
Retargetable Program Profiling Using High Level
Processor Models

Rajiv Ravindran and Rajat Moona

Department of Computer Science & Engineering
Indian Institute of Technology

Kanpur 208016, Indiafrajiva, moona g@cse.iitk.ac.in

Abstract. Program profiling helps in characterizing program behaviorfor a tar-
get architecture. We have implemented a retargetable simulation driven code pro-
filer from a high-level processor description language,Sim-nML. A programming
interface has been provided for building customized profilers. The retargetability
makes the profiling tool independent of the target instruction set.

1 Introduction

During the design of embedded systems, need is felt to automatically generate pro-
cessor and application development tools like assemblers,disassemblers, compilers,
instruction-set simulators etc. Automated generation of such tools yields faster turn-
around time with lower costs for system design and simplifiesthe process of incorporat-
ing design changes. We have developed a retargetable environment in which processors
are modeled at a high level of abstraction using theSim-nML[3] specification language.

We useSim-nMLto describe the instruction set architecture of the processor from
which various tools to aid processor design are automatically generated. The overall
goal of theSim-nMLbased project is to model a complete system environment witha
processor core specified usingSim-nMLfor automatic architecture exploration. As part
of the integrated development environment, we have developed a retargetable func-
tional simulator [5], cache simulator [6], assembler, disassembler [13] and a compiler
back-end generator. Work on a cycle accurate timing simulator is in progress from the
Sim-nML uses[14] model. In this paper, we describe a mechanism for code analy-
sis. Program analysis tools are extremely useful for understanding program behavior.
Computer architects could employ them to analyze program performance on new archi-
tectures. It can be used to characterize instruction usage,branch behavior etc. Critical
and time consuming portions of the code can be identified for optimizations. Compilers
could use the profile information to guide its optimization pass.

Program profiling has always been instruction-set specific.Profiling tools instru-
ment the input binary at specific points to sample the programbehavior. Other tech-
niques employed include hardware counters which are built into the processor. But
most of these techniques are tied to a particular architecture. In the embedded world,
the designer has to iterate over multiple design options to decide on the best target ar-
chitecture for a given application, within a short period oftime, before actual processor
design. Hence, there is a need for a more generic model.

We have tried to build a mechanism that provides architects and software developers
a means to implement various profiling policies in a retargetable manner. A retargetable
instruction set simulator provides the platform for code profiling. A retargetable func-
tional simulator generator -Fsimg[5], generates a processor specific functional simu-
lator from the processor model written inSim-nMLfor a given program. A high-level
processor modeling language makes our design retargetable. In our approach, the pro-
filing of code is accomplished by instrumenting the functional simulator, for the given
program on the target architecture, at chosen points. For example, to count the basic
blocks traversed at run time, a counter could be placed at theend of each basic block.
Similarly, to analyze branch behavior, routines could be added after conditional branch
instructions. We view the program as a set of procedures eachcontaining a collection
of basic blocks, each of which is further composed of processor instructions. A user
defined procedure for profiling the application program can be inserted before or after
an instruction, a basic block or a procedure. We have provided an application program-
ming interface (API) using which the user can insert his function calls at chosen points
in the input binary. This technique is inspired from ATOM [7]which is a framework for
building a wide range of customized program analysis tools.Through this approach,
the user can construct a custom profiling tool. The retargetable program profiler is a
step towards our original goal of complete system simulation consisting of a processor
simulator, cache simulator etc. fromSim-nML.

Our code profiling strategy consists of two phases. In the first phase, the retargetable
functional simulator generatorFsimg, takes as input theSim-nMLprocessor model de-
scribing the target architecture and the program binary. The API-calls helps the user
define his routines and the points in the program binary to be instrumented. The gran-
ularity of instrumentation can be at the procedural, basic block or at instruction bound-
aries.Fsimg then generates an instruction set simulator -Fsim, specific to the given
program and target processor instruction set. The instrumentation routines are linked
with the simulator with user provided calls added at specified points inFsim. In the
second phase, the user runs the functional simulator which executes the instrumented
code while simulating the input program. Thus the program profile is generated.

