Retargetable Program Profiling Using High Level
Processor Models

Rajiv Ravindran and Rajat Moona

Department of Computer Science & Engineering
Indian Institute of Technology
Kanpur 208016, Indidrajiva, moona }@cse.iitk.ac.in

Abstract. Program profiling helps in characterizing program behafdor tar-
get architecture. We have implemented a retargetable ationldriven code pro-
filer from a high-level processor description languggjep-nML A programming
interface has been provided for building customized pncfil€he retargetability
makes the profiling tool independent of the target instancset.

1 Introduction

During the design of embedded systems, need is felt to auitcadig generate pro-
cessor and application development tools like assemhiéassemblers, compilers,
instruction-set simulators etc. Automated generationughstools yields faster turn-
around time with lower costs for system design and simplifieprocess of incorporat-
ing design changes. We have developed a retargetable emérd in which processors
are modeled at a high level of abstraction using3ima-nML[3] specification language.

We useSim-nMLto describe the instruction set architecture of the pramefsem
which various tools to aid processor design are autométigainerated. The overall
goal of theSim-nMLbased project is to model a complete system environmentawith
processor core specified usi8gn-nMLfor automatic architecture exploration. As part
of the integrated development environment, we have deeel@pretargetable func-
tional simulator [5], cache simulator [6], assembler, géganbler [13] and a compiler
back-end generator. Work on a cycle accurate timing siraulatin progress from the
Sim-nML useg14] model. In this paper, we describe a mechanism for coddyan
sis. Program analysis tools are extremely useful for utdeding program behavior.
Computer architects could employ them to analyze prografopeance on new archi-
tectures. It can be used to characterize instruction usmgach behavior etc. Critical
and time consuming portions of the code can be identifiedgtnmazations. Compilers
could use the profile information to guide its optimizati@asp.

Program profiling has always been instruction-set sped#iofiling tools instru-
ment the input binary at specific points to sample the progvatmavior. Other tech-
nigues employed include hardware counters which are it the processor. But
most of these techniques are tied to a particular architectn the embedded world,
the designer has to iterate over multiple design optiongtadg on the best target ar-
chitecture for a given application, within a short periodinfe, before actual processor
design. Hence, there is a need for a more generic model.

We have tried to build a mechanism that provides architerdsaftware developers
a means to implement various profiling policies in a retaalgletmanner. A retargetable
instruction set simulator provides the platform for codefiting. A retargetable func-
tional simulator generatorksimg[5], generates a processor specific functional simu-
lator from the processor model written 8im-nMLfor a given program. A high-level
processor modeling language makes our design retargetalwer approach, the pro-
filing of code is accomplished by instrumenting the funcéibsimulator, for the given
program on the target architecture, at chosen points. Fample, to count the basic
blocks traversed at run time, a counter could be placed anbeof each basic block.
Similarly, to analyze branch behavior, routines could baealdafter conditional branch
instructions. We view the program as a set of procedures eataining a collection
of basic blocks, each of which is further composed of pramessstructions. A user
defined procedure for profiling the application program caiinserted before or after
an instruction, a basic block or a procedure. We have prowagieapplication program-
ming interface (API) using which the user can insert his figrccalls at chosen points
in the input binary. This technique is inspired from ATOM {¥hich is a framework for
building a wide range of customized program analysis tobitgsough this approach,
the user can construct a custom profiling tool. The retabdetarogram profiler is a
step towards our original goal of complete system simutationsisting of a processor
simulator, cache simulator etc. fra&m-nML

Our code profiling strategy consists of two phases. In thegfirase, the retargetable
functional simulator generatéisimg takes as input th8im-nMLprocessor model de-
scribing the target architecture and the program binarg ARI-calls helps the user
define his routines and the points in the program binary tonbEimented. The gran-
ularity of instrumentation can be at the procedural, bakickor at instruction bound-
aries.Fsimgthen generates an instruction set simulatesim, specific to the given
program and target processor instruction set. The instntatien routines are linked
with the simulator with user provided calls added at spetifieints inFsim In the
second phase, the user runs the functional simulator whiebuges the instrumented
code while simulating the input program. Thus the prograofileris generated.

