
PERL - A Registerless Architecture

P. Suresh Rajat Moona
Indian Institute of Technology Kanpur

Department of Computer Science and Engineering
Kanpur, India

psur@iitk.ernet.in moona@iitk.ernet.in

Abstract

Reducing processor-memory speed gap is one of the ma-
jor challenges computer architects face today. Efficient use
of CPU registers reduces the number of memory accesses.
However, registers do incur extra overhead of Load/Store,
register allocation and saving of register context across pro-
cedure calls. Caches however do not have any such over-
heads and cache technology has matured to the extent that
today the access time of on-chip cache is almost equal to
that of registers. This motivates one to explore alternate
ways to do away with the overheads of registers.

In this paper, we propose a registerless, memory to mem-
ory architecture of a processor. We call this architecture
Performance Enhanced Registerless (PERL) processor. All
instructions in this processor operate directly on memory
operands thus eliminating the Load/Store and other over-
heads of registers. The performance of this machine is stud-
ied by simulations and results are reported in this paper.

1. Introduction

A major challenge for computer architects today is to re-
duce processor-memory speed gap. One of the time tested
mechanism for improving memory system performance is
the cache. Current research is also exploring ways such
as integration of the memory with logic [12]. This idea is
gaining lot of significance since the VLSI technology is pro-
jected to put a billion transistors on a single chip.

The two ways to organize the local memory for data are
conventional cache, a redundant, dynamically varying sub-
set of memory system – and registers, which are explic-
itly managed by the program. Benefits from registers are
obtained by efficiently allocating them – a process usually
done statically by the compiler. Caches are however, inde-
pendent of architecture and consistently work well taking
the dynamic behaviour of the program into account.

The availability of fast high bandwidth on-chip caches
and the overheads associated with register allocation, reg-
ister level context saving, Load/Store associated with reg-
isters demand to explore alternate ways to organize local
memory. We explore one such method in this paper.

We propose a registerless, memory to memory archi-
tecture of a processor and call it Performance Enhanced
Registerless(PERL) RISC . It has a simple, small and ef-
ficient instruction set and uses pipelined instruction execu-
tion to achieve high instruction throughput. All instructions
in this processor operate directly on memory operands thus
eliminating the Load/Store and other overheads of regis-
ters. While a program will execute 30–40% less instructions
compared to a normal RISC processor, it is not initialy clear
that it will outperform such processors especially the super-
scalar architectures. We have shown that by using suitable
techniques the high bandwidth requirement of such a pro-
cessor can be met.

The rest of the paper is organized as follows. In section
2, we explain the motivation behind the whole idea and es-
tablish the need to investigate. We describe instruction set
architecture for the proposed machine in section 3. In sec-
tion 4, we explain the execution model of the machine and
discuss a superscalar model of the machine. A primitive
analysis of the machine is done in section 5 comparing it to
a typical RISC machine. In section 6, we present the work
done so far in this direction. Finally we conclude in section
6, by summarizing the results obtained through simulations
and listing various open issues.

2. Motivation

The on-chip and off-chip caches have been the single
most technological innovation to reduce the ever growing
processor–memory speed gap. The effective access time
of on-chip cache with various architectural features reaches
close to that of registers. However these two are not equiva-
lent because of the differences in address computation. The
registers are small in number and their address is part of

the instruction, whereas the caches form the first level in
the memory hierarchy and are not exposed to the program-
mers. Various tasks associated with cache access, such as
TLB access, tag comparison and the actual cache memory
access, can however, be pipelined making on-chip cache be-
have like CPU registers in terms of speed. In fact most of
the current day processors are capable of issuing multiple
load store instructions in a single clock [5, 13].