Our target through this paper has been two fold. Firstly, as an extension of the in-
tegrated development environment we have implemented a code profiler. Unlike earlier
works on profiling, we have attempted to develop a retargetable profiler from a high-
level processor description. Secondly, the API-calls provides an infrastructure to create
a customized profiling environment through user specified functions.

The rest of the paper is organized as follows. In section 2, welist the related work. In
section 3, we give an overview ofSim-nML. We describe the design of the code profiler
in section 4. We explain the API with some examples of how theycould be used for
different kinds of profiling. Finally in section 5, we present some sample simulation
and profiling results for simple programs and conclude.

2 Related Work

Performance modeling of a system is a growing area and a lot ofresearch has been
pursued in this area. We briefly review some of them here.

ATOM [7] provides a framework for providing customized program analysis tools.
It instruments the input program through a programmable interface.ATOM uses no
simulation or interpretation.

Pixie [8] is a utility that allows one to trace, profile or generate dynamic statistics for
any program that runs on a MIPS processor. It works by annotating executable object
code with additional instructions that collect the dynamicinformation during run time.

QPT [9] [10] is a profiler and tracing system. It rewrites a program’s executable file
(a.out) by inserting code to record the execution frequencyor sequence of every basic
block or control-flow edge.

EEL [11] (Executable Editing Library) is a C++ library that provides abstractions
which allow a tool to analyze and modify executable programswithout being concerned
with particular instruction sets, executable file formats,or consequences of deleting
existing code and adding foreign code.

EXPRESSION [1] is similar toSim-nMLand is used in architecture exploration. It
has been used for automatic generation of compiler/simulator toolkit.

LISA [2] is a machine description language for generation of bit and cycle accurate
models for DSP processors based on behavioral operation description.

UNIX tools prof andgprof record a statistical sample.
All of these tools are architecture specific or implement a specific set of profiling

techniques (except ATOM). We try to improve upon them through retargetability and
customization.

3 Sim-nML

Sim-nML[3][4] is a direct extension ofnML[15] machine description formalism. It in-
cludes several features that are useful for performance simulation that are not present
in nML.

Sim-nMLis targeted for describing wide range of processor architectures including
CISC, RISC and VLIW architectures at the instruction set level hiding its implemen-
tation details. Some of the target architectures describedusingSim-nMLinclude Pow-
erPC, ARM, UltraSparc, MIPS-IV, 8085, Motorola 68HC11, ADSP2101. The instruc-
tion set is described in a hierarchical manner. The semanticactions of the instructions
are captured as fragments of code spread all over the instruction tree.Sim-nMLspeci-
fications are described using an attribute grammar. There isa fixed start symbol called
instruction, and two types of productions,and-ruleandor-rule.

There are certain fixed attributes defined forand-rulesthat capture various aspects
of the instruction set. Thesyntaxattribute captures the textual assembly language syn-
tax of the instructions. Theimageattribute captures the binary image of the instructions.
Theactionattribute captures the semantics of the instructions. Theusesattribute cap-
tures the resource usage model and is used for timing simulation. The resource usage
model captures the micro-architectural features of the processor and is used in cycle
accurate timing simulation. The details of the uses model isgiven in [14].

The following illustration is a specification for a simple processor with four instruc-
tions –add, sub, bim(branch immediate) andbin (branch indirect).

The processor has two addressing modes – immediate and register indirect. The
moderule is associated with avalueattribute, ‘n’ in case ofIMM and ‘R[n]’ in case
of REGIND, where ‘n’ is a constant provided in the instruction encoding. The four
instructions are hierarchically described. The branch immediate (bim) instruction mod-
ifies the PC with an immediate branch offset. The branch indirect (bin) takes the branch
address in the specified register and copies it to the PC. Theadd instruction adds two
registers and puts the results in the first register. Thesubinstruction subtracts two reg-
isters and puts the result in the first register.