Our target through this paper has been two fold. Firstly,raexension of the in-
tegrated development environment we have implementedemadiler. Unlike earlier
works on profiling, we have attempted to develop a retardetatofiler from a high-
level processor description. Secondly, the API-calls ghes an infrastructure to create
a customized profiling environment through user specifiedtions.

The rest of the paper is organized as follows. In section Zistvéhe related work. In
section 3, we give an overview &im-nML We describe the design of the code profiler
in section 4. We explain the API with some examples of how tteyld be used for
different kinds of profiling. Finally in section 5, we presesome sample simulation
and profiling results for simple programs and conclude.

2 Related Work

Performance modeling of a system is a growing area and a Imsgfarch has been
pursued in this area. We briefly review some of them here.

ATOM [7] provides a framework for providing customized programalgsis tools.
It instruments the input program through a programmableriate. ATOM uses no
simulation or interpretation.

Pixie [8] is a utility that allows one to trace, profile or generayadmic statistics for
any program that runs on a MIPS processor. It works by aningtaecutable object
code with additional instructions that collect the dynamformation during run time.

QPT [9] [10] is a profiler and tracing system. It rewrites a pragtmexecutable file
(a.out) by inserting code to record the execution frequemsequence of every basic
block or control-flow edge.

EEL [11] (Executable Editing Library) is a C++ library that pides abstractions
which allow a tool to analyze and modify executable prograitisout being concerned
with particular instruction sets, executable file formats,consequences of deleting
existing code and adding foreign code.

EXPRESSION [1] is similar toSim-nMLand is used in architecture exploration. It
has been used for automatic generation of compiler/simiutadlkit.

LISA [2] is a machine description language for generation of it @y/cle accurate
models for DSP processors based on behavioral operationighén.

UNIX tools prof andgprof record a statistical sample.

All of these tools are architecture specific or implement ecffic set of profiling
techniques (except ATOM). We try to improve upon them thiougtargetability and
customization.

3 Sim-nML

Sim-nML[3][4] is a direct extension ofiML[15] machine description formalism. It in-
cludes several features that are useful for performancelation that are not present
in nML.

Sim-nMLis targeted for describing wide range of processor ardhites including
CISC, RISC and VLIW architectures at the instruction seeléuding its implemen-
tation details. Some of the target architectures desctilsaty Sim-nMLinclude Pow-
erPC, ARM, UltraSparc, MIPS-1V, 8085, Motorola 68HC11, AP&E 01. The instruc-
tion set is described in a hierarchical manner. The semantions of the instructions
are captured as fragments of code spread all over the itistnitcee.Sim-nMLspeci-
fications are described using an attribute grammar. Thexdiixed start symbol called
instruction and two types of productionand-ruleandor-rule.

There are certain fixed attributes defined dod-rulesthat capture various aspects
of the instruction set. Theyntaxattribute captures the textual assembly language syn-
tax of the instructions. Thienageattribute captures the binary image of the instructions.
The actionattribute captures the semantics of the instructions. Ugesattribute cap-
tures the resource usage model and is used for timing siioldthe resource usage
model captures the micro-architectural features of thegssor and is used in cycle
accurate timing simulation. The details of the uses modgivisn in [14].

The following illustration is a specification for a simpleogessor with four instruc-
tions —add, sub, bin{branch immediate) anin (branch indirect).

The processor has two addressing modes — immediate andereigidirect. The
moderule is associated with galueattribute, ‘n’ in case oMM and ‘R[n]’ in case
of REGIND, where ‘n’ is a constant provided in the instruction encgdifihe four
instructions are hierarchically described. The branch édiate bim) instruction mod-
ifies the PC with an immediate branch offset. The branchéudibin) takes the branch
address in the specified register and copies it to the PCad@itiinstruction adds two
registers and puts the results in the first register. itEnstruction subtracts two reg-
isters and puts the result in the first register.