Today super-scalar processors make use of multi-ported
non-blocking cache to achieve peak performance [5, 14].
Processors currently have large on-chip L2 cache also (sec-
ondary cache) to support the misses in on-chip L1 cache
(primary cache) [5, 13]. Since on-chip buses can be
wider, the bus widths between the processor–L1, L1–L2
and processor–main memory are becoming wider with time.
Techniques such asmiss caching, victim cachingandstream
buffering reduce the cache misses [7]. Further, a non-
blocking cache allows the service of multiple misses to be
overlapped, in a pipelined fashion. Cache bandwidth can
be increased by allowing operations such asload all which
satisfies as many outstanding loads in parallel as possible
when data is returned from the cache andload all wide
which builds onload all by widening the single cache port
up to the cache block size [16]. Multiple cache ports can
be provided either by having multiple copies of cache or by
interleaving.

To a certain extent all these techniques to improve cache
is to see that the registers get their data fast. We see that
in the process the performance of the cache is becoming
closer and closer to that of registers. The RISC processors
have register to register architecture, which means that all
operands for an instruction are in CPU registers except for
Load/Store instructions. The program dynamics therefore
demands that the operands be loaded into registers and then
the computations be performed on them. The underlying
memory hierarchy ensures that the operands are also loaded
in the cache simultaneously. Temporary use of registers, is
however, an exception to this. It is our belief that due to
high locality, the operands in registers in most cases will
be present in cache also. By removing registers from the
hierarchy, especially when on-chip cache are as fast as reg-
isters the extra operation of moving operands from cache to
registers can be overcome. By not having registers the pro-
cess of saving register level context is not necessary across
procedure calls.

A registerless architecture has other advantages too for
a compiler. In conventional processors, arrays, strings and
pointers are never allocated to registers. The predominant
use of high level languages place the burden of register al-
location on compilers making them complex. Registers are
not typed, whereas memory operands are typed. Usually the
compiler uses extra instructions to type convert data in the
register with respect to the data type that it is representing

int a,x;
char c;
main()
f

...
x = c + a;
...

g
C Code

.set noat
lda $28, c+1
ldq u $1, -1($28)
extqh $1, $28, $1
sra $1, 56, $1
.set at
ldl $2, a
addl $1, $2, $3
stl $3, x
Alpha assembly code

...
add x:b4, c:b1, a:b4

...
PERL assembly code

Figure 1. Example

(see Alpha assembly code in figure 1 for example). These
instructions include instructions like conversion of a un-
signed number to signed number, sign extension etc. In case
the operands are taken directly from memory such extra
instructions can be eliminated. Further additional shift in-
structions needed to access unaligned data are avoided when
operations are directly performed using memory operands.
Any such adjustment can be done on the fly to enable the
operation in the execution unit. The example in figure 1
explains this.

In this scenario it is indeed interesting to study a pure
memory-to-memory architecture. The instruction length of
such a machine will be very long as it has to specify the
memory addresses of the operands and destination. At the
same time we can expect that programs will execute less
number of instructions (about 30–40%) which account for
Load/Store, type conversion etc. [6].

We, however cannot get away from registers altogether.
The PC will have to remain as a register. Further the stack
pointer(SP) and the frame pointer(FP) are used frequently
by the programs and access to these have to result always
in a hit for good performance. We have found that in a
purely memory-to-memory architecture if SP and FP are in
memory, they cause 30–40% of the total memory accesses.
Essentially SP and FP are used to access the stack variables
(the local variables) which are accessed very frequently. In
our approach, we have mapped SP and FP onto fixed mem-
ory locations which are permanently cached on-chip.

3. Instruction Set Architecture

It is a known fact that the maximum code compaction is
obtained in three address format [6]. Further uniform in-
struction length has its own benefits [6]. These two fac-

tors influenced us to have a three address format. As all
operands are in memory, the instruction has to specify three
memory addresses as follows.

Operation M1 <:dT>, M2 <:dT>, M3 <:dT>

Here M1, M2 and M3 are all in memory. M1 is the
destination of the operation onM2 and M3, whereasdT
specifies the data type of the corresponding operand.

3.1. Addressing Modes

Addressing modes have the ability to significantly re-
duce instruction counts. They however, also add to the com-
plexity of building a machine and may increase the average
number of clocks per instruction (CPI). There have been lot
of studies related to instruction set and its usage [10, 2, 15].
Also there are extensive studies done to compare perfor-
mance between the instruction set of RISC and CISC [1].