let REGS = 5
type word = int (16)

reg R [2**REGS, word]
reg PC [1 , word]

resourcebu, alu

mode IMM (n : card (12)) = n
syntax= format (“%d”, n)
image = format (“%12b”, n)

modeREG IND (n : card (5)) = R [n]
syntax= format (“r%d”, n)
image = format (“%5b”, n)

op instruction (x : instraction)
uses = x.uses
syntax= x.syntax
image = x.image
action = f

PC = PC + 2;
x.action;g

op instraction = branchinst arithmeticinst

op branchinst = bim bin

op bim (d : IMM)
uses= bu #1
syntax= format (“bim %s”, d.syntax)
image = format (“1000%s”, d.image)
action = f PC = PC + (d<< 4); g

op bin (r : REGIND)
uses= bu #1
syntax= format (“bin %s”, r.syntax)
image = format (“10010000000%s”, r.image)
action = f PC = r;g

op arithmeticinst = add sub

op add (r1 : REGIND, r2 : REG IND)
uses= alu #1
syntax= format (“add %s %s”, r1.syntax, r2.syntax)
image = format (“101000%s%s”, r1.image, r2.image)
action = f r1 = r1 + r2;g

op sub (r1 : REGIND, r2 : REG IND)
uses= alu #1
syntax= format (“sub %s %s”, r1.syntax, r2.syntax)
image = format (“101100%s%s”, r1.image, r2.image)
action = f r1 = r1� r2; g

Retargetable tools flatten out the hierarchical description to enumerate out the com-
plete instruction set and its associated attribute definitions. Different tools, depending
on their needs, use different attributes. For example, an assembler uses the definition of
attributessyntaxandimage. A detailed description ofSim-nMLcan be found in [3][4]
(http://www.cse.iitk.ac.in/sim-nml).

4 Code Profiling

In this section, we give an overview of the functional simulator, discuss the design and
implementation of the code profiler, the API and how they are incorporated into the
functional simulator.

4.1 Overview of Functional Simulation Process

Fsimg[5] initially flattens the hierarchy inimageandactionattributes of theSim-nML
description. Theactionattribute captures the semantics of the instruction-set. For each
machine instruction,Fsimgemits a corresponding uniqueC function. This function is
obtained by translating flattenedactionattribute definition toC. Fsimg then reads the
program binary and for every matched input instruction image, generates a call to the
corresponding function defining that instruction. All these calls to functions are cap-
tured in a table of instruction function pointers with each entry pointing to the function
corresponding to the respective instruction. Along with this table,Fsimgalso gener-
ates data structures for memory, registers and a driving routine for simulation. Thus, it
generates a list of function calls corresponding to all instructions in the input program.

The driver routine of the functional simulator simulates the program by calling these
functions sequentially until the program terminates.

4.2 Instrumentation

The table of instruction function pointers generated by thefunctional simulator provide
a convenient means for code instrumentation. To create a customized profiling tool, the
user defines a set of routines which are to be executed at chosen points in the program.
Calls to these user defined routines are inserted into the table of instruction function
pointers between function calls at specified instrumentation points which represent the
instruction boundaries. A set of predefined routines - an application programming inter-
face (API) is provided which allows the user to add his procedure calls before or after
instructions. A set ofBasicblock analysisroutines are provided for profiling at the level
of procedures, basic blocks and instructions within basic blocks.

The profiler generation consists of the following steps.

– Fsimganalyzes the input program for basic blocks.Fsimgis provided with the set
of conditional and unconditional control flow instructionsin theSim-nMLhierar-
chy. SinceSim-nMLis a hierarchical description, if the hierarchy allows, we could
provide the top level branch node instead. The actual branchinstruction is then enu-
merated from this. Once a list of branch instructions are enumerated, we split the
input instruction stream at procedure boundaries. For a given procedure, the basic
block boundaries are marked just after every branch instruction. The branch target
address can be calculated from theactioncorresponding to the branch instructions.

– User adds his routines through the instrumentation-API within a predefinedInstru-
mentfunction.

– During generation of the functional simulator, the API calls are used to instrument
the application program at appropriate places in the generated simulator.

– User runs the simulator which executes the instrumented code.

Application Programming Interface - API For code instrumentation, we list some
important instrumentation-API below.