let REGS =5
type word =int (16)

reg R [2**REGS, word]
regPC[1,word]

resourcebu, alu

modelMM (n: card (12))=n
syntax = format(“%d”, n)
image = format(“%12b”, n)

modeREG.IND (n:card (5))=R[n]
syntax = format(“r%d", n)
image = format(“%5b”, n)

op instruction (x : instraction)
uses =x.uses
syntax = x.syntax
image = x.image
action = {
PC=PC + 2;
x.action;

op instraction = branchinst| arithmeticinst
op branchinst = bim| bin

op bim(d:IMM)
uses= bu #1
syntax = format (“bim %s”, d.syntax)
image = format(“1000%s”, d.image)
action={ PC =PC + (k< 4); }

op bin (r: REGIND)
uses= bu #1
syntax = format (“bin %s”, r.syntax)
image = format(“10010000000%s”", r.image)
action={PC=r;}

op arithmeticinst = add sub

op add (rl: REGND, r2: REGIND)
uses= alu #1
syntax = format(“add %s %s”, rl.syntax, r2.syntax)
image = format(“101000%s%s", rl.image, r2.image)
action={rl=rl1+r2;}

opsub (rl: REGAND, r2: REGIND)
uses= alu #1
syntax = format (“sub %s %s”, rl.syntax, r2.syntax)
image = format(“101100%s%s", rl.image, r2.image)
acton={rl=r1-r2;}

Retargetable tools flatten out the hierarchical descrigticenumerate out the com-
plete instruction set and its associated attribute defimdti Different tools, depending
on their needs, use different attributes. For example, senalsler uses the definition of
attributessyntaxandimage A detailed description ofim-nMLcan be found in [3][4]
(http://www.cse.iitk.ac.in/sim-nml

4 Code Profiling

In this section, we give an overview of the functional sintotadiscuss the design and
implementation of the code profiler, the API and how they ae®iporated into the
functional simulator.

4.1 Overview of Functional Simulation Process

Fsimg[5] initially flattens the hierarchy itrmageandactionattributes of thesim-nML
description. Thectionattribute captures the semantics of the instruction-gatekch
machine instructioni-simgemits a corresponding uniq@@function. This function is
obtained by translating flattenegttion attribute definition taC. Fsimgthen reads the
program binary and for every matched input instruction imyagenerates a call to the
corresponding function defining that instruction. All thesalls to functions are cap-
tured in a table of instruction function pointers with eaaltrg pointing to the function
corresponding to the respective instruction. Along witlts tiable, Fsimgalso gener-
ates data structures for memory, registers and a drivingnetor simulation. Thus, it
generates a list of function calls corresponding to allrircttons in the input program.

The driver routine of the functional simulator simulates firogram by calling these
functions sequentially until the program terminates.

4.2 Instrumentation

The table of instruction function pointers generated byftimetional simulator provide
a convenient means for code instrumentation. To createtarimed profiling tool, the
user defines a set of routines which are to be executed atrcposggs in the program.
Calls to these user defined routines are inserted into the tdbnstruction function
pointers between function calls at specified instrumemtatoints which represent the
instruction boundaries. A set of predefined routines - aftiggtjion programming inter-
face (API) is provided which allows the user to add his praredalls before or after
instructions. A set oBasicblock analysisoutines are provided for profiling at the level
of procedures, basic blocks and instructions within bakicks.

The profiler generation consists of the following steps.

— Fsimganalyzes the input program for basic blocksimgis provided with the set
of conditional and unconditional control flow instructioinsthe Sim-nMLhierar-
chy. SinceSim-nMLis a hierarchical description, if the hierarchy allows, veeiicl
provide the top level branch node instead. The actual brasttuction is then enu-
merated from this. Once a list of branch instructions arer@mated, we split the
input instruction stream at procedure boundaries. For @gprocedure, the basic
block boundaries are marked just after every branch intstrucThe branch target
address can be calculated from #@ioncorresponding to the branch instructions.

— User adds his routines through the instrumentation-AFiwia predefinedhstru-
mentfunction.

— During generation of the functional simulator, the API salte used to instrument
the application program at appropriate places in the gésesamulator.

— User runs the simulator which executes the instrumented.cod

Application Programming Interface - APl For code instrumentation, we list some
important instrumentation-API below.