The designers of RISC made extensive study related to
the instruction set usage and arrived at the following con-
clusions [6]. The frequently used addressing modes are
displacement, immediate and register deferredand these
represent 75–99% of the addressing modes used in a pro-
gram. Further a large percentage of displacement values and
immediate values could be represented within 12–16 bits.
The memory indirect addressing represents only a small
percentage (about 1–16%). Furthermore the PC-relative
branch displacement values predominantly could be repre-
sented within 8 bits. As a consequence, Loads and Stores
in all RISC have the register indirect with immediate index
addressing mode(EA = register + immediate), some of
them also support register indirect mode(EA = register)
and register indirect with register index mode(EA = regis-
ter + register) reducing number of instructions per program
in certain applications (to the order of 5–6%) [3].

All of the above influenced our design in the following
way.

1. All instructions are of the same length.

2. The two operands and destination are each specified
by any one of the four addressing methods, namely,
direct, indirect, displacementand immediate. For
displacement addressing the base addresses are cer-
tain fixed locations in memory which are permanently
cached. Stack pointer (SP) and the Frame pointer (FP)
are also part of these fixed locations in memory. The
base address is encoded in the instruction using short
representations.

3. The simple integer instructions are ADD, SUB, AND,
OR, NOT and SHIFT instructions. Integer MULTIPLY
and DIVIDE instructions are also provided. These in-
structions however, have latencies of more than one

clock. The same case also holds for the floating point
instructions.

4. Jump and conditional branches are supported.

5. The machine supports eight integer data types – byte,
half word (16 bit), word (32 bit) and double word
(64 bit), each in signed and unsigned flavors. It also
supports single and double precision floating point
operands.

Since the displacement addressing represents more than one
third of the references [6], we decided to provide some fixed
locations in the memory to store the base value. These lo-
cations are permanently cached assuring 100% hit. One of
these locations is used as SP by our compiler. Use of fixed
memory locations also saves the instruction space as we
shall see. We can extend this idea for temporary variable
storage as well.

It can be observed that the instruction length is very long.
However, all our instructions will load upto two operands,
and operate on them before storing one result. We provide
128 bit wide instructions with space for three memory ad-
dresses. If in an instruction both, the operands and the des-
tination, have indirect addressing the processor has to per-
form as many as 6 memory accesses to execute that instruc-
tion. The program locality increases further as there are
more memory accesses which otherwise would have been
in registers in a conventional processor. The 128 bit in-
struction space remains under-utilized in case of operations
where the number of operands is less than three and also
in cases where the displacement and immediate values are
small.

The positive aspects of this machine are that it does not
have Load/Store instructions. In Reg–Reg machine all op-
erations whose operands are less than the size of the register
face additional overheads like sign-extensions, masking etc.
Such overheads are not there in PERL processor as the types
can be specified in the instruction itself. Further the over-
head in context switch is also minimal as the machine state
is small (only PC and SP and possibly FP).

4. Execution Model

4.1. Processor Model

The superscalar processor model of PERL processor is
represented in figure 2. It consists of an integer and a float-
ing point unit. These operational units are supplied with in-
struction coming from the instruction queue, where fetched
instructions are buffered. Each operational unit contains a
set of functional units where instructions are executed, and
the results are written to the data cache. In order to support
multiple-instruction-issue we have some more elements.

� multiple out-of-order issue. The decoder places in-
structions in program order in thecentral instruction
window within the appropriate operational unit. This
decouples instruction decoding from instruction exe-
cution thereby simplifying dynamic scheduling. The
instruction-issue logicexamines instructions in the
window, selects some of them for issue, not necessar-
ily in program order, and dispatches them to their ap-
propriate functional units. There can be any number
of instructions active, as long as there are no resource
conflicts.