– AddCallFuncbyName(iname, func, position): This function can be used to in-
strument the application program before/after (position) the specific instruction (in-
ame) with the user defined routine (func).

– AddCallFunc(inst, func, pos): This function can be used to instrument the appli-
cation program at specific addresses i.e, whenever an instruction is fetched from
the addressinst.

– AddTrailerFunc(func) : The user can add any routines (func) to be executed after
simulation.Fsimgadds these routines after the simulation engine. They can beused
to collect the final statistics, dump profiling information etc.

– GetFirstProc, GetNextProc, GetFirstBlock, GetNextBlock, GetLastInst: These
procedures are used at the procedure and basic block level. They can be used as
iterators over all procedures and basic blocks in the given program.

For more details refer to [12].

Implementation The instrumentation routines are added in 3 files -instrument.c,
bblockanal.c, userfuncs.c. Instrument.ccontains a call to a predefined routineInstru-
mentin which the user adds the API calls.
For example, to count the occurrences ofadd instructions executed in the program, we
specify the following

void Instrument()f
AddCallFuncbyName(“add”, INSTRTYPE, “addcounter”, AFTER);
AddTrailerFunc(“printaddcnt”);g

The fileuserfuncs.ccontains the user defined routines. The functionaddcountercould
be defined as follows:

long addcnt = 0;
void addcounter()f

addcnt++;g
whereaddcntis a global counter.AddTrailerFuncis used to add the user functionprint-
addcntat the end of simulation which could be defined as follows

void printaddcnt()f
printf(“%d”, addcnt);g

The file bblockanal.ccontains the instrumentation routines associated with basic
block related analysis. It contains a call to a predefined routine BasicblockAnal, in
which the user adds the API calls for basic block related profiling.
For example, to count the number of basic blocks that are traversed during program
execution, we specify the following

void BasicblockAnal()f
Proc *p;
Block *b;
Inst inst;
for (p = GetFirstProc(); p; p = GetNextProc(p))

for (b = GetFirstBlock(p); b; b = GetNextBlock(b))
inst = GetLastInst(b);
AddCallFunc(inst, “countbb” AFTER);

AddTrailerFunc(“printbb”);g
The user defined functioncountbbis addedafter the last instruction in each basic block.
The user might want to call different functions at the same address boundary. Multiple
user defined instructions can be engineered at address boundaries by callingAddCall-
Funcwith different function names at the same instruction address.

5 Results

Five benchmarks program were written in C (Table 1) and compiled for PowerPC603
Sim-nMLprocessor description.

Program Description

mmul.c Integer matrix multiplication. This
program initializes two integer matrices
of 100x100 size and multiplies them.

bsort.c Bubble sort. This program
initializes an array of 1500 integers in
descending order and sorts them to
ascending order using bubble sort
algorithm.

qs.c Quick sort. This program
initializes array of 1,00,000 integers in
descending order and sorts them to
ascending order using quick sort algorithm.

fmmul.c Matrix multiplication of floating-point
numbers. Initializes and multiplies two
floating point matrices of size 100x100.

nqueen.cThis program finds all possible ways
that N queens can be placed on an NxN
chess board so that the queens cannot
capture one another. Here N is taken as 12.

Table 1.Benchmark Programs

Table 2 gives the total number of dynamically executed instructions during the sim-
ulation.

ProgramTotal No. of Instructions

mmul.c 91,531,966
bsort.c 60,759,034

qs.c 80,773,862
fmmul.c 92,131,966
nqueen.c 204,916,928

Table 2.Total number of instructions simulated for test programs.

We have implemented a simple profiling tool which counts the number of basic
blocks that are traversed at run time. At the same time, the number ofPowerPC603

addi instructions executed is found. The code instrumentation technique used is the
one specified in section 4.2.

The profiling output is given in table 3.

Program Total No. of Total No: of
basic block traversedaddi instructions executed

mmul.c 2081207 1030305
bsort.c 4506008 2253005
qs.c 7315513 242144

fmmul.c 2081207 1110305
nqueen.c 40030204 60766515

Table 3.Profiling output for test programs.

