
Graph based model for Object Access Analysis at OSD Client

Riyaz Shiraguppi, Rajat Moona
{riyaz,moona}@iitk.ac.in

Indian Institute of Technology, Kanpur

Abstract

In client-server based storage systems, the knowledge of
access behavior of client results in better quality of ser-
vice. One of its uses is in prefetching to reduce the re-
sponse time. In this paper, we propose a graph based
model for access analysis of objects in the Object based
device (OSD) system [1,2]. OSD technology promises to
satisfy requirements of enterprise’s rapidly growing stor-
age requirements. OSD provides abstraction at the object
level, granting object access only after authentication of
security tokens which are issued by the OSD manager.
We look particularly for prefetching of the object security
tokens by an OSD client and perform analysis based on
this model. Graph based techniques are commonly used
to solve many real world problems [5]-[9]. We present
a graph-based client-initiated mechanism for the analy-
sis of object accesses to achieve effective prefetching of
objects. We have also devised an access algorithm that
works on these graphs and generates an ordered set of ob-
jects which are suitable candidates for prefetching along
with a given object. We also discuss design and imple-
mentation of an OSD client, and its integration with the
graph-based model.

1 Introduction

Prefetching is useful for improving response time in
client-server architectures. Prefetching techniques bring
data a priori at the client side based on data access analy-
sis.

In the simplest approach, aggressive prefetching as-
sumes spatial locality and brings all data near to the data
currently being accessed. However, this may lead wastage
of network traffic as it ignores user access behavior. In
this paper, we consider a selective prefetching mechanism
that chooses suitable candidates for prefetching using pre-
diction. Prediction based techniques are used to guess
what data is required in the near future based on analy-
sis of data accessed in the past.

Depending upon the location of implementation,
prefetching can be server-initiated, client-initiated or
proxy-initiated. In server-initiated prefetching, the server
keeps a log of accesses by the client. For a given request,
future data is predicted by studying accesses made in past.
In a proxy-initiated case, a proxy forwards client requests
to the server. Prefetching techniques are found to be effec-
tive when client provides hints regarding its accesses. In
client-initiated case, the client analyzes its own accesses
and requests prefetch data.

The object based device (OSD) system [1,2], as a stor-
age area network (SAN) [3] technology, combines the ad-

1



vantages of high-speed, direct-access SANs, and the data
sharing and secure capabilities of network attached stor-
age (NAS) [4]. The storage component of the file sys-
tem which is traditionally implemented by the host soft-
ware, is implemented by the device itself. Unlike tradi-
tional block addressing, this device exports an object in-
terface. Storage management of objects is done internally
by the OSD for efficient access. Access to the object is
granted after authentication of security tokens for objects.
An OSD manager issues security tokens. On receiving re-
quest for a security token for an object, it returns a tuple
containing the security token and its integrity value. This
tuple is termed as the Credentials for the object. The se-
curity features in the OSD system introduce the additional
overhead of acquiring the required credentials before ac-
cessing an object.

In this paper, we propose graph based techniques for
selective prefetching of credentials of objects to minimize
this overhead. In particular, we consider client-initiated
prefetching where the OSD client maintains a log of ac-
cesses. Access analysis is carried out on this log to iden-
tify frequently accessed objects and ordered sequences of
objects. An ordered sequence of objects is also termed
as a pattern. These patterns are used for prefetching the
objects credentials by the client.

We discuss client side components of the OSD system
and integration of graph based model for prefetching of
object credentials from the OSD manager. This model can
also be applied for selective prefetching of objects from
the OSD device.

Graph based techniques are used by several researchers
for various applications. James Griffioen and Randy Ap-
pleton discussed graph techniques for prefetching to re-
duce file system latency [5]. In their approach, they create
a graph with nodes as files in the file system and edges to
represent the access sequence between nodes. Nexus [6]
is a weighted graph based prefetching algorithm for meta-

Figure 1: OSD System components

data servers in petabyte-scale storage systems. This is de-
signed for metadata servers. In this approach, relationship
graphs are constructed dynamically by defining successor
relationships. George Pallis, Athena Vakali and Jaroslav
Pokorny discussed a clustering-based prefetching scheme
[7] on a web cache environment. This is a proxy-initiated
prefetching scheme where a graph-based clustering algo-
rithm identifies clusters of correlated web pages based on
the user’s access patterns. Carl Tait and Dan Duchamp
discussed detection and exploitation of file working sets
[8] for effective prefetching using graph techniques.