� multiple out-of-order completion. Because of the
instruction issue policy and various latencies of the
functional units, instructions can complete out of pro-
gram order. Hardware mechanism must ensure that re-
sults are written in correct order into memory. Stor-
age conflicts are resolved with operand renaming, us-
ing a reorder buffer where results of the instructions
are placed once computed.

Other mechanism used to accelerate instruction processing
and thus enhance the above superscalar features are:

� a branch target buffer(BTB) in support of the in-
struction fetch unit. This enables branch prediction to
be performed by the instruction fetch unit. It allows the
processor to execute instructions beyond conditional
and indirect branches, the reorder buffer is then used
to recover from any mis-predicted branch. The instruc-
tion fetcher starts fetching instructions from the target
address in case of a direct jump.

� a multi-ported interleaved data cacheis provided to
support the multiple instruction fetch and execution.
Techniques to improve the cache bandwidth like vic-
tim cache, read-all-wide etc. [16], will yield extremely
good benefits depending on the address pattern.

4.2. Pipeline Stages

Six overlapping stages or processes make the multiple
instruction pipeline, each stage works at its own pace and
are explained below.
Fetch Stage:This stage fetches instruction from the cache
and places them in an instruction queue. Branches creates
two major problems that hinder the fetch mechanism, firstly
instruction fetch depends on the outcome of branch execu-
tion and secondly the target instruction may mis-align with
the cache block, thereby some instructions in the block may
not be valid.

The first problem is solved using branch prediction
mechanism which uses 2-bit branch history [9]. Indirect
jumps are also predicted using the BTB along with a pair of

Integer Unit

Fetcher

BTB

Instruction
Queue

Decoder

Reorder Buffer

Central window

Central window

Reorder Buffer

Data
Cache

Branch ALU Shifter Comp

FPaddFPmultFPdivFPbranch

I-Cache

Floating Point Unit

Figure 2. The Processor Model

stack similar to the one described in [8]. Direct jumps are
handled easily, as their target address can be known at fetch
stage itself.
Decode StageHere the instructions are taken from the in-
struction queue, decoded and dispatched to appropriate op-
erational unit. An entry is made in the corresponding re-
order buffer for every instruction that is decoded and its
destination location identifier is placed in it. The entry is
assigned in program order at the tail of the reorder buffer,
which is a FIFO queue. To resolve data dependencies, val-
ues of the instruction’s operands are also placed in the win-
dow entry. To do so, the operand address is first searched in
the reorder buffer, if it is available and not yet valid (not
been computed yet), the corresponding entry is taken in
place of the operand value. If the operand value is valid
then its value is taken from the reorder buffer. If there are
multiple entries of the operand address then the most recent
value is taken. If the operands are not found in the reorder
buffer then the value is read from the memory.

This stage is implemented as two different stages in the
pipeline as the instruction set supports indirect and based
addressing modes. For instructions whose operand address
mode is indirect or base, the first stage computes the effec-
tive address. In both the case there is a memory access to
get either the base or the indirect address. There can be upto
3 memory access per instruction. As address forwarding is
also done, the reorder buffer is searched in this stage also.
The second stage uses the effective address computed in the
first stage to read the operands from the memory or takes the
reorder buffer tag in case the operand has to be forwarded.
There can be upto 2 memory access per instruction.
Execute Stage:The instructions whose operands are avail-
able and the required functional unit is available are termed

as ready instructions. The issue logic picks up the ready
instructions and dispatches to appropriate functional unit.
Cases where more than one instruction demand the same
functional unit, the oldest of the lot gets the priority. Ex-
ecute process computes the outcome of the branch instruc-
tion and if the prediction is wrong, the instruction following
the branch areflushed(by marking reorder buffer entries as
invalid), and the BTB is updated accordingly. Finally the
computed results are written into the reorder buffer.
Write Back Stage: The write back logic finds the com-
pleted operations in the reorder buffer and frees the corre-
sponding functional units. The completed results are vali-
dated and forwarded to the instructions waiting for them in
the instruction windows.
Commit Stage: The validated results are written back to
memory during this stage. Writes are processed in order,
from the head to the tail of the reorder buffer, until an in-
struction with an incomplete result is found. The commit-
ted instructions are removed from the reorder buffer. Inval-
idated instructions that follow a mis-predicted branch are
simply discarded.

