size. A signal
flow graph (SFG) (fig. 2) obtained by choos-
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Figure 1: Dependence Graph (DG) based on
Given’s Rotation
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Figure 2: Signal Flow Graph (SFG) based on
Given’s Rotation

����
��������
������������ -

6

6

6

666

-

-

-

6

66

-

- -
PE6PE5

PE4

PE1

PE2

PE3

J = 1 to 4

r4j

a43

a42

a41

a31a32a33

a21a22

a11

r3jr2jr1j

Figure 3: Modified Signal Flow Graph based
on Given’s Rotation

ing the projection direction [0 1 0] for a 4×4
matrix is shown.

As for any recursion index k, i varies from
N − 1 to k and we are calculating θ from
Ai+1,k and aik we can remove PE1, PE5, PE8
and PE10 in this SFG and we can input row
i+ 1 and i directly to a PE which calculates
θi. The modified array will appear as shown
in fig. 3.

The design of a single PE is given below.

y

x

6

C

-bold

-aold

- bnew

- anew

when C = 0

x = aold/SQR(a2
old + b2

old)

y = aold/SQR(a2
old + b2

old)

anew = bold ∗ y + aold ∗ x
bnew = −bold ∗ x+ aold ∗ y

when C = 1

anew = bold ∗ y + aold ∗ x
bnew = −bold ∗ x+ aold ∗ y

The time-space diagram given below shows
the activities in different PEs in successive
clock cycles (fig. 4).

The time complexity of this design is O(n)
and number of PEs (hardware complexity)
is O(n2). But as it is clear from the time-
space diagram we are getting the same re-
sults (for a 4×4 matrix) now only with 6
PEs in contrast to Kung’s design which has
10 PEs. Moreover PE utilization is more in
this case. Further, if we consider that the
time required to compute square root is gen-
erally far more than the time required for
addition and multiplication, then pipelining
of different instances of the problem will be
more effective in the design proposed here.

3 Systolic array based on

Householder transfor-

mation

Householder transformation is used as an el-
ementary step in a number of basic trans-
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Figure 4: Time space diagram for the first
array

formations e.g. for decomposing a matrix A
into an orthogonal matrix Q and an upper
triangular matrix R (QR decomposition algo-
rithm). The transformation is implemented
by first applying the following decomposi-
tion.

Q(1)A =



x x x · · · x
0
0 As
...
0


where Q(1) = I − 2uu

T

uTu
, u = A1 + ‖A1‖z

and A1 is the first column vector of A, and
Z = [100 . . . 0]T , then repeatedly applying
similar decompositions, namely Q(i),∀i =
2, 3, 4 . . . N − 1,

Q = Q(N − 1)Q(N − 2) . . . Q(1)

The sequential program for the above pro-
cedure can be given as below.

For k = 1 to N − 1
S(k − 1) = 0

For i = k to N
S(i) = S(i− 1) + a(i, k) ∗ a(i, k)

P = SQR(S(N))
u(k) = P + a(k, k)
For i = k + 1 to N
u(i) = a(i, k)

R = 0
For i = k to N
R = R + u(i) ∗ u(i)

For j = k to N
v(j) = 0
For i = k to N
v(j) = v(j) + u(i) ∗ A(i, j)

For i = k to N
For j = k to N
A(i, j) = A(i, j)−

(2/R) ∗ u(i) ∗ v(j)

The time complexity of this sequential pro-
gram is O(n3). The single assignment form
of this sequential program can be written as
follows.

For k = 1 to N − 1
S(k, n+ 1) = 0
For i = N to k
S(k, i) = S(k, i+ 1)+
a(k − 1, i, k) ∗ a(k − 1, i, k)

P (k) = SQR(S(k, k))
u(k, k) = P (k) + a(k − 1, k, k)
For i = k + 1 to N
u(k, i) = a(k − 1, i, k)

Q(k, k − 1) = 0
For i = k to N
Q(k, i) = Q(k, i− 1)+
u(k, i) ∗ u(k, i)

For j = k to N
v(k, k − 1, j) = 0
For i = k to N
v(k, i, j) = v(k, i− 1, j)+
a(k − 1, i, j) ∗ u(k, i)

a(k, i, j) = a(k − 1, i, j)−
2

Q(k,n)
∗ u(k, i) ∗ v(k, j)

The single assignment program can be fur-
ther modified to a form which can be directly



mapped on a DG.

For k = 1 to N − 1
S(k,N + 1, k) = 0
For j = k to N
v(k,N + 1, j) = 0
For i = N to k
if (j = k) & (i 6= k)
S(k, i, j) = S(k, i+ 1, j)+
a(k − 1, i, j)2

u(k, i, j) = a(k − 1, i, j)
if (j = k) & (i = k)
P (k, i, j) = SQR(S(k, i+ 1, j)+
a(k − 1, i, j)2)

u(k, i, j) = P (k, i, j) + a(k − 1, i, j)
Q(k, i, j) = S(k, i+ 1, j) + u(k, i, j)2

if (j 6= k)
u(k, i, j) = u(k, i, j − 1)
Q(k, k, j) = Q(k, k, j − 1)
v(k, i, j) = v(k, i+ 1, j)+
a(k − 1, i, j) ∗ u(k, i, j)

For i = k to N
For j = k to N
Q(k, i, j) = Q(k, i− 1, j)
v(k, i, j) = v(k, i− 1, j)
a(k, i, j) = a(k − 1, i, j)−

(2/Q(k, i, j)) ∗ u(k, i, j) ∗ v(k, i, j)

A DG for this single assignment form has
the edges from k − 1 to k, j − 1 to j and
bidirectional edges in direction i i.e. edge
from i + 1 to i, and from i − 1 to i. First
u, v(1) and Q are calculated in the first
column. Then u and Q are propagated in
direction j and v(2) . . . v(n) are calculated
in respective columns. Processing proceeds
downwards and new elements of array A are
calculated and sent to the layer correspond-
ing to recursion index 2. This continues for
all layers. The DG for this is given in fig. 5.