The remainder of the paper is organized as follows. In
section 2, we provide an overview of the OSD system. In
section 3, we introduce our prefetching model. In section
4, we present the design of an OSD client integrated with
our prefetching model. We discuss our implementation in
section 6. We conclude in section 7.

2 Overview of OSD system

An OSD system (figure 1) typically consists of the fol-
lowing components.

OSD Client

The OSD client runs applications which operate on the
data from the OSD target. It acquires security tokens from
the OSD manager and sends request to the OSD target

2



integrated with the corresponding tokens. The OSD client
can be high-end processing machine or a NAS head in the
real world scenarios.

OSD Manager

The OSD manager is responsible for management of pol-
icy decisions for objects in an OSD. It issues security to-
kens to the OSD client which are encrypted with secret
keys shared with the OSD target.

OSD Target

The OSD target is responsible for processing OSD com-
mands after appropriate authentication of the security to-
kens.

3 Access Graph Model

In this section, we discuss our access graph model for
the object pattern analysis. The access graph model uses
weighted graphs to create an ordered set of objects. This
set is used for the selective prefetch.

3.1 Observation Window

The time duration for which accesses of the objects in the
system are observed is termed as the “Observation Win-
dow”. This factor is dependent on the frequency of ob-
jects accesses and changes in the access patterns. Access
analysis is carried out at the end of the observation period
as a background process.

3.2 Log Information

A log of object accesses is maintained per Observation
Window. Past log files are stored for a limited number
of Observation Windows. The log contains information

specifying each accessed object, its access time, the type
of access made on that object, etc. In particular, we con-
sider the log for the prefetch of object credentials. In our
case, information about type of access made on the object
may not be useful but it might be useful for prefetching of
the object data from the OSD target.

3.3 Object Access Count and Inter-
reference Interval

The object access count and inter-reference intervals are
useful in determining frequency of object access in the
Observation Window.

We use this information to prioritize among objects. In
our model, we define four priority levels for objects - Very
High, High, Medium, Low. Depending upon the size of
the Observation Window, a range (in terms of number of
accesses) for each priority level is defined. The priority of
new object that is not part of any Observation Window is
considered as Medium.

Prioritization is useful for selective prefetching. Ob-
jects with higher priority can be brought a priori. Priori-
tization can also used in the replacement policy. Objects
with low priority are chosen as candidates suitable for re-
placement.

3.4 Object Access graphs

We build an object access graph by identifying pattern of
objects accesses. Search for an access pattern, i.e. re-
peated sequence of objects, is done in the log.

If access patterns do not overlap then the task is simple.
For a particular access on a object, all other objects from
the pattern accessed after the given object are returned as
candidates for prefetching.

It is possible that two or more access patterns overlap.
In this case, selection of a pattern can be done by deter-

3



Figure 2: Algorithm for constructing access graph

mining which stored pattern is closest to the current ac-
cess behavior. This solution is expensive and may cause
wastage of prefetch data when accesses of the objects are
not according to the determined pattern. Alternatively, ob-
jects from all patterns can be selected. However, there is
limit on the amount of data that can be prefetched. This
implies a need to selectively prefetch objects from all pat-
terns of which the given object is a member.

We propose a graph based solution for selective
prefetching. This works by maintaining a weighted di-
rected graph for each access pattern. There is a weight as-
sociated with each pattern which is a factor of the number
of times the given access pattern is repeated. The factor
value is decided depending upon the number of patterns
and repetitions of the patterns in the Observation Window.

3.4.1 Construction of Access graphs

We construct a graph for each pattern with a vertex for
each object in the graph.

The graph is constructed using method in figure 2.

Figure 3 shows access graphs for various patterns with
pattern weight as 10% of repetition count.

It is also possible for the application to give feedback
regarding its working set. Objects in the working set are
considered as a pattern and the highest pattern weight
value is assigned to this pattern to ensure that this pattern
has the highest priority.

Construction of directed graphs is useful for defining

Figure 3: Access Graphs

successor relations among objects. The list of objects ob-
tained by the traversal of directed access graphs gives the
set of objects having a high probability of access after the
access of the given object.