In the worst case the pipeline generates 1 fetch, 5 reads
and 1 write access to the cache per instruction. By restrict-
ing the base addresses to some fixed location in memory
and registering them on the chip will bring down the reads
from 5 to 2. Further we can expect the data addresses to
have high locality and result in high hit ratio.

5. Analysis

We call the registerless machine as Performance En-
hanced Registerless machine(PERL). For our analysis, we
use dynamic instruction count fromDLX , a hypothetical
RISC machine [6] for certain reported benchmarks. We
make the following reasonable assumptions without giving
any undue advantage to PERL.

1. There will be no explicit LOAD/STORE instructions
executed in PERL, but will execute the same number
of other instructions as in DLX. Further we assume
that all ALU instructions in PERL make 6 memory ac-
cesses which is the worst case. As opposed to this,
DLX is a register to register machine and hence all
ALU instructions get executed in a single clock.

2. The cost of execution of branches and the number of
dynamically executed branches will be the same in
PERL and DLX. Further we assume that cost of branch
is one clock, assuming the branch prediction performs
with great accuracy. We assume all the branches in
PERL are indirect and hence have 2 memory access.

3. The effect of all other instructions are negligible.

From the above assumptions, it is clear that PERL is as-
sumed to have worst case reads. Therefore, the real perfor-
mance is expected to be better than the analytically arrived
one. The actual distribution of dynamically executed in-
structions for a class of benchmark suite is given in [6] for
DLX machine. We can infer from that there are about 25%-
45% of Load/Store, about 45%-65% of ALU and about 7%-
20% of branches. Now for a program let us assume that on
an average there are about 33% of Load/Store, 54% of ALU
and 13% of branches.

From the above data we plot the normalized CPI (clocks
per instruction) of the two machines for varying hit ratios.
The equations 1 and 2 give the CPI of DLX and PERL re-
spectively, normalized with respect to theinstruction count
of DLX. whereh is the hit ratio andmp is the miss penalty
in clock cycles.Ct = 0:13 if we assume that the branches
and other remaining instructions can be executed in one
clock cycle each on DLX.

CPIDLX= :54 + :33h+ :33 (1� h)mp + Ct (1)

CPIPERL= :54

6X

r=0

6Cr h
r (1� h)6�r � (1 + (6� r) �mp)

:13

2X

r=0

2Cr h
r (1� h)2�r � (1 + (2� r) �mp) (2)

Note the missing contribution of load and store instruc-
tions in equation 2. Thus equation 2 is the normalized CPI
for PERL with respect to the instruction count of DLX .
Also note that equation 1 gives CPI for DLX. We can cal-
culate the CPU execution time of the program on both the
machines givenN the total number of dynamically executed
instructions in DLX as follows.

CPU Execution Time on DLX =N � CPIDLX
CPU Execution Time on PERL =N �CPIDLX

The miss penalty is same in both cases since both machines
are expected to use the same technology for memory. But a
well designed second level cache and possibly a third level
cache can potentially improve the miss penalty. Further
PERL can depend on the compiler to provide effective hints
to the cache to improve the hit ratio and avoid unnecessary
write backs.

Two performance curves of interest are given in figure 3
and 4. Figure 3 gives the variation of normalized CPI for
both DLX and PERL for varying hit ratio. This is significant
because it helps to compare the two machines for different
hit ratios, as we expect hit ratios will not be the same in the
two machines. Figure 4 shows tolerable miss penalty for
two cases:

1. When the hit ratios are same for both DLX and PERL.

2. When the hit ratio of DLX is 1.

0

1

2

3

4

5

6

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Normalized
CPI

Hit Ratio

Mp2 = 6
Mp1 = 6
Mp2 = 10
Mp1 = 10

Best of DLX

Figure 3. Normalized CPI vs. hit ratio

0
1
2
3
4
5
6
7
8
9
10
11

0.86 0.88 0.9 0.92 0.94 0.96 0.98

Tolerable
Miss Penalty

Hit Ratio

With same h
With h=1 for DLX

Figure 4. Tolerable miss penalty vs. hit ratio

In figure 4, miss penalties above the curve are the cases
where PERL performs better than DLX for the given hit
ratio, whereas miss penalties below the curves indicate the
cases where DLX performs better.