We choose the projection direction [1 0 0]
and map the activities of all the nodes in
same column onto a single PE. The array so
obtained is a triangular array with each row
corresponding to a recursion index (fig. 6).
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Figure 5: Dependence Graph for the second
array
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Figure 7: Time space diagram for the second
array

Let Ai represent the column i of matrix A.
then the activities taking place in each PE
can be visualized by the time-space diagram
given in fig. 7.

As it is clear from this time-space dia-
gram, next instance of the problem can be
sent into the pipeline after two clock cycles
and after that all the PEs will be busy all
the time (100% PE utilization). For one in-
stance of the problem the activities taking
place within a PE are O(n), but they can
be further pipelined within a PE. The array
starts outputting the next row of the matrix
after every three clock cycles from the first
result. The hardware complexity in terms of
number of PEs is O(n2). Each PE performs
the following operations.

PEs at the diagonal (PE1, PE5, PE8) (fig.

6
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Ak

u,Q
Q

u

k is the recursion index
Ak represents column k of matrix A

Figure 8: Diagonal PEs for the second array
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Figure 9: Non-diagonal PEs for the second
array

8) performs the following operations.

S = S + a2
ik i = k..N

P = SQR(S)

u(k) = P + akk

u(i) = aik i = k + 1..N

R = R + u(i) ∗ u(i) i = k..N

v(k) = v(k) + u(i) ∗ A(k, i) i = k..N

r(k, k) = A(k.k)− (2/R) ∗ u(k) ∗ v(k)

k is the recursion index
Non-diagonal PEs (fig. 9) performs the fol-

lowing operations.



v(j) = v(j) + u(i) ∗ A(i, j) i = K..N

A(i, j) = A(i, j)− (2/R) ∗ u(i) ∗ v(j)

i = k..N

4 Householder Reduction

Our third design first reduces the given ma-
trix into hessenberg form and then applies
the QR decomposition to it. In many appli-
cations the task of QR factorization has to be
done many times i.e. finding out eigenvalues
of the matrix. Usually, the QR iteration is
computationally expensive O(n3). But if we
first reduce the matrix into hessenberg form,
the reduction to hessenberg form has com-
plexity O(n3), and further the complexity of
each iteration is O(n2) for the sequential pro-
gram. The sequential program to reduce the
given matrix into hessenberg form is shown.

For k = 1 to N − 2
u(k) = 0;P = 0

For I = k + 1 to N
P = P + A(I, k) ∗ A(I, k)
S = SQR(P )
u(k + 1) = SQR((1 + A(k + 1, k)/S)/2)

For I = k + 2 to N
u(I) = ((A(I, k)/2)/S)/u(k + 1)

For J = 1 to N
For I = k + 1 to N
v(J) = v(J) + u(I) ∗ a(I, J)

For I = 1 to N
For J = K to N
A(I, J) = A(I, J)− 2 ∗ u(I) ∗ v(J)

The systolic array for this sequential pro-
gram can be obtained in the same way as
in the previous design based on the house-
holder transformation. The operations per-
formed by the non-diagonal elements remain
same as in the previous design. The opera-
tions performed by the diagonal elements (fig
10) are changed as follows.

6

-

6rkk

u
v(k)

Ak

u

k is the recursion index

Figure 10: Diagonal PEs for the third array

P = p+ A(I,K) ∗ A(I,K)

S = SQR(P )

u(k + 1) = SQR(1 + A(k + 1, k)/S)

u(I) = A(I, k)/2/S/u(k + 1)

I = k + 2..N

v(k) = v(k) + u(I) ∗ A(I, k)

I = k + 1..N

A(k, k) = A(k, k)− 2 ∗ u(k) ∗ v(k)

5 Conclusion

In this paper we proposed three systolic ar-
rays for decomposition of a matrix in its Q-
R form. The first array is based on well
known Given’s rotation method. In contrast
to n(n + 1)/2 PEs required by two exist-
ing systolic arrays based on Given’s rotation,
this array requires only n(n− 1)/2 PEs and
all the PEs are homogeneous making it sim-
pler to implement. Our next design is based
on Householder transformation method. As
the number of square root operations per-
formed by this array are only (n−1) in com-
parison to n(n − 1)/2 in first design we be-
lieve that the implementation of this array
will be faster than the first one. Moreover if



many instances of the problem are initiated
into this array the PE utilization of this ar-
ray is 100%. As explained our third design
first reduces the given matrix into hessenberg
form and then applies the QR iteration to it.
This array is useful for the applications where
QR decomposition has to be performed many
times, as the process of finding QR decom-
position for a hessenberg matrix is faster.
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