The functional simulator performance without any profilingcode is shown in table 4

ProgramTotal Time in SecondsInstructions per second

mmul.c 62 1,476,322
bsort.c 106 573,198
qs.c 109 741,044

fmmul.c 64 1,439,549
nqueen.c 225 910,741

Table 4.Performance Results of the functional simulator

We compare the simulation slow down from different profilingtechniques (those in
table 3) in table 5.

ProgramSlowdown factor

mmul.c 1.01x
bsort.c 1x
qs.c 1.01x

fmmul.c 1x
nqueen.c 1.01x

Table 5.Performance results of profiling of test programs.

6 Conclusion

In this paper, we presented a simulation driven program profiler. The profiler is generic
in the following ways. Firstly, we have used a retargetable functional simulator gener-
ated from a high-level processor description language,Sim-nML. Secondly, through a
programming interface, we have provided a mechanism for implementing customized
profilers. Thus, we do not tie the profiler to a particular instruction-set or to specific
profiling techniques.

References

1. Ashok Halambi, Peter Grun , Vijay Ganesh, Asheesh Khare, Nikil Dutt, Alex Nicolau:
EXPRESSION: A Language for Architecture Exploration through Compiler/Simulator Re-
targetability.Proceedings of the Conference on Design, Automation and Test in Europe,
Munich, Germany, March 1999

2. S. Pees, A. Hoffmann, V. Zivojnovic, H. Meyr:LISA - Machine Description Language
for Cycle-Accurate Models of Programmable DSP Architectures.Proceedings of the 36th
Design Automation Conference, New Orleans, June 1999

3. V. Rajesh, Rajat Moona:Processor Modeling for Hardware Software Co-Design.Proceed-
ings of the 12th International Conference on VLSI Design, Goa, India, January,1999

4. Rajat Moona:Processor Models for Retargetable Tools.Proceedings of Rapid Systems
Prototyping 2000 (IEEE), Paris, June, 2000

5. Subhash Chandra and Rajat Moona:Retargetable Functional Simulator Using High Level
Processor Models.Proceedings of the 13th International Conference on VLSI Design,
Calcutta, India., January, 2000

6. Rajiv Ravindran and Rajat Moona:Retargetable Cache Simulation Using High Level Pro-
cessor Models.Proceedings of the 6th Australasian Computer Systems Architecture Con-
ference, Gold Coast, Australia, January, 2001

7. Amitabh Srivastava and David Wall:ATOM: A System for Building Customized Analysis
Tools.Proceedings of the SIGPLAN ’94 Conference of Programming Language Design
and Implementation, June, 1994, 196-205

8. Michael D. Smith:Tracing with Pixie.Memo from Center for Integrated Systems, Stanford
Univ., April, 1991

9. James R. Larus:Efficient Program Tracing.IEEE Computer, May, 1993, 26(5):52-61
10. James R. Larus, Thomas Ball:Rewriting Executable Files to Measure Program Behavior.

Software: Practice and Experience, Feb, 1994, 24(2):197-218
11. James R. Larus, Eric Schnarr:EEL: Machine-Independent Executable Editing.SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), June 1995
12. Rajiv Ravindran:Retargetable Profiling Tools and their Application in CacheSimulation

and Code Instrumentation.Masters thesis report, Dept. of Computer Science and Engg.,
IIT Kanpur, India, Dec 1999. http://www.cse.iitk.ac.in/research/mtech1998/9811116.html

13. Nihal Chand Jain:Disassembler Using High Level Processor Models.Masters the-
sis report, Dept. of Computer Science and Engg., IIT Kanpur,India, January 1998.
http://www.cse.iitk.ac.in/research/mtech1997/9711113.html

14. Anand Shukla, Arvind Saraf:A Formalism for Processor Description.Bachelors thesis
report, Dept. of Computer Science and Engg., IIT Kanpur, India, May 2001.

15. M. Freerick: The nML Machine Description Formalism.http://www.cs.tu-
berlin.de/̃ mfx/dvi docs/nml2.dvi.gz, 1993