The access graphs can also be constructed as undirected
graphs. In this case, the weight of a resultant undirected
edge will be the sum of weights of the directed edges
between two vertices. An undirected graph is useful for
defining an object working set, i.e. a collection of objects
with high probability of getting accessed together.

3.4.2 Merging of graphs

Two access graphs can be merged if their associated pat-
terns contain common objects. The resultant graph con-
tains the union of vertices from both graphs.

The weight for edges of the new graph is assigned as
follows. If the edge is common to both graphs, the weight
of the edge is the sum of the weights of the given edge
from each graph. Otherwise, it is equal to the weight of
the edge in the graph where it is present.

Figure 4 shows merging of graphs shown in figure 3.

3.5 Management of Access Graphs

Access graphs are stored in the database at the client side.
For each access graph, there is an entry for every edge
specifying its two vertices and the weight of the edge.

4



Figure 4: Merging of Access Graphs

There is also a unique identifier associated with each ac-
cess graph.

There is another database maintained which stores the
age value for each access graph. The age value is in-
creased if the access graph is repeated in the current Ob-
servation Window. Age values are assigned in such a
way that the values for the access graphs found in the re-
cent Observation Windows are more than those of access
graphs found in the past.

Age values are useful for determining replacement pol-
icy. It is not possible to store all access graphs from all
past Observation Windows. Access graphs with lower age
values are chosen as candidates suitable for replacement.

Permanent Access Graph

We call an access graph as a permanent access graph
if it is continuously found in the past Observation Win-
dows. Age values are useful in deciding permanent ac-
cess graphs. Permanent access graphs have very high age
values. The use of permanent access graphs is discussed
in section 3.6.3.

Figure 5: POS construction Algorithm

3.6 Selective Prefetch using Access graphs

3.6.1 Construction of Prefetch Object Set

As mentioned earlier, the size of data that can be
prefetched is usually limited. Selective prefetching is
done on the basis of weights of edges. An ordered
Prefetch Object Set (POS) with objects in descending or-
der of prefetch preference is constructed using an access
graph. Depending upon the size of the prefetch buffer,
prefetch data for the objects from this set is requested.

When an object is accessed, the access graph con-
taining the given object is searched. If it is not found,
prefetching is not done.

The POS is constructed using the algorithm shown in
figure 5. This is a modified form of Prim’s minimum
spanning tree algorithm [10]. Initially, all immediate
neighbors of the given object are considered. Subse-
quently, a modified Prim’s algorithm is used where the
next vertex is chosen having the edge with the maximum
weight.

5



For example, consider the generation of the POS for
vertex 2 of the graph constructed in step 2 of figure 4.
Initially, immediate neighbors vertices 3 and 4 are cho-
sen. This creates a partial tree containing vertices 2, 3, 4.
The modified Prim’s algorithm is applied on this partial
tree which chooses vertex 8 (as edge 3-8 is of maximum
weight) and then vertex 6. Thus, the POS generated for
vertex 2 is {3, 4, 8, 6}.

It may be seen that the edges corresponding to the ob-
jects with repeated occurrence in a pattern have higher
weight. This gives higher preference for prefetching such
objects.

3.6.2 Permanent POS

It is possible to save time for building a POS for fre-
quently accessed objects by constructing it a priori and
storing it in the database. Such a POS is known as a Per-
manent POS.

3.6.3 Participation of OSD Manager

It is also possible for the OSD manager to participate in
the process of prefetching of credentials. The OSD client
can send permanent access graphs to the OSD manager.
When an object from the permanent access graph is ac-
cessed, the client does not need to build the POS. This
task is done by the OSD manager. The OSD client can
also send the permanent POS. This is helpful in reducing
the workload at the client side.

This is also useful when some OSD client is not smart
enough to generate and send its POS. The OSD man-
ager can merge permanent access graphs sent by the other
smart clients and use them to generate POS for this client.

4 OSD Client Design

In this section, we describe the working of OSD client
integrated with Access Graph Model. We will look at the
design of modules required for selective prefetch of object
credentials from the OSD manager.

An OSD client consists of various modules organized
in Application layer, Object layer and SCSI layer, as
shown in figure 6.

4.1 Application Layer

Application layer consists of programs and utilities that
operate on OSD data.