The curves indicate that as the hit ratio approaches 1
PERL performs better than DLX. Further we assumed the
same hit ratio for both PERL and DLX. Intuition points that
since the data access pattern will be similar in both DLX
and PERL the number of misses will be almost the same in
both. So we can hope that PERL will have a higher hit ratio
since it generates lot more accesses than DLX.

6. Current Status

There are different ways to evaluate the benefits of de-
sign ideas for an architecture, in terms of hardware cost ver-
sus performance. We took execution oriented approach and
developed a simulator for the PERL processor. This enables
us to simulate assembly instructions so that the contents of
different hardware elements can be recorded on a cycle ba-
sis. Correctness of the program execution can be checked
to assess the proper coordination of all different simulated
hardware components. The simulator executes assembly
programs generated by a cross compiler, so that it can be
portable to different machines. The user interface permits

one to run the simulator on a cycle basis, and examine the
contents of the various hardware elements in a given cycle.

The simulator implements sophisticated superscalar in-
struction processing policy, multiple out-of-order issue,
multiple out-of-order completion etc. Efficient hardware
mechanisms like a central window, buffering instruction for
issue, and a reorder buffer, operand renaming were selected
to achieve the issue policy. Branch prediction to predict
both direct and indirect branches is used to keep a steady
flow of instructions. Forwarding of data and operand ad-
dress is also used to further improve the speed up.

In fact the simulator tries to simulate the execution model
described in section 4 as closely as possible. It assumes a
perfect cache. Various parameters like memory size, num-
ber of functional units and their latencies, sizes of the var-
ious buffers and the superscalar parameters like number of
instruction issue, instruction decode and instruction commit
can all be specified in a machine description file.

A C compiler which produces the assembly code is built
upon GNU C compiler. GCC gets most of the informa-
tion about the target machine from a machine description
which gives an algebraic formula for each of the machine’s
instruction. A machine description has two parts: a file of
instruction patterns(.md file) and a C header file. Each in-
struction pattern contains an incomplete RTL expressions,
with pieces to be filled in later, operand constraints that
restrict how pieces can be filled in, and an output C code
to generate the assembler output, all wrapped up in ade-
fine insn. We created this file with respect to PERL and
used the rest of GCC as it is, to get the compiler for PERL.
No machine dependent optimizations are implemented.

A trace driven cache simulator is also built which takes
a trace file and a configuration file. The trace file is gener-
ated by the processor simulator described above, the traces
are indineroformat [6]. The configuration contains the de-
scription of the cache to be simulated. The cache simulators
gives the various performance metrics related to cache.

The complete details of the simulator, compiler and the
cache simulator are beyond the scope of this paper.

7. Results

We compare the performance of PERL with that of DLX
and DEC Alpha 21064. The compilers for DLX and DEC
Alpha are very efficient and perform lot of optimizations,
whereas the compiler for PERL does not perform any kind
of machine dependent optimizations. The performance fig-
ures for DLX were obtained from SuperDLX [11], whereas
those for Alpha were obtained using Atom [4]. While simu-
lators for PERL and DLX can be configured to user require-
ment, Atom captures the performance figures by running on
the processor and therefore can not be configured for vari-
ous architectural variations.