— AddCallFuncbyName(iname, func, position) This function can be used to in-
strument the application program before/affggition) the specific instructiorin-
ame@ with the user defined routinéunc).

— AddCallFunc(inst, func, pos)} This function can be used to instrument the appli-
cation program at specific addresses i.e, whenever an dtistnus fetched from
the addresmist

— AddTrailerFunc(func) : The user can add any routindar{c) to be executed after
simulation.Fsimgadds these routines after the simulation engine. They casdx
to collect the final statistics, dump profiling informatiotc.e

— GetFirstProc, GetNextProc, GetFirstBlock, GetNextBlok, GetLastInst: These
procedures are used at the procedure and basic block léwey. dan be used as
iterators over all procedures and basic blocks in the givegnam.

For more details refer to [12].

Implementation The instrumentation routines are added in 3 fildastrument.c,
bblockanal.c, userfuncs.instrument.ccontains a call to a predefined routitrestru-
mentin which the user adds the API calls.
For example, to count the occurrencesdtlinstructions executed in the program, we
specify the following
void Instrument()
{
AddCallFuncbyName(“add”, INSTR'YPE, “addcounter”, AFTER);
AddTrailerFunc(“printaddcnt”);
}
The fileuserfuncs.contains the user defined routines. The functiddcountercould
be defined as follows:
long addcnt = 0;
void addcounter()

{
}

whereaddcntis a global counte/AddTrailerFunds used to add the user functiprint-
addcntat the end of simulation which could be defined as follows

void printaddcnt()

{
}

The file bblockanal.ccontains the instrumentation routines associated witicbas
block related analysis. It contains a call to a predefinedimelwBasicblockAnalin
which the user adds the API calls for basic block related fimgfi
For example, to count the number of basic blocks that aretsad during program
execution, we specify the following

void BasicblockAnal()

{

addcnt++;

printf(“%d”, addcnt);

Proc *p;
Block *b;
Inst inst;
for (p = GetFirstProc(); p; p = GetNextProc(p))
for (b = GetFirstBlock(p); b; b = GetNextBlock(b))
inst = GetLastInst(b);
AddCallFunc(inst, “countbb” AFTER);
AddTrailerFunc(“printbb”);
}
The user defined functiarzountbhis addedafterthe last instruction in each basic block.
The user might want to call different functions at the sandress boundary. Multiple
user defined instructions can be engineered at address &gemty callingAddCall-
Funcwith different function names at the same instruction adlre

5 Results

Five benchmarks program were written in C (Table 1) and ctedgor PowerPC603
Sim-nMLprocessor description.

| Progran] Description |
mmul.c |Integer matrix multiplication. This
program initializes two integer matrices
of 100x100 size and multiplies them.
bsort.c |Bubble sort. This program
initializes an array of 1500 integers in
descending order and sorts them to
ascending order using bubble sort
algorithm.
gs.c |Quick sort. This program
initializes array of 1,00,000 integers in
descending order and sorts them to
ascending order using quick sort algorithm.
fmmul.c|Matrix multiplication of floating-point
numbers. Initializes and multiplies two
floating point matrices of size 100x100.
nqueen.cThis program finds all possible ways
that N queens can be placed on an NxN
chess board so that the queens cannot
capture one another. Here N is taken as|12.
Table 1.Benchmark Programs

Table 2 gives the total number of dynamically executed irtstons during the sim-
ulation.

|ProgranjTotal No. of Instructions

mmul.c 91,531,966
bsort.c 60,759,034
gs.c 80,773,862
fmmul.c 92,131,966
nqueen.c 204,916,928
Table 2. Total number of instructions simulated for test programs.

We have implemented a simple profiling tool which counts thenber of basic
blocks that are traversed at run time. At the same time, timeben of PowerPC603

addi instructions executed is found. The code instrumentatghriique used is the
one specified in section 4.2,
The profiling output is given in table 3.

Prograni Total No. of Total No: of
basic block traversedddi instructions executed
mmul.c 2081207 1030305
bsort.c 4506008 2253005
gs.c 7315513 242144
fmmul.c 2081207 1110305
nqueen.c 40030204 60766515

Table 3. Profiling output for test programs.