4.1.1 OSD Application

OSD application is an OSD object aware application
which manipulates its data in terms of objects. Instead
of using traditional read/write system calls, it calls ob-
ject read/write functions of object layer to operate on the
OSD data. This can be a file system aware of the OSD
system (OSDFS) or a utility program for manipulation
of objects. Intelligent OSD application can also provide
feedback regarding the object working set to object layer
(section 4.2).

4.1.2 Traditional Application

A traditional application is based on the block architec-
ture. It is unaware of OSD system and objects, and op-
erates on data using read/write system calls. An object
mapper is required which maps block based I/O to object
based I/O in order to port such applications to the OSD
system.

6



Figure 6: Architecture of an OSD Client

4.1.3 Object Mapper

An object mapper allows block based application to oper-
ate on OSD device. It is responsible for converting system
read/write calls to object read/write commands in the ob-
ject layer. This module especially maps files/blocks to the
objects. Object mapping can be either at the block level
where data blocks are mapped to the objects, or at file
level where files are mapped to the objects. Object map-
per can also provide feedback regarding object working
set to the object layer.

4.2 Object Layer

OSD commands are submitted to the SCSI stack as SCSI
commands. Object read/write calls made by the applica-
tion layer need to be mapped to SCSI calls. This mapping
is done in the object layer. Along with this mapping, an
OSD request needs additional processing. A similar pro-
cessing also needs to be done for the command response
before passing it to the application layer. The object layer
includes various modules such as the following.

Figure 7: Analyzer Module

4.2.1 Object Module

This module exports object read/write functions which
are called by the application layer modules. This module
acts as the communicator between upper layer and object
layer, and is responsible for sequencing of operations in
the object layer by invoking various modules.

The Object Module also sends information about ob-
ject access to the Analyzer module. Access information
specifies object information, type of access and name of
the application accessing this object.

4.2.2 Analyzer Module

Figure 7 shows various units of Analyzer Module.

7



Access Log

Information about current object access sent by Object
Module is added to the Access Log. The Access Log is
maintained in a very simple manner since it is updated for
each access of every object. We propose to implement
it as simple text file for each Observation Window with
each line specifying time of access, information about ap-
plication accessing it, object ID information and type of
access.

Object Frequency Unit

This module is responsible for prioritization among ob-
jects. It works on the log file associated with the current
Observation Window. It assigns priorities to each object
depending on the number of accesses and average interval
time. Priority information is stored in the database main-
tained by Access Information Unit.

Object frequency unit is activated once every Observa-
tion Window, at the end of observation period.

Graph Generator Unit

Graph Generator unit is responsible for construction of
access graphs. It works on the log file associated with the
current Observation Window and searches for the access
patterns. As there is a high probability of getting a pat-
tern around frequently accessed objects, it takes feedback
from Object Frequency unit regarding accesses of high
priority objects.

The graph generator unit constructs a directed graph for
each access pattern which is called as access graph for that
pattern using method described in section 3.4.1. A Pattern
Weight is also assigned to each access graph.

After construction of access graphs, these graphs are
merged if their associated access patterns contain com-
mon objects. Final access graphs are stored in the

database at Access Information Unit.

Graph Generator Unit is run once every Observation
Window at the end of the observation period.

Feedback Unit

Application layer can also help in the process of pattern
analysis by providing information regarding the object
working set. Feedback unit exports object calls that allow
application to provide object working set. It also submits
each working set as a pattern with very high repetition
count to the Graph Generator Unit.

Access Information Unit

Access Information unit maintains databases for Object
Priority, Weighted Access graphs, Age of Access graphs
and Permanent POS. These databases are updated once
every Observation Window at the end of the observation
period.

The “Object Priority” database contains an entry for
each object found in the Observation Window with its
priority. Entries are added by Object Frequency unit dur-
ing analysis of Access Log. Credential Cache (section
4.2.7) queries priority information of objects while adding
them to the Credential Cache. Security unit (section 4.2.6)
queries this database before sending prefetch requests for
high priority objects to the OSD manager. POS unit also
queries this database for building permanent POS associ-
ated with the high priority objects.

The “Weighted Access graphs” database stores access
graphs. A unique identifier is assigned to each access
graph. Access graph information is maintained in the
form of edge list representation with a weight assigned to
each edge. Entries are added by the Graph Generator unit
at the end of observation period. This database is queried
by POS unit for construction of POS for given object.