perm

0
5000
10000
15000
20000

mult

0
4� 105
8� 105
12� 105

tts

0
2� 106
4� 106
6� 106
8� 106

relax

0
3� 106
6� 106
9� 106
12� 106
15� 106

across

perl2 perl4 dlx2 dlx4 Alpha
0

1000
2000
3000
4000
5000

ClockCycles InstructionCount

FetchStalls DecodeStalls

Figure 5. Performance Metrics for PERL, DLX
and ALPHA

We have taken the following programs from users in our
lab as benchmark programs.
perm. This is a heavily recursive program which, given an
array ofn integers, prints alln! permutations. For simula-
tions we have takenn as 5.
mult. An integer matrix multiplication program. The re-
sults are obtained for matrices of size 32x32.
tts. This is a time table scheduler program. Given a list
of courses, preferences of timing for allotting slots to the
course and a given set of class rooms, the program uses a
heuristic driven approach to get the best optimized time ta-
ble schedule.
relax and across. These two programs are taken from
NASA test suite for parallelizing compilers. Both of them
contain nested do loops and operate on vectors.

The performance metrics of interest for us are the dy-
namic instruction count and clock cycles and is plotted in
figure 5, for all the programs. The figures are provided for
2-issue and 4-issue PERL and DLX processors and 21064
DEC Alpha processor. As expected PERL executes about
30–40% less instructions, the instruction count in Alpha is
smaller than DLX and PERL because it has some special in-
structions which perform scaled addition, cutting down the

perm

0
25%
50%
75%

100%

mult

0
25%
50%
75%

100%

tts

0
25%
50%
75%

100%

relax

0
25%
50%
75%

100%

across

perl1
reads

perl2
reads

perl4
reads

common
writes

0
25%
50%
75%

100%

Mem-access FP-access

SP-access

Figure 6. Memory access distribution in PERL

instruction required to access array elements.
The total number of clock cycles required to completely

execute the program is again better for PERL compared to
that for DLX in all cases and Alpha in some cases. The
reason why Alpha performs better has to be further investi-
gated.

The Fetch-stalls and Decode-stalls in PERL and DLX
are comparable whereas Alpha has lot more stalls. PERL
and DLX pipelines have similar designs and various buffers
sizes were kept same during simulation, whereas Alpha has
fixed buffer sizes.

The access distribution of PERL is interesting because
accesses to SP and FP cut down the accesses to cache (see
figure 6). It is observed that in case ofperm , mult and
tts SP and FP accesses contribute 30–60% of the total ac-
cesses. Whereas in case ofrelax and across bench-
marks their contribution is negligible. Both of these bench-
marks predominantly use arrays which are allocated on the
heap.

We also analyzed the cache performance for PERL and
compared it with that of DLX. As there are lot of details as-
sociated with the cache design for PERL we cannot present
all the results. We have observed the following in case of

PERL.

1. Instruction cache misses for PERL RISC are more
compared to DLX. Wider cache blocks however, yield
less number of misses in case of PERL.

2. The number of cycles where PERL generates more
than 5 memory accesses were very few even for a four
issue version.

3. The high data bandwidth requirement of PERL can be
satisfied by a dual port interleaved cache. Load all
wide technique satisfies about 1–15% of the total ac-
cesses.

8. Conclusions

The initial studies indicate that the proposed machine
performs better or at least as good as the existing processors.
The compiler used is not specifically built for our machine
and hence we may be loosing some performance. Some
more optimizations that are possible within the scope of the
current compiler need to be studied.

The instruction fetch stalls of the proposed machine are
considerably high simultaneously the number of cycles in
which 2 or 3 instructions are issued is also high when com-
pared with a typical RISC. This may be due to the fact that
the compiler is not doing much effort to extract the instruc-
tion level parallelism. Improved branch processing by the
compiler may also boost the performance. Both these tech-
niques are to be investigated.

The cache performance studies of the proposed ma-
chine showed that the absolute number of instruction cache
misses are more compared to DLX. But larger block size
decreased the number of misses. This is because of the fact
the instructions here are long and wider blocks will bring
more instructions into the cache and hence reduces compul-
sory misses. Results also showed that a dual port data cache
can satisfy the increased bandwidth requirement of the pro-
posed machine. Further it showed that the data cache per-
formance is comparable or better than the other RISC pro-
cessors.