The functional simulator performance without any profiloggle is shown in table 4

|ProgranjTotal Time in Second#nstructions per secohd

mmul.c 62 1,476,322
bsort.c 106 573,198

gs.c 109 741,044
fmmul.c 64 1,439,549
nqueen.¢ 225 910,741

Table 4. Performance Results of the functional simulator

We compare the simulation slow down from different profilteghniques (those in
table 3) in table 5.

| ProgranjSlowdown factof

mmul.c 1.01x
bsort.c 1x
gs.c 1.01x
fmmul.c 1x
nqueen.c 1.01x

Table 5. Performance results of profiling of test programs.

6 Conclusion

In this paper, we presented a simulation driven programlprofihe profiler is generic
in the following ways. Firstly, we have used a retargetabtecfional simulator gener-
ated from a high-level processor description langu&y®-nML Secondly, through a
programming interface, we have provided a mechanism fotamenting customized
profilers. Thus, we do not tie the profiler to a particular fastion-set or to specific
profiling techniques.

References

1.

11.

12.

13.

14.

15.

Ashok Halambi, Peter Grun , Vijay Ganesh, Asheesh Khaild| Dutt, Alex Nicolau:
EXPRESSION: A Language for Architecture Exploration tigfo€Compiler/Simulator Re-
targetability. Proceedings of the Conference on Design, Automation antiff&urope,
Munich, Germany, March 1999

. S. Pees, A. Hoffmann, V. Zivojnovic, H. MeykISA - Machine Description Language

for Cycle-Accurate Models of Programmable DSP ArchitezsuProceedings of the 36th
Design Automation Conference, New Orleans, June 1999

. V. Rajesh, Rajat Moon&rocessor Modeling for Hardware Software Co-Desigroceed-

ings of the 12th International Conference on VLSI Designa@ndia, January,1999

. Rajat MoonaProcessor Models for Retargetable Tod&oceedings of Rapid Systems

Prototyping 2000 (IEEE), Paris, June, 2000

. Subhash Chandra and Rajat MooRatargetable Functional Simulator Using High Level

Processor ModelsProceedings of the 13th International Conference on VLSigre
Calcutta, India., January, 2000

. Rajiv Ravindran and Rajat MoonRetargetable Cache Simulation Using High Level Pro-

cessor ModelsProceedings of the 6th Australasian Computer Systems t&athire Con-
ference, Gold Coast, Australia, January, 2001

. Amitabh Srivastava and David WaATOM: A System for Building Customized Analysis

Tools.Proceedings of the SIGPLAN '94 Conference of Programmingduage Design
and Implementation, June, 1994, 196-205

. Michael D. SmithTracing with PixieMemo from Center for Integrated Systems, Stanford

Univ., April, 1991

. James R. Laru€fficient Program TracinglEEE Computer, May, 1993, 26(5):52-61
. James R. Larus, Thomas B&llewriting Executable Files to Measure Program Behavior.

Software: Practice and Experience, Feb, 1994, 24(2):197-2

James R. Larus, Eric SchndgEL: Machine-Independent Executable EditiS§GPLAN
Conference on Programming Language Design and Implen@mi@&LDI), June 1995
Rajiv RavindranRetargetable Profiling Tools and their Application in CacBienulation
and Code Instrumentatiofasters thesis report, Dept. of Computer Science and Engg.,
IIT Kanpur, India, Dec 1999. http://www.cse.iitk.ac.iegearch/mtech1998/9811116.html
Nihal Chand JainDisassembler Using High Level Processor Modéifasters the-
sis report, Dept. of Computer Science and Engg., IIT Kanpaja, January 1998.
http://www.cse.iitk.ac.in/research/mtech1997/97 Blatml|

Anand Shukla, Arvind SaraA Formalism for Processor DescriptioBachelors thesis
report, Dept. of Computer Science and Engg., IIT Kanpuridnelay 2001.

M. Freerick: The nML Machine Description Formalism.http://www.cs.tu-
berlin.de7 mfx/dvi_docs/nml2.dvi.gz, 1993