8



The “Age of Access graphs” database stores informa-
tion about each access graph (with unique identifier) and
its age. Age is computed using method described in sec-
tion 3.5. Graph Generator unit adds a new entry for ev-
ery new access graph found in current Observation Win-
dow. It also updates age values for old access graphs. This
database is queried by POS unit for construction of per-
manent POS. This is also queried by Manager Update unit
to update OSD manager with permanent access graphs.

The “Permanent POS” database contains POS for high
priority objects belonging to permanent access graphs.
POS unit adds entries in this database at the end of the
observation period. Manager Update unit also queries this
database to update OSD manager with permanent access
graph.

POS Unit

POS unit is responsible for generation of prefetch object
set. Request for selective POS of an object is sent to this
unit by the Security Unit (section 4.2.6). First, this unit
queries the “Permanent POS” database to check whether
POS for the given object exists. If it doesn’t exists, it
queries the “Weighted Access graphs” database for access
graph containing this object. POS is generated using al-
gorithm described in section 3.6.1.

4.2.3 OSD ID Unit

In our implementation, OSDs are implemented as SCSI
devices. We have used SCSI device id to identify the
OSD. OSD ID unit is responsible for management of
SCSI device id for OSD devices in the system.

4.2.4 Object Command Pre-processor

The OSD requests from the application layer are pre-
processed before they move on to the SCSI layer. Pre-

processing includes the following.

• Invoking the security unit for obtaining security to-
ken.

• Placing the request for required metadata informa-
tion of the object to the OSD device. This informa-
tion may be modified as a side effect of command
execution, for example to include the access time.
Such modifications are updated to the OSD manager.

• Generating MIC for OSD request and attaching it
with OSD request.

4.2.5 Object Command Post-processor

This module is responsible for processing metadata infor-
mation requested by the pre-processing unit. Post pro-
cessing is carried out after command execution and in-
cludes updating the Credential Cache and the security
manager with modification in the metadata information
as a side effect of the command execution.

4.2.6 Security Unit

Security unit is responsible for implementation of security
features at the client side which includes getting creden-
tials for the object. For an OSD request to the given OSD
device, SCSI device ID is obtained from the OSD ID unit.
Credentials are first searched in the Credential Cache. If
credentials are found but permission rights do not allow
performing a given operation, requested OSD command
is rejected with an error. If credentials are not found, POS
for the given object is obtained from the Analyzer mod-
ule. In this case, credential request for the given object
along with objects in POS is made to the OSD manager.
Credential request contains OSD-SCSI ID, object infor-
mation, user information and POS set.

9



Credential response contains credentials for the given
object and the objects from POS set. Entries for all ob-
jects are added to the Credential Cache as a background
process.

4.2.7 Credential Cache

Credential Cache is a local store used to store recently ac-
cessed credentials. Entries are added to Credential Cache
from the response of the security manager. Entries are re-
moved after the execution of remove commands or when
credentials expire.

An entry in the Credential Cache consists of object in-
formation (OSD-SCSI ID, object type, part-id, object-id),
user information (uid, gid), credentials and priority of ob-
ject. Priority information of objects is obtained from An-
alyzer module. If the priority information is not found,
given object is assigned medium priority. We use hash
queues for management of the Credential Cache entries.
Priority based replacement policy is used.

4.2.8 OSD-SCSI Module

This module is responsible for encapsulation and decap-
sulation of OSD request into SCSI control descriptor
block (CDB).

4.2.9 Manager Update Unit

OSD manager maintains database containing access con-
trol information and metadata for objects. This database
need to be updated after execution of CREATE/REMOVE
commands at the OSD client. This task is done by the
Manager Update unit. A request from the OSD client to
the OSD manager is sent by the Manager Update unit for
updating database at OSD manager side as a side effect
of command execution. Beside this, the Manager Up-
date unit also sends information about permanent access

graphs and permanent POS.

4.3 SCSI Upper Layer

SCSI upper layer is implemented as a part of the Linux
SCSI stack [11]. It implements SCSI upper layer driver
for the OSD through SO driver. Like other SCSI upper
layer drivers such as those for SCSI disk (sd) and SCSI
tape (st) devices, it is responsible for detecting and man-
aging OSD devices in the host system. OSD command
is submitted to this layer module. OSD ID unit queries
the SO driver using ioctl system call to get list of all OSD
devices.