This indicates that by having wider block size and wider
L1–L2 bus the performance of the proposed machine will
be better than that of DLX. This is because the data cache
performance is same for both and the proposed machine ex-
ecutes substantially less number of instructions.

Certainly there are some open issues that need to be ad-
dressed to substantiate the claim that this is the architecture
for the future. The first thing is to estimate the VLSI costs
of such a processor. Then the instruction set architecture
has to be thoroughly studied to come up with the best set.
Compiler optimization techniques specific to this architec-
ture have to be addressed. The proposed machine makes

one write in every clock for almost every instruction, the
effect of this on the performance of cache consistency pro-
tocol has to investigated.

References

[1] D. Bhandarkar and D. W. Clark. Performance from Archi-
tecture: Comparing a RISC and a CISC with Similar Hard-
ware Organization.ACM, Proceedings of the 4th Interna-
tional Conference on ASPLOS, pages 310–319, 1991.

[2] D. W. Clark and H. M. Levy. Measurement and Analysis
of Instruction Set use in the VAX-11/780.ACM, SIGARCH,
Proceedings of the 9th Annual Symposium on Computer Ar-
chitecture, pages 9–17, 1982.

[3] R. Cmelik, S. I. Kong, D. R. Ditzel, and E. J. Kelly. An
Analysis of MIPS and SPARC Instruction Set Utilization on
the SPEC Benchmarks.ACM, Proceedings of the 4th Inter-
national Conference on ASPLOS, 1991.

[4] Digital Equipment Corporation.Atom Reference Manual.
[5] J. H. Edmondson, P. Rubinfeld, and R. Preston. Superscalar

Instruction Execution in the 21164 Alpha Microprocessor.
IEEE Micro, pages 33–43, Apr 1995.

[6] J. L. Hennessy and D. A.Patterson.Computer Architecture A
Quantitative Approach. Morgan Kaufmann Publishers, INC,
San Mateo, California, 1991.

[7] N. P. Jouppi. Improving Direct-Mapped Cache Performance
by the addition of a small Fully-Associative Cache and
Prefetch Buffers.ACM, SIGARCH, Proceedings of The 17th
Annual International Symposium on Computer Architecture,
pages 364–373, 1990.

[8] D. R. Kaeli and P. G. Emma. Branch History Table Predic-
tion of Moving Target Branches Due to Subroutine Returns.
ACM, SIGARCH, Proceedings of The 18th Annual Interna-
tional Symposium on Computer Architecture, pages 34–41,
1991.

[9] J. Lee and A. Smith. Branch Prediction strategies and branch
target buffer design.IEEE Computer, pages 6–22, Jul 1984.

[10] A. Lunde. Empirical Evaluation of Some Features of In-
struction Set Processor Architecture.Communications of the
ACM, Vol. 20(No. 3):143–153, Mar 1977.

[11] C. Moura. SuperDLX–A Generic Superscalar Simulator.
Masters thesis, Advanced compilers, Architecture snd Par-
allel Sytems Group, McGill University, May 1993.

[12] D. Patterson et al. A Case For INTELLIGENT RAM.IEEE
Micro, pages 34–44, Mar/Apr 1997.

[13] T. Shanley.Pentium Pro Processor System Architecture. Ad-
dison Wesley Developers Press, 1997.

[14] M. Tremblay and J. M. O’Connor. UltraSparc I: A Four-
Issue Processor Supporting Multimedia.IEEE Micro, pages
42–49, Apr 1996.

[15] C. A. Wiecek. A Case study of VAX-11 Instruction Set Us-
age for Compiler Execution.ACM, Proceedings of the Sym-
posium on ASPLOS, pages 177–184, 1982.

[16] K. M. Wilson, K. Olukotun, and M. Rosenblum. Increasing
Cache Port Efficiency for Dynamic Superscalar Micropro-
cessor.ACM, SIGARCH, Proceedings of The 23rd Annual
International Symposium on Computer Architecture, pages
147–157, 1996.