5 Our implementation

Our current implementation includes manager and client
side components of the OSD system. We are using IBM
OSD initiator project [12] which consists of implemen-
tation of SO module and OSD-SCSI module. The OSD
manager and client side components are built on the top of
it. At the OSD target side, we have our own open source
implementation of T10 compliant OSD simulator [13].

6 Conclusion

In this paper, we discussed use of graph based techniques
for prediction of future accesses from analysis of past ac-
cess history. We built access graphs using the log of ob-
ject accesses. Our algorithm works on these graphs and
generates set for prefetch data.

Features of our graph model can be summarized as the
following.

• Construction of weighted directed graph for each
pattern allows to define successor relationship be-

10



tween various objects within the graph. Weight of
each edge describes strength of this relation.

• Merging of access graphs allows to define strength of
this relation across multiple patterns. Unlike other
approaches [6,8] where prediction is done consid-
ering single access pattern, merged access graphs
allows to consider multiple patterns for prediction.
This can make prediction more accurate.

• Our access algorithm to generate ordered prefetch
object set is a modified form of Prim’s minimum
spanning tree algorithm. Initially, prefetch object set
is constructed using all immediate neighbors of the
object giving them high priority. Later on using a
modified Prim’s algorithm for maximum weight al-
lows adding of objects having high priority of access
after accessing a object from partial prefetch set.

We have described various subunits in the OSD client sys-
tem and discussed about its integration with this model. In
particular, we have discussed its use in prefetching of the
credentials from OSD manager.

References

[1] Eric Riedel. OSD Architecture and Systems. SNIA
Technical Tutorial. April 2006.
http://www.snia.org/education/tutorials/
2006/spring/storage/Object-based_
Storage_Devices-OSD_Architecture
_and_Systems.pdf.

[2] T10 Technical Committee. Information technology-
SCSI Object-Based Storage Device Commands-2
(OSD-2). Working draft, project T10/1729-D, Re-
vision 2., July 2007.
http://www.t10.org/ftp/t10/drafts/osd2/
osd2r02.pdf.

[3] Heng Liao. Storage Area Network Architectures,
Technology White Paper. PMC-2022178. Issue 1:
April, 2003.
http://www.pmc-sierra.com/cgi-bin/document.pl?
docnum=2022178.

[4] Garth A. Gibson and Rodney Van Meter. Network
Attached Storage Architecture. Communications of
the ACM, Nov. 2000, vol. 43, issue 11. ACM Press
New York, NY, USA. pp. 37-45.

[5] James Griffioen, KY Randy Appleton. Reducing file
system latency using a predictive approach. Pro-
ceedings of the USENIX Summer 1994 Technical
Conference on USENIX Summer 1994 Technical
Conference - Volume 1. Boston, Massachusetts. pp.
13 - 13

[6] Peng Gu, et. al., Nexus: A Novel Weighted-Graph-
Based Prefetching Algorithm for Metadata Servers
in Petabyte-Scale Storage Systems. Proceedings of
the Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’06) - Volume 00.
Singapore. 16-19 May 2006. pp. 409 - 416.

[7] Pallis G., et. al., A Clustering-based Prefetching
Scheme on a Web Cache Environment. International
Journal Computers & electrical engineering, Else-
vier, 2007.

[8] Carl D. Tait et al., "Detection and Exploitation of
File Working Sets," International Conference on
Distributed Computing Systems, IEEE, Arlington,
Texas, USA. May 20-24, 1991. pp. 2-9.

[9] Murali Annavaram, Jignesh M. Patel, Edward S.
Davidson. Call graph prefetching for database ap-
plications. ACM Transactions on Computer Systems
(TOCS) archive Volume 21 , Issue 4, (November
2003), pp. 412 - 444.

11



[10] R.C. Prim. Shortest connection networks and some
generalizations. Bell System Technical Journal 36
(November 1957), pp 1389-1401.

[11] Douglas Gilbert. The Linux 2.4 SCSI subsystem
HOWTO.
http://sg.torque.net/scsi/SCSI-2.4-HOWTO/.

[12] IBM Inc., IBM OSD Initiator.
https://sourceforge.net/projects/osd-initiator.

[13] Riyaz Shiraguppi, Implementation of IITK OSD
Simulator.
https://sourceforge.net/projects/iik-osd-sim

12


